WorldWideScience

Sample records for rat hypothalamic neurons

  1. Neuronal glucoprivation enhances hypothalamic histamine turnover in rats.

    Science.gov (United States)

    Oohara, A; Yoshimatsu, H; Kurokawa, M; Oishi, R; Saeki, K; Sakata, T

    1994-08-01

    Histamine (HA) turnover in the rat hypothalamus following insufficient energy supply due to glucoprivation was examined after administration of insulin or 2-deoxy-D-glucose (2-DG). HA turnover was assessed by accumulation of tele-methylhistamine (t-MH), a major metabolite of brain HA, following administration of pargyline. Intraperitoneal injection of 1, 2, and 4 U/kg of insulin, which had no influence on steady-state levels of HA and t-MH, increased pargyline-induced accumulation of t-MH. Accumulation of t-MH due to pargyline was inversely related to the concomitant plasma glucose concentration after different doses of insulin. The level of t-MH accumulated by pargyline did not change compared with that of controls, when a euglycemic condition was maintained or insulin at a dose of 6 mU per rat was infused into the third cerebroventricle. Intracerebroventricular infusion of 24 mumol per rat of 2-DG, which had no influence on steady-state levels of HA and t-MH, increased the level of t-MH enhanced by pargyline. The results indicate that an increase in hypothalamic HA turnover in response to glucoprivation may be involved in homeostatic regulation of energy metabolism in the brain.

  2. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats.

    Science.gov (United States)

    Stern, Javier E; Sonner, Patrick M; Son, Sook Jin; Silva, Fabiana C P; Jackson, Keshia; Michelini, Lisete C

    2012-05-01

    Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na(+) spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.

  3. Differential effects of histamine on the activity of hypothalamic dopaminergic neurons in the rat.

    Science.gov (United States)

    Fleckenstein, A E; Lookingland, K J; Moore, K E

    1994-01-01

    The effect of intracerebroventricular administration of histamine on hypothalamic dopaminergic neuronal activity was estimated in male rats by measuring concentrations of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in brain regions containing terminals or perikarya of these neurons. Three distinct, regionally specific neurochemical responses were apparent. In the median eminence and intermediate lobe of the pituitary, histamine affected neither DOPAC nor dopamine concentrations, suggesting no effect on tuberoinfundibular or periventricular-hypophysial dopaminergic neuronal activity. In the medial zona incerta and in the dorsomedial, rostral periventricular and medial preoptic hypothalamic nuclei, histamine effected a dose- and time-related increase in both DOPAC and dopamine concentrations; these effects were blocked by destruction of noradrenergic neurons projecting to these regions, suggesting that these changes are attributable to noradrenergic neuronal activation, and that histamine does not affect the activity of incertohypothalamic or periventricular-preoptic dopaminergic neurons located in these brain regions. In the suprachiasmatic, caudal periventricular and paraventricular hypothalamic nuclei, histamine effected a dose- and time-related increase in DOPAC, but not dopamine, concentrations; these effects were blocked by the H1 antagonist mepyramine, but not the H2 antagonist zolantidine. Destruction of noradrenergic neurons projecting to these regions did not prevent the histamine-induced increases in DOPAC concentrations. These data indicate that histamine increases the activity of dopaminergic neurons projecting to the suprachiasmatic, caudal periventricular and paraventricular nuclei via an action at H1 receptors. Overall, these results reveal that i.c.v. administration of histamine differentially affects the activity of the various dopaminergic neuronal systems of the rat hypothalamus.

  4. A Thalamo-Hypothalamic Pathway That Activates Oxytocin Neurons in Social Contexts in Female Rats.

    Science.gov (United States)

    Cservenák, Melinda; Keller, Dávid; Kis, Viktor; Fazekas, Emese A; Öllös, Hanna; Lékó, András H; Szabó, Éva R; Renner, Éva; Usdin, Ted B; Palkovits, Miklós; Dobolyi, Árpád

    2017-02-01

    Oxytocin is released from neurons in the paraventricular hypothalamic nucleus (PVN) in mothers upon suckling and during adult social interactions. However, neuronal pathways that activate oxytocin neurons in social contexts are not yet established. Neurons in the posterior intralaminar complex of the thalamus (PIL), which contain tuberoinfundibular peptide 39 (TIP39) and are activated by pup exposure in lactating mothers, provide a candidate projection. Innervation of oxytocin neurons by TIP39 neurons was examined by double labeling in combination with electron microscopy and retrograde tract-tracing. Potential classic neurotransmitters in TIP39 neurons were investigated by in situ hybridization histochemistry. Neurons activated after encounter with a familiar conspecific female in a familiar environment were mapped with the c-Fos technique. PVN and the supraoptic nucleus oxytocin neurons were closely apposed by an average of 2.0 and 0.4 TIP39 terminals, respectively. Asymmetric (presumed excitatory) synapses were found between TIP39 terminals and cell bodies of oxytocin neurons. In lactating rats, PIL TIP39 neurons were retrogradely labeled from the PVN. TIP39 neurons expressed vesicular glutamate transporter 2 but not glutamic acid decarboxylase 67. PIL contained a markedly increased number of c-Fos-positive neurons in response to social encounter with a familiar conspecific female. Furthermore, the PIL received ascending input from the spinal cord and the inferior colliculus. Thus, TIP39 neurons in the PIL may receive sensory input in response to social interactions and project to the PVN to innervate and excite oxytocin neurons, suggesting that the PIL-PVN projection contributes to the activation of oxytocin neurons in social contexts. Copyright © 2017 by the Endocrine Society.

  5. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats

    Science.gov (United States)

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry

  6. Intracisternally Injected L-Proline Activates Hypothalamic Supraoptic, but Not Paraventricular, Vasopressin-Expressing Neurons in Conscious Rats

    Directory of Open Access Journals (Sweden)

    Yumi Takemoto

    2011-01-01

    Full Text Available When injected into specific rat brain regions, the neurotransmitter candidate L-proline produces various cardiovascular changes through ionotropic excitatory amino acid receptors. The present study used an immunohistochemical double-labeling approach to determine whether intracisternally injected L-proline in freely moving rats, which increases blood pressure, activates hypothalamic vasopressin-expressing neurons and ventral medullary tyrosine-hydroxylase- (TH- containing neurons. Following injection of L-proline, the number of activated hypothalamic neurons that coexpressed vasopressin and c-Fos was much greater in the supraoptic nucleus (SON than in the paraventricular nucleus (PVN of rats with increased blood pressure. The number of activated TH-containing neurons was significantly greater following L-proline treatment than following control injections of artificial cerebrospinal fluid (ACSF. These results clearly demonstrate that intracisternally injected L-proline activates hypothalamic supraoptic, but not paraventricular, vasopressin-expressing neurons and medullary TH-containing (A1/C1 neurons in freely moving rats.

  7. A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons.

    Directory of Open Access Journals (Sweden)

    Imre Kalló

    Full Text Available Hypothalamic neurosecretory systems are fundamental regulatory circuits influenced by thyroid hormone. Monocarboxylate-transporter-8 (MCT8-mediated uptake of thyroid hormone followed by type 3 deiodinase (D3-catalyzed inactivation represent limiting regulatory factors of neuronal T3 availability. In the present study we addressed the localization and subcellular distribution of D3 and MCT8 in neurosecretory neurons and addressed D3 function in their axons. Intense D3-immunoreactivity was observed in axon varicosities in the external zone of the rat median eminence and the neurohaemal zone of the human infundibulum containing axon terminals of hypophysiotropic parvocellular neurons. Immuno-electronmicroscopy localized D3 to dense-core vesicles in hypophysiotropic axon varicosities. N-STORM-superresolution-microscopy detected the active center containing C-terminus of D3 at the outer surface of these organelles. Double-labeling immunofluorescent confocal microscopy revealed that D3 is present in the majority of GnRH, CRH and GHRH axons but only in a minority of TRH axons, while absent from somatostatin-containing neurons. Bimolecular-Fluorescence-Complementation identified D3 homodimers, a prerequisite for D3 activity, in processes of GT1-7 cells. Furthermore, T3-inducible D3 catalytic activity was detected in the rat median eminence. Triple-labeling immunofluorescence and immuno-electronmicroscopy revealed the presence of MCT8 on the surface of the vast majority of all types of hypophysiotropic terminals. The presence of MCT8 was also demonstrated on the axon terminals in the neurohaemal zone of the human infundibulum. The unexpected role of hypophysiotropic axons in fine-tuned regulation of T3 availability in these cells via MCT8-mediated transport and D3-catalyzed inactivation may represent a novel regulatory core mechanism for metabolism, growth, stress and reproduction in rodents and humans.

  8. The effect of moxonidine on feeding and body fat in obese Zucker rats: role of hypothalamic NPY neurones

    Science.gov (United States)

    Bing, Chen; King, Peter; Pickavance, Lucy; Brown, Michael; Ziegler, Dieter; Kaan, Elbert; Williams, Gareth

    1999-01-01

    The antihypertensive agent moxonidine, an imidazoline Ii-receptor agonist, also induces hypophagia and lowers body weight in the obese spontaneously hypertensive rat, but the central mediation of this action and the neuronal pathways that moxonidine may interact with are not known. We studied whether moxonidine has anti-obesity effects in the genetically-obese and insulin-resistant fa/fa Zucker rat, and whether these are mediated through inhibition of the hypothalamic neuropeptide Y (NPY) neurones.Lean and obese Zucker rats were given moxonidine (3 mg kg−1 day−1) or saline by gavage for 21 days.Moxonidine decreased food intake throughout by 20% in obese rats (P<0.001) and by 8% in lean rats (P<0.001), and reduced weight gain that final body weight was 15% lower in obese (P<0.001) and 7% lower in lean (P<0.01) rats than their untreated controls. Plasma insulin and leptin levels were decreased in moxonidine-treated obese rats (P<0.01 and P<0.05), but unchanged in treated lean rats. Uncoupling protein-1 gene expression in brown adipose tissue was stimulated by 40–50% (P⩽0.05) in both obese and lean animals given moxonidine. Obese animals given moxonidine showed a 37% reduction in hypothalamic NPY mRNA levels (P=0.01), together with significantly increased NPY concentrations in the paraventricular nucleus (P<0.05), but no changes in the arcuate nucleus or other nuclei; this is consistent with reduced NPY synthesis in the arcuate nucleus and blocked release of NPY in the paraventricular nucleus. In lean animals, moxonidine did not affect NPY levels or NPY mRNA.The hypophagic, thermogenic and anti-obesity effects of moxonidine in obese Zucker rats may be partly due to inhibition of the NPY neurones, whose inappropriate overactivity may underlie obesity in this model. PMID:10369453

  9. Interactions between leptin and hypothalamic neuropeptide Y neurons in the control of food intake and energy homeostasis in the rat.

    Science.gov (United States)

    Wang, Q; Bing, C; Al-Barazanji, K; Mossakowaska, D E; Wang, X M; McBay, D L; Neville, W A; Taddayon, M; Pickavance, L; Dryden, S; Thomas, M E; McHale, M T; Gloyer, I S; Wilson, S; Buckingham, R; Arch, J R; Trayhurn, P; Williams, G

    1997-03-01

    Leptin acts on the brain to inhibit feeding, increase thermogenesis, and decrease body weight. Neuropeptide Y (NPY)-ergic neurons of the hypothalamic arcuate nucleus (ARC) that project to the paraventricular nuclei (PVN) and dorsomedial nuclei (DMH) are postulated to control energy balance by stimulating feeding and inhibiting thermogenesis, especially under conditions of energy deficit. We investigated whether leptin's short-term effects on energy balance are mediated by inhibition of the NPY neurons. Recombinant murine leptin (11 microg) injected into the lateral ventricle of fasted adult Wistar rats inhibited food intake by 20-25% between 2 and 6 h after administration, compared with saline-treated controls (P ARC, PVN, and DMH and significantly decreased hypothalamic NPY mRNA levels (0.61 +/- 0.02 vs. 0.78 +/- 0.03 arbitrary units; P 0.1), but plasma leptin levels were significantly higher (4.88 +/- 0.66 vs. 2.85 +/- 0.20 ng/ml; P ARC-PVN projection; reduced NPY release in the PVN may mediate leptin's hypophagic and thermogenic actions. Conversely, NPY-induced obesity results in raised circulating leptin concentrations. Leptin and the NPY-ergic ARC-PVN neurons may interact in a homeostatic loop to regulate body fat mass and energy balance.

  10. Hypothalamic neuron projection to autonomic preganglionic levels related with glucose metabolism: a fluorescent labelling study in the rat.

    Science.gov (United States)

    Portillo, F; Carrasco, M; Vallo, J J

    1996-06-01

    The location of hypothalamic paraventricular neurons projecting to sympathetic preganglionic levels and related to the autonomic regulation of various organs involved in glucose metabolism (OGM) was determined by ipsilateral injections of two fluorescent tracers, Diamidino Yellow into the left dorsal motor nucleus of the vagus and Fast Blue into the left intermediolateral cell column of the T8-T9 spinal cord. Hypothalamospinal neurons were mainly located in the dorsal part of the paraventricular hypothalamic nucleus (PVH) and the hypothalamobulbar neurons were most abundant in the ventral, medial and extreme lateral parts of the PVH. No double-labelled neurons were found in the hypothalamus. These results can help the knowledge of the neural hypothalamic network related with the autonomic hypothalamic control.

  11. [Effect of the intermittent hypoxic training on the functioning of peptidergic neurons of the paraventricular hypothalamic nucleus and brain stem neurons in rats].

    Science.gov (United States)

    Abramov, A V

    1998-03-01

    Internittent hypoxic training (IHT) increased the quantity and secretory activity of peptidergic neurons of the paraventricular hypothalamic nucleus (PHN) and activated neurons of the dorsal motor nucleus of n.vagus. These structures seem to take part in realisation of the IHT activating effect on condition of the pancreatic delta-cells. The effect involves insulin-stimulating and insuloprotective effects realised via hypothalamic and neuro-conducting ways of regulation of the endocrine pancreas with a direct participation of hypothalamic neuropeptides.

  12. Activation of hypothalamic neuronal nitric oxide synthase in lithium-induced diabetes insipidus rats.

    Science.gov (United States)

    Anai, H; Ueta, Y; Serino, R; Nomura, M; Nakashima, Y; Yamashita, H

    2001-02-01

    The expression of the neuronal nitric oxide synthase (nNOS) gene in the paraventricular (PVN) and supraoptic nuclei (SON) in rats with lithium (Li)-induced polyuria was examined by using in situ hybridization histochemistry. The state of the thyroid axis in these rats was also examined by in situ hybridization histochemistry for thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH) mRNAs and radioimmunoassay for circulating thyroid hormones. Adult male Wistar rats consuming a diet that contained LiCl (60 mmol/kg) for 4 weeks developed remarkable polyuria. The urine in the Li-treated rats was hypotonic and had a large volume and low ionic concentration. The nNOS mRNA in the PVN and SON was significantly increased in the Li-treated rats in comparison with that in control. The increased levels of the nNOS mRNA in the PVN and SON were confirmed by NADPH-diaphorase histochemical staining. There were no differences of TRH mRNA in the PVN, TSH mRNA in the anterior pituitary and plasma concentrations of free T3 and free T4 between Li-treated rats and control rats. These results suggest that Li-induced diabetes insipidus may activate nNOS in the PVN and SON without change of the thyroid axis.

  13. Hyperosmotic stimulus induces reversible angiogenesis within the hypothalamic magnocellular nuclei of the adult rat: a potential role for neuronal vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Vincent Anne

    2005-03-01

    Full Text Available Abstract Background In mammals, the CNS vasculature is established during the postnatal period via active angiogenesis, providing different brain regions with capillary networks of various densities that locally supply adapted metabolic support to neurons. Thereafter this vasculature remains essentially quiescent excepted for specific pathologies. In the adult rat hypothalamus, a particularly dense network of capillary vessels is associated with the supraoptic (SON and paraventricular (PVN nuclei containing the magnocellular neurons secreting vasopressin and oxytocin, two neurohormones involved in the control of the body fluid homoeostasis. In the seventies, it was reported that proliferation of astrocytes and endothelial cells occurs within these hypothalamic nuclei when strong metabolic activation of the vasopressinergic and oxytocinergic neurons was induced by prolonged hyperosmotic stimulation. The aim of the present study was to determine whether such proliferative response to osmotic stimulus is related to local angiogenesis and to elucidate the cellular and molecular mechanisms involved. Results Our results provide evidence that cell proliferation occurring within the SON of osmotically stimulated adult rats corresponds to local angiogenesis. We show that 1 a large majority of the SON proliferative cells is associated with capillary vessels, 2 this proliferative response correlates with a progressive increase in density of the capillary network within the nucleus, and 3 SON capillary vessels exhibit an increased expression of nestin and vimentin, two markers of newly formed vessels. Contrasting with most adult CNS neurons, hypothalamic magnocellular neurons were found to express vascular endothelial growth factor (VEGF, a potent angiogenic factor whose production was increased by osmotic stimulus. When VEGF was inhibited by dexamethasone treatment or by the local application of a blocking antibody, the angiogenic response was strongly

  14. Short-term enrichment makes male rats more attractive, more defensive and alters hypothalamic neurons.

    Directory of Open Access Journals (Sweden)

    Rupshi Mitra

    Full Text Available Innate behaviors are shaped by contingencies built during evolutionary history. On the other hand, environmental stimuli play a significant role in shaping behavior. In particular, a short period of environmental enrichment can enhance cognitive behavior, modify effects of stress on learned behaviors and induce brain plasticity. It is unclear if modulation by environment can extend to innate behaviors which are preserved by intense selection pressure. In the present report we investigate this issue by studying effects of relatively short (14-days environmental enrichment on two prominent innate behaviors in rats, avoidance of predator odors and ability of males to attract mates. We show that enrichment has strong effects on both the innate behaviors: a enriched males were more avoidant of a predator odor than non-enriched controls, and had a greater rise in corticosterone levels in response to the odor; and b had higher testosterone levels and were more attractive to females. Additionally, we demonstrate decrease in dendritic length of neurons of ventrolateral nucleus of hypothalamus, important for reproductive mate-choice and increase in the same in dorsomedial nucleus, important for defensive behavior. Thus, behavioral and hormonal observations provide evidence that a short period of environmental manipulation can alter innate behaviors, providing a good example of gene-environment interaction.

  15. Projection patterns of lateral hypothalamic, cocaine- and amphetamine-regulated transcript (CART) neurons to the dorsal raphe and/or the locus coeruleus in the rat.

    Science.gov (United States)

    Yoon, Ye S; Lee, Hyun S

    2013-02-04

    The present study was designed to reveal the projection patterns of lateral hypothalamic (LH), cocaine- and amphetamine-regulated transcript (CART) neurons to the dorsal raphe (DR) and/or the locus coeruleus (LC) in the rat. After the injection of Red or Green Retrobeads into the DR or LC, LH sections were immunostained for CART and/or melanin-concentrating hormone (MCH). First, CART-immunoreactive axon terminals formed close appositions to the DR (or LC) neuronal profiles. Second, a subpopulation of CART neurons containing MCH projected to the monoaminergic nuclei; the majority of labeled neurons were observed in the dorsal hypothalamic area, the dorsal part of the posterior hypothalamic area, and the zona incerta. Cells were also observed in the perifornical part of the LH, the dorsomedial hypothalamic nucleus, the peduncular and the magnocellular parts of the LH. Of the total population of DR (or LC)-projecting cells, CART/MCH co-containing neurons were 9.5% ± 1.6% (or 10.8% ± 1.3% for LC). Finally, a subset of CART (or MCH) neurons provided divergent axon collaterals to the DR and the LC. Of the entire CART (or MCH) cell population, 3.9% ± 0.8% (or 5.6% ± 1.0% for MCH) sent axon collaterals to the DR/LC. CART/MCH co-containing neurons projecting to the DR or LC might be involved in the feeding-related regulation of arousal, stress-related responses, and emotional behaviors. Thus, CART (or MCH) cells that send divergent axon collaterals to the DR/LC might have a simultaneous (and possibly more efficient) way to exert their specific influences on the aminergic nuclei.

  16. Differential sensitivity to nicotine among hypothalamic magnocellular neurons

    DEFF Research Database (Denmark)

    Mikkelsen, J D; Jacobsen, Julie; Kiss, Adrian Emil

    2012-01-01

    The magnocellular neurons in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) either contain vasopressin or oxytocin. Even though both hormones are released after systemic administration of nicotine, the mechanism through which the two populations of neurons are activated...... is not known. This study was carried out in the rat to investigate the effect of increasing doses of nicotine on subsets of magnocellular neurons containing either oxytocin or vasopressin....

  17. Differential sensitivity to nicotine among hypothalamic magnocellular neurons

    DEFF Research Database (Denmark)

    Mikkelsen, J D; Jacobsen, Julie; Kiss, Adrian Emil

    2012-01-01

    The magnocellular neurons in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) either contain vasopressin or oxytocin. Even though both hormones are released after systemic administration of nicotine, the mechanism through which the two populations of neurons are activated...... is not known. This study was carried out in the rat to investigate the effect of increasing doses of nicotine on subsets of magnocellular neurons containing either oxytocin or vasopressin....

  18. Properties of native P2X receptors in large multipolar neurons dissociated from rat hypothalamic arcuate nucleus.

    Science.gov (United States)

    Wakamori, Minoru; Sorimachi, Masaru

    2004-04-16

    ATP, the ligand of P2X receptors, is a candidate of neurotransmitter or co-transmitter in the peripheral and the central nervous systems. Anatomical studies have revealed the wide distribution of P2X receptors in the brain. So far, P2X-mediated small synaptic responses have been recorded in some brain regions. To determine the physiological significance of postsynaptic ATP receptors in the brain, we have investigated the P2X responses in rat dissociated hypothalamic arcuate neurons by using the patch-clamp technique. ATP evoked inward currents in a concentration-dependent manner (EC(50)=42 microM) at a holding potential of -70 mV. The current-voltage relationship showed a marked inward rectification starting around -10 mV. Although neither 300 microM alphabeta-methylene-ATP nor 300 microM betagamma-methylene-ATP induced any currents, 100 microM ATPgammaS and 100 microM 2-methylthio-ATP evoked inward currents of which amplitude was about 60% of the control currents evoked by 100 microM ATP. PPADS, one of P2 receptor antagonists, inhibited the ATP-evoked currents in a time- and a concentration-dependent manners (IC(50)=19 microM at 2 min). Permeant Ca(2+) inhibited the ATP-evoked currents in the range of millimolars (IC(50)=7 mM); however, Cd(2+) (1-300 microM), a broad cation channel blocker, facilitated the currents with slow off-response. Zn(2+) in the range of 1-100 microM facilitated the currents whereas Zn(2+) at the concentrations over 100 microM inhibited the currents. These observations suggest that functional P2X receptors are expressed in the hypothalamic arcuate nucleus. The most likely subunit combinations of the P2X receptors are P2X(2)-homomultimer and P2X(2)/P2X(6)-heteromultimer.

  19. Reciprocal connections between CART-immunoreactive, hypothalamic paraventricular neurons and serotonergic dorsal raphe cells in the rat: Light microscopic study.

    Science.gov (United States)

    Lee, Ji S; Lee, Hyun S

    2014-04-29

    Based on the overlapping physiological roles of cocaine- and amphetamine-regulated transcript (CART) peptides and serotonin, the present study examined the anatomical connection between the hypothalamic paraventricular nucleus (PVN) and the dorsal raphe (DR). The first series of experiments were performed to investigate descending projections from the CART-immunoreactive (CART-ir) PVN to serotonergic DR cells. CART-ir varicosities made contact with serotonergic DR neurons. An anterograde tracing study revealed that varicosities originating from the PVN formed close appositions to serotonergic neuronal profiles along the entire rostro-caudal extent of the DR. A retrograde study demonstrated that CART neurons projecting to the DR were mainly localized in the caudal parvicellular PVN, comprising approximately 3.0%±0.4% (n=8) of total CART cells. A second series of experiments was performed to investigate ascending projections from the DR to CART-ir PVN cells. Serotonin transporter-ir boutons made contact with CART-ir PVN neurons. Anterograde tracing revealed that varicosities originating from the DR formed close appositions to CART-ir PVN cells. Retrograde examination demonstrated that serotonergic neurons projecting to the parvicellular PVN were located along the entire rostro-caudal extent of the DR. The present observation provided an anatomical basis for accumulating evidence in the literature that suggests a functional interaction between the CART and serotonin systems during the regulation of energy balance, emotional behavior, and arousal.

  20. Leptin signalling pathways in hypothalamic neurons.

    Science.gov (United States)

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.

  1. Recruitment of hypothalamic orexin neurons after formalin injections in adult male rats exposed to a neonatal immune challenge

    Directory of Open Access Journals (Sweden)

    Erin Jane Campbell

    2015-03-01

    Full Text Available Exposure to early life physiological stressors, such as infection, is thought to contribute to the onset of psychopathology in adulthood. In animal models, injections of the bacterial immune challenge, lipopolysaccharide (LPS, during the neonatal period has been shown to alter both neuroendocrine function and behavioural pain responses in adulthood. Interestingly, recent evidence suggests a role for the lateral hypothalamic peptide orexin in stress and nociceptive processing. However, whether neonatal LPS exposure affects the reactivity of the orexin system to formalin-induced inflammatory pain in later life remains to be determined. Male Wistar rats (n=13 were exposed to either LPS or saline (0.05mg/kg, i.p on postnatal days (PND 3 and 5. On PND 80-97, all rats were exposed to a subcutaneous hindpaw injection of 2.25% formalin. Following behavioural testing, animals were perfused and brains processed for Fos-protein and orexin immunohistochemistry. Rats treated with LPS during the neonatal period exhibited decreased licking behaviours during the interphase of the formalin test, the period typically associated with the active inhibition of pain, and increased grooming responses to formalin in adulthood. Interestingly, these behavioural changes were accompanied by an increase in the percentage of Fos-positive orexin cells in the dorsomedial and perifornical hypothalamus in LPS-exposed animals. Similar increases in Fos-protein were also observed in stress and pain sensitive brain regions that receive orexinergic inputs. These findings highlight a potential role for orexin in the behavioural responses to pain and provide further evidence that early life stress can prime the circuitry responsible for these responses in adulthood.

  2. Retrograde study of CART- or NPY-neuronal projection from the hypothalamic arcuate nucleus to the dorsal raphe and/or the locus coeruleus in the rat.

    Science.gov (United States)

    Yoon, Ye S; Lee, Ji S; Lee, Hyun S

    2013-06-26

    The present study was designed to reveal cocaine- and amphetamine-regulated transcript (CART)- or neuropeptide Y (NPY)-immunoreactive neuronal projections from the hypothalamic arcuate nucleus (Arc) to the dorsal raphe (DR) and/or the locus coeruleus (LC) in the rat. Our results demonstrated that CART or NPY axon terminals formed close appositions to the neuronal profiles in the DR and the LC. Thus, arcuate sections were immunostained for the CART or NPY after the injections of green RetroBeads(™) into the DR and red tracer into the LC (or vice versa). First, retrogradely-labeled CART cells were mainly observed in the lateral Arc without colchicine. Of the total population of arcuate CART neurons, DR- and LC-projecting cells were 5.7% ± 0.9% and 6.6% ± 0.7%, respectively. In addition, a subset (3.3% ± 0.7%) of CART neurons provided divergent axon collaterals to the DR and the LC. Second, retrogradely-labeled NPY cells were observed in lateral or ventral borders of the medial Arc only after colchicine injection. Of the entire NPY cell population, DR- and LC-projecting neurons were 1.5% ± 0.3% and 1.3% ± 0.3%, respectively. Only a scanty proportion (0.1% ± 0.0%) sent axon collaterals to the DR and the LC. These observations suggested that arcuate CART or NPY system might have a potential influence on the brainstem monoaminergic nuclei, modulating their roles in feeding, nociception, emotional behaviors, arousal, and stress responses. Furthermore, a portion of arcuate CART neurons (along with only a few NPY cells) sending divergent axon collaterals to the DR/LC might have a simultaneous (and possibly more efficient) way to exert their specific influences on the monoaminergic nuclei.

  3. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels.

    Science.gov (United States)

    Ainscow, Edward K; Mirshamsi, Shirin; Tang, Teresa; Ashford, Michael L J; Rutter, Guy A

    2002-10-15

    Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K(+) (K(ATP)) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP](c)) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role for ATP in the closure of K(ATP) channels in GR neurons, glucose (3 or 15 mM) caused no detectable increase in [ATP](c), monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma membrane, monitored with a SNAP25-luciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded to glucose (3 and 15 mM) with a significant increase in [ATP](c). Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 mM glucose with increases in [ATP](c). Further implicating an ATP-independent mechanism of K(ATP) channel closure in hypothalamic neurons, removal of extracellular glucose (10 mM) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 mM) of intracellular ATP. Neurons from both brain regions responded to 5 mM lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP](c). High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous lactate efficiently closed K(ATP) channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells.

  4. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels

    Science.gov (United States)

    Ainscow, Edward K; Mirshamsi, Shirin; Tang, Teresa; Ashford, Michael L J; Rutter, Guy A

    2002-01-01

    Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K+ (KATP) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP]c) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role for ATP in the closure of KATP channels in GR neurons, glucose (3 or 15 mm) caused no detectable increase in [ATP]c, monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma membrane, monitored with a SNAP25–luciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded to glucose (3 and 15 mm) with a significant increase in [ATP]c. Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 mm glucose with increases in [ATP]c. Further implicating an ATP-independent mechanism of KATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 mm) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 mm) of intracellular ATP. Neurons from both brain regions responded to 5 mm lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP]c. High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous lactate efficiently closed KATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells. PMID:12381816

  5. Lateral hypothalamic area orexin-A influence the firing activity of gastric distension-sensitive neurons and gastric motility in rats.

    Science.gov (United States)

    Hao, Heling; Luan, Xiao; Guo, Feifei; Sun, Xiangrong; Gong, Yanling; Xu, Luo

    2016-06-01

    The orexins system consists of two G-protein coupled receptors (the orexin-1 and the orexin-2 receptor) and two neuropeptides, orexin-A and orexin-B. Orexin-A is an excitatory neuropeptide that regulates arousal, wakefulness and appetite. Recent studies have shown that orexin-A may promote gastric motility. We aim to explore the effects of orexin-A on the gastric -distension (GD) sensitive neurons and gastric motility in the lateral hypothalamic area (LHA), and the possible regulation by the paraventricular nucleus (PVN). Extracellular single unit discharges were recorded and the gastric motility was monitored by administration of orexin-A into the LHA and electrical stimulation of the PVN. There were GD neurons in the LHA, and administration of orexin-A to the LHA could increase the firing rate of both GD-excitatory (GD-E) and GD-inhibited (GD-I) neurons. The gastric motility was significantly enhanced by injection of orexin-A into the LHA with a dose dependent manner, which could be completely abolished by pre-treatment with orexin-A receptor antagonist SB334867. Electrical stimulation of the PVN could significantly increase the firing rate of GD neurons responsive to orexin-A in the LHA as well as promote gastric motility of rats. However, those effects could be partly blocked by pre-treatment with SB334867 in the LHA. It is suggested that orexin-A plays an important role in promoting gastric motility via LHA. The PVN may be involved in regulation of LHA on gastric motility.

  6. Separate populations of neurons within the paraventricular hypothalamic nucleus of the rat project to vagal and thoracic autonomic preganglionic levels and express c-Fos protein induced by lithium chloride.

    Science.gov (United States)

    Portillo, F; Carrasco, M; Vallo, J J

    1998-03-01

    The role of different hypothalamic nuclei, particularly the paraventricular nucleus (PVN), in the control of food intake and feeding behaviour is well known. It is also well established that lithium chloride (LiCl) causes various disorders in feeding behaviour. In this study, we analyzed the precise distribution of hypothalamic neurons activated by i.p. LiCl administration (LCA neurons) and compared it to that of hypothalamic neurons which project to autonomic preganglionic levels (HAP neurons). We also analysed the possibility that some neurons belong to both populations of nerve cells. To this end, a multiple-labelling technique, using two retrograde fluorescent tracers together with c-Fos-like immunohistochemistry, was performed. Fast Blue was injected in the dorsal motor nucleus of the vagus and Fluorogold (FG) in the thoracic intermedial-lateral cell column, to trace parasympathetic and sympathetic pathways, respectively. LiCl was used as stimulus for c-Fos-like immunohistochemistry. HAP neurons were located mainly in the dorsal, ventral and lateral regions of the parvocellular PVN, while LCA neurons were observed predominantly in the magnocellular region of the PVN rostrally to HAP neurons. A significant number of FG/Fos double-labelled neurons were located in the dorsal parvocellular subnucleus of the PVN (dp) in the LiCl-stimulated rats. We concluded that there is a clear segregation of LCA neurons from HAP neurons within the PVN. The presence of FG/Fos double-labelled neurons in the dp suggests that this nucleus could mediate a sympathetic response after LiCl administration.

  7. The alpha(2)-adrenoceptors do not modify the activity of tyrosine hydroxylase, corticoliberine, and neuropeptide Y producing hypothalamic magnocellular neurons ion the Long Evans and Brattleboro rats

    DEFF Research Database (Denmark)

    Bundzikova, J; Pirnik, Z; Zelena, D

    2010-01-01

    The hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei are activated by body salt-fluid variations. Stimulation of alpha(2)-adrenoceptors by an agonist-xylazine (XYL) activates oxytocinergic but not vasopressinergic magnocellular neurons. In this study, tyrosine hydroxylase (TH), cort...

  8. Proliferative hypothalamic neurospheres express NPY, AGRP, POMC, CART and Orexin-A and differentiate to functional neurons.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Some pathological conditions with feeding pattern alterations, including obesity and Huntington disease (HD are associated with hypothalamic dysfunction and neuronal cell death. Additionally, the hypothalamus is a neurogenic region with the constitutive capacity to generate new cells of neuronal lineage, in adult rodents. The aim of the present work was to evaluate the expression of feeding-related neuropeptides in hypothalamic progenitor cells and their capacity to differentiate to functional neurons which have been described to be affected by hypothalamic dysfunction. Our study shows that hypothalamic progenitor cells from rat embryos grow as floating neurospheres and express the feeding-related neuropeptides Neuropeptide Y (NPY, Agouti-related Protein (AGRP, Pro-OpioMelanocortin (POMC, Cocaine-and-Amphetamine Responsive Transcript (CART and Orexin-A/Hypocretin-1. Moreover the relative mRNA expression of NPY and POMC increases during the expansion of hypothalamic neurospheres in proliferative conditions.Mature neurons were obtained from the differentiation of hypothalamic progenitor cells including NPY, AGRP, POMC, CART and Orexin-A positive neurons. Furthermore the relative mRNA expression of NPY, CART and Orexin-A increases after the differentiation of hypothalamic neurospheres. Similarly to the adult hypothalamic neurons the neurospheres-derived neurons express the glutamate transporter EAAT3. The orexigenic and anorexigenic phenotype of these neurons was identified by functional response to ghrelin and leptin hormones, respectively. This work demonstrates the presence of appetite-related neuropeptides in hypothalamic progenitor cells and neurons obtained from the differentiation of hypothalamic neurospheres, including the neuronal phenotypes that have been described by others as being affected by hypothalamic neurodegeneration. These in vitro models can be used to study hypothalamic progenitor cells aiming a therapeutic intervention to

  9. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2017-04-01

    Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested (n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function.NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic

  10. Age-related alterations in hypothalamic kisspeptin, neurokinin B, and dynorphin neurons and in pulsatile LH release in female and male rats.

    Science.gov (United States)

    Kunimura, Yuyu; Iwata, Kinuyo; Ishigami, Akihito; Ozawa, Hitoshi

    2017-02-01

    Pulsatile secretion of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) decreases during aging. Kisspeptin (encoded by Kiss1) neurons in the arcuate nucleus coexpress neurokinin B (Tac3) and dynorphin (Pdyn) and are critical for regulating the GnRH/LH pulse. We therefore examined kisspeptin neurons by histochemistry and pulsatile LH release in rats aged 2-3 (Young), 12-13 (Young-Middle), 19-22 (Late-Middle), and 24-26 (Old) months. Total LH concentrations, sampled for 3 hours, decreased in both sexes with aging. In females, numbers of Tac3 and Pdyn neurons were significantly reduced in all aging rats, and numbers of Kiss1 neurons were significantly reduced in Late-Middle and Old rats. In males, numbers of all 3 neuron-types were significantly decreased in all aging rats. GnRH agonist induced LH release in all animals; however, the increased LH concentration in all aging rats was less than that in Young rats. These results suggest that expression of each gene in kisspeptin neurons may be controlled individually during aging, and that reduction of their expression or change in pituitary responsiveness may cause attenuated pulsatile LH secretion.

  11. Hypothalamic leptin-neurotensin-hypocretin neuronal networks in zebrafish.

    Science.gov (United States)

    Levitas-Djerbi, Talia; Yelin-Bekerman, Laura; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-04-01

    Neurotensin (NTS) is a 13 amino acid neuropeptide that is expressed in the hypothalamus. In mammals, NTS-producing neurons that express leptin receptor (LepRb) regulate the function of hypocretin/orexin (HCRT) and dopamine neurons. Thus, the hypothalamic leptin-NTS-HCRT neuronal network orchestrates key homeostatic output, including sleep, feeding, and reward. However, the intricate mechanisms of the circuitry and the unique role of NTS-expressing neurons remain unclear. We studied the NTS neuronal networks in zebrafish and cloned the genes encoding the NTS neuropeptide and receptor (NTSR). Similar to mammals, the ligand is expressed primarily in the hypothalamus, while the receptor is expressed widely throughout the brain in zebrafish. A portion of hypothalamic nts-expressing neurons are inhibitory and some coexpress leptin receptor (lepR1). As in mammals, NTS and HCRT neurons are localized adjacently in the hypothalamus. To track the development and axonal projection of NTS neurons, the NTS promoter was isolated. Transgenesis and double labeling of NTS and HCRT neurons showed that NTS axons project toward HCRT neurons, some of which express ntsr. Moreover, another target of NTS neurons is ntsr-expressing dopaminergeric neurons. These findings suggest structural circuitry between leptin, NTS, and hypocretinergic or dopaminergic neurons and establish the zebrafish as a model to study the role of these neuronal circuits in the regulation of feeding, sleep, and reward.

  12. Androgen receptors and estrogen receptors are colocalized in male rat hypothalamic and limbic neurons that express Fos immunoreactivity induced by mating.

    Science.gov (United States)

    Gréco, B; Edwards, D A; Michael, R P; Clancy, A N

    1998-01-01

    Conversion of testosterone into estradiol is important for male rat sexual behavior, and both steroids probably contribute to mating. The distributions of neurons containing androgen receptors (AR) and estrogen receptors (ER) overlap, and many AR-immunoreactive (AR-ir) neurons express Fos immunoreactivity (Fos-ir) induced by mating. Because mating-induced Fos-ir in the male rat occurs mainly in AR-ir neurons, and because both steroids are important for mating, we hypothesized that (i) AR-ir and ER-ir are colocalized and that (ii) some of these neurons are activated during mating. We examined, in adjacent sections from the medial preoptic area (MPN) through the central tegmental field (CTF), the expression of ER-ir in: (i) AR-ir-containing neurons, and (ii) Fos-ir-expressive neurons. PG21 anti-AR, OA-11-824 anti-c-fos, H222 or 1D5 anti-ER primary antibodies were visualized, respectively, with cyanine-conjugated, fluorescein- or cyanine-conjugated, and fluorescein-conjugated secondary antibodies in male rats which were killed 1 h after ejaculating with a receptive female. In MPN, bed nucleus of the stria terminalis (BNST), and medial amygdala (MEA), 80-90% of ER-ir labeling occurred in AR-ir-positive neurons but only about 30% of AR-ir neurons were ER-ir-positive. No ER-ir was found in the CTF. This suggests the presence of three types of brain neurons sensitive to gonadal steroid hormones: neurons sensitive to androgens only, neurons sensitive to both androgens and estrogens, and neurons sensitive to estrogens only. About 50% of ER-ir labeling occurred in cells expressing mating-induced Fos-ir but only about 30% of Fos-ir neurons were ER-ir-positive. These findings suggest that, in the MPN, at least two different neuronal populations are activated during mating: the first contains AR-ir only and the second contains AR-ir and ER-ir. In the BNST and MEA, at least three hormonally sensitive populations are activated during mating: the two described above plus a third

  13. Tyrosine hydroxylase is short-term regulated by the ubiquitin-proteasome system in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats: possible implications in hypertension.

    Directory of Open Access Journals (Sweden)

    Nadia A Congo Carbajosa

    Full Text Available Aberrations in the ubiquitin-proteasome system (UPS are implicated in the pathogenesis of various diseases. Tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamines biosynthesis, is involved in hypertension development. In this study we investigated whether UPS regulated TH turnover in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats (SHR and whether this system was impaired in hypertension. PC12 cells were exposed to proteasome or lysosome inhibitors and TH protein level evaluated by Western blot. Lactacystin, a proteasome inhibitor, induced an increase of 86 ± 15% in TH levels after 30 min of incubation, then it started to decrease up to 6 h to reach control levels and finally it rose up to 35.2 ± 8.5% after 24 h. Bafilomycin, a lysosome inhibitor, did not alter TH protein levels during short times, but it increased TH by 92 ± 22% above basal after 6 h treatment. Before degradation proteasome substrates are labeled by conjugation with ubiquitin. Efficacy of proteasome inhibition on TH turnover was evidenced by accumulation of ubiquitinylated TH after 30 min. Further, the inhibition of proteasome increased the quantity of TH phosphorylated at Ser40, which is essential for TH activity, by 2.7 ± 0.3 fold above basal. TH protein level was upregulated in neurons from hypothalami and brainstem of SHR when the proteasome was inhibited during 30 min, supporting that neuronal TH is also short-term regulated by the proteasome. Since the increased TH levels reported in hypertension may result from proteasome dysfunction, we evaluate proteasome activity. Proteasome activity was significantly reduced by 67 ± 4% in hypothalamic and brainstem neurons from SHR while its protein levels did not change. Present findings show that TH is regulated by the UPS. The impairment in proteasome activity observed in SHR neurons may be one of the causes of the increased TH protein levels reported in hypertension.

  14. Dual projections of single orexin- or CART-immunoreactive, lateral hypothalamic neurons to the paraventricular thalamic nucleus and nucleus accumbens shell in the rat: Light microscopic study.

    Science.gov (United States)

    Lee, Eun Y; Lee, Hyun S

    2016-03-01

    The paraventricular thalamic nucleus (PVT) is a major relay station to the limbic forebrain areas such as the nucleus accumbens shell (AcbSh). Both PVT and AcbSh are known to receive feeding/arousal-related peptidergic fibers including orexin (ORX) and cocaine- and amphetamine-regulated transcript (CART) peptide. In the first series of experiments, we examined the peptidergic fiber distribution in the AcbSh; the density of ORX (or CART) fibers in the AcbSh was substantially lower than that in the PVT. At the light microscopic level, ORX (or CART) terminals formed close appositions to choline acetyltransferase (ChAT)-, glutamate decarboxylase (GAD)-, or enkephalin (Enk)-immunoreactive neuronal elements in the AcbSh. In the second series of experiments, we addressed the question of whether single ORX (or CART) cells in the hypothalamus provided divergent axon collaterals to the PVT and AcbSh. ORX neurons with dual projections were found in the medial, central, and lateral subdivisions of the lateral hypothalamus (LH), which amounted to an average of 1.6% of total ORX cells. CART neurons with divergent axon collaterals were observed in the LH, zona incerta, dorsal hypothalamic area, and retrochiasmatic nucleus, which represented a mean of 2.5% of total CART cells. None of arcuate CART cells sent dual projections. These data suggested that a portion of ORX (or CART) neurons in the hypothalamus, via divergent axon collaterals, might concurrently modulate the activity of PVT and AcbSh cells to affect feeding and drug-seeking behaviors.

  15. Glutamate and GABA as rapid effectors of hypothalamic peptidergic neurons

    Directory of Open Access Journals (Sweden)

    Cornelia eSchöne

    2012-11-01

    Full Text Available Vital hypothalamic neurons regulating hunger, wakefulness, reward-seeking, and body weight are often defined by unique expression of hypothalamus-specific neuropeptides. Gene-ablation studies show that some of these peptides, notably orexin/hypocretin (hcrt/orx, are themselves critical for stable states of consciousness and metabolic health. However, neuron-ablation studies often reveal more severe phenotypes, suggesting key roles for co-expressed transmitters. Indeed, most hypothalamic neurons, including hcrt/orx cells, contain fast transmitters glutamate and GABA, as well as several neuropeptides. What are the roles and relations between different transmitters expressed by the same neuron? Here, we consider signaling codes for releasing different transmitters in relation to transmitter and receptor diversity in behaviorally-defined, widely-projecting peptidergic neurons, such as hcrt/orx cells. We then discuss latest optogenetic studies of endogenous transmitter release from defined sets of axons in situ, which suggest that recently-characterized vital peptidergic neurons (e.g. hcrt/orx, proopiomelanocortin , and agouti-related peptide cells, as well as classical modulatory neurons (e.g. dopamine and acetylcholine cells, all use fast transmitters to control their postsynaptic targets. These optogenetic insights are complemented by recent observations of behavioral deficiencies caused by genetic ablation of fast transmission from specific neuropeptidergic and aminergic neurons. Powerful and fast (millisecond-scale GABAergic and glutamatergic signaling from neurons previously considered to be primarily modulatory raises new questions about the roles of slower co-transmitters they co-express.

  16. Direct Cellular Peptidomics of Hypothalamic Neurons

    Science.gov (United States)

    Mitchell, Jennifer W.; Atkins, Norman; Sweedler, Jonathan V.; Gillette, Martha U.

    2011-01-01

    The chemical complexity of cell-to-cell communication has emerged as a fundamental challenge to understanding brain systems. This is certainly true for the hypothalamus, where neuropeptide signals are heterogeneous, localized and dynamic. Thus far, most hypothalamic peptidomic studies have centered on the entire structure; however, recent advances in collection strategies and analytical technologies have enabled direct, high-resolution peptidomic profiles focused on two regions of interest, the suprachiasmatic and supraoptic nuclei, including their subregions and individual cells. Suites of peptides now can be identified and probed for function. High spatial and analytical sensitivities reveal that discrete hypothalamic nuclei have distinct peptidomic signatures. Peptidomic discovery not only reveals unanticipated complexity, but also peptides previously unknown that act as key circuit components. Analysis of tissue releasates identifies peptides secreted into the extracellular environment and available for transmitting intercellular signals. Direct sampling techniques define peptide-releasate profiles in spatial, temporal and event-dependent patterns. These approaches are providing remarkable new insights into the complexity of neuropeptidergic cell-to-cell signaling central to neuroendocrine physiology. PMID:21334363

  17. Direct evidence for the co-expression of URP and GnRH in a sub-population of rat hypothalamic neurones: anatomical and functional correlation.

    Directory of Open Access Journals (Sweden)

    Johann-Günther Egginger

    Full Text Available Urotensin-II-related peptide (URP is an eight amino-acid neuropeptide recently isolated from rat brain and considered as the endogenous ligand for the GPR14 receptor. Using single and double immunohistochemical labelling, in situ hybridization and ultrastructural immunocytochemistry, we explored the cellular and subcellular localization of URP in the male rat brain. URP peptide was detected in numerous varicose fibres of the median eminence (ME and organum vasculosum laminae terminalis (OVLT as well as in neuronal cell bodies of the medial septal nucleus and diagonal band of Broca where corresponding mRNA were also detected. Combining in situ hybridization with immunohistochemistry, we showed that cell bodies of the rat anterior hypothalamus contained both URP mRNA and GnRH peptide. In addition, double ultrastructural immunodetection of URP and GnRH peptides clearly revealed, in the median eminence, the co-localization of both peptides in the same neuronal processes in the vicinity of fenestrated portal vessels. This remarkable cellular and subcellular distribution led us to test the effect of URP on the GnRH-induced gonadotrophins release in the anterior pituitary, and to discuss its putative role at the level of the median eminence.

  18. Desipramine inhibits histamine H1 receptor-induced Ca2+ signaling in rat hypothalamic cells.

    Directory of Open Access Journals (Sweden)

    Ji-Ah Kang

    Full Text Available The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca(2+ evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca(2+ increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca(2+ increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants.

  19. [Conditioned trace reactions of hypothalamic neurons following exposure to vibration].

    Science.gov (United States)

    Mednikova, Iu S

    1977-01-01

    Trace reactions were studied in 112 hypothalamic units in rabbits during motor defensive conditioning to time after vibration action of two intensities. A later formation of conditioned trace reactions was observed as compared to the control. Vibration of lesser intensity improved the course of trace processes and slightly increased the number of neurones responding to the conditioned stimulus (45% as against 43% in the control); after a stronger vibration action, conditioned reactions to time were recorded only in 29% of the hypothalamic cells eith a simultaneous diminution of the trace response. It has been assumed that the observed transformations result from changes of the significance of the reinforcing factor in the formation of a motor defensive conditioned reflex after the action of vibration.

  20. Hypothalamic neuronal histamine modulates febrile response but not anorexia induced by lipopolysaccharide.

    Science.gov (United States)

    Chiba, Seiichi; Itateyama, Emi; Oka, Kyoko; Masaki, Takayuki; Sakata, Toshiie; Yoshimatsu, Hironobu

    2005-05-01

    This study examined the contribution of hypothalamic neuronal histamine (HA) to the anorectic and febrile responses induced by lipopolysaccharide (LPS), an exogenous pyrogen, and the endogenous pyrogens interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Intraperitoneal (ip) injection of LPS, IL-1beta, or TNF-alpha suppressed 24-hr cumulative food intake and increased rectal temperature in rats. To analyze the histaminergic contribution, rats were pretreated with intracerebroventricular (icv) injection of 2.44 mmol/kg or ip injection of 244 mmol/kg of alpha-fluoromethylhistidine (FMH), a suicide inhibitor of histidine decarboxylase (HDC), to deplete neural HA. The depletion of neural HA augmented the febrile response to ip injection of LPS and IL-1beta and alleviated the anorectic response to ip injection of IL-1beta. However, the depletion of neural HA did not modify the LPS-induced anorectic response or TNF-alpha-induced febrile and anorectic responses. Consistent with these results, the rate of hypothalamic HA turnover, assessed by the accumulation of tele-methylhistamine (t-MH), was elevated with ip injections of LPS and IL-1beta, but unaffected by TNF-alpha at equivalent doses. This suggests that (i) LPS and IL-1beta activate hypothalamic neural HA turnover; (ii) hypothalamic neural HA suppresses the LPS- and IL-1beta-induced febrile responses and accelerates the IL-1beta-induced anorectic response; and (iii) TNF-alpha modulates the febrile and anorectic responses via a neural HA-independent pathway. Therefore, hypothalamic neural HA is involved in the IL-1beta-dominant pathway, rather than the TNF-alpha-dominant pathway, preceding the systemic inflammatory response induced by exogenous pyrogens, such as LPS. Further research on this is needed.

  1. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Vidarsdottir, S.; Graaf, C. de; Stafleu, A.; Osch, M.J.P. van; Viergever, M.A.; Pijl, H.; Grond, J. van der

    2007-01-01

    We previously showed that hypothalamic neuronal activity, as measured by the blood oxygen level-dependent (BOLD) functional MRI signal, declines in response to oral glucose intake. To further explore the mechanism driving changes in hypothalamic neuronal activity in response to an oral glucose load,

  2. Tibolone Rapidly Attenuates the GABAB Response in Hypothalamic Neurones

    Science.gov (United States)

    Qiu, Jian; Bosch, Martha A.; Rønnekleiv, Oline K.; Kloosterboer, Helenius J.; Kelly, Martin J.

    2008-01-01

    Tibolone is primarily used for the treatment of climacteric symptoms. Tibolone is rapidly converted into three major metabolites: 3α- and 3β-hydroxy-tibolone (3α- and 3βOH-tibolone), which have oestrogenic effects, and the Δ4-isomer (Δ4-tibolone), which has progestogenic and androgenic effects. Since tibolone is effective in treating climacteric symptoms, the effects on the brain may be explained by the oestrogenic activity of tibolone. Previously using whole-cell patch clamp recording, we found that 17β-oestradiol (E2) rapidly altered GABA neurotransmission in hypothalamic neurones through a membrane oestrogen receptor (mER). E2 reduced the potency of the GABAB receptor agonist baclofen to activate G-protein-coupled, inwardly rectifying K+ channels in hypothalamic neurones. Therefore, we hypothesized that tibolone may have some rapid effects through the mER and sought to elucidate the signalling pathway of tibolone’s action using selective inhibitors and whole cell recording in ovariectomized female guinea pigs and mice. A sub-population of neurones was identified post hoc as proopiomelanocortin (POMC) neurones by immunocytochemical staining. Similar to E2, we have found that tibolone and its active metabolite 3βOH-tibolone rapidly reduced the potency of the GABAB receptor agonist baclofen to activate GIRK channels in POMC neurones. The effects were blocked by the ER antagonist ICI 182,780. Other metabolites of tibolone (3αOH-tibolone and Δ4-tibolone) had no effect. Furthermore, tibolone (and 3βOH-tibolone) was fully efficacious in ERαKO and ERβKO mice to attenuate GABAB responses. The effects of tibolone were blocked by phospholipase C inhibitor U73122. However, in contrast to E2, the effects of tibolone were not blocked by protein kinase C inhibitors or protein kinase A inhibitors. It appears that tibolone (and 3βOH-tibolone) activates phospholipase C leading to PIP2 metabolism and direct alteration of GIRK channel function. Therefore, tibolone

  3. Synaptic contact between median preoptic neurons and subfornical organ neurons projecting to the paraventricular hypothalamic nucleus.

    Science.gov (United States)

    Kawano, Hitoshi

    2017-04-01

    It is known that the median preoptic nucleus (POMe) sends dense projections to the subfornical organ (SFO). However, the functional significance of these projections have not been well discussed. In this electron microscopic study, we investigated the presence of synapses between POMe-derived axon terminals and SFO neurons that project to the paraventricular hypothalamic nucleus (PVN). After injection of a retrograde tracer, wheat germ agglutinin-conjugated horseradish peroxidase-colloidal gold complex, into the PVN, many labeled neurons were found in the SFO. In contrast, after injection of an anterograde tracer, biotinylated dextran amine, in the POMe, abundant labeled axon varicosities were observed in the SFO. Using electron microscopy, synapses were identified between retrogradely labeled dendrites and cell bodies, and anterogradely labeled axon terminals, indicating that POMe neurons innervate SFO neurons projecting to the PVN. The possibility that POMe neurons play multiple roles in the neuronal circuit responsible for vasopressin release and/or cardiovascular regulation is also discussed.

  4. Membrane-initiated Estrogen Signaling in Hypothalamic Neurons

    Science.gov (United States)

    Kelly, Martin J.; Rønnekleiv, Oline K.

    2008-01-01

    Summary It is well known that many of the actions of 17β-estradiol (E2) in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane steroid receptors for estrogen in hypothalamic and other brain neurons. But it is not well understood how estrogen signals via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. Indeed, it has been known for sometime that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by E2 in the hypothalamus, the nature of receptors involved and how they contribute to homeostatic functions. PMID:18538919

  5. Culturing rat hippocampal neurons.

    Science.gov (United States)

    Audesirk, G; Audesirk, T; Ferguson, C

    2001-01-01

    Cultured neurons are widely used to investigate the mechanisms of neurotoxicity. Embryonic rat hippocampal neurons may be grown as described under a wide variety of conditions to suit differing experimental procedures, including electrophysiology, morphological analysis of neurite development, and various biochemical and molecular analyses.

  6. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions.

    Science.gov (United States)

    Mittag, Jens; Lyons, David J; Sällström, Johan; Vujovic, Milica; Dudazy-Gralla, Susi; Warner, Amy; Wallis, Karin; Alkemade, Anneke; Nordström, Kristina; Monyer, Hannah; Broberger, Christian; Arner, Anders; Vennström, Björn

    2013-01-01

    Thyroid hormone is well known for its profound direct effects on cardiovascular function and metabolism. Recent evidence, however, suggests that the hormone also regulates these systems indirectly through the central nervous system. While some of the molecular mechanisms underlying the hormone's central control of metabolism have been identified, its actions in the central cardiovascular control have remained enigmatic. Here, we describe a previously unknown population of parvalbuminergic neurons in the anterior hypothalamus that requires thyroid hormone receptor signaling for proper development. Specific stereotaxic ablation of these cells in the mouse resulted in hypertension and temperature-dependent tachycardia, indicating a role in the central autonomic control of blood pressure and heart rate. Moreover, the neurons exhibited intrinsic temperature sensitivity in patch-clamping experiments, providing a new connection between cardiovascular function and core temperature. Thus, the data identify what we believe to be a novel hypothalamic cell population potentially important for understanding hypertension and indicate developmental hypothyroidism as an epigenetic risk factor for cardiovascular disorders. Furthermore, the findings may be beneficial for treatment of the recently identified patients that have a mutation in thyroid hormone receptor α1.

  7. Dehydration-induced drinking decreases Fos expression in hypothalamic paraventricular neurons expressing vasopressin but not corticotropin-releasing hormone.

    Science.gov (United States)

    Wotus, Cheryl; Arnhold, Michelle M; Engeland, William C

    2007-03-01

    Water-restricted (WR) rats exhibit a rapid suppression of plasma corticosterone following drinking. The present study monitored Fos-like immunoreactivity (Fos) to assess the effect of WR-induced drinking on the activity of vasopressin (VP)-positive magnocellular and parvocellular neurons and corticotropin-releasing hormone (CRH)-positive parvocellular neurons in the paraventricular nucleus of the hypothalamus. Adult male rats received water for 30 min (WR) in the post meridiem (PM) each day for 6 days and were killed without receiving water or at 1 h after receiving water for 15 min. In WR rats, Fos increased in VP magnocellular and parvocellular neurons but not CRH neurons. After drinking, Fos was reduced in VP magnocellular and parvocellular neurons but did not change in CRH neurons. To assess the severity of osmotic stress, rats were sampled throughout the final day of WR. Plasma osmolality, hematocrit and plasma VP were increased throughout the day before PM rehydration, and plasma ACTH and corticosterone were elevated at 1230 and 1430, respectively, showing that WR activates hypothalamic-pituitary-adrenal activity during the early PM before the time of rehydration. To determine the effects of WR-induced drinking on CRH neurons activated by acute stress, WR rats underwent restraint. Restraint increased plasma ACTH and corticosterone and Fos in CRH neurons; although rehydration reduced plasma ACTH and Fos expression in VP neurons, Fos in CRH neurons was not affected. These results suggest that inhibition of VP magnocellular and parvocellular neurons, but not CRH parvocellular neurons, contributes to the suppression of corticosterone after WR-induced drinking.

  8. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Sonia Jego

    Full Text Available The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH in neurons from the tuberal hypothalamic area (THA which are recruited during sleep states, especially paradoxical sleep (PS. To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties. Here, we found that the disruption of the brain Nesfatin-1 signaling achieved by icv administration of Nesfatin-1 antiserum or antisense against the nucleobindin2 (NUCB2 prohormone suppressed PS with little, if any alteration of slow wave sleep (SWS. Further, the infusion of Nesfatin-1 antiserum after a selective PS deprivation, designed for elevating PS needs, severely prevented the ensuing expected PS recovery. Strengthening these pharmacological data, we finally demonstrated by using c-Fos as an index of neuronal activation that the recruitment of Nesfatin-1-immunoreactive neurons within THA is positively correlated to PS but not to SWS amounts experienced by rats prior to sacrifice. In conclusion, this work supports a functional contribution of the Nesfatin-1 signaling, operated by THA neurons, to PS regulatory mechanisms. We propose that these neurons, likely releasing MCH as a synergistic factor, constitute an appropriate lever by which the hypothalamus may integrate endogenous signals to adapt the ultradian rhythm and maintenance of PS in a manner dictated by homeostatic needs. This could be done through the inhibition of downstream targets comprised primarily of the local hypothalamic wake-active orexin- and histamine-containing neurons.

  9. Activation of Strychnine-Sensitive Glycine Receptors by Shilajit on Preoptic Hypothalamic Neurons of Juvenile Mice.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu

    2016-02-29

    Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically.

  10. Differential role of hypothalamic orexin/hypocretin neurons in reward seeking motivated by cocaine versus palatable food.

    Science.gov (United States)

    Martin-Fardon, Rémi; Cauvi, Gabrielle; Kerr, Tony M; Weiss, Friedbert

    2016-08-24

    Hypothalamic orexin/hypocretin (Orx/Hcrt) neurons are thought to mediate both food-reinforced behaviors and behavior motivated by drugs of abuse. However, the relative role of the Orx/Hcrt system in behavior motivated by food versus drugs of abuse remains unclear. This investigation addressed this question by contrasting hypothalamic Orx/Hcrt neuronal activation associated with reinstatement of reward seeking induced by stimuli conditioned to cocaine (COC) versus highly palatable food reward, sweetened condensed milk (SCM). Orx/Hcrt neuronal activation in the lateral hypothalamus, dorsomedial hypothalamus and perifornical area, determined by dual c-fos/orx immunocytochemistry, was quantified in rat brains, following reinstatement of reward seeking induced by a discriminative stimulus (S(+) ) conditioned to COC or SCM. The COC S(+) and SCM S(+) initially produced the same magnitude of reward seeking. However, over four subsequent tests, behavior induced by the SCM S(+) decreased to extinction levels, whereas reinstatement induced by the COC S(+) perseverated at undiminished levels. Following both the first and fourth tests, the percentage of Orx/Hcrt cells expressing Fos was significantly increased in all hypothalamic subregions in rats tested with the COC S(+) but not rats tested with the SCM S(+) . These findings point toward a role for the Orx/Hcrt system in perseverating, compulsive-like COC seeking but not behavior motivated by palatable food. Moreover, analysis of the Orx/Hcrt recruitment patterns suggests that failure of Orx/Hcrt neurons in the lateral hypothalamus to respond to inhibitory inputs from Orx/Hcrt neurons in the dorsomedial hypothalamus/perifornical area may contribute to the perseverating nature of COC seeking.

  11. Brain-derived neurotrophic factor but not neurotrophin-3 enhances differentiation of somatostatin neurons in hypothalamic cultures.

    Science.gov (United States)

    Loudes, C; Petit, F; Kordon, C; Faivre-Bauman, A

    2000-09-01

    The present work investigated whether neurotrophins could differentially affect in vitro growth and maturation of two related subsets of hypothalamic neurons, hypophysiotropic somatostatin (SRIH) neurons projecting from the periventricular area and arcuate SRIH interneurons. For this purpose, the hypothalamus of 17-day-old rat fetuses was sampled and separated into a ventral and a dorsal fragment containing respectively periventricular and arcuate regions. Each fragment was dissociated and seeded separately in defined medium. Brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3), two important members of the neurotrophin family involved in neuronal differentiation and plasticity, were added to the cultures at seeding time. After 6 or 11 days in vitro, neurons were labeled with an anti-SRIH antiserum and submitted to morphometric analysis. In parallel, SRIH mRNA was estimated by semiquantitative reverse-transcriptase-polymerase chain reaction, and neuronal SRIH content, basal and depolarisation-stimulated releases measured by radioimmunoassay. The response of control, non-labeled neurons was estimated by neuronal counts and by assaying glutamic acid decarboxylase, a marker of a large majority of hypothalamic neurons. BDNF markedly increased the size and the branching number of SRIH periventricular cell bodies. Expression of SRIH mRNA, as well as SRIH content and release into the culture medium, were also stimulated by the neurotrophin. Non-SRIH neurons were not affected by the treatment. Under the same conditions, arcuate neurons exhibited a weak, mostly transient response to BDNF. NT-3 was ineffective on either neuronal subset. Immunoneutralization of Trk receptors provided further evidence for BDNF effect specificity. The results indicate that BDNF is a selective activator of the differentiation of hypophysiotropic SRIH neurons in the periventricular area of the hypothalamus.

  12. Hypothalamic neuropeptide expression following chronic food restriction in sedentary and wheel-running rats.

    Science.gov (United States)

    de Rijke, C E; Hillebrand, J J G; Verhagen, L A W; Roeling, T A P; Adan, R A H

    2005-10-01

    When rats are given access to a running-wheel in combination with food restriction, they will become hyperactive and decrease their food intake, a paradoxical phenomenon known as activity-based anorexia (ABA). Little is known about the regulation of the hypothalamic neuropeptides that are involved in the regulation of food intake and energy balance during the development of ABA. Therefore, rats were killed during the development of ABA, before they entered a state of severe starvation. Neuropeptide mRNA expression levels were analysed using quantitative real-time PCR on punches of separate hypothalamic nuclei. As is expected in a state of negative energy balance, expression levels of agouti-related protein (AgRP) and neuropeptide Y (NPY) were increased 5-fold in the arcuate nucleus (ARC) of food-restricted running ABA rats vs 2-fold in sedentary food-restricted controls. The co-regulated expression of AgRP and NPY strongly correlated with relative body weight and white adipose tissue mass. Arcuate expression of pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) was reduced 2-fold in the ABA group. In second-order neurons of the lateral hypothalamic area (LHA), melanin-concentrating hormone (MCH) mRNA expression was upregulated 2-fold in food-restricted running rats, but not in food-restricted sedentary controls. Prepro-orexin, CART and corticotropin-releasing hormone expression levels in the LHA and the paraventricular nucleus (PVN) were unchanged in both food-restricted groups. From this study it was concluded that during the development of ABA, neuropeptides in first-order neurons in the ARC and MCH in the LHA are regulated in an adequate response to negative energy balance, whereas expression levels of the other studied neuropeptides in secondary neurons of the LHA and PVN are unchanged and are probably regulated by factors other than energy status alone.

  13. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit

    DEFF Research Database (Denmark)

    Larsen, P J; Seier, V; Fink-Jensen, A

    2003-01-01

    -opiomelanocortin in the ventrolateral part, but completely absent from neuroendocrine neurones of the dorsomedial part. To assess the possible role of CART as a hypothalamic-releasing factor, immunoreactive CART was measured in blood samples from the long portal vessels connecting the median eminence with the anterior pituitary gland....... Adult male rats were anaesthetized and the infundibular stalk exposed via a transpharyngeal approach. The long portal vessels were transected and blood collected in 30-min periods (one prestimulatory and three poststimulatory periods). Compared to systemic venous plasma samples, baseline concentrations...... of immunoreactive CART were elevated in portal plasma. Exposure to sodium nitroprusside hypotension triggered a two-fold elevation of portal CART42-89 immunoreactivity throughout the 90-min stimulation period. In contrast, the concentration of portal plasma CART immunoreactivity dropped in the vehicle infused rats...

  14. Leptin activates oxytocin neurons of the hypothalamic paraventricular nucleus in both control and diet-induced obese rodents.

    Directory of Open Access Journals (Sweden)

    Mario Perello

    Full Text Available The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT neurons of the hypothalamic paraventricular nucleus (PVN can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been investigated. Here, we studied the potential role of OXT neurons of the PVN in leptin-mediated effects on body weight regulation in fasted rats. We demonstrated that intracerebroventricular (ICV leptin activates STAT3 phosphorylation in OXT neurons of the PVN, showed that this occurs in a subpopulation of OXT neurons that innervate the nucleus of the solitary tract (NTS, and provided further evidence suggesting a role of OXT to mediate leptin's actions on body weight. In addition, our results indicated that OXT neurons are responsive to ICV leptin and mediate leptin effects on body weight in diet induced obese (DIO rats, which are resistant to the anorectic effects of the hormone. Thus, we conclude that leptin targets a specific subpopulation of parvocellular OXT neurons of the PVN, and that this action may be important for leptin's ability to reduce body weight in both control and obese rats.

  15. Crucial role of zebrafish prox1 in hypothalamic catecholaminergic neurons development

    Directory of Open Access Journals (Sweden)

    Del Giacco Luca

    2008-03-01

    Full Text Available Abstract Background Prox1, the vertebrate homolog of prospero in Drosophila melanogaster, is a divergent homeogene that regulates cell proliferation, fate determination and differentiation during vertebrate embryonic development. Results Here we report that, in zebrafish, prox1 is widely expressed in several districts of the Central Nervous System (CNS. Specifically, we evidenced prox1 expression in a group of neurons, already positive for otp1, located in the hypothalamus at the level of the posterior tuberculum (PT. Prox1 knock-down determines the severe loss of hypothalamic catecholaminergic (CA neurons, identified by tyrosine hydroxylase (TH expression, and the synergistic prox1/otp1 overexpression induces the appearance of hypothalamic supernumerary TH-positive neurons and ectopic TH-positive cells on the yolk epitelium. Conclusion Our findings indicate that prox1 activity is crucial for the proper development of the otp1-positive hypothalamic neuronal precursors to their terminal CA phenotype.

  16. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra

    2016-10-01

    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  17. 2-deoxy-D-glucose suppresses food intake through activation of hypothalamic histamine in rats.

    Science.gov (United States)

    Sakata, T; Tamari, Y; Kang, M; Yoshimatsu, H

    1994-08-01

    The aim of this experiment was to demonstrate whether brain histamine contributes to delayed suppression of food intake after administration of 2-deoxy-D-glucose (2-DG). Food intake decreased significantly for 48 h after infusion of 2-DG into the rat third cerebroventricle. This delayed decrease in food intake was abolished by depletion of neuronal histamine by intraperitoneal pretreatment with alpha-fluoromethylhistidine (160 mumol/rat), a suicide inhibitor of a histamine-synthesizing enzyme. Intracerebroventricular infusion of 24 mumol 2-DG accelerated turnover rate of hypothalamic histamine. These results indicate that the delayed feeding suppression by 2-DG is modulated through histaminergic neurons in the hypothalamus. This histaminergic response may be related, at least in part, to homeostatic control of energy metabolism in the brain.

  18. Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping

    Science.gov (United States)

    Hernández, Vito S.; Hernández, Oscar R.; Perez de la Mora, Miguel; Gómora, María J.; Fuxe, Kjell; Eiden, Lee E.; Zhang, Limei

    2016-01-01

    The arginine-vasopressin (AVP)-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs) are known for their role in hydro-electrolytic balance control via their projections to the neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula and other brain regions in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA). The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS), consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptor mRNAs were not detected, using the same method. Water-deprivation (WD) for 24 h, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze (EPM) test, and this effect was mimicked by bilateral microinfusion of AVP into the CeA. Anxious behavior induced by either WD or AVP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of CeA inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala. PMID:27932956

  19. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping

    Directory of Open Access Journals (Sweden)

    Vito Salvador Hernandez

    2016-11-01

    Full Text Available The arginine-vasopressin (AVP-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs are known for their role in hydro-electrolytic balance control via their projections to neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula, and other brain regions, in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA. The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS, consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN and supraoptic (SON nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptors mRNA were not detected, using the same method. Water-deprivation for 24 hrs, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze test, and this effect was mimicked by bilateral microinfusion of VP into the CeA. Anxious behavior induced by either water deprivation or VP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of central amygdala inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.

  20. InsR/FoxO1 signaling curtails hypothalamic POMC neuron number.

    Directory of Open Access Journals (Sweden)

    Leona Plum

    Full Text Available Insulin receptor (InsR signaling through transcription factor FoxO1 is important in the development of hypothalamic neuron feeding circuits, but knowledge about underlying mechanisms is limited. To investigate the role of InsR/FoxO1 signaling in the development and maintenance of these circuits, we surveyed the pool of hypothalamic neurons expressing Pomc mRNA in different mouse models of impaired hypothalamic InsR signaling. InsR ablation in the entire hypothalamus did not affect Pomc-neuron number at birth, but resulted in a 25% increase, most notably in the middle arcuate nucleus region, in young adults. Selective restoration of InsR expression in POMC neurons in these mice partly reversed the abnormality, resulting in a 10% decrease compared to age-matched controls. To establish whether FoxO1 signaling plays a role in this process, we examined POMC neuron number in mice with POMC-specific deletion of FoxO1, and detected a 23% decrease in age-matched animals, consistent with a cell-autonomous role of InsR/FoxO1 signaling in regulating POMC neuron number, distinct from its established role to activate Pomc transcription. These changes in Pomc cells occurred in the absence of marked changes in humoral factors or hypothalamic NPY neurons.

  1. Nutritional Recovery Promotes Hypothalamic Inflammation in Rats during Adulthood

    Directory of Open Access Journals (Sweden)

    Hellen Barbosa Farias Silva

    2014-01-01

    Full Text Available We evaluated whether protein restriction in fetal life alters food intake and glucose homeostasis in adulthood by interfering with insulin signal transduction through proinflammatory mechanisms in the hypothalamus and peripheral tissues. Rats were divided into the following: a control group (C; a recovered group (R; and a low protein (LP group. Relative food intake was greater and serum leptin was diminished in LP and R compared to C rats. Proinflammatory genes and POMC mRNA were upregulated in the hypothalamus of R group. Hypothalamic NPY mRNA expression was greater but AKT phosphorylation was diminished in the LP than in the C rats. In muscle, AKT phosphorylation was higher in restricted than in control animals. The HOMA-IR was decreased in R and C compared to the LP group. In contrast, the Kitt in R was similar to that in C and both were lower than LP rats. Thus, nutritional recovery did not alter glucose homeostasis but produced middle hyperphagia, possibly due to increased anorexigenic neuropeptide expression that counteracted the hypothalamic inflammatory process. In long term protein deprived rats, hyperphagia most likely resulted from increased orexigenic neuropeptide expression, and glucose homeostasis was maintained, at least in part, at the expense of increased muscle insulin sensitivity.

  2. [Changes in the cholecystokinin-synthetizing hypothalamic system during experimental diabetes mellitus in rats].

    Science.gov (United States)

    Abramov, A V; Kolesnik, Iu M; Trzhetsinskiĭ, S D; Orlovskiĭ, M A

    1998-01-01

    The investigation was performed in 96 Wistar rats. Diabetes mellitus was induced by single injection of 50 mg/kg of streptozotocin. Cholecystokinin (CCK) synthesizing neurons were identified in hypothalamic structures using indirect immunofluorescence. In latent period of diabetes (2 wks) number of CCK--immunopositive neurons increases, especially in paraventricular and suprachiasmatic nuclei, while in ventrolateral subnucleus of arcuate nucleus and parvicellular subnucleus of paraventricular nucleus areas occupied by immunoreactive material in neurons and their CCK content are reduced. By the end of wk 5 of the disease increase in number of CCK immunopositive neurons was registered only in medial parvicellular subnucleus of paraventricular nucleus whereas in other structures their number was reduced. The administration of CCK to intact animals causes increase of insulin content in endocrinocytes of pancreatic islets, but does not affect the level of hypoglycemia. The administration of the peptide to animals with diabetes leads to destruction of pancreatic islets, decline in endocrinocyte number and insulin content and marked hypoglycemia. Thus, the data obtained indicate the significant role of hypothalamic peptidergic system and CCK in regulation of beta-endocrinocyte function.

  3. Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release.

    Science.gov (United States)

    Crosby, Karen M; Baimoukhametova, Dinara V; Bains, Jaideep S; Pittman, Quentin J

    2015-09-23

    Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK.

  4. Expression of the neuronal nitric oxide synthase in the paraventricular hypothalamic nucleus in rats with metabolic syndrome%代谢综合征大鼠下丘脑室旁核神经元型一氧化氮合酶的表达

    Institute of Scientific and Technical Information of China (English)

    马同军; 吴锋

    2012-01-01

    Objective:To examine the changes of neuronal nitric oxide synthase (nNOS) expression in paraventricular hypothalamic nucleus (PVN) in rats with metabolic syndrome, and explore the mechanisms of nitric oxide(NO) in PVN in inducing the metabolic syndrome. Methods : A high-fat,refined-carbohydrate diet was given to the rats for 24 weeks to induce metabolic syndrome. Immunohistostaining was performed to examine the expression of nNOS in PVN. Results: Compared with the normal control group,the expression of nNOS in the model group were up-regulated significantly(P<0.01). Conclusion :The fact that evidently up-regulated nNOS expression in PVN was seen in rats with metabolic syndrome suggest that the changes of nNOS activities may be involved in variation of the cerebral nemo endocrine.%目的:观察代谢综合征大鼠下丘脑室旁核(paraventricular hypothalamic nucleus,PVN)内神经元型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)表达的变化,探讨PVN内一氧化氮(nitric oxide,NO)在代谢综合征发病中的作用机制.方法:高脂高糖诱导大鼠代谢综合征24周,应用免疫组织化学染色方法观察代谢综合征大鼠PVN内nNOS的表达.结果:与对照组相比较,模型组PVN内nNOS表达明显增加(P<0.01).结论:PVN内nNOS的表达在代谢综合征大鼠中明显升高,nNOS活性改变可能与代谢综合征神经内分泌改变有关.

  5. Centrally injected histamine increases posterior hypothalamic acetylcholine release in hemorrhage-hypotensive rats.

    Science.gov (United States)

    Altinbas, Burcin; Yilmaz, Mustafa S; Savci, Vahide; Jochem, Jerzy; Yalcin, Murat

    2015-01-01

    Histamine, acting centrally as a neurotransmitter, evokes a reversal of hemorrhagic hypotension in rats due to the activation of the sympathetic and the renin-angiotensin systems as well as the release of arginine vasopressin and proopiomelanocortin-derived peptides. We demonstrated previously that central nicotinic cholinergic receptors are involved in the pressor effect of histamine. The aim of the present study was to examine influences of centrally administrated histamine on acetylcholine (ACh) release at the posterior hypothalamus-a region characterized by location of histaminergic and cholinergic neurons involved in the regulation of the sympathetic activity in the cardiovascular system-in hemorrhage-hypotensive anesthetized rats. Hemodynamic and microdialysis studies were carried out in Sprague-Dawley rats. Hemorrhagic hypotension was induced by withdrawal of a volume of 1.5 ml blood/100 g body weight over a period of 10 min. Acute hemorrhage led to a severe and long-lasting decrease in mean arterial pressure (MAP), heart rate (HR), and an increase in extracellular posterior hypothalamic ACh and choline (Ch) levels by 56% and 59%, respectively. Intracerebroventricularly (i.c.v.) administered histamine (50, 100, and 200 nmol) dose- and time-dependently increased MAP and HR and caused an additional rise in extracellular posterior hypothalamic ACh and Ch levels at the most by 102%, as compared to the control saline-treated group. Histamine H1 receptor antagonist chlorpheniramine (50 nmol; i.c.v.) completely blocked histamine-evoked hemodynamic and extracellular posterior hypothalamic ACh and Ch changes, whereas H2 and H3/H4 receptor blockers ranitidine (50 nmol; i.c.v.) and thioperamide (50 nmol; i.c.v.) had no effect. In conclusion, centrally administered histamine, acting via H1 receptors, increases ACh release at the posterior hypothalamus and causes a pressor and tachycardic response in hemorrhage-hypotensive anesthetized rats.

  6. Fluorescent visualisation of the hypothalamic oxytocin neurones activated by cholecystokinin-8 in rats expressing c-fos-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 fusion transgenes.

    Science.gov (United States)

    Katoh, A; Shoguchi, K; Matsuoka, H; Yoshimura, M; Ohkubo, J-I; Matsuura, T; Maruyama, T; Ishikura, T; Aritomi, T; Fujihara, H; Hashimoto, H; Suzuki, H; Murphy, D; Ueta, Y

    2014-05-01

    The up-regulation of c-fos gene expression is widely used as a marker of neuronal activation elicited by various stimuli. Anatomically precise observation of c-fos gene products can be achieved at the RNA level by in situ hybridisation or at the protein level by immunocytochemistry. Both of these methods are time and labour intensive. We have developed a novel transgenic rat system that enables the trivial visualisation of c-fos expression using an enhanced green fluorescent protein (eGFP) tag. These rats express a transgene consisting of c-fos gene regulatory sequences that drive the expression of a c-fos-eGFP fusion protein. In c-fos-eGFP transgenic rats, robust nuclear eGFP fluorescence was observed in osmosensitive brain regions 90 min after i.p. administration of hypertonic saline. Nuclear eGFP fluorescence was also observed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) 90 min after i.p. administration of cholecystokinin (CCK)-8, which selectively activates oxytocin (OXT)-secreting neurones in the hypothalamus. In double transgenic rats that express c-fos-eGFP and an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene, almost all mRFP1-positive neurones in the SON and PVN expressed nuclear eGFP fluorescence 90 min after i.p. administration of CCK-8. It is possible that not only a plane image, but also three-dimensional reconstruction image may identify cytoplasmic vesicles in an activated neurone at the same time.

  7. Microglia Dictate the Impact of Saturated Fat Consumption on Hypothalamic Inflammation and Neuronal Function

    Directory of Open Access Journals (Sweden)

    Martin Valdearcos

    2014-12-01

    Full Text Available Diets rich in saturated fat produce inflammation, gliosis, and neuronal stress in the mediobasal hypothalamus (MBH. Here, we show that microglia mediate this process and its functional impact. Although microglia and astrocytes accumulate in the MBH of mice fed a diet rich in saturated fatty acids (SFAs, only the microglia undergo inflammatory activation, along with a buildup of hypothalamic SFAs. Enteric gavage specifically with SFAs reproduces microglial activation and neuronal stress in the MBH, and SFA treatment activates murine microglia, but not astrocytes, in culture. Moreover, depleting microglia abrogates SFA-induced inflammation in hypothalamic slices. Remarkably, depleting microglia from the MBH of mice abolishes inflammation and neuronal stress induced by excess SFA consumption, and in this context, microglial depletion enhances leptin signaling and reduces food intake. We thus show that microglia sense SFAs and orchestrate an inflammatory process in the MBH that alters neuronal function when SFA consumption is high.

  8. Leptin Acts via Lateral Hypothalamic Area Neurotensin Neurons to Inhibit Orexin Neurons by Multiple GABA-Independent Mechanisms

    Science.gov (United States)

    Goforth, Paulette B.; Leinninger, Gina M.; Patterson, Christa M.

    2014-01-01

    The adipocyte-derived hormone leptin modulates neural systems appropriately for the status of body energy stores. Leptin inhibits lateral hypothalamic area (LHA) orexin (OX; also known as hypocretin)-producing neurons, which control feeding, activity, and energy expenditure, among other parameters. Our previous results suggest that GABAergic LHA leptin receptor (LepRb)-containing and neurotensin (Nts)-containing (LepRbNts) neurons lie in close apposition with OX neurons and control Ox mRNA expression. Here, we show that, similar to leptin, activation of LHA Nts neurons by the excitatory hM3Dq DREADD (designer receptor exclusively activated by designer drugs) hyperpolarizes membrane potential and suppresses action potential firing in OX neurons in mouse hypothalamic slices. Furthermore, ablation of LepRb from Nts neurons abrogated the leptin-mediated inhibition, demonstrating that LepRbNts neurons mediate the inhibition of OX neurons by leptin. Leptin did not significantly enhance GABAA-mediated inhibitory synaptic transmission, and GABA receptor antagonists did not block leptin-mediated inhibition of OX neuron activity. Rather, leptin diminished the frequency of spontaneous EPSCs onto OX neurons. Furthermore, leptin indirectly activated an ATP-sensitive potassium (KATP) channel in OX neurons, which was required for the hyperpolarization of OX neurons by leptin. Although Nts did not alter OX activity, galanin, which is coexpressed in LepRbNts neurons, inhibited OX neurons, whereas the galanin receptor antagonist M40 (galanin-(1–12)-Pro3-(Ala-Leu)2-Ala amide) prevented the leptin-induced hyperpolarization of OX cells. These findings demonstrate that leptin indirectly inhibits OX neurons by acting on LHA LepRbNts neurons to mediate two distinct GABA-independent mechanisms of inhibition: the presynaptic inhibition of excitatory neurotransmission and the opening of KATP channels. PMID:25143620

  9. Peripheral injection of ghrelin induces Fos expression in the dorsomedial hypothalamic nucleus in rats

    Science.gov (United States)

    Kobelt, Peter; Wisser, Anna-Sophia; Stengel, Andreas; Goebel, Miriam; Inhoff, Tobias; Noetzel, Steffen; Veh, Rüdiger W.; Bannert, Norbert; van der Voort, Ivo; Wiedenmann, Bertram; Klapp, Burghard F.; Taché, Yvette; Mönnikes, Hubert

    2009-01-01

    Peripheral ghrelin has been shown to act as a gut–brain peptide exerting a potent orexigenic effect on food intake. The dorsomedial nucleus of the hypothalamus (DMH) is innervated by projections from other brain areas being part of the network of nuclei controlling energy homeostasis, among others NPY/AgRP-positive fibers arising from the arcuate nucleus (ARC). The aim of the study was to determine if peripherally administered ghrelin affects neuronal activity in the DMH, as assessed by Fos expression. The number of Fos positive neurons was determined in the DMH, paraventricular nucleus of the hypothalamus (PVN), ARC, ventromedial hypothalamic nucleus (VMH), nucleus of the solitary tract (NTS) and in the area postrema(AP) in non-fasted Sprague–Dawley rats in response to intraperitoneally (ip) injected ghrelin (3 nmol/rat) or vehicle (0.15 M NaCl). Peripheral ghrelin induced a significant increase in the number of Fos-ir positive neurons/section compared with vehicle in the ARC (mean±SEM: 49±2 vs. 23±2 neurons/section, p=0.001), PVN (69±5 vs. 34±3, p=0.001), and DMH (142±5 vs. 83±5, p<0.001). Fos-ir positive neurons were mainly localized within the ventral part of the DMH. No change in Fos expression was observed in the VMH (53±8 vs. 48±6, p=0.581), NTS (42±2 vs.40±3, p=0.603), and in the AP (7±1 vs. 5±1, p=0.096). Additional double-labelling with anti-Fos and anti-AgRP revealed that Fos positive neurons in the DMH were encircled by a network of AgRP-ir positive fibers. These data indicate that peripheral ghrelin activates DMH neurons and that NPY-/AgRP-positive fibers may be involved in the response. PMID:18329635

  10. Glut4 expression defines an insulin-sensitive hypothalamic neuronal population.

    Science.gov (United States)

    Ren, Hongxia; Yan, Shijun; Zhang, Baifang; Lu, Taylor Y; Arancio, Ottavio; Accili, Domenico

    2014-07-01

    Insulin signaling in the CNS modulates satiety and glucose metabolism, but insulin target neurons are poorly defined. We have previously shown that ablation of insulin receptors (InsR) in Glut4-expressing tissues results in systemic abnormalities of insulin action. We propose that Glut4 neurons constitute an insulin-sensitive neuronal subset. We determined their gene expression profiles using flow-sorted hypothalamic Glut4 neurons. Gene ontology analyses demonstrated that Glut4 neurons are enriched in olfacto-sensory receptors, M2 acetylcholine receptors, and pathways required for the acquisition of insulin sensitivity. Following genetic ablation of InsR, transcriptome profiling of Glut4 neurons demonstrated impairment of the insulin, peptide hormone, and cAMP signaling pathways, with a striking upregulation of anion homeostasis pathway. Accordingly, hypothalamic InsR-deficient Glut4 neurons showed reduced firing activity. The molecular signature of Glut4 neurons is consistent with a role for this neural population in the integration of olfacto-sensory cues with hormone signaling to regulate peripheral metabolism.

  11. Somato-dendritic localization and signaling by leptin receptors in hypothalamic POMC and AgRP neurons.

    Directory of Open Access Journals (Sweden)

    Sangdeuk Ha

    Full Text Available Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC and agouti-related peptide (AgRP/Neuropeptide Y (NPY/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb. Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM, confocal-laser scanning microscopy (CLSM, and electron microscopy (EM to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb (+/+ mice and in Leprb (db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin's central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.

  12. Identification of hypothalamic neuron-derived neurotrophic factor as a novel factor modulating appetite.

    Science.gov (United States)

    Byerly, Mardi S; Swanson, Roy D; Semsarzadeh, Nina N; McCulloh, Patrick S; Kwon, Kiwook; Aja, Susan; Moran, Timothy H; Wong, G William; Blackshaw, Seth

    2013-06-15

    Disruption of finely coordinated neuropeptide signals in the hypothalamus can result in altered food intake and body weight. We identified neuron-derived neurotrophic factor (NENF) as a novel secreted protein through a large-scale screen aimed at identifying novel secreted hypothalamic proteins that regulate food intake. We observed robust Nenf expression in hypothalamic nuclei known to regulate food intake, and its expression was altered under the diet-induced obese (DIO) condition relative to the fed state. Hypothalamic Nenf mRNA was regulated by brain-derived neurotrophic factor (BDNF) signaling, itself an important regulator of appetite. Delivery of purified recombinant BDNF into the lateral cerebral ventricle decreased hypothalamic Nenf expression, while pharmacological inhibition of trkB signaling increased Nenf mRNA expression. Furthermore, recombinant NENF administered via an intracerebroventricular cannula decreased food intake and body weight and increased hypothalamic Pomc and Mc4r mRNA expression. Importantly, the appetite-suppressing effect of NENF was abrogated in obese mice fed a high-fat diet, demonstrating a diet-dependent modulation of NENF function. We propose the existence of a regulatory circuit involving BDNF, NENF, and melanocortin signaling. Our study validates the power of using an integrated experimental and bioinformatic approach to identify novel CNS-derived proteins with appetite-modulating function and reveals NENF as an important central modulator of food intake.

  13. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states

    Directory of Open Access Journals (Sweden)

    Allison eGraebner

    2015-08-01

    Full Text Available A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools have greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.

  14. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    Science.gov (United States)

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P saturated fatty acids on nonneuronal cells.

  15. HYPOTHALAMIC BLOOD-FLOW REMAINS UNALTERED FOLLOWING CHRONIC NITRIC-OXIDE SYNTHASE BLOCKADE IN RATS

    NARCIS (Netherlands)

    BENYO, Z; SZABO, C; STUIVER, BT; BOHUS, B; SANDOR, P

    1995-01-01

    The effect of the chronic oral application of N-G-nitro-L-arginine methyl eater (L-NAME), a potent inhibitor of nitric oxide (NO) production, was studied on hypothalamic blood flow (HBF) and hypothalamic nitric oxide synthase (NOS) activity in rats. L-NAME was dissolved in the drinking water, in a c

  16. Depolarizing actions of hydrogen sulfide on hypothalamic paraventricular nucleus neurons.

    Directory of Open Access Journals (Sweden)

    C Sahara Khademullah

    Full Text Available Hydrogen sulfide (H2S is a novel neurotransmitter that has been shown to influence cardiovascular functions as well and corticotrophin hormone (CRH secretion. Since the paraventricular nucleus of the hypothalamus (PVN is a central relay center for autonomic and endocrine functions, we sought to investigate the effects of H2S on the neuronal population of the PVN. Whole cell current clamp recordings were acquired from the PVN neurons and sodium hydrosulfide hydrate (NaHS was bath applied at various concentrations (0.1, 1, 10, and 50 mM. NaHS (1, 10, and 50 mM elicited a concentration-response relationship from the majority of recorded neurons, with almost exclusively depolarizing effects following administration. Cells responded and recovered from NaHS administration quickly and the effects were repeatable. Input differences from baseline and during the NaHS-induced depolarization uncovered a biphasic response, implicating both a potassium and non-selective cation conductance. The results from the neuronal population of the PVN shed light on the possible physiological role that H2S has in autonomic and endocrine function.

  17. Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons.

    Science.gov (United States)

    Ren, Hongxia; Lu, Taylor Y; McGraw, Timothy E; Accili, Domenico

    2015-02-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism.

  18. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    Science.gov (United States)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  19. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area – an anterograde tract-tracing study

    Directory of Open Access Journals (Sweden)

    Rege Sugárka Papp

    2014-05-01

    Full Text Available The projections from the dorsolateral hypothalamic area (DLH to the lower brainstem have been investigated by using biotinylated dextran amine (BDA, an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area, and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington’s and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline and 9 serotonin cell groups received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.

  20. Suprachiasmatic nuclei and Circadian rhythms. The role of suprachiasmatic nuclei on rhythmic activity of neurons in the lateral hypothalamic area, ventromedian nuclei and pineal gland

    Science.gov (United States)

    Nishino, H.

    1977-01-01

    Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.

  1. Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons

    Science.gov (United States)

    Ren, Hongxia; Lu, Taylor Y.; McGraw, Timothy E.

    2015-01-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin–mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron–ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. PMID:25187366

  2. Relative number and distribution of murine hypothalamic proopiomelanocortin neurons innervating distinct target sites.

    Directory of Open Access Journals (Sweden)

    Connie M King

    Full Text Available Proopiomelanocortin (POMC neurons send projections widely throughout the brain consistent with their role in regulating numerous homeostatic processes and mediating analgesia and reward. Recent data suggest that POMC neurons located in the rostral and caudal extents of the arcuate nucleus of the hypothalamus may mediate selective actions, however it is not clear if POMC neurons in these regions of the arcuate nucleus innervate specific target sites. In the present study, fluorescent microspheres and cholera toxin B were used to retrogradely label POMC neurons in POMC-DsRed transgenic mice. The number and location of POMC cells projecting to the supraoptic nucleus, periaqueductal gray, ventral tegmental area, paraventricular nucleus, lateral hypothalamic nucleus, amygdala and the dosal vagal complex was determined. Tracer injected unilaterally labeled POMC neurons in both sides of the arcuate nucleus. While the total number of retrogradely labeled cells in the arcuate nucleus varied by injection site, less than 10% of POMC neurons were labeled with tracer injected into any target area. Limited target sites appear to be preferentially innervated by POMC neurons that reside in the rostral or caudal extremes of the arcuate nucleus, whereas the majority of target sites are innervated by diffusely distributed POMC neurons. The modest number of cells projecting to each target site indicates that relatively few POMC neurons may mediate potent and specific physiologic responses and therefore disturbed signaling in a very few POMC neurons may have significant consequences.

  3. Relative number and distribution of murine hypothalamic proopiomelanocortin neurons innervating distinct target sites.

    Science.gov (United States)

    King, Connie M; Hentges, Shane T

    2011-01-01

    Proopiomelanocortin (POMC) neurons send projections widely throughout the brain consistent with their role in regulating numerous homeostatic processes and mediating analgesia and reward. Recent data suggest that POMC neurons located in the rostral and caudal extents of the arcuate nucleus of the hypothalamus may mediate selective actions, however it is not clear if POMC neurons in these regions of the arcuate nucleus innervate specific target sites. In the present study, fluorescent microspheres and cholera toxin B were used to retrogradely label POMC neurons in POMC-DsRed transgenic mice. The number and location of POMC cells projecting to the supraoptic nucleus, periaqueductal gray, ventral tegmental area, paraventricular nucleus, lateral hypothalamic nucleus, amygdala and the dosal vagal complex was determined. Tracer injected unilaterally labeled POMC neurons in both sides of the arcuate nucleus. While the total number of retrogradely labeled cells in the arcuate nucleus varied by injection site, less than 10% of POMC neurons were labeled with tracer injected into any target area. Limited target sites appear to be preferentially innervated by POMC neurons that reside in the rostral or caudal extremes of the arcuate nucleus, whereas the majority of target sites are innervated by diffusely distributed POMC neurons. The modest number of cells projecting to each target site indicates that relatively few POMC neurons may mediate potent and specific physiologic responses and therefore disturbed signaling in a very few POMC neurons may have significant consequences.

  4. Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats

    National Research Council Canada - National Science Library

    Eduardo R. Ropelle; José R. Pauli; Patrícia Prada; Dennys E. Cintra; Guilherme Z. Rocha; Juliana C. Moraes; Marisa J. S. Frederico; Gabrielle da Luz; Ricardo A. Pinho; José B. C. Carvalheira; Licio A. Velloso; Mario A. Saad; Cláudio T. De Souza

    2009-01-01

    ... in insulin resistance and obesity remains unclear. Here, we identify that a high-fat diet impaired insulin-induced hypothalamic Foxo1 phosphorylation and degradation, increasing the nuclear Foxo1 activity and hyperphagic response in rats...

  5. Hypothalamic Non-AgRP, Non-POMC GABAergic Neurons Are Required for Postweaning Feeding and NPY Hyperphagia.

    Science.gov (United States)

    Kim, Eun Ran; Wu, Zhaofei; Sun, Hao; Xu, Yuanzhong; Mangieri, Leandra R; Xu, Yong; Tong, Qingchun

    2015-07-22

    The hypothalamus is critical for feeding and body weight regulation. Prevailing studies focus on hypothalamic neurons that are defined by selectively expressing transcription factors or neuropeptides including those expressing proopiomelanocortin (POMC) and agouti-related peptides (AgRP). The Cre expression driven by the pancreas-duodenum homeobox 1 promoter is abundant in several hypothalamic nuclei but not in AgRP or POMC neurons. Using this line, we generated mice with disruption of GABA release from a major subset of non-POMC, non-AgRP GABAergic neurons in the hypothalamus. These mice exhibited a reduction in postweaning feeding and growth, and disrupted hyperphagic responses to NPY. Disruption of GABA release severely diminished GABAergic input to the paraventricular hypothalamic nucleus (PVH). Furthermore, disruption of GABA-A receptor function in the PVH also reduced postweaning feeding and blunted NPY-induced hyperphagia. Given the limited knowledge on postweaning feeding, our results are significant in identifying GABA release from a major subset of less appreciated hypothalamic neurons as a key mediator for postweaning feeding and NPY hyperphagia, and the PVH as one major downstream site that contributes significantly to the GABA action. Significance statement: Prevalent studies on feeding in the hypothalamus focus on well characterized, selective groups neurons [e.g., proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons], and as a result, the role of the majority of other hypothalamic neurons is largely neglected. Here, we demonstrated an important role for GABAergic projections from non-POMC non-AgRP neurons to the paraventricular hypothalamic nucleus in promoting postweaning (mainly nocturnal) feeding and mediating NPY-induced hyperphagia. Thus, these results signify an importance to study those yet to be defined hypothalamic neurons in the regulation of energy balance and reveal a neural basis for postweaning (nocturnal) feeding and

  6. Near-Perfect Synaptic Integration by Nav1.7 in Hypothalamic Neurons Regulates Body Weight.

    Science.gov (United States)

    Branco, Tiago; Tozer, Adam; Magnus, Christopher J; Sugino, Ken; Tanaka, Shinsuke; Lee, Albert K; Wood, John N; Sternson, Scott M

    2016-06-16

    Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions.

  7. Firing behavior and network activity of single neurons in human epileptic hypothalamic hamartoma

    Directory of Open Access Journals (Sweden)

    Peter N. Steinmetz

    2013-12-01

    Full Text Available Objective: Human hypothalamic hamartomas (HH are intrinsically epileptogenic and are associated with treatment-resistant gelastic seizures. The basic cellular mechanisms responsible for seizure onset within HH are unknown. We used intra-operative microwire recordings of single neuron activity to measure the spontaneous firing rate of neurons and the degree of functional connection between neurons within the tumor.Technique: Fourteen patients underwent transventricular endoscopic resection of HH for treatment-resistant epilepsy. Prior to surgical resection, single neuron recordings from bundled microwires (total of 9 contacts were obtained from HH tissue. Spontaneous activity was recorded for two or three 5-minute epochs under steady-state general anesthesia. Off-line analysis included cluster analysis of single unit activity and probability analysis of firing relationships between pairs of neurons.Results: Altogether, 222 neurons were identified (mean 6 neurons per recording epoch. Cluster analysis of single neuron firing utilizing a mixture of Gaussians model identified two distinct populations on the basis of firing rate (median firing frequency 0.6 versus 15.0 spikes per second; p<10-5. Cluster analysis identified three populations determined by levels of burst-firing (median burst indices of 0.015, 0.18, and 0.39; p<10-15. Unbiased analysis of spontaneous single unit behavior showed that 51% of all possible neuron pairs within each recording epoch had a significant level of firing synchrony (p<10-15. The subgroup of neurons with higher median firing frequencies was more likely to demonstrate synchronous firing (p<10-7. Conclusions: HH tissue in-vivo contains neurons which fire spontaneously. The activity of single neurons is diverse but distributes into at least two electrophysiological phenoytpes. Functional linkage between single neurons suggests that HH neurons exist within local networks that may contribute to ictogenesis.

  8. Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons.

    Science.gov (United States)

    Varela, Luis; Suyama, Shigetomo; Huang, Yan; Shanabrough, Marya; Tschöp, Matthias H; Gao, Xiao-Bing; Giordano, Frank J; Horvath, Tamas L

    2017-06-01

    Glucose is the primary driver of hypothalamic proopiomelanocortin (POMC) neurons. We show that endothelial hypoxia-inducible factor 1α (HIF-1α) controls glucose uptake in the hypothalamus and that it is upregulated in conditions of undernourishment, during which POMC neuronal activity is decreased. Endothelium-specific knockdown of HIF-1α impairs the ability of POMC neurons to adapt to the changing metabolic environment in vivo, resulting in overeating after food deprivation in mice. The impaired functioning of POMC neurons was reversed ex vivo or by parenchymal glucose administration. These observations indicate an active role for endothelial cells in the central control of metabolism and suggest that central vascular impairments may cause metabolic disorders. © 2017 by the American Diabetes Association.

  9. ghrelin对糖尿病大鼠下丘脑弓状核胃牵张敏感神经元放电活动的影响%EFFECTS OF ghrelin ON DISCHARGE ACTIVITY OF GASTRIC DISTENTION NEURONS IN HYPOTHALAMIC ARCUATUS NUCLEUS OF DIABETIC RATS

    Institute of Scientific and Technical Information of China (English)

    侯滕菲; 徐珞

    2012-01-01

    Objective To observe the changes of activity of gastric distention (GD) sensitive neurons of hypothalamic arcuate nucleus (Arc) in rat models with diabetes mellitus (DM) , and to study the effects of ghrelin on GD neurons in hypothalamic arcuatus nucleus in the rats. Methods A rat model of DM was created by intraperitoneal injection of streptozotocin (STZ). The effects of ghrelin and [D-Lys-3]-GHRP-6 on GD sensitive neurons of Arc in DM rats were observed by recording extracellular potentials of single neurons. Results In normal rats, 98 GD sensitivity neurons were recorded in Arc of normal rats, in which, 64. 3% were classified as GD-excitatory (GD-E) neurons, and 35. 7% were GD-inhibitory (GD-I) neurons. Microinjection of ghrelin could excite 73. 0% of GD-E neurons, and discharge frequency significantly increased (t = 2. 01 ,P0. 05) , but ghrelin made neuronal excitation ratio of GD-E obviously reduce (x2 = 3. 86,P0. 05). Conclusion The ghrelin of hippocampus Arc involves in regulation of spontaneous discharge activity of GD sensitive neurons in diabetic rats, which is likely to be realized through ghrelin receptor.%目的 观察链脲佐菌素(STZ)所致糖尿病大鼠下丘脑弓状核(Arc)胃牵张(GD)敏感神经元放电活动改变,探讨ghrelin对糖尿病大鼠下丘脑Arc GD敏感神经元放电活动的影响及机制.方法 采用STZ腹腔注射诱导糖尿病大鼠模型.通过细胞外记录神经元单位放电方法,观察ghrelin及其受体阻断剂[D-Lys-3]-GHRP-6对糖尿病大鼠下丘脑Arc GD敏感神经元自发放电活动的影响.结果 在正常大鼠,Arc记录到的98个GD敏感神经元中,64.3%为GD兴奋性(GD-E)神经元,35.7%为GD抑制性(GD-I)神经元.Arc注射ghrelin可兴奋73.0%的GD-E神经元,其放电频率显著增加(t=2.01,P<0.05);Arc注射ghrelin可抑制60.0%的GD-I神经元,其放电频率显著降低(t=4.49,P<0.01);ghrelin改变GD神经元放电效应可被[D-Lys-3]-GHRP-6阻断.

  10. Behavioral and endocrine responses of rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain)

    NARCIS (Netherlands)

    Bohus, B.; Wimersma Greidanus, T.B. van; Wied, D. de

    1975-01-01

    Behavioral and endocrine profiles were established of homozygous (HO-DI) and heterozygous (HE-DI) rats with hereditary hypothalamic diabetes insipidus in comparison to Wistar strain rats. HO-DI rats were inferior in acquiring and maintaining active and passive avoidance behavior. Behavioral deficits

  11. Zolpidem, a selective GABA(A) receptor alpha1 subunit agonist, induces comparable Fos expression in oxytocinergic neurons of the hypothalamic paraventricular and accessory but not supraoptic nuclei in the rat

    DEFF Research Database (Denmark)

    Kiss, Alexander; Søderman, Andreas; Bundzikova, Jana;

    2006-01-01

    Functional activation of oxytocinergic (OXY) cells in the hypothalamic paraventricular (PVN), supraoptic (SON), and accessory (ACC) nuclei was investigated in response to acute treatment with Zolpidem (a GABA(A) receptor agonist with selectivity for alpha(1) subunits) utilizing dual Fos/OXY immun...

  12. Zolpidem, a selective GABA(A) receptor alpha1 subunit agonist, induces comparable Fos expression in oxytocinergic neurons of the hypothalamic paraventricular and accessory but not supraoptic nuclei in the rat

    DEFF Research Database (Denmark)

    Kiss, Alexander; Søderman, Andreas; Bundzikova, Jana

    2006-01-01

    Functional activation of oxytocinergic (OXY) cells in the hypothalamic paraventricular (PVN), supraoptic (SON), and accessory (ACC) nuclei was investigated in response to acute treatment with Zolpidem (a GABA(A) receptor agonist with selectivity for alpha(1) subunits) utilizing dual Fos/OXY immun...

  13. Lipoprotein Lipase is an Important Modulator of Lipid Uptake and Storage in Hypothalamic Neurons

    Science.gov (United States)

    Libby, Andrew E.; Wang, Hong; Mittal, Richa; Sungelo, Mitchell; Potma, Eric; Eckel, Robert H.

    2015-01-01

    LPL is the rate-limiting enzyme for uptake of TG-derived FFA in peripheral tissues, and the enzyme is expressed in the brain and CNS. We previously created a mouse which lacks neuronal LPL. This animal becomes obese on a standard chow, and we observed reduced lipid uptake in the hypothalamus at 3 months preceding obesity. In our present study, we replicated the animal phenotype in an immortalized mouse hypothalamic cell line (N41) to examine how LPL affects expression of AgRP as well as entry and storage of lipids into neurons. We show that LPL is able to modulate levels of the orexigenic peptide AgRP. LPL also exerts effects on lipid uptake into culture neurons, and that uptake of neutral lipid can be enhanced even by mutant LPL lacking catalytic activity. N41 cells also accumulate neutral lipid in droplets, and this is at least in part regulated by LPL. These data in addition to those published in mice with neuron-specific deletion of LPL suggest that neuronal LPL is an important regulator of lipid homeostasis in neurons and that alterations in LPL levels may have important effects on systemic metabolism and neuronal lipid biology. PMID:26265042

  14. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control

    Directory of Open Access Journals (Sweden)

    Thanuja eGali Ramamoorthy

    2015-04-01

    Full Text Available The prevalence of obesity in adults and children has increased globally at an alarming rate. Mounting evidence from both epidemiological studies and animal models indicates that adult obesity and associated metabolic disorders can be programmed by intrauterine and early postnatal environment- a phenomenon known as fetal programming of adult disease. Data from nutritional intervention studies in animals including maternal under- and over-nutrition support the developmental origins of obesity and metabolic syndrome. The hypothalamic neuronal circuits located in the arcuate nucleus controlling appetite and energy expenditure are set early in life and are perturbed by maternal nutritional insults. In this review, we focus on the effects of maternal nutrition in programming permanent changes in these hypothalamic circuits, with experimental evidence from animal models of maternal under- and over-nutrition. We discuss the epigenetic modifications which regulate hypothalamic gene expression as potential molecular mechanisms linking maternal diet during pregnancy to the offspring’s risk of obesity at a later age. Understanding these mechanisms in key metabolic genes may provide insights into the development of preventative intervention strategies.

  15. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control

    Science.gov (United States)

    Gali Ramamoorthy, Thanuja; Begum, Ghazala; Harno, Erika; White, Anne

    2015-01-01

    The prevalence of obesity in adults and children has increased globally at an alarming rate. Mounting evidence from both epidemiological studies and animal models indicates that adult obesity and associated metabolic disorders can be programmed by intrauterine and early postnatal environment- a phenomenon known as “fetal programming of adult disease.” Data from nutritional intervention studies in animals including maternal under- and over-nutrition support the developmental origins of obesity and metabolic syndrome. The hypothalamic neuronal circuits located in the arcuate nucleus controlling appetite and energy expenditure are set early in life and are perturbed by maternal nutritional insults. In this review, we focus on the effects of maternal nutrition in programming permanent changes in these hypothalamic circuits, with experimental evidence from animal models of maternal under- and over-nutrition. We discuss the epigenetic modifications which regulate hypothalamic gene expression as potential molecular mechanisms linking maternal diet during pregnancy to the offspring's risk of obesity at a later age. Understanding these mechanisms in key metabolic genes may provide insights into the development of preventative intervention strategies. PMID:25954145

  16. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control.

    Science.gov (United States)

    Gali Ramamoorthy, Thanuja; Begum, Ghazala; Harno, Erika; White, Anne

    2015-01-01

    The prevalence of obesity in adults and children has increased globally at an alarming rate. Mounting evidence from both epidemiological studies and animal models indicates that adult obesity and associated metabolic disorders can be programmed by intrauterine and early postnatal environment- a phenomenon known as "fetal programming of adult disease." Data from nutritional intervention studies in animals including maternal under- and over-nutrition support the developmental origins of obesity and metabolic syndrome. The hypothalamic neuronal circuits located in the arcuate nucleus controlling appetite and energy expenditure are set early in life and are perturbed by maternal nutritional insults. In this review, we focus on the effects of maternal nutrition in programming permanent changes in these hypothalamic circuits, with experimental evidence from animal models of maternal under- and over-nutrition. We discuss the epigenetic modifications which regulate hypothalamic gene expression as potential molecular mechanisms linking maternal diet during pregnancy to the offspring's risk of obesity at a later age. Understanding these mechanisms in key metabolic genes may provide insights into the development of preventative intervention strategies.

  17. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human

    Directory of Open Access Journals (Sweden)

    Katalin eSkrapits

    2015-02-01

    Full Text Available Hypothalamic peptidergic neurons using kisspeptin (KP and its co-transmitters for communication are critically involved in the regulation of mammalian reproduction and puberty. This article provides an overview of neuropeptides present in KP neurons, with a focus on the human species. Immunohistochemical studies reveal that large subsets of human KP neurons synthesize neurokinin B, as also shown in laboratory species. In contrast, dynorphin described in KP neurons of rodents and sheep is found rarely in KP cells of human males and postmenopausal females. Similarly, galanin is detectable in mouse, but not human, KP cells, whereas substance P, cocaine- and amphetamine-regulated transcript and proenkephalin-derived opioids are expressed in varying subsets of KP neurons in humans, but not reported in ARC of other species. Human KP neurons do not contain neurotensin, cholecystokinin, proopiomelanocortin-derivatives, agouti-related protein, neuropeptide Y, somatostatin or tyrosine hydroxylase (dopamine. These data identify the possible co-transmitters of human KP cells. Neurochemical properties distinct from those of laboratory species indicate that humans use considerably different neurotransmitter mechanisms to regulate fertility.

  18. To Ingest or Rest? Specialized Roles of Lateral Hypothalamic Area Neurons in Coordinating Energy Balance

    Directory of Open Access Journals (Sweden)

    Juliette A. Brown

    2015-02-01

    Full Text Available Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH or orexins/hypocretins (OX are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.

  19. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry.

    Science.gov (United States)

    Sheng, Zhenyu; Santiago, Ammy M; Thomas, Mark P; Routh, Vanessa H

    2014-09-01

    Lateral hypothalamic area (LHA) orexin neurons modulate reward-based feeding by activating ventral tegmental area (VTA) dopamine (DA) neurons. We hypothesize that signals of peripheral energy status influence reward-based feeding by modulating the glucose sensitivity of LHA orexin glucose-inhibited (GI) neurons. This hypothesis was tested using electrophysiological recordings of LHA orexin-GI neurons in brain slices from 4 to 6week old male mice whose orexin neurons express green fluorescent protein (GFP) or putative VTA-DA neurons from C57Bl/6 mice. Low glucose directly activated ~60% of LHA orexin-GFP neurons in both whole cell and cell attached recordings. Leptin indirectly reduced and ghrelin directly enhanced the activation of LHA orexin-GI neurons by glucose decreases from 2.5 to 0.1mM by 53±12% (n=16, PFasting increased activation of LHA orexin-GI neurons by decreased glucose, as would be predicted by these hormonal effects. We also evaluated putative VTA-DA neurons in a novel horizontal slice preparation containing the LHA and VTA. Decreased glucose increased the frequency of spontaneous excitatory post-synaptic currents (sEPSCs; 125 ± 40%, n=9, P<0.05) and action potentials (n=9; P<0.05) in 45% (9/20) of VTA DA neurons. sEPSCs were completely blocked by AMPA and NMDA glutamate receptor antagonists (CNQX 20 μM, n=4; APV 20μM, n=4; respectively), demonstrating that these sEPSCs were mediated by glutamatergic transmission onto VTA DA neurons. Orexin-1 but not 2 receptor antagonism with SB334867 (10μM; n=9) and TCS-OX2-29 (2μM; n=5), respectively, blocks the effects of decreased glucose on VTA DA neurons. Thus, decreased glucose increases orexin-dependent excitatory glutamate neurotransmission onto VTA DA neurons. These data suggest that the glucose sensitivity of LHA orexin-GI neurons links metabolic state and reward-based feeding.

  20. Serotonin 5-HT2C receptor-mediated inhibition of the M-current in hypothalamic POMC neurons

    OpenAIRE

    Roepke, T. A.; Smith, A W; Rønnekleiv, O. K.; Kelly, M. J.

    2012-01-01

    Hypothalamic proopiomelanocortin (POMC) neurons are controlled by many central signals, including serotonin. Serotonin increases POMC activity and reduces feeding behavior via serotonion [5-hydroxytryptamine (5-HT)] receptors by modulating K+ currents. A potential K+ current is the M-current, a noninactivating, subthreshold outward K+ current. Previously, we found that M-current activity was highly reduced in fasted vs. fed states in neuropeptide Y neurons. Because POMC neurons also respond t...

  1. Moderate long-term modulation of neuropeptide Y in hypothalamic arcuate nucleus induces energy balance alterations in adult rats.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Neuropeptide Y (NPY produced by arcuate nucleus (ARC neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change. The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase and down-regulation (0.5-fold decrease of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased, suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent.These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY.

  2. Early postnatal amylin treatment enhances hypothalamic leptin signaling and neural development in the selectively bred diet-induced obese rat.

    Science.gov (United States)

    Johnson, Miranda D; Bouret, Sebastien G; Dunn-Meynell, Ambrose A; Boyle, Christina N; Lutz, Thomas A; Levin, Barry E

    2016-12-01

    Selectively bred diet-induced obese (DIO) rats become obese on a high-fat diet and are leptin resistant before becoming obese. Compared with diet-resistant (DR) neonates, DIO neonates have impaired leptin-dependent arcuate (ARC) neuropeptide Y/agouti-related peptide (NPY/AgRP) and α-melanocyte-stimulating hormone (α-MSH; from proopiomelanocortin (POMC) neurons) axon outgrowth to the paraventricular nucleus (PVN). Using phosphorylation of STAT3 (pSTAT3) as a surrogate, we show that reduced DIO ARC leptin signaling develops by postnatal day 7 (P7) and is reduced within POMC but not NPY/AgRP neurons. Since amylin increases leptin signaling in adult rats, we treated DIO neonates with amylin during postnatal hypothalamic development and assessed leptin signaling, leptin-dependent ARC-PVN pathway development, and metabolic changes. DIO neonates treated with amylin from P0-6 and from P0-16 increased ARC leptin signaling and both AgRP and α-MSH ARC-PVN pathway development, but increased only POMC neuron number. Despite ARC-PVN pathway correction, P0-16 amylin-induced reductions in body weight did not persist beyond treatment cessation. Since amylin enhances adult DIO ARC signaling via an IL-6-dependent mechanism, we assessed ARC-PVN pathway competency in IL-6 knockout mice and found that the AgRP, but not the α-MSH, ARC-PVN pathway was reduced. These results suggest that both leptin and amylin are important neurotrophic factors for the postnatal development of the ARC-PVN pathway. Amylin might act as a direct neurotrophic factor in DIO rats to enhance both the number of POMC neurons and their α-MSH ARC-PVN pathway development. This suggests important and selective roles for amylin during ARC hypothalamic development.

  3. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons

    Science.gov (United States)

    Cortés-Campos, Christian; Letelier, Joaquín; Ceriani, Ricardo; Whitlock, Kathleen E.

    2015-01-01

    ABSTRACT Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons. PMID:26209533

  4. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH neurons

    Directory of Open Access Journals (Sweden)

    Christian Cortés-Campos

    2015-09-01

    Full Text Available Gonadotropin-releasing hormone (GnRH is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons.

  5. Mct8 and trh co-expression throughout the hypothalamic paraventricular nucleus is modified by dehydration-induced anorexia in rats.

    Science.gov (United States)

    Alvarez-Salas, Elena; Mengod, Guadalupe; García-Luna, Cinthia; Soberanes-Chávez, Paulina; Matamoros-Trejo, Gilberto; de Gortari, Patricia

    2016-04-01

    Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones' transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content.We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake.

  6. Lateral Hypothalamic Stimulation Reduces Hyperalgesia Through Spinally Descending Orexin-A Neurons in Neuropathic Pain.

    Science.gov (United States)

    Wardach, Jacob; Wagner, Monica; Jeong, Younhee; Holden, Janean E

    2016-03-01

    No evidence to date shows that lateral hypothalamic (LH) stimulation produces orexin-A-mediated antinociception in the spinal cord dorsal horn (SCDH) in a model of neuropathic pain. We conducted experiments to examine the effect of orexin-A-mediated LH stimulation in female rats with chronic constriction injury (CCI) on thermal hyperalgesia. Rats receiving carbachol into the LH demonstrated antinociception on both the left CCI and right nonligated paws (p orexin-1 (OX1) receptor antagonist SB-334867, which blocked LH-induced antinociception compared with control groups (p orexin-A connection between the LH and the SCDH. Identification of this pathway may lead to studies using orexins to manage clinical pain.

  7. Refeeding-activated glutamatergic neurons in the hypothalamic paraventricular nucleus (PVN) mediate effects of melanocortin signaling in the nucleus tractus solitarius (NTS).

    Science.gov (United States)

    Singru, Praful S; Wittmann, Gábor; Farkas, Erzsébet; Zséli, Györgyi; Fekete, Csaba; Lechan, Ronald M

    2012-08-01

    We previously demonstrated that refeeding after a prolonged fast activates a subset of neurons in the ventral parvocellular subdivision of the paraventricular nucleus (PVNv) as a result of increased melanocortin signaling. To determine whether these neurons contribute to satiety by projecting to the nucleus tractus solitarius (NTS), the retrogradely transported marker substance, cholera toxin-β (CTB), was injected into the dorsal vagal complex of rats that were subsequently fasted and refed for 2 h. By double-labeling immunohistochemistry, CTB accumulation was found in the cytoplasm of the majority of refeeding-activated c-Fos neurons in the ventral parvocellular subdivision of the hypothalamic paraventricular nucleus (PVNv). In addition, a large number of refeeding-activated c-Fos-expressing neurons were observed in the lateral parvocellular subdivision (PVNl) that also contained CTB and were innervated by axon terminals of proopiomelanocortin neurons. To visualize the location of neuronal activation within the NTS by melanocortin-activated PVN neurons, α-MSH was focally injected into the PVN, resulting in an increased number of c-Fos-containing neurons in the PVN and in the NTS, primarily in the medial and commissural parts. All refeeding-activated neurons in the PVNv and PVNl expressed the mRNA of the glutamatergic marker, type 2 vesicular glutamate transporter (VGLUT2), indicating their glutamatergic phenotype, but only rare neurons contained oxytocin. These data suggest that melanocortin-activated neurons in the PVNv and PVNl may contribute to refeeding-induced satiety through effects on the NTS and may alter the sensitivity of NTS neurons to vagal satiety inputs via glutamate excitation.

  8. Differential contribution of hypothalamic MAPK activity to anxiety-like behaviour in virgin and lactating rats.

    Directory of Open Access Journals (Sweden)

    Benjamin Jurek

    Full Text Available The c-Raf - MEK1/2 - ERK1/2 mitogen-activated protein kinase (MAPK intracellular signalling cascade in neurons plays important roles in the control of a variety of behaviours, including social behaviours and anxiety. These roles partially overlap with those described for oxytocin (OXT, and it has been shown that OXT activates the MAPK pathway in the hypothalamus (of male, and hippocampus (of female rats. Here, by combining behavioural (light/dark box and biochemical analyses (western blotting, we tested two hypotheses: (i that OXT is anxiolytic within the hypothalamus of females, and (ii that this effect, as well as that of lactation-associated anxiolysis, depends on the recruitment of the MAPK pathway. We found that, when injected bilaterally into the hypothalamic paraventricular nucleus (PVN, OXT decreased anxiety-like behaviour in virgins, and that this effect depended on phosphorylation of MEK1/2. MAPK pathway activation in lactation was evident by high phosphorylated (p MEK1/2 levels, and nuclear translocation of ERK1. The high pMEK1/2 levels were necessary for the anxiolytic phenotype typically observed during lactation. Interestingly, exogenous OXT in lactating rats reduced pMEK1/2 levels without a concomitant effect on anxiety, indicating that OXT receptor activation can lead to recruitment of additional intracellular pathways to modulate MEK activity. Still other pathways could include MEK, but without subsequent activation of ERK, as we did not observe any increase in OXT-induced ERK phosphorylation. Together the results demonstrate that the MAPK pathway, especially MEK1/2, is critically involved in the regulation of anxiety-like behaviour in female rats.

  9. Sex difference in physical activity, energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons

    Directory of Open Access Journals (Sweden)

    Luke K. Burke

    2016-03-01

    Conclusions: These data provide support for the functional heterogeneity of hypothalamic POMC neurons, revealing that Pomc expression within 5-HT2CR expressing neurons is sufficient to regulate energy intake and insulin sensitivity in male and female mice. However, an unexpected sex difference in the function of this subset of POMC neurons was identified with regard to energy expenditure. We reveal that a large sex difference in physical activity, energy expenditure and the development of obesity is driven by this subpopulation, which constitutes approximately 40% of all POMC neurons in the hypothalamic arcuate nucleus. This may have broad implications for strategies utilized to combat obesity, which at present largely ignore the sex of the obese individual.

  10. Short-term caloric restriction normalizes hypothalamic neuronal responsiveness to glucose ingestion in patients with type 2 diabetes

    NARCIS (Netherlands)

    Teeuwisse, W.M.; Widya, R.L.; Paulides, M.; Lamb, H.J.; Smit, J.W.A.; Roos, A. de; Buchem, M.A. van; Pijl, H.; Grond, J. van der

    2012-01-01

    The hypothalamus is critically involved in the regulation of feeding. Previous studies have shown that glucose ingestion inhibits hypothalamic neuronal activity. However, this was not observed in patients with type 2 diabetes. Restoring energy balance by reducing caloric intake and losing weight are

  11. Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat

    DEFF Research Database (Denmark)

    Larsen, P J; Hay-Schmidt, Anders; Mikkelsen, J D

    1994-01-01

    area within the lateral hypothalamic region that consistently innervated magnocellular perikarya of the PVN. Finally, all areas of the lateral hypothalamic region contributed substantially to fibres terminating in the perinuclear shell of the PVN. These results demonstrate that anatomically distinct...

  12. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  13. Hypothalamic Paraventricular and Arcuate Nuclei Contribute to Elevated Sympathetic Nerve Activity in Pregnant Rats: Roles of Neuropeptide Y and α-Melanocyte-Stimulating Hormone.

    Science.gov (United States)

    Shi, Zhigang; Cassaglia, Priscila A; Gotthardt, Laura C; Brooks, Virginia L

    2015-12-01

    Pregnancy increases sympathetic nerve activity (SNA), but the mechanisms are unknown. Here, we investigated the contributions of the hypothalamic paraventricular and arcuate nuclei in α-chloralose-anesthetized pregnant and nonpregnant rats. Baseline arterial pressure (AP) was lower, and heart rate (HR), lumbar sympathetic activity, and splanchnic SNA were higher in pregnant rats compared with nonpregnant rats. Inhibition of the paraventricular nucleus via bilateral muscimol nanoinjections decreased AP and HR more in pregnant rats than in nonpregnant rats and decreased lumbar SNA only in pregnant rats. Similarly, after arcuate muscimol nanoninjections, the decreases in AP, HR, and lumbar, renal, and splanchnic sympathetic nerve activities were greater in pregnant rats than in nonpregnant rats. Major arcuate neuronal groups that project to the paraventricular nucleus express inhibitory neuropeptide Y (NPY) and excitatory α-melanocyte-stimulating hormone. Inhibition of paraventricular melanocortin 3/4 receptors with SHU9119 also decreased AP, HR, and lumbar SNA in pregnant rats but not in nonpregnant rats. Conversely, paraventricular nucleus NPY expression was reduced in pregnant animals, and although blockade of paraventricular NPY Y1 receptors increased AP, HR, and lumbar sympathetic activity in nonpregnant rats, it had no effects in pregnant rats. Yet, the sympathoinhibitory, depressor, and bradycardic effects of paraventricular NPY nanoinjections were similar between groups. In conclusion, the paraventricular and arcuate nuclei contribute to increased basal SNA during pregnancy, likely due in part to decreased tonic NPY inhibition and increased tonic α-melanocyte-stimulating hormone excitation of presympathetic neurons in the paraventricular nucleus.

  14. Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice.

    Directory of Open Access Journals (Sweden)

    Rebecca E Mercer

    Full Text Available Prader-Willi Syndrome is the most common syndromic form of human obesity and is caused by the loss of function of several genes, including MAGEL2. Mice lacking Magel2 display increased weight gain with excess adiposity and other defects suggestive of hypothalamic deficiency. We demonstrate Magel2-null mice are insensitive to the anorexic effect of peripherally administered leptin. Although their excessive adiposity and hyperleptinemia likely contribute to this physiological leptin resistance, we hypothesized that Magel2 may also have an essential role in intracellular leptin responses in hypothalamic neurons. We therefore measured neuronal activation by immunohistochemistry on brain sections from leptin-injected mice and found a reduced number of arcuate nucleus neurons activated after leptin injection in the Magel2-null animals, suggesting that most but not all leptin receptor-expressing neurons retain leptin sensitivity despite hyperleptinemia. Electrophysiological measurements of arcuate nucleus neurons expressing the leptin receptor demonstrated that although neurons exhibiting hyperpolarizing responses to leptin are present in normal numbers, there were no neurons exhibiting depolarizing responses to leptin in the mutant mice. Additional studies demonstrate that arcuate nucleus pro-opiomelanocortin (POMC expressing neurons are unresponsive to leptin. Interestingly, Magel2-null mice are hypersensitive to the anorexigenic effects of the melanocortin receptor agonist MT-II. In Prader-Willi Syndrome, loss of MAGEL2 may likewise abolish leptin responses in POMC hypothalamic neurons. This neural defect, together with increased fat mass, blunted circadian rhythm, and growth hormone response pathway defects that are also linked to loss of MAGEL2, could contribute to the hyperphagia and obesity that are hallmarks of this disorder.

  15. Effect of hypothalamic surgery on prolactin release induced by 5-hydroxytryptophan (5-HTP) in rats.

    Science.gov (United States)

    Ohgo, S; Kato, Y; Chihara, K; Imura, H; Maeda, K

    1976-12-01

    Intravenous injections of varying doses of 5-HTP (1, 3 and 5 mg/100 g body wt), a precursor of serotonin, caused a significant and dose-related increase in plasma prolactin concentrations in urethane-anesthetized rats. Increases in plasma prolactin concentrations caused by 5-HTP (1 mg/100 g body wt iv) were abolished by the concomitant administration of L-DOPA (2 mg/100 g body wt iv). Plasma prolactin levels were also significantly elevated following the injection of 5-HTP in rats with complete hypothalamic deafferentation, whereas 5-HTP had no significant effect on plasma prolactin levels in rats with extensive hypothalamic ablation. These results suggest that 5-HTP causes prolactin secretion by stimulating the serotoninergic mechanism in the hypothalamus.

  16. Resistance to adenovirally induced hyperleptinemia in rats. Comparison of ventromedial hypothalamic lesions and mutated leptin receptors.

    Science.gov (United States)

    Koyama, K; Shimabukuro, M; Chen, G; Wang, M Y; Lee, Y; Kalra, P S; Dube, M G; Kalra, S P; Newgard, C B; Unger, R H

    1998-01-01

    Leptin regulates appetite and body weight via hypothalamic targets, but it can act directly on cultured pancreatic islets to regulate their fat metabolism. To obtain in vivo evidence that leptin may act peripherally as well as centrally, we compared the effect of adenovirally induced hyperleptinemia on food intake, body weight, and islet fat content in ventromedial hypothalamic-lesioned (VMHL) rats, sham-lesioned (SL) controls, and Zucker Diabetic Fatty (ZDF) rats in which the leptin receptor is mutated. Infusion with recombinant adenovirus containing the rat leptin cDNA increased plasma leptin by approximately 20 ng/ml in VMHL and ZDF rats but had no effect on their food intake, body weight, or fat tissue weight. Caloric matching of hyperphagic VMHL rats to SL controls did not reduce their resistance to hyperleptinemia. Whereas prediabetic ZDF rats had a fourfold elevation in islet fat, in VMHL rats islet fat was normal and none of them became diabetic. Isolated islets from ZDF rats were completely resistant to the lipopenic action of leptin, while VMHL islets exhibited 50% of the normal response; caloric matching of VMHL rats to SL controls increased leptin responsiveness of their islets to 92% of controls. We conclude that leptin regulation of adipocyte fat requires an intact VMH but that islet fat content is regulated independently of the VMH. PMID:9710441

  17. Hypothalamic neuronal targets activated by neuropeptide S%神经肽S激活下丘脑靶神经元的分布

    Institute of Scientific and Technical Information of China (English)

    闫琼; 邵玉峰; 赵鹏; 孔祥攀; 姜信诚; 侯一平

    2013-01-01

    Objective To identify the distributions of neuropeptide S (NPS) induced neuronal activation in hypothalamus in rats because NPS,a newly identified neuropeptide,was presumed to activate the hypothalamic neurons through its receptors to participate hypothalamic physiological regulation.Methods Fos immunohistochemistry was employed to label the activated neurons following intracerebroventricular (i.c.v.) injection of NPS (1 nmol,n=6) and saline (n=6).The distribution and number of fos immunoreactive (-IR) neurons in the hypothalamus were observed,counted and statistically analyzed.Results The number of fos-IR neurons induced by NPS in the suprachiasmatic nucleus,paraventricular nucleus,dorsomedial hypothalamic nucleus,ventromedial hypothalamic nucleus,arcuate nucleus,perifornical nucleus,and the ventral and dorsal tuberomammillary nuclei and lateral hypothalamic area were respectively increased by 322%,108%,274%,126%,267%,520%,641%,586% and 378% compared with saline (P <0.0001).Conclusion NPS-induced a large number of active neurons in the hypothalamus suggest that NPS is involved in hypothalamic physiological regulation including sleep-wake cycle,emotion,feeding,circadian rhythm,temperature and neuroendocrine.%目的 推测新鉴定的神经肽S (NPS)经其受体激活下丘脑神经元参与下丘脑生理调节,运用神经功能活动形态定位法确定NPS在下丘脑靶神经元的分布.方法 注射NPS(1 nmol,n=6)和生理盐水(n=6),c-fos免疫组化学分别标记大鼠中枢fos免疫反应神经元在下丘脑的分布,并统计分析fos免疫反应神经元数量在各核的变化.结果 与生理盐水比较,NPS增加fos免疫反应神经元,数量分别为下丘脑视交叉上核322%,室旁核108%,背内侧核274%,腹内侧核126%,弓状核267%,穹窿周核520%,结节乳头体腹侧核641%,背侧核586%,外侧区378% (P <0.0001).结论 NPS激活下丘脑上述靶神经元,可能与下丘脑睡眠觉醒周期、

  18. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring.

    Science.gov (United States)

    Chang, G-Q; Karatayev, O; Leibowitz, S F

    2015-12-01

    Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH is stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring twofold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH(+) neurons in LH of preadolescent offspring. Whereas CCL2(+) cells at this age were low in density and unaffected by ethanol, CCR2(+) cells were dense in LH and increased by prenatal ethanol, with a large percentage (83-87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2(+) and MCH(+) neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2(+)/MCH(+)/BrdU(+) neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2(+)/MCH(+) neurons in the LH of preadolescent rats suggests that

  19. Synaptic innervation to rat hippocampus by vasopressin-immuno-positive fibres from the hypothalamic supraoptic and paraventricular nuclei.

    Science.gov (United States)

    Zhang, L; Hernández, V S

    2013-01-03

    The neuropeptide arginine vasopressin (AVP) exerts a modulatory role on hippocampal excitability through vasopressin V(1A) and V(1B) receptors. However, the origin and mode of termination of the AVP innervation of the hippocampus remain unknown. We have used light and electron microscopy to trace the origin, distribution and synaptic relationships of AVP-immuno-positive fibres and nerve terminals in the rat hippocampus. Immuno-positive fibres were present in all areas (CA1-3, dentate gyrus) of the whole septo-temporal extent of the hippocampus; they had the highest density in the CA2 region, strongly increasing in density towards the ventral hippocampus. Two types of fibres were identified, both establishing synaptic junctions. Type A had large varicosities packed with immuno-positive large-granulated peptidergic vesicles and few small clear vesicles forming type I synaptic junctions with pyramidal neuron dendrites, dendritic spines and with axonal spines. Type B had smaller varicosities containing mostly small clear vesicles and only a few large-granulated vesicles and established type II synaptic junctions mainly with interneuron dendrites. The AVP-positive axons in stratum oriens appeared to follow and contact metabotropic glutamate receptor 1α (mGluR1α)-immuno-positive interneuron dendrites. Fluoro-Gold injection into the hippocampus revealed retrogradely labelled AVP-positive somata in hypothalamic supraoptic and paraventricular nuclei. Hypothalamo-hippocampal AVP-positive axons entered the hippocampus mostly through a ventral route, also innervating the amygdala and to a lesser extent through the dorsal fimbria fornix, in continuation of the septal AVP innervation. Thus, it appears the AVP-containing neurons of the magnocellular hypothalamic nuclei serve as important sources for hippocampal AVP innervation, although the AVP-expressing neurons located in amygdala and bed nucleus of the stria terminalis reported previously may also contribute.

  20. The responses of hypothalamic NPY and OBRb mRNA expression to food deprivation develop during the neonatal-prepubertal period and exhibit gender differences in rats.

    Science.gov (United States)

    Matsuzaki, Toshiya; Iwasa, Takeshi; Tungalagsuvd, Altankhuu; Munkhzaya, Munkhsaikhan; Kawami, Takako; Yamasaki, Mikio; Murakami, Masahiro; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-04-01

    Neuropeptide Y (NPY) is an important hypothalamic orexigenic neuropeptide that acts in the brain. It has been established that the fasting-induced up-regulation of NPY expression is mainly caused by a reduction in the activity of leptin, which is a hormone secreted by adipose tissue. We have reported that in female rats hypothalamic NPY mRNA expression does not respond to fasting during the early neonatal period, but subsequently becomes sensitive to it later in the neonatal period. In this study, we compared the developmental changes in the responses of NPY and leptin expression to fasting between male and female rats during the neonatal to pre-pubertal period. Fasting was induced by maternal deprivation during the pre-weaning period (postnatal days 10 and 20) and by food deprivation during the post-weaning period (postnatal day 30). Hypothalamic NPY mRNA expression was not affected by fasting on postnatal day 10, whereas it was increased by fasting on postnatal day 20 and 30 in both males and females. On the other hand, the serum leptin level was decreased by fasting at all examined ages in both sexes. Namely, hypothalamic NPY mRNA expression was not correlated with the reduction in the serum leptin level at postnatal day 10 in either sex. Under the fasted conditions, the hypothalamic NPY mRNA levels of the males were higher than those of the females on postnatal days 20 and 30, whereas no such differences were observed under the normal nourishment conditions. The serum leptin levels observed under the fasted conditions did not differ between males and females at any examined age. These results suggest that some hypothalamic NPY functions develop during the neonatal period and that there is no major difference between the sexes with regard to the time when NPY neurons become sensitive to fasting. They also indicate that hypothalamic NPY expression is more sensitive to under-nutrition in male rats than in female rats, at least during the pre-pubertal period.

  1. Influence of leptin and GABAB-receptor agonist and antagonist on neurons of the hypothalamic infundibular nucleus in the chicken.

    Science.gov (United States)

    Bogatyrev, S; Yakimova, K S; Tzschentke, B

    2017-04-01

    In birds and mammals, the neuroendocrine regulation of energy balance is conserved in many aspects. Despite significant similarities between the two groups, differences in the regulatory mechanisms were detected. The present study was performed to carry out investigations of the influence of human leptin and GABAB-receptor agonist and antagonist on the firing rate of neurons of the Nucleus infundibuli hypothalami in brain slices from juvenile chickens. For the first time, we demonstrated a clear, dose-related change in the firing rate of hypothalamic neurons in juvenile chickens after the acute application of recombinant human leptin (1, 10, and 100 nM). All investigated neurons increased their subsequent firing rate. Application of GABAB-receptor agonist baclofen (1 µM) blocked, while antagonist CGP 35348 (10 µM) increased the spontaneous neuronal activity. Simultaneous application of baclofen and leptin reduced the effect observed from single leptin application. This was not found after simultaneously application of leptin and CGP. Altogether, our results indicate that in bird brain slices, and exemplarily in those of the chicken, hypothalamic neurons show mammalian-like responsiveness after acute leptin and GABA application. GABAB-mechanisms involved in GABA release play a likely important role in the leptin-mediated effects on NI neurons via functional leptin receptors.

  2. Alteration of the discharge pattern of rat diencephalic neurones with scrotal skin temperature.

    Science.gov (United States)

    Taylor, D C; Gayton, R J

    1986-12-03

    Neuronal responses to different scrotal skin temperatures were examined in the hypothalamus of anaesthetised male rats. Mean firing rate and interspike intervals were calculated on-line by microcomputers. Two types of response were observed when the scrotal skin was warmed: an abrupt change in mean firing rate coupled with a change in firing pattern, or a change of pattern unaccompanied by any change in mean rate. These results suggest that hypothalamic cells can convey information independently of their mean firing rate.

  3. Plasma CRH response to water immersion-restraint stress in rats bearing a hypothalamic knife cut.

    Science.gov (United States)

    Nishioka, T; Iyota, K; Takao, T; Suemaru, S; Numata, Y; Hashimoto, K

    1994-08-01

    We reported earlier that the plasma level of corticotropin-releasing hormone (CRH) remained high 120 min after the onset of such strong sustained stress as ether-laparotomy or water immersion-restraint, which reflected the persistent secretion of CRH from the hypothalamic median eminence (ME). We investigated the change in plasma CRH during water immersion-restraint stress in rats bearing an anterolateral cut around the medial basal hypothalamus (MBH) which cuts the CRH neurons from the PVN to the ME. Concentrations of CRH in the hypothalamus, extrahypothalamic tissues and peripheral blood were measured by radioimmunoassay. Plasma ACTH was measured with an immunoradiometric assay kit. Plasma baseline ACTH and CRH concentrations did not differ significantly in the sham vs. cut groups. At 120 min after the onset of stress, plasma ACTH concentrations were definitely higher in both groups. In the cut group, plasma CRH at 120 min after stress did not differ significantly from the baseline level, whereas plasma CRH at 120 min was definitely higher in the sham group. Baseline CRH concentrations in the ME did not differ greatly in the two groups. CRH concentrations in the ME of both groups had decreased appreciably 120 min after the onset of stress as compared with baseline CRH, and the CRH decrease was greater in the cut group than in the sham group. CRH in the neurointermediate lobe (NIL) and adrenal gland of both groups showed no significant change at 120 min, compared with the control. These findings confirm that the continuous CRH increase in plasma during sustained stress is derived mainly from the hypothalamus.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Sex difference in physical activity, energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons.

    Science.gov (United States)

    Burke, Luke K; Doslikova, Barbora; D'Agostino, Giuseppe; Greenwald-Yarnell, Megan; Georgescu, Teodora; Chianese, Raffaella; Martinez de Morentin, Pablo B; Ogunnowo-Bada, Emmanuel; Cansell, Celine; Valencia-Torres, Lourdes; Garfield, Alastair S; Apergis-Schoute, John; Lam, Daniel D; Speakman, John R; Rubinstein, Marcelo; Low, Malcolm J; Rochford, Justin J; Myers, Martin G; Evans, Mark L; Heisler, Lora K

    2016-03-01

    Obesity is one of the primary healthcare challenges of the 21st century. Signals relaying information regarding energy needs are integrated within the brain to influence body weight. Central among these integration nodes are the brain pro-opiomelanocortin (POMC) peptides, perturbations of which disrupt energy balance and promote severe obesity. However, POMC neurons are neurochemically diverse and the crucial source of POMC peptides that regulate energy homeostasis and body weight remains to be fully clarified. Given that a 5-hydroxytryptamine 2c receptor (5-HT2CR) agonist is a current obesity medication and 5-HT2CR agonist's effects on appetite are primarily mediated via POMC neurons, we hypothesized that a critical source of POMC regulating food intake and body weight is specifically synthesized in cells containing 5-HT2CRs. To exclusively manipulate Pomc synthesis only within 5-HT2CR containing cells, we generated a novel 5-HT 2C R (CRE) mouse line and intercrossed it with Cre recombinase-dependent and hypothalamic specific reactivatable Pomc (NEO) mice to restrict Pomc synthesis to the subset of hypothalamic cells containing 5-HT2CRs. This provided a means to clarify the specific contribution of a defined subgroup of POMC peptides in energy balance and body weight. Here we transform genetically programed obese and hyperinsulinemic male mice lacking hypothalamic Pomc with increased appetite, reduced physical activity and compromised brown adipose tissue (BAT) into lean, healthy mice via targeted restoration of Pomc function only within 5-HT2CR expressing cells. Remarkably, the same metabolic transformation does not occur in females, who despite corrected feeding behavior and normalized insulin levels remain physically inactive, have lower energy expenditure, compromised BAT and develop obesity. These data provide support for the functional heterogeneity of hypothalamic POMC neurons, revealing that Pomc expression within 5-HT2CR expressing neurons is sufficient

  5. Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats.

    Science.gov (United States)

    Ropelle, Eduardo R; Pauli, José R; Prada, Patrícia; Cintra, Dennys E; Rocha, Guilherme Z; Moraes, Juliana C; Frederico, Marisa J S; da Luz, Gabrielle; Pinho, Ricardo A; Carvalheira, José B C; Velloso, Licio A; Saad, Mario A; De Souza, Cláudio T

    2009-05-15

    Insulin signalling in the hypothalamus plays a role in maintaining body weight. The forkhead transcription factor Foxo1 is an important mediator of insulin signalling in the hypothalamus. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase/Akt signalling pathway, but the role of hypothalamic Foxo1 in insulin resistance and obesity remains unclear. Here, we identify that a high-fat diet impaired insulin-induced hypothalamic Foxo1 phosphorylation and degradation, increasing the nuclear Foxo1 activity and hyperphagic response in rats. Thus, we investigated the effects of the intracerebroventricular (i.c.v.) microinfusion of Foxo1-antisense oligonucleotide (Foxo1-ASO) and evaluated the food consumption and weight gain in normal and diet-induced obese (DIO) rats. Three days of Foxo1-ASO microinfusion reduced the hypothalamic Foxo1 expression by about 85%. i.c.v. infusion of Foxo1-ASO reduced the cumulative food intake (21%), body weight change (28%), epididymal fat pad weight (22%) and fasting serum insulin levels (19%) and increased the insulin sensitivity (34%) in DIO but not in control animals. Collectively, these data showed that the Foxo1-ASO treatment blocked the orexigenic effects of Foxo1 and prevented the hyperphagic response in obese rats. Thus, pharmacological manipulation of Foxo1 may be used to prevent or treat obesity.

  6. RhodamineB increases hypothalamic cell apoptosis and disrupts hormonal balance in rats

    Institute of Scientific and Technical Information of China (English)

    DewiRatnaSulistina; RettyRatnawati; I WayanArsanaWiyasa

    2014-01-01

    Objective:To investigate whether orally exposure to rhodamineB could be changes the expression ofBax,Bcl-2 of the hypothalamic, and also levels ofFollicleStimulatingHormone (FSH) andLuteinizingHormone(LH) in female rats.Methods:Twenty eight virgin femaleWistar rats were divided into four groups, including control group, group exposed to dose of4.5,9 and18 milligram/200 gram body weight(mg/200 gBW) of rhodamineB daily for36 days.The hypothalamic expressions ofBax andBcl-2 were examined immunohistochemically.The levels of serumFSH andLH were determined by the enzyme-linked immunosorbent assay(ELISA) technique.Results:The level ofBax was significantly higher in the rhodamineB treatment group compred to control group(P<0.05).Out of the4.5,9, and18 mg/200 gBW doses of rhodamine B treatment, only the two highest doses significantly decreased theBcl-2 levels compared to the control group(P<0.05).The serumFSH andLH levels were significantly lower in all dose's rhodamineB treatment groups compared with the control(P<0.05).Conclusion:In conclusion, rhodamineB increases hypothalamic cell apoptosis and disrupts hormonal balance in rats.

  7. Ventromedial hypothalamic knife-cut lesions in rats resistant to dietary obesity.

    Science.gov (United States)

    Oku, J; Bray, G A; Fisler, J S; Schemmel, R

    1984-06-01

    The effects of ventromedial hypothalamic (VMH) knife-cut lesions on food intake and body weight of S 5B/Pl rats, which are normally resistant to obesity when eating a high-fat diet, were examined in two experiments. In the first experiment body weight increased only slightly after VMH knife-cut lesions when animals were fed pelleted laboratory chow or a 10% corn oil diet. When eating the 30% corn oil diet, however, body weight increased in the VMH knife-cut rats. In the second experiment VMH knife-cut lesions produced a small weight gain in rats fed the 10% fat diet; this manipulation also increased food intake and disrupted the normal diurnal feeding pattern. Changes in the weight of the liver, interscapular brown adipose tissue, and white adipose tissue paralleled the changes in body weight. Plasma insulin increased in the rats eating the 30% corn oil diet ad libitum but not in the VMH-lesioned animals pair fed to the sham-operated rats. Incorporation of 3H from 3H2O into lipid was significantly increased in white fat of animals with VMH knife cuts. Similar results were obtained from incubation of adipose tissue in vitro with insulin and radioactively labeled glucose. These studies show that hypothalamic knife-cut lesions can remove the resistance of the S 5B/Pl rats to obesity when they are fed a high-fat diet.

  8. Negative Regulation of Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons.

    Science.gov (United States)

    Palomba, Letizia; Silvestri, Cristoforo; Imperatore, Roberta; Morello, Giovanna; Piscitelli, Fabiana; Martella, Andrea; Cristino, Luigia; Di Marzo, Vincenzo

    2015-05-29

    The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2'-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL(-/-) mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels.

  9. The nutritional induction of COUP-TFII gene expression in ventromedial hypothalamic neurons is mediated by the melanocortin pathway.

    Directory of Open Access Journals (Sweden)

    Lina Sabra-Makke

    Full Text Available BACKGROUND: The nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII is an important coordinator of glucose homeostasis. We report, for the first time, a unique differential regulation of its expression by the nutritional status in the mouse hypothalamus compared to peripheral tissues. METHODOLOGY/PRINCIPAL FINDINGS: Using hyperinsulinemic-euglycemic clamps and insulinopenic mice, we show that insulin upregulates its expression in the hypothalamus. Immunofluorescence studies demonstrate that COUP-TFII gene expression is restricted to a subpopulation of ventromedial hypothalamic neurons expressing the melanocortin receptor. In GT1-7 hypothalamic cells, the MC4-R agonist MTII leads to a dose dependant increase of COUP-TFII gene expression secondarily to a local increase in cAMP concentrations. Transfection experiments, using a COUP-TFII promoter containing a functional cAMP responsive element, suggest a direct transcriptional activation by cAMP. Finally, we show that the fed state or intracerebroventricular injections of MTII in mice induce an increased hypothalamic COUP-TFII expression associated with a decreased hepatic and pancreatic COUP-TFII expression. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that hypothalamic COUP-TFII gene expression could be a central integrator of insulin and melanocortin signaling pathway within the ventromedial hypothalamus. COUP-TFII could play a crucial role in brain integration of circulating signal of hunger and satiety involved in energy balance regulation.

  10. [Effects of electro-acupuncture on signal transduction pathway of hypothalamic neuroendocrine system in ovariectomized rats].

    Science.gov (United States)

    Guan, Feng; Ma, Shu-Lan; Chen, Bo-Ying

    2009-06-01

    To compare the varieties and contents of the main nerval information molecules in perfusate from hypothalamic medial preoptic area (MPOA) of the rats in different sexual cycles and the ovariectomized rats treated by electro-acupuncture, so as to observe the similarities and differences of hypothalamic neuroendocrine signal transduction pathway under the physiological and pathological status, and to explore the mechanisms of neuroendocrine signal transduction of electro-acupuncture therapeutic effect in perimenopausal syndrome. The stereo localization technique and push-and-pull perfusion of the rat brain nucleus were adopted for collecting the hypothalamic MPOA perfusate of the female rats with normal sexual cycle, and also for collecting the MPOA perfusate of ovariectomized rats after electro-acupuncture treatment as acupuncture perfusate (AP). After being respectively microinjected into MPOA of the ovariectomized rats, the influence of the different perfusates on vagina cytology and serum estradiol (E2) level was observed. The contents of gonadotropin-releasing hormone (GnRH), dopamine (DA), gamma-aminobutyric acid (GABA), glutamate (Glu), aspartate (Asp) and beta-endorphin (beta-EP) in the perfusate of each group were detected by radioimmunoassay or high performance liquid chromatography, and then the varieties and contents of these substances in the perfusate of each group were compared and analyzed. The contents of neural active substances including DA, GABA, Glu, and beta-EP in the perfusate from the rats' MPOA during different stages of sexual cycle showed some regular changes. After the perfusate was microinjected respectively into the MPOA of the ovariectomized rats, the changes of animal vaginal exfoliated cells and serum E2 level showed the similar four-stage cycle characteristics as normal rats; the changes of vaginal exfoliated cells and serum E2 level of the ovariectomized rats without electro-acupuncture treatment showed the acupuncture-like effects

  11. Effects of oral and parenteral quinine on rats with ventromedial hypothalamic knife-cut obesity.

    Science.gov (United States)

    Oku, J; Bray, G A; Fisler, J S

    1984-06-01

    The addition of quinine to the food reversed the obesity in rats with hypothalamic hyperphagia induced by knife cuts. Similarly, the injection of quinine into rats with hypothalamic knife cuts reduced food intake and body weight but the effects were smaller than those observed when quinine was added to the diet. Urinary quinine excretion was similar by the oral and parenteral routes. The food intake of the knife-cut animals receiving quinine gradually fell to the same level as in the sham-operated animals receiving quinine by either route. The weights of retroperitoneal fat pads were related to the weights of the animals and were reduced in the quinine-treated groups. Plasma insulin concentrations were significantly higher in the knife-cut animals and were reduced toward control levels by quinine treatment. Gluconeogenesis, measured by incorporation of radioactivity from labeled bicarbonate into glucose, was unaffected by treatment with quinine or by knife cuts. Lipogenesis from tritiated water in vivo was not different between treatment groups in the liver or retroperitoneal fat pads. However, in vivo lipogenesis was reduced in knife-cut rats fed ad libitum compared with quinine-treated rats. The response of lipogenesis to insulin in vitro was also not different between treatment groups. These data suggest that a major part of the reduction in food intake in hyperphagic rats eating a quinine-adulterated diet is due to postingestional events.

  12. Effects of increased hypothalamic leptin gene expression on ovariectomy-induced bone loss in rats.

    Science.gov (United States)

    Jackson, M A; Iwaniec, U T; Turner, R T; Wronski, T J; Kalra, S P

    2011-08-01

    Estrogen deficiency results in accelerated bone turnover with a net increase in bone resorption. Subcutaneous administration of leptin attenuates bone loss in ovariectomized (ovx) rats by reducing bone resorption. However, in addition to its direct beneficial effects, leptin has been reported to have indirect (central nervous system-mediated) antiosteogenic effects on bone, which may limit the efficacy of elevated serum leptin to prevent estrogen deficiency-associated bone loss. The present study evaluated the long-term effects of increased hypothalamic leptin transgene expression, using recombinant adeno-associated virus-leptin (rAAV-Lep) gene therapy, on bone mass, architecture, and cellular endpoints in sexually mature ovx Sprague-Dawley rats. Ovx rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either rAAV-Lep or rAAV-GFP (control vector encoding green fluorescent protein) and maintained for 10 weeks. Additional controls consisted of ovary-intact rats and ovx rats pair-fed to rAAV-Lep rats. Lumbar vertebrae were analyzed by micro-computed tomography and tibiae by histomorphometry. Cancellous bone volume was lower and osteoclast perimeter, osteoblast perimeter, and bone marrow adipocyte density were greater in ovx rats compared to ovary-intact controls. In contrast, differences among ovx groups were not detected for any endpoint evaluated. In conclusion, whereas estrogen deficiency resulted in marked cancellous osteopenia, increased bone turnover and marrow adiposity, increasing hypothalamic leptin transgene expression in ovx rats had neither detrimental nor beneficial effects on bone mass, architecture, or cellular endpoints. These findings demonstrate that the antiresorptive effects of subcutaneous leptin administration in ovx rats are mediated through leptin targets in the periphery. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Paraventricular hypothalamic adrenoceptors and energy metabolism in exercising rats

    NARCIS (Netherlands)

    Scheurink, Anton J.W.; Steffens, Anton B.; Gaykema, Ron P.A.

    1990-01-01

    The role of adrenoceptors in the paraventricular nucleus (PVN) in the exercise-induced changes in plasma norepinephrine (NE), epinephrine (E), corticosterone, free fatty acids (FFA), and blood glucose was investigated in rats. Exercise consisted of strenuous swimming against a countercurrent for 15

  14. Regional neurohypophysial and hypothalamic blood flow in rats during hypercapnia

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, R.M. Jr.; Myers, C.L.; Page, R.B.

    1988-08-01

    Regional cerebral blood flow (rCBF) was measured in the neurohypophysis and hypothalamus in normocapnic and hypercapnic rats using (/sup 14/C)isopropyliodoamphetamine. Rats were surgically prepared using nitrous oxide and halothane and placed in plaster restraining casts. Hypercapnia was produced by increasing the fractional concentration of inspired CO/sub 2/ (FICO/sub 2/). rCBF in normocapnic rats was higher in the paraventricular nucleus, supraoptic nucleus, median eminence, and neural lobe than rates previously measured by use of diffusible tracers. During hypercapnia blood flow increased linearly with arterial PCO/sub 2/ (PACO/sub 2/) in all regions except the median eminence and neural lobe, which were not affected by hypercapnia. When rats were pretreated with phentolamine (1 mg/kg) to block the alpha-adrenergic receptors, blood flow in the median eminence and neural lobe increased significantly during hypercapnia. We conclude that blood flow in the cell bodies of the paraventricular nucleus and supraoptic nucleus is regulated differently during hypercapnia than blood flow in the nerve terminals in the median eminence and neural lobe. Furthermore, vasodilation produced by increased CO/sub 2/ is offset by alpha-receptor stimulation in the median eminence and neural lobe.

  15. Visualization of oxytocin release that mediates paired pulse facilitation in hypothalamic pathways to brainstem autonomic neurons.

    Directory of Open Access Journals (Sweden)

    Ramón A Piñol

    Full Text Available Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2 expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV. We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs, neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection.

  16. Visualization of Oxytocin Release that Mediates Paired Pulse Facilitation in Hypothalamic Pathways to Brainstem Autonomic Neurons

    Science.gov (United States)

    Piñol, Ramón A.; Jameson, Heather; Popratiloff, Anastas; Lee, Norman H.; Mendelowitz, David

    2014-01-01

    Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN) contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2) expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV). We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs), neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection. PMID:25379676

  17. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass.

    Science.gov (United States)

    Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C

    2016-08-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.

  18. In situ hybridization of oxytocin messenger RNA: macroscopic distribution and quantitation in rat hypothalamic cell groups

    Energy Technology Data Exchange (ETDEWEB)

    Burbach, J.P.; Voorhuis, T.A.; van Tol, H.H.; Ivell, R.

    1987-05-29

    Oxytocin mRNA was detected in the rat hypothalamus by in situ hybridization to a single stranded /sup 35/S-labelled DNA probe and the distribution of oxytocin mRNA-containing cell groups was studied at the macroscopic level. Specificity of hybridization was confirmed by comparison to vasopressin mRNA hybridization in parallel tissue sections. Cell groups containing oxytocin mRNA were confined to a set of hypothalamic cell groups, i.c. the supraoptic, paraventricular, anterior commissural nuclei, nucleus circularis and scattered hypothalamic islets. These cell groups displayed similar densities of autoradiographic signals indicating that the oxytocin gene is expressed at approximately the same average level at these various sites.

  19. Effects of morphine on hypothalamic corticotropin-releasing factor (CRF, norepinephrine and dopamine in non-stressed and stressed rats.

    Directory of Open Access Journals (Sweden)

    Suemaru,Shuso

    1985-12-01

    Full Text Available The effects of morphine on the hypothalamic corticotropin-releasing factor (CRF, norepinephrine (NE and dopamine (DA concentrations were investigated in non-stressed and stressed rats. Acutely administered morphine stimulated both the synthesis and release of CRF in the hypothalamus, thereby activating the pituitary-adrenocortical system in non-stressed rats, but inhibited the stress-induced CRF synthesis and ACTH-corticosterone secretion. Either a morphine or ether-laparotomy stress reduced NE and DA concentrations in the hypothalamus. A pretreatment with morphine inhibited the stress-induced reduction in the hypothalamic NE and DA concentrations, and induced a significant increase in the DA concentration. These observations suggest that hypothalamic NE and DA are involved in morphine-induced changes in hypothalamo-pituitary-adrenocortical (HPA activity and that endogenous opiates have a role in regulating CRF secretion by interacting with hypothalamic biogenic amines.

  20. Hypothalamic inhibition of acetyl-CoA carboxylase stimulates hepatic counter-regulatory response independent of AMPK activation in rats.

    Directory of Open Access Journals (Sweden)

    Gustavo A Santos

    Full Text Available BACKGROUND: Hypothalamic AMPK acts as a cell energy sensor and can modulate food intake, glucose homeostasis, and fatty acid biosynthesis. Intrahypothalamic fatty acid injection is known to suppress liver glucose production, mainly by activation of hypothalamic ATP-sensitive potassium (K(ATP channels. Since all models employed seem to involve malonyl-CoA biosynthesis, we hypothesized that acetyl-CoA carboxylase can modulate the counter-regulatory response independent of nutrient availability. METHODOLOGY/PRINCIPAL FINDINGS: In this study employing immunoblot, real-time PCR, ELISA, and biochemical measurements, we showed that reduction of the hypothalamic expression of acetyl-CoA carboxylase by antisense oligonucleotide after intraventricular injection increased food intake and NPY mRNA, and diminished the expression of CART, CRH, and TRH mRNA. Additionally, as in fasted rats, in antisense oligonucleotide-treated rats, serum glucagon and ketone bodies increased, while the levels of serum insulin and hepatic glycogen diminished. The reduction of hypothalamic acetyl-CoA carboxylase also increased PEPCK expression, AMPK phosphorylation, and glucose production in the liver. Interestingly, these effects were observed without modification of hypothalamic AMPK phosphorylation. CONCLUSION/SIGNIFICANCE: Hypothalamic ACC inhibition can activate hepatic counter-regulatory response independent of hypothalamic AMPK activation.

  1. Human recombinant factor VIIa may improve heat intolerance in mice by attenuating hypothalamic neuronal apoptosis and damage.

    Science.gov (United States)

    Hsu, Chuan-Chih; Chen, Sheng-Hsien; Lin, Cheng-Hsien; Yung, Ming-Chi

    2014-10-01

    Intolerance to heat exposure is believed to be associated with hypothalamo-pituitary-adrenocortical (HPA) axis impairment [reflected by decreases in blood concentrations of both adrenocorticotrophic-hormone (ACTH) and corticosterone]. The purpose of this study was to determine the effect of human recombinant factor VIIa (rfVIIa) on heat intolerance, HPA axis impairment, and hypothalamic inflammation, ischemic and oxidative damage, and apoptosis in mice under heat stress. Immediately after heat stress (41.2 °C for 1 h), mice were treated with vehicle (1 mL/kg of body weight) or rfVIIa (65-270 µg/kg of body weight) and then returned to room temperature (26 °C). Mice still alive on day 4 of heat exposure were considered survivors. Cellular ischemia markers (e.g., glutamate, lactate-to-pyruvate ratio), oxidative damage markers (e.g., nitric oxide metabolite, hydroxyl radials), and pro-inflammatory cytokines (e.g., interleukin-6, interleukin-1β, tumor necrosis factor-α) in hypothalamus were determined. In addition, blood concentrations of both ACTH and corticosterone were measured. Hypothalamic cell damage was assessed by determing the neuronal damage scores, whereas the hypothalamic cell apoptosis was determined by assessing the numbers of cells stained with terminal deoxynucleotidyl transferase-mediated αUTP nick-end labeling, caspase-3-positive cells, and platelet endothelial cell adhesion molecula-1-positive cells in hypothalamus. Compared with vehicle-treated heated mice, rfVIIa-treated heated mice had significantly higher fractional survival (8/10 vs 1/10), lesser thermoregulatory deficit (34.1 vs 24.8 °C), lesser extents of ischemic, oxidative, and inflammatory markers in hypothalamus, lesser neuronal damage scores and apoptosis in hypothalamus, and lesser HPA axis impairment. Human recombinant factor VIIa appears to exert a protective effect against heatstroke by attenuating hypothalamic cell apoptosis (due to ischemic, inflammatory, and oxidative damage

  2. Expression of hippocampal corticosteroid receptors, as well as corticotrophin-releasing hormone and vasopressin in the hypothalamic paraventricular nucleus, in fornix transected rats

    Institute of Scientific and Technical Information of China (English)

    Fang Han; Hong Liu; Yanhui Zhang; Yuxiu Shi

    2009-01-01

    BACKGROUND: The hippocampus regulates the hypothalamic-pituitary-adrenal axis through negative feedback. The hypothalamic paraventdcular nucleus receives neuronal input from the hippocampus via the fornix.OBJECTIVE: To explore whether the negative feedback effect of the hippocampus on the hypothalamic-pituitary-adrenal axis is contributed to the inhibitory effect of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus on the paraventricular nucleus via the fomix.DESIGN, TIME AND SETTING: Randomized, controlled, animal experiment. The study was performed at the Department of Histology and Embryology, China Medical University between September 2006 and September 2008.MATERIALS: Rabbit anti-rat anti-MR and rabbit anti-rat anti-GR antibodies were purchased from Santa Cruz Biotechnology, USA. Rabbit anti-rat anti-corticotrophin releasing hormone (CRH) and rabbit anti-rat anti-arginine vasopressin antibodies were purchased from Wuhan Boster.METHODS: A total of 90 male, Wistar rats were randomly divided into model and sham-surgery groups (n=45). Fornix transection was performed in the model group, while the sham-surgery group underwent surgery, but no fornix transection.MAIN OUTCOME MEASURES: Immunohistochemistry was used to examine MR and GR expression in the hippocampus, as well as CRH and anti-arginine vasopressin in the paraventricular nucleus. Western blot was used to measure alterations in MR, GR, and CRH protein expression following fomix transection.RESULTS: Compared with the sham-surgery group, there were no obvious changes in MR and GR expression in the hippocampus, or CRH and anti-arginine vasopressin expression in the paraventricular nucleus within 4 days of fornix transection. However, after 7-10 days, significantly decreased MR and GR expression in the hippocampus, and increased CRH and anti-arginine vasopressin expression in the paraventricular nucleus were observed (P < 0.05-0.01).CONCLUSION: Negative feedback from the

  3. Short photoperiod-induced decrease of histamine H3 receptors facilitates activation of hypothalamic neurons in the Siberian hamster.

    Science.gov (United States)

    Barrett, P; van den Top, M; Wilson, D; Mercer, J G; Song, C K; Bartness, T J; Morgan, P J; Spanswick, D

    2009-08-01

    Nonhibernating seasonal mammals have adapted to temporal changes in food availability through behavioral and physiological mechanisms to store food and energy during times of predictable plenty and conserve energy during predicted shortage. Little is known, however, of the hypothalamic neuronal events that lead to a change in behavior or physiology. Here we show for the first time that a shift from long summer-like to short winter-like photoperiod, which induces physiological adaptation to winter in the Siberian hamster, including a body weight decrease of up to 30%, increases neuronal activity in the dorsomedial region of the arcuate nucleus (dmpARC) assessed by electrophysiological patch-clamping recording. Increased neuronal activity in short days is dependent on a photoperiod-driven down-regulation of H3 receptor expression and can be mimicked in long-day dmpARC neurons by the application of the H3 receptor antagonist, clobenproprit. Short-day activation of dmpARC neurons results in increased c-Fos expression. Tract tracing with the trans-synaptic retrograde tracer, pseudorabies virus, delivered into adipose tissue reveals a multisynaptic neuronal sympathetic outflow from dmpARC to white adipose tissue. These data strongly suggest that increased activity of dmpARC neurons, as a consequence of down-regulation of the histamine H3 receptor, contributes to the physiological adaptation of body weight regulation in seasonal photoperiod.

  4. Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons.

    Science.gov (United States)

    Spisni, Enzo; Valerii, Maria Chiara; Manerba, Marcella; Strillacci, Antonio; Polazzi, Elisabetta; Mattia, Toni; Griffoni, Cristiana; Tomasi, Vittorio

    2009-07-01

    Copper dyshomeostasis is responsible for the neurological symptoms observed in the genetically inherited copper-dependent disorders (e.g., Menkes' and Wilson's diseases), but it has been also shown to have an important role in neurodegenerative diseases such as Alzheimer disease, prion diseases, Parkinson's disease and amyotrophic lateral sclerosis. It is widely accepted that increased extracellular copper levels contribute to neuronal pathogenic process by increasing the production of dangerous radical oxygen species, but the existence of other molecular mechanisms explaining copper neurotoxicity has not been investigated yet. By using a cellular model based on hypothalamic GN11 cultured neurons exposed to copper supplementation and by analysing the cell conditioned media, we try here to identify new molecular events explaining the association between extracellular copper accumulation and neuronal damages. We show here that increased extracellular copper levels produce a wide complex of alterations in the neuronal extracellular environment. In particular, copper affects the secretion of molecules involved in the protection of neurons against oxidative stress, such as cyclophilin A (CypA), or of molecules capable of shifting neuronal cells towards a pro-inflammatory state, such as IL-1alpha, IL-12, Rantes, neutrophil gelatinase-associated lipocalin (NGAL) and secreted protein acidic and rich in cysteine (SPARC). Copper pro-inflammatory properties have been confirmed by using primary neurons.

  5. Defense of Elevated Body Weight Setpoint in Diet-Induced Obese Rats on Low Energy Diet Is Mediated by Loss of Melanocortin Sensitivity in the Paraventricular Hypothalamic Nucleus.

    Science.gov (United States)

    Luchtman, Dirk W; Chee, Melissa J S; Doslikova, Barbora; Marks, Daniel L; Baracos, Vickie E; Colmers, William F

    2015-01-01

    Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks' refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.

  6. Sex differences in feeding behavior in rats: the relationship with neuronal activation in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2015-03-01

    Full Text Available There is general agreement that the central nervous system in rodents differs between sexes due to the presence of gonadal steroid hormone during differentiation. Sex differences in feeding seem to occur among species, and responses to fasting (i.e., starvation, gonadal steroids (i.e., testosterone and estradiol, and diet (i.e., western-style diet vary significantly between sexes. The hypothalamus is the center for controlling feeding behavior. We examined the activation of feeding-related peptides in neurons in the hypothalamus. Phosphorylation of cyclic AMP response element-binding protein (CREB is a good marker for neural activation, as is the Fos antigen. Therefore, we predicted that sex differences in the activity of melanin-concentrating hormone (MCH neurons would be associated with feeding behavior. We determined the response of MCH neurons to glucose in the lateral hypothalamic area (LHA and our results suggested MCH neurons play an important role in sex differences in feeding behavior. In addition, fasting increased the number of orexin neurons harboring phosphorylated CREB in female rats (regardless of the estrous day, but not male rats. Glucose injection decreased the number of these neurons with phosphorylated CREB in fasted female rats. Finally, under normal spontaneous food intake, MCH neurons, but not orexin neurons, expressed phosphorylated CREB. These sex differences in response to fasting and glucose, as well as under normal conditions, suggest a vulnerability to metabolic challenges in females.

  7. Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat.

    Directory of Open Access Journals (Sweden)

    Joel D Hahn

    2015-05-01

    Full Text Available Evolutionary conservation of the hypothalamus attests to its critical role in the control of fundamental behaviors. However, our knowledge of hypothalamic connections is incomplete, particularly for the lateral hypothalamic area (LHA. Here we present the results of neuronal pathway-tracing experiments to investigate connections of the LHA juxtaventromedial region, which is parceled into dorsal (LHAjvd and ventral (LHAjvv zones. Phaseolus vulgaris leucoagglutinin (PHAL, for outputs and cholera toxin B subunit (CTB, for inputs coinjections were targeted stereotaxically to the LHAjvd/v. RESULTS: LHAjvd/v connections overlapped highly but not uniformly. Major joint outputs included: Bed nuc. stria terminalis (BST, interfascicular nuc. (BSTif and BST anteromedial area, rostral lateral septal (LSr- and ventromedial hypothalamic (VMH nuc., and periaqueductal gray. Prominent joint LHAjvd/v input sources included: BSTif, BST principal nuc., LSr, VMH, anterior hypothalamic-, ventral premammillary-, and medial amygdalar nuc., and hippocampal formation (HPF field CA1. However, LHAjvd HPF retrograde labeling was markedly more abundant than from the LHAjvv; in the LSr this was reversed. Furthermore, robust LHAjvv (but not LHAjvd targets included posterior- and basomedial amygdalar nuc., whereas the midbrain reticular nuc. received a dense input from the LHAjvd alone. Our analyses indicate the existence of about 500 LHAjvd and LHAjvv connections with about 200 distinct regions of the cerebral cortex, cerebral nuclei, and cerebrospinal trunk. Several highly LHAjvd/v-connected regions have a prominent role in reproductive behavior. These findings contrast with those from our previous pathway-tracing studies of other LHA medial and perifornical tier regions, with different connectional behavioral relations. The emerging picture is of a highly differentiated LHA with extensive and far-reaching connections that point to a role as a central coordinator of behavioral

  8. Toxic effects of methoxychlor administered subcutaneously on the hypothalamic-pituitary-testicular axis in adult rats.

    Science.gov (United States)

    Lafuente, A; Cabaleiro, T; Caride, A; Esquifino, A I

    2008-05-01

    This study was undertaken to evaluate the effects of methoxychlor MTX at the hypothalamic-pituitary-testicular axis in adult male rats. This global objective comprises three major aims: (1) to analyze the possible differential MTX effects in norepinephrine and serotonin concentration an in serotoninergic metabolism in anterior, mediobasal and posterior hypothalamus and median eminence; (2) to evaluate effects induced by MTX exposure on gonadotropins and testosterone; 93 to elucidate whether the regulatory interactions in the hypothalamic-pituitary-testicular axis are modified by this pesticide. Animals were administered subcutaneously 25mg/kg/day of MTX for 1 month. MTX increased norepinephrine and serotonin content in anterior hypothalamus (P < or = 0.05), but decreased serotonin concentration in posterior hypothalamus (P < or = 0.05). MTX diminished serotonin turnover in anterior hypothalamus (P < or = 0.01) and decreased plasma LH (P < or = 0.001) and testosterone (P < or = 0.05) levels but those of FSH remained unmodified. We can conclude that MTX exposure: (1) could exert differential effects in norepinephrine and serotonin concentration an in serotoninergic metabolism in anterior, mediobasal and posterior hypothalamus and median eminence, being the anterior hypothalamus the most sensitive region to the pesticide; (2) could inhibit LH and testosterone secretion without changing FSH; (3) four potential pathways might be involved in MTX effects on testosterone secretion (changing LH secretion; modifying serotonin and norepinephrine at the hypothalamic level; alterating the direct neural pathway between brain and testes; and/or by a direct effect in testes).

  9. Deafferentation of the hypothalamic paraventricular nucleus (PVN) exaggerates the sympathoadrenal system activity in stressed rats.

    Science.gov (United States)

    Ondicova, K; Kvetnansky, R; Mravec, B

    2014-07-01

    The hypothalamic paraventricular nucleus is a key structure in the regulation of the autonomic and neuroendocrine systems response to acute and chronic stress challenges. In this study, we examined the effect of a mechanical posterolateral deafferentation of the PVN on the activity of sympathoadrenal system (SAS) and hypothalamo-pituitary-adrenal (HPA) axis by measuring plasma concentrations of epinephrine (EPI), norepinephrine (NE), and corticosterone (CORT) in rats exposed to acute immobilization (IMO) stress. The surgical posterolateral deafferentation of the PVN (PVN-deaf) was performed by Halasz knife, in brain of the adult male Sprague Dawley rats, according to coordinates of a stereotaxic atlas. Sham-operated (SHAM) animals underwent a craniotomy only. The animals were allowed to recover 14 days. Thereafter, the tail artery was cannulated and the animals exposed to acute IMO for 2 h. The blood samples were collected via cannula at the time points of 0, 5, 30, 60, and 120 min of the IMO. Concentrations of plasma EPI, NE, and CORT were determined by radioimmunoassay. The IMO-induced elevation of plasma EPI concentrations in the PVN-deaf rats reached statistical significance at 60 min of the IMO, when compared to SHAM rats. Similarly, the stress-induced elevation of the NE plasma levels in the PVN-deaf rats was significantly exaggerated at all time intervals of IMO in comparison with SHAM rats, whereas plasma CORT levels were significantly reduced. In contrast to the traditional view of excitatory role of the PVN in response to stress, our data indicate that some projections from the PVN to caudally localized hypothalamic structures, the brainstem or the spinal cord, exert inhibitory effect on the SAS system activity during acute IMO stress. The data indicate that stress-induced activation of the HPA axis is partially dependent on inputs from the brainstem to the PVN.

  10. Inhibition of cyclooxygenase-2 reduces hypothalamic excitation in rats with adriamycin-induced heart failure.

    Directory of Open Access Journals (Sweden)

    Min Zheng

    Full Text Available BACKGROUND: The paraventricular nucleus (PVN of the hypothalamus plays an important role in the progression of heart failure (HF. We investigated whether cyclooxygenase-2 (COX-2 inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS and renin-angiotensin system (RAS in rats with adriamycin-induced heart failure. METHODOLOGY/PRINCIPAL FINDING: Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg/kg. On day 19, rats received intragastric administration daily with either COX-2 inhibitor celecoxib (CLB or normal saline. Treatment with CLB reduced mortality and attenuated both myocardial atrophy and pulmonary congestion in HF rats. Compared with the HF rats, ventricle to body weight (VW/BW and lung to body weight (LW/BW ratios, heart rate (HR, left ventricular end-diastolic pressure (LVEDP, left ventricular peak systolic pressure (LVPSP and maximum rate of change in left ventricular pressure (LV±dp/dtmax were improved in HF+CLB rats. Angiotensin II (ANG II, norepinephrine (NE, COX-2 and glutamate (Glu in the PVN were increased in HF rats. HF rats had higher levels of ANG II and NE in plasma, higher level of ANG II in myocardium, and lower levels of ANP in plasma and myocardium. Treatment with CLB attenuated these HF-induced changes. HF rats had more COX-2-positive neurons and more corticotropin releasing hormone (CRH positive neurons in the PVN than did control rats. Treatment with CLB decreased COX-2-positive neurons and CRH positive neurons in the PVN of HF rats. CONCLUSIONS: These results suggest that PVN COX-2 may be an intermediary step for PVN neuronal activation and excitatory neurotransmitter release, which further contributes to sympathoexcitation and RAS activation in adriamycin-induced heart failure. Treatment with COX-2 inhibitor attenuates sympathoexcitation and RAS activation in adriamycin-induced heart failure.

  11. Water versus salty taste and Iontophoretic ANGII responses of septopreoptic neurons in dehydrated and euhydrated awake rats.

    Science.gov (United States)

    Mousseau, M C; Thornton, S N; Liénard, F; Martial, F P; Nicolaïdis, S

    1996-01-01

    Little is known of the influence of gustatory, particularly salt, input on neurons of the forebrain and if the same neurons are sensitive to hydromineral balance humoral stimuli. In awake, nonpremedicated rats we recorded the activity of spontaneously active neurons in the preoptic/anterior hypothalamic area of dehydrated and euhydrated rats while allowing them to ingest water or a hypertonic salt solution (1.6% NaCl) administered to the tongue. The hormones angiotensin and aldosterone, both implicated in hydromineral balance, were applied by iontophoresis to the same neurons. In the dehydrated rats, 27% (15/55) of the spontaneously active neurons responded to a liquid (either water or the NaCl) applied to the tongue; in the euhydrated rats 23% (18/78) responded to the same stimuli. In the dehydrated rats, however, 33% (5/15) of the responding neurons were inhibited when the NaCl solution was applied to the tongue compared with only 5% (1/18) in the euhydrated rats. Iontophoretic application of angiotensin increased the spontaneous activity in 21% of those neurons tested that responded to taste. These results suggest that the state of hydration of an animal is able to change the neuronal response to substances applied to the tongue. Furthermore, it appears that these gustatory-sensitive neurons may also be related to hydromineral balance regulation since they are able to respond to angiotensin.

  12. Endotoxemia-induced muscle wasting is associated with the change of hypothalamic neuropeptides in rats.

    Science.gov (United States)

    Duan, Kaipeng; Yu, Wenkui; Lin, Zhiliang; Tan, Shanjun; Bai, Xiaowu; Gao, Tao; Xi, Fengchan; Li, Ning

    2014-12-01

    In critical patients, sepsis-induced muscle wasting is considered to be an important contributor to complications and mortality. Previous work mainly focuses on the peripheral molecular mechanism of muscle degradation, however little evidence exists for the role of central nervous system in the process. In the present study, we, for the first time, characterized the relationship between muscle wasting and central neuropeptide changes in a septic model. Thirty-six adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) or saline. Twelve, 24 and 48 hrs after injection, skeletal muscle and hypothalamus tissues were harvested. Muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle ring finger 1 (MuRF-1) and muscle atrophy F-box (MAFbx), as well as 3-methyl-histidine (3-MH) and tyrosine release. Hypothalamic neuropeptides and inflammatory marker expressions were also measured in three time points. LPS injection caused an increase expression of MuRF-1 and MAFbx, and a significant higher release of 3-MH and tyrosine. Hypothalamic neuropeptides, proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), agouti-related protein (AgRP) and neuropeptide Y (NPY) presented a dynamic change after LPS injection. Also, hypothalamic inflammatory markers, interleukin-1 β (IL-1β) and tumor necrosis factor α (TNF-α) increased substantially after LPS administration. Importantly, the expressions of POMC, AgRP and CART were well correlated with muscle atrophy gene, MuRF-1 expression. These findings suggest hypothalamic peptides and inflammation may participate in the sepsis-induced muscle wasting, but the exact mechanism needs further study.

  13. Development of posterior hypothalamic neurons enlightens a switch in the prosencephalic basic plan.

    Directory of Open Access Journals (Sweden)

    Sophie Croizier

    Full Text Available In rats and mice, ascending and descending axons from neurons producing melanin-concentrating hormone (MCH reach the cerebral cortex and spinal cord. However, these ascending and descending projections originate from distinct sub-populations expressing or not "Cocaine-and-Amphetamine-Regulated-Transcript" (CART peptide. Using a BrdU approach, MCH cell bodies are among the very first generated in the hypothalamus, within a longitudinal cell cord made of earliest delaminating neuroblasts in the diencephalon and extending from the chiasmatic region to the ventral midbrain. This region also specifically expresses the regulatory genes Sonic hedgehog (Shh and Nkx2.2. First MCH axons run through the tractus postopticus (tpoc which gathers pioneer axons from the cell cord and courses parallel to the Shh/Nkx2.2 expression domain. Subsequently generated MCH neurons and ascending MCH axons differentiate while neurogenesis and mantle layer differentiation are generalized in the prosencephalon, including telencephalon. Ascending MCH axons follow dopaminergic axons of the mesotelencephalic tract, both being an initial component of the medial forebrain bundle (mfb. Netrin1 and Slit2 proteins that are involved in the establishment of the tpoc and mfb, respectively attract or repulse MCH axons.We conclude that first generated MCH neurons develop in a diencephalic segment of a longitudinal Shh/Nkx2.2 domain. This region can be seen as a prosencephalic segment of a medial neurogenic column extending from the chiasmatic region through the ventral neural tube. However, as the telencephalon expends, it exerts a trophic action and the mfb expands, inducing a switch in the longitudinal axial organization of the prosencephalon.

  14. Interactions between hormonal and environmental signals on hypothalamic neurons molecular mechanisms signaling environmental events.

    Science.gov (United States)

    Zhu, Y S; Dellovade, T L; Pfaff, D W

    1997-04-01

    It is axiomatic that the central nervous system must manage the integration of several environmental factors with steroid hormonal influences for the biologically adaptive performance of reproductive behavior. Launching from established behavioral investigations and from hormonal influences on gene function in the brain, we review here studies on how synaptic inputs and sex hormone influences codetermine hypothalamic gene expression. A particularly exciting implication of results on the ability of thyroid hormone receptors to interfere with estrogen receptor-dependent neuroendocrine function is that environmentally stimulated changes in thyroid hormone levels could influence hypothalamic transcriptional mechanisms important for behavior. If so, this would unite naturalistic environmental thinking with molecular neurobiological thinking important for the hypothalamic control of reproduction. (Trends Endocrinol Metab 1997;8:111-115). (c) 1997, Elsevier Science Inc.

  15. Interactions of histaminergic and serotonergic neurons in the hypothalamic regulation of prolactin and ACTH secretion.

    Science.gov (United States)

    Jørgensen, H; Knigge, U; Kjaer, A; Warberg, J

    1996-11-01

    Serotonergic and histaminergic neuronal systems are both involved in mediation of the stress-induced release of the pituitary hormones prolactin (PRL) and ACTH. We investigated the possibility of an interaction between serotonin (5-HT) and histamine (HA) in regulation of PRL and ACTH secretion in conscious male rats. Animals were pretreated systemically with antagonists to 5-HT1, 5-HT2 or 5-HT3 receptors prior to intracerebroventricular (icv) administration of HA. The 5-HT1 + 2 receptor antagonist methysergide prevented and the 5-HT2 receptor antagonist LY 53857 attenuated the HA-induced PRL release while the 5-HT3 receptor antagonist ondansetron had no effect on this response. None of the three 5-HT receptor antagonists affected the ACTH response to HA. Specific blockade of HA synthesis by alpha-fluoromethylhistidine or blockade of postsynaptic HA receptors by icv infusion of the H1 receptor antagonist mepyramine or the H2 receptor antagonist cimetidine inhibited the PRL response to 5-HT or to the 5-HT precursor 5-hydroxytryptophan (5- HTP) given in combination with the 5-HT reuptake inhibitor fluoxetine (Flx). Blockade of the histaminergic system had no effect on the ACTH response to serotonergic stimulation. The H3 receptors are inhibitory HA receptors. Systemic pretreatment with the H3 receptor agonist R(alpha)methylhistamine, or the H3 receptor antagonist thioperamide had no effect on the hormone response to activation of the serotonergic system by 5-HTP plus Flx. We conclude that the serotonergic and histaminergic neuronal systems interact in their stimulation of PRL secretion, but not in their stimulation of ACTH secretion. This interaction involves serotonergic 5-HT1 and 5-HT2 receptors and histaminergic H1 and H2 receptors. Furthermore, the previously observed inhibitory effect of the H3 receptor agonist R(alpha)methylhistamine on stress-induced PRL and ACTH release seems not to be exerted by activation of presynaptic H3 receptors located on serotonergic

  16. Influence of serial electrical stimulations of perifornical and posterior hypothalamic orexin-containing neurons on regulation of sleep homeostasis and sleep-wakefulness cycle recovery from experimental comatose state and anesthesia-induced deep sleep.

    Science.gov (United States)

    Chijavadze, E; Chkhartishvili, E; Babilodze, M; Maglakelidze, N; Nachkebia, N

    2013-11-01

    The work was aimed for the ascertainment of following question - whether Orexin-containing neurons of dorsal and lateral hypothalamic, and brain Orexinergic system in general, are those cellular targets which can speed up recovery of disturbed sleep homeostasis and accelerate restoration of sleep-wakefulness cycle phases during some pathological conditions - experimental comatose state and/or deep anesthesia-induced sleep. Study was carried out on white rats. Modeling of experimental comatose state was made by midbrain cytotoxic lesions at intra-collicular level.Animals were under artificial respiration and special care. Different doses of Sodium Ethaminal were used for deep anesthesia. 30 min after comatose state and/or deep anesthesia induced sleep serial electrical stimulations of posterior and/or perifornical hypothalamus were started. Stimulation period lasted for 1 hour with the 5 min intervals between subsequent stimulations applied by turn to the left and right side hypothalamic parts.EEG registration of cortical and hippocampal electrical activity was started immediately after experimental comatose state and deep anesthesia induced sleep and continued continuously during 72 hour. According to obtained new evidences, serial electrical stimulations of posterior and perifornical hypothalamic Orexin-containing neurons significantly accelerate recovery of sleep homeostasis, disturbed because of comatose state and/or deep anesthesia induced sleep. Speed up recovery of sleep homeostasis was manifested in acceleration of coming out from comatose state and deep anesthesia induced sleep and significant early restoration of sleep-wakefulness cycle behavioral states.

  17. Neuronal androgen receptor regulates insulin sensitivity via suppression of hypothalamic NF-κB-mediated PTP1B expression.

    Science.gov (United States)

    Yu, I-Chen; Lin, Hung-Yun; Liu, Ning-Chun; Sparks, Janet D; Yeh, Shuyuan; Fang, Lei-Ya; Chen, Lumin; Chang, Chawnshang

    2013-02-01

    Clinical investigations highlight the increased incidence of metabolic syndrome in prostate cancer (PCa) patients receiving androgen deprivation therapy (ADT). Studies using global androgen receptor (AR) knockout mice demonstrate that AR deficiency results in the development of insulin resistance in males. However, mechanisms by which AR in individual organs coordinately regulates insulin sensitivity remain unexplored. Here we tested the hypothesis that functional AR in the brain contributes to whole-body insulin sensitivity regulation and to the metabolic abnormalities developed in AR-deficient male mice. The mouse model selectively lacking AR in the central nervous system and AR-expressing GT1-7 neuronal cells were established and used to delineate molecular mechanisms in insulin signaling modulated by AR. Neuronal AR deficiency leads to reduced insulin sensitivity in middle-aged mice. Neuronal AR regulates hypothalamic insulin signaling by repressing nuclear factor-κB (NF-κB)-mediated induction of protein-tyrosine phosphatase 1B (PTP1B). Hypothalamic insulin resistance leads to hepatic insulin resistance, lipid accumulation, and visceral obesity. The functional deficiency of AR in the hypothalamus leads to male mice being more susceptible to the effects of high-fat diet consumption on PTP1B expression and NF-κB activation. These findings suggest that in men with PCa undergoing ADT, reduction of AR function in the brain may contribute to insulin resistance and visceral obesity. Pharmacotherapies targeting neuronal AR and NF-κB may be developed to combat the metabolic syndrome in men receiving ADT and in elderly men with age-associated hypogonadism.

  18. Effects of fluoxetine administration on hypothalamic melanocortin system in obese Zucker rats.

    Science.gov (United States)

    Churruca, I; Portillo, M P; Casis, L; Gutiérrez, A; Macarulla, M T; Echevarría, E

    2008-06-01

    The aim of the present work was to study the potential involvement of melanocortin system in the anorectic mechanism of fluoxetine, a selective serotonin reuptake inhibitors, in obese Zucker rats. Male obese Zucker (fa/fa) rats were administered fluoxetine (10 mg/kg; i.p.) daily for two weeks. The control group was given 0.9% NaCl solution. RT-PCR for pro-opiomelanocortin (POMC), Agouti gene related peptide (AgRP) and melanocortin receptor 4 (MC4-R) in the hypothalamus, as well as regional immunostaining for alpha-melanocyte stimulating hormone (alpha-MSH) and MC4-R were carried out. Fluoxetine administration increased POMC expression and reduced MC4-R expression in the hypothalamus, without changes in AgRP mRNA levels. Moreover, an increase in the numbers of alpha-MSH positively immunostained neural cells in the hypothalamic arcuate nucleus (ARC), as well as a significant decrease in the numbers of neural cells positively immunostained for MC4-R in the paraventricular nucleus (PVN), without changes in lateral hypothalamic area (LHA), were observed. These results suggest the involvement of alpha-MSH in central fluoxetine anorectic action.

  19. Effects of Physical Exercise on the Intestinal Mucosa of Rats Submitted to a Hypothalamic Obesity Condition.

    Science.gov (United States)

    Gomes, J R; Freitas, J R; Grassiolli, S

    2016-10-01

    The small intestine plays a role in obesity as well as in satiation. However, the effect of physical exercise on the morphology and function of the small intestine during obesity has not been reported to date. This study aimed to evaluate the effects of physical exercise on morphological aspects of the rat small intestine during hypothalamic monosodium glutamate (MSG)-induced obesity. The rats were divided into four groups: Sedentary (S), Monosodium Glutamate (MSG), Exercised (E), and Exercised Monosodium Glutamate (EMSG). The MSG and EMSG groups received a daily injection of monosodium glutamate (4 g/kg) during the 5 first days after birth. The S and E groups were considered as control groups and received injections of saline. At weaning, at 21 days after birth, the EMSG and E groups were submitted to swimming practice 3 times a week until the 90th day, when all groups were sacrificed and the parameters studied recorded. Exercise significantly reduced fat deposits and the Lee Index in MSG-treated animals, and also reduced the thickness of the intestinal wall, the number of goblet cells and intestinal alkaline phosphatase activity. However, physical activity alone increased the thickness and height of villi, and the depth of the crypts. In conclusion, regular physical exercise may alter the morphology or/and functions of the small intestine, reducing the prejudicial effects of hypothalamic obesity. Anat Rec, 299:1389-1396, 2016. © 2016 Wiley Periodicals, Inc.

  20. The effects of dietary saturated fat on basal hypothalamic neuroinflammation in rats.

    Science.gov (United States)

    Maric, Tia; Woodside, Barbara; Luheshi, Giamal N

    2014-02-01

    Recent evidence has demonstrated that consumption of high fat diets can trigger brain inflammation and subsequent injury in the absence of any peripheral inflammatory signaling. Here we sought to investigate whether a link exists between the concentration of highly saturated fats in the diet and the development of inflammation in the brain of rats and, whether the source of the saturated fat was an important factor in this process. Adult male rats had access to diets with a moderate level of total fat (32% of calories as fat) varying in level of saturated fat [low (20%) vs high (>60%)] and its source (butter or coconut oil). After 8 weeks of diet exposure peripheral and central tissues were collected for analysis of inflammatory signals. Neither blood nor white adipose tissue exhibited any changes in inflammatory mediators regardless of the saturated fat content or the source. In the brain however, we observed significant hypothalamic upregulation of the expression of markers of glial activation as well as of interleukin (IL)-1,6 and nuclear factor (NF)-IL-6, which were highest in the group fed the butter-based diets. The increase in these inflammatory mediators had no effect on basal body temperature or the temperature response to systemic lipopolysaccharide (LPS). The present results indicate that hypothalamic inflammation associated with consumption of diets high in fat is directly linked to the saturated fat content as well as the source of that fat. These effects are likely linked to other pathophysiological changes in the regulation of metabolism.

  1. Diminished A-type potassium current and altered firing properties in presympathetic PVN neurones in renovascular hypertensive rats.

    Science.gov (United States)

    Sonner, Patrick M; Filosa, Jessica A; Stern, Javier E

    2008-03-15

    Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (I(A)) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca(2+) levels. Patch-clamp recordings obtained from PVN-RVLM neurons showed a reduction in I(A) current magnitude and single channel conductance, and an enhanced steady-state current inactivation in hypertensive rats. Morphometric reconstructions of intracellularly labelled PVN-RVLM neurons showed a diminished dendritic surface area in hypertensive rats. Consistent with a diminished I(A) availability, action potentials in PVN-RVLM neurons in hypertensive rats were broader, decayed more slowly, and were less sensitive to the K(+) channel blocker 4-aminopyridine. Simultaneous patch clamp recordings and confocal Ca(2+) imaging demonstrated enhanced action potential-evoked intracellular Ca(2+) transients in hypertensive rats. Finally, spike broadening during repetitive firing discharge was enhanced in PVN-RVLM neurons from hypertensive rats. Altogether, our results indicate that diminished I(A) availability constitutes a contributing mechanism underlying aberrant central neuronal function in renovascular hypertension.

  2. ERK1/2 MAPK signaling in hypothalamic paraventricular nucleus contributes to sympathetic excitation in rats with heart failure after myocardial infarction.

    Science.gov (United States)

    Yu, Yang; Wei, Shun-Guang; Zhang, Zhi-Hua; Weiss, Robert M; Felder, Robert B

    2016-03-15

    Brain MAPK signaling pathways are activated in heart failure (HF) induced by myocardial infarction and contribute to augmented sympathetic nerve activity. We tested whether decreasing ERK1/2 (also known as p44/42 MAPK) signaling in the hypothalamic paraventricular nucleus (PVN), a forebrain source of presympathetic neurons, would reduce the upregulation of sympathoexcitatory mediators in the PVN and augmented sympathetic nerve activity in rats with HF. Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce HF, with left ventricular dysfunction confirmed by echocardiography. One week after coronary artery ligation or sham operation, small interfering (si)RNAs targeting ERK1/2 or a nontargeting control siRNA was microinjected bilaterally into the PVN. Experiments were conducted 5-7 days later. Confocal images revealed reduced phosphorylated ERK1/2 immunofluorescence in the PVN of HF rats treated with ERK1/2 siRNAs compared with HF rats treated with control siRNA. Western blot analysis confirmed significant reductions in both total and phosphorylated ERK1/2 in the PVN of HF rats treated with ERK1/2 siRNAs along with reduced expression of renin-angiotensin system components and inflammatory mediators. HF rats treated with ERK1/2 siRNAs also had reduced PVN neuronal excitation (fewer Fos-related antigen-like-immunoreactive neurons), lower plasma norepinephrine levels, and improved peripheral manifestations of HF compared with HF rats treated with control siRNAs. These results demonstrate that ERK1/2 signaling in the PVN plays a pivotal role in mediating sympathetic drive in HF induced by myocardial infarction and may be a novel target for therapeutic intervention.

  3. Regulation of Energy Balance via BDNF Expressed in Nonparaventricular Hypothalamic Neurons.

    Science.gov (United States)

    Yang, Haili; An, Juan Ji; Sun, Chao; Xu, Baoji

    2016-05-01

    Brain-derived neurotrophic factor (BDNF) expressed in the paraventricular hypothalamus (PVH) has been shown to play a key role in regulating energy intake and energy expenditure. BDNF is also expressed in other hypothalamic nuclei; however, the role in the control of energy balance for BDNF produced in these structures remains largely unknown. We found that deleting the Bdnf gene in the ventromedial hypothalamus (VMH) during embryogenesis using the Sf1-Cre transgene had no effect on body weight in mice. In contrast, deleting the Bdnf gene in the adult VMH using Cre-expressing virus led to significant hyperphagia and obesity. These observations indicate that the lack of a hyperphagia phenotype in the Sf1-Cre/Bdnf mutant mice is likely due to developmental compensation. To investigate the role of BDNF expressed in other hypothalamic areas, we employed the hypothalamus-specific Nkx2.1-Cre transgene to delete the Bdnf gene. We found that the Nkx2.1-Cre transgene could abolish BDNF expression in many hypothalamic nuclei, but not in the PVH, and that the resulting mutant mice developed modest obesity due to reduced energy expenditure. Thus, BDNF produced in the VMH plays a role in regulating energy intake. Furthermore, BDNF expressed in hypothalamic areas other than PVH and VMH is also involved in the control of energy expenditure.

  4. Acetaminophen induces apoptosis in rat cortical neurons.

    Directory of Open Access Journals (Sweden)

    Inmaculada Posadas

    Full Text Available BACKGROUND: Acetaminophen (AAP is widely prescribed for treatment of mild pain and fever in western countries. It is generally considered a safe drug and the most frequently reported adverse effect associated with acetaminophen is hepatotoxicity, which generally occurs after acute overdose. During AAP overdose, encephalopathy might develop and contribute to morbidity and mortality. Our hypothesis is that AAP causes direct neuronal toxicity contributing to the general AAP toxicity syndrome. METHODOLOGY/PRINCIPAL FINDINGS: We report that AAP causes direct toxicity on rat cortical neurons both in vitro and in vivo as measured by LDH release. We have found that AAP causes concentration-dependent neuronal death in vitro at concentrations (1 and 2 mM that are reached in human plasma during AAP overdose, and that are also reached in the cerebrospinal fluid of rats for 3 hours following i.p injection of AAP doses (250 and 500 mg/kg that are below those required to induce acute hepatic failure in rats. AAP also increases both neuronal cytochrome P450 isoform CYP2E1 enzymatic activity and protein levels as determined by Western blot, leading to neuronal death through mitochondrial-mediated mechanisms that involve cytochrome c release and caspase 3 activation. In addition, in vivo experiments show that i.p. AAP (250 and 500 mg/kg injection induces neuronal death in the rat cortex as measured by TUNEL, validating the in vitro data. CONCLUSIONS/SIGNIFICANCE: The data presented here establish, for the first time, a direct neurotoxic action by AAP both in vivo and in vitro in rats at doses below those required to produce hepatotoxicity and suggest that this neurotoxicity might be involved in the general toxic syndrome observed during patient APP overdose and, possibly, also when AAP doses in the upper dosing schedule are used, especially if other risk factors (moderate drinking, fasting, nutritional impairment are present.

  5. The cytokine ciliary neurotrophic factor (CNTF activates hypothalamic urocortin-expressing neurons both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Matthew J Purser

    Full Text Available Ciliary neurotrophic factor (CNTF induces neurogenesis, reduces feeding, and induces weight loss. However, the central mechanisms by which CNTF acts are vague. We employed the mHypoE-20/2 line that endogenously expresses the CNTF receptor to examine the direct effects of CNTF on mRNA levels of urocortin-1, urocortin-2, agouti-related peptide, brain-derived neurotrophic factor, and neurotensin. We found that treatment of 10 ng/ml CNTF significantly increased only urocortin-1 mRNA by 1.84-fold at 48 h. We then performed intracerebroventricular injections of 0.5 mg/mL CNTF into mice, and examined its effects on urocortin-1 neurons post-exposure. Through double-label immunohistochemistry using specific antibodies against c-Fos and urocortin-1, we showed that central CNTF administration significantly activated urocortin-1 neurons in specific areas of the hypothalamus. Taken together, our studies point to a potential role for CNTF in regulating hypothalamic urocortin-1-expressing neurons to mediate its recognized effects on energy homeostasis, neuronal proliferaton/survival, and/or neurogenesis.

  6. [Impregnoarchitectonic study of neurons in the caudal hypothalamic area in sheep].

    Science.gov (United States)

    Rajtová, V

    1985-06-01

    The impregnoarchitectonics of neurons in the regio hypothalamica caudalis was studied by the methods after Ramón-Moliner and Golgi-Cox. Neuron types, morphology of synaptic conjugations and orientation of dendrites and axons are indicated for each nucleus. Small spindle-shaped neurons are the most frequent neuron forms occurring in the regio hypothalamica caudalis. It is only in the nucl. hypothalamicus perifornicalis that neuron processes and the long cell axes are oriented around the columna fornicis. One especially large neuron "occupies" the dorsal part of this nucleus.

  7. Neonatal Nicotine Exposure Leads to Hypothalamic Gliosis in Adult Overweight Rats.

    Science.gov (United States)

    Younes-Rapozo, V; Moura, E G; Manhães, A C; Pinheiro, C R; Carvalho, J C; Barradas, P C; de Oliveira, E; Lisboa, P C

    2015-12-01

    Astrocytes and microglia, the immune competent cells of central nercous system, can be activated in response to metabolic signals such as obesity and hyperleptinaemia. In rats, maternal exposure to nicotine during lactation leads to central obesity, hyperleptinaemia, leptin resistance and alterations in hypothalamic neuropeptides in the offspring during adulthood. In the present study, we studied the activation of astrocytes and microglia, as well as the pattern of inflammatory mediators, in adult offspring of this experimental model. On postnatal day 2 (P2), osmotic minipumps releasing nicotine (NIC) (-6 mg/kg/day) or saline for 14 days were s.c. implanted in dams. Male offspring were killed on P180 and hypothalamic immunohistochemistry, retroperitoneal white adipose tissue (WAT) polymerase chain reaction analysis and multiplex analysis for plasma inflammatory mediators were carried out. At P180, NIC astrocyte cell number was higher in the arcuate nucleus (ARC) (medial: +82%; lateral: +110%), in the paraventricular nucleus (PVN) (+144%) and in the lateral hypothalamus (+121%). NIC glial fibrillary acidic protein fibre density was higher in the lateral ARC (+178%) and in the PVN (+183%). Interleukin-6 was not affected in the hypothalamus. NIC monocyte chemotactic protein 1 was only higher in the periventricular nucleus (+287%). NIC microglia (iba-1-positive) cell number was higher (+68%) only in the PVN, as was the chemokine (C-X3-C motif) receptor 1 density (+93%). NIC interleukin-10 was lower in the WAT (-58%) and plasma (-50%). Thus, offspring of mothers exposed to nicotine during lactation present hypothalamic astrogliosis at adulthood and microgliosis in the PVN.

  8. Effects of black cohosh and estrogen on the hypothalamic nuclei of ovariectomized rats at different temperatures.

    Science.gov (United States)

    Hui, Zhang; Xiaoyan, Ma; Mukun, Yang; Ke, Wang; Liyuan, Yang; Sainan, Zhu; Jing, Jia; Lihua, Qin; Wenpei, Bai

    2012-08-01

    Cimicifuga racemosa (L.) Nutt. (CR), known as black cohosh, has been used in Europe as a medicinal plant for more than a century and its roots have been widely used for the treatment of menopausal symptoms. Remifemin, the main ingredient in liquid or tablet medications prepared from isopropyl alcohol extracts of black cohosh rhizome, has also been evaluated in clinical studies. To observe changes in the expression of the c-Fos protein in the hypothalamic nuclei of four groups of rats-sham-operated group (SHAM), ovariectomized (OVX) group, ovariectomized group treated with estrogen(OVX+E), and ovariectomized group treated with the isopropanol extract of Cimicifuga racemosa (OVX+ICR)-and to investigate the mechanisms of black cohosh and estrogen that take place in the hypothalamic nuclei of ovariectomized rats. Fifty rats were assigned to each of the four groups and placed in incubators at 4 °C, 10 °C, 25 °C, 33 °C, or 38 °C for 2 h. They were then anesthetized, and their brains were removed after heart perfusion. c-Fos expression in the hypothalamic nuclei was evaluated using immunohistochemical methods. In the median preoptic nucleus (MnPO), ventromedial preoptic nucleus (VMPO), and suprachiasmatic nucleus (SCh) of the SHAM group, in the anterior hypothalamic area (AH) and supraoptic nucleus (SO) of all four groups, and in the paraventricular nucleus (PVN) of the SHAM, OVX and OVX+E groups, the c-Fos-positive cell densities all changed in a similar manner: the cell density decreased when the temperature was less than 25 °C and the density increased when the temperature was greater than 25 °C, demonstrating a V-type curve. The c-Fos density was lowest at 25°C. The other nuclei demonstrated irregular changes. The positive cell densities in the MnPO, AH, and PVN of the SHAM, OVX+E, and OVX+ICR groups were greater than the densities measured in the OVX group at all temperatures, except 25 °C. Positive cell densities in the SHAM, OVX+E, and OVX+ICR groups were

  9. Distribution of type 1 cannabinoid receptor-expressing neurons in the septal-hypothalamic region of the mouse: colocalization with GABAergic and glutamatergic markers.

    Science.gov (United States)

    Hrabovszky, Erik; Wittmann, Gábor; Kalló, Imre; Füzesi, Tamás; Fekete, Csaba; Liposits, Zsolt

    2012-04-01

    Type 1 cannabinoid receptor (CB1) is the principal mediator of retrograde endocannabinoid signaling in the brain. In this study, we addressed the topographic distribution and amino acid neurotransmitter phenotype of endocannabinoid-sensitive hypothalamic neurons in mice. The in situ hybridization detection of CB1 mRNA revealed high levels of expression in the medial septum (MS) and the diagonal band of Broca (DBB), moderate levels in the preoptic area and the hypothalamic lateroanterior (LA), paraventricular (Pa), ventromedial (VMH), lateral mammillary (LM), and ventral premammillary (PMV) nuclei, and low levels in many other hypothalamic regions including the suprachiasmatic (SCh) and arcuate (Arc) nuclei. This regional distribution pattern was compared with location of γ-aminobutyric acid (GABA)ergic and glutamatergic cell groups, as identified by the expression of glutamic acid decarboxylase 65 (GAD65) and type 2 vesicular glutamate transporter (VGLUT2) mRNAs, respectively. The MS, DBB, and preoptic area showed overlaps between GABAergic and CB1-expressing neurons, whereas hypothalamic sites with moderate CB1 signals, including the LA, Pa, VMH, LM, and PMV, were dominated by glutamatergic neurons. Low CB1 mRNA levels were also present in other glutamatergic and GABAergic regions. Dual-label in situ hybridization experiments confirmed the cellular co-expression of CB1 with both glutamatergic and GABAergic markers. In this report we provide a detailed anatomical map of hypothalamic glutamatergic and GABAergic systems whose neurotransmitter release is controlled by retrograde endocannabinoid signaling from hypothalamic and extrahypothalamic target neurons. This neuroanatomical information contributes to an understanding of the role that the endocannabinoid system plays in the regulation of endocrine and metabolic functions.

  10. Effects of cysteamine on the hypothalamic-pituitary axis in the rat

    Energy Technology Data Exchange (ETDEWEB)

    McComb, D.J.; Cairns, P.D.; Kovacs, K.; Szabo, S.

    1985-06-01

    The effects of cysteamine (CSH) on hypothalamic concentrations of neuropeptides were reviewed and correlated with available information on changes in pituitary hormone content and circulating pituitary hormone levels. In our study, we found notable changes in the morphology of lactotropes from female Long-Evans rats treated for 7 days with CSH (300 mg/(kg X day) per os). Forming granules increased in number, and crinophagy, which is the augmented incorporation of these granules into lysosomes, was evident. Storage granules were reduced in number. These changes were not suppressed by simultaneous administration of 17 beta-estradiol (50 micrograms/day s.c.) for 7 days. CSH administration failed to prevent estrogen-induced lactotrope hyperplasia. Serum prolactin levels were unaffected by CSH treatment. The morphological changes in the adenohypophysis did not resemble those observed when rats were treated with bromocriptine. The rough endoplasmic reticulum luminal density was reduced in gonadotropes from intact CSH-treated rats after 1 wk. CSH treatment suppressed the development of castration cells and significantly reduced serum luteinizing hormone levels in ovariectomized rats. The morphological effects of CSH appeared to be confined to lactotropes and gonadotropes.

  11. Changes in hypothalamic staining for c-Fos following 2G exposure in rats

    Science.gov (United States)

    Fuller, C. A.; Murakami, D. M.; Hoban-Higgins, T. M.; Tang, I. H.

    1994-01-01

    The static gravitational field of the earth has been an important selective pressure that has shaped the evolution of biological organisms. This is illustrated by the evolution of tetrapods from a water environment where gravitational force was partially negated to a terrestrial environment where gravity is of greater consequence. Terrestrial invasion resulted in a series of new structural, physiological, and behavioral features. Therefore, it is not surprising that alterations in the gravitational field can cause widespread effects in many physiological systems and behaviors. Our previous studies have demonstrated that both exposure to hyperdynamic fields and the microgravity condition of space flight have significant effects on body temperature, heartrate, activity, feeding, drinking, and circadian rhythms. However, it has not been determined whether these physiological adaptations are associated with changes in neural activity within the hypothalamic nuclei that regulate these functions. This study examined the changes in body temperature, activity, body weight and food and water intake in rats caused by exposure to a hyperdynamic field. In addition, the immediate early gene activation marker, c-Fos, was used to examine potential protein synthesis changes in the hypothalamic nuclei that regulate these functions.

  12. Gender difference in age-related number of corticotropin-releasing hormone-expressing neurons in the human hypothalamic paraventricular nucleus and the role of sex hormones

    NARCIS (Netherlands)

    Bao, A.-M.; Swaab, D.F.

    2007-01-01

    Previous studies have shown that the total number of corticotropin-releasing hormone (CRH)-stained neurons in the human hypothalamic paraventricular nucleus (PVN) increases with age. To determine whether this age-related change depends on gender and whether circulating sex hormones play a role, we

  13. Influence of feeding status on neuronal activity in the hypothalamus during lipopolysaccharide-induced anorexia in rats.

    Science.gov (United States)

    Gautron, L; Mingam, R; Moranis, A; Combe, C; Layé, S

    2005-01-01

    Fasting attenuates disease-associated anorexia, but the mechanisms underlying this effect are not well understood. In the present study, we investigated the extent to which a 48 h fast alters hypothalamic neuronal activity in response to the anorectic effects of lipopolysaccharide in rats. Male rats were fed ad libitum or fasted, and were injected with i.p. saline or lipopolysaccharide (250 microg/kg). Immunohistochemistry for Fos protein was used to visualize neuronal activity in response to lipopolysaccharide within selected hypothalamic feeding regulatory nuclei. Additionally, food intake, body weight, plasma interleukin-1 and leptin levels, and the expression of mRNA for appetite-related neuropeptides (neuropeptide Y, proopiomelanocortin and cocaine-amphetamine-regulated transcript) were measured in a time-related manner. Our data show that the pattern of lipopolysaccharide-induced Fos expression was similar in most hypothalamic nuclei whatever the feeding status. However, we observed that fasting significantly reduced lipopolysaccharide-induced Fos expression in the paraventricular nucleus, in association with an attenuated lipopolysaccharide-induced anorexia and body weight loss. Moreover, lipopolysaccharide reduced fasting-induced Fos expression in the perifornical area of the lateral hypothalamus. Lipopolysaccharide-induced circulating levels of interleukin-1 were similar across feeding status. Finally, fasting, but not lipopolysaccharide, affected circulating level of leptin and appetite-related neuropeptides expression in the arcuate nucleus. Together, our data show that fasting modulates lipopolysaccharide-induced anorexia and body weight loss in association with neural changes in specific hypothalamic nuclei.

  14. Early-life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats

    Directory of Open Access Journals (Sweden)

    Tomoko eSoga

    2015-11-01

    Full Text Available Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinising hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP-tagged GnIH-transgenic rats. Socially isolated rats were observed for anxious and depressive behaviours. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group -housing. We also inspected serotonergic fibre juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviours. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fibre juxtapositions on EGFP–GnIH neurons was also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.

  15. Hypothalamic kiss1 mRNA and kisspeptin immunoreactivity are reduced in a rat model of polycystic ovary syndrome (PCOS).

    Science.gov (United States)

    Brown, Russell E; Wilkinson, Diane A; Imran, Syed A; Caraty, Alain; Wilkinson, Michael

    2012-07-27

    An intact hypothalamic kiss1/kisspeptin/kiss1r complex is a prerequisite for reproductive competence, and kisspeptin treatment could be a practical therapeutic approach to some problems of infertility. One such disorder is polycystic ovarian syndrome (PCOS), a common cause of infertility affecting more than 100 million women. A rodent model of PCOS is the prepubertal female rat treated for a prolonged period with dihydrotestosterone (DHT), which induces many of the metabolic characteristics of the syndrome. We hypothesized that hypothalamic kiss1 mRNA levels, and kisspeptin immunoreactivity (ir), would be abnormal in these rats. Prepubertal female rats were exposed to DHT for 60 days. Rats were killed in two groups: at 26 and 60 days of DHT exposure. Kiss1 mRNA was quantified in hypothalamus, pituitary, ovary and visceral adipose tissue. Separate groups of rats provided brain tissue for immunohistochemical analysis of kisspeptin-ir. At 26 days of DHT exposure, hypothalamic kiss1 mRNA was severely depleted. In contrast DHT had no effect on pituitary kiss1 expression but it significantly increased levels of kiss1 mRNA in fat (+9-fold; povary (+3-fold; povary but remained elevated in fat (+4-fold; ppolycystic ovary syndrome. In hypothalamus, specifically, kiss1 mRNA, and levels of kisspeptin immunoreactivity, are significantly reduced. Since these rats exhibit many of the characteristics of polycystic ovary syndrome, we suggest that atypical kiss1 expression may contribute to the multiple tissue abnormalities observed in women with this disorder. However, and of some importance, our data do not appear to be consistent with the elevated levels of LH seen in women with PCOS; i.e. reduced levels of hypothalamic kiss1 mRNA and kisspeptin immunoreactivity observed in DHT-treated rats are unlikely to produce elevated LH secretion.

  16. Withdrawal of dietary phytoestrogens in adult male rats affects hypothalamic regulation of food intake, induces obesity and alters glucose metabolism.

    Science.gov (United States)

    Andreoli, María Florencia; Stoker, Cora; Rossetti, María Florencia; Alzamendi, Ana; Castrogiovanni, Daniel; Luque, Enrique H; Ramos, Jorge Guillermo

    2015-02-05

    The absence of phytoestrogens in the diet during pregnancy has been reported to result in obesity later in adulthood. We investigated whether phytoestrogen withdrawal in adult life could alter the hypothalamic signals that regulate food intake and affect body weight and glucose homeostasis. Male Wistar rats fed from conception to adulthood with a high phytoestrogen diet were submitted to phytoestrogen withdrawal by feeding a low phytoestrogen diet, or a high phytoestrogen-high fat diet. Withdrawal of dietary phytoestrogens increased body weight, adiposity and energy intake through an orexigenic hypothalamic response characterized by upregulation of AGRP and downregulation of POMC. This was associated with elevated leptin and T4, reduced TSH, testosterone and estradiol, and diminished hypothalamic ERα expression, concomitant with alterations in glucose tolerance. Removing dietary phytoestrogens caused manifestations of obesity and diabetes that were more pronounced than those induced by the high phytoestrogen-high fat diet intake. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Short-term regulation of the hypothalamic melanocortinergic system under fasting and defined glucose-refeeding conditions in rats: a laser capture microdissection (LMD)-based study.

    Science.gov (United States)

    Landmann, Emelie M; Schellong, Karen; Melchior, Kerstin; Rodekamp, Elke; Ziska, Thomas; Harder, Thomas; Plagemann, Andreas

    2012-04-25

    It is well established that under fasting conditions the expression of the orexigenic neuropeptide agouti-related peptide (AGRP) is up-regulated in the hypothalamic arcuate nucleus (ARC), while inconsistent data exist regarding fasting regulation of the anorexigenic neurohormone proopiomelanocortin (POMC). Inconsistencies might have methodological reasons, especially concerning neuromorphological and/or experimental (nutritional) specificity. We analyzed the expression of both neuropeptides in ARC neurons, using lasercapture microdissection (LMD) and real-time PCR in 12h fasted vs. fed Wistar rats as well as after a standardized glucose load, i.e., under clinically relevant conditions in terms of diagnosing glucose intolerance in the human. Under fasting conditions, clear up-regulation of AGRP was observed, with increasing magnitude in ARC single neurons (SNP) as compared to ARC cell layers (+125% vs. +23%, resp.), closely correlated to hypoinsulinemia and hypoleptinemia. Surprisingly, in the fasting state POMC was not found to be down-regulated, neither in ARC cell layers nor in ARC single neurons (+9% vs. +6%). However, glucose-refeeding under diagnostically relevant conditions led to strong neuronal up-regulation of POMC expression in ARC SNP (+128%), and AGRP down-regulation (-50%). In conclusion, experimentally, topographically, and analytically specific and standardized conditions confirmed AGRP in ARC neurons as being neuronally up- and down-regulated, resp., depending on the general nutritional state, while POMC was found to be (up-) regulated only after peripheral glucose load. Findings suggest that POMC in ARC neurons acts glucose-mediated as an "anti-orexigenic" neurohormone, specifically responding to hyperglycemia.

  18. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals

    Science.gov (United States)

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744

  19. Reduced fasting-induced activation of hypothalamic arcuate neurons is associated with hyperleptinemia and increased leptin sensitivity in obese mice.

    Science.gov (United States)

    Becskei, Csilla; Lutz, Thomas A; Riediger, Thomas

    2010-08-01

    Fasting increases c-Fos expression in neuropeptide Y (NPY) neurons of the hypothalamic arcuate nucleus (ARC) in lean, but not in hyperleptinemic mice with late-onset obesity (LOO). Although obesity is associated with leptin resistance, we hypothesized that under fasting conditions, leptin sensitivity might be restored and that hyperleptinemia may counteract the neuronal response to fasting. We investigated whether the reduced fasting response of ARC neurons in LOO is paralleled by an increase in leptin sensitivity, as measured by leptin-induced STAT-3 phosphorylation. To assess leptin's role in the modulation of the fasting-induced ARC activation, we investigated c-Fos responses and hormone and metabolite levels in hyperleptinemic diet-induced obese (DIO) and in leptin-deficient ob/ob mice. Leptin induced a stronger STAT-3 phosphorylation in fasted LOO and lean mice than in ad libitum-fed animals. Similar to LOO, hyperleptinemic DIO mice showed no c-Fos response after fasting, while ob/ob mice showed a stronger response than lean control mice. Mimicking hyperleptinemia by repeated leptin injections in lean mice during fasting attenuated the fasting-induced c-Fos expression. Our findings indicate that high leptin levels prevent the fasting-induced activation of ARC neurons in mice. Moreover, leptin sensitivity is dynamic in obese subjects and depends on the feeding status. During short-term increases in leptin sensitivity, e.g., during fasting, leptin signaling appears to be effective, even in hyperleptinemic obesity. As reflected by the blockade of the fasting-induced ARC activation, fasting seems to interfere with the responsiveness of the ARC to signals related to the status of energy intake.

  20. The role of the chorda tympani nerve in the activation of the rat hypothalamic histaminergic system by leptin.

    Science.gov (United States)

    Morimoto-Ishizuka, T; Yamamoto, Y; Yamatodani, A

    2001-03-01

    A possible pathway through which leptin activates the histaminergic system was studied using in vivo microdialysis in rats. Intraperitoneal injection of leptin (1.3 mg/kg) caused a significant increase in hypothalamic histamine release, however, its intracerebroventricular injection (10 microg/rat) did not cause any significant changes in the release. Furthermore, leptin (1.3 mg/kg) had no effect on histamine release in rats whose chorda tympani nerves, a branch of the facial nerve which mediates taste information, were transected bilaterally. These findings indicate that leptin activates the histaminergic system by the peripheral signal inputs via the chorda tympani resulting in the suppression of food intake.

  1. Developmental changes in the hypothalamic mRNA levels of prepro-orexin and orexin receptors and their sensitivity to fasting in male and female rats.

    Science.gov (United States)

    Iwasa, Takeshi; Matsuzaki, Toshiya; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-11-01

    Orexin, which is also called as hypocretin (Hcrt), a product of the prepro-orexin (pp-orexin//Hcrt) gene, affects various physiological and behavioral functions, such as the sleep-wake cycle and appetite. The developmental changes in the hypothalamic mRNA levels of pp-prexin and the orexin receptors OX1R and OX2R and their sensitivity to fasting were evaluated in both male and female rats. During development, hypothalamic pp-orexin/Hcrt mRNA expression increased in both male and female rats, whereas hypothalamic OX1R mRNA expression decreased in both sexes. In addition, hypothalamic OX2R mRNA expression increased in male rats, but did not change in female rats. Fasting did not affect hypothalamic pp-orexin/Hcrt mRNA expression in either sex. Hypothalamic OX1R mRNA expression was increased by fasting in the prepubertal period (postnatal days 20 and 30) in female rats, but was not affected by fasting in males. In male rats, hypothalamic OX2R mRNA expression was decreased by fasting during the neonatal period (postnatal day 10), but not the prepubertal period (postnatal days 20 and 30). In females, hypothalamic OX2R mRNA expression was also decreased by fasting; however, the fasting-induced downregulation of hypothalamic OX2R expression persisted until postnatal day 20. These results indicate that the developmental patterns of components of the orexin system and their sensitivity to fasting during the neonatal and prepubertal periods only differ slightly between the sexes. These differences might be involved in the development of some physiological and behavioral functions.

  2. Inflammatory airway features and hypothalamic-pituitary adrenal axis function in asthmatic rats combined with chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    CAI Cui; CAO Yu-xue; ZHANG Hong-ying; LE Jing-jing; DONG Jing-cheng; CUI Yan; XU Chang-qing; LIU Bao-jun; WU Jin-feng; DUAN Xiao-hong

    2010-01-01

    Background Bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) are both inflammatory airway diseases with different characteristics. However, there are many patients who suffer from both BA and COPD. This study was to evaluate changes of inflammatory airway features and hypothalamic-pituitary-adrenal (HPA) axis function in asthmatic rats combined with COPD.Methods Brown Norway (BN) rats were used to model the inflammatory airway diseases of BA, COPD and COPD+BA.These three models were compared and evaluated with respect to clinical symptoms, pulmonary histopathology, airway hyperresponsiveness (AHR), inflammatory cytokines and HPA axis function.Results The inflammatory airway features and HPA axis function in rats in the COPD+BA model group were greatly influenced. Rats in this model group showed features of the inflammatory diseases BA and COPD. The expression of inflammatory cytokines in this model group might be up or downregulated when both disease processes are present. The levels of corticotrophin releasing hormone mRNA and corticosterone in this model group were both significantly decreased than those in the control group (P <0.05).Conclusions BN rat can be used as an animal model of COPD+BA. By evaluating this animal model we found that the features of inflammation in rats in this model group seem to be exaggerated. The HPA axis functions in rats in this model group have been disturbed or impaired, which is prominent at the hypothalamic level.

  3. Changing Numbers of Neuronal and Non-Neuronal Cells Underlie Postnatal Brain Growth in the Rat

    National Research Council Canada - National Science Library

    Fabiana Bandeira; Roberto Lent; Suzana Herculano-Houzel; Jon H. Kaas

    2009-01-01

    .... To test this hypothesis, here we investigate quantitatively the postnatal changes in the total number of neuronal and non-neuronal cells in the developing rat brain, and examine how these changes...

  4. Effects of histamine on 5-hydroxytryptaminergic neuronal activity in the rat hypothalamus.

    Science.gov (United States)

    Fleckenstein, A E; Lookingland, K J; Moore, K E

    1994-03-11

    Effects of pharmacological manipulations which mimic or enhance histaminergic neuronal transmission were determined on the activity of 5-hydroxytryptaminergic neurons projecting to the hypothalamus of male rats. Intracerebroventricular administration of histamine decreased 5-hydroxytryptamine (5-HT) and increased 5-hydroxyindoleacetic acid (5-HIAA) concentrations in several hypothalamic nuclei; these effects were blocked by the histamine H1 receptor antagonist mepyramine but not the histamine H2 receptor antagonist zolantidine. Blockade of the 5-HT reuptake system by fluoxetine did not prevent histamine-induced decreases in 5-HT concentrations suggesting that histamine is not transported into nerve terminals via the 5-HT reuptake system to subsequently displace 5-HT stores. These data suggest that exogenous histamine increases 5-hydroxytryptaminergic neuronal activity through an action at histamine H1 receptors. In contrast, neither the histamine H3 receptor antagonist thioperamide, the histamine-N-methyltransferase inhibitor metoprine, nor combined thioperamide-metoprine treatment affected concentrations of 5-HT or 5-HIAA suggesting these agents, which purportedly enhance endogenous histaminergic transmission, do not affect 5-hydroxytryptaminergic neuronal activity. These results reveal that procedures commonly employed to study central actions of histamine differentially affect 5-hydroxytryptaminergic neuronal activity in the rat hypothalamus.

  5. Cholesterol secoaldehyde, an ozonation product of cholesterol, induces amyloid aggregation and apoptosis in murine GT1-7 hypothalamic neurons.

    Science.gov (United States)

    Sathishkumar, K; Xi, Xiaochun; Martin, Roy; Uppu, Rao M

    2007-06-01

    Aldehydic products from ozonation of cholesterol and peroxidation of phospholipids have been shown to accelerate aggregation of amyloid-beta (Abeta) in vitro. Here, we show that 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (ChSeco), an ozonation product of cholesterol, induces Abeta aggregation, generation of reactive oxygen species (ROS), and cytotoxicity in murine GT1-7 hypothalamic neurons. The formation of Abeta aggregates in situ was dose-dependent at ChSeco concentrations ranging from 1 to 20 microM. The increase in insoluble Abeta aggregates at increasing concentrations of ChSeco was accompanied by a decrease in soluble Abeta as evidenced by Western blot analysis. The formation of ROS in neuronal cells was found to be dose- and time-dependent with the magnitude being higher at 20 microM compared to 10 microM ChSeco or untreated controls. The increase in ROS was associated with depletion of GSH. The cytotoxicity induced by ChSeco involved changes in phosphatidylserine translocation, DNA fragmentation, and caspase 3/7 activity that are characteristic of apoptosis. Pretreatment of neuronal cells with Trolox, a water-soluble analog of alpha-tocopherol offered partial, but significant protection against ChSeco-induced cell death, whereas, N-acetyl-L-cysteine (NAC) completely prevented the cytotoxic effects of ChSeco. NAC and Trolox were without any effects on ChSeco-induced Abeta aggregation. Fibrillogenesis inhibitors, which inhibited Abeta aggregation, did not inhibit cell death induced by ChSeco, implying that ROS generation, and not Abeta aggregation, plays a major role in the observed cytotoxicity. However, since Alzheimer's and other neurodegenerative diseases are slow and progressive, the formation of Abeta aggregates in vivo by ChSeco may have long-term pathological consequences.

  6. Neuropeptide FF, but not prolactin-releasing peptide, mRNA is differentially regulated in the hypothalamic and medullary neurons after salt loading.

    Science.gov (United States)

    Kalliomäki, M-L; Panula, P

    2004-01-01

    Hypothalamic paraventricular and supraoptic nuclei are involved in the body fluid homeostasis. Especially vasopressin peptide and mRNA levels are regulated by hypo- and hyperosmolar stimuli. Other neuropeptides such as dynorphin, galanin and neuropeptide FF are coregulated with vasopressin. In this study neuropeptide FF and another RF-amide peptide, the prolactin-releasing peptide mRNA levels were studied by quantitative in situ hybridization after chronic salt loading, a laboratory model of chronic dehydration. The neuropeptide FF mRNA expressing cells virtually disappeared from the hypothalamic supraoptic and paraventricular nuclei after salt loading, suggesting that hyperosmolar stress downregulated the NPFF gene transcription. The neuropeptide FF mRNA signal levels were returned to control levels after the rehydration period of 7 days. No changes were observed in those medullary nuclei that express neuropeptide FF mRNA. No significant changes were observed in the hypothalamic or medullary prolactin-releasing peptide mRNA levels. Neuropeptide FF mRNA is drastically downregulated in the hypothalamic magnocellular neurons after salt loading. Other neuropeptides studied in this model are concomitantly coregulated with vasopressin: i.e. their peptide levels are downregulated and mRNA levels are upregulated which is in contrast to neuropeptide FF regulation. It can thus be concluded that neuropeptide FF is not regulated through the vasopressin regulatory system but via an independent pathway. The detailed mechanisms underlying the downregulation of neuropeptide FF mRNA in neurons remain to be clarified.

  7. Maternal programming of sexual behavior and hypothalamic-pituitary-gonadal function in the female rat.

    Directory of Open Access Journals (Sweden)

    Nicole Cameron

    Full Text Available Variations in parental care predict the age of puberty, sexual activity in adolescence and the age at first pregnancy in humans. These findings parallel descriptions of maternal effects on phenotypic variation in reproductive function in other species. Despite the prevalence of such reports, little is known about potential biological mechanisms and this especially true for effects on female reproductive development. We examined the hypothesis that parental care might alter hypothalamic-pituitary-ovarian function and thus reproductive function in the female offspring of rat mothers that vary pup licking/grooming (LG over the first week postpartum. As adults, the female offspring of Low LG mothers showed 1 increased sexual receptivity; 2 increased plasma levels of luteinizing hormone (LH and progesterone at proestrus; 3 an increased positive-feedback effect of estradiol on both plasma LH levels and gonadotropin releasing-hormone (GnRH expression in the medial preoptic region; and 4 increased estrogen receptor alpha (ERalpha expression in the anterioventral paraventricular nucleus, a system that regulates GnRH. The results of a cross-fostering study provide evidence for a direct effect of postnatal maternal care as well as a possible prenatal influence. Indeed, we found evidence for increased fetal testosterone levels at embryonic day 20 in the female fetuses of High compared to Low LG mothers. Finally, the female offspring of Low LG mothers showed accelerated puberty compared to those of High LG mothers. These data suggest maternal effects in the rat on the development of neuroendocrine systems that regulate female sexual behaviour. Together with studies revealing a maternal effect on the maternal behavior of the female offspring, these findings suggest that maternal care can program alternative reproductive phenotypes in the rat through regionally-specific effects on ERalpha expression.

  8. Training alters cardiac neuron sizes in Wistar rats

    Directory of Open Access Journals (Sweden)

    RR de Souza

    2009-09-01

    Full Text Available The action of the parasympathetic nerves on the heart is made through a group of neurons located on the surface of the atria. This study evaluated the effect of a chronic training protocol on the number and sizes of the cardiac neurons of Wistar rats. Whole mount preparations of the atria of 12-month old male sedentary and trained rats (40 weeks of running on a treadmill 3 times a week, 16 m/min were assessed for number and size (maximal cellular profile area of the cardiac neurons. The cardiac neurons were ascertained by using the NADH-diaphorase technique that stains the cell bodies of the neurons in dark blue. The number of cardiac neurons in the trained rats (P>0.05 did not change significantly. In the sedentary group there were small, medium sized and large neurons. However there was a notable increase in the percentage of small neurons in the rats submitted to the training compared to the sedentary group (P<0.05. Previous studies have shown that electrophysiologically, the small neurons are more easily excitable than the large neurons. It is possible that the results of the present work reflect an adaptation mechanism of the cardiac neurons presumably with the objective of increasing the excitability of the neurons for the vagal action and resulting facilitation of the sinusal bradycardia observed at rest and in the exercise. We concluded that the training affects significantly the size of the cardiac neurons in Wistar rats.

  9. Circadian and estral changes in the hypothalamic prostaglandin e content and [h]prostaglandin e binding in female rats.

    Science.gov (United States)

    Bommelaer-Bayet, M C; Wisner, A; Renard, C A; Levi, F A; Dray, F

    1990-04-01

    Abstract Prostaglandin E(2), (PGE(2)) is involved in the luteinizing hormone-releasing hormone-stimulated luteinizing hormone surge in female rats and may act via specific membrane receptors. The following studies were performed to determine whether there were any changes in the hypothalamic PGE(2) binding and/or PGE(2) content which were specific to proestrus and not to the rest of the estrous cycle. Groups of female Wistar rats were sacrificed at 3-h intervals throughout the estrous cycle to determine both the circadian and circaestral changes in the hypothalamic PGE(2) content and [(3)H]PGE(2) binding. The hypothalamic PGE(2) content was maximal at 1700 h on each of the 4 consecutive days of the estrous cycle but was independent of the stage of the cycle. [(3)H]PGE(2) binding also displayed a circadian rhythm; the lowest binding occurred near the circadian peak of PGE(2), suggesting that the PGE(2) binding sites were occupied by endogenous PGE(2). Since such circadian rhythms were not observed in the hypothalamus of male rats, they may be under the control of ovarian steroids. Also, since PGE(2) binding and the PGE(2) content both exhibit a diurnal pattern independent of the day of the cycle, there may be changes in the PGE(2) receptor-mediated process coupled to an adenylyl cyclase which could explain the luteinizing hormone surge in proestrus.

  10. Hypothalamic galanin and plasma leptin and ghrelin in the maintenance of energy intake in the Brattleboro rat.

    Science.gov (United States)

    Beck, Bernard; Max, Jean-Pierre

    2007-12-07

    Galanin, ghrelin, and leptin are three peptides involved in feeding regulation and more particularly in fat intake. The Brattleboro (di/di) rat is a genetic model of diabetes insipidus characterized by a preference for fat when it is in a food choice situation. Here, we measured hypothalamic galanin concentrations, plasma ghrelin and leptin and dietary preferences of adult di/di Brattleboro rats, di/+ and Long-Evans controls. The Brattleboro rats weighed significantly less than the di/+ rats (-18%; Pdiet and a high-carbohydrate diet. Galanin concentrations were significantly lower in di/di rats than in di/+ rats in the paraventricular nucleus (-56%; P<0.001), but not in the arcuate nucleus. Plasma leptin was significantly lower in the di/di rats than in the di/+ rats (3.49+/-0.20 vs. 6.94+/-0.49 ng/ml; P<0.001). Plasma ghrelin concentrations were significantly lower in Long-Evans rats than in the di/di rats (-21%; P< 0.01). Given that galanin mRNA is overexpressed in the paraventricular nucleus of Brattleboro rats, these data are consistent with increased release of the peptide. In the Brattleboro rat, this overactive galanin system and the variations of ghrelin and leptin maintain an orexigenic drive favoring a preferential intake of fat which provides the animal with enough energy for its metabolism.

  11. Hypothalamic glial-to-neuronal signaling during puberty: influence of alcohol.

    Science.gov (United States)

    Srivastava, Vinod K; Hiney, Jill K; Dees, W Les

    2011-07-01

    Mammalian puberty requires complex interactions between glial and neuronal regulatory systems within the hypothalamus that results in the timely increase in the secretion of luteinizing hormone releasing hormone (LHRH). Assessing the molecules required for the development of coordinated communication networks between glia and LHRH neuron terminals in the basal hypothalamus, as well as identifying substances capable of affecting cell-cell communication are important. One such pathway involves growth factors of the epidermal growth factor (EGF) family that bind to specific erbB receptors. Activation of this receptor results in the release of prostaglandin-E(2) (PGE(2)) from adjacent glial cells, which then acts on the nearby LHRH nerve terminals to elicit release of the peptide. Another pathway involves novel genes which synthesize adhesion/signaling proteins responsible for the structural integrity of bi-directional glial-neuronal communication. In this review, we will discuss the influence of these glial-neuronal communication pathways on the prepubertal LHRH secretory system, and furthermore, discuss the actions and interactions of alcohol on these two signaling processes.

  12. The role of oestradiol in sexually dimorphic hypothalamic-pituitary-adrena axis responses to intracerebroventricular ethanol administration in the rat.

    Science.gov (United States)

    Larkin, J W; Binks, S L; Li, Y; Selvage, D

    2010-01-01

    Systemic ethanol (EtOH) administration activates the hypothalamic-pituitary-adrenal (HPA) axis of rats in a sexually dimorphic manner. The present studies tested the role played by the central nervous system (CNS) in this phenomenon. To localise the effects of the drug to the brain, we utilised an experimental paradigm whereby a small, nontoxic amount of the drug was delivered via intracerebroventricular (i.c.v.) injection. EtoH administered i.c.v. rapidly diffuses throughout the cerebrospinal fluid and brain, and does not cause neuronal damage or have any long-term physiological or behavioural effects. Experimental groups included intact males, intact cycling females, and ovariectomised (OVX) animals with or without replacement oestradiol (E(2)). Intracerebroventricular EtOH-induced HPA hormonal activation was determined by measuring plasma adrenocorticotrophin (ACTH) levels. Activation of brain areas that both regulate HPA function and are responsive to gonadal hormones was determined using expression of the transcription factor c-fos (Fos) as a marker of neuronal activity. We observed sex- and oestrous cycle- dependent differences in HPA activation by EtOH as measured by both these parameters. ACTH secretion was highest in females in pro-oestrus or oestrus, just prior to or after the endogenous peak of E(2), as was Fos expression in the paraventricular nucleus of the hypothalamus (PVN) and the locus coreuleus (LC) of the brainstem. In OVX animals, E(2) replacement caused an increase in PVN and LC Fos expression in response to i.c.v. EtOH compared to OVX controls, but a decrease in ACTH secretion. Taken together, these results indicate that at the level of the CNS, EtOH stimulates HPA activity more robustly at times when the effects of E(2) are high, but that E(2) alone is not responsible for this effect. The data further suggest that the LC plays an important role in the circuitry, which appears to be different from that activated following the systemic

  13. Impact of neonatal exposure to the ERalpha agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats.

    Science.gov (United States)

    Patisaul, Heather B; Todd, Karina L; Mickens, Jillian A; Adewale, Heather B

    2009-05-01

    Neonatal exposure to endocrine disrupting compounds (EDCs) can impair reproductive physiology, but the specific mechanisms by which this occurs remain largely unknown. Growing evidence suggests that kisspeptin (KISS) neurons play a significant role in the regulation of pubertal onset and ovulation, therefore disruption of KISS signaling could be a mechanism by which EDCs impair reproductive maturation and function. We have previously demonstrated that neonatal exposure to phytoestrogens decreases KISS fiber density in the anterior hypothalamus of female rats, an effect which was associated with early persistent estrus and the impaired activation gonadotropin releasing hormone (GnRH) neurons. The goals of the present study were to (1) determine if an ERalpha selective agonist (PPT) or bisphenol-A (BPA) could produce similar effects on hypothalamic KISS content in female rats and (2) to determine if male KISS fiber density was also vulnerable to disruption by EDCs. We first examined the effects of neonatal exposure to PPT, a low (50 microg/kg bw) BPA dose, and a high (50 mg/kg bw) BPA dose on KISS immunoreactivity (-ir) in the anterior ventral periventricular (AVPV) and arcuate (ARC) nuclei of adult female rats, using estradiol benzoate (EB) and a sesame oil vehicle as controls. AVPV KISS-ir, following ovariectomy (OVX) and hormone priming, was significantly lower in the EB and PPT groups but not the BPA groups. ARC KISS-ir levels were significantly diminished in the EB and high dose BPA groups, and there was a nonsignificant trend for lower KISS-ir in the PPT group. We next examined effects of neonatal exposure to a low (50 microg/kg bw) dose of BPA and the phytoestrogens genistein (GEN) and equol (EQ) on KISS-ir in the AVPV and ARC of adult male rats, using OVX females as an additional control group. None of the compounds affected KISS-ir in the male hypothalamus. Our results suggest that the organization of hypothalamic KISS fibers may be vulnerable to disruption

  14. [Senescence of endocrine function with special reference to the hypothalamic-pituitary-gonadal axis in the rat (author's transl)].

    Science.gov (United States)

    Kawashima, S

    1977-12-20

    In the control theories, aging is under genetic and environmental control. Endocrine function plays an important role in this control system by mediating between the environmental influence and the presumptive "aging gene". Therefore, the intrinsic aging of the hypothalamus, such as the changes in sensitivity to feedback suppression or stimulation, may lead to homostatic failure and then age-related pathology. As the subject of study we have selected the senile changes in the hypothalamic-pituitary-ovarian axis in the rat of the Wistar strain. The cessation of estrous cycle and the onset of persistent estrus or repetitive pseudopregnancy usually take place as early as at the end of the first half of life in rats. In this paper the results of the following experiments are briefly dealt with: (i) reciprocal transplantation of ovaries between young and old rats (the term "old" designates here "incapable of reproduction"), (ii) comparison of LH and FSH binding abilities in the ovarian preparations, (iii) comparison of serum and pituitary concentrations of LH, FSH and prolactin and the modifications after ovariectomy or by the administration of pharmacological drugs, and (iv) the difference between young and old rats in intensity of dopamine fluorescence in the hypothalamus. The results of these experiments seem to point to the hypothalamic-pituitary part rather than more peripheral organs (ovaries) as being primarily responsible for the outcome of the senile changes in the female rat.

  15. Increase of long-term 'diabesity' risk, hyperphagia, and altered hypothalamic neuropeptide expression in neonatally overnourished 'small-for-gestational-age' (SGA rats.

    Directory of Open Access Journals (Sweden)

    Karen Schellong

    Full Text Available BACKGROUND: Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and 'diabesity' risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear. METHODS AND FINDINGS: By rearing in normal (NL vs. small litters (SL, small-for-gestational-age (SGA rats were neonatally exposed to either normal (SGA-in-NL or over-feeding (SGA-in-SL, and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL. SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60, as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05, and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern 'westernized' lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05. Lasercapture microdissection (LMD-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc in SGA-in-SL rats (p<0.05. Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy, agouti-related-peptide (Agrp and galanin (Gal was not significantly altered. In essence, the 'orexigenic index', proposed here as a neuroendocrine 'net-indicator', was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01, correlated to food intake (p<0.05. CONCLUSION: Adult SGA rats developed increased 'diabesity' risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal overfeeding

  16. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats

    Science.gov (United States)

    Hoffman, Gloria E.; Koban, Michael

    2016-01-01

    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness. PMID:27997552

  17. Fasted/fed states regulate postsynaptic hub protein DYNLL2 and glutamatergic transmission in oxytocin neurons in the hypothalamic paraventricular nucleus.

    Science.gov (United States)

    Suyama, Shigetomo; Kodaira-Hirano, Misato; Otgon-Uul, Zesemdorj; Ueta, Yoichi; Nakata, Masanori; Yada, Toshihiko

    2016-04-01

    The neurons in the hypothalamus regulate food intake and energy metabolism on reception of systemic energy states. Accumulating evidences have indicated that synaptic transmission on the hypothalamic neurons is modulated by the metabolic condition related to fasted/fed states, and that this modulation of synaptic plasticity plays a role in regulation of feeding. It has been shown that oxytocin (Oxt) neurons in the paraventricular nucleus (PVN) of the hypothalamus sense and integrate various peripheral and central signals and thereby induce satiety. However, whether metabolic conditions regulate the synaptic transmission on Oxt neurons in PVN remains unclear. The present study examined whether the fasted/fed states regulate synaptic transmission on Oxt neurons in PVN. The miniature excitatory postsynaptic currents (mEPSCs) onto Oxt neurons in PVN were increased under ad lib fed condition compared to 24h fasted condition. Furthermore, the NMDA receptor-mediated EPSC on Oxt neurons was increased under fed, compared to fasted, condition. In Oxt neurons, dynein light chain 2 (DYNLL2), a protein suggested to be implicated in the NMDA receptor trafficking to the postsynaptic site, was increased under fed, compared to fasted, condition. The present results suggest that feeding increases excitatory synaptic input on PVN Oxt neurons via mechanisms involving DYNLL2 upregulation and NMDA receptor-mediated synaptic reorganization.

  18. Evidence suggesting phosphodiesterase-3B regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.

    Science.gov (United States)

    Anamthathmakula, Prashanth; Sahu, Maitrayee; Sahu, Abhiram

    2015-09-14

    Hypothalamic neurons expressing neuropeptide Y (NPY) and agouti related-protein (AgRP) are critical regulators of feeding behavior and body weight, and transduce the action of many peripheral signals including leptin and insulin. However, intracellular signaling molecules involved in regulating NPY/AgRP neuronal activity are incompletely understood. Since phosphodiesterase-3B (PDE3B) mediates the hypothalamic action of leptin and insulin on feeding, and is expressed in NPY/AgRP neurons, PDE3B could play a significant role in regulating NPY/AgRP neuronal activity. To investigate the direct regulation of NPY/AgRP neuronal activity by PDE3B, we examined the effects of gain-of-function or reduced function of PDE3B on NPY/AgRP gene expression in a clonal hypothalamic neuronal cell line, mHypoE-46, which endogenously express NPY, AgRP and PDE3B. Overexpression of PDE3B in mHypoE-46 cells with transfection of pcDNA-3.1-PDE3B expression plasmid significantly decreased NPY and AgRP mRNA levels and p-CREB levels as compared to the control plasmid. For the PDE3B knockdown study, mHypoE-46 cells transfected with lentiviral PDE3BshRNAmir plasmid or non-silencing lentiviral shRNAmir control plasmid were selected with puromycin, and stably transfected cells were grown in culture for 48h. Results showed that PDE3BshRNAmir mediated knockdown of PDE3B mRNA and protein levels (∼60-70%) caused an increase in both NPY and AgRP gene expression and in p-CREB levels. Together, these results demonstrate a reciprocal change in NPY and AgRP gene expression following overexpression and knockdown of PDE3B, and suggest a significant role for PDE3B in the regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.

  19. A COMPARATIVE STUDY ON HYPOTHALAMIC MECHANISMS OF ANALGESIA INDUCED BY FOUR KINDS OF ACUPUNCTURE THERAPIES IN ADJUVANT ARTHRITIS RATS

    Institute of Scientific and Technical Information of China (English)

    FU Yi; LIANG Fan-rong; TAO Qiao-lin

    2005-01-01

    Objective: To compare the mechanisms of analgesia induced by four kinds of acupuncture therapies at the hypothalamic level in adjuvant arthritic rats. Methods: Forty-eight SD rats were randomized into normal, model, electroacupuncture (EA), filiform needle (FN), pricking blood-letting (BL) and point injection (PI) groups, with 8 cases in each. EA (20-100 Hz, 2-4 V and duration of 20 min), FN, BL PI were respectively applied to "Kunlun" (昆仑BL 60). Arthritis model was established by injecting complete Freund's adjuvant (0.1 mL) into the rat's right foot pad. Behavioral reactions, pain threshold (latency of tail flick to heat stimulation) and local swelling severity (foot volume) were detected; the contents of β-endorphin (β-EP) and adrenocorticotropin (ACTH) were assayed with radioimmunoassay; and the expression of pro-opi-omelanocortin (POMC) mRNA in hypothalamus were determined with hybridization method. Results: The pain threshold was significantly enhanced by all the four kinds of acupuncture therapies, and the effects of EA and PI were more obvious (P0.05). The content of β-EP in the hypothalamus was obviously elevated by EA and FN (P0.05). The content of ACTH in hypothalamus was considerably elevated by PI (P<0.05), but not by the other three therapies. The expression of POMCmRNA in hypothalamus was significantly strengthened by EA and FN (P<0.01), but not by the other two therapies. Conclusion: EA, filiform needle, blood-letting and point-injection all can produce analgesic effect in adjuvant arthritis rats, the effect of EA and filiform needle may be related to their resultant increase of hypothalamic β-EP, and that of point-injection related to the increase of hypothalamic ACTH level.

  20. Orexins excite neurons of the rat cerebellar nucleus interpositus via orexin 2 receptors in vitro.

    Science.gov (United States)

    Yu, Lei; Zhang, Xiao-Yang; Zhang, Jun; Zhu, Jing-Ning; Wang, Jian-Jun

    2010-03-01

    Orexins are newfound hypothalamic neuropeptides implicated in the regulation of feeding behavior, sleep-wakefulness cycle, nociception, addiction, emotions, as well as narcolepsy. However, little is known about roles of orexins in motor control. Therefore, the present study was designed to investigate the effect of orexins on neuronal activity in the cerebellum, an important subcortical center for motor control. In this study, perfusing slices with orexin A (100 nM-1 microM) or orexin B (100 nM-1 microM) both produced neurons in the rat cerebellar interpositus nucleus (IN) a concentration-dependent excitatory response (96/143, 67.1%). Furthermore, both of the excitations induced by orexin A and B were not blocked by the low-Ca(2+)/high-Mg(2+) medium (n = 8), supporting a direct postsynaptic action of the peptides. Highly selective orexin 1 receptor antagonist SB-334867 did not block the excitatory response of cerebellar IN neurons to orexins (n = 22), but [Ala(11), D-Leu(15)] orexin B, a highly selective orexin 2 receptor (OX(2)R) agonist, mimicked the excitatory effect of orexins on the cerebellar neurons (n = 18). These results demonstrate that orexins excite the cerebellar IN neurons through OX(2)R and suggest that the central orexinergic nervous system may actively participate in motor control through its modulation on one of the final outputs of the spinocerebellum.

  1. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10−5–10−2 M dose dependently increased [Ca2+]i in 12–16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation mainly

  2. Chronic administration of the metastin/kisspeptin analog KISS1-305 or the investigational agent TAK-448 suppresses hypothalamic pituitary gonadal function and depletes plasma testosterone in adult male rats.

    Science.gov (United States)

    Matsui, Hisanori; Tanaka, Akira; Yokoyama, Kotaro; Takatsu, Yoshihiro; Ishikawa, Kaori; Asami, Taiji; Nishizawa, Naoki; Suzuki, Atsuko; Kumano, Satoshi; Terada, Michiko; Kusaka, Masami; Kitada, Chieko; Ohtaki, Tetsuya

    2012-11-01

    Metastin/kisspeptin, a hypothalamic peptide, plays a pivotal role in controlling GnRH neurons. Here we studied the effect of chronic sc administration of two kisspeptin analogs, KISS1-305 and TAK-448, on hypothalamic-pituitary-gonadal function in male rats in comparison with a GnRH analogue leuprolide or bilateral orchiectomy (ORX). The prototype polypeptide, KISS1-305 (1-4 nmol/h), caused substantial elevations of plasma LH and testosterone, followed by abrupt reductions of both hormone levels. Notably, testosterone levels were reduced to castrate levels within 3 d and remained depleted throughout the 4-wk dosing period, an effect that was faster and more pronounced than leuprolide (1 nmol/h) dosing. KISS1-305 also reduced genital organ weight more profoundly than leuprolide. In mechanistic studies, chronic KISS1-305 administration only transiently induced c-Fos expression in GnRH neurons, suggesting that GnRH-neural response was attenuated over time. Hypothalamic GnRH content was reduced to 10-20% of control at 3 wk without any changes in Gnrh mRNA expression. Dosing with the investigational peptide TAK-448 was also studied to extend our understanding of hypothalamic-pituitary functions. Similar to ORX, TAK-448 (0.1 nmol/h) depleted testosterone and decreased GnRH content by 4 wk. However, in contrast to ORX, TAK-448 decreased gonadotropin levels in pituitary and plasma samples, implying the suppression of GnRH pulses. These results suggest that chronic administration of kisspeptin analogs disrupts endogenous kisspeptin signals to suppress intrinsic GnRH pulses, perhaps by attenuating GnRH-neural response and inducing continuous GnRH leakage from the hypothalamus. The potential utility of kisspeptin analogs as novel agents to treat hormone-related diseases, including prostate cancer, is discussed.

  3. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism.

    Science.gov (United States)

    Marcelin, Geneviève; Jo, Young-Hwan; Li, Xiaosong; Schwartz, Gary J; Zhang, Ying; Dun, Nae J; Lyu, Rong-Ming; Blouet, Clémence; Chang, Jaw K; Chua, Streamson

    2014-02-01

    Tight control of glucose excursions has been a long-standing goal of treatment for patients with type 2 diabetes mellitus in order to ameliorate the morbidity and mortality associated with hyperglycemia. Fibroblast growth factor (FGF) 19 is a hormone-like enterokine released postprandially that emerged as a potential therapeutic agent for metabolic disorders, including diabetes and obesity. Remarkably, FGF19 treatment has hypoglycemic actions that remain potent in models of genetic and acquired insulin resistance. Here, we provided evidence that the central nervous system responds to FGF19 administered in the periphery. Then, in two mouse models of insulin resistance, leptin-deficiency and high-fat diet feeding, third intra-cerebro-ventricular infusions of FGF19 improved glycemic status, reduced insulin resistance and potentiated insulin signaling in the periphery. In addition, our study highlights a new mechanism of central FGF19 action, involving the suppression of AGRP/NPY neuronal activity. Overall, our work unveils novel regulatory pathways induced by FGF19 that will be useful in the design of novel strategies to control diabetes in obesity.

  4. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade.

    Science.gov (United States)

    Leininger, Eric; Belousov, Andrei B

    2009-01-28

    Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures). Using calcium imaging we demonstrate that cholinergic activity does not develop in these cultures. Instead, network-driven glutamate-dependent activity, that normally is detected in hyper-excitable conditions, reappears in each culture group in the presence of these antagonists and can be reversibly suppressed by higher concentrations of AP5/CNQX. This activity is mediated by non-NMDA receptors and is modulated by NMDA receptors. Further, non-NMDA receptors, the general level of glutamate receptor activity and CaMK-dependent signaling are critical for development of this network-driven glutamatergic activity in the presence of receptor antagonists. Using electrophysiology, western blotting and calcium imaging we show that some neuronal parameters are either reduced or not affected by chronic glutamate receptor blockade. However, other parameters (including neuronal excitability, mEPSC frequency, and expression of GluR1, NR1 and betaCaMKII) become up-regulated and, in some cases, proportionally between the non-treated, 1X and 2X cultures. Our data suggest recovery of the network-driven glutamatergic activity after chronic glutamate receptor blockade. This recovery may represent a form of neuronal plasticity that compensates for the prolonged suppression of the activity of glutamate receptors.

  5. Morphology and distribution of neurons expressing serotonin 5-HT1A receptors in the rat hypothalamus and the surrounding diencephalic and telencephalic areas.

    Science.gov (United States)

    Marvin, Eric; Scrogin, Karie; Dudás, Bertalan

    2010-07-01

    Disorders of serotonergic neurotransmission are involved in disturbances of numerous hypothalamic functions including circadian rhythm, mood, neuroendocrine functions, sleep and feeding. Among the serotonin receptors currently recognized, 5-HT(1A) receptors have received considerable attention due to their importance in the etiology of mood disorders. While previous studies have shown the presence of 5-HT(1A) receptors in several regions of the rat brain, there is no detailed map of the cellular distribution of 5-HT(1A) receptors in the rat diencephalon. In order to characterize the distribution and morphology of the neurons containing 5-HT(1A) receptors in the diencephalon and the adjacent telencephalic areas, single label immunohistochemistry was utilized. Large, multipolar, 5-HT(1A)-immunoreactive (IR) neurons were mainly detected in the magnocellular preoptic nucleus and in the nucleus of diagonal band of Broca, while the supraoptic nucleus contained mainly fusiform neurons. Medium-sized 5-HT(1A)-IR neurons with triangular or round-shaped somata were widely distributed in the diencephalon, populating the zona incerta, lateral hypothalamic area, anterior hypothalamic nucleus, substantia innominata, dorsomedial and premamillary nuclei, paraventricular nucleus and bed nucleus of stria terminalis. The present study provides schematic mapping of 5-HT(1A)-IR neurons in the rat diencephalon. In addition, the morphology of the detected 5-HT(1A)-IR neural elements is also described. Since rat is a widely used laboratory animal in pharmacological models of altered serotoninergic neurotransmission, detailed mapping of 5-HT(1A)-IR structures is pivotal for the neurochemical characterization of the neurons containing 5-HT(1A) receptors.

  6. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.

    Science.gov (United States)

    Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi

    2016-12-01

    The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.

  7. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats

    OpenAIRE

    Hojatollah Karimi Jashni; Hossein Kargar Jahromi; Ali Ghorbani Ranjbary

    2016-01-01

    Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses ...

  8. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats

    OpenAIRE

    Karimi Jashni, Hojatollah; Kargar Jahromi, Hossein; Ghorbani Ranjbary, Ali; Kargar Jahromi, Zahra; Khabbaz Kherameh, Zahra

    2016-01-01

    Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses (100, ...

  9. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction?

    Directory of Open Access Journals (Sweden)

    Carlo eCifani

    2015-06-01

    Full Text Available Several factors play a role in obesity (i.e. behavior, environment, and genetics and epigenetic regulation of gene expression has emerged as a potential contributor in the susceptibility and development of obesity. To investigate the individual sensitivity to weight gain/resistance, we here studied gene transcription regulation of several hypothalamic neuropeptides involved in the control of energy balance in rats developing obesity (diet-induced obesity, DIO or not (diet resistant, DR, when fed with a high fat diet. Rats have been followed up to 21 weeks of high fat diet exposure. After 5 weeks high fat diet exposure, the obese phenotype was developed and we observed a selective down-regulation of the orexygenic neuropeptide Y (NPY and peroxisome proliferator-activated receptor gamma (PPAR-γ genes. No changes were observed in the expression of the agouti-related protein (AgRP, as well as for all the anorexigenic genes under study. After long-term high fat diet exposure (21 weeks, NPY and PPAR-γ, as well as most of the genes under study, resulted not be different between DIO and DR, whereas a lower expression of the anorexigenic pro-opio-melanocortin (POMC gene was observed in DIO rats when compared to DR rats. Moreover we observed that changes in NPY and POMC mRNA were inversely correlated with gene promoters DNA methylation. Our findings suggest that selective alterations in hypothalamic peptide genes regulation could contribute to the development of overweight in rats and that environmental factor, as in this animal model, might be partially responsible of these changes via epigenetic mechanism.

  10. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction?

    Science.gov (United States)

    Cifani, Carlo; Micioni Di Bonaventura, Maria V; Pucci, Mariangela; Giusepponi, Maria E; Romano, Adele; Di Francesco, Andrea; Maccarrone, Mauro; D'Addario, Claudio

    2015-01-01

    Several factors play a role in obesity (i.e., behavior, environment, and genetics) and epigenetic regulation of gene expression has emerged as a potential contributor in the susceptibility and development of obesity. To investigate the individual sensitivity to weight gain/resistance, we here studied gene transcription regulation of several hypothalamic neuropeptides involved in the control of energy balance in rats developing obesity (diet-induced obesity, DIO) or not (diet resistant, DR), when fed with a high fat diet. Rats have been followed up to 21 weeks of high fat diet exposure. After 5 weeks high fat diet exposure, the obese phenotype was developed and we observed a selective down-regulation of the orexigenic neuropeptide Y (NPY) and peroxisome proliferator-activated receptor gamma (PPAR-γ) genes. No changes were observed in the expression of the agouti-related protein (AgRP), as well as for all the anorexigenic genes under study. After long-term high fat diet exposure (21 weeks), NPY and PPAR-γ, as well as most of the genes under study, resulted not be different between DIO and DR, whereas a lower expression of the anorexigenic pro-opio-melanocortin (POMC) gene was observed in DIO rats when compared to DR rats. Moreover we observed that changes in NPY and POMC mRNA were inversely correlated with gene promoters DNA methylation. Our findings suggest that selective alterations in hypothalamic peptide genes regulation could contribute to the development of overweight in rats and that environmental factor, as in this animal model, might be partially responsible of these changes via epigenetic mechanism.

  11. Application of the Co-culture Membrane System Pointed to a Protective Role of Catestatin on Hippocampal Plus Hypothalamic Neurons Exposed to Oxygen and Glucose Deprivation.

    Science.gov (United States)

    Mele, Maria; Morelli, Sabrina; Fazzari, Gilda; Avolio, Ennio; Alò, Raffaella; Piscioneri, Antonella; De Bartolo, Loredana; Facciolo, Rosa Maria; Canonaco, Marcello

    2016-11-05

    Depletion of oxygen and glucose even for brief periods is sufficient to cause cerebral ischemia, which is a predominant worldwide cause of motor deficits with the reduction of life quality and subsequently death. Hence, more insights regarding protective measures against ischemic events are becoming a major research goal. Among the many neuronal factors, N-methyl-D-aspartate receptors (NMDAR), orexinergic neuroreceptors (ORXR), and sympatho-inhibitory neuropeptide catestatin (CST) are widely involved with ischemic episodes. In this study, it was possible to induce in vitro ischemic conditions of the hamster (Mesocricetus auratus) hippocampal and hypothalamic neuronal cultures, grown on a newly compartmentalized membrane system, via oxygen and glucose deprivation (OGD). These cultures displayed notably differentiated NMDARergic and ORXergic receptor expression activities along with evident brain-derived neurotrophic factor (BDNF) plus orexin A (ORX-A) secretion, especially under co-cultured conditions. Interestingly, addition of CST in OGD-insulted hippocampal cells accounted for upregulated GluN1 and ORX1R transcripts that in the case of the latter neuroreceptor was very strongly (p BDNF and ORX-A secretion in the presence of hippocampal cells. Overall, the preferential CST effects on BDNF plus ORX-A production together with altered NMDAR and ORXR levels, especially in co-cultured hypothalamic cells pointed to ORX-containing neurons as major protective constituents against ischemic damages thus opening new scenarios on the cross-talking roles of CST during ischemic disorders.

  12. Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons.

    Science.gov (United States)

    Mayer, Christopher M; Belsham, Denise D

    2009-08-13

    Insulin plays a key role in the maintenance of nutrient homeostasis through central regulation of neuropeptides. Neuropeptide Y (NPY) and agouti-related peptide (AgRP) are vital orexigenic peptides that are regulated by insulin, although the processes utilized are unknown. Using a hypothalamic, clonal cell line, mHypoE-46, which endogenously expresses NPY, AgRP and the insulin receptor, we studied the mechanisms involved in the regulation of the NPY/AgRP neuron by insulin. We determined that insulin has direct actions on the neurons and acts to repress NPY/AgRP gene expression through a MAPK MEK/ERK-dependent pathway. Transient transfection analysis determined that human NPY and AgRP 5' flanking gene regions were not regulated by insulin in the mouse cell line, while sequence comparison analysis indicated only a 50% sequence similarity between human and mouse NPY and AgRP 5' flanking regions. These experiments indicate that insulin acts directly on specific hypothalamic neurons to regulate neuropeptide transcription.

  13. Effect of estrogen agonists and antagonists on induction of progesterone receptor in a rat hypothalamic cell line.

    Science.gov (United States)

    Fitzpatrick, S L; Berrodin, T J; Jenkins, S F; Sindoni, D M; Deecher, D C; Frail, D E

    1999-09-01

    Estrogen is essential in the hypothalamus for the central regulation of reproduction. To understand the molecular mechanism(s) of estrogen action in the hypothalamus, immortalized rat embryonic hypothalamic cell lines were characterized for steroid receptors and subcloned. Scatchard analysis of the D12 subclone demonstrated one high affinity estrogen receptor-binding site (Kd = 31.3+/-1.9 pM) with a Bmax of 30.8+/-0.8 fmol/mg. Estrogen receptor-alpha protein was identified by Western blot and gel shift analyses. Treatment with estradiol (48 h) stimulated progesterone receptor (PR) messenger RNA expression and binding to [3H]R5020, a synthetic progestin. Because the agonist or antagonist activity of estrogen mimetics can be cell type dependent, the activities of various estrogen mimetics were determined in D12 cells. ICI 182,780 (IC50 = 0.63 nM), raloxifene (IC50 = 1 nM), enclomiphene (IC50 = 77 nM), and tamoxifen (IC50 = 174 nM) inhibited the induction of PR by estradiol, and none of these compounds significantly stimulated PR when given alone. In contrast, 17alpha-ethynyl estradiol (EC50 = 0.014 nM), zuclomiphene (EC50 = 100 nM), and genistein (EC50 = 17.5 nM) functioned as estrogen agonists in these cells. In addition, the estrogen-induced progesterone receptor activated a progesterone response element reporter construct in response to progestins. Thus, the D12 rat hypothalamic cell line provides a useful model for characterizing tissue-selective estrogenic compounds, identifying estrogen- and progesterone-regulated hypothalamic genes, and understanding the molecular mechanisms of steroid action in various physiological processes mediated by the hypothalamus.

  14. Growth hormone prevents neuronal loss in the aged rat hippocampus.

    Science.gov (United States)

    Azcoitia, Iñigo; Perez-Martin, Margarita; Salazar, Veronica; Castillo, Carmen; Ariznavarreta, Carmen; Garcia-Segura, Luis M; Tresguerres, Jesus A F

    2005-05-01

    Decline of growth hormone (GH) with aging is associated to memory and cognitive alterations. In this study, the number of neurons in the hilus of the dentate gyrus has been assessed in male and female Wistar rats at 3, 6, 12, 14, 18, 22 and 24 months of age, using the optical fractionator method. Male rats had more neurons than females at all the ages studied. Significant neuronal loss was observed in both sexes between 22 and 24 months of age. In a second experiment, 22 month-old male and female rats were treated for 10 weeks with 2 mg/kg/day of GH or saline. At 24 months of age, animals treated with GH had more neurons in the hilus than animals treated with saline. These findings indicate that GH is neuroprotective in old animals and that its administration may ameliorate neuronal alterations associated to aging.

  15. Regional haemodynamic effects of carbachol injected into the hypothalamic paraventricular nuclei of conscious, unrestrained rats.

    Science.gov (United States)

    Bachelard, H; Gardiner, S M; Kemp, P A; Bennett, T

    1994-06-01

    Carbachol was injected into the hypothalamic paraventricular nuclei (PVN) of conscious, unrestrained Long Evans rats, chronically instrumented with intravascular catheters and pulsed Doppler probes to assess changes in regional haemodynamics. Bilateral microinjections of carbachol (1 ng-1 microgram) produced increases in blood pressure, bradycardias and vasoconstrictions in renal, superior mesenteric and hindquarters vascular beds. In the presence of phentolamine, the bradycardic and hindquarters vasoconstrictor responses to carbachol were unchanged while the pressor response was smaller due to a reduction in the renal and the superior mesenteric vasoconstriction. In the presence of propranolol, the bradycardic response was reduced, but the pressor and renal vasoconstrictor responses were potentiated, whereas the superior mesenteric and hindquarter vasoconstrictions were not changed significantly. In the presence of phentolamine and propranolol, the heart rate and pressor responses, as well as the renal vasoconstriction, were unchanged, whereas the superior mesenteric vasoconstriction was reduced and the hindquarters vasoconstriction was potentiated. Together these results are consistent with an involvement of the sympathoadrenal system in the pressor response to carbachol injected into the PVN of untreated animals. They indicate that alpha-adrenoceptor-mediated vasoconstriction in the superior mesenteric vascular bed is a particularly important component in that regard. In the presence of the vasopressin antagonist, d(CH2)5(Tyr(Et))DAVP, alone or in combination with phentolamine and propranolol, the pressor response to carbachol was substantially reduced, while the renal and superior mesenteric vasoconstrictor effects were completely abolished; the bradycardia was not significantly affected by this treatment. These results indicate an important involvement of vasopressin in the cardiovascular responses to carbachol injected into the PVN of untreated animals

  16. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink

    Science.gov (United States)

    Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K

    2017-01-01

    Background/objective: Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Methods: Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. Results: As expected, adult offspring fed the S diet post weaning became obese (body weight: Pdifferential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Conclusions: Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with alterations in hypothalamic leptin signalling. PMID:28092346

  17. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink

    DEFF Research Database (Denmark)

    Gerstenberg, Marina Kjærgaard; Nilsson, C; Secher, A

    2017-01-01

    Background/objective: Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic...... astrocyte morphology in adult rat offspring. Methods: Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were...... than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Conclusions: Maternal intake of chocolate and soft drink had long-term consequences...

  18. Exercise in rats does not alter hypothalamic AMP-activated protein kinase activity

    DEFF Research Database (Denmark)

    Andersson, Ulrika; Treebak, Jonas Thue; Nielsen, Jakob Nis

    2005-01-01

    or ran for 30 or 60 min on a treadmill (22 m/min, 10% slope) were sacrificed immediately after exercise or after 60 min recovery either in the fasted state or after oral gavage with glucose (3 g/kg body weight). Exercise decreased muscle and liver glycogen substantially. Hypothalamic total or a2...

  19. Programming of hypothalamic energy balance gene expression in rats by maternal diet during pregnancy and lactation

    National Research Council Canada - National Science Library

    Cripps, R. L; Martin-Gronert, M. S; Archer, Z. A; Hales, C. N; Mercer, J. G; Ozanne, S. E

    2009-01-01

    .... Expression of hypothalamic energy balance genes was assessed using in situ hybridisation. Recuperated pups were smaller at birth, but caught up with controls by day 21 and gained more weight than controls between weaning and 12 weeks of age (p<0.05...

  20. The total flavonoids extracted from Xiaobuxin Tang reverse the hyperactivity of hypothalamic-pituitary-adrenal axis in chronically stressed rats

    Institute of Scientific and Technical Information of China (English)

    AN Lei; ZHANG You-zhi

    2008-01-01

    Objective To investigate the effect of XBXT-2 on the activity of hypothalamic-pituitary-adrenal (HPA) axis in chronic mild stress (CMS) model of rats. Methods Using ELISA to test the serum corticos-terone, adrenocorticotropic hormone (ACTH) and corticotropin-releasing hormone (CRH) level in CMS rats; Using western blot to determine hippocampal glucocorticoids receptors (GR) expression in CMS rats. Results Co-administration of XBXT-2 (25, 50 mg·kg-1, p. o., 28 days, the effective doses for behavioral responses) significantly decreased the serum corticosterone and ACTH level in CMS rats, while the CRH level was not markedly affected by chronic stress or drugs. Moreover, XBXT-2 significantly increased the GR expression in the hippocampus of CMS rats. The same effects were observed in the positive control drug imipramine ( 10 mg·kg-1 p. o. ). Conclusions The decrease of serum corticosterone and ACTH level, as well as the increase of hippocampal GR expression may be the mechanisms underlying the antidepressant action of XBXT-2, which may associate with HPA axis.

  1. Prenatal exposure to dietary fat induces changes in the transcriptional factors, TEF and YAP, which may stimulate differentiation of peptide neurons in rat hypothalamus.

    Directory of Open Access Journals (Sweden)

    Kinning Poon

    Full Text Available Gestational exposure to a high-fat diet (HFD stimulates the differentiation of orexigenic peptide-expressing neurons in the hypothalamus of offspring. To examine possible mechanisms that mediate this phenomenon, this study investigated the transcriptional factor, transcription enhancer factor-1 (TEF, and co-activator, Yes-associated protein (YAP, which when inactivated stimulate neuronal differentiation. In rat embryos and postnatal offspring prenatally exposed to a HFD compared to chow, changes in hypothalamic TEF and YAP and their relationship to the orexigenic peptide, enkephalin (ENK, were measured. The HFD offspring at postnatal day 15 (P15 exhibited in the hypothalamic paraventricular nucleus a significant reduction in YAP mRNA and protein, and increased levels of inactive and total TEF protein, with no change in mRNA. Similarly, HFD-exposed embryos at embryonic day 19 (E19 showed in whole hypothalamus significantly decreased levels of YAP mRNA and protein and TEF mRNA, and increased levels of inactive TEF protein, suggesting that HFD inactivates TEF and YAP. This was accompanied by increased density and fluorescence intensity of ENK neurons. A close relationship between TEF and ENK was suggested by the finding that TEF co-localizes with this peptide in hypothalamic neurons and HFD reduced the density of TEF/ENK co-labeled neurons, even while the number and fluorescence intensity of single-labeled TEF neurons were increased. Increased YAP inactivity by HFD was further evidenced by a decrease in number and fluorescence intensity of YAP-containing neurons, although the density of YAP/ENK co-labeled neurons was unaltered. Genetic knockdown of TEF or YAP stimulated ENK expression in hypothalamic neurons, supporting a close relationship between these transcription factors and neuropeptide. These findings suggest that prenatal HFD exposure inactivates both hypothalamic TEF and YAP, by either decreasing their levels or increasing their inactive

  2. Intraperitoneal injection of neuropeptide Y (NPY) alters neurotrophin rat hypothalamic levels: Implications for NPY potential role in stress-related disorders.

    Science.gov (United States)

    Gelfo, Francesca; De Bartolo, Paola; Tirassa, Paola; Croce, Nicoletta; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco

    2011-06-01

    Neuropeptide Y (NPY) is a 36-amino acid peptide which exerts several regulatory actions within peripheral and central nervous systems. Among NPY actions preclinical and clinical data have suggested that the anxiolytic and antidepressant actions of NPY may be related to its antagonist action on the hypothalamic-pituitary-adrenal (HPA) axis. The neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are proteins involved in the growth, survival and function of neurons. In addition to this, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has been proposed. To characterize the effect of NPY on the production of neurotrophins in the hypothalamus we exposed young adult rats to NPY intraperitoneal administration for three consecutive days and then evaluated BDNF and NGF synthesis in this brain region. We found that NPY treatment decreased BDNF and increased NGF production in the hypothalamus. Given the role of neurotrophins in the hypothalamus, these findings, although preliminary, provide evidence for a role of NPY as inhibitor of HPA axis and support the idea that NPY might be involved in pathologies characterized by HPA axis dysfunctions.

  3. Intravenous beta-endorphin administration fails to alter hypothalamic blood flow in rats expressing normal or reduced nitric oxide synthase activity

    NARCIS (Netherlands)

    Benyo, Z.; Szabo, C; Velkel, M.H; Bohus, B.G J; Wahl, M.A; Sandor, P

    1996-01-01

    beta-Endorphin (beta-END) significantly contributes to the maintenance of hypothalamic blood flow (HBF) autoregulation during hemorrhagic hypotension in rats. Recently, several natural and synthetic opioid peptides were reported to induce nitric oxide (NO)-mediated dilation in the cerebrovascular

  4. [The function of the oxytocin-synthesizing system of the hypothalamus in rats with diabetes mellitus undergoing hypoxic training].

    Science.gov (United States)

    Kolesnyk, Iu M; Abramov, A V; Trzhetsyns'kyĭ, S D; Hancheva, O V

    1999-01-01

    The state of hypothalamic oxytocin-synthesizing system in Wistar rats were investigating. The morphometric measurements and immunocytochemical detection of oxytocin-containing cells was used for determining of the functional state of supraoptic nucleus, anterior and posterior-medialis magnocellular subdivisions of paraventricular nucleus. It was established intermittent hypoxic training exert positive influence on rats with experimental diabetes mellitus. This effects depending on increasing synthesis and secretion of hypothalamic oxytocin. Intermittent hypoxic training elevate contents of immunoreactive oxytocin without changing morphometric characteristics in neurons of supraoptic and paraventricular nuclei and median eminence of hypothalamus. In comparison oxytocin contents in these neurons elevade less significance in diabetic rats, but it was observed increasing of nucleolus volume in hypothalamic oxytocin-synthesizing neurons. Intermittent hypoxic training of diabetic rats stimulate more significance elevating oxytocin contents in hypothalamic neurons and median eminence that evidence high level activity of hypothalamic oxytocin-synthesizing system.

  5. The role of the hypothalamic nitric oxide in the pressor responses elicited by acute environmental stress in awake rats.

    Science.gov (United States)

    Kawa, T; Takeda, K; Harada, S; Hatta, T; Moriguchi, J; Miki, S; Morimoto, S; Itoh, H; Nakata, T; Sasaki, S; Nakagawa, M

    2002-08-09

    We quantitatively investigated the change in nitric oxide (NO) in the hypothalamic paraventricular nucleus (PVN) and its effect on cardiovascular regulation during shaker stress (SS) using brain microdialysis in awake rats. Male Wistar rats were fed either N(G)-nitro-L-arginine methyl ester (L-NAME, 0.7 g/L) or tap water for 2 weeks. Two days after implantation of an arterial catheter and guide shaft, a microdialysis probe was placed to perfuse the PVN with degassed Ringer solution at 2 microl/min in awake normotensive Wistar (CONTROL) and chronic L-NAME-treated hypertensive rats. After the rat was placed in a plastic cage set on a shaker, the blood pressure and heart rate was monitored and 10-min SS was loaded at a frequency of 200 cycles/min. Dialysate samples were analyzed by NO analyzer (based on the Griess reaction) every 10 min, and NOx (NO(2)(-) + NO(3)(-)) was measured. Plasma NOx was also measured before and after SS. Pressor responses elicited by SS were significantly greater in L-NAME-treated rats than in the CONTROL. Although NOx in the PVN dialysate were increased by SS in the CONTROL, these responses were attenuated in chronic L-NAME-treated rats. Resting plasma NOx were higher in the CONTROL than in L-NAME-treated rats. SS elicited no difference between two groups in plasma NOx. These results indicated that NO within the PVN, but not in systemic circulation, may play a role on the attenuation of the pressor responses elicited by SS. The dysfunction of NO release within the PVN may, in part, play a role in the exaggerated pressor responses in acute environmental stress.

  6. Regional haemodynamic effects of noradrenaline injected into the hypothalamic paraventricular nuclei of conscious, unrestrained rats: possible mechanisms of action.

    Science.gov (United States)

    Bachelard, H; Harland, D; Gardiner, S M; Kemp, P A; Bennett, T

    1992-01-01

    The cardiovascular effects of noradrenaline bilaterally injected into the hypothalamic paraventricular nuclei were investigated in conscious, unrestrained Long-Evans rats and homozygous, vasopressin-deficient Brattleboro rats, chronically instrumented with pulsed Doppler probes for measurement of regional haemodynamics. In Long-Evans rats, incremental doses of noradrenaline (0.01-10 nmol) caused dose-related increases in blood pressure and a substantial, dose-related, superior mesenteric vasoconstriction. These changes were accompanied by bradycardia and reductions in renal and hind-quarter vascular conductances. In Brattleboro rats, noradrenaline (10 nmol) had no effect on blood pressure, heart rate, or renal or superior mesenteric vascular conductances. However, there was a slight vasodilatation in the vascular bed of the hindquarters. In Long-Evans rats, intravenous pretreatment with phentolamine had no effect on the bradycardia but partly inhibited the pressor response to noradrenaline injected into the paraventricular nuclei. These effects were associated with a smaller superior mesenteric vasoconstriction and an abolition of the vasoconstriction in the hindquarters. Combined intravenous pretreatment with phentolamine and propranolol had no effect on the heart rate or pressor responses to noradrenaline injected into the paraventricular nuclei, but reduced the superior mesenteric vasoconstriction, potentiated the vasoconstriction in the hindquarters and eliminated the renal vasoconstriction. These results suggest that, in untreated Long-Evans rats, alpha-adrenoceptor-mediated constriction in the mesenteric vascular bed and beta-adrenoceptor-mediated dilatation in the vascular bed of the hindquarters have important influences on the pressor response to noradrenaline injected into the paraventricular nuclei. In the presence of the vasopressin V1-receptor antagonist, d(CH2)5[Tyr(Et)]DAVP, the pressor and heart rate responses to noradrenaline injected into the

  7. The obesity-associated gene Negr1 regulates aspects of energy balance in rat hypothalamic areas.

    Science.gov (United States)

    Boender, Arjen J; van Gestel, Margriet A; Garner, Keith M; Luijendijk, Mieneke C M; Adan, Roger A H

    2014-07-01

    Neural growth regulator 1 (Negr1) is among the first common variants that have been associated with the regulation of body mass index. Using AAV technology directed to manipulate Negr1 expression in vivo, we find that decreased expression of Negr1 in periventricular hypothalamic areas leads to increases in body weight, presumably via increased food intake. Moreover, we observed that both increased and decreased levels of Negr1 lead to reduced locomotor activity and body temperature. In sum, our results provide further support for a role of hypothalamic expressed Negr1 in the regulation of energy balance. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Morphology of parasympathetic neurons innervating rat lingual salivary glands.

    Science.gov (United States)

    Kim, Miwon; Chiego, Daniel J; Bradley, Robert M

    2004-03-31

    Saliva is essential for taste function and not only does saliva influence taste reception, but also taste perception initiates salivation. As a first step in investigating circuits involved in gustatory-salivary reflexes, we have studied the morphology of the rat inferior salivatory nucleus (ISN), which contains parasympathetic secretomotor neurons that control the parotid and lingual (von Ebner) salivary glands. By applying the fluorescent label Fluorogold to the cut end of the glossopharyngeal nerve, the neurons supplying only the lingual salivary glands were labeled. Confocal microscopy and three-dimensional reconstruction were used to analyze the labeled neurons in the horizontal plane to determine their morphological characteristics. Additional neurons were studied in the coronal plane to determine the influence of the plane of section on neuron morphology. Reconstructions indicated that inferior salivatory neurons extend in a rostral-caudal distribution just adjacent to the medial border of the nucleus of the solitary tract (NST). There is considerable morphological variability among neurons, with neurons having up to 6 primary dendrites and 17 dendritic segments that extend a maximum of 834 microm from the soma. However, although ISN neurons vary in the size and complexity of their dendritic trees, distributions of all measures of neuron morphology are unimodal, indicating that distinct groups of neurons are not revealed based on these measures. There is, however, variability in the orientation pattern of the dendritic trees that is not represented in either the population or mean measures. Individual neurons can be categorized with either mediolateral, rostro-caudal or no apparent preferred orientation. Comparisons of neurons in rostral, intermediate or caudal third of the ISN revealed regional differences in neuron morphology; neurons in the caudal third have significantly longer dendrites than those in the intermediate or rostral third. Thus, while ISN

  9. Total Flavonoids Extracted from Xiaobuxin-Tang on the Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis in Chronically Stressed Rats

    Directory of Open Access Journals (Sweden)

    Lei An

    2011-01-01

    Full Text Available Our previous studies have demonstrated that the total flavonoids (XBXT-2 isolated from the extract of Xiaobuxin-Tang (XBXT, a traditional Chinese herbal decoction, ameliorated behavioral alterations and hippocampal dysfunctions in chronically stressed rats. Studies over the last decades have suggested that the hyperactivity of hypothalamic-pituitary-adrenal (HPA axis is one of the most consistent findings in stress-related depression. Herein, we used the same chronic mild stress model of rats as before to further investigate the effect of XBXT-2 on the hyperactivity of HPA axis, including the stress hormones levels and glucocorticoid receptors (GRs expression. Our ELISA results showed that chronic administration of XBXT-2 (25, 50 mg kg−1, p.o., 28 days, the effective doses for behavioral responses significantly decreased serum corticosterone level and its upstream stress hormone adrenocorticotropic hormone (ACTH level in chronically stressed rats. Furthermore, western blotting result demonstrated XBXT-2 treatment ameliorated stress-induced decrease of GRs expression in hippocampus, an important target involved in the hyperactivity of HPA axis. These results were similar to that of classic antidepressant imipramine treatment (10 mg kg−1, p.o.. In conclusion, the modulation of HPA axis produced by XBXT-2, including the inhibition of stress hormones levels and up-regulation of hippocampal GRs expression, may be an important mechanism underlying its antidepressant-like effect in chronically stressed rats.

  10. Cranial irradiation modulates hypothalamic-pituitary-adrenal axis activity and corticosteroid receptor expression in the hippocampus of juvenile rat.

    Science.gov (United States)

    Velickovic, Natasa; Djordjevic, Ana; Drakulic, Dunja; Stanojevic, Ivana; Secerov, Bojana; Horvat, Anica

    2009-01-01

    Glucocorticoids, essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity, exert their action on the hippocampus through two types of corticosteroid receptors: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Recent studies report that exposure of juvenile rats to cranial irradiation adversely affects HPA axis stability leading to its activation along with radiation- induced inflammation. This study was aimed to examine the acute effects of radiation on HPA axis activity and hippocampal corticosteroid receptor expression in 18-day-old rats. Since immobilization was part of irradiation procedure, both irradiated and sham-irradiated animals were exposed to this unavoidable stress. Our results demonstrate that the irradiated rats exhibited different pattern of corticosteroid receptor expression and hormone levels compared to respective controls. These differences included upregulation of GR protein in the hippocampus with a concomitant elevation of GR mRNA and an increase in circulating level of corticosterone. In addition, the expression of MR, both at the level of protein and gene expression, was not altered. Taken together, this study demonstrates that cranial irradiation in juvenile rats leads to enhanced HPA axis activity and increased relative GR/MR ratio in hippocampus. The present paper intends to show that neuroendocrine response of normal brain tissue to localized irradiation comprise both activation of HPA axis and altered corticosteroid receptor balance, probably as consequence of innate immune activation.

  11. Changes in hypothalamic [correction of hypothalmic] staining for c-Fos following 2G exposure in rats.

    Science.gov (United States)

    Fuller, C A; Murakami, D M; Hoban-Higgins, T M; Tang, I H

    1994-05-01

    The static gravitational field of the earth has been an important selective pressure that has shaped the evolution of biological organisms. This is illustrated by the evolution of tetrapods from a water environment where gravitational force was partially negated to a terrestrial environment where gravity is of greater consequence. Terrestrial invasion resulted in a series of new structural, physiological, and behavioral features. Therefore, it is not surprising that alterations in the gravitational field can cause widespread effects in many physiological systems and behaviors. Our previous studies have demonstrated that both exposure to hyperdynamic fields and the microgravity condition of space flight have significant effects on body temperature, heartrate, activity, feeding, drinking, and circadian rhythms. However, it has not been determined whether these physiological adaptations are associated with changes in neural activity within the hypothalamic nuclei that regulate these functions. This study examined the changes in body temperature, activity, body weight and food and water intake in rats caused by exposure to a hyperdynamic field. In addition, the immediate early gene activation marker, c-Fos, was used to examine potential protein synthesis changes in the hypothalamic nuclei that regulate these functions.

  12. Characterization of pruriceptive trigeminothalamic tract neurons in rats.

    Science.gov (United States)

    Moser, Hannah R; Giesler, Glenn J

    2014-04-01

    Rodent models of facial itch and pain provide a valuable tool for distinguishing between behaviors related to each sensation. In rats, pruritogens applied to the face elicit scratching using the hindlimb while algogens elicit wiping using the forelimb. We wished to determine the role of trigeminothalamic tract (VTT) neurons in carrying information regarding facial itch and pain to the forebrain. We have characterized responses to facially applied pruritogens (serotonin, BAM8-22, chloroquine, histamine, capsaicin, and cowhage) and noxious stimuli in 104 VTT neurons recorded from anesthetized rats. Each VTT neuron had a mechanically sensitive cutaneous receptive field on the ipsilateral face. All pruriceptive VTT neurons also responded to noxious mechanical and/or thermal stimulation. Over half of VTT neurons responsive to noxious stimuli also responded to at least one pruritogen. Each tested pruritogen, with the exception of cowhage, produced an increase in discharge rate in a subset of VTT neurons. The response to each pruritogen was characterized, including maximum discharge rate, response duration, and spike timing dynamics. Pruriceptive VTT neurons were recorded from throughout superficial and deep layers of the spinal trigeminal nucleus and were shown to project via antidromic mapping to the ventroposterior medial nucleus or posterior thalamic nuclei. These results indicate that pruriceptive VTT neurons are a subset of polymodal nociceptive VTT neurons and characterize a system conducive to future experiments regarding the similarities and differences between facial itch and pain.

  13. Inducible gene manipulations in brain serotonergic neurons of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Tillmann Weber

    Full Text Available The serotonergic (5-HT system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP, in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.

  14. Behavioural and neuronal activation after microinjections of AMPA and NMDA into the perifornical lateral hypothalamus in rats.

    Science.gov (United States)

    Li, Frederick W; Deurveilher, Samuel; Semba, Kazue

    2011-10-31

    The perifornical lateral hypothalamic area (PeFLH), which houses orexin/hypocretin (OX) neurons, is thought to play an important role in arousal, feeding, and locomotor activity. The present study examined behavioural effects of activating PeFLH neurons with microinjections of ionotropic glutamate receptor agonists. Three separate unilateral microinjections of either (1) AMPA (1 and 2mM in 0.1 μL artificial cerebrospinal fluid, ACSF) and ACSF, or (2) NMDA (1 and 10mM in 0.1 μL ACSF), and ACSF were made into the PeFLH of adult male rats. Following each injection, the rats were placed into an open field for behavioural scoring for 45 min. Rats were perfused after the third injection for immunohistochemistry for c-Fos and OX to assess the level of activation of OX neurons. Behavioural analyses showed that, as compared to ACSF conditions, AMPA injections produced a dose-dependent increase in locomotion and rearing that persisted throughout the 45 min recording period, and an increase in drinking. Injection of NMDA at 10mM, but not 1mM, induced a transient increase in locomotion and an increase in feeding. Histological analyses showed that while both agonists increased the number of neurons immunoreactive for c-Fos in the PeFLH, only AMPA increased the number of neurons immunoreactive for both c-Fos and OX. There were positive correlations between the number of c-Fos/OX-immunoreactive neurons and the amounts of locomotion, rearing, and drinking. These results support the role of ionotropic glutamate receptors on OX and other neurons in the PeFLH in the regulation of locomotor and ingestive behaviours.

  15. Sleep, brain energy levels, and food intake: Relationship between hypothalamic ATP concentrations, food intake, and body weight during sleep-wake and sleep deprivation in rats.

    Science.gov (United States)

    Dworak, M; Kim, T; McCarley, R W; Basheer, R

    2011-06-01

    The feeling of hunger and feeding, a wake-state-dependent behavior, is regulated by specific centers within the hypothalamus. While paraventricular nucleus (PVN), arcuate nucleus (ARC), and dorso- and ventromedial hypothalamus (DMH/VMH) regulate feeding, the lateral hypothalamus (LH) is associated both with feeding and wake/REM sleep regulation. In order to examine the effects of sleep and wakefulness on food intake and body weight, we also measured hypothalamic ATP concentrations, which are known to be involved in feeding behavior and sleep-wake regulation. In rats, food intake and body weight was measured during a 24-h light-dark cycle and during 6 h of sleep deprivation (SD) performed by gentle handling. Tissue samples from the PVN, ARC/DMH/VMH, and LH were collected after 6 h of SD and from time-matched diurnal controls. ATP was measured by luciferin-luciferase bioluminescence assay. Across the 24-h light-dark period, rats consumed approximately 28.13±4.48 g of food and gained 5.22±1.65 g with a positive correlation between food intake and body weight. During SD, while food intake increased significantly +147.31±6.13%, they lost weight significantly (-93.29±13.64%) when compared to undisturbed controls. SD resulted in a significant decrease in ATP levels only in LH (-44.60±21.13%) with no change in PVN, ARC/DMH/VMH region when compared with undisturbed controls. The results indicate a strong overall correlation between ATP concentrations in the LH and individual food intake and suggest a sleep-wake dependent neuronal control of food intake and body weight.

  16. Region- and sex-specific changes in CART mRNA in rat hypothalamic nuclei induced by forced swim stress.

    Science.gov (United States)

    Balkan, Burcu; Gozen, Oguz; Koylu, Ersin O; Keser, Aysegul; Kuhar, Michael J; Pogun, Sakire

    2012-10-15

    Cocaine and amphetamine regulated transcript (CART) mRNA and peptides are highly expressed in the paraventricular (PVN), dorsomedial (DMH) and arcuate (ARC) nuclei of the hypothalamus. It has been suggested that these nuclei regulate the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system activity, and feeding behavior. Our previous studies showed that forced swim stress augmented CART peptide expression significantly in whole hypothalamus of male rats. In another study, forced swim stress increased the number of CART-immunoreactive cells in female PVN, whereas no effect was observed in male PVN or in the ARC nucleus of either sex. In the present study, we evaluated the effect of forced swim stress on CART mRNA expression in PVN, DMH and ARC nuclei in both male and female rats. Twelve male (stressed and controls, n=6 each) and 12 female (stressed and controls, n=6 each) Sprague-Dawley rats were used. Control animals were only handled, whereas forced swim stress procedure was applied to the stressed groups. Brains were dissected and brain sections containing PVN, DMH and ARC nuclei were prepared. CART mRNA levels were determined by in situ hybridization. In male rats, forced swim stress upregulated CART mRNA expression in DMH and downregulated it in the ARC. In female rats, forced swim stress increased CART mRNA expression in PVN and DMH, whereas a decrease was observed in the ARC nucleus. Our results show that forced swim stress elicits region- and sex-specific changes in CART mRNA expression in rat hypothalamus that may help in explaining some of the effects of stress.

  17. Dietary whey reduces energy intake and alters hypothalamic gene expression in obese phyto-oestrogen-deprived male rats.

    Science.gov (United States)

    Andreoli, María F; Stoker, Cora; Lazzarino, Gisela P; Canesini, Guillermina; Luque, Enrique H; Ramos, Jorge G

    2016-09-01

    Removing dietary phyto-oestrogens in adult male rats causes obesity and diabetes. As whey proteins have been reported to reduce food intake and improve glucose homoeostasis, we investigated whether they could attenuate susceptibility to obesity and diabetes due to phyto-oestrogen deprivation. To this end, thirty male Wistar rats were fed a high-phyto-oestrogen (HP) or a phyto-oestrogen-free (PF) diet for 10 weeks; six rats from each group were killed. The remaining HP animals (six animals) continued receiving the HP diet for 6 weeks. The remaining PF rats (twelve rats) were divided in two groups: one was given the PF diet and the other a variation of the PF diet plus whey protein (PF-W). Body weight, food intake and adipose tissue weights were recorded. Hypothalamic mRNA expressions of orexigenic (neuropeptide Y, agouti-related protein (AgRP)) and anorexigenic (pro-opiomelanocortin (POMC), cocaine-amphetamine-related transcript (CART)) neuropeptides were quantified by real-time PCR. Serum glucose, insulin and total thyroxine (T4), thyroid-stimulating hormone, testosterone and oestradiol were assessed. After 10 weeks of PF diet, increased body weight, adiposity and energy intake, with up-regulation of AgRP and down-regulation of POMC', were observed. Longer treatment exacerbated these results, increased total T4 levels, reduced oestradiol levels and impaired glucose homoeostasis. PF-W reduced energy intake and increased POMC expression; however, body weight and adiposity remained unchanged. PF-W could not prevent the hormonal changes or the high circulating glucose levels induced by phyto-oestrogen deprivation, but reduced fasting insulin. These data demonstrate that, although 6 weeks of whey administration could not prevent obesity in phyto-oestrogen-deprived rats, the reduction in energy intake and circulating insulin could be beneficial with longer treatments.

  18. Hypothalamic dysfunction

    Science.gov (United States)

    ... common causes of hypothalamic dysfunction are surgery, traumatic brain injury, tumors, and radiation. Other causes include: Anorexia nervosa or bulimia Bleeding Genetic disorders that cause iron ...

  19. Histamine Excites Rat Superior Vestibular Nuclear Neurons via Postsynaptic H1 and H2 Receptors in vitro

    Directory of Open Access Journals (Sweden)

    Qian-Xing Zhuang

    2012-09-01

    Full Text Available The superior vestibular nucleus (SVN, which holds a key position in vestibulo-ocular reflexes and nystagmus, receives direct hypothalamic histaminergic innervations. By using rat brainstem slice preparations and extracellular unitary recordings, we investigated the effect of histamine on SVN neurons and the underlying receptor mechanisms. Bath application of histamine evoked an excitatory response of the SVN neurons, which was not blocked by the low-Ca2+/high-Mg2+ medium, indicating a direct postsynaptic effect of the amine. Selective histamine H1 receptor agonist 2-pyridylethylamine and H2 receptor agonist dimaprit, rather than VUF8430, a selective H4 receptor agonist, mimicked the excitation of histamine on SVN neurons. In addition, selective H1 receptor antagonist mepyramine and H2 receptor antagonist ranitidine, but not JNJ7777120, a selective H4 receptor antagonist, partially blocked the excitatory response of SVN neurons to histamine. Moreover, mepyramine together with ranitidine nearly totally blocked the histamine-induced excitation. Immunostainings further showed that histamine H1 and H2 instead of H4 receptors existed in the SVN. These results demonstrate that histamine excites the SVN neurons via postsynaptic histamine H1 and H2 receptors, and suggest that the central histaminergic innervation from the hypothalamus may actively bias the SVN neuronal activity and subsequently modulate the SVN-mediated vestibular functions and gaze control.

  20. Identification of rat ventral tegmental area GABAergic neurons.

    Directory of Open Access Journals (Sweden)

    Elyssa B Margolis

    Full Text Available The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR activation produces reward by disinhibiting midbrain ventral tegmental area (VTA dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+. In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABA(B receptor agonist baclofen (0/6 inhibited, while all confirmed dopamine neurons were inhibited (19/19. The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.

  1. Dietary sodium intake induced myenteric neuron hypertrophy in Wistar rats

    Directory of Open Access Journals (Sweden)

    De Souza R.R.

    2000-01-01

    Full Text Available In the present study we investigated the effect of salt intake on myenteric neuron size of the colon of adult male Wistar rats. The animals were placed on either a high-salt (HS; 8%; 12 animals or a low-salt diet (LS; 0.15%; 12 animals for 15 or 52 weeks and blood pressure was measured. The sizes of myenteric neurons of the distal colon from both groups were measured. No difference in neuron size was observed between the HS and LS groups after 15 weeks. After 52 weeks on HS, neuron size was increased (P<0.005 when compared with the LS group. The rats also presented hypertension, which was significantly different at 52 weeks (142 ± 11 vs 119 ± 7 mmHg. These results suggest that a long time on an HS diet can significantly increase myenteric nerve cell size.

  2. Stem cells decreased neuronal cell death after hypoxic stress in primary fetal rat neurons in vitro.

    Science.gov (United States)

    Sakai, Tetsuro; Xu, Yan

    2012-01-01

    To explore stem cell-mediated neuronal protection through extracellular signaling pathways by transplanted stem cells, we sought to identify potential candidate molecules responsible for neuronal protection using an in vitro coculture system. Primary fetal rat hippocampal neurons underwent hypoxia (≤1% oxygen) for 96 h nad then were returned to a normoxic condition. The study group then received rat umbilical cord matrix-derived stem cells, while the control group received fresh media only. The experimental group showed decreased neuronal apoptosis compared to the control group [44.5 ± 1.6% vs. 71.0 ± 4.2% (mean ± SD, p = 0.0005) on day 5] and higher neuronal survival (4.9 ± 1.2 cells/100× field vs. 2.2 ± 0.3, p = 0.02 on day 5). Among 90 proteins evaluated using a protein array, stem cell coculture media showed increased protein secretion of TIMP-1 (5.61-fold), TIMP-2 (4.88), CNTF-Rα (3.42), activin A (2.20), fractalkine (2.04), CCR4 (2.02), and decreased secretion in MIP-2 (0.30-fold), AMPK α1 (0.43), TROY (0.48), and TIMP-3 (0.50). This study demonstrated that coculturing stem cells with primary neurons in vitro decreased neuronal cell death after hypoxia with significantly altered protein secretion. The results suggest that stem cells may offer neuronal protection through extracellular signaling.

  3. Effect of Nourishing “Yin”-Removing “Fire” Chinese Herbal Mixture on Hypothalamic NKB/NK3R Expression in Female Precocious Rats

    Directory of Open Access Journals (Sweden)

    Shiran Wang

    2014-01-01

    Full Text Available Aim. The present study aims to investigate the effects of nourishing “Yin”-removing “Fire” Chinese herb mixture on the hypothalamic NKB/NK3R expression in female precocious model rats. Materials and Methods. Female Sprague-Dawley rats were randomly divided into four groups: normal (N, central precocious puberty (CPP model (M, CPP fed with Chinese herbal mixture (CHM, and CPP fed with normal saline (MS. Rats on postnatal day 5 were given a single subcutaneous injection of 300 μg to establish CPP model rats. Rats of CHM and MS groups were continuously administered with nourishing “Yin”-removing “Fire” Chinese herb mixture or saline since postnatal day 15. The expressions of hypothalamic NKB/NK3R were detected by means of real-time PCR, western blot, and immunofluorescence histochemistry. Results. The day of vaginal opening and establishment of two regular estrous cycles were delayed in the CHM group compared with M and MS groups. The expression of hypothalamic NKB/NK3R mRNA and protein in the arcuate nucleus (ARC and medial preoptic (MPO area were decreased significantly in the CHM group compared with the M and MS groups on the day of onset-puberty. Conclusions. These results indicate that the NKB/NK3R signaling pathway might be involved in the effect of herbal mixture treatment on CPP.

  4. Metabolic Impact of Light Phase-Restricted Fructose Consumption Is Linked to Changes in Hypothalamic AMPK Phosphorylation and Melatonin Production in Rats

    Directory of Open Access Journals (Sweden)

    Juliana de Almeida Faria

    2017-03-01

    Full Text Available Recent studies show that the metabolic effects of fructose may vary depending on the phase of its consumption along with the light/dark cycle. Here, we investigated the metabolic outcomes of fructose consumption by rats during either the light (LPF or the dark (DPF phases of the light/dark cycle. This experimental approach was combined with other interventions, including restriction of chow availability to the dark phase, melatonin administration or intracerebroventricular inhibition of adenosine monophosphate-activated protein kinase (AMPK with Compound C. LPF, but not DPF rats, exhibited increased hypothalamic AMPK phosphorylation, glucose intolerance, reduced urinary 6-sulfatoxymelatonin (6-S-Mel (a metabolite of melatonin and increased corticosterone levels. LPF, but not DPF rats, also exhibited increased chow ingestion during the light phase. The mentioned changes were blunted by Compound C. LPF rats subjected to dark phase-restricted feeding still exhibited increased hypothalamic AMPK phosphorylation but failed to develop the endocrine and metabolic changes. Moreover, melatonin administration to LPF rats reduced corticosterone and prevented glucose intolerance. Altogether, the present data suggests that consumption of fructose during the light phase results in out-of-phase feeding due to increased hypothalamic AMPK phosphorylation. This shift in spontaneous chow ingestion is responsible for the reduction of 6-S-Mel and glucose intolerance.

  5. Effects of perinatal exposure to phthalate/adipate esters on hypothalamic gene expression and sexual behavior in rats.

    Science.gov (United States)

    Lee, Hwi-Cheul; Yamanouchi, Keitaro; Nishihara, Masugi

    2006-06-01

    Our previous research has identified the granulin (grn) and p130 genes as sex steroid-regulated genes in the neonatal rat hypothalamus that might be involved in sexual differentiation of the brain. Since phthalate/adipate esters such as di-n-butyl phthalate (DBP), diisononyl phthalate (DINP), and di-2-ethylhexyl adipate (DEHA) are suspected to interfere with the endocrine system as environmental endocrine disruptors having estrogenic or antiandrogenic properties, these chemicals may affect sexual differentiation of the brain. The present study assessed the effects of perinatal exposure to DBP, DINP, and DEHA on grn and p130 mRNA expressions in the hypothalamus on postnatal day (PND) 7 and sexual behaviors after maturation in rats. Maternal rats were given a phytoestrogen-free diet containing different doses of DBP (20, 200, 2,000, and 10,000 ppm), DINP (40, 400, 4,000, and 20,000 ppm) and DEHA (480, 2,400, and 12,000 ppm) from gestational day 15 to the day of weaning (PND 21). DBP and DINP exposure during the perinatal period resulted in an increase in hypothalamic grn and p130 mRNA levels in females and males, respectively, but DEHA exposure decreased expression levels of grn in males and p130 in females, although the effects were not dose-dependent. After maturation, male rats that were exposed to several doses of DBP, DINP, and DEHA displayed decreased copulatory behavior. The lordosis quotient was decreased in females perinatally exposed to DBP, DINP, and DEHA at all the doses used. On the other hand, serum levels of LH and FSH in both sexes and the estrous cycles in females were not affected by the treatments. These results suggest that inappropriate expression of grn and/or p130 genes in the brains of male and female neonatal rats by perinatal exposure to these chemicals may exert permanent effects on the hypothalamus, thereby decreasing sexual behavior after maturation.

  6. Hypothalamic-pituitary adrenal (HPAA) axis function in adult Fischer-344 rats exposed during development to neurotoxic chemicals perinatally.

    Science.gov (United States)

    Rosecrans, J A; Johnson, J H; Tilson, H A; Hong, J S

    1984-01-01

    The major objective of these experiments was to determine long-term effects on the hypothalamic-pituitary adrenal axis (HPAA) of adult rats exposed during development to chlordecone, an organochlorine insecticide. Chlordecone was administered to mothers prenatally plus the first 12 days of the neonatal period (6 ppm in the diet) or neonatally via a single subcutaneous injection to rats at 4 days of age (1 mg/pup in 20 micrograms of DMSO). DMSO (20 microliters/pup) and dexamethasone (100 micrograms/pup in 20 microliters saline) were also injected on day 4. HPAA function was evaluated at 70-80 days of age. Responsiveness of the HPAA to a repeated stressor was evaluated by exposing rats of each treatment group to a 7-day stress-induced analgesia (SIA) paradigm consisting of a daily 15 sec foot-shock (0.9 mA) exposure which was preceded by a 15 sec white noise conditioned stimulus. The behavioral response to daily stress was evaluated by measuring tail-flick latencies immediately before and/or after each stress exposure. The conditioned response to stress was evaluated 24 hours after the last of 7 daily foot-shock sessions in which rats of each treatment and experimental group were exposed to the shock chamber only. All rats were killed 15 minutes after the final session and tissue (serum and adrenals) were removed and frozen for later chemical analysis; serum and adrenal corticosterone (CS) and serum prolactin (Prl) levels were measured. Perinatal exposure to chlordecone did not significantly alter the behavioral and/or neuroendocrine responses to stress. Ambient hormone levels (both CS and Prl), however, were uniformly attenuated by chlordecone.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Increased Ubqln2 expression causes neuron death in transgenic rats.

    Science.gov (United States)

    Huang, Bo; Wu, Qinxue; Zhou, Hongxia; Huang, Cao; Xia, Xu-Gang

    2016-10-01

    Pathogenic mutation of ubiquilin 2 (UBQLN2) causes neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. How UBQLN2 mutations cause the diseases is not clear. While over-expression of UBQLN2 with pathogenic mutation causes neuron death in rodent models, deletion of the Ubqln2 in rats has no effect on neuronal function. Previous findings in animal models suggest that UBQLN2 mutations cause the diseases mainly through a gain rather than a loss of functions. To examine whether the toxic gain in UBQLN2 mutation is related to the enhancement of UBQLN2 functions, we created new transgenic rats over-expressing wild-type human UBQLN2. Considering that human UBQLN2 may not function properly in the rat genome, we also created transgenic rats over-expressing rat's own Ubqln2. When over-expressed in rats, both human and rat wild-type Ubqln2 caused neuronal death and spatial learning deficits, the pathologies that were indistinguishable from those observed in mutant UBQLN2 transgenic rats. Over-expressed wild-type UBQLN2 formed protein inclusions attracting the autophagy substrate sequestosome-1 and the proteasome component 26S proteasome regulatory subunit 7. These findings suggest that excess UBQLN2 is toxic rather than protective to neurons and that the enhancement of UBQLN2 functions is involved in UBQLN2 pathogenesis. Pathogenic mutation in ubiquilin 2 (UBQLN2) causes neurodegeneration in ALS and FTLD. Studies in rodent models suggest a gain of toxic function in mutant UBQLN2. We created new transgenic rats as a relevant model and examined whether enhancing wild-type UBQLN2 expression is implicated in the pathogenesis of mutant UBQLN2. We observed that over-expression of human or rat wild-type Ubqln2 caused protein aggregation and neuronal death in transgenic rats. Our findings suggest that excess UBQLN2 is toxic rather than protective to neurons and that uncontrolled enhancement of UBQLN2 function is involved in UBQLN2 pathogenesis

  8. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales

    Science.gov (United States)

    Mandelblat-Cerf, Yael; Ramesh, Rohan N; Burgess, Christian R; Patella, Paola; Yang, Zongfang; Lowell, Bradford B; Andermann, Mark L

    2015-01-01

    Agouti-related-peptide (AgRP) neurons—interoceptive neurons in the arcuate nucleus of the hypothalamus (ARC)—are both necessary and sufficient for driving feeding behavior. To better understand the functional roles of AgRP neurons, we performed optetrode electrophysiological recordings from AgRP neurons in awake, behaving AgRP-IRES-Cre mice. In free-feeding mice, we observed a fivefold increase in AgRP neuron firing with mounting caloric deficit in afternoon vs morning recordings. In food-restricted mice, as food became available, AgRP neuron firing dropped, yet remained elevated as compared to firing in sated mice. The rapid drop in spiking activity of AgRP neurons at meal onset may reflect a termination of the drive to find food, while residual, persistent spiking may reflect a sustained drive to consume food. Moreover, nearby neurons inhibited by AgRP neuron photostimulation, likely including satiety-promoting pro-opiomelanocortin (POMC) neurons, demonstrated opposite changes in spiking. Finally, firing of ARC neurons was also rapidly modulated within seconds of individual licks for liquid food. These findings suggest novel roles for antagonistic AgRP and POMC neurons in the regulation of feeding behaviors across multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.07122.001 PMID:26159614

  9. Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes.

    Science.gov (United States)

    Petito, C K; Pulsinelli, W A

    1984-06-01

    Mechanisms involved in the postischemic delay in neuronal recovery or death in rat hippocampus were evaluated by light and electron microscopy at 3, 15, 30, and 120 min and 24, 36, 48, and 72 h following severe cerebral ischemia that was produced by permanent occlusion of the vertebral arteries and 30-min occlusion of the common carotid arteries. During the early postischemic period, neurons in the Ca1 and Ca3 regions both showed transient mitochondrial swelling followed by the disaggregation of polyribosomes, decrease in rough endoplasmic reticulum (RER), loss of Golgi apparatus (GA) cisterns, and decrease in GA vesicles . Recovery of these organelles in Ca3 neurons was first noted between 24 and 36 h and was accompanied by a marked proliferation of smooth endoplasmic reticulum (SER). Many Ca1 neurons initially recovered between 24 and 36 h, but subsequent cell death at 48-72 h was often preceded by peripheral chromatolysis, constriction and shrinkage of the proximal dendrites, and cytoplasmic dilatation that was continuous with focal expansion of RER cisterns. Because SER accumulates in resistant Ca3 neurons and proximal neuronal processes are damaged in vulnerable Ca1 neurons, we hypothesize that delayed cell recovery or death in vulnerable and resistant postischemic hippocampal neurons is related to abnormalities in neuronal processes.

  10. Intracellular calcium spikes in rat suprachiasmatic nucleus neurons induced by BAPTA-based calcium dyes.

    Science.gov (United States)

    Hong, Jin Hee; Min, Cheol Hong; Jeong, Byeongha; Kojiya, Tomoyoshi; Morioka, Eri; Nagai, Takeharu; Ikeda, Masayuki; Lee, Kyoung J

    2010-03-10

    Circadian rhythms in spontaneous action potential (AP) firing frequencies and in cytosolic free calcium concentrations have been reported for mammalian circadian pacemaker neurons located within the hypothalamic suprachiasmatic nucleus (SCN). Also reported is the existence of "Ca(2+) spikes" (i.e., [Ca(2+)](c) transients having a bandwidth of 10 approximately 100 seconds) in SCN neurons, but it is unclear if these SCN Ca(2+) spikes are related to the slow circadian rhythms. We addressed this issue based on a Ca(2+) indicator dye (fluo-4) and a protein Ca(2+) sensor (yellow cameleon). Using fluo-4 AM dye, we found spontaneous Ca(2+) spikes in 18% of rat SCN cells in acute brain slices, but the Ca(2+) spiking frequencies showed no day/night variation. We repeated the same experiments with rat (and mouse) SCN slice cultures that expressed yellow cameleon genes for a number of different circadian phases and, surprisingly, spontaneous Ca(2+) spike was barely observed (fluo-4 AM or BAPTA-AM was loaded in addition to the cameleon-expressing SCN cultures, however, the number of cells exhibiting Ca(2+) spikes was increased to 13 approximately 14%. Despite our extensive set of experiments, no evidence of a circadian rhythm was found in the spontaneous Ca(2+) spiking activity of SCN. Furthermore, our study strongly suggests that the spontaneous Ca(2+) spiking activity is caused by the Ca(2+) chelating effect of the BAPTA-based fluo-4 dye. Therefore, this induced activity seems irrelevant to the intrinsic circadian rhythm of [Ca(2+)](c) in SCN neurons. The problems with BAPTA based dyes are widely known and our study provides a clear case for concern, in particular, for SCN Ca(2+) spikes. On the other hand, our study neither invalidates the use of these dyes as a whole, nor undermines the potential role of SCN Ca(2+) spikes in the function of SCN.

  11. Intracellular calcium spikes in rat suprachiasmatic nucleus neurons induced by BAPTA-based calcium dyes.

    Directory of Open Access Journals (Sweden)

    Jin Hee Hong

    Full Text Available BACKGROUND: Circadian rhythms in spontaneous action potential (AP firing frequencies and in cytosolic free calcium concentrations have been reported for mammalian circadian pacemaker neurons located within the hypothalamic suprachiasmatic nucleus (SCN. Also reported is the existence of "Ca(2+ spikes" (i.e., [Ca(2+](c transients having a bandwidth of 10 approximately 100 seconds in SCN neurons, but it is unclear if these SCN Ca(2+ spikes are related to the slow circadian rhythms. METHODOLOGY/PRINCIPAL FINDINGS: We addressed this issue based on a Ca(2+ indicator dye (fluo-4 and a protein Ca(2+ sensor (yellow cameleon. Using fluo-4 AM dye, we found spontaneous Ca(2+ spikes in 18% of rat SCN cells in acute brain slices, but the Ca(2+ spiking frequencies showed no day/night variation. We repeated the same experiments with rat (and mouse SCN slice cultures that expressed yellow cameleon genes for a number of different circadian phases and, surprisingly, spontaneous Ca(2+ spike was barely observed (<3%. When fluo-4 AM or BAPTA-AM was loaded in addition to the cameleon-expressing SCN cultures, however, the number of cells exhibiting Ca(2+ spikes was increased to 13 approximately 14%. CONCLUSIONS/SIGNIFICANCE: Despite our extensive set of experiments, no evidence of a circadian rhythm was found in the spontaneous Ca(2+ spiking activity of SCN. Furthermore, our study strongly suggests that the spontaneous Ca(2+ spiking activity is caused by the Ca(2+ chelating effect of the BAPTA-based fluo-4 dye. Therefore, this induced activity seems irrelevant to the intrinsic circadian rhythm of [Ca(2+](c in SCN neurons. The problems with BAPTA based dyes are widely known and our study provides a clear case for concern, in particular, for SCN Ca(2+ spikes. On the other hand, our study neither invalidates the use of these dyes as a whole, nor undermines the potential role of SCN Ca(2+ spikes in the function of SCN.

  12. Damage of hippocampal neurons in rats with chronic alcoholism

    Institute of Scientific and Technical Information of China (English)

    Ailin Du; Hongbo Jiang; Lei Xu; Na An; Hui Liu; Yinsheng Li; Ruiling Zhang

    2014-01-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deifcits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6%alcohol for 42 days. Endog-enous hydrogen sulifde content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were signiifcantly increased, while F-actin expression was decreased. Hippocampal neurons in rats with chronic alcoholism appeared to have a fuzzy nuclear mem-brane, mitochondrial edema, and ruptured mitochondrial crista. These findings suggest that chronic alcoholism can cause learning and memory decline in rats, which may be associated with the hydrogen sulfide/cystathionine-beta-synthase system, mitochondrial damage and reduced expression of F-actin.

  13. Mash1 efifciently reprograms rat astrocytes into neurons

    Institute of Scientific and Technical Information of China (English)

    Daofang Ding; Leqin Xu; Hao Xu; Xiaofeng Li; Qianqian Liang; Yongjian Zhao; Yongjun Wang

    2014-01-01

    To date, it remains poorly understood whether astrocytes can be easily reprogrammed into neurons. Mash1 and Brn2 have been previously shown to cooperate to reprogram fibroblasts into neurons. In this study, we examined astrocytes from 2-month-old Sprague-Dawley rats, and found that Brn2 was expressed, but Mash1 was not detectable. Thus, we hypothesized that Mash1 alone could be used to reprogram astrocytes into neurons. We transfected a recombinant MSCV-MASH1 plasmid into astrocytes for 72 hours, and saw that all cells expressed Mash1. One week later, we observed the changes in morphology of astrocytes, which showed typical neuro-nal characteristics. Moreover,β-tubulin expression levels were signiifcantly higher in astrocytes expressing Mash1 than in control cells. These results indicate that Mash1 alone can reprogram astrocytes into neurons.

  14. Inlfammatory response and neuronal necrosis in rats with cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Lingfeng Wu; Kunnan Zhang; Guozhu Hu; Haiyu Yang; Chen Xie; Xiaomu Wu

    2014-01-01

    In the middle cerebral artery occlusion model of ischemic injury, inlfammation primarily occurs in the infarct and peripheral zones. In the ischemic zone, neurons undergo necrosis and apop-tosis, and a large number of reactive microglia are present. In the present study, we investigated the pathological changes in a rat model of middle cerebral artery occlusion. Neuronal necrosis appeared 12 hours after middle cerebral artery occlusion, and the peak of neuronal apoptosis ap-peared 4 to 6 days after middle cerebral artery occlusion. Inlfammatory cytokines and microglia play a role in damage and repair after middle cerebral artery occlusion. Serum intercellular cell adhesion molecule-1 levels were positively correlated with the permeability of the blood-brain barrier. These ifndings indicate that intercellular cell adhesion molecule-1 may be involved in blood-brain barrier injury, microglial activation, and neuronal apoptosis. Inhibiting blood-brain barrier leakage may alleviate neuronal injury following ischemia.

  15. Production of compartmented cultures of rat sympathetic neurons.

    Science.gov (United States)

    Campenot, Robert B; Lund, Karen; Mok, Sue-Ann

    2009-01-01

    The compartmented culture, in which primary neurons plated in a proximal compartment send their axons under silicone grease barriers and into left and right distal compartments, has enhanced the experimental capabilities of neuronal cultures. Treatments can be applied separately to cell bodies/proximal axons or distal axons, and cell bodies/proximal axons and distal axons can be separately harvested and analyzed. Distal axons can be axotomized, and the neurons can be studied while their axons regenerate. Construction of the culture dishes requires 3 h for 48 cultures, and preparing the neurons also requires 3 h. Compartmented cultures provide enough cellular material for biochemical analyses such as immunoblotting. The uses of compartmented cultures have included studies of neurotrophic factor retrograde signaling, axonal transport, and axonal protein and lipid biosynthesis. Here we focus on sympathetic neurons cultured from neonatal rats and provide protocols for the production and some of the uses of compartmented cultures.

  16. Apoptotic death of olfactory sensory neurons in the adult rat.

    Science.gov (United States)

    Deckner, M L; Risling, M; Frisén, J

    1997-01-01

    Olfactory sensory neurons only live for about 1 month in most mammals. It is not fully understood whether the short life span of these neurons is due to necrotic death, or if these cells die by apoptosis. One characteristic of cells undergoing apoptotic cell death is internucleosomal DNA-fragmentation. We have used TdT-mediated dUTP-digoxigenin nick end labeling (TUNEL) to detect cells undergoing DNA-fragmentation in situ. In the intact olfactory epithelium of adult rats a subpopulation of basal immature neuronal progenitor cells, as well as mature olfactory sensory neurons, showed DNA-fragmentation. The number of TUNEL-labeled neurons increased dramatically 1.5 days after transection of the fila olfactoria and declined to control levels by Day 4 after the injury. In order to relate DNA-fragmentation to ultrastructural characteristics of apoptosis we modified the TUNEL-labeling protocol to enable studies of TUNEL-labeled cells in the electron microscope. This confirmed that TUNEL-labeled neurons showed morphological characteristics of apoptosis. The data provide evidence for apoptotic death of neurons in the adult mammalian nervous system. The turnover of olfactory sensory neurons is, at least in part, regulated by apoptosis and disruption of the contact with the olfactory bulb results in massive apoptotic death of neurons in the olfactory epithelium.

  17. Morphology and ontogeny of rat perirhinal cortical neurons.

    Science.gov (United States)

    Furtak, Sharon Christine; Moyer, James Russell; Brown, Thomas Huntington

    2007-12-10

    Golgi-impregnated neurons from rat perirhinal cortex (PR) were classified into one of 15 distinct morphological categories (N = 6,891). The frequency of neurons in each cell class was determined as a function of the layer of PR and the age of the animal, which ranged from postnatal day 0 (P0) to young adulthood (P45). The developmental appearance of Golgi-impregnated neurons conformed to the expected "inside-out" pattern of development, meaning that cells populated in deep before superficial layers of PR. The relative frequencies of different cell types changed during the first 2 weeks of postnatal development. The largest cells, which were pyramidal and spiny multipolar neurons, appeared earliest. Aspiny stellate neurons were the last to appear. The total number of Golgi-impregnated neurons peaked at P10-12, corresponding to the time of eye-opening. This early increase in the number of impregnated neurons parallels observations in other cortical areas. The relative frequency of the 15 cell types remained constant between P14 to P45. The proportion of pyramidal neurons in PR ( approximately 50%) was much smaller than is typical of neocortex ( approximately 70%). A correspondingly larger proportion of PR neurons were nonpyramidal cells that are less common in neocortex. The relative frequency distribution of cell types creates an overall impression of considerable morphological diversity, which is arguably related to the particular manner in which this periallocortical brain region processes and stores information.

  18. MCT2 expression and lactate influx in anorexigenic and orexigenic neurons of the arcuate nucleus.

    Directory of Open Access Journals (Sweden)

    Christian Cortes-Campos

    Full Text Available Hypothalamic neurons of the arcuate nucleus control food intake, releasing orexigenic and anorexigenic neuropeptides in response to changes in glucose concentration. Several studies have suggested that the glucosensing mechanism is governed by a metabolic interaction between neurons and glial cells via lactate flux through monocarboxylate transporters (MCTs. Hypothalamic glial cells (tanycytes release lactate through MCT1 and MCT4; however, similar analyses in neuroendocrine neurons have yet to be undertaken. Using primary rat hypothalamic cell cultures and fluorimetric assays, lactate incorporation was detected. Furthermore, the expression and function of MCT2 was demonstrated in the hypothalamic neuronal cell line, GT1-7, using kinetic and inhibition assays. Moreover, MCT2 expression and localization in the Sprague Dawley rat hypothalamus was analyzed using RT-PCR, in situ hybridization and Western blot analyses. Confocal immunohistochemistry analyses revealed MCT2 localization in neuronal but not glial cells. Moreover, MCT2 was localized to ∼90% of orexigenic and ~60% of anorexigenic neurons as determined by immunolocalization analysis of AgRP and POMC with MCT2-positives neurons. Thus, MCT2 distribution coupled with lactate uptake by hypothalamic neurons suggests that hypothalamic neurons control food intake using lactate to reflect changes in glucose levels.

  19. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1–7 Cells for Evaluation of the Neuroendocrine Effects of Essential Oils

    Directory of Open Access Journals (Sweden)

    Dai Mizuno

    2015-01-01

    Full Text Available Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer’s disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1–7 cells. In this study, we evaluated the effects of essential oils on neuronal death induced by hydrogen peroxide (H2O2, aluminum, zinc, or the antagonist of estrogen receptor (tamoxifen. Among tests of various essential oils, we found that H2O2-induced neuronal death was attenuated by the essential oils of damask rose, eucalyptus, fennel, geranium, ginger, kabosu, mandarin, myrrh, and neroli. Damask rose oil had protective effects against aluminum-induced neurotoxicity, while geranium and rosemary oil showed protective activity against zinc-induced neurotoxicity. In contrast, geranium oil and ginger oil enhanced the neurotoxicity of tamoxifen. Our in vitro assay system could be useful for the neuropharmacological and endocrine pharmacological studies of essential oils.

  20. Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP

    Science.gov (United States)

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Gallego, Rosalia; Gandara, Marina; Lear, Pamela; Lopez, Miguel; Dieguez, Carlos; Nogueiras, Ruben

    2014-01-01

    Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats. PMID:24944903

  1. Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP.

    Science.gov (United States)

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Gallego, Rosalia; Gandara, Marina; Lear, Pamela; Lopez, Miguel; Dieguez, Carlos; Nogueiras, Ruben

    2014-07-01

    Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats.

  2. l-Leucine Supplementation Worsens the Adiposity of Already Obese Rats by Promoting a Hypothalamic Pattern of Gene Expression that Favors Fat Accumulation

    Directory of Open Access Journals (Sweden)

    Thais T. Zampieri

    2014-04-01

    Full Text Available Several studies showed that l-leucine supplementation reduces adiposity when provided before the onset of obesity. We studied rats that were exposed to a high-fat diet (HFD for 10 weeks before they started to receive l-leucine supplementation. Fat mass was increased in l-leucine-supplemented rats consuming the HFD. Accordingly, l-leucine produced a hypothalamic pattern of gene expression that favors fat accumulation. In conclusion, l-leucine supplementation worsened the adiposity of rats previously exposed to HFD possibly by central mechanisms.

  3. Changes of growth hormone-releasing hormone and somatostatin neurons in the rat hypothalamus induced by genistein: a stereological study.

    Science.gov (United States)

    Trifunović, Svetlana; Manojlović-Stojanoski, Milica; Ristić, Nataša; Nestorović, Nataša; Medigović, Ivana; Živanović, Jasmina; Milošević, Verica

    2016-12-01

    Genistein is a plant-derived estrogenic isoflavone commonly found in dietary and therapeutic supplements, due to its potential health benefits. Growth hormone-releasing hormone (GHRH) and somatostatin (SS) are neurosecretory peptides synthesized in neurons of the hypothalamus and regulate the growth hormone secretion. Early reports indicate that estrogens have highly involved in the regulation of GHRH and SS secretions. Since little is known about the potential effects of genistein on GHRH and SS neurons, we exposed rats to genistein. Genistein were administered to adult rats in dose of 30 mg/kg, for 3 weeks. The estradiol-dipropionate treatment was used as the adequate controls to genistein. Using applied stereology on histological sections of hypothalamus, we obtained the quantitative information on arcuate (Arc) and periventricular (Pe) nucleus volume and volume density of GHRH neurons and SS neurons. Image analyses were used to obtain GHRH and SS contents in the median eminence (ME). Administration of estradiol-dipropionate caused the increase of Arc and Pe nucleus volume, SS neuron volume density, GHRH and SS staining intensity in the ME, when compared with control. Genistein treatment increased: Arc nucleus volume and the volume density of GHRH neurons (by 26%) and SS neurons (1.5 fold), accompanied by higher GHRH and SS staining intensity in the ME, when compared to the orhidectomized group. These results suggest that genistein has a significant effect on hypothalamic region, involved in the regulation of somatotropic system function, and could contribute to the understanding of genistein as substance that alter the hormonal balance.

  4. Time course of the estradiol-dependent induction of oxytocin receptor binding in the ventromedial hypothalamic nucleus of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.E.; Ball, G.F.; Coirini, H.; Harbaugh, C.R.; McEwen, B.S.; Insel, T.R. (National Institute of Mental Health, Poolesville, MD (USA))

    1989-09-01

    Oxytocin (OT) transmission is involved in the steroid-dependent display of sexual receptivity in rats. One of the biochemical processes stimulated by the ovarian steroid 17 beta-estradiol (E2) that is relevant to reproduction is the induction of OT receptor binding in the ventromedial hypothalamic nucleus (VMN). The purpose of these experiments was to determine if E2-induced changes in OT receptor binding in the VMN occur within a time frame relevant to cyclic changes in ovarian steroid secretion. OT receptor binding was measured in the VMN of ovariectomized rats implanted for 0-96 h with E2-containing Silastic capsules. The rate of decay of OT receptor binding was measured in another group of animals 6-48 h after capsule removal. Receptors were labeled with the specific OT receptor antagonist ({sup 125}I)d(CH2)5(Tyr(Me)2,Thr4,Tyr-NH2(9))OVT, and binding was measured with quantitative autoradiographic methods. In addition, plasma E2 levels and uterine weights were assessed in animals from each treatment condition. Significant increases in E2-dependent OT receptor binding and uterine weight occurred within 24 h of steroid treatment. After E2 withdrawal, OT receptor binding and uterine weight decreased significantly within 24 h. These results are consistent with the hypothesis that steroid modulation of OT receptor binding is necessary for the induction of sexual receptivity.

  5. Sleep deprivation alters energy homeostasis through non-compensatory alterations in hypothalamic insulin receptors in Wistar rats.

    Science.gov (United States)

    Moraes, Danilo Alves; Venancio, Daniel Paulino; Suchecki, Deborah

    2014-11-01

    Studies have shown a gradual reduction of sleep time in the general population, accompanied by increased food intake, representing a risk for developing obesity, type II diabetes and cardiovascular disease. Rats subjected to paradoxical sleep deprivation (PSD) exhibit feeding and metabolic alterations, both of which are regulated by the communication between peripheral signals and the hypothalamus. This study aimed to investigate the daily change of 96 h of PSD-induced food intake, body weight, blood glucose, plasma insulin and leptin concentrations and the expression of their receptors in the hypothalamus of Wistar rats. Food intake was assessed during the light and dark phases and was progressively increased in sleep-deprived animals, during the light phase. PSD produced body weight loss, particularly on the first day, and decreased plasma insulin and leptin levels, without change in blood glucose levels. Reduced leptin levels were compensated by increased expression of leptin receptors in the hypothalamus, whereas no compensations occurred in insulin receptors. The present results on body weight loss and increased food intake replicate previous studies from our group. The fact that reduced insulin levels did not lead to compensatory changes in hypothalamic insulin receptors, suggests that this hormone may be, at least in part, responsible for PSD-induced dysregulation in energy metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats.

    Science.gov (United States)

    Faria, Juliana A; Kinote, Andrezza; Ignacio-Souza, Letícia M; de Araújo, Thiago M; Razolli, Daniela S; Doneda, Diego L; Paschoal, Lívia B; Lellis-Santos, Camilo; Bertolini, Gisele L; Velloso, Lício A; Bordin, Silvana; Anhê, Gabriel F

    2013-07-15

    Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

  7. Specific Features of the Hypothalamic Leptin Signaling Response to Cold Exposure Are Reflected in Peripheral Blood Mononuclear Cells in Rats and Ferrets

    Directory of Open Access Journals (Sweden)

    Bàrbara Reynés

    2017-08-01

    Full Text Available Objectives: Cold exposure induces hyperphagia to counteract fat loss related to lipid mobilization and thermogenic activation. The aim of this study was investigate on the molecular mechanisms involved in cold-induced compensatory hyperphagia.Methods: We analyzed the effect of cold exposure on gene expression of orexigenic and anorexigenic peptides, and of leptin signaling-related genes in the hypothalamus of rats at different ages (1, 2, 4, and 6 months, as well as in ferrets. We also evaluated the potential of peripheral blood mononuclear cells to reflect hypothalamic molecular responses.Results: As expected, cold exposure induced hypoleptinemia in rats, which could be responsible for the increased ratio of orexigenic/anorexigenic peptides gene expression in the hypothalamus, mainly due to decreased anorexigenic gene expression, especially in young animals. In ferrets, which resemble humans more closely, cold exposure induced greater changes in hypothalamic mRNA levels of orexigenic genes. Despite the key role of leptin in food intake control, the effect of cold exposure on the expression of key hypothalamic leptin signaling cascade genes is not clear. In our study, cold exposure seemed to affect leptin signaling in 4-month-old rats (increased Socs3 and Lepr expression, likely associated with the smaller-increase in food intake and decreased body weight observed at this particular age. Similarly, cold exposed ferrets showed greater hypothalamic Socs3 and Stat3 gene expression. Interestingly, peripheral blood mononuclear cells (PBMC mimicked the hypothalamic increase in Lepr and Socs3 observed in 4-month-old rats, and the increased Socs3 mRNA expression observed in ferrets in response to cold exposure.Conclusions: The most outstanding result of our study is that PBMC reflected the specific modulation of leptin signaling observed in both animal models, rats and ferrets, which points forwards PBMC as easily obtainable biological material to be

  8. Coculture of rat embryonic proprioceptive sensory neurons and myotubes

    NARCIS (Netherlands)

    Copray, S; Liem, R; MantinghOtter, [No Value; Brouwer, N

    1996-01-01

    With the aim to study the cellular mechanisms underlying the process of muscle spindle (re)generation, dorsal root ganglia (DRG) neurons derived from 16-day rat embryos were cocultured with developing myotubes in a compartmentalized culture device. To accomplish the selective survival and neurite fo

  9. Sulforaphane Prevents Neuronal Apoptosis and Memory Impairment in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Gengyin Wang

    2016-08-01

    Full Text Available Background/Aims: To explore the effects of sulforaphane (SFN on neuronal apoptosis in hippocampus and memory impairment in diabetic rats. Methods: Thirty male rats were randomly divided into normal control, diabetic model and SFN treatment groups (N = 10 in each group. Streptozotocin (STZ was applied to establish diabetic model. Water Morris maze task was applied to test learning and memory. Tunel assaying was used to detect apoptosis in hippocampus. The expressions of Caspase-3 and myeloid cell leukemia 1(MCL-1 were detected by western blotting. Neurotrophic factor levels and AKT/GSK3β pathway were also detected. Results: Compared with normal control, learning and memory were apparently impaired, with up-regulation of Caspase-3 and down-regulation of MCL-1 in diabetic rats. Apoptotic neurons were also found in CA1 region after diabetic modeling. By contrast, SFN treatment prevented the memory impairment, decreased the apoptosis of hippocampal neurons. SFN also attenuated the abnormal expression of Caspase-3 and MCL-1 in diabetic model. Mechanically, SFN treatment reversed diabetic modeling-induced decrease of p-Akt, p-GSK3β, NGF and BDNF expressions. Conclusion: SFN could prevent the memory impairment and apoptosis of hippocampal neurons in diabetic rat. The possible mechanism was related to the regulation of neurotropic factors and Akt/GSK3β pathway.

  10. Histochemical demonstration of mercury induced changes in rat neurons

    DEFF Research Database (Denmark)

    Danscher, G; Schrøder, H D

    1979-01-01

    A histochemical method modified for ultrastructural studies of mercury induced changes is described. Rat neurons from areas known to be influenced by mercury are used as examples. The histochemical reaction, suggested to be caused by polymercury sulphide complexes, is localized to "dense bodies...

  11. Rhynchophylline Protects Cultured Rat Neurons against Methamphetamine Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Dan Dan Xu

    2012-01-01

    Full Text Available Rhynchophylline (Rhy is an active component isolated from species of the genus Uncaria which has been used for the treatment of ailments to the central nervous system in traditional Chinese medicine. Besides acting as a calcium channel blocker, Rhy was also reported to be able to protect against glutamate-induced neuronal death. We thus hypothesize that Rhy may have neuroprotective activity against methamphetamine (MA. The primary neurons were cultured directly from the cerebral cortex of neonatal rats, acting as in vitro model in the present study. The neurotoxicity of MA and the protective effect of Rhy were evaluated by MTT assay. The effects of MA, Rhy or their combination on intracellular free calcium concentration ([Ca2+]i were determined in individual neocortical neurons by the Fluo-3/AM tracing method. The MTT assay demonstrated that MA has a dose-dependent neurotoxicity in neuronal cultures. The addition of Rhy prior to the exposure to MA prevented neuronal death. Time course studies with the Fluo-3/AM probe showed that Rhy significantly decreased neuronal [Ca2+]i which was elevated by the exposure to MA. Our results suggested that Rhy can protect the neuronal cultures against MA exposure and promptly attenuate intracellular calcium overload triggered by MA challenge. This is the first report demonstrating an inhibitory effect of Rhy against MA impairment in cultured neurons in vitro.

  12. Norepinephrine uptake by hypothalamic tissue from the rat related to feeding

    NARCIS (Netherlands)

    Gugten, J. van der; Slangen, J.L.

    1957-01-01

    Norepinephrine (NE) uptake by rat hypothalamus in vitro was studied in relation to food intake. Significant daily variations in NE uptake were observed in caudal hypothalamus from freely feeding rats. A maximal elevation occurred at the beginning of the night when food intake is also increasing to a

  13. A Modified Technique for Culturing Primary Fetal Rat Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Sui-Yi Xu

    2012-01-01

    Full Text Available The study explored a modified primary culture system for fetal rat cortical neurons. Day E18 embryos from pregnant Sprague Dawley rats were microdissected under a stereoscope. To minimize enzymatic damage to the cultured neurons, we applied a sequential digestion protocol using papain and Dnase I. The resulting sifted cell suspension was seeded at a density of 50,000 cells per cm2 onto 0.1 mg/mL L-PLL-covered vessels. After a four-hour incubation in high-glucose Dulbecco’s Modified Eagle’s Medium (HG-DMEM to allow the neurons to adhere, the media was changed to neurobasal medium that was refreshed by changing half of the volume after three days followed by a complete medium change every week. The cells displayed progressively robust neurite extension, and nonneuronal-like cells could barely be detected by five days in vitro (DIV; cell growth was still substantial at 14 DIV. Neurons were identified by β-tubulin III immunofluorescence, and neuronal purity within the cultures was assessed at over 95% by both flow cytometry and by dark-field counting of β-tubulin III-positive cells. These results suggest that the protocol was successful and that the high purity of neurons in this system could be used as the basis for generating various cell models of neurological disease.

  14. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Directory of Open Access Journals (Sweden)

    Vanessa R. Yingling

    2016-01-01

    Full Text Available Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV at maturity.Methods. Female rats (25 days old were assigned to a control (C group (n = 45 that received saline injections (.2 cc or an experimental group (GnRH-a (n = 45 that received gonadotropin releasing hormone antagonist injections (.24 mg per dose for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a. The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R (n = 15 and (G-R (n = 15. The remaining animals had an ovariectomy surgery (OVX at 185 days of age and were sacrificed 40 days later (C-OVX (n = 15 and (G-OVX (n = 15. After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX and insulin-like growth factor 1 (IGF-1 were measured. Two-way ANOVA (2 groups (GnRH-a and Control X 3 time points (Injection Protocol, Recovery, post-OVX was computed.Results. GnRH-a injections suppressed uterine weights (72% and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19% following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  15. Evidence for a role of nitric oxide in hindlimb vasodilation induced by hypothalamic stimulation in anesthetized rats

    Directory of Open Access Journals (Sweden)

    Marcos L. Ferreira-Neto

    2005-06-01

    Full Text Available Electrical stimulation of the hypothalamus produces cardiovascular adjustments consisting of hypertension, tachycardia, visceral vasoconstriction and hindlimb vasodilation. Previous studies have demonstrated that hindlimb vasodilation is due a reduction of sympathetic vasoconstrictor tone and to activation of beta2-adrenergic receptors by catecholamine release. However, the existence of a yet unidentified vasodilator mechanism has also been proposed. Recent studies have suggested that nitric oxide (NO may be involved. The aim of the present study was to investigate the role of NO in the hindquarter vasodilation in response to hypothalamic stimulation. In pentobarbital-anesthetized rats hypothalamic stimulation (100 Hz, 150µA, 6 s produced hypertension, tachycardia, hindquarter vasodilation and mesenteric vasoconstriction. Alpha-adrenoceptor blockade with phentolamine (1.5 mg/kg, iv plus bilateral adrenalectomy did not modify hypertension, tachycardia or mesenteric vasoconstriction induced by hypothalamic stimulation. Hindquarter vasodilation was strongly reduced but not abolished. The remaining vasodilation was completely abolished after iv injection of the NOS inhibitor L-NAME (20 mg/kg, iv. To properly evaluate the role of the mechanism of NO in hindquarter vasodilation, in a second group of animals L-NAME was administered before alpha-adrenoceptor blockade plus adrenalectomy. L-NAME treatment strongly reduced hindquarter vasodilation in magnitude and duration. These results suggest that NO is involved in the hindquarter vasodilation produced by hypothalamic stimulation.Em animais anestesiados a EE do hipotálamo produz um padrão de ajustes cardiovasculares caracterizado por hipertensão arterial, taquicardia, vasodilatação muscular e vasoconstrição mesentérica, entretanto, os mecanismos periféricos envolvidos nestes ajustes cardiovasculares ainda não foram completamente esclarecidos. O presente estudo teve como objetivo caracterizar

  16. Hypothalamic Npy mRNA is correlated with increased wheel running and decreased body fat in calorie-restricted rats.

    Science.gov (United States)

    Ruegsegger, Gregory N; Speichinger, Katherine R; Manier, Jacob B; Younger, Kyle M; Childs, Thomas E; Booth, Frank W

    2016-04-01

    The neuro-molecular mechanisms that regulate the relationship between physical activity level, energy homeostasis regulation, and body fat are unclear. Thus, we aimed to investigate the relationship between mRNAs in the hypothalamic arcuate nucleus (ARC) related to energy homeostasis, wheel running distance, and body fat in ad lib (AL) and calorie-restricted (CR) growing rats. We hypothesized that changes in select mRNAs (Pomc, Cart, Agrp, Npy, Lepr, Insr, Mc4r, Ampk, Sirt1, Sirt3) in CR would be associated with decreases in body fat percentage and increased wheel running behavior. Male Wistar rats were given access to voluntary running wheels at 4 weeks of age and randomized into AL (n=8) and CR (70% of AL; n=7) groups at 5 weeks of age until study termination at 12 weeks of age. Body composition, serum leptin, insulin, and adiponectin, and ARC mRNA expression in AL and CR rats were assessed and correlated with week-12 running distance to examine potential relationships that may exist. By 12 weeks of age, wheel running was increased ∼3.3-fold (p=0.03) while body fat percentage was ∼2-fold lower in CR compared to AL (p=0.001). Compared to AL, ARC Npy mRNA expression was ∼2-fold greater in CR (p=0.02), while Lepr, Insr, Ampk, and Sirt1 mRNA were additionally increased in CR (pNpy mRNA levels versus week-12 wheel running distance (r=0.81, p=0.03), body fat (r=-0.93, pNpy action.

  17. The decrease in hypothalamic dopamine secretion induced by suckling: comparison of voltammetric and radioisotopic methods of measurement. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Plotsky, P.M.; Neill, J.D.

    1982-03-01

    Previous in situ voltammetric microelectrode measurements of median eminence dopamine release during mammary nerve stimulation of anesthetized lactating rats revealed a transient (1-3 min) 70% decline of dopamine concentrations. This dopamine was believed to be destined for secretion into the hypophysial portal circulation, but direct experimental support for this supposition was lacking. Thus, in the present study, (3H)dopamine release into brief sequential samples of hypophysial portal blood was compared with dopamine release in the median eminence measured by voltammetry. Lactating female rats were urethane anesthetized, and the median eminence pituitary region was exposed. (3H)Tyrosine was injected into a jugular cannula (100 microCi) followed by continuous infusion (5 microCi/min). In a preliminary experiment, this regimen produced a steady state level of (3H)dopamine in the portal blood within 45 min. In subsequent experiments, portal blood was collected as sequential 3-min samples, and electrochemical sampling from a microelectrode placed in the median eminence occurred at 1-min intervals. Electrochemical current resulting from the oxidation of dopamine in the medial median eminence was unvarying throughout the 75-min experiment in control rats (n . 4) and during the 30-min control period preceding mammary nerve stimulation in the other group (n . 4). These results were paralled by (3H) dopamine levels in portal blood during the same periods of time. All animals showed simultaneous decreases in oxidation current and (3H)dopamine levels within 1-4 min after initiation of mammary nerve stimulation. These and earlier results demonstrate that mammary nerve stimulation (and by extension, suckling) induces a momentary, but profound, decrease in hypothalamic dopamine secretion which precedes or accompanies the rise in PRL secretion evoked by the same stimulus.

  18. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction?

    National Research Council Canada - National Science Library

    Cifani, Carlo; Micioni Di Bonaventura, Maria V; Pucci, Mariangela; Giusepponi, Maria E; Romano, Adele; Di Francesco, Andrea; Maccarrone, Mauro; D'Addario, Claudio

    2015-01-01

    .... To investigate the individual sensitivity to weight gain/resistance, we here studied gene transcription regulation of several hypothalamic neuropeptides involved in the control of energy balance...

  19. Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus

    DEFF Research Database (Denmark)

    Hosseini-Sharifabad, Mohammad; Nyengaard, Jens Randel

    2007-01-01

    vertical sections from the hippocampus. The volume of hippocampal neurons was estimated using the rotator principle on 40 microm thick plastic vertical uniform random sections and corrected for tissue shrinkage. Application of the proposed new design should result in more accurate estimates of neuron......Tools recently developed in stereology were employed for unbiased estimation of the neuronal number and volume in three major subdivisions of rat hippocampus (dentate granular, CA1 and CA3 pyramidal layers). The optical fractionator is used extensively in quantitative studies of the hippocampus......; however, the classical optical fractionator design may be affected by tissue deformation in the z-axis of the section. In this study, we applied an improved optical fractionator design to estimate total number of neurons on 100 microm thick vibratome sections that had been deformed, in the z...

  20. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure.

    Science.gov (United States)

    Hussy, N; Deleuze, C; Desarménien, M G; Moos, F C

    2000-10-01

    Maintenance of osmotic pressure is a primary regulatory process essential for normal cell function. The osmolarity of extracellular fluids is regulated by modifying the intake and excretion of salts and water. A major component of this regulatory process is the neuroendocrine hypothalamo-neurohypophysial system, which consists of neurons located in the paraventricular and supraoptic nuclei. These neurons synthesize the neurohormones vasopressin and oxytocin and release them in the blood circulation. We here review the mechanisms responsible for the osmoregulation of the activity of these neurons. Notably, the osmosensitivity of the supraoptic nucleus is described including the recent data that suggests an important participation of taurine in the transmission of the osmotic information. Taurine is an amino acid mainly known for its involvement in cell volume regulation, as it is one of the major inorganic osmolytes used by cells to compensate for changes in extracellular osmolarity. In the supraoptic nucleus, taurine is highly concentrated in astrocytes, and released in an osmodependent manner through volume-sensitive anion channels. Via its agonist action on neuronal glycine receptors, taurine is likely to contribute to the inhibition of neuronal activity induced by hypotonic stimuli. This inhibitory influence would complement the intrinsic osmosensitivity of supraoptic neurons, mediated by excitatory mechanoreceptors activated under hypertonic conditions. These observations extend the role of taurine from the regulation of cell volume to that of the whole body fluid balance. They also point to a new role of supraoptic glial cells as active components in a neuroendocrine regulatory loop.

  1. Functional diversity and developmental changes in rat neuronal kainate receptors.

    Science.gov (United States)

    Wilding, T J; Huettner, J E

    2001-04-15

    1. Whole-cell currents evoked by kainate and the GluR5-selective agonist (RS)-2-amino-3-(3-hydroxy-5-tertbutylisoxazol-4-yl)propanoic acid (ATPA) were used to compare the physiological properties of kainate receptors expressed by neurons from rat hippocampus, spinal cord and dorsal root ganglia. 2. In contrast to kainate, which evoked desensitizing currents with similar decay rates and steady-state components in all three cell types, responses to ATPA were distinctly different in the three cell populations. Currents evoked by ATPA displayed a significant steady-state component in hippocampal neurons, but decayed rapidly to baseline in dorsal root ganglion (DRG) cells. ATPA failed to evoke current in many of the spinal neurons. 3. ATPA caused steady-state desensitization in DRG cells with an IC50 of 41 nM. Recovery from desensitization of DRG cell receptors by ATPA was significantly slower than for any previously described agonist. In contrast, hippocampal kainate receptors recovered from desensitization by ATPA within a few seconds. 4. Half-maximal activation of kainate receptors in hippocampal neurons required 938 nM ATPA. In DRG cells treated with concanavalin A the EC50 for ATPA was 341 nM. ATPA evoked current in embryonic hippocampal neurons but with lower amplitude relative to kainate than in cultured postnatal neurons. 5. Collectively, these results highlight functional differences between neuronal kainate receptors that may reflect their distinct subunit composition and their diverse roles in synaptic transmission.

  2. Increased numbers of orexin/hypocretin neurons in a genetic rat depression model

    DEFF Research Database (Denmark)

    Mikrouli, Elli; Wörtwein, Gitta; Soylu, Rana

    2011-01-01

    The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression that displays characteristics similar to those of depressed patients including lower body weight, decreased appetite and reduced REM sleep latency. Hypothalamic neuropeptides such as orexin/hypocretin, melanin-concentra......The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression that displays characteristics similar to those of depressed patients including lower body weight, decreased appetite and reduced REM sleep latency. Hypothalamic neuropeptides such as orexin/hypocretin, melanin...

  3. Functional magnetic resonance imaging and immunohistochemical study of hypothalamic function following oral glucose ingestion in rats

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; ZHAO Wei-feng; LI Sa-ying; WANG Zhi; ZHANG Yun-ting; LI Guo-zhen; ZHANG Tie-mei; LUO Sen-lin; ZHOU Cheng; WU Xiao-meng; ZHOU Ni-na; CAI Kui; YANG Zhen-han; WANG Wen-chao

    2007-01-01

    Background The hypothalamus plays a central role in the regulation of metabolism by sensing metabolic demands and releasing regulatory neurotransmitters. This study investigated the response of the hypothalamus to glucose ingestion in rats by blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) and immunohistochemical techniques to determine the role of the hypothalamus in glycoregulation during disturbances in carbohydrate metabolism.Methods The signal intensity of the hypothalamus was monitored by fMRI for 60 minutes after oral glucose intake in 48 healthy rats (age 14 months), which included 24 normal weight rats (weighing (365±76.5) g) and 24 overweight rats (weighing (714±83.5) g). Then, 12 rats (6 normal, 6 overweight) underwent a repeat fMRI scan after consuming an equivalent amount of water without glucose on a separate day. The procedure for fMRI with water intake was the same as for glucose ingestion. fMRI data was processed using time cluster analysis and intensity averaging method. After fMRI,the expression of neuropeptide Y (NPY) and 5-hydroxytryptamine (5-HT) in the hypothalamus of all rats was determined by immunohistochemistry. Positive cells for NPY or 5-HT were counted.Results There was a transient, but significant, decrease in fMRI signal intensity in all rats (mean (3.12±0.78)%) in the hypothalamus within 19.5-25.5 minutes of oral glucose ingestion. In overweight rats, the decrease in signal intensity in response to the glucose ingestion was more markedly attenuated than that observed in normal weight rats ((2.2±1.5)%vs (4.2±0.7)% inhibition, t=2.12, P<0.05). There was no significant response in the hypothalamus after oral water ingestion. The percentage of NPY positive cells in obese rats were slightly lower than those in control group (21% vs 23%,t=0.71, P>0.05); but there was no significant difference between the two groups; the percentage of 5-HT positive cells in obese rats were significantly lower than

  4. Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro.

    Science.gov (United States)

    Bourque, C W; Renaud, L P

    1985-06-01

    Action potential durations, measured at one-third peak amplitude, were examined during intracellular recordings in 134 supraoptic nucleus neurones maintained in vitro in perfused hypothalamic explants. Spike durations ranged between 1.2 and 3.9 ms and were dependent on firing frequency. Shortest measurements (1.74 +/- 0.03 ms; mean +/- S.E. of mean) were obtained during relative quiescence, i.e. less than or equal to 0.5 Hz. A gradual increase in firing frequency through continuous injection of depolarizing current prolonged spike duration, with maximum levels (2.68 +/- 0.05 ms) achieved at 20 Hz. When interspike interval variability was eliminated and firing was more precisely regulated by brief 15-20 ms intracellular current pulses given at pre-determined frequencies, a proportional relationship between increasing spike duration and firing frequency was retained but the change in spike duration at frequencies between 2 and 10 Hz was less pronounced. Once action potentials had achieved the long duration configuration, their return to the shorter duration took place gradually during any succeeding silent interval with a time constant of 4.9 s. Action potential broadening occurred progressively and was most pronounced at the onset of spontaneous or current-induced bursts. In thirty-six phasically active neurones, spike broadening at the onset of a burst was concurrent with the presence of 5-10 consecutive short (less than or equal to 100 ms) interspike intervals; thereafter, despite a greater than 50% reduction in firing frequency, action potential durations remained prolonged throughout the burst. In all of nineteen cells tested, frequency-dependent changes in spike duration were reversibly decreased or blocked by Cd2+, Co2+ and Mn2+, or when CaCl2 was exchanged for equimolar amounts of EGTA in the perfusion medium. These observations indicate that a Ca2+ conductance contributes to frequency- and firing-pattern-dependent changes in spike duration in rat supraoptic

  5. Projections of medullary and pontine noradrenergic neurons to the horizontal limb of the nucleus of diagonal band in the rat.

    Science.gov (United States)

    Senatorov, V V; Renaud, L P

    1999-01-01

    Recent investigations in the rat have implicated a noradrenergic innervation to the horizontal nucleus of the diagonal band of Broca as a critical link in a neural circuit that conveys baroreceptor information centrally to inhibit the firing of vasopressin-secreting neurons in the hypothalamic supraoptic nucleus. In this study we used small intra-diagonal band injections of a retrograde tracer, rhodamine latex microspheres, in combination with tyrosine hydroxylase histochemistry to identify brainstem noradrenergic cells contributing to this innervation. In three cases where tracer injections were limited to the horizontal limb of the diagonal band, we observed 20-50 double-labelled neurons ipsilaterally in the dorsal part of the locus coeruleus (A6) and the caudal nucleus tractus solitarius (A2), and bilaterally in the caudal ventrolateral medulla (A1). Double-labelled neurons were also noted in the ventral tegmental area (dopaminergic A10 cell group). Although all major brainstem noradrenergic cell groups contribute fibers to the horizontal limb of the nucleus of diagonal band, data from physiological studies suggest that the noradrenergic A2 neurons in the nucleus tractus solitarius are the most likely pathway through which it receives this baroreceptor information.

  6. Effect of animal facility construction on basal hypothalamic-pituitary-adrenal and renin-aldosterone activity in the rat.

    Science.gov (United States)

    Raff, Hershel; Bruder, Eric D; Cullinan, William E; Ziegler, Dana R; Cohen, Eric P

    2011-04-01

    Although loud noise and intense vibration are known to alter the behavior and phenotype of laboratory animals, little is known about the effects of nearby construction. We studied the effect of a nearby construction project on the classic stress hormones ACTH, corticosterone, renin, and aldosterone in rats residing in a barrier animal facility before, for the first 3 months of a construction project, and at 1 month after all construction was completed. During some of the construction, noise and vibrations were not obvious to investigators inside the animal rooms. Body weight matched for age was not altered by nearby construction. During nearby construction, plasma ACTH, corticosterone, and aldosterone were approximately doubled compared with those of pre- and postconstruction levels. Expression of CRH mRNA in the paraventricular nucleus of the hypothalamus, CRH receptor and POMC mRNA in the anterior pituitary, and most mRNAs for steroidogenic genes in the adrenal gland were not significantly changed during construction. We conclude that nearby construction can cause a stress response without long-term effects on hypothalamic-pituitary-adrenal axis gene expression and body weight.

  7. Neuronal activation in the central nervous system of rats in the initial stage of chronic kidney disease-modulatory effects of losartan and moxonidine.

    Science.gov (United States)

    Palkovits, Miklós; Šebeková, Katarína; Klenovics, Kristina Simon; Kebis, Anton; Fazeli, Gholamreza; Bahner, Udo; Heidland, August

    2013-01-01

    The effect of mild chronic renal failure (CRF) induced by 4/6-nephrectomy (4/6NX) on central neuronal activations was investigated by c-Fos immunohistochemistry staining and compared to sham-operated rats. In the 4/6 NX rats also the effect of the angiotensin receptor blocker, losartan, and the central sympatholyticum moxonidine was studied for two months. In serial brain sections Fos-immunoreactive neurons were localized and classified semiquantitatively. In 37 brain areas/nuclei several neurons with different functional properties were strongly affected in 4/6NX. It elicited a moderate to high Fos-activity in areas responsible for the monoaminergic innervation of the cerebral cortex, the limbic system, the thalamus and hypothalamus (e.g. noradrenergic neurons of the locus coeruleus, serotonergic neurons in dorsal raphe, histaminergic neurons in the tuberomamillary nucleus). Other monoaminergic cell groups (A5 noradrenaline, C1 adrenaline, medullary raphe serotonin neurons) and neurons in the hypothalamic paraventricular nucleus (innervating the sympathetic preganglionic neurons and affecting the peripheral sympathetic outflow) did not show Fos-activity. Stress- and pain-sensitive cortical/subcortical areas, neurons in the limbic system, the hypothalamus and the circumventricular organs were also affected by 4/6NX. Administration of losartan and more strongly moxonidine modulated most effects and particularly inhibited Fos-activity in locus coeruleus neurons. In conclusion, 4/6NX elicits high activity in central sympathetic, stress- and pain-related brain areas as well as in the limbic system, which can be ameliorated by losartan and particularly by moxonidine. These changes indicate a high sensitivity of CNS in initial stages of CKD which could be causative in clinical disturbances.

  8. Neuronal activation in the central nervous system of rats in the initial stage of chronic kidney disease-modulatory effects of losartan and moxonidine.

    Directory of Open Access Journals (Sweden)

    Miklós Palkovits

    Full Text Available The effect of mild chronic renal failure (CRF induced by 4/6-nephrectomy (4/6NX on central neuronal activations was investigated by c-Fos immunohistochemistry staining and compared to sham-operated rats. In the 4/6 NX rats also the effect of the angiotensin receptor blocker, losartan, and the central sympatholyticum moxonidine was studied for two months. In serial brain sections Fos-immunoreactive neurons were localized and classified semiquantitatively. In 37 brain areas/nuclei several neurons with different functional properties were strongly affected in 4/6NX. It elicited a moderate to high Fos-activity in areas responsible for the monoaminergic innervation of the cerebral cortex, the limbic system, the thalamus and hypothalamus (e.g. noradrenergic neurons of the locus coeruleus, serotonergic neurons in dorsal raphe, histaminergic neurons in the tuberomamillary nucleus. Other monoaminergic cell groups (A5 noradrenaline, C1 adrenaline, medullary raphe serotonin neurons and neurons in the hypothalamic paraventricular nucleus (innervating the sympathetic preganglionic neurons and affecting the peripheral sympathetic outflow did not show Fos-activity. Stress- and pain-sensitive cortical/subcortical areas, neurons in the limbic system, the hypothalamus and the circumventricular organs were also affected by 4/6NX. Administration of losartan and more strongly moxonidine modulated most effects and particularly inhibited Fos-activity in locus coeruleus neurons. In conclusion, 4/6NX elicits high activity in central sympathetic, stress- and pain-related brain areas as well as in the limbic system, which can be ameliorated by losartan and particularly by moxonidine. These changes indicate a high sensitivity of CNS in initial stages of CKD which could be causative in clinical disturbances.

  9. EFFECT OF ANESTHETIZING THE REGION OF THE PARAVENTRICULAR HYPOTHALAMIC NUCLEI ON ENERGY-METABOLISM DURING EXERCISE IN THE RAT

    NARCIS (Netherlands)

    VANDIJK, G; VISSING, J; STEFFENS, AB; GALBO, H

    1994-01-01

    The ventromedial and posterior hypothalamic nuclei are known to influence glucoregulation during exercise. The extensive projections of the paraventricular hypothalamic nucleus (PVN) to the sympathetic nervous system suggest that the PVN also may be involved in glucoregulation during exercise. The r

  10. Preliminary Study of Quercetin Affecting the Hypothalamic-Pituitary-Gonadal Axis on Rat Endometriosis Model

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2014-01-01

    Full Text Available In this study, the endometriosis rats model was randomly divided into 6 groups: model control group, ovariectomized group, Gestrinone group, and quercetin high/medium/low dose group. Rats were killed after 3 weeks of administration. The expression levels of serum FSH and LH were detected by ELISA. The localizations and quantities of ERα, ERβ, and PR were detected by immunohistochemistry and western blot. The results showed that the mechanism of quercetin inhibiting the growth of ectopic endometrium on rat endometriosis model may be through the decreasing of serum FSH and LH levels and then reducing local estrogen content to make the ectopic endometrium atrophy. Quercetin can decrease the expression of ERα, ERβ, and PR in hypothalamus, pituitary, and endometrium, thereby inhibiting estrogen and progesterone binding to their receptors to play the role of antiestrogen and progesterone.

  11. Lidocaine toxicity in primary afferent neurons from the rat.

    Science.gov (United States)

    Gold, M S; Reichling, D B; Hampl, K F; Drasner, K; Levine, J D

    1998-05-01

    Evidence from both clinical studies and animal models suggests that the local anesthetic, lidocaine, is neurotoxic. However, the mechanism of lidocaine-induced toxicity is unknown. To test the hypothesis that toxicity results from a direct action of lidocaine on sensory neurons we performed in vitro histological, electrophysiological and fluorometrical experiments on isolated dorsal root ganglion (DRG) neurons from the adult rat. We observed lidocaine-induced neuronal death after a 4-min exposure of DRG neurons to lidocaine concentrations as low as 30 mM. Consistent with an excitotoxic mechanism of neurotoxicity, lidocaine depolarized DRG neurons at concentrations that induced cell death (EC50 = 14 mM). This depolarization occurred even though voltage-gated sodium currents and action potentials were blocked effectively at much lower concentrations. (EC50 values for lidocaine-induced block of tetrodotoxin-sensitive and -resistant voltage-gated sodium currents were 41 and 101 microM, respectively.) At concentrations similar to those that induced neurotoxicity and depolarization, lidocaine also induced an increase in the concentration of intracellular Ca++ ions ([Ca++]i; EC50 = 21 mM) via Ca++ influx through the plasma membrane as well as release of Ca++ from intracellular stores. Finally, lidocaine-induced neurotoxicity was attenuated significantly when lidocaine was applied in the presence of nominally Ca(++)-free bath solution to DRG neurons preloaded with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Our results indicate: 1) that lidocaine is neurotoxic to sensory neurons; 2) that toxicity results from a direct action on sensory neurons; and 3) that a lidocaine-induced increase in intracellular Ca++ is a mechanism of lidocaine-induced neuronal toxicity.

  12. Neurones in the adult rat anterior medullary velum.

    Science.gov (United States)

    Ibrahim, M; Menoud, P A; Celio, M R

    2000-03-27

    The presence of neurones in the rat anterior medullary velum (AMV) has been investigated by using antibodies to the calcium-binding proteins, parvalbumin (PV), calretinin (CR), and calbindin-D28k (CB). Disparate populations of mainly GABAergic neurones were located in the rostral and caudal regions of the AMV. The rostral region of the AMV was characterised by GABAergic CR-labelled or PV-labelled neurones. CR-labelled neurones were bipolar or multipolar with round to ovoid somata (diameters between 8 and 12 microm), and rostrocaudally running dendrites forming a network. PV-labelled neurones had round somata (diameters between 6 and 10 microm) and were bi-tufted, with beaded dendrites. Both CR-labelled and PV-labelled dendrites formed punctate pericellular associations with unlabelled somatic profiles. In the caudal region of the AMV, PV-labelled neurones were GABAergic, multipolar cells, having round somata (diameters between 9 and 12 microm), with either beaded or nonbeaded dendrites forming a network of interconnecting dendrites. PV-labelled pericellular associations were made around both PV-labelled and unlabelled somatic profiles. CR labelled unipolar brush cells (UBCs) were not GABAergic. UBCs were characterised by a round to oval somata (10-15 microm in diameter) from which a single primary dendrite emerged to form a distal expansion having small terminal dendrites. From the distal expansion, there also appeared to be CR-labelled processes emanating and extending for up to 250 microm. CB occasionally labelled "Purkinje-like cells" (PLCs). The rat AMV is a more complex structure than first envisaged with the presence of predominantly inhibitory neurones expressing different calcium-binding proteins. Functional and anatomic aspects of this circuitry are further discussed.

  13. Sex differences in hypothalamic-mediated tonic norepinephrine release for thermal hyperalgesia in rats.

    Science.gov (United States)

    Wagner, M; Banerjee, T; Jeong, Y; Holden, J E

    2016-06-02

    Neuropathic pain is treated using serotonin norepinephrine reuptake inhibitors with mixed results. Pain facilitation mediated by α1-adrenoceptors may be involved, but whether norepinephrine (NE) is tonically released is unclear. The aim of this study was to determine whether NE is tonically released from A7 cells following chronic constriction injury (CCI), and if the lateral hypothalamus (LH) plays a role in this release in male and female rats with nociceptive and neuropathic pain types. Neuropathic groups received left CCI while nociceptive groups remained naïve to injury. Fourteen days later, rats were given intrathecal infusion of either the α1-adrenoceptor antagonist WB4101, the α2-adrenoceptor antagonist yohimbine (74 μg), or normal saline for control. Paw withdrawal latency (PWL) from a thermal stimulus was measured. The generalized estimated equation method was used for statistical analysis. Nociceptive rats given WB4101 had a PWL significantly longer than saline control (7.89 ± 0.63 vs. 5.87 ± 0.52 s), while the PWL of neuropathic rats given WB4101 was 13.20 ± 0.52 s compared to 6.78 ± 0.52 s for the saline control rats. Yohimbine had no significant effect. Microinjection of cobalt chloride (CoCl) in the A7 catecholamine cell group to prevent synaptic transmission blocked the effect of WB4101 in all groups, supporting the notion that spinally descending A7 cells tonically release NE that contributes to α1-mediated nociceptive facilitation. Microinjection of CoCl into the left LH blocked the effect of WB4101 in nociceptive and neuropathic male rats, but had no effect in female rats of either pain type, suggesting differential innervation. These findings indicate that tonic release of NE acts at pronociceptive α1-adrenoceptors, that this effect is greater in rats with nerve damage, and that, while NE comes primarily from the A7 cell group, LH innervation of the A7 cell group is different between the sexes.

  14. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats

    Directory of Open Access Journals (Sweden)

    Hojatollah Karimi Jashni

    2016-02-01

    Full Text Available Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses (100, 200, 400 mg/kg/bw of aqueous extract of asparagus roots. All dosages were administered orally for 28 days. Blood samples were taken from rats to evaluate serum levels of Gonadotropin releasing hormone (GnRH, follicular stimulating hormone (FSH, Luteinal hormone (LH, estrogen, and progesterone hormones. The ovaries were removed, weighted, sectioned, and studied by light microscope. Results: Dose-dependent aqueous extract of asparagus roots significantly increased serum levels of GnRH, FSH, LH, estrogen, and progestin hormones compared to control and sham groups. Increase in number of ovarian follicles and corpus luteum in groups treated with asparagus root extract was also observed (p<0.05. Conclusion: Asparagus roots extract stimulates secretion of hypothalamic- pituitary- gonadal axis hormones. This also positively affects oogenesis in female rats.

  15. Oxidative stress induced by cumene hydroperoxide evokes changes in neuronal excitability of rat motor cortex neurons.

    Science.gov (United States)

    Pardillo-Díaz, R; Carrascal, L; Ayala, A; Nunez-Abades, P

    2015-03-19

    Oxidative stress and the production of reactive oxygen radicals play a key role in neuronal cell damage. This paper describes an in vitro study that explores the neuronal responses to oxidative stress focusing on changes in neuronal excitability and functional membrane properties. This study was carried out in pyramidal cells of the motor cortex by applying whole-cell patch-clamp techniques on brain slices from young adult rats. Oxygen-derived free radical formation was induced by bath application of 10μM cumene hydroperoxide (CH) for 30min. CH produced marked changes in the electrophysiological properties of neurons (n=30). Resting membrane potential became progressively depolarized, as well as depolarization voltage, with no variations in voltage threshold. Membrane resistance showed a biphasic behavior, increasing after 5min of drug exposure and then it started to decrease, even under control values, after 15 and 30min. At the same time, changes in membrane resistance produced compensatory variations in the rheobase. The amplitude of the action potentials diminished and the duration increased progressively over time. Some of the neurons under study also lost their ability to discharge action potentials in a repetitive way. Most of the neurons, however, kept their repetitive discharge even though their maximum frequency and gain decreased. Furthermore, cancelation of the repetitive firing discharge took place at intensities that decreased with time of exposure to CH, which resulted in a narrower working range. We can conclude that oxidative stress compromises both neuronal excitability and the capability of generating action potentials, and so this type of neuronal functional failure could precede the neuronal death characteristics of many neurodegenerative diseases.

  16. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior.

    Directory of Open Access Journals (Sweden)

    Jacki M Rorabaugh

    Full Text Available Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM display signatures of hedonic feeding including bingeing and altered DA receptor (R numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day exposure to the IAM, rats given 8-12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR. This activation was negatively correlated with orexin (Orx neuron activation in the lateral hypothalamus/perifornical area (LH/PeF, a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p. equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  17. Enhanced defensiveness and increased food motivation each contribute to aggression and success in food competition by rats with medial hypothalamic lesions.

    Science.gov (United States)

    Albert, D J; Petrovic, D M; Jonik, R H; Walsh, M L

    1991-01-01

    Castrated male rats (N = 27) with medial hypothalamic lesions or sham lesions were placed on a 23-h food-deprivation schedule and adapted to a highly palatable liquid food. They were also given two tests of defensiveness toward an experimenter. All animals were then housed in medial hypothalamic lesion/sham lesion pairs and subjected to a series of 6 competition tests (1 per day). Following the competition tests, all animals were given individual food consumption tests and a third test of defensiveness toward an experimenter. Correlational analysis showed that postcompetition defensiveness scores but not precompetition defensiveness scores or individual food consumption were related to aggression during the food competition. Analysis by criterion groups indicated that animals high in precompetition defensiveness and with food consumption in the normal range were not more successful in the competition but were slightly more aggressive than their sham-lesioned competitors. Animals with high postcompetition defensiveness scores and with individual food consumption in the normal range were more successful than their sham-lesioned competitors and the most aggressive of the lesioned animals during the food competition. Animals that were high in food consumption and only moderately defensive were also more successful but only slightly more aggressive in the food competition than their sham-lesioned competitors. These results suggest that a high and stable level of defensiveness, and excessive food intake, each contribute to the success and aggressiveness of rats with medial hypothalamic lesions in a food competition situation.

  18. Recovery by N-acetylcysteine from subchronic exposure to Imidacloprid-induced hypothalamic-pituitary-adrenal (HPA) axis tissues injury in male rats.

    Science.gov (United States)

    Annabi, Alya; Dhouib, Ines Bini; Lamine, Aicha Jrad; El Golli, Nargès; Gharbi, Najoua; El Fazâa, Saloua; Lasram, Mohamed Montassar

    2015-01-01

    Imidacloprid is the most important example of the neonicotinoid insecticides known to target the nicotinic acetylcholine receptor in insects, and potentially in mammals. N-Acetyl-l-cysteine (NAC) has been shown to possess curative effects in experimental and clinical investigations. The present study was designed to evaluate the recovery effect of NAC against Imidacloprid-induced oxidative stress and cholinergic transmission alteration in hypothalamic-pituitary-adrenal (HPA) axis of male rats following subchronic exposure. About 40 mg/kg of Imidacloprid was administered daily by intragastric intubation and 28 days later, the rats were sacrificed and HPA axis tissues were removed for different analyses. Imidacloprid increased adrenal relative weight and cholesterol level indicating an adaptive stage of the general alarm reaction to stress. Moreover, Imidacloprid caused a significant increase in malondialdehyde level, the antioxidants catalase, superoxide dismutase and glutathione-S-transferase showed various alterations following administration and significant depleted thiols content was only recorded in hypothalamic tissue. Furthermore, the hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased highlighting the alteration of cholinergic activity. The present findings revealed that HPA axis is a sensitive target to Imidacloprid (IMI). Interestingly, the use of NAC for only 7 days post-exposure to IMI showed a partial therapeutic effect against Imidacloprid toxicity.

  19. Spontaneous and electrochemically stimulated changes in plasma LH in the female rat following hypothalamic deafferentation.

    Science.gov (United States)

    Phelps, C P; Krieg, R J; Sawyer, C H

    1976-01-16

    Plasma LH levels in adult female rats were studied by radioimmunoassay 6 weeks after making frontal cuts (FC) at the optic chiasm with Halász knives of various sizes. Cuts made with a small knife (radius 1.3 mm) permitted a spontaneous rise in plasma LH during proestrus from a mean of 96 +/- 25 ng/ml at 14:00 h to 545 +/- 207 ng/ml at 18:00 h in 13 rats. Seven of the latter, with a mean plasma LH of 967 +/- 281 ng/ml at 18:00 h exhibited tubal ova at hemicastration (hemi-ovx) the following morning. In a similar experiment 6 FC females lesioned with a 1.5 mm knife had plasma LH levels of 53 +/- 7 ng/ml at 14:00 h, but showed neither detectable changes at 2 h intervals through 20:00 h nor ovulation at hemi-ovx. Similar results were obtained in 13 rats deafferented with a 2.0 mm knife. Nine weeks after FC and 3 weeks following hemi-ovx all animals were given pentobarbital (32 mg/kg i.p.) at 13:30 h and stimulated bilaterally in the medial preoptic area (MPO) passing 20 muA anodal DC X 60 sec through concentric bipolar steel electrodes placed 0.8 mm from the midline. All 3 groups of FC animals showed increases in plasma LH to comparable levels (range: 197 +/- 45-357 +/- 156 ng/ml) 1 h after stimulation. Electrochemical stimulation sites extended lateral to the cut locations on at least one side in all animals. The results of these studies suggest that chronically (9 week) deafferented female rats have the capacity to release pituitary LH in response to MPO electrochemical stimulation in spite of retrochiasmatic deafferentation, but that the ovaries of the persistent estrus rat are unresponsive to these amounts of circulating LH.

  20. Parvalbumin-Neurons of the Ventrolateral Hypothalamic Parvafox Nucleus Receive a Glycinergic Input: A Gene-Microarray Study

    Science.gov (United States)

    Szabolcsi, Viktoria; Albisetti, Gioele W.; Celio, Marco R.

    2017-01-01

    The ventrolateral hypothalamic parvafox (formerly called PV1-Foxb1) nucleus is an anatomical entity of recent discovery and unknown function. With a view to gaining an insight into its putative functional role(s), we conducted a gene-microarray analysis and, armed with the forthcoming data, controlled the results with the Allen databases and the murine BrainStars (B*) database. The parvafox nucleus was specifically sampled by laser-capture microdissection and the transcriptome was subjected to a microarray analysis on Affymetrix chips. Eighty-two relevant genes were found to be potentially more expressed in this brain region than in either the cerebral cortex or the hippocampus. When the expression patterns of these genes were counterchecked in the Allen-Database of in-situ hybridizations and in the B*-microarray database, their localization in the parvafox region was confirmed for thirteen. For nine novel genes, which are particularly interesting because of their possible involvement in neuromodulation, the expression was verified by quantitative real time-PCR. Of particular functional importance may be the occurrence of glycine receptors, the presence of which indicates that the activity of the parvafox nucleus is under ascending inhibitory control. PMID:28167900

  1. Unilateral whisker trimming in newborn rats alters neuronal coincident discharge among mature barrel cortex neurons.

    Science.gov (United States)

    Ghoshal, Ayan; Lustig, Brian; Popescu, Maria; Ebner, Ford; Pouget, Pierre

    2014-10-15

    It is known that sensory deprivation, including postnatal whisker trimming, can lead to severe deficits in the firing rate properties of cortical neurons. Recent results indicate that development of synchronous discharge among cortical neurons is also activity influenced, and that correlated discharge is significantly impaired following loss of bilateral sensory input in rats. Here we investigate whether unilateral whisker trimming (unilateral deprivation or UD) after birth interferes in the same way with the development of synchronous discharge in cortex. We measured the coincidence of spikes among pairs of neurons recorded under urethane anesthesia in one whisker barrel field deprived by trimming all contralateral whiskers for 60 days after birth (UD), and in untrimmed controls (CON). In the septal columns around barrels, UD significantly increased the coincident discharge among cortical neurons compared with CON, most notably in layers II/III. In contrast, synchronous discharge was normal between layer IV UD barrel neurons: i.e., not different from CON. Thus, while bilateral whisker deprivation (BD) produced a global deficit in the development of synchrony in layer IV, UD did not block the development of synchrony between neurons in layer IV barrels and increased synchrony within septal circuits. We conclude that changes in synchronous discharge after UD are unexpectedly different from those recorded after BD, and we speculate that this effect may be due to the driven activity from active commissural inputs arising from the contralateral hemisphere that received normal activity levels during postnatal development. Copyright © 2014 the American Physiological Society.

  2. Inhibition of Cyclooxygenase-2 Reduces Hypothalamic Excitation in Rats with Adriamycin-Induced Heart Failure

    OpenAIRE

    2012-01-01

    BACKGROUND: The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the progression of heart failure (HF). We investigated whether cyclooxygenase-2 (COX-2) inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS) and renin-angiotensin system (RAS) in rats with adriamycin-induced heart failure. METHODOLOGY/PRINCIPAL FINDING: Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg...

  3. Photostimulation of sensory neurons of the rat vagus nerve

    Science.gov (United States)

    Rhee, Albert Y.; Li, Gong; Wells, Jonathon; Kao, Joseph P. Y.

    2008-02-01

    We studied the effect of infrared (IR) stimulation on rat sensory neurons. Primary sensory neurons were prepared by enzymatic dissociation of the inferior (or "nodose") ganglia from the vagus nerves of rats. The 1.85-μm output of a diode laser, delivered through a 200-μm silica fiber, was used for photostimulation. Nodose neurons express the vanilloid receptor, TRPV1, which is a non-selective cation channel that opens in response to significant temperature jumps above 37 C. Opening TRPV1 channels allows entry of cations, including calcium (Ca 2+), into the cell to cause membrane depolarization. Therefore, to monitor TRPV1 activation consequent to photostimulation, we used fura-2, a fluorescent Ca 2+ indicator, to monitor the rise in intracellular Ca 2+ concentration ([Ca 2+]i). Brief trains of 2-msec IR pulses activated TRPV1 rapidly and reversibly, as evidenced by transient rises in [Ca 2+]i (referred to as Ca 2+ transients). Consistent with the Ca 2+ transients arising from influx of Ca 2+, identical photostimulation failed to evoke Ca 2+ responses in the absence of extracellular Ca 2+. Furthermore, the photo-induced Ca 2+ signals were abolished by capsazepine, a specific blocker of TRPV1, indicating that the responses were indeed mediated by TRPV1. We discuss the feasibility of using focal IR stimulation to probe neuronal circuit properties in intact neural tissue, and compare IR stimulation with another photostimulation technique-focal photolytic release of "caged" molecules.

  4. Developmental changes in the hypothalamic mRNA expression levels of brain-derived neurotrophic factor and serum leptin levels: Their responses to fasting in male and female rats.

    Science.gov (United States)

    Iwasa, Takeshi; Matsuzaki, Toshiya; Yano, Kiyohito; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Yiliyasi, Maira; Kuwahara, Akira; Irahara, Minoru

    2016-11-01

    The actions and responses of hypothalamic appetite regulatory factors change markedly during the neonatal to pre-pubertal period in order to maintain appropriate metabolic and nutritional conditions. In this study, we examined the developmental changes in the hypothalamic mRNA levels of brain-derived neurotrophic factor (BDNF), which is a potent anorectic factor and the changes in the sensitivity of the hypothalamic expression of this factor to fasting during the neonatal to pre-pubertal period. Under fed conditions, hypothalamic BDNF mRNA expression decreased during development in both male and female rats. Similarly, the serum levels of leptin, which is a positive regulator of hypothalamic BDNF expression, also tended to fall during the developmental period. The serum leptin level and the hypothalamic BDNF mRNA level were found to be positively correlated in both sexes under the fed conditions. Hypothalamic BDNF mRNA expression was decreased by 24h fasting (separating the rats from their mothers) in the early neonatal period (postnatal day 10) in both males and females, but no such changes were seen at postnatal day 20. Twenty-four hours' fasting (food deprivation) did not affect hypothalamic BDNF mRNA expression in the pre-pubertal period (postnatal day 30). On the other hand, the rats' serum leptin levels were decreased by 24h fasting (separating the rats from their mothers at postnatal day 10 and 20, and food deprivation at postnatal day 30) throughout the early neonatal to pre-pubertal period. The correlation between serum leptin and hypothalamic BDNF mRNA levels was not significant under the fasted conditions. It can be speculated that leptin partially regulates hypothalamic BDNF mRNA levels, but only in fed conditions. Such changes in hypothalamic BDNF expression might play a role in maintaining appropriate metabolic and nutritional conditions and promoting normal physical development. In addition, because maternal separation induces a negative energy

  5. Endomorphins: localization, release and action on rat dorsal horn neurons.

    Science.gov (United States)

    Dun, N J; Dun, S L; Wu, S Y; Williams, C A; Kwok, E H

    2000-01-01

    Endomorphin (Endo) 1 and 2, two tetrapeptides isolated from the bovine and human brain, have been proposed to be the endogenous ligand for the mu-opiate receptor. A multi-disciplinary study was undertaken to address the issues of localization, release and biological action of Endo with respect to the rat dorsal horn. First, immunohistochemical studies showed that Endo-1- or Endo-2-like immunoreactivity (Endo-1- or Endo-2-LI) is selectively expressed in fiber-like elements occupying the superficial layers of the rat dorsal horn, which also exhibit a high level of mu-opiate receptor immunoreactivity. Second, release of immunoreactive Endo-2-like substances (irEndo) from the in vitro rat spinal cords upon electrical stimulation of dorsal root afferent fibers was detected by the immobilized antibody microprobe technique. The site of release corresponded to laminae I and II where the highest density of Endo-2-LI fibers was localized. Lastly, whole-cell patch clamp recordings from substantia gelatinosa (SG) neurons of rat lumbar spinal cord slices revealed two distinct actions of exogenous Endo-1 and Endo-2: (1) depression of excitatory and/or inhibitory postsynaptic potentials evoked by stimulation of dorsal root entry zone, and (2) hyperpolarization of SG neurons. These two effects were prevented by the selective mu-opiate receptor antagonist beta-funaltrexamine. The localization of endomorphin-positive fibers in superficial layers of the dorsal horn and the release of irEndo upon stimulation of dorsal root afferents together with the observation that Endo inhibits the activity of SG neurons by interacting with mu-opiate receptors provide additional support of a role of Endo as the endogenous ligand for the mu-opiate receptor in the rat dorsal horn.

  6. Expression and localization of IL-18 in the hypothalamic-pituitary-ovarian axis of non-pregnant, pregnant, and abortive rats.

    Science.gov (United States)

    Wang, Yuesi; Zhang, Xiuli; Zhang, Yan; Xu, Hui; Fang, Guangli

    2011-12-01

    Cytokines present in the reproductive system play an important role both in the modulation of immune responses to infectious challenge and in the establishment and maintenance of pregnancy. Interleukin 18 (IL-18) has been regarded as an important regulator of innate and acquired immune response, but its expression and distribution in the hypothalamic-pituitary-ovarian axis remain unclear. In this paper, the expression and distribution of IL-18 in non-pregnant, pregnant, and early abortive rats were examined using an ultra-sensitive immunohistochemical streptavidin-peroxidase method, enzyme-linked immunosorbent assay, and reverse transcription-polymerase chain reaction. The results showed that IL-18 expression in the pituitary, in follicular ovaries, and in the corpus luteum of abortive rats were significantly lower than that of pregnant and non-pregnant rats. However, the staining of IL-18 in the hypothalamus, interstitial glands of the ovary, and uterus of abortive rats was strikingly stronger than those of the non-pregnant ones. IL-18 mRNA expression in rat uterus was detected in all groups, whereas IL-18 mRNA content in abortive rat uterus was significantly higher than in normal pregnant rats. Further, IL-18 in the peripheral blood serum of abortive rats was significantly lower than in same-period normal pregnant rats. The differential expression of IL-18 in early abortion suggests that IL-18 may be related to the underlying mechanisms of abortion.

  7. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  8. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons.

    Science.gov (United States)

    Fick, Laura J; Fick, Gordon H; Belsham, Denise D

    2011-09-30

    The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.

  9. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  10. Receptive field plasticity of neurons in rat auditory cortex

    Institute of Scientific and Technical Information of China (English)

    YANG Wenwei; GAO Lixia; SUN Xinde

    2004-01-01

    Using conventional electrophysiological technique, we investigated the plasticity of the frequency receptive fields (RF) of auditory cortex (AC) neurons in rats. In the AC, when the frequency difference between conditioning stimulus frequency (CSF) and the best frequency (BF) was in the range of 1-4 kHz, the frequency RF of AC neurons shifted. The smaller the differences between CSF and BF, the higher the probability of the RF shift and the greater the degree of the RF shift. To some extent, the plasticity of RF was dependent on the duration of the session of conditioning stimulus (CS). When the frequency difference between CSF and BF was bigger, the duration of the CS session needed to induce the plasticity was longer. The recovery time course of the frequency RF showed opposite changes after CS cessation.The RF shift could be induced by the frequency that was either higher or lower than the control BF, demonstrating no clear directional preference. The frequency RF of some neurons showed bidirectional shift, and the RF of other neurons showed single directional shift. The results suggest that the frequency RF plasticity of AC neurons could be considered as an ideal model for studying plasticity mechanism. The present study also provides important evidence for further study of learning and memory in auditory system.

  11. Role of the neuronal histaminergic system in the regulation of somatotropic function: comparison between the neonatal and the adult rat.

    Science.gov (United States)

    Grilli, R; Sibilia, V; Torsello, A; Pagani, F; Guidi, M; Luoni, M; Netti, C; Müller, E E

    1996-11-01

    To study possible age-related differences in the role of neuronal histaminergic pathways in the control of GH secretion, the effects of alpha-fluoromethylhistidine (alpha-FMH), an irreversible inhibitor of histamine (HA) synthesis, were examined on basal and opioid-induced GH release in neonatal and adult rats. The mechanisms involved in such effects were evaluated by measuring pituitary GH mRNA levels and hypothalamic levels of GH-releasing hormone (GHRH) and somatostatin (SRIF) mRNAs. Daily injection of alpha-FMH (20 mg/kg, s.c.) in pups of either sex, from birth until 10 days of age, caused a significant increase in baseline plasma GH and potentiated the GH response to the [Met5]-enkephalin analog FK 33-824 (1 mg/kg, s.c.) administered 3 h after the last alpha-FMH injection. GH and SRIF mRNA levels were significantly higher in alpha-FMH-treated pups than in controls, whereas no difference was observed in GHRH mRNA levels. In young adult male rats, acute administration of alpha-FMH (100 mg/kg, s.c., 3 h before) did not change significantly basal GH levels but potentiated FK 33-824 (0.3 mg/kg, intracarotid)-induced stimulation of GH secretion. Repeated administration of alpha-FMH (200 micrograms/rat, i.c.v., for 3 days) failed to modify basal and FK 33-824-induced GH secretion, caused a significant reduction in hypothalamic GHRH mRNA levels and left SRIF and GH mRNAs unchanged. These findings indicate that HA exerts an inhibitory effect on GH secretion in both neonatal and adult rats. The different effects of short-term HA depletion on hypothalamic and pituitary indices of somatotropic function observed at the two age periods may be ascribed to the immaturity of the HA system in early postnatal life and to a different functional role of GH-regulatory factors during ontogeny.

  12. Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats.

    Science.gov (United States)

    Nascimento, Diana; Pozza, Daniel Humberto; Castro-Lopes, José Manuel; Neto, Fani Lourença

    2011-01-01

    Activating transcription factor 3 (ATF-3) expression has been associated with several signaling pathways implicated in cellular stress response in many cell types and is usually regarded as a neuronal damage marker in dorsal root ganglia (DRG). We investigated ATF-3 expression in primary afferents in the monoarthritic (MA) model of chronic inflammatory joint pain. Immunohistochemistry revealed that ATF-3 is highly induced mainly in small and medium neurons, especially at 2 and 4 days of MA in L(5) DRGs. Colocalization with calcitonin gene-related peptide (CGRP) and isolectin B4 (IB4) demonstrated that ATF-3-immunoreactive cells are mainly peptidergic. The lack of significant differences in ATF-3 and pAkt colocalization indicated that ATF-3 is probably not involved in a pAkt-mediated survival pathway. Anti-inflammatory (ketoprofen) administration failed to reverse ATF-3 induction in MA rats, but significantly increased CGRP expression. These data suggest that ATF-3 expression is definitely involved in MA, actually marking injured neurons. Some degree of neuronal damage seems to occur right from the first days of disease, mainly affecting small-to-medium peptidergic neurons. The intra-articular injection of complete Freund's adjuvant and the generation of a neuroinflammatory environment seem to be the plausible explanation for the local nerve damage. Copyright © 2011 S. Karger AG, Basel.

  13. Caffeine-induced activated glucocorticoid metabolism in the hippocampus causes hypothalamic-pituitary-adrenal axis inhibition in fetal rats.

    Science.gov (United States)

    Xu, Dan; Zhang, Benjian; Liang, Gai; Ping, Jie; Kou, Hao; Li, Xiaojun; Xiong, Jie; Hu, Dongcai; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-01-01

    Epidemiological investigations have shown that fetuses with intrauterine growth retardation (IUGR) are susceptible to adult metabolic syndrome. Clinical investigations and experiments have demonstrated that caffeine is a definite inducer of IUGR, as children who ingest caffeine-containing food or drinks are highly susceptible to adult obesity and hypertension. Our goals for this study were to investigate the effect of prenatal caffeine ingestion on the functional development of the fetal hippocampus and the hypothalamic-pituitary-adrenal (HPA) axis and to clarify an intrauterine HPA axis-associated neuroendocrine alteration induced by caffeine. Pregnant Wistar rats were intragastrically administered 20, 60, and 180 mg/kg · d caffeine from gestational days 11-20. The results show that prenatal caffeine ingestion significantly decreased the expression of fetal hypothalamus corticotrophin-releasing hormone. The fetal adrenal cortex changed into slight and the expression of fetal adrenal steroid acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (P450scc), as well as the level of fetal adrenal endogenous corticosterone (CORT), were all significantly decreased after caffeine treatment. Moreover, caffeine ingestion significantly increased the levels of maternal and fetal blood CORT and decreased the expression of placental 11β-hydroxysteroid dehydrogenase-2 (11β-HSD-2). Additionally, both in vivo and in vitro studies show that caffeine can downregulate the expression of fetal hippocampal 11β-HSD-2, promote the expression of 11β-hydroxysteroid dehydrogenase 1 and glucocorticoid receptor (GR), and enhance DNA methylation within the hippocampal 11β-HSD-2 promoter. These results suggest that prenatal caffeine ingestion inhibits the development of the fetal HPA axis, which may be associated with the fetal overexposure to maternal glucocorticoid and activated glucocorticoid metabolism in the fetal hippocampus. These results will be beneficial in

  14. Down-regulation of hypothalamic pro-opiomelanocortin (POMC) expression after weaning is associated with hyperphagia-induced obesity in JCR rats overexpressing neuropeptide Y.

    Science.gov (United States)

    Diané, Abdoulaye; Pierce, W David; Russell, James C; Heth, C Donald; Vine, Donna F; Richard, Denis; Proctor, Spencer D

    2014-03-14

    We hypothesised that hypothalamic feeding-related neuropeptides are differentially expressed in obese-prone and lean-prone rats and trigger overeating-induced obesity. To test this hypothesis, in the present study, we measured energy balance and hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA expressions in male JCR:LA-cp rats. We compared, in independent cohorts, free-feeding obese-prone (Obese-FF) and lean-prone (Lean-FF) rats at pre-weaning (10 d old), weaning (21-25 d old) and early adulthood (8-12 weeks). A group of Obese-pair-feeding (PF) rats pair-fed to the Lean-FF rats was included in the adult cohort. The body weights of 10-d-old Obese-FF and Lean-FF pups were not significantly different. However, when the pups were shifted from dams' milk to solid food (weaning), the obese-prone rats exhibited more energy intake over the days than the lean-prone rats and higher body and fat pad weights and fasting plasma glucose, leptin, insulin and lipid levels. These differences were consistent with higher energy consumption and lower energy expenditure. In the young adult cohort, the differences between the Obese-FF and Lean-FF rats became more pronounced, yielding significant age effects on most of the parameters of the metabolic syndrome, which were reduced in the Obese-PF rats. The obese-prone rats displayed higher NPY expression than the lean-prone rats at pre-weaning and weaning, and the expression levels did not differ by age. In contrast, POMC expression exhibited significant age-by-genotype differences. At pre-weaning, there was no genotype difference in POMC expression, but in the weanling cohort, obese-prone pups exhibited lower POMC expression than the lean-prone rats. This genotype difference became more pronounced at adulthood. Overall, the development of hyperphagia-induced obesity in obese-prone JCR rats is related to POMC expression down-regulation in the presence of established NPY overexpression.

  15. Achyranthes bidentata Blume extract promotes neuronal growth in cultured embryonic rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Xin Tang; Yiren Chen; Xiaosong Gu; Fei Ding

    2009-01-01

    We have prepared an aqueous extract of Achyranthes bidentata Blume,a commonly prescribed Chinese medicinal herb,and reported,in previous studies,that A.bidentata extract benefits nerve growth and prevents neuron apoptosis.In this study,we investigated the actions of ,4.bidentata extract on survival and growth of primarily cultured rat hippocampal neurons.The morphological observation revealed that neurite growth from hippocampal neurons was significantly enhanced by A.bidentata extract with similar effects to those induced by nerve growth factor (NGF),and the greatest neurite growth appeared on treatment with A.bidentata extract at 1 ttg/ml for 24 h.DNA microarray analysis indicated that there were 25 upregulated genes and 47 downregulated genes exhibiting significantly differential expression in hippocampal neurons treated with A.bidentata extract at 1 μg/ml for 6 h when compared to those in untreated hippocampal neurons.Real-time quantitative RT-PCR and Western blot analysis demonstrated that the expression of growth-associated protein-43 in hippocampal neurons was upregulated at both mRNA and protein levels after treatment with A.bidentata extract,and the optimal dosage of the extract was also 1 μg/ml.These data confirm that A.bidentata extract could promote in vitro hippocampal neuronal growth in a dose- and time-dependent manner.(C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.

  16. Acute antipsychotic treatments induce distinct c-Fos expression patterns in appetite-related neuronal structures of the rat brain.

    Science.gov (United States)

    Rajkumar, Ramamoorthy; See, Lionel Kee Yon; Dawe, Gavin Stewart

    2013-05-01

    A number of atypical antipsychotic drugs are known to perturb appetite regulation causing greater hyperphagia in humans and rodents than earlier generation typical agents. However, the neuronal structures that underlie hyperphagic effects are poorly understood. Arcuate nucleus (ArcN), paraventricular hypothalamic nucleus (PVN), paraventricular thalamic nucleus (PVA) and nucleus incertus (NI) have been implicated in appetite regulation. The NI is the principal source of the relaxin-3 (RLN3) peptide, which is reported to have orexigenic effects. Moreover, ArcN, PVN, and PVA receive RLN3 immunoreactive fibers from the NI and express relaxin family peptide type 3 (RXFP3) receptor. The present study was designed to evaluate the acute effects of clozapine (atypical), chlorpromazine (typical) and fluphenazine (typical) on c-Fos expression (a marker of neuronal response) in these appetite-related centers of the rat brain. The numbers of c-Fos expressing neurons in these structures were counted in immunofluorescence stained brain sections. Acute treatment with clozapine, chlorpromazine and fluphenazine differentially influenced c-Fos expression in these brain structures. This study is also the first demonstration that antipsychotics influence the NI. The patterns of the effects of these antipsychotics are related to their reported hyperphagic properties.

  17. Responses to Gamma-Aminobutyric Acid of Rat Visual Cortical Neurons in Tissue Slices

    Science.gov (United States)

    1986-04-01

    Neurol. 234: 242-263. Peters, A. and Proskauer, c. C. (1980) Synaptic relationships between a multipolar stellate cell and a pyramidal neuron in rat...APR 1986 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Responses to Gamma-Aminobutyric Acid of Rat Visual Cortical Neurons in...AIR FORCE MEDICAL CENTER Title of Thesis: Responses to Gamma-Aminobutyric Acid of Rat Visual Cortical Neurons in Tissue Slices Name of Candidate

  18. Hypothalamic inflammation is reversed by endurance training in anorectic-cachectic rats

    Directory of Open Access Journals (Sweden)

    Lira Fábio S

    2011-08-01

    Full Text Available Abstract Aim We tested the effects of a cancer cachexia-anorexia sydrome upon the balance of anti and pro-inflammatory cytokines in the hypothalamus of sedentary or trained tumour-bearing (Walker-256 carcinosarcoma rats. Methods Animals were randomly assigned to a sedentary control (SC, sedentary tumour-bearing (ST, and sedentary pair-fed (SPF groups or, exercised control (EC, exercised tumour-bearing (ET and exercised pair-fed (EPF groups. Trained rats ran on a treadmill (60%VO2max for 60 min/d, 5 days/wk, for 8 wks. We evaluated food intake, leptin and cytokine (TNF-α, IL1β levels in the hypothalamus. Results The cumulative food intake and serum leptin concentration were reduced in ST compared to SC. Leptin gene expression in the retroperitoneal adipose tissue (RPAT was increased in SPF in comparison with SC and ST, and in the mesenteric adipose tissue (MEAT the same parameter was decreased in ST in relation to SC. Leptin levels in RPAT and MEAT were decreased in ST, when compared with SC. Exercise training was also able to reduce tumour weight when compared to ST group. In the hypothalamus, IL-1β and IL-10 gene expression was higher in ST than in SC and SPF. Cytokine concentration in hypothalamus was higher in ST (TNF-α and IL-1β, p Conclusion Cancer-induced anorexia leads towards a pro-inflammatory state in the hypothalamus, which is prevented by endurance training which induces an anti-inflammatory state, with concomitant decrease of tumour weight.

  19. Participation of ghrelin signalling in the reciprocal regulation of hypothalamic NPY/POMC-mediated appetite control in amphetamine-treated rats.

    Science.gov (United States)

    Yu, Ching-Han; Chu, Shu-Chen; Chen, Pei-Ni; Hsieh, Yih-Shou; Kuo, Dong-Yih

    2017-02-14

    Hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) have been documented to participate in amphetamine (AMPH)-induced appetite suppression. This study investigated whether ghrelin signalling is associated with changes in NPY/POMC-mediated appetite control. Rats were given AMPH daily for four days, and changes in food intake, body weight, plasma ghrelin, hypothalamic NPY, melanocortin 3 receptor (MC3R), ghrelin O-acyltransferase (GOAT), acyl ghrelin (AG) and ghrelin receptor (GHSR1a) were examined and compared. Food intake, body weight and NPY expression decreased, while MC3R expression increased and expressed reciprocally to NPY expression during AMPH treatment. Plasma ghrelin and hypothalamic AG/GOAT/GHSR1a expression decreased on Day 1 and Day 2, which was associated with the positive energy metabolism, and returned to normal levels on Day 3 and Day 4, which was associated with the negative energy metabolism; this expression pattern was similar to that of NPY. Infusion with a GHSR1a antagonist or an NPY antisense into the brain enhanced the decrease in NPY and AG/GOAT/GHSR1a expression and the increase in MC3R expression compared to the AMPH-treated group. Peripheral ghrelin and the central ghrelin system participated in the regulation in AMPH-induced appetite control. These results shed light on the involvement of ghrelin signalling in reciprocal regulation of NPY/POMC-mediated appetite control and may prove useful for the development of anti-obesity drugs.

  20. Methyl vitamins contribute to obesogenic effects of a high multivitamin gestational diet and epigenetic alterations in hypothalamic feeding pathways in Wistar rat offspring.

    Science.gov (United States)

    Cho, Clara E; Pannia, Emanuela; Huot, Pedro S P; Sánchez-Hernández, Diana; Kubant, Ruslan; Dodington, David W; Ward, Wendy E; Bazinet, Richard P; Anderson, G Harvey

    2015-03-01

    High multivitamin (HV, tenfold AIN-93G) gestational diets fed to Wistar rats increase food intake, obesity, and characteristics of metabolic syndrome in the offspring. We hypothesized that methyl vitamins, and specifically folate, in the HV gestational diet contribute to the obesogenic phenotypes consistent with their epigenetic effects on hypothalamic food intake regulatory mechanisms. Male offspring of dams fed the AIN-93G diet with high methyl vitamins (HMethyl; tenfold folate, vitamins B12, and B6) (Study 1) and HV with recommended folate (HVRF) (Study 2) were compared with those from HV and recommended vitamin (RV) fed dams. All offspring were weaned to a high fat diet for 8 wks. HMethyl diet, similar to HV, and compared to RV, resulted in higher food intake, body weight, and metabolic disturbances. Removing folate additions to the HV diet in HVRF offspring normalized the obesogenic phenotype. Methyl vitamins, and folate in HV diets, altered hypothalamic gene expression toward increased food intake concurrent with DNA methylation and leptin and insulin receptor signaling dysfunction. Methyl vitamins in HV gestational diets contribute to obesogenic phenotypes and epigenetic alterations in the hypothalamic feeding pathways in the offspring. Folate alone accounts for many of these effects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Spontaneously hypertensive rats have more orexin neurons in their medial hypothalamus than normotensive rats.

    Science.gov (United States)

    Clifford, Liam; Dampney, Bruno W; Carrive, Pascal

    2015-04-01

    What is the central question of this study? Blockade of orexin receptors reduces blood pressure in spontaneously hypertensive rats (SHRs) but not in normotensive Wistar-Kyoto (WKY) rats, suggesting that upregulation of orexin signalling underlies the hypertensive phenotype of the SHR. However, it is not known what causes this upregulation. What is the main finding and its importance? Using orexin immunolabelling, we show that SHRs have 20% more orexin neurons than normotensive WKY and Wistar rats in the medial hypothalamus, which is a good match to their blood pressure phenotype. In contrast, there is no such match for the orexin neurons of the lateral hypothalamus. Essential hypertension may be linked to an increase in orexin neurons in the medial hypothalamus. The neuropeptide orexin contributes to the regulation of blood pressure as part of its role in the control of arousal during wakefulness and motivated behaviour (including responses to psychological stress). Recent work shows that pharmacological blockade of orexin receptors reduces blood pressure in spontaneously hypertensive rats (SHRs) but not in normotensive Wistar-Kyoto (WKY) rats. It is not clear why orexin signalling is upregulated in the SHR, but one possibility is that these animals have more orexin neurons than their normotensive WKY and Wistar relatives. To test this possibility, SHRs, WKY and Wistar male rats (6-16 weeks old) were killed, perfused and their brains sectioned and immunolabelled for orexin A. Labelled neurons were plotted and counted in the six best labelled hemisections (120 μm apart) of each brain. There were significantly more orexin neurons (+20%) in the medial hypothalamus (medial to fornix) of SHRs compared with WKY and Wistar rats (126 ± 4 versus 106 ± 5 and 104 ± 5 per hemisection, respectively, P hypothalamus did not match the blood pressure phenotypes (69 ± 2 versus 50 ± 3 and 76 ± 4, respectively). The results support the idea that orexin signalling is upregulated

  2. Transient gastric irritation in the neonatal rats leads to changes in hypothalamic CRF expression, depression- and anxiety-like behavior as adults.

    Directory of Open Access Journals (Sweden)

    Liansheng Liu

    Full Text Available AIMS: A disturbance of the brain-gut axis is a prominent feature in functional bowel disorders (such as irritable bowel syndrome and functional dyspepsia and psychological abnormalities are often implicated in their pathogenesis. We hypothesized that psychological morbidity in these conditions may result from gastrointestinal problems, rather than causing them. METHODS: Functional dyspepsia was induced by neonatal gastric irritation in male rats. 10-day old male Sprague-Dawley rats received 0.1% iodoacetamide (IA or vehicle by oral gavage for 6 days. At 8-10 weeks of age, rats were tested with sucrose preference and forced-swimming tests to examine depression-like behavior. Elevated plus maze, open field and light-dark box tests were used to test anxiety-like behaviors. ACTH and corticosterone responses to a minor stressor, saline injection, and hypothalamic CRF expression were also measured. RESULTS: Behavioral tests revealed changes of anxiety- and depression-like behaviors in IA-treated, but not control rats. As compared with controls, hypothalamic and amygdaloid CRF immunoreactivity, basal levels of plasma corticosterone and stress-induced ACTH were significantly higher in IA-treated rats. Gastric sensory ablation with resiniferatoxin had no effect on behaviors but treatment with CRF type 1 receptor antagonist, antalarmin, reversed the depression-like behavior in IA-treated rats CONCLUSIONS: The present results suggest that transient gastric irritation in the neonatal period can induce a long lasting increase in depression- and anxiety-like behaviors, increased expression of CRF in the hypothalamus, and an increased sensitivity of HPA axis to stress. The depression-like behavior may be mediated by the CRF1 receptor. These findings have significant implications for the pathogenesis of psychological co-morbidity in patients with functional bowel disorders.

  3. Enhancers of GnRH Transcription Embedded in an Upstream Gene Use Homeodomain Proteins to Specify Hypothalamic Expression

    OpenAIRE

    Iyer, Anita K.; MILLER, NICHOL L. G.; Yip, Kathleen; Tran, Brian H.; Mellon, Pamela L.

    2010-01-01

    GnRH, the central regulator of reproductive function, is produced by only approximately 800 highly specialized hypothalamic neurons. Previous studies identified a minimal promoter [GnRH minimal promoter (GnRH-P)] (−173/+1) and a neuron-specific enhancer [GnRH-enhancer (E)1] (−1863/−1571) as regulatory regions in the rat gene that confer this stringent specificity of GnRH expression to differentiated GnRH neurons. In transgenic mice, these two elements target only GnRH neurons but fail to driv...

  4. Chronic treatment with polychlorinated biphenyls (PCB) during pregnancy and lactation in the rat Part 2: Effects on reproductive parameters, on sex behavior, on memory retention and on hypothalamic expression of aromatase and 5alpha-reductases in the offspring.

    Science.gov (United States)

    Colciago, A; Casati, L; Mornati, O; Vergoni, A V; Santagostino, A; Celotti, F; Negri-Cesi, P

    2009-08-15

    The gender-specific expression pattern of aromatase and 5alpha-reductases (5alpha-R) during brain development provides neurons the right amount of estradiol and DHT to induce a dimorphic organization of the structure. Polychlorinated biphenyls (PCBs) are endocrine disruptive pollutants; exposure to PCBs through placental transfer and breast-feeding may adversely affect the organizational action of sex steroid, resulting in long-term alteration of reproductive neuroendocrinology. The study was aimed at: a) evaluating the hypothalamic expression of aromatase, 5alpha-R1 and 5alpha-R2 in fetuses (GD20), infant (PN12), weaning (PN21) and young adult (PN60) male and female rats exposed to PCBs during development; b) correlating these parameters with the time of testicular descent, puberty onset, estrous cyclicity and copulatory behavior; c) evaluating possible alterations of some non reproductive behaviors (locomotion, learning and memory, depression/anxiety behavior). A reconstituted mixture of four indicator congeners (PCB 126, 138, 153 and 180) was injected subcutaneously to dams at the dose of 10 mg/kg daily from GD15 to GD19 and then twice a week till weanling. The results indicated that developmental PCB exposure produced important changes in the dimorphic hypothalamic expression of both aromatase and the 5alpha-Rs, which were still evident in adult animals. We observed that female puberty onset occurs earlier than in control animals without cycle irregularity, while testicular descent in males was delayed. A slight but significant impairment of sexual behavior and an important alteration in memory retention were also noted specifically in males. We conclude that PCBs might affect the dimorphic neuroendocrine control of reproductive system and of other neurobiological processes.

  5. Histologic assessment of neurons in rat models of cerebral ischemia.

    Science.gov (United States)

    Eke, A; Conger, K A; Anderson, M; Garcia, J H

    1990-02-01

    We describe a method for typing neurons into four progressive stages of ischemic deterioration based on visual characterization of the nucleus in terms of its optical contrast, delineation along the nuclear-cytoplasmic interface, and its shape. Difficulty in assessing nuclear shape required the introduction of an angularity comparator chart to improve the investigator's accuracy. Three investigators typed neurons obtained from normal, ischemic, and ischemic-reperfused rat brains. Accuracy and reproducibility of the investigators' typing decisions with and without the angularity comparator charts were evaluated. The accuracy of subjective shape assessment was compared with objective digitizer measurements of the same. The angularity comparator charts reduced subjective shape classification error by two thirds, and group error (overall performance expressed by the coefficient of variance) decreased from 15.9% to 4.7% for Type I (normal cells), from 33.9% to 17.3% for Type II (cells with angular nuclei), from 15.5% to 14.1% for Type III (cells with smeared nuclei), and from 3.2% to 5.5% for Type IV (dead cells). Thus, Type I and IV neurons can be assessed at a higher reproducibility than the intermediate Types II and III. Our typing method can also be used to evaluate the effect of treatment regimes on ischemic neuronal damage.

  6. Axon guidance of rat cortical neurons by microcontact printed gradients.

    Science.gov (United States)

    Fricke, Rita; Zentis, Peter D; Rajappa, Lionel T; Hofmann, Boris; Banzet, Marko; Offenhäusser, Andreas; Meffert, Simone H

    2011-03-01

    Substrate-bound gradients expressed in numerous spatio-temporal patterns play a crucial role during the development of complex neural circuits. A deeper understanding of the axon guidance mechanism is provided by studying the effect of a defined substrate-bound cue on a confined neural network. In this study, we constructed a discontinuous substrate-bound gradient to control neuronal cell position, the path of neurite growth, and axon directionality. A variety of gradient patterns, with slight changes in slope, width, and length were designed and fabricated by microcontact printing using laminin/poly-l-lysine (PLL) or PLL alone. The gradients were tested for neurite growth and their impact on axon guidance of embryonic rat cortical neurons. The neurite length was determined and the axon was evaluated by Tau-1 immunostaining. We found that the microgradients of laminin/PLL and PLL directed neurons' adhesion, differentially controlled the neurite growth, and guided up to 84% of the axons. The effect of the protein micropattern on axon guidance and neurite growth depended on the protein and geometric parameters used. Our approach proved to be very successful in guiding axons of single multipolar neurons with very high efficiency. It could thereby be useful to engineer defined neural networks for analyzing signal processing of functional circuits, as well as to unravel fundamental questions of the axon guidance mechanism.

  7. Effect of gonadotropin secretion rate on the radiosensitivity of the rat luteinizing hormone-releasing hormone neuron and gonadotroph

    Energy Technology Data Exchange (ETDEWEB)

    Winterer, J.; Barnes, K.M.; Lichter, A.S.; Deluca, A.M.; Loriaux, D.L.; Cutler, G.B. Jr.

    1988-03-01

    To test the hypothesis that the functional state of hypothalamic LHRH neurons and pituitary gonadotrophs might alter their radiosensitivity, we determined the experimental conditions under which the gonadotropin response to castration could be impaired by a single dose of cranial irradiation. Single doses of cranial irradiation greater than 2000 rads were lethal to unshielded rats. Shielding of the oropharynx and esophagus allowed the animals to survive doses up to 5000 rads. Doses between 2000 and 5000 rads had no effect on basal gonadotropin levels for as long as 3 months after irradiation. Irradiation caused a dose- and time-dependent impairment, however, in the gonadotropin response to castration. Impairment of the gonadotropin levels of castrate animals occurred in animals that were irradiated either before or after castration. However, rats irradiated in the castrate state showed a decreased susceptibility to irradiation damage. Additionally, stimulation of the pituitary by LHRH agonist (LHRHa) 3 h before irradiation significantly reduced the impairment of gonadotropin secretion 12-20 weeks after irradiation (P less than 0.05). Thus, increased functional activity of the rat hypothalamus or pituitary at the time of irradiation, induced by either castration or acute LHRHa administration, was associated with some protection against the gonadotropin-lowering effect of irradiation. Based upon these data, we hypothesize that stimulation of gonadotropin secretion at the time of therapeutic cranial irradiation in humans might protect against subsequent impairment of gonadotropin secretion.

  8. Characterization of the chemosensitive response of individual solitary complex neurons from adult rats

    Science.gov (United States)

    Nichols, Nicole L.; Mulkey, Daniel K.; Wilkinson, Katherine A.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2009-01-01

    We studied the CO2/H+-chemosensitive responses of individual solitary complex (SC) neurons from adult rats by simultaneously measuring the intracellular pH (pHi) and electrical responses to hypercapnic acidosis (HA). SC neurons were recorded using the blind whole cell patch-clamp technique and loading the soma with the pH-sensitive dye pyranine through the patch pipette. We found that SC neurons from adult rats have a lower steady-state pHi than SC neurons from neonatal rats. In the presence of chemical and electrical synaptic blockade, adult SC neurons have firing rate responses to HA (percentage of neurons activated or inhibited and the magnitude of response as determined by the chemosensitivity index) that are similar to SC neurons from neonatal rats. They also have a typical response to isohydric hypercapnia, including decreased ΔpHi, followed by pHi recovery, and increased firing rate. Thus, the chemosensitive response of SC neurons from adults is similar to the chemosensitive response of SC neurons from neonatal rats. Because our findings for adults are similar to previously reported values for neurons from neonatal rats, we conclude that intrinsic chemosensitivity is established early in development for SC neurons and is maintained throughout adulthood. PMID:19144749

  9. The experimental study of the damage of environmental neurotoxins on the cultured rat dopaminergic neurons

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; LU Chuanzhen; JIANG Yuping

    2000-01-01

    Objective To establish the culture system of rat dopaminergic neurons. and to determine whether Paraquat and Dieldrin selectively destroy cultured rat dopaminergic neurons respectively. Methods The cultured rat dopaminergic neurons were treated for 24h with Paraquat and Dieldrin(0.001 to 100 μ mol/L) respectively, Data were expressed as percentage of surviving TH-positive(TH+) cells and other cells per culture dish. Results Paraquat was not effective in selectively destroying TH+ neurons. Dieldrin (1 μ mol/L) selectively decreased the number of TH+ neurons without affecting other cells. The EC50 of Dieldrin on TH+ neurons was 27.6 l mol/L. Conclusion: Paraquat can not selectively destroy dopaminergic neurons in culture. Dieldrin (1 μ mol/L) can selectively destroy the dopaminergic neurons in culture, which make it a potential etiological agent for PD. The possible parkinsonogenic effect of Dieldrin is deserved for further investigation.

  10. Neuronal substrates underlying stress resilience and susceptibility in rats.

    Science.gov (United States)

    Febbraro, Fabia; Svenningsen, Katrine; Tran, Thao Phuong; Wiborg, Ove

    2017-01-01

    Stress and stressful life events have repeatedly been shown as causally related to depression. The Chronic Mild Stress rat model is a valid model of stress-induced depression. Like humans, rats display great heterogeneity in their response to stress and adversity. Hence some individuals are stress-sensitive and prone to develop depression-like behaviour in response to modest stressors, while others are stress-resilient and remain essentially symptom free. Compared to the large body of research, which describes stress-induced maladaptive neurobiological changes, relatively little attention has been devoted to understand resiliency to stress. The aim of the present study was to identify changes in neuronal activity, associated with stress-resilient and stress-susceptible chronic mild stress endophenotypes, by examining c-Fos expression in 13 different brain areas. Changes in c-Fos expression have been reported as associated to stressful conditions. Stress-induced modulation of neuronal activation patterns in response to the chronic mild stress paradigm was mapped using the immediate early gene expression c-Fos as a marker. Quantification of the c-Fos-like immunoreactivity responses was done by semi-automated profile counting procedures and design-based stereology. Exposure to chronic mild stress significantly altered c-Fos expression in a total of 6 out of 13 investigated areas. Chronic mild stress was found to suppress the c-Fos response within the magnocellular ventral lateral geniculate nucleus of both stress subgroups. In the the lateral and ventral orbital cortices of stress-resilient rats, the c-Fos like immunoreactivity response was also repressed by stress exposure. On the contrary the c-Fos response within the amygdala, medial habenula, and infralimbic cortex was increased selectively for the stress-susceptible rats. The study was initiated to characterize neuronal substrates associated with stress-coping mechanisms. Six areas, all of which represents limbic

  11. Ventromedial and medial preoptic hypothalamic ibotenic acid lesions potentiate systemic morphine analgesia in female, but not male rats.

    Science.gov (United States)

    Cataldo, Giuseppe; Lovric, Jelena; Chen, Chia-Chien; Pytte, Carolyn L; Bodnar, Richard J

    2010-12-25

    Sex differences in systemic morphine analgesia occur with male rodents displaying significantly greater analgesic magnitudes and potencies than females. Neonatal androgenization, and to a lesser degree, adult ovariectomy enhance systemic morphine analgesia in female rats, implicating both organizational and activational effects of gonadal hormones. The neuroanatomical circuits sensitive to sex-related hormones by which females display a smaller opiate analgesic effect is not clear, but the ventromedial (VMH) and medial preoptic (MPOA) hypothalamic nuclei are critical in the monitoring of estradiol and other sex hormone levels. To assess the contribution of these nuclei to sex and adult gonadectomy differences in systemic morphine analgesia, intact male, intact female and adult ovariectomized (OVEX) female rats received bilateral saline (SAL) or ibotenic acid (IBO) microinjections into either the VMH or MPOA. Following surgeries, baseline tail-flick latencies over 120 minutes (min) were assessed over 4 days in all nine groups with intact females tested in the estrus phase of their cycle. All animals then received an ascending series of morphine (1.0, 2.5, 5.0, 7.5, 10.0mg/kg) injections 30min prior to the tail-flick test time course with 8-12 day inter-injection intervals between doses. Baseline latencies failed to differ between SAL-treated intact males and females, but were significantly higher in SAL-treated OVEX females. Both VMH IBO and MPOA IBO lesions increased baseline latencies in intact male and female rats, but not in OVEX females. SAL-treated intact males (ED(50)=4.0mg/kg) and SAL-treated OVEX females (ED(50)=3.5mg/kg) displayed significantly greater potencies of systemic morphine analgesia than SAL-treated intact females (ED(50)=6.3mg/kg), confirming previous gender and gonadectomy differences. Neither VMH IBO (ED(50)=3.7 mg/kg) nor MPOA IBO (ED(50)=4.1mg/kg) males differed from SAL-treated males in the potency of systemic morphine analgesia. In

  12. Differential expression of hypothalamic, metabolic and inflammatory genes in response to short-term calorie restriction in juvenile obese- and lean-prone JCR rats.

    Science.gov (United States)

    Diane, A; Pierce, W D; Mangat, R; Borthwick, F; Nelson, R; Russell, J C; Heth, C D; Jacobs, R L; Vine, D F; Proctor, S D

    2015-08-24

    Childhood obesity is an important early predictor of adult obesity and associated comorbidities. Common forms of obesity are underpinned by both environmental and genetic factors. However, the rising prevalence of obesity in genetically stable populations strongly suggests that contemporary lifestyle is a premier factor to the disease. In pediatric population, the current treatment/prevention options for obesity are lifestyle interventions such as caloric restriction (CR) and increase physical activity. In obese individuals, CR improves many metabolic parameters in peripheral tissues. Little is known about the effect of CR on the hypothalamus. This study aimed to assess the effect of CR on hypothalamic metabolic gene expression of young obese- and lean-prone animals. Male juvenile JCR:LA-cp obese-prone rats were freely fed (Obese-FF) or pair fed (Obese-FR) to lean-prone, free-feeding animals (Lean-FF). A group of lean-prone rats (Lean-FR) were matched for relative average degree of CR to Obese-FR rats. In free-feeding conditions, obese-prone rats consumed more energy than lean-prone rats (PJCR rats that the metabolic and inflammatory response of the brain to CR is genotype dependent.

  13. Prunus mume and Lithospermum erythrorhizon Extracts Synergistically Prevent Visceral Adiposity by Improving Energy Metabolism through Potentiating Hypothalamic Leptin and Insulin Signalling in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Byoung-Seob Ko

    2013-01-01

    Full Text Available We investigated the antiobesity and hypoglycemic properties of Prunus mume Sieb. et Zucc (PMA; Japanese apricot and Lithospermum erythrorhizon Sieb. et Zucc (LES; gromwell extracts in ovariectomized (OVX rats that impaired energy and glucose homeostasis. OVX rats consumed either 5% dextrose, 5% PMA extract, 5% LES extract, or 2.5% PMA+2.5% LES extract in the high fat diet. After 8 weeks of treatment, PMA+LES prevented weight gain and visceral fat accumulation in OVX rats by lowering daily food intake and increasing energy expenditure and fat oxidation. PMA+LES prevented the attenuation of leptin and insulin signaling by increasing the expression of leptin receptor in the hypothalamus in OVX rats. PMA+LES significantly reversed the decrease of energy expenditure in OVX rats by increasing expression of UCP-1 in the brown adipose tissues and UCP-2 and UCP-3 in the quadriceps muscles. PMA+LES also increased CPT-1 expression and decreased FAS, ACC, and SREBP-1c in the liver and quadriceps muscles to result in reducing triglyceride accumulation. PMA+LES improved insulin sensitivity in OVX rats. In conclusion, PMA+LES synergistically prevented the impairment of energy, lipid, and glucose metabolism by OVX through potentiating hypothalamic leptin and insulin signaling. PMA+LES may be a useful intervention for alleviating the symptoms of menopause in women.

  14. Hypothalamic inflammation: a double-edged sword to nutritional diseases

    OpenAIRE

    Cai, Dongsheng; Liu, Tiewen

    2011-01-01

    The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and non-neuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from o...

  15. Different critical perinatal periods and hypothalamic sites of oestradiol action in the defeminisation of luteinising hormone surge and lordosis capacity in the rat.

    Science.gov (United States)

    Sakakibara, M; Deura, C; Minabe, S; Iwata, Y; Uenoyama, Y; Maeda, K-I; Tsukamura, H

    2013-03-01

    Female rats show a gonadotrophin-releasing hormone (GnRH)/luteinising hormone (LH) surge in the presence of a preovulatory level of oestrogen, whereas males do not because of brain defeminisation during the developmental period by perinatal oestrogen converted from androgen. The present study aimed to identify the site(s) of oestrogen action and the critical period for defeminising the mechanism regulating the GnRH/LH surge. Animals given perinatal treatments, such as steroidal manipulations, brain local implantation of oestradiol (E(2) ) or administration of an NMDA antagonist, were examined for their ability to show an E(2) -induced LH surge at adulthood. Lordosis behaviour was examined to compare the mechanisms defeminising the GnRH/LH surge and sexual behaviour. A single s.c. oestradiol-benzoate administration on either the day before birth (E21), the day of birth (D0) or day 5 (D5) postpartum completely abolished the E(2) -induced LH surge at adulthood in female rats, although the same treatment did not inhibit lordosis. Perinatal castration on E21 or D0 partially rescued the E2-induced LH surge in genetically male rats, whereas castration from E21 to D5 totally rescued lordosis. Neonatal E(2) implantation in the anterior hypothalamus including the anteroventral periventricular nucleus (AVPV)/preoptic area (POA) abolished the E(2) -induced LH surge in female rats, whereas E(2) implantation in the mid and posterior hypothalamic regions had no inhibitory effect on the LH surge. Lordosis was not affected by neonatal E(2) implantation in any hypothalamic regions. In male rats, neonatal NMDA antagonist treatment rescued lordosis but not the LH surge. Taken together, these results suggest that an anterior hypothalamic region such as the AVPV/POA region is a perinatal site of oestrogen action where the GnRH/LH regulating system is defeminised to abolish the oestrogen-induced surge. The mechanism for defeminisation of the GnRH/LH surge system might be different from

  16. Radiometric assay for phenylethanolamine N-methyltransferase and catechol O-methyltransferase in a single tissue sample: application to rat hypothalamic nuclei, pineal gland, and heart

    Energy Technology Data Exchange (ETDEWEB)

    Culman, J.; Torda, T.; Weise, V.K.

    1987-08-01

    A simple and highly sensitive method for simultaneous assay of phenylethanolamine N-methyltransferase (PNMT) and catechol O-methyltransferase (COMT) is described. These enzymes are determined in a single tissue homogenate using S-(methyl-/sup 3/H) adenosyl-L-methionine as methyl donor and sequentially incubating with the substrates phenylethanolamine and epinephrine. The radioactive products of the enzymatic reactions, N-methylphenylethanolamine and metanephrine, are extracted and then separated by thin-layer chromatography. The identity of the reaction products has been established chromatographically and the conditions for both enzymatic reactions in the assay procedure have been defined. Measurement of PNMT activity in the rat pineal gland or in minute fragments of other tissues (e.g., brain nuclei) has not been possible using previously described methods. Activities of PNMT and COMT in the rat pineal gland, various hypothalamic nuclei, and the auricular and ventricular myocardia are herein reported.

  17. Curcumin protects against staurosporine toxicity in rat neurons

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yan Qin; Ji-Hui Lv; Jia Cui; Xue Fang; Yan Zhang

    2012-01-01

    Objective Curcumin is extracted from the turmeric plant (Curcuma longa Linn.) and is widely used as a food additive and traditional medicine.The present study investigated the activity of curcumin against staurosporine (STS) toxicity in cell culture.Methods Rat hippocampal neurons in primary culture were exposed to STS (20 μmol/L) and treated with curcumin (20 μmol/L).Cell viability was tested by MTT assay and reactive oxygen species (ROS) were measured using the MitoSOXTM red mitochondrial superoxide indicator.Western blot was used to assess changes in the levels of caspasc-3 (Csp3),heat shock protein 70 (Hsp70) and Akt.Results The results showed that curcumin protects against STS-induced cytotoxicity in rat hippocampal neurons.Csp3,Hsp70,Akt and ROS activation may be involved in this protection.Conclusion Curcumin could be a potential drug for combination with STS in cancer treatment to reduce the unwanted cytotoxicity of STS.

  18. Treatment with an SSRI antidepressant restores hippocampo-hypothalamic corticosteroid feedback and reverses insulin resistance in low-birth-weight rats.

    Science.gov (United States)

    Buhl, Esben S; Jensen, Thomas Korgaard; Jessen, Niels; Elfving, Betina; Buhl, Christian S; Kristiansen, Steen B; Pold, Rasmus; Solskov, Lasse; Schmitz, Ole; Wegener, Gregers; Lund, Sten; Petersen, Kitt Falck

    2010-05-01

    Low birth weight (LBW) is associated with type 2 diabetes and depression, which may be related to prenatal stress and insulin resistance as a result of chronic hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. We examined whether treatment with a selective serotonin reuptake inhibitor [escitalopram (ESC)] could downregulate HPA axis activity and restore insulin sensitivity in LBW rats. After 4-5 wk of treatment, ESC-exposed LBW (SSRI-LBW) and saline-treated control and LBW rats (Cx and LBW) underwent an oral glucose tolerance test or a hyperinsulinemic euglycemic clamp to assess whole body insulin sensitivity. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression and red skeletal muscle PKB Ser(473) phosphorylation were used to assess tissue-specific insulin sensitivity. mRNA expression of the hypothalamic mineralocorticoid receptor was fivefold upregulated in LBW (P < 0.05 vs. Cx), accompanied by increased corticosterone release during restraint stress and total 24-h urinary excretion (P < 0.05 vs. Cx), whole body insulin resistance (P < 0.001 vs. Cx), and impaired insulin suppression of hepatic PEPCK mRNA expression (P < 0.05 vs. Cx). Additionally, there was a tendency for reduced red muscle PKB Ser(473) phosphorylation. The ESC treatment normalized corticosterone secretion (P < 0.05 vs. LBW), whole body insulin sensitivity (P < 0.01) as well as postprandial suppression of hepatic mRNA PEPCK expression (P < 0.05), and red muscle PKB Ser(473) phosphorylation (P < 0.01 vs. LBW). We conclude that these data suggest that the insulin resistance and chronic HPA axis hyperactivity in LBW rats can be reversed by treatment with an ESC, which downregulates HPA axis activity, lowers glucocorticoid exposure, and restores insulin sensitivity in LBW rats.

  19. Ibuprofen augments bilirubin toxicity in rat cortical neuronal culture.

    Science.gov (United States)

    Berns, Monika; Toennessen, Margit; Koehne, Petra; Altmann, Rodica; Obladen, Michael

    2009-04-01

    Premature infants are at risk for bilirubin-associated brain damage. In cell cultures bilirubin causes neuronal apoptosis and necrosis. Ibuprofen is used to close the ductus arteriosus, and is often given when hyperbilirubinemia is at its maximum. Ibuprofen is known to interfere with bilirubin-albumin binding. We hypothesized that bilirubin toxicity to cultured rat embryonic cortical neurons is augmented by coincubation with ibuprofen. Incubation with ibuprofen above a concentration of 125 microg/mL reduced cell viability, measured by methylthiazole tetrazolium reduction, to 68% of controls (p < 0.05). Lactate dehydrogenase (LDH) release increased from 29 to 38% (p < 0.01). The vehicle solution did not affect cell viability. Coincubation with 10 microM unconjugated bilirubin (UCB)/human serum albumin in a molar ratio of 3:1 and 250 microg/mL ibuprofen caused additional loss of cell viability and increased LDH release (p < 0.01), DNA fragmentation, and activated caspase-3. Preincubation with the pan-caspase inhibitor z-val-ala-asp-fluoromethyl ketone abolished ibuprofen- and UCB-induced DNA fragmentation. The study demonstrates that bilirubin in low concentration of 10 microM reduces neuron viability and ibuprofen increases this effect. Apoptosis is the underlying cell death mechanism.

  20. Metabolic effects of chronic T3 administration in the hypothalamic paraventricular and ventromedial nucleus in male rats

    NARCIS (Netherlands)

    Zhang, Z; Foppen, E; Su, Y; Bisschop, P H; Kalsbeek, A; Fliers, E; Boelen, A

    2016-01-01

    Thyroid hormone is a key regulator of energy metabolism. Apart from its direct effects on peripheral metabolism, thyroid hormone exerts acute metabolic effects via distinct nuclei within the hypothalamus. Recently, we developed a method for chronic and local intra-hypothalamic triiodothyronine (T3)

  1. Status epilepticus results in reversible neuronal injury in infant rat hippocampus: novel use of a marker

    OpenAIRE

    Chang, Daniel; Tallie Z. Baram

    1994-01-01

    Despite ready induction of severe limbic status epilepticus by systemic kainic acid (KA) in infant rats, excitotoxic neuronal injury has not been observed. The mechanisms of this resistance of the immature hippocampus to excitotoxicity are unknown. Acid fuchsin stain has been used as a marker of irreversibly injured neurons in the adult brain. We speculated that the dye might map reversibly injured neurons in the infant. Subsequent to KA-induced status epilepticus in 11-day-old rats, acid fuc...

  2. Central vagal stimulation activates enteric cholinergic neurons in the stomach and VIP neurons in the duodenum in conscious rats.

    Science.gov (United States)

    Yuan, Pu-Qing; Kimura, Hiroshi; Million, Mulugeta; Bellier, Jean-Pierre; Wang, Lixin; Ohning, Gordon V; Taché, Yvette

    2005-04-01

    The influence of central vagal stimulation induced by 2h cold exposure or intracisternal injection of thyrotropin-releasing hormone (TRH) analog, RX-77368, on gastro-duodenal enteric cholinergic neuronal activity was assessed in conscious rats with Fos and peripheral choline acetyltransferase (pChAT) immunoreactivity (IR). pChAT-IR was detected in 68%, 70% and 73% of corpus, antrum and duodenum submucosal neurons, respectively, and in 65% of gastric and 46% of duodenal myenteric neurons. Cold and RX-77368 induced Fos-IR in over 90% of gastric submucosal and myenteric neurons, while in duodenum only 25-27% of submucosal and 50-51% myenteric duodenal neurons were Fos positive. In the stomach, cold induced Fos-IR in 93% of submucosal and 97% of myenteric pChAT-IR neurons, while in the duodenum only 7% submucosal and 5% myenteric pChAT-IR neurons were Fos positive. In the duodenum, cold induced Fos in 91% of submucosal and 99% of myenteric VIP-IR neurons. RX-77368 induces similar percentages of Fos/pChAT-IR and Fos/VIP-IR neurons. These results indicate that increased central vagal outflow activates cholinergic neurons in the stomach while in the duodenum, VIP neurons are preferentially stimulated.

  3. Hypothalamic energy balance gene responses in the Sprague-Dawley rat to supplementation of high-energy diet with liquid ensure and subsequent transfer to chow.

    Science.gov (United States)

    Archer, Z A; Rayner, D V; Barrett, P; Balik, A; Duncan, J S; Moar, K M; Mercer, J G

    2005-11-01

    Energy dense, high fat, high sugar, foods and beverages in our diet are a major contributor to the escalating global obesity problem. Here, we examine the physiological and neuroendocrine effects of feeding rats a solid high-energy (HE) diet with or without a liquid supplement (Ensure) and the consequence of subsequently transferring animals back to chow (C). Outbred Sprague-Dawley rats were fed C until 49-56 days of age, and then transferred a HE diet for 3 weeks before allocation to one of two weight-matched groups. Over the next 10 weeks, one group remained on HE diet, whereas the other had access to the liquid diet, chocolate Ensure (EN), in addition to HE diet (HE + EN). Half the rats from each group were then killed, and the remainder were returned to C for 3 weeks. Supplementation of the HE diet with EN accelerated weight gain and increased daily energy intake, adipose tissue mass, and circulating leptin levels. Transferring animals back to C caused a decrease in bodyweight in the HE + EN group, whereas HE animals were weight stable. Both groups also exhibited voluntary hypophagia, although the magnitude and duration of this response was greater in HE + EN animals. The only effect of Ensure on the hypothalamic genes studied was on tyrosine kinase B expression in the ventromedial hypothalamic nucleus (VMH), which was increased in rats given the supplement. Withdrawal of the obesogenic diets decreased gene expression for cocaine-and-amphetamine regulated transcript (CART) and dynorphin (DYN) in the arcuate nucleus (ARC), and DYN and brain-derived neurotrophic factor (BDNF) in the VMH, whereas neuropeptide Y (NPY) gene expression in the ARC was increased. These changes were independent of previous dietary history. EN supplementation generates distinct physiological responses, yet has a minimal effect on hypothalamic neuropeptide or receptor gene expression, possibly due to the development of leptin resistance. Withdrawal of obesogenic diets induces changes in

  4. Neurochemical phenotype of cytoglobin‑expressing neurons in the rat hippocampus

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Fahrenkrug, Jan; Hannibal, Jens

    2014-01-01

    in a subpopulation of brain neurons. Recently, it has been shown that stress upregulates Cygb expression in the brain and the majority of neuronal nitric oxide synthase (nNOS)-positive neurons, an enzyme that produces NO, co-express Cygb. However, there are more neurons expressing Cygb than nNOS, thus a large number...... of Cygb neurons remain uncharacterized by the neurochemical content. The aim of the present study was to provide an additional and more detailed neurochemical phenotype of Cygb-expressing neurons in the rat hippocampus. The rat hippocampus was chosen due to the abundance of Cygb, as well as this limbic...... structure being an important target in a number of neurodegenerative diseases. Using triple immunohistochemistry, it was demonstrated that nearly all the parvalbumin- and heme oxygenase 1-positive neurons co-express Cygb and to a large extent, these neuron populations are distinct from the population...

  5. Distribution of histaminergic neuronal cluster in the rat and mouse hypothalamus.

    Science.gov (United States)

    Moriwaki, Chinatsu; Chiba, Seiichi; Wei, Huixing; Aosa, Taishi; Kitamura, Hirokazu; Ina, Keisuke; Shibata, Hirotaka; Fujikura, Yoshihisa

    2015-10-01

    Histidine decarboxylase (HDC) catalyzes the biosynthesis of histamine from L-histidine and is expressed throughout the mammalian nervous system by histaminergic neurons. Histaminergic neurons arise in the posterior mesencephalon during the early embryonic period and gradually develop into two histaminergic substreams around the lateral area of the posterior hypothalamus and the more anterior peri-cerebral aqueduct area before finally forming an adult-like pattern comprising five neuronal clusters, E1, E2, E3, E4, and E5, at the postnatal stage. This distribution of histaminergic neuronal clusters in the rat hypothalamus appears to be a consequence of neuronal development and reflects the functional differentiation within each neuronal cluster. However, the close linkage between the locations of histaminergic neuronal clusters and their physiological functions has yet to be fully elucidated because of the sparse information regarding the location and orientation of each histaminergic neuronal clusters in the hypothalamus of rats and mice. To clarify the distribution of the five-histaminergic neuronal clusters more clearly, we performed an immunohistochemical study using the anti-HDC antibody on serial sections of the rat hypothalamus according to the brain maps of rat and mouse. Our results confirmed that the HDC-immunoreactive (HDCi) neuronal clusters in the hypothalamus of rats and mice are observed in the ventrolateral part of the most posterior hypothalamus (E1), ventrolateral part of the posterior hypothalamus (E2), ventromedial part from the medial to the posterior hypothalamus (E3), periventricular part from the anterior to the medial hypothalamus (E4), and diffusely extended part of the more dorsal and almost entire hypothalamus (E5). The stereological estimation of the total number of HDCi neurons of each clusters revealed the larger amount of the rat than the mouse. The characterization of histaminergic neuronal clusters in the hypothalamus of rats and

  6. Inhibition of propofol on single neuron and neuronal ensemble activity in prefrontal cortex of rats during working memory task.

    Science.gov (United States)

    Xu, Xinyu; Tian, Yu; Wang, Guolin; Tian, Xin

    2014-08-15

    Working memory (WM) refers to the temporary storage and manipulation of information necessary for performance of complex cognitive tasks. There is a growing interest in whether and how propofol anesthesia inhibits WM function. The aim of this study is to investigate the possible inhibition mechanism of propofol anesthesia from the view of single neuron and neuronal ensemble activities. Adult SD rats were randomly divided into two groups: propofol group (0.9 mg kg(-1)min(-1), 2h via a tail vein catheter) and control group. All the rats were tested for working memory performances in a Y-maze-rewarded alternation task (a task of delayed non-matched-to-sample) at 24, 48, 72 h after propofol anesthesia, and the behavior results of WM tasks were recorded at the same time. Spatio-temporal trains of action potentials were obtained from the original signals. Single neuron activity was characterized by peri-event time histograms analysis and neuron ensemble activities were characterized by Granger causality to describe the interactions within the neuron ensemble. The results show that: comparing with the control group, the percentage of neurons excited and related to WM was significantly decreased (pneuron ensemble were significantly weakened (p0.05), which were consistent with the behavior results. These findings could lead to improved understanding of the mechanism of anesthesia inhibition on WM functions from the view of single neuron activity and neuron ensemble interactions.

  7. Low-intensity treadmill exercise-related changes in the rat stellate ganglion neurons.

    Science.gov (United States)

    Cavalcanti, Renato Albuquerque de Oliveira; da Pureza, Demilto Yamaguchi; de Melo, Mariana Pereira; de Souza, Romeu Rodrigues; Bergamaschi, Cássia T; do Amaral, Sandra Lia; Tang, Helen; Loesch, Andrzej; Ribeiro, Antonio Augusto Coppi Maciel

    2009-05-01

    Stellate ganglion (SG) represents the main sympathetic input to the heart. This study aimed at investigating physical exercise-related changes in the quantitative aspects of SG neurons in treadmill-exercised Wistar rats. By applying state-of-the-art design-based stereology, the SG volume, total number of SG neurons, mean perikaryal volume of SG neurons, and the total volume of neurons in the whole SG have been examined. Arterial pressure and heart rate were also measured at the end of the exercise period. The present study showed that a low-intensity exercise training program caused a 12% decrease in the heart rate of trained rats. In contrast, there were no effects on systolic pressure, diastolic pressure, or mean arterial pressure. As to quantitative changes related to physical exercise, the main findings were a 21% increase in the fractional volume occupied by neurons in the SG, and an 83% increase in the mean perikaryal volume of SG neurons in treadmill-trained rats, which shows a remarkable neuron hypertrophy. It seems reasonable to infer that neuron hypertrophy may have been the result of a functional overload imposed on the SG neurons by initial posttraining sympathetic activation. From the novel stereological data we provide, further investigations are needed to shed light on the mechanistic aspect of neuron hypertrophy: what role does neuron hypertrophy play? Could neuron hypertrophy be assigned to the functional overload induced by physical exercise?

  8. Characterization of upper thoracic spinal neurons responding to esophageal distension in diabetic rats

    DEFF Research Database (Denmark)

    Qin, Chao; Ghorbani, Marie L M; Wu, Mingyuan

    2008-01-01

    The aim of this study was to examine spinal neuronal processing of innocuous and noxious mechanical inputs from the esophagus in diabetic rats. Streptozotocin (50 mg/kg, ip) was used to induce diabetes in 15 male Sprague-Dawley rats, and vehicle (10 mM citrate buffer) was injected into 15 rats...

  9. Bilaminar co-culture of primary rat cortical neurons and glia.

    Science.gov (United States)

    Shimizu, Saori; Abt, Anna; Meucci, Olimpia

    2011-11-12

    This video will guide you through the process of culturing rat cortical neurons in the presence of a glial feeder layer, a system known as a bilaminar or co-culture model. This system is suitable for a variety of experimental needs requiring either a glass or plastic growth substrate and can also be used for culture of other types of neurons. Rat cortical neurons obtained from the late embryonic stage (E17) are plated on glass coverslips or tissue culture dishes facing a feeder layer of glia grown on dishes or plastic coverslips (known as Thermanox), respectively. The choice between the two configurations depends on the specific experimental technique used, which may require, or not, that neurons are grown on glass (e.g. calcium imaging versus Western blot). The glial feeder layer, an astroglia-enriched secondary culture of mixed glia, is separately prepared from the cortices of newborn rat pups (P2-4) prior to the neuronal dissection. A major advantage of this culture system as compared to a culture of neurons only is the support of neuronal growth, survival, and differentiation provided by trophic factors secreted from the glial feeder layer, which more accurately resembles the brain environment in vivo. Furthermore, the co-culture can be used to study neuronal-glial interactions(1). At the same time, glia contamination in the neuronal layer is prevented by different means (low density culture, addition of mitotic inhibitors, lack of serum and use of optimized culture medium) leading to a virtually pure neuronal layer, comparable to other established methods(1-3). Neurons can be easily separated from the glial layer at any time during culture and used for different experimental applications ranging from electrophysiology(4), cellular and molecular biology(5-8), biochemistry(5), imaging and microscopy(4,6,7,9,10). The primary neurons extend axons and dendrites to form functional synapses(11), a process which is not observed in neuronal cell lines, although some

  10. Neuronal substrates underlying stress resilience and susceptibility in rats

    DEFF Research Database (Denmark)

    Febbraro, Fabia; Svenningsen, Katrine; Tran, Thao Phuong

    2017-01-01

    are stress-sensitive and prone to develop depression-like behaviour in response to modest stressors, while others are stress-resilient and remain essentially symptom free. OBJECTIVES: Compared to the large body of research, which describes stress-induced maladaptive neurobiological changes, relatively little...... attention has been devoted to understand resiliency to stress. The aim of the present study was to identify changes in neuronal activity, associated with stress-resilient and stress-susceptible chronic mild stress endophenotypes, by examining c-Fos expression in 13 different brain areas. Changes in c...... ventral lateral geniculate nucleus of both stress subgroups. In the the lateral and ventral orbital cortices of stress-resilient rats, the c-Fos like immunoreactivity response was also repressed by stress exposure. On the contrary the c-Fos response within the amygdala, medial habenula, and infralimbic...

  11. Activation of heme oxygenase and consequent carbon monoxide formation inhibits the release of arginine vasopressin from rat hypothalamic explants. Molecular linkage between heme catabolism and neuroendocrine function.

    Science.gov (United States)

    Mancuso, C; Kostoglou-Athanassiou, I; Forsling, M L; Grossman, A B; Preziosi, P; Navarra, P; Minotti, G

    1997-10-15

    Heme oxygenase (HO)-catalyzed degradation of cellular heme moieties generates biliverdin and equimolar amounts of carbon monoxide (CO), which has been implicated as a possible modulator of neural function. Technical difficulties preclude direct measurements of CO within intact nervous tissues; hence, alternative procedures are needed to monitor the formation and possible biologic functions of this gas. In the present study rat hypothalamic explants were found to generate 114 +/- 5 or 127 +/- 11 pmol biliverdin/hypothalamus/1 h (n = 3) upon incubation with 1 or 10 microM hemin, respectively. Ten micromolar zinc-protoporphyrin IX (Zn-PP-IX), a known inhibitor of HO, significantly decreased the degradation of 10 microM hemin from 127 +/- 11 to 26 +/- 11 pmol biliverdin/hypothalamus/1 h (n = 3; P tin-mesoporphyrin IX, which is even more selective in inhibiting HO; it was also attenuated in the presence of the gaseous scavenger ferrous hemoglobin. Furthermore, the inhibition of AVP release could be reproduced by omitting hemin and by incubating hypothalami under CO, whereas treatment with biliverdin had no effect. This suggested that the release of AVP was suppressed by HO degradation of hemin, yielding CO as a modulator of hypothalamic function. These observations may be relevant to diseases characterized by inappropriate secretion of AVP and enzymatic disturbances affecting the synthesis of heme and the formation of CO through the HO pathway (e.g., acute intermittent porphyria or lead intoxication).

  12. Regional haemodynamic effects of mu-, delta-, and kappa-opioid agonists microinjected into the hypothalamic paraventricular nuclei of conscious, unrestrained rats.

    Science.gov (United States)

    Bachelard, H; Pître, M

    1995-06-01

    1. The cardiovascular effects of bilateral injection into the hypothalamic paraventricular nuclei of selective mu-, delta-, and kappa-opioid receptor agonists were investigated in conscious, unrestrained Wistar Kyoto rats, chronically instrumented with pulsed Doppler flow probes for measurement of regional haemodynamics. 2. The selective mu-agonist [D-Ala2,MePhe4,Gly5ol]enkephalin (DAMGO), injected bilaterally into the hypothalamic paraventricular nuclei (0.01-1.0 nmol), caused increases in blood pressure, tachycardias, vasoconstriction in renal and superior mesenteric vascular beds and substantial vasodilatation in the hindquarter vascular bed. 3. The administration of increasing doses (0.01-5.0 nmol) of the selective delta-agonist [D-Phe2,5]enkephalin (DPDPE) or the selective kappa-agonist, U50488H into the paraventricular nuclei (PVN) had no significant effect on blood pressure, heart rate, or regional haemodynamics. 4. Together, the present results are further evidence of a role for opioid peptides, especially acting at mu-receptors in the PVN, in the central regulation of the cardiovascular system, whereas a role for opioid peptides, acting at delta- and kappa-receptors in the PVN, seems less obvious from the present results.

  13. Orexins/hypocretins modulate the activity of NPY-positive and -negative neurons in the rat intergeniculate leaflet via OX1 and OX2 receptors.

    Science.gov (United States)

    Palus, K; Chrobok, L; Lewandowski, M H

    2015-08-06

    Orexins/hypocretins (OXA and OXB) are two hypothalamic peptides involved in the regulation of many physiological processes including the sleep-wake cycle, food intake and arousal. The orexinergic system of the lateral hypothalamus is considered a non-specific peptidergic system, and its nerve fibers innervate numerous brain areas. Among many targets of orexinergic neurons is the intergeniculate leaflet (IGL) of the thalamus - a small but important structure of the mammalian biological clock. In rats, the IGL consists of GABAergic cells which also synthesize different neuropeptides. One group of neurons produces neuropeptide Y (NPY) and sends its axons to the master biological clock known as the suprachiasmatic nuclei. Another neuronal group produces enkephalin and is known to connect contralateral IGLs. This study evaluated the effects of orexins on identified IGL neurons revealing that 58% of the recorded neurons were sensitive to OXA (200nM) and OXB (200nM) administration. Both NPY-positive and -negative neurons were depolarized by these neuropeptides. Experiments using selective orexin receptor antagonists (SB-334867, 10μM and TCS-OX2-29, 10μM) suggested that both orexin receptors participate in the recorded OXA effects. In addition, IGL neurons were either directly depolarized by OXA or their activity was altered by changes in presynaptic inputs. We observed an increase of GABA release onto the investigated IGL neuron after OXA application, consistent with a presynaptic localization of the orexin receptors. An increase in miniature excitatory postsynaptic current frequency was not observed within the IGL. Our findings reinforce the connection between circadian clock physiology and the orexinergic system.

  14. [Effect of spontaneous firing of injured dorsal root ganglion neuron on excitability of wide dynamic range neuron in rat spinal dorsal horn].

    Science.gov (United States)

    Song, Ying; Zhang, Yong-Mei; Xu, Jie; Wu, Jing-Ru; Qin, Xia; Hua, Rong

    2013-10-25

    The aim of the paper is to study the effect of spontaneous firing of injured dorsal root ganglion (DRG) neuron in chronic compression of DRG (CCD) model on excitability of wide dynamic range (WDR) neuron in rat spinal dorsal horn. In vivo intracellular recording was done in DRG neurons and in vivo extracellular recording was done in spinal WDR neurons. After CCD, incidence of spontaneous discharge and firing frequency enhanced to 59.46% and (4.30 ± 0.69) Hz respectively from 22.81% and (0.60 ± 0.08) Hz in normal control group (P neuron in CCD rats decreased the spontaneous activities of WDR neurons from (191.97 ± 45.20)/min to (92.50 ± 30.32)/min (P neuron evoked spontaneous firing in a reversible way (n = 5) in silent WDR neurons of normal rats. There was 36.36% (12/33) WDR neuron showing after-discharge in response to innocuous mechanical stimuli on cutaneous receptive field in CCD rats, while after-discharge was not seen in control rats. Local administration of TTX on DRG with a concentration of 50 nmol/L attenuated innocuous electric stimuli-evoked after-discharge of WDR neurons in CCD rats in a reversible manner, and the frequency was decreased from (263 ± 56.5) Hz to (117 ± 30) Hz (P neurons is influenced by spontaneous firings of DRG neurons after CCD.

  15. Chronic Hypoxia Suppresses the Co2 Response of Solitary Complex (Sc) Neurons from Rats

    Science.gov (United States)

    Nichols, Nicole L.; Wilkinson, Katherine A.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2009-01-01

    We studied the effect of chronic hypobaric hypoxia (CHx; 10-11% O2) on the response to hypercapnia (15% CO2) of individual solitary complex (SC) neurons from adult rats. We simultaneously measured the intracellular pH and firing rate responses to hypercapnia of SC neurons in superfused medullary slices from control and CHx-adapted adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. We found that CHx caused the percentage of SC neurons inhibited by hypercapnia to significantly increase from about 10% up to about 30%, but did not significantly alter the percentage of SC neurons activated by hypercapnia (50% in control versus 35% in CHx). Further, the magnitudes of the responses of SC neurons from control rats (chemosensitivity index for activated neurons of 166±11% and for inhibited neurons of 45±15%) were the same in SC neurons from CHx-adapted rats. This plasticity induced in chemosensitive SC neurons by CHx appears to involve intrinsic changes in neuronal properties since they were the same in synaptic blockade medium. PMID:19619674

  16. GABA mediated excitation in immature rat CA3 hippocampal neurons.

    Science.gov (United States)

    Cherubini, E; Rovira, C; Gaiarsa, J L; Corradetti, R; Ben Ari, Y

    1990-01-01

    Intracellular recordings from rat hippocampal neurons in vitro during the first postnatal week revealed the presence of spontaneous giant depolarizing potentials (GDPs). These were generated by the synchronous discharge of a population of neurons. GDPs reversed polarity at -27 and -51 mV when recorded with KCl or K-methylsulphate filled electrodes, respectively. GDPs were blocked by the GABAA receptor antagonist bicuculline (10 microM). Iontophoretic or bath applications of GABA (10-300 microM) in the presence of tetrodotoxin (1 microM), induced a membrane depolarization or in voltage clamp experiments an inward current which reversed polarity at the same potential as GDPs. The response to GABA was blocked in a non-competitive manner by bicuculline (10 microM) and did not desensitize. GABA mediated GDPs were presynaptically modulated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Their frequency was reduced or blocked by NMDA receptor antagonists and by the rather specific non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The frequency of GDPs was enhanced by glycine and D-serine (10-30 microM) in a strychnine insensitive manner. This effect was blocked by AP-5, suggesting that it was mediated by the allosteric modulatory site of the NMDA receptor. These observations suggest that most of the 'excitatory' drive in immature neurons is mediated by GABA acting on GABAA receptors; furthermore excitatory amino acids modulate the release of GABA by a presynaptic action on GABAergic interneurons.

  17. Chronaxie Measurements in Patterned Neuronal Cultures from Rat Hippocampus.

    Science.gov (United States)

    Stern, Shani; Agudelo-Toro, Andres; Rotem, Assaf; Moses, Elisha; Neef, Andreas

    2015-01-01

    Excitation of neurons by an externally induced electric field is a long standing question that has recently attracted attention due to its relevance in novel clinical intervention systems for the brain. Here we use patterned quasi one-dimensional neuronal cultures from rat hippocampus, exploiting the alignment of axons along the linear patterned culture to separate the contribution of dendrites to the excitation of the neuron from that of axons. Network disconnection by channel blockers, along with rotation of the electric field direction, allows the derivation of strength-duration (SD) curves that characterize the statistical ensemble of a population of cells. SD curves with the electric field aligned either parallel or perpendicular to the axons yield the chronaxie and rheobase of axons and dendrites respectively, and these differ considerably. Dendritic chronaxie is measured to be about 1 ms, while that of axons is on the order of 0.1 ms. Axons are thus more excitable at short time scales, but at longer time scales dendrites are more easily excited. We complement these studies with experiments on fully connected cultures. An explanation for the chronaxie of dendrites is found in the numerical simulations of passive, realistically structured dendritic trees under external stimulation. The much shorter chronaxie of axons is not captured in the passive model and may be related to active processes. The lower rheobase of dendrites at longer durations can improve brain stimulation protocols, since in the brain dendrites are less specifically oriented than axonal bundles, and the requirement for precise directional stimulation may be circumvented by using longer duration fields.

  18. Chronaxie Measurements in Patterned Neuronal Cultures from Rat Hippocampus.

    Directory of Open Access Journals (Sweden)

    Shani Stern

    Full Text Available Excitation of neurons by an externally induced electric field is a long standing question that has recently attracted attention due to its relevance in novel clinical intervention systems for the brain. Here we use patterned quasi one-dimensional neuronal cultures from rat hippocampus, exploiting the alignment of axons along the linear patterned culture to separate the contribution of dendrites to the excitation of the neuron from that of axons. Network disconnection by channel blockers, along with rotation of the electric field direction, allows the derivation of strength-duration (SD curves that characterize the statistical ensemble of a population of cells. SD curves with the electric field aligned either parallel or perpendicular to the axons yield the chronaxie and rheobase of axons and dendrites respectively, and these differ considerably. Dendritic chronaxie is measured to be about 1 ms, while that of axons is on the order of 0.1 ms. Axons are thus more excitable at short time scales, but at longer time scales dendrites are more easily excited. We complement these studies with experiments on fully connected cultures. An explanation for the chronaxie of dendrites is found in the numerical simulations of passive, realistically structured dendritic trees under external stimulation. The much shorter chronaxie of axons is not captured in the passive model and may be related to active processes. The lower rheobase of dendrites at longer durations can improve brain stimulation protocols, since in the brain dendrites are less specifically oriented than axonal bundles, and the requirement for precise directional stimulation may be circumvented by using longer duration fields.

  19. Effect of deep brain stimulation on substantia nigra neurons in a rat model of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    WU Sheng-tian; MA Yu; ZHANG Kai; ZHANG Jian-guo

    2012-01-01

    Background Parkinson's disease(PD)is a common neurodegenerative disease,which occurs mainly in the elderly.Recent studies have demonstrated that apoptosis plays an important role in the occurrence and development of PD.Subthalamic nucleus deep brain stimulation(STN-DBS)has been recognized as an effective treatment for PD.Recent clinical observations have shown that STN-DBS was able to delay early PD progression,and experiments in animal models have also demonstrated a protective effect of STN-DBS on neurons.However,the correlation between the neuron-protective effect of STN-DBS and the progression of substantia nigra pars compacta(SNc)neuronal apoptosis is still unknown.The aim of this study was to investigate the protective effect and potential mechanism of STN-DBS on SNc neurons in PD rats.Methods After the establishment of a PD rat model by unilateral/2-point injection of 6-hydroxydopamine in the medial forebrain bundle of the brain,DBS by implanting electrodes in the STN was administered.Behavioral changes were observed,and morphological changes of SNc neurons were analyzed by Nissl staining and DNA in situ end-labeling.Through extracellular recording of single neuron discharges and microelectrophoresis,the causes of and changes in SNc excitability during STN-DBS were analyzed,and the protective effect and potential mechanism of action of STN-DBS on SNc neurons in PD rats was investigated.Results SNc neuron apoptosis was significantly decreased(P<0.05)in the stimulation group,compared with the sham stimulation PD group.Spontaneous discharges of SNc neurons were observed in normal rats and PD model rats,and the mean frequency of spontaneous discharges of SNc neurons in normal rats((40.65±11.08)Hz)was higher than that of residual SNc neurons in PD rats((36.71±9.23)Hz).Electrical stimulation of the STN in rats was associated with elevated excitation in unilateral SNc neurons.However,administering the gamma-aminobutyric acid receptor blocker

  20. GABA-ERGIC NEURONS IN THE RAT STRIATUM UNDER NORMAL AND ISCHEMIC INJURY

    Directory of Open Access Journals (Sweden)

    E.S. Petrova

    2013-09-01

    Full Text Available Gamma-aminobutyric acid (GABA is a major inhibitory neurotransmitter in the central nervous system. Enzyme glutamate decarboxylase (GAD-67 is a marker of GABA-ergic neurons. The purpose of this study is to examine the distribution of GAD-67-immunopositive neurons in the striatum of rats under experimental conditions, reproducing brief focal cerebral ischemia. Endovascular occlusion of the left middle cerebral artery in rats was performed. Duration of circulatory disorders was 30 min, the time of reperfusion was 48 hours. With counting GAD-67-immunopositive neurons in the striatum was found that the number of GABA-ergic neurons in the striatum ipsilateral hemisphere is reduced by 40%. In the contralateral hemisphere, the distribution and structure of the neurons is not different from controls. It is shown that GABA-ergic neurons are less susceptible to damage, as compared to other neurons phenotypes.

  1. Protein aggregation in association with delayed neuronal death in rat model of brain ischemia

    Institute of Scientific and Technical Information of China (English)

    Pengfei GE; Tianfei LUG; Shuanglin FU; Wenchen LI; Chonghao WANG; Chuibing ZHOU; Yinan LUO

    2008-01-01

    To investigate the relationship between protein aggregation and delayed neuronal death, we adopted rat models of 20 min ischemia. Brain ischemia was produced using the 2-vessel occlusion (2VO) model in rats Light microscopy, transmission electronic microscopy and Western blot analysis were performed for morphological analysis of neurons, and protein detection. The results showed delayed neuronal death took place at 72 h after ischemia-reperfusion, protein aggregates formed at 4 h after reperfusion and reached the peak at 24 h after reper-fusion, and Western blot analysis was consistent with transmission electronic microscopy. We conclude that protein aggregation is one of the important factors leading to delayed neuronal death.

  2. Highly Palatable Food during Adolescence Improves Anxiety-Like Behaviors and Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Rats that Experienced Neonatal Maternal Separation

    Directory of Open Access Journals (Sweden)

    Jong-Ho Lee

    2014-06-01

    Full Text Available BackgroundThis study was conducted to examine the effects of ad libitum consumption of highly palatable food (HPF during adolescence on the adverse behavioral outcome of neonatal maternal separation.MethodsMale Sprague-Dawley pups were separated from dam for 3 hours daily during the first 2 weeks of birth (maternal separation, MS or left undisturbed (nonhandled, NH. Half of MS pups received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28 (MS+HPF. Pups were subjected to behavioral tests during young adulthood. The plasma corticosterone response to stress challenge was analyzed by radioimmunoassay.ResultsDaily caloric intake and body weight gain did not differ among the experimental groups. Ambulatory activities were decreased defecation activity and rostral grooming were increased in MS controls (fed with chow only compared with NH rats. MS controls spent less time in open arms, and more time in closed arms during the elevated plus maze test, than NH rats. Immobility duration during the forced swim test was increased in MS controls compared with NH rats. Cookie access normalized the behavioral scores of ambulatory and defecation activities and grooming, but not the scores during the elevated plus maze and swim tests in MS rats. Stress-induced corticosterone increase was blunted in MS rats fed with chow only, and cookie access normalized it.ConclusionProlonged access to HPF during adolescence and youth partly improves anxiety-related, but not depressive, symptoms in rats that experienced neonatal maternal separation, possibly in relation with improved function of the hypothalamic-pituitary-adrenal (HPA axis.

  3. Intrinsic chemosensitivity of individual nucleus tractus solitarius (NTS) and locus coeruleus (LC) neurons from neonatal rats.

    Science.gov (United States)

    Nichols, Nicole L; Hartzler, Lynn K; Conrad, Susan C; Dean, Jay B; Putnam, Robert W

    2008-01-01

    Chemosensitive (CS) neurons are found in discrete brainstem regions, but whether the CS response of these neurons is due to intrinsic chemosensitivity of individual neurons or is mediated by changes in chemical and/or electrical synaptic input is largely unknown. We studied the effect of synaptic blockade (11.4 mM Mg2+/0.2mM Ca2+) solution (SNB) and a gap junction uncoupling agent carbenoxolone (CAR--100 microM) on the response of neurons from two CS brainstem regions, the NTS and the LC. In NTS neurons, SNB decreased spontaneous firing rate (FR). We calculated the magnitude of the FR response to hypercapnic acidosis (HA; 15% CO2) using the Chemosensitivity Index (CI). The percentage of NTS neurons activated and CI were the same in the absence and presence of SNB. Blocking gap junctions with CAR did not significantly alter spontaneous FR. CAR did not alter the CI in NTS neurons and resulted in a small decrease in the percentage of activated neurons, which was most evident in NTS neurons from rats younger than postnatal day 10. In LC neurons, SNB resulted in an increase in spontaneous FR. As with NTS neurons, SNB did not alter the percentage of activated neurons or the CI in LC neurons. CAR resulted in a small increase in spontaneous FR in LC neurons. In contrast, CAR had a marked effect on the response of LC neurons to HA: a reduced percentage of CS LC neurons and decreased CI. In summary, both NTS and LC neurons appear to contain intrinsically CS neurons. CS neurons from the two regions receive different tonic input in slices (excitatory for NTS and inhibitory for LC); however, blocking chemical synaptic input does not affect the CS response in either region. In NTS neurons, gap junction coupling plays a small role in the CS response, but gap junctions play a major role in the chemosensitivity of many LC neurons.

  4. Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Atrial natriuretic peptide (ANP provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A, is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of

  5. Effects of ghrelin on Kisspeptin mRNA expression in the hypothalamic medial preoptic area and pulsatile luteinising hormone secretion in the female rat.

    Science.gov (United States)

    Forbes, Sarah; Li, Xiao Feng; Kinsey-Jones, James; O'Byrne, Kevin

    2009-08-28

    The orexigenic gut peptide ghrelin negatively modulates the hypothalamic-pituitary-gonadal (HPG) axis. Hyperghrelinaemia results during negative energy balance, a state often associated with delayed puberty and disrupted fertility, whilst exogenous ghrelin suppresses pulsatile luteinising hormone (LH) secretion. The recent identification of kisspeptin (Kiss1) and its G protein-coupled receptor (GPR)54 (Kiss1r) as an essential component of the HPG axis controlling gonadotrophin secretion raises the possibility that kisspeptin-Kiss1r signalling may play a critical role in the transduction of ghrelin-induced suppression of LH. Ovariectomised oestrogen-replaced rats were implanted with intravenous catheters and blood samples collected for detection of LH pulses prior to and after intravenous administration of ghrelin (3nM/250 microl) or saline (250 microl) during ad libitum feeding or after overnight fasting. Quantitative RT-PCR was used to determine Kiss1 and Kiss1r mRNA levels in brain punches of the key hypothalamic sites regulating gonadotrophin secretion, the medial preoptic area (mPOA) and arcuate nucleus (ARC), collected 6h following administration of ghrelin. Ghrelin significantly lowered LH pulse frequency in fed rats, an effect significantly enhanced by food deprivation. Fasting, ghrelin or their combination down-regulated Kiss1, without affecting Kiss1r, expression in the mPOA, and affected the expression of neither in the ARC. Considering the pivotal role for kisspeptin signalling in the activation of the HPG axis, the ability of ghrelin to down-regulate Kiss1 expression in mPOA may be a contributing factor in ghrelin-related suppression of pulsatile LH secretion.

  6. Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats.

    Science.gov (United States)

    Chun, Lauren E; Woodruff, Elizabeth R; Morton, Sarah; Hinds, Laura R; Spencer, Robert L

    2015-10-01

    The molecular circadian clock is a self-regulating transcription/translation cycle of positive (Bmal1, Clock/Npas2) and negative (Per1,2,3, Cry1,2) regulatory components. While the molecular clock has been well characterized in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), only a few studies have examined both the positive and negative clock components in extra-SCN brain tissue. Furthermore, there has yet to be a direct comparison of male and female clock gene expression in the brain. This comparison is warranted, as there are sex differences in circadian functioning and disorders associated with disrupted clock gene expression. This study examined basal clock gene expression (Per1, Per2, Bmal1 mRNA) in the SCN, prefrontal cortex (PFC), rostral agranular insula, hypothalamic paraventricular nucleus (PVN), amygdala, and hippocampus of male and female rats at 4-h intervals throughout a 12:12 h light:dark cycle. There was a significant rhythm of Per1, Per2, and Bmal1 in the SCN, PFC, insula, PVN, subregions of the hippocampus, and amygdala with a 24-h period, suggesting the importance of an oscillating molecular clock in extra-SCN brain regions. There were 3 distinct clock gene expression profiles across the brain regions, indicative of diversity among brain clocks. Although, generally, the clock gene expression profiles were similar between male and female rats, there were some sex differences in the robustness of clock gene expression (e.g., females had fewer robust rhythms in the medial PFC, more robust rhythms in the hippocampus, and a greater mesor in the medial amygdala). Furthermore, females with a regular estrous cycle had attenuated aggregate rhythms in clock gene expression in the PFC compared with noncycling females. This suggests that gonadal hormones may modulate the expression of the molecular clock.

  7. Effects of black adzuki bean (Vigna angularis, Geomguseul extract on body composition and hypothalamic neuropeptide expression in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Mina Kim

    2015-10-01

    Full Text Available Background: Obesity is often considered to result from either excessive food intake or insufficient physical activity. Adzuki beans have been evaluated as potential remedies for various health conditions, and recent studies have reported their effects on the regulation of lipid metabolism, but it remains to be determined whether they may be effective in overcoming obesity by regulating appetite and satiety. Objective: This study investigated the effect of black adzuki bean (BAB extract on body composition and hypothalamic neuropeptide expression in Sprague Dawley rats (Rattus norvegicus fed a high-fat diet. Design: The rats were fed for 8 weeks with a control diet containing 10 kcal% from fat (CD, a high-fat diet containing 60 kcal% from fat (HD, or a high-fat diet with 1% or 2% freeze-dried ethanolic extract powder of BAB (BAB-1 and BAB-2. Results: The body weights and epididymal fat weights were significantly reduced and the serum lipid profiles were improved in the group fed the diet containing BAB compared to the HD group. The expression of AGRP mRNA significantly decreased in the BAB groups, and treatment with BAB-2 resulted in a marked induction of the mRNA expression of POMC and CART, which are anorexigenic neuropeptides that suppress food intake. Furthermore, mRNA expression levels of ObRb, a gene related to leptin sensitivity in the hypothalamus, were significantly higher in the BAB groups than in the HD group. Conclusions: These results suggest that supplementation with BAB has a significant effect on body weight via regulation of hypothalamic neuropeptides.

  8. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    Directory of Open Access Journals (Sweden)

    Malgorzata S. Martin-Gronert

    2016-04-01

    Full Text Available Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC peptides within the arcuate nucleus of the hypothalamus (ARC. We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.

  9. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    Science.gov (United States)

    Martin-Gronert, Malgorzata S.; Stocker, Claire J.; Wargent, Edward T.; Cripps, Roselle L.; Garfield, Alastair S.; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S. H.; Cawthorne, Michael A.; Arch, Jonathan R. S.; Heisler, Lora K.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  10. Development of chemosensitivity in neurons from the nucleus tractus solitarii (NTS) of neonatal rats.

    Science.gov (United States)

    Conrad, Susan C; Nichols, Nicole L; Ritucci, Nick A; Dean, Jay B; Putnam, Robert W

    2009-03-31

    We studied the development of chemosensitivity during the neonatal period in rat nucleus tractus solitarii (NTS) neurons. We determined the percentage of neurons activated by hypercapnia (15% CO(2)) and assessed the magnitude of the response by calculating the chemosensitivity index (CI). There were no differences in the percentage of neurons that were inhibited (9%) or activated (44.8%) by hypercapnia or in the magnitude of the activated response (CI 164+/-4.9%) in NTS neurons from neonatal rats of all ages. To assess the degree of intrinsic chemosensitivity in these neurons we used chemical synaptic block medium and the gap junction blocker carbenoxolone. Chemical synaptic block medium slightly decreased basal firing rate but did not affect the percentage of NTS neurons that responded to hypercapnia at any neonatal age. However, in neonates aged NTS neurons activated by hypercapnia in neonatal rats of any age. In summary, the response of NTS neurons from neonatal rats appears to be intrinsic and largely unchanged throughout early development. In young neonates (NTS neurons that respond to hypercapnia or the magnitude of that response.

  11. Nitrergic neurons during early postnatal development of the prefrontal cortex in the rat: histochemical study.

    Science.gov (United States)

    Hvizdosova, Natalia; Tomasova, Lenka; Bolekova, Adriana; Kolesar, Dalibor; Kluchova, Darina

    2014-06-01

    The presence of nitrergic cells in the prefrontal cortex has been confirmed, however little is known about the postnatal development of these cells. Nitrergic neurons were studied histochemically by using NADPH-diaphorase staining in the prefrontal cortex of male Wistar rats from postnatal day 7-21 (P7-21). Neuronal NADPH-diaphorase is a nitric oxide synthase that provides a specific histochemical marker for neurons producing nitric oxide (NO). NO acts as a neurotransmitter and intracellular signaling molecule in the nervous system. We observed in 7 day old rats NADPH-d containing neurons that were intensely stained. These neurons were bipolar with a short dendrite with average length of 23 μm. During the second postnatal week, the neurons were mainly bipolar and were rarely multipolar. By P14 the cells were located primarily in cortical layers III-VI. Nitrergic neurons of the 21 day old rats were histochemically identified as multipolar cells with long radial extending dendrites. Dendrites of neurons in 14 and 21 day old rats were a similar length with an average of 57 μm. These results suggest that nitrergic neurons differentiate during a relatively short period of time and reach their structural maturity by the end of the second week of postnatal development.

  12. Development of Chemosensitivity in Neurons from the Nucleus Tractus Solitarii (NTS) of Neonatal Rats

    Science.gov (United States)

    Conrad, Susan C.; Nichols, Nicole L.; Ritucci, Nick A.; Dean, Jay B.; Putnam, Robert W.

    2009-01-01

    We studied the development of chemosensitivity during the neonatal period in rat Nucleus tractus solitarii (NTS) neurons. We determined the percentage of neurons activated by hypercapnia (15% CO2) and assessed the magnitude of the response by calculating the chemosensitivity index (CI). There were no differences in the percentage of neurons that were inhibited (9%) or activated (44.8%) by hypercapnia or in the magnitude of the activated response (CI 164±4.9%) in NTS neurons from neonatal rats of all ages. To assess the degree of intrinsic chemosensitivity in these neurons we used chemical synaptic block medium and the gap junction blocker carbenoxolone. Chemical synaptic block medium slightly decreased basal firing rate but did not affect the percentage of NTS neurons that responded to hypercapnia at any neonatal age. However, in neonates aged neurons activated by hypercapnia in neonatal rats of any age. In summary, the response of NTS neurons from neonatal rats appears to be intrinsic and largely unchanged throughout early development. In young neonates (neurons that respond to hypercapnia or the magnitude of that response. PMID:19056522

  13. Isolation of the gene and hypothalamic of cDNA for the common precursor of gonadotropin-releasing hormone and prolactin release-inhibiting factor in human and rat

    Energy Technology Data Exchange (ETDEWEB)

    Adelman, J.P.; Mason, A.J.; Hayflick, J.S.; Seeburg, P.H.

    1986-01-01

    Cloned cDNAs encoding the precursor protein for gonadotropin-releasing hormone (Gn-RH) and prolactin release-inhibiting factor (PIF) were isolated from libraries derived from human and rat hypothalamic mRNA. Nucleotide sequence analyses predict precursor proteins of 92 amino acids for both species and show identity between the human placental and human hypothalamic precursor proteins. Whereas the Gn-RH peptide structure is completely conserved in human and rat, the PIF domain of the precursor displays 70% interspecies homology. Genomic analyses revealed the presence of a single Gn-RH-PIF gene in human and rat containing sequences corresponding to the cDNA distributed across four exons.

  14. Activity of basal forebrain neurons in the rat during motivated behaviors.

    Science.gov (United States)

    Mink, J W; Sinnamon, H M; Adams, D B

    1983-04-01

    The activity of single neurons in the basal forebrain was recorded in the freely-moving rat with moveable fine-wire electrodes. Neural activity was observed while the water-deprived male rat was exposed to three different types of motivating stimuli that elicit locomotion in a running wheel: an estrous female rat; a drinking tube containing water; and grasping and lifting by the experimenter. The neural activity was also observed when the subject was presented with standardized sensory tests and during single pulse stimulation of other brain structures. A majority of the 76 neurons recorded in the forebrain changed their firing rate during orienting and/or locomotion in general (23 neurons) or during behavior related to only one of the specific motivational contexts: the conspecific female (4 neurons); water (7 neurons); or grasp by the experimenter (8 neurons). Whereas the neurons related to orienting and/or locomotion in general were scattered through various brain structures, those neurons related to specific motivational contexts were concentrated in specific areas: the sexually dimorphic nucleus of the medial preoptic area (conspecific female); lateral septum (water); and lateral preoptic area (water and grasp). The present results, although based on relatively few neurons, are consonant with results of research using other techniques. This indicates that analyses at the level of the single neuron promise to be useful for understanding the role of the basal forebrain in motivational systems.

  15. [The effects of SO2 on electric activity learning and memory of rat hippocampal neurons].

    Science.gov (United States)

    Liu, Xiaoli; Yang, Dongsheng; Meng, Ziqiang

    2008-11-01

    To study the toxicological mechanism of SO2 on central neural system by electrophysiological method. Male SD rats were housed in exposure chambers and treated at the concentration of 28 mg/m3 SO2 for 7 days (6h/d), while control rats were treated with filtered air in the same condition. Using glass micro-electrodes recording in vivo, the frequencies and numbers of spontaneous discharge in hippocampal CAI neurons were measured. Influences of the learning and memory functions were measured by setting up passive avoidance behavior reflex. SO2 decreased significantly the neurons spontaneous discharge frequency and prolonged the neurons spontaneous period in hippocampal CAl. SO2 significantly decreased the learning and memory function of rats. The results indicated that SO2 could be a neurotoxin. It could inhibit the hippocampal neurons excitability and affect the learning and memory function of rats.

  16. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin-Ai; Jia, Lin-Lin [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Meng [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Yuan, Zu-Yi [Department of Cardiovascular Medicine, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Guo, Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Li, Hui-Hua [Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Liu, Hao, E-mail: haoliu75@163.com [Department of Neurosurgery, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  17. Perinatal undernutrition modifies cell proliferation and brain-derived neurotrophic factor levels during critical time-windows for hypothalamic and hippocampal development in the male rat.

    Science.gov (United States)

    Coupé, B; Dutriez-Casteloot, I; Breton, C; Lefèvre, F; Mairesse, J; Dickes-Coopman, A; Silhol, M; Tapia-Arancibia, L; Lesage, J; Vieau, D

    2009-01-01

    Maternal perinatal undernutrition (MPU) modifies the activity of the hypothalamic-pituitary-adrenal axis and sensitises to the development of metabolic and cognitive adult diseases. Because the hypothalamus and hippocampus are involved in the regulation of neuroendocrine activity, energy metabolism and cognition, we hypothesised that a maternal 50% food restriction (FR50) from day 14 of pregnancy (E14) until postnatal day 21 (P21) would affect the development of these structures in male rat offspring. Protein and mRNA levels of brain-derived neurotrophic factor (BDNF) and cell proliferation [analysed by 5-bromodeoxyuridine (BrdU) incorporation] were compared in both control and FR50 rats from E21 to P22. Although the pattern of the evolution of BDNF concentration and cell proliferation throughout development was not strikingly different between groups, several disturbances at specific developmental stages were observed. FR50 rats exhibited a delayed increase of hippocampal BDNF content whereas, in the hypothalamus, BDNF level was augmented from E21 to P14 and associated, at this latter stage, with an increased mRNA expression of TRkB-T2. In both groups, a correlation between BDNF content and the number of BrdU positive cells was noted in the dentate gyrus, whereas opposite variations were observed in CA1, CA2 and CA3 layers, and in the arcuate and ventromedial nuclei. In the hippocampus, P15-FR50 rats showed an increased number of BrdU positive cells in all regions, whereas, at P22, a decrease was observed in the CA2. In the hypothalamus, between E21 and P8, MPU increases the number of BrdU positive cells in all regions analysed and, until P15, marked differences were noticed in the median eminence, the paraventricular nucleus and the arcuate nucleus. Taken together, the results obtained in the present study show that MPU changes the time course of production of BDNF and cell proliferation in specific hippocampal and hypothalamic areas during sensitive

  18. Effects of calcium channel on 3-morpholinosydnonimine-induced rat hippocampal neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Quanzhong Chang; Shuling Zhang; Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Shining Cai

    2011-01-01

    Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus.The present study investigated the effects of the broad-spectrum calcium channel blocker CdC12 on survival rate, percentage of apoptosis, and morphological changes in hippocampal neurons cultured in vitro, as well as the effects of calcium channels on neuronal apoptosis.The chloride channel blockers 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonic acid (SITS) or 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) increased the survival rate of 3-morpholinosydnonimine (SIN-1)-treated neurons and suppressed SIN-1-induced neuronal apoptosis.The calcium channel blocker CdC12 did not increase the survival rate of neurons and did not affect SIN-1-induced apoptosis or SITS- or DIDS-suppressed neuronal apoptosis.Results demonstrated that calcium channels did not significantly affect neuronal apoptosis.

  19. Morphological effects of autoclaved diet on the myenteric neurons of rats

    Institute of Scientific and Technical Information of China (English)

    Patrícia O Gon(c)alez; Naianne K Clebis; Renata B Mari; Karina M Gagliardo; Sandra R Stabille; Haroldo G Faria; Edson A Liberti; José Roberto Kfoury Jr

    2011-01-01

    AIM: To evaluate the effect of autoclaved diet on the jejunum neurons of the myenteric plexus of rats during their growth.METHODS: The experimental groups were made up of rats going through weaning whose mothers Received either an autoclaved or a non-autoclaved diet during gestation and lactation, and rats that were fed the same diet as their mothers during the post-weaning period. In order to measure the neurons' body pro-file and to quantify the number of neurons per area, preparations were stained by the nicotinamide adenine dinucleotide-diaphorase method.RESULTS: No significant changes were observed in rats' body weight or in the number of neurons regard-less of the diet used (P > 0.05). There was a decrease in the jejunum-ileum length in rats treated with an autoclaved diet (P < 0.05). An increase in the neuronal cross-sectional area was seen in rats that had Received the autoclaved diet, an effect that was significant for animals undergoing weaning. In addition, all observed factors showed significant differences when related to the age of the animals.CONCLUSION: The autoclaved diet did not alter the quantity of neurons, but increased their cell body area, suggesting changes similar to those observed in pro-tein deficiency.

  20. Retrograde tracing of zinc-enriched (ZEN) neuronal somata in rat spinal cord

    DEFF Research Database (Denmark)

    Wang, Zhanyou; Danscher, G; Mook Jo, S

    2001-01-01

    The zinc selenide autometallographic (ZnSeAMG) technique for tracing the retrograde axonal transport of zinc ions in zinc-enriched (ZEN) neurons was used to map the distribution of ZEN neuronal somata in rat spinal cord. After a local injection of sodium selenide into the dorsal or ventral horn, ZnSe...

  1. The cellular and Genomic response of rat dopaminergic neurons (N27) to coated nanosilver

    Science.gov (United States)

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5ppm) to a set of nanoAg of different sizes (10nm, 75nm) and coatings (PVP, citrate) and thei...

  2. Increased hypothalamic serotonin turnover in inflammation-induced anorexia

    OpenAIRE

    Dwarkasing, J.T.; Witkamp, R F; Boekschoten, M.V.; Laak, ter, H.J.; Heins, M.S.; Norren, van, K.

    2016-01-01

    Background Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS....

  3. Giant synaptic potentials in immature rat CA3 hippocampal neurones.

    Science.gov (United States)

    Ben-Ari, Y; Cherubini, E; Corradetti, R; Gaiarsa, J L

    1989-09-01

    1. Intracellular recordings were made from rat CA3 hippocampal neurones in vitro during the first eighteen days of postnatal life. The cells had resting membrane potentials more negative than -51 mV, action potentials greater than 55 mV and membrane input resistances of 117 +/- 12 M omega. An unusual characteristic of these cells was the presence of spontaneous giant depolarizing potentials (GDPs) which were observed during the first eight postnatal (P) days in over 85% of neurones. They were less frequent between P9 and P12 (48%) and disappeared after P12. 2. The GDPs were synchronously generated by a population of neurones; they reversed polarity at -27 mV when recorded with KCl-containing electrodes and at -51 mV with potassium acetate- or potassium methylsulphate-filled electrodes. 3. The GDPs were blocked by bath application of bicuculline (10 microM) or picrotoxin (100-200 microM). Exogenously applied gamma-aminobutyric acid (GABA; 0.2-1 mM) induced at resting membrane potential a bicuculline-sensitive membrane depolarization which reversed polarity at -25 and -51 mV when recorded with KCl- or potassium methylsulphate-filled electrodes respectively. 4. The GDPs were reduced in frequency or blocked by the N-methyl-D-aspartate (NMDA) receptor antagonists DL-2-amino-7-phosphonoheptanoate (AP-7; 50 microM), D(-)2-amino-5-phosphonovalerate (AP-5, 10-50 microM) and (+-)3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10-50 microM) or NMDA channel blockers phencyclidine (2 microM) and ketamine (20 microM). 5. Stimulation of the hilus during the first week of life evoked a GDP followed by a hyperpolarization. The GDPs were generated by a population of synchronized neurones and reversed polarity at -27 mV with KCl-filled electrodes and at -52 mV with potassium acetate- or potassium methylsulphate-containing electrodes. 6. Bath application of bicuculline (1-10 microM) or picrotoxin (100-200 microM) reversibly blocked the evoked GDPs in the majority of cells

  4. Neurochemical phenotype of cytoglobin-expressing neurons in the rat hippocampus.

    Science.gov (United States)

    Hundahl, Christian Ansgar; Fahrenkrug, Jan; Hannibal, Jens

    2014-09-01

    Cytoglobin (Cygb), a novel oxygen-binding protein, is expressed in the majority of tissues and has been proposed to function in nitric oxide (NO) metabolism in the vasculature and to have cytoprotective properties. However, the overall functions of Cygb remain elusive. Cygb is also expressed in a subpopulation of brain neurons. Recently, it has been shown that stress upregulates Cygb expression in the brain and the majority of neuronal nitric oxide synthase (nNOS)-positive neurons, an enzyme that produces NO, co-express Cygb. However, there are more neurons expressing Cygb than nNOS, thus a large number of Cygb neurons remain uncharacterized by the neurochemical content. The aim of the present study was to provide an additional and more detailed neurochemical phenotype of Cygb-expressing neurons in the rat hippocampus. The rat hippocampus was chosen due to the abundance of Cygb, as well as this limbic structure being an important target in a number of neurodegenerative diseases. Using triple immunohistochemistry, it was demonstrated that nearly all the parvalbumin- and heme oxygenase 1-positive neurons co-express Cygb and to a large extent, these neuron populations are distinct from the population of Cygb neurons co-expressing nNOS. Furthermore, it was shown that the majority of neurons expressing somastostatin and vasoactive intestinal peptide also co-express Cygb and nNOS. Detailed information regarding the neurochemical phenotype of Cygb neurons in the hippocampus can be a valuable tool in determining the function of Cygb in the brain.

  5. Electrophysiology of embryonic, adult and aged rat hippocampal neurons in serum-free culture.

    Science.gov (United States)

    Evans, M S; Collings, M A; Brewer, G J

    1998-01-31

    Methods were recently developed for culturing neurons from adult rat hippocampus using the serum-free medium Neurobasal with B27 supplement. To determine whether adult cultured neurons have normal electrical properties, we studied cultures from rats of three age groups: (1) embryonic; (2) 10-11 months old and (3) 35-36 months old. Neurons had a polarized morphology with a large branching apical dendrite and small basal dendrites. Mean resting potentials were similar in the three age groups. All neurons had nonlinear current-voltage relationships, indicating the presence of voltage-sensitive ion channels. Most neurons had a voltage-sensitive inward current followed by a sustained voltage-sensitive outward current. Tetrodotoxin blocked the inward current, which is likely to be a sodium current. The sustained outward current, which is likely to be a potassium current, reversed at -71 mV. Most neurons exhibited anomalous rectification. Calcium currents were present in both embryonic and adult neurons. Embryonic neurons would sometimes fire multiple action potentials but adult neurons fired only single action potentials. Our results indicate that both embryonic and adult cultured neurons retain a clearly neuronal electrophysiological phenotype in Neurobasal/B27 serum-free medium.

  6. An analysis of the responses of rat striatal neurones to scrotal skin temperature.

    Science.gov (United States)

    Taylor, D C; Steele, J E; Gayton, R J

    1987-09-01

    The responses of neurones in the caudate-putamen complex of anaesthetised rats to different scrotal skin temperatures were examined, together with the electroencephalogram (EEG). Caudate neuronal firing patterns did not change independently of rate, unlike the thermo-responsive cells of the hypothalamus previously reported. The scrotal skin temperature threshold for the caudate neuronal response corresponds precisely with the temperature which provokes desynchronisation of the EEG.

  7. EPSPs in rat neocortical neurons in vitro. I. Electrophysiological evidence for two distinct EPSPs

    OpenAIRE

    Sutor, Bernd; Hablitz, John H.

    1989-01-01

    1. To investigate excitatory postsynaptic potentials (EPSPs), intracellular recordings were performed in layer II/III neurons of the rat medial frontal cortex. The average resting membrane potential of the neurons was more than -75 mV and their average input resistance was greater than 20 M omega. The amplitudes of the action potentials evoked by injection of depolarizing current pulses were greater than 100 mV. The electrophysiological properties of the neurons recorded were similar to those...

  8. Reduced motor neuron excitability is an important contributor to weakness in a rat model of sepsis.

    Science.gov (United States)

    Nardelli, Paul; Vincent, Jacob A; Powers, Randall; Cope, Tim C; Rich, Mark M

    2016-08-01

    The mechanisms by which sepsis triggers intensive care unit acquired weakness (ICUAW) remain unclear. We previously identified difficulty with motor unit recruitment in patients as a novel contributor to ICUAW. To study the mechanism underlying poor recruitment of motor units we used the rat cecal ligation and puncture model of sepsis. We identified striking dysfunction of alpha motor neurons during repetitive firing. Firing was more erratic, and often intermittent. Our data raised the possibility that reduced excitability of motor neurons was a significant contributor to weakness induced by sepsis. In this study we quantified the contribution of reduced motor neuron excitability and compared its magnitude to the contributions of myopathy, neuropathy and failure of neuromuscular transmission. We injected constant depolarizing current pulses (5s) into the soma of alpha motor neurons in the lumbosacral spinal cord of anesthetized rats to trigger repetitive firing. In response to constant depolarization, motor neurons in untreated control rats fired at steady and continuous firing rates and generated smooth and sustained tetanic motor unit force as expected. In contrast, following induction of sepsis, motor neurons were often unable to sustain firing throughout the 5s current injection such that force production was reduced. Even when firing, motor neurons from septic rats fired erratically and discontinuously, leading to irregular production of motor unit force. Both fast and slow type motor neurons had similar disruption of excitability. We followed rats after recovery from sepsis to determine the time course of resolution of the defect in motor neuron excitability. By one week, rats appeared to have recovered from sepsis as they had no piloerection and appeared to be in no distress. The defects in motor neuron repetitive firing were still striking at 2weeks and, although improved, were present at one month. We infer that rats suffered from weakness due to reduced

  9. Direct link from the suprachiasmatic nucleus to hypothalamic neurons projecting to the spinal cord: a combined tracing study using cholera toxin subunit B and Phaseolus vulgaris-leucoagglutinin

    DEFF Research Database (Denmark)

    Vrang, Niels; Mikkelsen, Jens D.; Larsen, Philip J.

    1997-01-01

    Neuroanatomi, circadian rhythms, sympathetic nervous system, pineal gland, double immunocytochemistry, rat......Neuroanatomi, circadian rhythms, sympathetic nervous system, pineal gland, double immunocytochemistry, rat...

  10. Characteristics of sodium currents in rat geniculate ganglion neurons.

    Science.gov (United States)

    Nakamura, Shiro; Bradley, Robert M

    2011-12-01

    Geniculate ganglion (GG) cell bodies of chorda tympani (CT), greater superficial petrosal (GSP), and posterior auricular (PA) nerves transmit orofacial sensory information to the rostral nucleus of the solitary tract. We have used whole cell recording to investigate the characteristics of the Na(+) channels in isolated Fluorogold-labeled GG neurons that innervate different peripheral receptive fields. GG neurons expressed two classes of Na(+) channels, TTX sensitive (TTX-S) and TTX resistant (TTX-R). The majority of GG neurons expressed TTX-R currents of different amplitudes. TTX-R currents were relatively small in 60% of the neurons but were large in 12% of the sampled population. In a further 28% of the neurons, TTX completely abolished all Na(+) currents. Application of TTX completely inhibited action potential generation in all CT and PA neurons but had little effect on the generation of action potentials in 40% of GSP neurons. Most CT, GSP, and PA neurons stained positively with IB(4), and 27% of the GSP neurons were capsaicin sensitive. The majority of IB(4)-positive GSP neurons with large TTX-R Na(+) currents responded to capsaicin, whereas IB(4)-positive GSP neurons with small TTX-R Na(+) currents were capsaicin insensitive. These data demonstrate the heterogeneity of GG neurons and indicate the existence of a subset of GSP neurons sensitive to capsaicin, usually associated with nociceptors. Since there are no reports of nociceptors in the GSP receptive field, the role of these capsaicin-sensitive neurons is not clear.

  11. Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex.

    Science.gov (United States)

    Canto, Cathrin B; Witter, Menno P

    2012-06-01

    Principal neurons in different medial entorhinal cortex (MEC) layers show variations in spatial modulation that stabilize between 15 and 30 days postnatally. These in vivo variations are likely due to differences in intrinsic membrane properties and integrative capacities of neurons. The latter depends on inputs and thus potentially on the morphology of principal neurons. In this comprehensive study, we systematically compared the morphological and physiological characteristics of principal neurons in all MEC layers of newborn rats before and after weaning. We recorded simultaneously from up to four post-hoc morphologically identified MEC principal neurons in vitro. Neurons in L(ayer) I-LIII have dendritic and axonal arbors mainly in superficial layers, and LVI neurons mainly in deep layers. The dendritic and axonal trees of part of LV neurons diverge throughout all layers. Physiological properties of principal neurons differ between layers. In LII, most neurons have a prominent sag potential, resonance and membrane oscillations. Neurons in LIII and LVI fire relatively regular, and lack sag potentials and membrane oscillations. LV neurons show the most prominent spike-frequency adaptation and highest input resistance. The data indicate that adult-like principal neuron types can be differentiated early on during postnatal development. The results of the accompanying paper, in which principal neurons in the lateral entorhinal cortex (LEC) were described (Canto and Witter,2011), revealed that significant differences between LEC and MEC exist mainly in LII neurons. We therefore systematically analyzed changes in LII biophysical properties along the mediolateral axis of MEC and LEC. There is a gradient in properties typical for MEC LII neurons. These properties are most pronounced in medially located neurons and become less apparent in more laterally positioned ones. This gradient continues into LEC, such that in LEC medially positioned neurons share some properties

  12. Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat.

    Science.gov (United States)

    Ouda, Ladislav; Druga, Rastislav; Syka, Josef

    2012-01-01

    SMI-32 antibody recognizes a non-phosphorylated epitope of neurofilament proteins, which are thought to be necessary for the maintenance of large neurons with highly myelinated processes. We investigated the distribution and quantity of SMI-32-immunoreactive(-ir) neurons in individual parts of the rat auditory system. SMI-32-ir neurons were present in all auditory structures; however, in most regions they constituted only a minority of all neurons (10-30%). In the cochlear nuclei, a higher occurrence of SMI-32-ir neurons was found in the ventral cochlear nucleus. Within the superior olivary complex, SMI-32-ir cells were particularly abundant in the medial nucleus of the trapezoid body (MNTB), the only auditory region where SMI-32-ir neurons constituted an absolute majority of all neurons. In the inferior colliculus, a region with the highest total number of neurons among the rat auditory subcortical structures, the percentage of SMI-32-ir cells was, in contrast to the MNTB, very low. In the medial geniculate body, SMI-32-ir neurons were prevalent in the ventral division. At the cortical level, SMI-32-ir neurons were found mainly in layers III, V and VI. Within the auditory cortex, it was possible to distinguish the Te1, Te2 and Te3 areas on the basis of the variable numerical density and volumes of SMI-32-ir neurons, especially when the pyramidal cells of layer V were taken into account. SMI-32-ir neurons apparently form a representative subpopulation of neurons in all parts of the rat central auditory system and may belong to both the inhibitory and excitatory systems, depending on the particular brain region.

  13. Study of rat neuronal genes with ordered differential display method

    Institute of Scientific and Technical Information of China (English)

    KANG; Jiansheng; (

    2001-01-01

    [1]Wang, Y., Du, Z. W., eds., Neurobiology and Molecular Biology, Beijing: People's Medical Publishing House, 1997, 184-207, 244-248.[2]Liang, P., Pardee, A., Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science, 1992, 257: 967-971.[3]Michiels, L., Van Leuven, F., van den Oord, J. J. et al., Representational difference analysis using minute quantities of DNA, Nucleic Acids Res., 1998, 26(15): 3608-3610.[4]Diatchenko, L., Lau, Y. F., Campbell, A. P. et al., Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries, Proc. Natl. Acad. Sci. USA, 1996, 93(12): 6025-6030.[5]Matz, M., Lukyanov, S., Different strategies of differential display: areas of application, Nucleic Acids Res., 1998, 26: 5537-5543.[6]Matz, M., Usman, N., Shagin, D. et al., Ordered differential display: a simple method for systematic comparison of gene expression profiles, Nucleic Acids Res, 1997, 25: 2541-2542.[7]Chen, X. X., Guan, L. C., Bao, S. M. et al., Comparison and study of memory and open field behavior of four different mouse strain, Psychological Science, 1994, 17(1): 39-41.[8]Chapman, C. R., Casey, K. L., Dubner, R. et al., Pain measurement: an overview, Pain, 1985, 22: 1-31.[9]Mitchell, .D., Hellon, R. F., Neuronal and behavioral responses in rats during noxious stimulation of the tail, Proc. R. Soc. Lond., 1977, 197: 169-194.[10]Shen, Y., Yan, Y. S., eds., Medical Statistics, Shanghai: Shanghai Medical University Press, 1999, 39-44.[11]Kang, J. S., Li, R. X., Du, Y. C., Ordered differential display, Chemistry of Life, 1999, 19(6): 282-283.[12]Mou, L., Miller, H., Li, J. et al., Improvements to the differential display method for gene analysis, Biochem. Biophys. Res. Commun., 1994, 199: 564-569.[13]Lee, H. N., Weinstock, K. G., Kirkness, E. F. et al., Comparative expressed-sequence-tag analysis of differential gene

  14. DNA fragmentation follows delayed neuronal death in CA1 neurons exposed to transient global ischemia in the rat.

    Science.gov (United States)

    Petito, C K; Torres-Munoz, J; Roberts, B; Olarte, J P; Nowak, T S; Pulsinelli, W A

    1997-09-01

    Apoptosis is an active, gene-directed process of cell death in which early fragmentation of nuclear DNA precedes morphological changes in the nucleus and, later, in the cytoplasm. In ischemia, biochemical studies have detected oligonucleosomes of apoptosis whereas sequential morphological studies show changes consistent with necrosis rather than apoptosis. To resolve this apparent discrepancy, we subjected rats to 10 minutes of transient forebrain ischemia followed by 1 to 14 days of reperfusion. Parameters evaluated in the CA1 region of the hippocampus included morphology, in situ end labeling (ISEL) of fragmented DNA, and expression of p53. Neurons were indistinguishable from controls at postischemic day 1 but displayed cytoplasmic basophilia or focal condensations at day 2; some neurons were slightly swollen and a few appeared normal. In situ end labeling was absent. At days 3 and 5, approximately 40 to 60% of CA1 neurons had shrunken eosinophilic cytoplasm and pyknotic nuclei, but only half of these were ISEL. By day 14, many of the necrotic neurons had been removed by phagocytes; those remaining retained mild ISEL. Neither p53 protein nor mRNA were identified in control or postischemic brain by in situ hybridization with riboprobes or by northern blot analysis. These results show that DNA fragmentation occurs after the development of delayed neuronal death in CA1 neurons subjected to 10 minutes of global ischemia. They suggest that mechanisms other than apoptosis may mediate the irreversible changes in the CA1 neurons in this model.

  15. Intestinal fatty acid infusion modulates food preference as well as calorie intake via the vagal nerve and midbrain-hypothalamic neural pathways in rats.

    Science.gov (United States)

    Ogawa, Nobuya; Ito, Makoto; Yamaguchi, Hideki; Shiuchi, Tetsuya; Okamoto, Shiki; Wakitani, Korekiyo; Minokoshi, Yasuhiko; Nakazato, Masamitsu

    2012-09-01

    The intestine plays important roles in the regulation of feeding behavior by sensing macronutrients. Intestinal fatty acids strongly suppress food intake, but little is known about whether intestinal fatty acids affect food preference. We investigated the effects of jejunal fatty acids infusion on food preference by conducting two-diet choice experiments in rats fed a high-fat diet (HFD) and a high-carbohydrate diet (HCD). Jejunal linoleic acid (18:2) infusion reduced HFD intake dose-dependently, while HCD intake increased with the middle dose of the infusion we examined (100 μL/h) and reduced to the control level with the higher doses (150 and 200 μL/h). α-Linolenic acid (18:3), but not caprylic acid (8:0), altered the food preference and total calorie intake in the same manner as linoleic acid. Linoleic acid infusion dose-dependently increased plasma glucagon-like peptide-1, peptide YY and cholecystokinin levels, but not ghrelin levels. Subdiaphragmatic vagotomy or midbrain transection prevented the change in food preference and total calorie intake by linoleic acid infusion. Jejunal linoleic acid infusion increased norepinephrine turnover in the paraventricular hypothalamic nucleus, while intracerebroventricular injection of idazoxan, an α2-adrenergic receptor (AR) antagonist, suppressed the increased HCD intake, but did not affect the decreased HFD intake. These findings indicated that intestinal long-chain fatty acids modulated food preference as well as total calorie intake via the vagal nerve and midbrain-hypothalamic neural pathways. The effects of the α2-AR antagonist in the brain suggested that the brain distinctly controlled HCD and HFD intake in response to jejunal linoleic acid infusion. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. The effects of three types of stress on fos expression in the hypothalamic paraventricular nucleus, hippocampus and amygdala in female rats at different stages of pregnancy

    OpenAIRE

    Tanaka, Masuo; Hayashi, Shunsuke; Fujioka, Takashi; Tobe, Ikuyo; Nakamura, Shoji

    2011-01-01

    Using immunohistochemistry to reveal the Fos protein (a marker of neuronal activation), the present experiments examined whether there were differences in the responses of the paraventricular nucleus (PVN), hippocampus, and amygdala of pregnant rats exposed to three types of stressors (restraint, immobilization, and communication-box stress), all having inherently different severities, at three pregnancy stages (6 days into pregnancy, or P6, early-pregnancy), P12 (mid-pregnancy) and P18 (late...

  17. Opposing roles of the nucleus accumbens and anterior lateral hypothalamic area in the control of sexual behaviour in the male rat.

    Science.gov (United States)

    Kippin, Tod E; Sotiropoulos, Veneta; Badih, Julia; Pfaus, James G

    2004-02-01

    Opposing roles have been implicated for the nucleus accumbens (NAc) and anterior portion of the lateral hypothalamic area (aLHA) in the regulation of sexual behaviour in male rats based on in vivo neurochemical correlates. The present study provides functional evidence supporting this hypothesis by examining the effects of lesions to these structures on copulation, noncontact erection and receptive female preference. Sexually naïve male Long-Evans rats received either bilateral 1.0- micro L injections of NMDA (10 micro g/ micro L/side) or vehicle (shams) into either the aLHA or the NAc. During repeated tests of copulation most of the sham-lesioned males, but few of the aLHA-lesioned and NAc-lesioned males, copulated to ejaculation. Most of the NAc-lesioned males also failed to intromit, whereas the majority of the aLHA-lesioned males intromitted repeatedly. During exposure to an inaccessible receptive female behind a wire-mesh screen, aLHA-lesioned males displayed facilitation of noncontact erections, whereas NAc-lesioned males displayed impaired noncontact erections. Conversely, during simultaneous exposure to inaccessible receptive and nonreceptive females in different compartments, all males spent more time in the proximity of the receptive female. These findings indicate that the aLHA plays an inhibitory role in the regulation of sexual arousal and an excitatory role in the regulation of ejaculation. Conversely, the NAc plays an excitatory role in the regulation in sexual arousal.

  18. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Directory of Open Access Journals (Sweden)

    Zhenyi Liu

    Full Text Available The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH-Cre and dopamine active transporter (DAT or Slc6a3-Cre, by using a combination of immunohistochemistry (IHC and mRNA fluorescence in situ hybridization (FISH as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  19. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Science.gov (United States)

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  20. Curcumin protects against interleukin-6-induced rapid Ca2+ influx in rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Qinying Deng; Tao Huang; Hongmei Tang; Xingming Zhong; Sujian Xia; Xiangcai Wei; Jun Dong

    2011-01-01

    The current study sought to investigate the potential protective action of curcumin against interleukin-6-induced injury in rat hippocampal neurons. The results revealed that interleukin-6 induced typical cellular injury, such as the swelling of cell bodies and increased Ca2+ concentration. After administration of curcumin, interleukin-6-induced neurons recovered to a normal state, and the fluorescence intensity of Ca2+ gradually returned to normal. These findings suggest that curcumin exerts a protective effect on hippocampal neurons of rats. In addition, our results suggest that the protective effect of curcumin involves prevention of the rapid Ca2+ influx induced by interleukin-6, which maintains Ca2+ homeostasis.

  1. Histidine suppresses food intake through its conversion into neuronal histamine.

    Science.gov (United States)

    Yoshimatsu, Hironobu; Chiba, Seiichi; Tajima, Daisuke; Akehi, Yuko; Sakata, Toshiie

    2002-01-01

    Hypothalamic neuronal histamine has been shown to regulate feeding behavior and energy metabolism as a target of leptin action in the brain. The present study aimed to examine the involvement of L-histidine, a precursor of neuronal histamine, in the regulation of feeding behavior in rats. Intraperitoneal (ip) injection of L-histidine at doses of 0.35 and 0.70 mmol/kg body weight significantly decreased the 24-hr cumulative food and water intakes compared to phosphate buffered saline injected controls (P intracerebroventricular infusion of histidine at doses of 0.5, 1.0, and 2.0 micromol/rat (P histamine and attenuated the suppressive effect of histidine on food intake from 64.2% to 88.1% of the controls (P Administration of 0.35 mmol/kg histidine ip increased the concentration of hypothalamic neuronal histamine compared with the controls (P administration compared with the controls (P histamine in the hypothalamus.

  2. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang

    2011-01-01

    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  3. An Optimized Culture Method of Rat Dorsal Root Ganglion Neurons

    Institute of Scientific and Technical Information of China (English)

    LIUYin; CHENJing-Hong; GONGZe-Hui

    2004-01-01

    AIM: To establish a primary culture technique of acutely isolated dorsal root ganglion (DRG) neurons, and provide a simple & useful in vitro model for study of analgesia. Methods: Acutely isolated dorsal root ganglion (DRG) neurons were planted and cultured; the configuration and growth characters of DRG neurons were observed through inverted microscope.

  4. Effects of Dalteparin on Structure of Hippocampal Neurons of Rats in Chronic Stress

    OpenAIRE

    Mansoureh Soleimani; Arezo Nahavandi; Fereshteh Farajdokht

    2012-01-01

    Introduction: Stress is defined as any environmental change that disturbs the maintenance of brain homeostasis. Stress leads to production of pro-inflammatory cytokines that provoke rodegenerative disorders. In the present study, we investigated the effects of dalteparin on hippocampal neuronal death induced by chronic stress in rats.Methods : the study was carried out on 60 adult male wistar rats, weighing 200-250 gr. The rats were randomly divided into three groups: control, stress and stre...

  5. Generation of New Neurons in Dorsal Root Ganglia in Adult Rats after Peripheral Nerve Crush Injury

    Directory of Open Access Journals (Sweden)

    Luisa Muratori

    2015-01-01

    Full Text Available The evidence of neurons generated ex novo in sensory ganglia of adult animals is still debated. In the present study, we investigated, using high resolution light microscopy and stereological analysis, the changes in the number of neurons in dorsal root ganglia after 30 days from a crush lesion of the rat brachial plexus terminal branches. Results showed, as expected, a relevant hypertrophy of dorsal root ganglion neurons. In addition, we reported, for the first time in the literature, that neuronal hypertrophy was accompanied by massive neuronal hyperplasia leading to a 42% increase of the number of primary sensory neurons. Moreover, ultrastructural analyses on sensory neurons showed that there was not a relevant neuronal loss as a consequence of the nerve injury. The evidence of BrdU-immunopositive neurons and neural progenitors labeled with Ki67, nanog, nestin, and sox-2 confirmed the stereological evidence of posttraumatic neurogenesis in dorsal root ganglia. Analysis of morphological changes following axonal damage in addition to immunofluorescence characterization of cell phenotype suggested that the neuronal precursors which give rise to the newly generated neurons could be represented by satellite glial cells that actively proliferate after the lesion and are able to differentiate toward the neuronal lineage.

  6. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats.

    Science.gov (United States)

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin

    2017-02-01

    Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.

  7. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats

    Science.gov (United States)

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin

    2017-01-01

    Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.

  8. Hypocretin/Orexin Peptides Excite Rat Neuroendocrine Dopamine Neurons through Orexin 2 Receptor-Mediated Activation of a Mixed Cation Current

    Science.gov (United States)

    Lyons, David J.; Hellysaz, Arash; Ammari, Rachida; Broberger, Christian

    2017-01-01

    Hypocretin/Orexin (H/O) neurons of the lateral hypothalamus are compelling modulator candidates for the chronobiology of neuroendocrine output and, as a consequence, hormone release from the anterior pituitary. Here we investigate the effects of H/O peptides upon tuberoinfundibular dopamine (TIDA) neurons – cells which control, via inhibition, the pituitary secretion of prolactin. In whole cell recordings performed in male rat hypothalamic slices, application of H/O-A, as well as H/O-B, excited oscillating TIDA neurons, inducing a reversible depolarising switch from phasic to tonic discharge. The H/O-induced inward current underpinning this effect was post-synaptic (as it endured in the presence of tetrodotoxin), appeared to be carried by a Na+-dependent transient receptor potential-like channel (as it was blocked by 2-APB and was diminished by removal of extracellular Na+), and was a consequence of OX2R receptor activation (as it was blocked by the OX2R receptor antagonist TCS OX2 29, but not the OX1R receptor antagonist SB 334867). Application of the hormone, melatonin, failed to alter TIDA membrane potential or oscillatory activity. This first description of the electrophysiological effects of H/Os upon the TIDA network identifies cellular mechanisms that may contribute to the circadian rhythmicity of prolactin secretion. PMID:28145492

  9. Time window characteristics of cultured rat hippocampal neurons subjected to ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    XU Zhong; XU Ru-xiang; LIU Bao-song; JIANG Xiao-dan; HUANG Tao; DING Lian-shu; YUAN Jun

    2005-01-01

    Objective: To explore cell death and apoptosis in rat hippocampal neurons at different time points after ischemia, hypoxia and reperfusion injury and to elucidate time window characteristics in ischemia neuronal injury.Methods: Hippocampal neurons were obtained from rat embryo and were cultured in vitro. The ischemia and reperfusion of cultured rat hippocampal neurons were simulated by oxygen-glucose deprivation (OGD) and recovery. OGD at different time points (0.25 h to 3.0 h) and then the same recovery (24 h) were prepared. Annexin V-PI staining and flow cytometry examined neuron death and apoptosis at different time after injury. Results: After OGD and recovery, both necrosis and apoptosis were observed. At different times after OGD, there were statistically significant differences in neuron necrosis rate (P0.05). At recovery, survival rate of hippocampal neurons further decreased while apoptosis rate increased. Furthermore, apoptosis rates of different time differed greatly (P<0.05). Apoptosis rate gradually increased with significant difference among those of different time points (P<0.05). However, 2 h after ischemia, apoptosis rate decreased markedly.Conclusions: Apoptosis is an important pathway of delayed neuron death. The therapeutic time window should be within 2 h after cerebral ischemia and hypoxia.

  10. Age-dependent variations in potassium sensitivity of A-currents in rat hippocampal neurons.

    Science.gov (United States)

    Klee, R; Eder, C; Ficker, E; Heinemann, U

    1997-09-01

    Hippocampal pyramidal neurons were either cultured from prenatal rats or acutely isolated from the brain of newborn and juvenile rats. The influence of lowering the concentration of the extracellular potassium concentration ([K+]o) on isolated fast transient outward K+ currents (I(A)) was studied in these neurons using the patch clamp technique in the whole cell configuration. With respect to the response of I(A) to lowering [K+]o, three types of cells were observed. The first subpopulation of neurons was characterized by a complete suppression of I(A) over the whole voltage range under potassium-free solutions (type A neurons). A second proportion of cells showed an increase of I(A) at test pulses below -0 mV and a decrease of I(A) at voltages above -0 mV (type B neurons). In a third group of neurons, amplitudes of I(A) increased at all potentials tested during omission of potassium ions from the extracellular superfusate (type C neurons). Whereas type A and type B neurons were preferentially found in freshly plated cultures and newborn rats, the majority of type C cells was detected in long-term cultures and in animals of older ages. Thus, hippocampal A-currents lose their sensitivity to extracellular potassium ions during early ontogenesis.

  11. Development of nNOS-positive neurons in the rat sensory ganglia after capsaicin treatment.

    Science.gov (United States)

    Masliukov, Petr M; Moiseev, Konstantin Y; Korzina, Marina B; Porseva, Valentina V

    2015-08-27

    To gain a better understanding of the neuroplasticity of afferent neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in the nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from vehicle-treated and capsaicin-treated female Wistar rats at different ages (10-day-old, 20-day-old, 30-day-old, and two-month-old). The percentage of nNOS-immunoreactive (IR) neurons decreased after capsaicin treatment in all studied ganglia in first 20 days of life, from 55.4% to 36.9% in the Th2 DRG, from 54.6% to 26.1% in the L4 DRG and from 37.1% to 15.0% in the NG. However, in the NG, the proportion of nNOS-IR neurons increased after day 20, from 11.8% to 23.9%. In the sensory ganglia of all studied rats, a high proportion of nNOS-IR neurons bound isolectin B4. Approximately 90% of the sensory nNOS-IR neurons bound to IB4 in the DRG and approximately 80% in the NG in capsaicin-treated and vehicle-treated rats. In 10-day-old rats, a large number of nNOS-IR neurons also expressed TrkA, and the proportion of nNOS(+)/TrkA(+) neurons was larger in the capsaicin-treated rats compared with the vehicle-treated animals. During development, the percentage of nNOS(+)/TrkA(+) cells decreased in the first month of life in both groups. The information provided here will also serve as a basis for future studies investigating mechanisms of sensory neuron development.

  12. Maturation of kisspeptinergic neurons coincides with puberty onset in male rats

    DEFF Research Database (Denmark)

    Bentsen, Agnete H; Ansel, Laura; Simonneaux, Valerie;

    2010-01-01

    at any age, numerous kisspeptin-positive neurons in the arcuate nucleus were detected in the adult rat. Increasing doses of kisspeptin-54 given peripherally to male rats at PND15, 30, 45, and 60 evoked roughly similar effects, as revealed by the induction of c-Fos in the pituitary and secretion of LH...... periventricular nucleus (AVPV) and the arcuate nucleus of male rats along pubertal development. Neurons expressing Kiss1 mRNA were first detected at PND15, but increased significantly around puberty, and declined again in the adult rat. While virtually no immunoreactive cell bodies were detectable in the AVPV...... and testosterone. These results show that both Kiss1 mRNA and the peptide increase in arcuate nucleus along pubertal maturation. Since kisspeptin signaling is potentially functional, even for peripheral activation, and well before the kisspeptin neuronal system is fully matured, our data support...

  13. Firing Properties and Classification of MVN Neurons in Rats

    Institute of Scientific and Technical Information of China (English)

    汪绪武; 孔维佳

    2003-01-01

    Summary: In order to know the effects of caloric stimulation on neuronal firing in medial vestibularnuclei (MVN) by middle ear irrigation, the middle ear was irrigated with ice (4 ℃), hot (44 ℃),and warm (37 ℃) water, and the firing rate of MVN neuron was extracellularly recorded. The re-suits showed that the firing rate of MVN neuron was changed by caloric stimulation, and the majori-ty of MVN neurons showed excitation by irrigation with hot water and inhibition by ice water (typeA). The neuronal firing was recovered immediately after the cessation of the stimulation. I It wasconcluded that the neuronal firing rate in MVN was changed by caloric stimulation in middle ear cavi-ty. The response was different in various neurons.

  14. Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats.

    Science.gov (United States)

    Verwey, Michael; Lam, Germain Y M; Amir, Shimon

    2009-06-01

    When food availability is restricted to a single time of day, circadian rhythms of behavior and physiology in rodents shift to anticipate the predictable time of food arrival. It has been hypothesized that certain food-anticipatory rhythms are linked to the induction and entrainment of rhythms in clock gene expression in the dorsomedial hypothalamic nucleus (DMH), a putative food-entrained circadian oscillator. To study this concept further, we made food availability unpredictable by presenting the meal at a random time each day (variable restricted feeding, VRF), either during the day, night or throughout the 24-h cycle. Wheel running activity and the expression of the clock protein, Period1 (PER1), in the DMH and the suprachiasmatic nucleus (SCN) were assessed. Rats exhibited increased levels of activity during the portion of the day when food was randomly presented but, as expected, failed to entrain anticipatory wheel running activity to a single time of day. PER1 expression in the SCN was unchanged by VRF schedules. In the DMH, PER1 expression became rhythmic, peaking at opposite times of day in rats fed only during the day or during the night. In rats fed randomly throughout the entire 24-h cycle, PER1 expression in the DMH remained arrhythmic, but was elevated. These results demonstrate that VRF schedules confined to the day or night can induce circadian rhythms of clock gene expression in the DMH. Such feeding schedules cannot entrain behavioral rhythms, thereby showing that food-entrainment of behavior and circadian rhythms of clock gene expression in the DMH are dissociable.

  15. Time and dose dependent effects of oxidative stress induced by cumene hydroperoxide in neuronal excitability of rat motor cortex neurons.

    Science.gov (United States)

    Pardillo-Díaz, R; Carrascal, L; Muñoz, M F; Ayala, A; Nunez-Abades, P

    2016-03-01

    It has been claimed that oxidative stress and the production of reactive oxygen radicals can contribute to neuron degeneration and might be one factor in the development of different neurological diseases. In our study, we have attempted to clarify how oxidative damage induces dose dependent changes in functional membrane properties of neurons by means of whole cell patch clamp techniques in brain slices from young adult rats. Our research demonstrates physiological changes in membrane properties of pyramidal motor cortex neurons exposed to 3 concentrations of cumene hydroperoxide (CH; 1, 10 and 100μM) during 30min. Results show that oxidative stress induced by CH evokes important changes, in a concentration and time dependent manner, in the neuronal excitability of motor cortex neurons of the rat: (i) Low concentration of the drug (1μM) already blocks inward rectifications (sag) and decreases action potential amplitude and gain, a drug concentration which has no effects on other neuronal populations, (ii) 10μM of CH depresses the excitability of pyramidal motor cortex neurons by decreasing input resistance, amplitude of the action potential, and gain and maximum frequency of the repetitive firing discharge, and (iii) 100μM completely blocks the capability to produce repetitive discharge of action potentials in all cells. Both larger drug concentrations and/or longer times of exposure to CH narrow the current working range. This happens because of the increase in the rheobase, and the reduction of the cancelation current. The effects caused by oxidative stress, including those produced by the level of lipid peroxidation, are practically irreversible and, this, therefore, indicates that neuroprotective agents should be administered at the first symptoms of alterations to membrane properties. In fact, the pre-treatment with melatonin, acting as an antioxidant, prevented the lipid peroxidation and the physiological changes induced by CH. Larger cells (as estimated

  16. Peripherally injected CCK-8S activates CART positive neurons of the paraventricular nucleus in rats

    Science.gov (United States)

    Noetzel, Steffen; Inhoff, Tobias; Goebel, Miriam; Taché, Yvette; Veh, Rüdiger W.; Bannert, Norbert; Grötzinger, Carsten; Wiedenmann, Bertram; Klapp, Burghard F.; Mönnikes, Hubert; Kobelt, Peter

    2014-01-01

    Cholecystokinin (CCK) plays a role in the short-term inhibition of food intake. Cocaine- and amphetamine-regulated transcript (CART) peptide has been observed in neurons of the paraventricular nucleus (PVN). It has been reported that intracerebroventricular injection of CART peptide inhibits food intake in rodents. The aim of the study was to determine whether intraperitoneally (ip) injected CCK-8S affects neuronal activity of PVN-CART neurons. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15 M NaCl ip (n = 4/group). The number of c-Fos-immunoreactive neurons was determined in the PVN, arcuate nucleus (ARC), and the nucleus of the solitary tract (NTS). CCK-8S dose-dependently increased the number of c-Fos-immunoreactive neurons in the PVN (mean ± SEM: 102 ± 6 vs. 150 ± 5 neurons/section, p < 0.05) and compared to vehicle treated rats (18 ± 7, p < 0.05 vs. 6 and 10 μg/kg CCK-8S). CCK-8S at both doses induced an increase in the number of c-Fos-immunoreactive neurons in the NTS (65 ± 13, p < 0.05, and 182 ± 16, p < 0.05). No effect on the number of c-Fos neurons was observed in the ARC. Immunostaining for CART and c-Fos revealed a dose-dependent increase of activated CART neurons (19 ± 3 vs. 29 ± 7; p < 0.05), only few activated CART neuron were observed in the vehicle group (1 ± 0). The present observation shows that CCK-8S injected ip induces an increase in neuronal activity in PVN-CART neurons and suggests that CART neurons in the PVN may play a role in the mediation of peripheral CCK-8S's anorexigenic effects. PMID:20307613

  17. The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat.

    Science.gov (United States)

    Price, T J; Helesic, G; Parghi, D; Hargreaves, K M; Flores, C M

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions.

  18. Establishment of a mechanical injury model of rat hippocampal neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; CAO Fei; PAN De-sheng; LIU Wei-guo; HU Wei-wei; ZHENG Xiu-jue; ZHAO Xue-qun; L(U) Shi-ting

    2006-01-01

    Objective:To establish a simple, reproducible, and practical mechanical injury model of hippocampal neurons of Sprague-Dawley rats in vitro.Methods: Hippocampal neurons isolated from1-2-day old rats were cultured in vitro. Mild, moderate and severe mechanical injuries were delivered to the neurons by syringe needle tearing, respectively. The control neurons were treated identically with the exception of trauma. Cell damage was assessed by measuring the Propidium Iodide(PI) uptaking at different time points (0.5, 1, 6, 12 and24 hours) after injury. The concentration of neuron specific enolase was also measured at some time points.Results: Pathological examination showed that degeneration, degradation and necrosis occurred in the injured cultured neurons. Compared with the control group, the ratio of PI-positive cells in the injured groups increased significantly after 30 minutes of injury (P <0.05). More severe the damage was, more PI-positive neurons were detected. Compared with the control group,the concentration of neuron specific enolase in the injured culture increased significantly after 1 hour of injury (P <0.05).Conclusions: The established model of hippocampal neuron injury in vitro can be repeated easily and can simulate the damage mechanism of traumatic brain injury,which can be used in the future research of traumatic brain injury.

  19. Cortical neurogenesis in adult rats after ischemic brain injury:most new neurons fail to mature

    Institute of Scientific and Technical Information of China (English)

    Qing-quan Li; Guan-qun Qiao; Jun Ma; Hong-wei Fan; Ying-bin Li

    2015-01-01

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial ifbrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identiifed using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromode-oxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial ifbrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our ifndings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  20. KNDy Neurons Modulate the Magnitude of the Steroid-Induced Luteinizing Hormone Surges in Ovariectomized Rats.

    Science.gov (United States)

    Helena, Cleyde V; Toporikova, Natalia; Kalil, Bruna; Stathopoulos, Andrea M; Pogrebna, Veronika V; Carolino, Ruither O; Anselmo-Franci, Janete A; Bertram, Richard

    2015-11-01

    Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.

  1. Electroacupuncture at Du channel and meridian of foot- Taiyang for hippocampal neurons in rats with depression

    Institute of Scientific and Technical Information of China (English)

    Min Pi; Wenshu Luo; Lihong Diao; Xiaodan Rao; Haibo Yu; Zhuoxin Yang

    2007-01-01

    BACKGROUND: Long-term anti-depression treatment can promote the regeneration of hippocampal regeneration. Up-regulation of hippocampal regeneration can reverse or prevent against the injury of stress to cerebrum, especially to hippocampal structure and function. Therefore, promoting hippocampal neuronal regeneration may be a new strategy for treating depression and anxiety.OBJECTIVE: To observe the effect of electro-acupuncture at Du channel and meridian of foot-Taiyang on hippocampal neurons from model rats of depression.DESIGN: A randomized controlled animal experiment.SETTING: Department of Acupuncture and Moxibustion, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine.MATERIALS: Twenty-four Wistar rats, of either gender, aged 2 months old, weighing 200 - 220 g, were provided by the Animal Experimental Center, Guangzhou University of Traditional Chinese Medicine.METHODS: This experiment was carried out in the Clinical Molecular Biochemical Laboratory, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine between October 2006 and April 2007.①The involved rats were randomized into 4 groups according to body mass: blank control group,model group, electroacupuncture A group and electroacupuncture B group, with 6 in each. Rats in the blank control group were free to access to water, and were not given any intervention. Rats in the latter 3 groups were developed into rat depression models by chronic stress combined with feeding alone, and received 21-day unpredictable various stresses. Rats in the model group were euthanized at 14 days after modeling,and their brain tissues were harvested. Rats in the electroacupuncture A group were modeled, then points "Baihui" and "Shenting" were chosen, and given electroacupuncture, once a day, 20 minutes once. Rats in the electroacupuncture B group were modeled, then points "Baihui", "Shenting", "Xinshu"and "Ganshu" were chosen, and frequency and therapeutic time were

  2. Enhancement of basolateral amygdaloid neuronal dendritic arborization following Bacopa monniera extract treatment in adult rats

    Directory of Open Access Journals (Sweden)

    Venkata Ramana Vollala

    2011-01-01

    Full Text Available OBJECTIVE: In the ancient Indian system of medicine, Ayurveda, Bacopa monniera is classified as Medhya rasayana, which includes medicinal plants that rejuvenate intellect and memory. Here, we investigated the effect of a standardized extract of Bacopa monniera on the dendritic morphology of neurons in the basolateral amygdala, a region that is concerned with learning and memory. METHODS: The present study was conducted on 2¹/2-month-old Wistar rats. The rats were divided into 2-, 4- and 6-week treatment groups. Rats in each of these groups were further divided into 20 mg/kg, 40 mg/kg and 80 mg/kg dose groups (n = 8 for each dose. After the treatment period, treated rats and age-matched control rats were subjected to spatial learning (T-maze and passive avoidance tests. Subsequently, these rats were killed by decapitation, the brains were removed, and the amygdaloid neurons were impregnated with silver nitrate (Golgi staining. Basolateral amygdaloid neurons were traced using camera lucida, and dendritic branching points (a measure of dendritic arborization and dendritic intersections (a measure of dendritic length were quantified. These data were compared with the data from the age-matched control rats. RESULTS: The results showed an improvement in spatial learning performance and enhanced memory retention in rats treated with Bacopa monniera extract. Furthermore, a significant increase in dendritic length and the number of dendritic branching points was observed along the length of the dendrites of the basolateral amygdaloid neurons of rats treated with 40 mg/kg and 80 mg/kg of Bacopa monniera (BM for longer periods of time (i.e., 4 and 6 weeks. CONCLUSION: We conclude that constituents present in Bacopa monniera extract have neuronal dendritic growth-stimulating properties.

  3. Central CRF neurons are not created equal: Phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis.

    Directory of Open Access Journals (Sweden)

    Joanna eDabrowska

    2013-08-01

    Full Text Available Corticotrophin-releasing factor (CRF plays a key role in initiating many of the endocrine, autonomic, and behavioral responses to stress. CRF-containing neurons of the paraventricular nucleus of the hypothalamus (PVN are classically involved in regulating endocrine function through activation of the stress axis. However, CRF is also thought to play a critical role in mediating anxiety-like responses to environmental stressors, and dysfunction of the CRF system in extra-hypothalamic brain regions, like the bed nucleus of stria terminalis (BNST, has been linked to the etiology of many psychiatric disorders including anxiety and depression. Thus, although CRF neurons of the PVN and BNST share a common neuropeptide phenotype, they may represent two functionally diverse neuronal populations. Here, we employed dual-immunofluorescence, single-cell RT-PCR, and electrophysiological techniques to further examine this question and report that CRF neurons of the PVN and BNST are fundamentally different such that PVN CRF neurons are glutamatergic, whereas BNST CRF neurons are GABAergic. Moreover, these two neuronal populations can be further distinguished based on their electrophysiological properties, their co-expression of peptide neurotransmitters such as oxytocin and arginine-vasopressin, and their cognate receptors. Our results suggest that CRF neurons in the PVN and the BNST would not only differ in their response to local neurotransmitter release, but also in their action on downstream target structures.

  4. Blunted hypothalamic ghrelin signaling reduces diet intake in rats fed a low-protein diet in late pregnancy.

    Science.gov (United States)

    Gao, Haijun; Sisley, Stephanie; Yallampalli, Chandra

    2015-12-01

    Diet intake in pregnant rats fed a low-protein (LP) diet was significantly reduced during late pregnancy despite elevated plasma levels of ghrelin. In this study, we hypothesized that ghrelin signaling in the hypothalamus is blunted under a low-protein diet condition and therefore, it does not stimulate diet intake during late pregnancy. Female Sprague-Dawley rats were fed a normal (CT) or LP diet from Day 1 of pregnancy. On Day 21, 0.5 μg ghrelin was given into the third ventricle (ICV). Diet and water intake at 30, 60, and 120 min after ICV injection was measured. Hypothalami were dissected and analyzed for expression of genes related to appetite regulation (Npy, Agrp, Pomc and Cart) and phosphorylation of AMPK and ACC proteins (downstream proteins of ghrelin receptor activation). Results include: In response to ICV injection of ghrelin, (1) diet intake was significantly lower in LP compared to CT rats; (2) water intake was not affected in LP rats; (3) expression of Npy and Agrp, but not Pomc and Cart, were higher in the hypothalamus of LP compared to CT rats; (4) the abundance of phosphorylated AMPK and the ratio of phosphorylated to total AMPK, but not the abundance of total AMPK, were lower in LP compared to CT rats; (5) the abundance of phosphorylated ACC, but not total ACC, was lower in LP rats. These findings suggest that blunted ghrelin signaling in the hypothalamus of pregnant rats fed a LP diet leads to reduced diet intake and exacerbates gestational protein insufficiency.

  5. Evidence for time-of-day dependent effect of neurotoxic dorsomedial hypothalamic lesions on food anticipatory circadian rhythms in rats.

    Science.gov (United States)

    Landry, Glenn J; Kent, Brianne A; Patton, Danica F; Jaholkowski, Mark; Marchant, Elliott G; Mistlberger, Ralph E

    2011-01-01

    The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made with radiofrequency current leave anticipatory rhythms largely intact. We tested a hypothesis that the DMH and fibers of passage spared by IBO lesions play a time-of-day dependent role in the expression of food anticipatory rhythms. Rats received intra-DMH microinjections of IBO and activity and body temperature (T(b)) rhythms were recorded by telemetry during ad-lib food access, total food deprivation and scheduled feeding, with food provided for 4-h/day for 20 days in the middle of the light period and then for 20 days late in the dark period. During ad-lib food access, rats with DMH lesions exhibited a lower amplitude and mean level of light-dark entrained activity and T(b) rhythms. During the daytime feeding schedule, all rats exhibited food anticipatory activity and T(b) rhythms that persisted during 2 days without food in constant dark. In some rats with partial or total DMH ablation, the magnitude of the anticipatory rhythm was weak relative to most intact rats. When mealtime was shifted to the late night, the magnitude of the food anticipatory activity rhythms in these cases was restored to levels characteristic of intact rats. These results confirm that