WorldWideScience

Sample records for rat hypothalamic cell

  1. Desipramine inhibits histamine H1 receptor-induced Ca2+ signaling in rat hypothalamic cells.

    Directory of Open Access Journals (Sweden)

    Ji-Ah Kang

    Full Text Available The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca(2+ evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca(2+ increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca(2+ increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants.

  2. Lateral hypothalamic thyrotropin-releasing hormone neurons: distribution and relationship to histochemically defined cell populations in the rat.

    Science.gov (United States)

    Horjales-Araujo, E; Hellysaz, A; Broberger, C

    2014-09-26

    The lateral hypothalamic area (LHA) constitutes a large component of the hypothalamus, and has been implicated in several aspects of motivated behavior. The LHA is of particular relevance to behavioral state control and the maintenance of arousal. Due to the cellular heterogeneity of this region, however, only some subpopulations of LHA cells have been properly anatomically characterized. Here, we have focused on cells expressing thyrotropin-releasing hormone (TRH), a peptide found in the LHA that has been implicated as a promoter of arousal. Immunofluorescence and in situ hybridization were used to map the LHA TRH population in the rat, and cells were observed to form a large ventral cluster that extended throughout almost the entire rostro-caudal axis of the hypothalamus. Almost no examples of coexistence were seen when sections were double-stained for TRH and markers of other LHA populations, including the peptides hypocretin/orexin, melanin-concentrating hormone and neurotensin. In the juxtaparaventricular area, however, a discrete group of TRH-immunoreactive cells were also stained with antisera against enkephalin and urocortin 3. Innervation from the metabolically sensitive hypothalamic arcuate nucleus was investigated by double-staining for peptide markers of the two centrally projecting groups of arcuate neurons, agouti gene-related peptide and α-melanocyte-stimulating hormone, respectively; both populations of terminals were observed forming close appositions on TRH cells in the LHA. The present study indicates that TRH-expressing cells form a unique population in the LHA that may serve as a link between metabolic signals and the generation of arousal. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Specific Features of the Hypothalamic Leptin Signaling Response to Cold Exposure Are Reflected in Peripheral Blood Mononuclear Cells in Rats and Ferrets

    Directory of Open Access Journals (Sweden)

    Bàrbara Reynés

    2017-08-01

    Full Text Available Objectives: Cold exposure induces hyperphagia to counteract fat loss related to lipid mobilization and thermogenic activation. The aim of this study was investigate on the molecular mechanisms involved in cold-induced compensatory hyperphagia.Methods: We analyzed the effect of cold exposure on gene expression of orexigenic and anorexigenic peptides, and of leptin signaling-related genes in the hypothalamus of rats at different ages (1, 2, 4, and 6 months, as well as in ferrets. We also evaluated the potential of peripheral blood mononuclear cells to reflect hypothalamic molecular responses.Results: As expected, cold exposure induced hypoleptinemia in rats, which could be responsible for the increased ratio of orexigenic/anorexigenic peptides gene expression in the hypothalamus, mainly due to decreased anorexigenic gene expression, especially in young animals. In ferrets, which resemble humans more closely, cold exposure induced greater changes in hypothalamic mRNA levels of orexigenic genes. Despite the key role of leptin in food intake control, the effect of cold exposure on the expression of key hypothalamic leptin signaling cascade genes is not clear. In our study, cold exposure seemed to affect leptin signaling in 4-month-old rats (increased Socs3 and Lepr expression, likely associated with the smaller-increase in food intake and decreased body weight observed at this particular age. Similarly, cold exposed ferrets showed greater hypothalamic Socs3 and Stat3 gene expression. Interestingly, peripheral blood mononuclear cells (PBMC mimicked the hypothalamic increase in Lepr and Socs3 observed in 4-month-old rats, and the increased Socs3 mRNA expression observed in ferrets in response to cold exposure.Conclusions: The most outstanding result of our study is that PBMC reflected the specific modulation of leptin signaling observed in both animal models, rats and ferrets, which points forwards PBMC as easily obtainable biological material to be

  4. Glucagon-like peptide-1 reduces pancreatic β-cell mass through hypothalamic neural pathways in high-fat diet-induced obese rats.

    Science.gov (United States)

    Ando, Hisae; Gotoh, Koro; Fujiwara, Kansuke; Anai, Manabu; Chiba, Seiichi; Masaki, Takayuki; Kakuma, Tetsuya; Shibata, Hirotaka

    2017-07-17

    We examined whether glucagon-like peptide-1 (GLP-1) affects β-cell mass and proliferation through neural pathways, from hepatic afferent nerves to pancreatic efferent nerves via the central nervous system, in high-fat diet (HFD)-induced obese rats. The effects of chronic administration of GLP-1 (7-36) and liraglutide, a GLP-1 receptor agonist, on pancreatic morphological alterations, c-fos expression and brain-derived neurotrophic factor (BDNF) content in the hypothalamus, and glucose metabolism were investigated in HFD-induced obese rats that underwent hepatic afferent vagotomy (VgX) and/or pancreatic efferent sympathectomy (SpX). Chronic GLP-1 (7-36) administration to HFD-induced obese rats elevated c-fos expression and BDNF content in the hypothalamus, followed by a reduction in pancreatic β-cell hyperplasia and insulin content, thus resulting in improved glucose tolerance. These responses were abolished by VgX and SpX. Moreover, administration of liraglutide similarly activated the hypothalamic neural pathways, thus resulting in a more profound amelioration of glucose tolerance than native GLP-1 (7-36). These data suggest that GLP-1 normalizes the obesity-induced compensatory increase in β-cell mass and glucose intolerance through a neuronal relay system consisting of hepatic afferent nerves, the hypothalamus, and pancreatic efferent nerves.

  5. Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat

    DEFF Research Database (Denmark)

    Larsen, P J; Hay-Schmidt, Anders; Mikkelsen, J D

    1994-01-01

    , iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin were delivered into distinct areas of the lateral hypothalamic region. Neurons of the intermediate hypothalamic area projected mainly to the PVN subnuclei, which contained parvicellular neuroendocrine cells. In contrast...

  6. The dorso-lateral recess of the hypothalamic ventricle in neonatal rats.

    Science.gov (United States)

    Menéndez, A; Alvarez-Uría, M

    1987-10-01

    Light and electron microscopy of the hypothalamic ventricle in neonatal rats demonstrate morphological specializations of the ventricular wall at the level of the premammillary region of the third ventricle. The morphological features are: (1) A ventricular recess that we have called the "hypothalamic dorso-lateral recess" (HDR). (2) The presence of intraventricular capillaries near the dorso-lateral recess. (3) The HDR possessing a specialized ependymal lining; this consists of non-ciliated cells with short microvilli and bleb-like processes. (4) The existence of cerebrospinal fluid-contacting neurons within the HDR. (5) The presence of numerous phagocytic supraependymal cells. The HDR is not found in adult rats. This indicates that the dorso-lateral recess may play a physiological role during development.

  7. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells

    OpenAIRE

    Merkle, Florian T.; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F.

    2015-01-01

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin...

  8. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Merkle, Florian T; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F

    2015-02-15

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases. © 2015. Published by The Company of Biologists Ltd.

  9. Delineating the regulation of energy homeostasis using hypothalamic cell models.

    Science.gov (United States)

    Wellhauser, Leigh; Gojska, Nicole M; Belsham, Denise D

    2015-01-01

    Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Projection from the prefrontal cortex to histaminergic cell groups in the posterior hypothalamic region of the rat. Anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with immunocytochemistry of histidine decarboxylase

    NARCIS (Netherlands)

    Wouterlood, F.G.; Steinbusch, H.W.M.; Luiten, P.G.M.; Bol, J.G.J.M.

    1987-01-01

    We investigated the projection from the infralimbic division of the prefrontal cortex (area 25) to histaminergic neurons in the posterior hypothalamic area. Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected in the prefrontal cortex of rats. Frozen brain sections were subjected to combined

  11. VMN hypothalamic dopamine and serotonin in anorectic septic rats.

    Science.gov (United States)

    Torelli, G F; Meguid, M M; Miyata, G; Fetissov, S O; Carter, J L; Kim, H J; Muscaritoli, M; Rossi Fanelli, F

    2000-03-01

    During sepsis, catabolism of proteins and associated changes in plasma amino acids occur. Tryptophan and tyrosine, and their derivatives serotonin (5-HT) and dopamine (DA), influence hypothalamic feeding-related areas and are associated with the onset of anorexia. We hypothesized that anorexia of sepsis is associated with changes in serotonin and dopamine in the ventromedial nucleus (VMN) of the hypothalamus. The aim of this study was to test our hypothesis by measuring intra-VMN changes of these two neurotransmitters at the onset of anorexia during sepsis. Fischer 344 male rats had an intracerebral guide cannula stereotaxically implanted into the VMN. Ten days later, in awake, overnight-food-deprived rats, a microdialysis probe was inserted through the in situ VMN cannula. Two hours thereafter, serial baseline serotonin and dopamine concentrations were measured. Then cecal ligation and puncture to induce sepsis or a control laparotomy was performed under isoflurane anesthesia. VMN microdialysis samples were serially collected every 30 min for 8 h after the surgical procedure to determine 5-HT and DA changes in response to sepsis. During the hypermetabolic response to sepsis, a strong association occurred between anorexia and a significant reduction of VMN dopamine concentration (P anorexia of sepsis. Six hours after operation, a single meal was offered for 20 min to assess the response of neurotransmitters to food ingestion. Food intake was minimal in anorectic septic rats (mean size of the after food-deprived meal in the Septic group was 0.03+/-0.01 g, that of the Control group was 1.27+/-0.14 g; P = 0.0001), while Control rats demonstrated anticipated changes in neurotransmitters in response to eating. We conclude that the onset of anorexia in septic rats is associated with a reduction in VMN dopamine.

  12. Age Dependent Hypothalamic and Pituitary Responses to Novel Environment Stress or Lipopolysaccharide in Rats

    Directory of Open Access Journals (Sweden)

    Sandy Koenig

    2018-03-01

    Full Text Available Previously, we have shown that the transcription factor nuclear factor interleukin (NF-IL6 can be used as an activation marker for inflammatory lipopolysaccharide (LPS-induced and psychological novel environment stress (NES in the rat brain. Here, we aimed to investigate age dependent changes of hypothalamic and pituitary responses to NES (cage switch or LPS (100 μg/kg in 2 and 24 months old rats. Animals were sacrificed at specific time points, blood and brains withdrawn and analyzed using immunohistochemistry, RT-PCR and bioassays. In the old rats, telemetric recording revealed that NES-induced hyperthermia was enhanced and prolonged compared to the young group. Plasma IL-6 levels remained unchanged and hypothalamic IL-6 mRNA expression was increased in the old rats. Interestingly, this response was accompanied by a significant upregulation of corticotropin-releasing hormone mRNA expression only in young rats after NES and overall higher plasma corticosterone levels in all aged animals. Immunohistochemical analysis revealed a significant upregulation of NF-IL6-positive cells in the pituitary after NES or LPS-injection. In another important brain structure implicated in immune-to-brain communication, namely, in the median eminence (ME, NF-IL6-immunoreactivity was increased in aged animals, while the young group showed just minor activation after LPS-stimulation. Interestingly, we found a higher amount of NF-IL6-CD68-positive cells in the posterior pituitary of old rats compared to the young counterparts. Moreover, aging affected the regulation of cytokine interaction in the anterior pituitary lobe. LPS-treatment significantly enhanced the secretion of the cytokines IL-6 and TNFα into supernatants of primary cell cultures of the anterior pituitary. Furthermore, in the young rats, incubation with IL-6 and IL-10 antibodies before LPS-stimulation led to a robust decrease of IL-6 production and an increase of TNFα production by the pituitary

  13. Behavioral and endocrine responses of rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain)

    NARCIS (Netherlands)

    Bohus, B.; Wimersma Greidanus, T.B. van; Wied, D. de

    Behavioral and endocrine profiles were established of homozygous (HO-DI) and heterozygous (HE-DI) rats with hereditary hypothalamic diabetes insipidus in comparison to Wistar strain rats. HO-DI rats were inferior in acquiring and maintaining active and passive avoidance behavior. Behavioral deficits

  14. Effects of Physical Exercise on the Intestinal Mucosa of Rats Submitted to a Hypothalamic Obesity Condition.

    Science.gov (United States)

    Gomes, J R; Freitas, J R; Grassiolli, S

    2016-10-01

    The small intestine plays a role in obesity as well as in satiation. However, the effect of physical exercise on the morphology and function of the small intestine during obesity has not been reported to date. This study aimed to evaluate the effects of physical exercise on morphological aspects of the rat small intestine during hypothalamic monosodium glutamate (MSG)-induced obesity. The rats were divided into four groups: Sedentary (S), Monosodium Glutamate (MSG), Exercised (E), and Exercised Monosodium Glutamate (EMSG). The MSG and EMSG groups received a daily injection of monosodium glutamate (4 g/kg) during the 5 first days after birth. The S and E groups were considered as control groups and received injections of saline. At weaning, at 21 days after birth, the EMSG and E groups were submitted to swimming practice 3 times a week until the 90th day, when all groups were sacrificed and the parameters studied recorded. Exercise significantly reduced fat deposits and the Lee Index in MSG-treated animals, and also reduced the thickness of the intestinal wall, the number of goblet cells and intestinal alkaline phosphatase activity. However, physical activity alone increased the thickness and height of villi, and the depth of the crypts. In conclusion, regular physical exercise may alter the morphology or/and functions of the small intestine, reducing the prejudicial effects of hypothalamic obesity. Anat Rec, 299:1389-1396, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2018-01-01

    Conclusions: Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism.

  16. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats.

    Directory of Open Access Journals (Sweden)

    Khaled Abdallah

    Full Text Available Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG, into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project. These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.

  17. Agmatine in the hypothalamic paraventricular nucleus stimulates feeding in rats: involvement of neuropeptide Y

    Science.gov (United States)

    Taksande, BG; Kotagale, NR; Nakhate, KT; Mali, PD; Kokare, DM; Hirani, K; Subhedar, NK; Chopde, CT; Ugale, RR

    2011-01-01

    BACKGROUND AND PURPOSE Agmatine, a multifaceted neurotransmitter, is abundantly expressed in the hypothalamic paraventricular nucleus (PVN). Our aim was to assess (i) the effect of agmatine on feeding behaviour and (ii) its association, if any, with neuropeptide Y (NPY). EXPERIMENTAL APPROACH Satiated rats fitted with intra-PVN cannulae were administered agmatine, alone or jointly with (i) α2-adrenoceptor agonist, clonidine, or antagonist, yohimbine; (ii) NPY, NPY Y1 receptor agonist, [Leu31, Pro34]-NPY, or antagonist, BIBP3226; or (iii) yohimbine and NPY. Cumulative food intake was monitored at different post-injection time points. Furthermore, the expression of hypothalamic NPY following i.p. treatment with agmatine, alone or in combination with yohimbine (i.p.), was evaluated by immunocytochemistry. KEY RESULTS Agmatine robustly increased feeding in a dose-dependent manner. While pretreatment with clonidine augmented, yohimbine attenuated the orexigenic response to agmatine. Similarly, NPY and [Leu31, Pro34]-NPY potentiated the agmatine-induced hyperphagia, whereas BIBP3226 inhibited it. Moreover, yohimbine attenuated the synergistic orexigenic effect induced by the combination of NPY and agmatine. Agmatine increased NPY immunoreactivity in the PVN fibres and in the cells of the hypothalamic arcuate nucleus (ARC) and this effect was prevented by pretreatment with yohimbine. NPY immunoreactivity in the fibres of the ARC, dorsomedial, ventromedial and lateral nuclei of the hypothalamus was not affected by any of the above treatments. CONCLUSIONS AND IMPLICATIONS The orexigenic effect of agmatine is coupled to increased NPY activity mediated by stimulation of α2-adrenoceptors within the PVN. This signifies the importance of agmatine or α2-adrenoceptor modulators in the development of novel therapeutic agents to treat feeding-related disorders. PMID:21564088

  18. Altered astrocyte glutamate transporter regulation of hypothalamic neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Potapenko, Evgeniy S; Biancardi, Vinicia C; Zhou, Yiqiang; Stern, Javier E

    2012-08-01

    Neurohumoral activation, which includes augmented plasma levels of the neurohormone vasopressin (VP), is a common finding in heart failure (HF) that contributes to morbidity and mortality in this disease. While an increased activation of magnocellular neurosecretory cells (MNCs) and enhanced glutamate function in HF is well documented, the precise underlying mechanisms remain to be elucidated. Here, we combined electrophysiology and protein measurements to determine whether altered glial glutamate transporter function and/or expression occurs in the hypothalamic supraoptic nucleus (SON) during HF. Patch-clamp recordings obtained from MNCs in brain slices show that pharmacological blockade of astrocyte glutamate transporter 1 (GLT1) function [500 μM dihydrokainate (DHK)], resulted in a persistent N-methyl-D-aspartate receptor (NMDAR)-mediated inward current (tonic I(NMDA)) in sham rats, an effect that was significantly smaller in MNCs from HF rats. In addition, we found a diminished GLT1 protein content in plasma membrane (but not cytosolic) fractions of SON punches in HF rats. Conversely, astrocyte GLAST expression was significantly higher in the SON of HF rats, while nonselective blockade of glutamate transport activity (100 μM TBOA) evoked an enhanced tonic I(NMDA) activation in HF rats. Steady-state activation of NMDARs by extracellular glutamate levels was diminished during HF. Taken together, these results support a shift in the relative expression and function of two major glial glutamate transporters (from GLT1 to GLAST predominance) during HF. This shift may act as a compensatory mechanism to preserve an adequate basal glutamate uptake level in the face of an enhanced glutamatergic afferent activity in HF rats.

  19. Hypothalamic involvement in stress-induced hypocalcemia in rats.

    Science.gov (United States)

    Aou, S; Ma, J; Hori, T

    1993-08-20

    Although hormonal regulation of blood calcium homeostasis has been intensively investigated in the peripheral organs, the involvement of the central nervous system in calcium regulation is still poorly understood. In the present study, we found that (1) bilateral lesions of the ventromedial nucleus of the hypothalamus (VMH), but not those of the paraventricular hypothalamic nucleus or the lateral hypothalamic area, eliminated immobilization (IMB)-induced hypocalcemia, and (2) electrical stimulation of the VMH decreased the blood calcium level. The results suggest that the VMH has a hypocalcemic function and plays a role in IMB-induced hypocalcemia.

  20. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  1. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  2. Inner capillary diameter of hypothalamic paraventricular nucleus of female rat increases during lactation

    Directory of Open Access Journals (Sweden)

    Cortés-Sol Albertina

    2013-01-01

    Full Text Available Abstract Background The role of the endothelial cell (EC in blood flow regulation within the central nervous system has been little studied. Here, we explored EC participation in morphological changes of the anterior hypothalamic paraventricular nucleus (PVN microvasculature of female rats at two reproductive stages with different metabolic demand (virginity and lactation. We measured the inner capillary diameter (ICD of 800 capillaries from either the magnocellular or parvocellular regions. The space occupied by neural (somas, dendrites and axons and glial, but excluding vascular elements of the neurovascular compartment was also measured in 100-μm2 sample fields of both PVN subdivisions. Results The PVN of both groups of animals showed ICDs that ranged from 3 to 10 microns. The virgin group presented mostly capillaries with small ICD, whereas the lactating females exhibited a significant increment in the percentage of capillaries with larger ICD. The space occupied by the neural and glial elements of the neurovascular compartment did not show changes with lactation. Conclusions Our findings suggest that during lactation the microvasculature of the PVN of female rats undergoes dynamic, transitory changes in blood flow as represented by an increment in the ICD through a self-cytoplasmic volume modification reflected by EC changes. A model of this process is proposed.

  3. Effect of acute ethanol on beta-endorphin secretion from rat fetal hypothalamic neurons in primary cultures

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, D.K.; Minami, S. (Washington State Univ., Pullman (USA))

    1990-01-01

    To characterize the effect of ethanol on the hypothalamic {beta}-endorphin-containing neurons, rat fetal hypothalamic neurons were maintained in primary culture, and the secretion of {beta}-endorphin ({beta}-EP) was determined after ethanol challenges. Constant exposure to ethanol at doses of 6-50 mM produced a dose-dependent increase in basal secretion of {beta}-EP from these cultured cells. These doses of ethanol did not produce any significant effect on cell viability, DNA or protein content. The stimulated secretion of {beta}-EP following constant ethanol exposure is short-lasting. However, intermittent ethanol exposures maintained the ethanol stimulatory action on {beta}-EP secretion for a longer time. The magnitude of the {beta}-EP response to 50 mM ethanol is similar to that of the {beta}-EP response to 56 mM of potassium. Ethanol-stimulated {beta}-EP secretion required extracellular calcium and was blocked by a calcium channel blocker; a sodium channel blocker did not affect ethanol-stimulated secretion. These results suggest that the neuron culture system is a useful model for studying the cellular mechanisms involved in the ethanol-regulated hypothalamic opioid secretion.

  4. Cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus in the rat: role of the hypothalamic paraventricular nucleus.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kawabe

    Full Text Available The mechanism of cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus (ARCN was studied in urethane-anesthetized adult male Wistar rats. At the baseline mean arterial pressure (BLMAP close to normal, ARCN stimulation elicited decreases in MAP and sympathetic nerve activity (SNA. The decreases in MAP elicited by ARCN stimulation were attenuated by either gamma-aminobutyric acid (GABA, neuropeptide Y (NPY, or beta-endorphin receptor blockade in the ipsilateral hypothalamic paraventricular nucleus (PVN. Combined blockade of GABA-A, NPY1 and opioid receptors in the ipsilateral PVN converted the decreases in MAP and SNA to increases in these variables. Conversion of inhibitory effects on the MAP and SNA to excitatory effects following ARCN stimulation was also observed when the BLMAP was decreased to below normal levels by an infusion of sodium nitroprusside. The pressor and tachycardic responses to ARCN stimulation at below normal BLMAP were attenuated by blockade of melanocortin 3/4 (MC3/4 receptors in the ipsilateral PVN. Unilateral blockade of GABA-A receptors in the ARCN increased the BLMAP and heart rate (HR revealing tonic inhibition of the excitatory neurons in the ARCN. ARCN stimulation elicited tachycardia regardless of the level of BLMAP. ARCN neurons projecting to the PVN were immunoreactive for glutamic acid decarboxylase 67 (GAD67, NPY, and beta-endorphin. These results indicated that: 1 at normal BLMAP, decreases in MAP and SNA induced by ARCN stimulation were mediated via GABA-A, NPY1 and opioid receptors in the PVN, 2 lowering of BLMAP converted decreases in MAP following ARCN stimulation to increases in MAP, and 3 at below normal BLMAP, increases in MAP and HR induced by ARCN stimulation were mediated via MC3/4 receptors in the PVN. These results provide a base for future studies to explore the role of ARCN in cardiovascular diseases.

  5. Mct8 and trh co-expression throughout the hypothalamic paraventricular nucleus is modified by dehydration-induced anorexia in rats.

    Science.gov (United States)

    Alvarez-Salas, Elena; Mengod, Guadalupe; García-Luna, Cinthia; Soberanes-Chávez, Paulina; Matamoros-Trejo, Gilberto; de Gortari, Patricia

    2016-04-01

    Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones' transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content.We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake.

  6. Exercise in rats does not alter hypothalamic AMP-activated protein kinase activity

    DEFF Research Database (Denmark)

    Andersson, Ulrika; Treebak, Jonas Thue; Nielsen, Jakob Nis

    2005-01-01

    . In recovery, glucose feeding increased plasma glucose and insulin concentrations whereas ghrelin and PYY decreased to (ghrelin) or below (PPY) resting levels. It is concluded that 1 h of strenuous exercise in rats does not elicit significant changes in hypothalamic AMPK activity despite an increase in plasma...... ghrelin. Thus, changes in energy metabolism during or after exercise are likely not coordinated by changes in hypothalamic AMPK activity.......Recent studies have demonstrated that AMP-activated protein kinase (AMPK) in the hypothalamus is involved in the regulation of food intake. Because exercise is known to influence appetite and cause substrate depletion, it may also influence AMPK in the hypothalamus. Male rats that either rested...

  7. Probable gamma-aminobutyric acid involvement in bisphenol A effect at the hypothalamic level in adult male rats.

    Science.gov (United States)

    Cardoso, Nancy; Pandolfi, Matías; Lavalle, Justina; Carbone, Silvia; Ponzo, Osvaldo; Scacchi, Pablo; Reynoso, Roxana

    2011-12-01

    The aim of the present study was to investigate the effects of bisphenol A (BPA) on the neuroendocrine mechanism of control of the reproductive axis in adult male rats exposed to it during pre- and early postnatal periods. Wistar mated rats were treated with either 0.1% ethanol or BPA in their drinking water until their offspring were weaned at the age of 21 days. The estimated average dose of exposure to dams was approximately 2.5 mg/kg body weight per day of BPA. After 21 days, the pups were separated from the mother and sacrificed on 70 day of life. Gn-RH and gamma-aminobutyric acid (GABA) release from hypothalamic fragments was measured. LH, FSH, and testosterone concentrations were determined, and histological and morphometrical studies of testis were performed. Gn-RH release decreased significantly, while GABA serum levels were markedly increased by treatment. LH serum levels showed no changes, and FSH and testosterone levels decreased significantly. Histological studies showed abnormalities in the tubular organization of the germinal epithelium. The cytoarchitecture of germinal cells was apparently normal, and a reduction of the nuclear area of Leydig cells but not their number was observed. Taken all together, these results provide evidence of the effect caused by BPA on the adult male reproductive axis when exposed during pre- and postnatal period. Moreover, our findings suggest a probable GABA involvement in its effect at the hypothalamic level.

  8. Paraventricular hypothalamic adrenoceptors and energy metabolism in exercising rats

    NARCIS (Netherlands)

    Scheurink, Anton J.W.; Steffens, Anton B.; Gaykema, Ron P.A.

    The role of adrenoceptors in the paraventricular nucleus (PVN) in the exercise-induced changes in plasma norepinephrine (NE), epinephrine (E), corticosterone, free fatty acids (FFA), and blood glucose was investigated in rats. Exercise consisted of strenuous swimming against a countercurrent for 15

  9. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs.

    Science.gov (United States)

    Zhang, Yalin; Kim, Min Soo; Jia, Baosen; Yan, Jingqi; Zuniga-Hertz, Juan Pablo; Han, Cheng; Cai, Dongsheng

    2017-08-03

    It has been proposed that the hypothalamus helps to control ageing, but the mechanisms responsible remain unclear. Here we develop several mouse models in which hypothalamic stem/progenitor cells that co-express Sox2 and Bmi1 are ablated, as we observed that ageing in mice started with a substantial loss of these hypothalamic cells. Each mouse model consistently displayed acceleration of ageing-like physiological changes or a shortened lifespan. Conversely, ageing retardation and lifespan extension were achieved in mid-aged mice that were locally implanted with healthy hypothalamic stem/progenitor cells that had been genetically engineered to survive in the ageing-related hypothalamic inflammatory microenvironment. Mechanistically, hypothalamic stem/progenitor cells contributed greatly to exosomal microRNAs (miRNAs) in the cerebrospinal fluid, and these exosomal miRNAs declined during ageing, whereas central treatment with healthy hypothalamic stem/progenitor cell-secreted exosomes led to the slowing of ageing. In conclusion, ageing speed is substantially controlled by hypothalamic stem cells, partially through the release of exosomal miRNAs.

  10. Fetal hypothalamic transplants into brain irradiated rats: Graft morphometry and host behavioral responses

    International Nuclear Information System (INIS)

    Pearlman, S.H.; Rubin, P.; White, H.C.; Wiegand, S.J.; Gash, D.M.

    1990-01-01

    This study was designed to test the hypothesis that neural implants can ameliorate or prevent some of the long-term changes associated with CNS irradiation. Using a rat model, the initial study focused on establishing motor, regulatory, and morphological changes associated with brain radiation treatments. Secondly, fetal hypothalamic tissue grafts were placed into the third ventricle of rats which had been previously irradiated. Adult male Long Evans rats received one of three radiation doses (15, 22.5, ampersand 30 Gy) or no radiation. Three days after irradiation, 7 animals in each dose group received an embryonic day 17 hypothalamic graft into the third ventricle while the remaining 8-9 animals in each group received injections of vehicle solution (sham). Few changes were observed in the 15 and 22.5 Gy animals, however rats in the 30 Gy treatment group showed stereotypic and ambulatory behavioral hyperactivity 32 weeks after irradiation. Regulatory changes in the high dose group included decreased growth rate and decreased urine osmolalities, but these measures were extremely variable among animals. Morphological results demonstrated that 30 Gy irradiated animals showed extensive necrosis primarily in the fimbria, which extended into the internal capsule, optic nerve, hippocampus, and thalamus. Hemorrhages were found in the hippocampus, thalamus, and fimbria. Defects in the blood-brain barrier also were evident by entry of intravascularly injected horseradish peroxidase into the parenchyma of the brain. Animals in the 30 Gy grafted group showed fewer behavioral changes and less brain damage than their sham grafted counterparts. Specifically, activity measures were comparable to normal levels, and a dilute urine was not found in the 30 Gy implanted rats. Morphological changes support these behavioral results since only two 30 Gy implanted rats showed necrosis

  11. Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring.

    Science.gov (United States)

    Dembele, Korami; Yao, Xing-Hai; Chen, Li; Nyomba, B L Grégoire

    2006-09-01

    Prenatal ethanol (EtOH) exposure is associated with low birth weight, followed by increased appetite, catch-up growth, insulin resistance, and impaired glucose tolerance in the rat offspring. Because EtOH can induce oxidative stress, which is a putative mechanism of insulin resistance, and because of the central role of the hypothalamus in the regulation of energy homeostasis and insulin action, we investigated whether prenatal EtOH exposure causes oxidative damage to the hypothalamus, which may alter its function. Female rats were given EtOH by gavage throughout pregnancy. At birth, their offspring were smaller than those of non-EtOH rats. Markers of oxidative stress and expression of neuropeptide Y and proopiomelanocortin (POMC) were determined in hypothalami of postnatal day 7 (PD7) and 3-mo-old (adult) rat offspring. In both PD7 and adult rats, prenatal EtOH exposure was associated with decreased levels of glutathione and increased expression of MnSOD. The concentrations of lipid peroxides and protein carbonyls were normal in PD7 EtOH-exposed offspring, but were increased in adult EtOH-exposed offspring. Both PD7 and adult EtOH-exposed offspring had normal neuropeptide Y and POMC mRNA levels, but the adult offspring had reduced POMC protein concentration. Thus only adult offspring preexposed to EtOH had increased hypothalamic tissue damage and decreased levels of POMC, which could impair melanocortin signaling. We conclude that prenatal EtOH exposure causes hypothalamic oxidative stress, which persists into adult life and alters melanocortin action during adulthood. These neuroendocrine alterations may explain weight gain and insulin resistance in rats exposed to EtOH early in life.

  12. Reassessment of LRF radioimmunoassay in the plasma and hypothalamic extracts of rats and rams

    International Nuclear Information System (INIS)

    Caraty, A.; Reviers, M.-M. de; Pelletier, J.; Dubois, M.P.

    1980-01-01

    A highly sensitive and specific radioimmunoassay for LRF was applied to the measurement of endogenous LRF in various hypothalamic extracts. Specific antiserum was obtained by injecting LRF conjugated to human serum albumin with glutaraldehyde. Thyrotropin-releasing hormone, lysine vasopressin, oxytocin, noradrenaline, LH, FSH and cortical extracts did not appear to affect the assay, and the maximum cross-reaction observed with the LRF analogs tested was 8.5% with LRF 2-10. The best detection limit (0.4 pg/tube) was usually obtained when the labelled LRF had been purified by polyacrylamide gel electrophoresis. Within and between-assay coefficients of variation were 8.0 and 12.6% respectively (from B/Bo=20 to 80%). Synthetic LRF administered to rams by intravenous injection was readily detectable in the peripheral plasma. However, the direct measurement of plasma endogenous LRF may give misleading results due to non-specific interference by plasma factors. No endogenous LRF could be detected in plasma methanol or acetone extracts obtained from rats and rams in various physiological conditions. The inhibition curves parallel to the synthetic LRF curve were obtained by diluting the crude hypothalamic extracts of rams and rats, and a good correlation (r=0,997) with the Ramirez-McCann bioassay resulted, indicating that using radioimmunoassay to determine hypothalamic LRF content may be fruitful in studying hypothalamo-pituitary gonad interactions. The LRF content of rat and ovine hypothalami ranged from 2-8 to 20-80 ng of LRF, respectively

  13. Malathion exposure modulates hypothalamic gene expression and induces dyslipedemia in Wistar rats.

    Science.gov (United States)

    Rezg, Raja; Mornagui, Bessem; Benahmed, Malika; Chouchane, Sonia Gharsalla; Belhajhmida, Nadia; Abdeladhim, Maha; Kamoun, Abdelaziz; El-fazaa, Saloua; Gharbi, Najoua

    2010-06-01

    Exposure to organophosphate (OP) pesticides is virtually ubiquitous. These inevitable agents are neurotoxicants, but recent evidence also points to lasting effects on carbohydrate metabolism. The aim of this study was to investigate the effects of 32 repeated treatment days with malathion, an OP insecticide, on some molecular and metabolic parameters. Malathion at 100 mg/kg was administered by gavage in Wistar rats. Results of this study indicate a significant decrease in hypothalamic corticotropin-releasing hormone mRNA, of malathion-treated rats. This result, in accordance with that of diabetic type 2 rat model, may be due to very potent negative feedback effects of glucocorticoids on hypothalamo-pituitary-adrenal (HPA) axis activity. In addition, we have recorded a significant increase in hypothalamic inducible NO synthase mRNA which probably enhances the negative feedback. These alterations are accompanied with hypertriglyceridemia that may be a favourable condition to insulin resistance. Thus, results of the present study suggest that malathion can be considered as an important risk factor in the development of diabetes type 2, which prevalence increased substantially in our country and around the world. Clearly, we need to focus further research on the specific incidences of hazardous food chemical contaminant that might be contributing to epidemic health perspectives. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  14. Changes in the responsiveness of hypothalamic PK2 and PKR1 gene expression to fasting in developing male rats.

    Science.gov (United States)

    Iwasa, Takeshi; Matsuzaki, Toshiya; Tungalagsuvd, Altankhuu; Munkhzaya, Munkhsaikhan; Kawami, Takako; Yamasaki, Mikio; Murakami, Masahiro; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2014-11-01

    Prokineticin (PK2) and its receptors (PKRs) are expressed in several regions of the central nervous system, including the hypothalamus. It has been reported that PK2 inhibits food intake via PKR1 and that the hypothalamic PK2 mRNA levels of adult rodents were reduced by food deprivation. However, some hypothalamic factors do not exhibit sensitivity to undernutrition in the early neonatal period, but subsequently become sensitive to it during the neonatal to pre-pubertal period. In this study, we investigated the changes in the sensitivity of hypothalamic PK2 and PKR1 mRNA expression to fasting during the developmental period in male rats. Under the fed conditions, the rats' hypothalamic PK2 and/or PKR1 mRNA levels were higher on postnatal day (PND) 10 than on PND20 or PND30. In addition, the hypothalamic PK2 and/or PKR1 mRNA levels of the male rats were higher than those of the females at all examined ages (PND10, 20, and 30). Hypothalamic PK2 mRNA expression was decreased by 24h fasting at PND10 and 30, but not at PND20. In addition, hypothalamic PKR1 mRNA expression was decreased by 24h fasting at PND10, but not at PND20 or 30. These results indicate that both PK2 and PKR1 are sensitive to nutritional status in male rats and that this sensitivity has already been established by the early neonatal period. It can be speculated that the PK2 system might compensate for the immaturity of other appetite regulatory factors in the early neonatal period. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  15. Developmental changes in hypothalamic oxytocin and oxytocin receptor mRNA expression and their sensitivity to fasting in male and female rats.

    Science.gov (United States)

    Matsuzaki, Toshiya; Iwasa, Takeshi; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kawami, Takako; Murakami, Masahiro; Yamasaki, Mikio; Yamamoto, Yuri; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-04-01

    Oxytocin (OT) affects the central nervous system and is involved in a variety of social and non-social behaviors. Recently, the role played by OT in energy metabolism and its organizational effects on estrogen receptor alpha (ER-α) during the neonatal period have gained attention. In this study, the developmental changes in the hypothalamic mRNA levels of OT, the OT receptor (OTR), and ER-α were evaluated in male and female rats. In addition, the fasting-induced changes in the hypothalamic mRNA levels of OT and the OTR were evaluated. Hypothalamic explants were taken from postnatal day (PND) 10, 20, and 30 rats, and the mRNA level of each molecule was measured. Hypothalamic OT mRNA expression increased throughout the developmental period in both sexes. The rats' hypothalamic OTR mRNA levels were highest on PND 10 and decreased throughout the developmental period. In the male rats, the hypothalamic mRNA levels of ER-α were higher on PND 30 than on PND 10. On the other hand, no significant differences in hypothalamic ER-α mRNA expression were detected among the examined time points in the female rats, although hypothalamic ER-α mRNA expression tended to be higher on PND 30 than on PND 10. Significant positive correlations were detected between hypothalamic OT and ER-α mRNA expression in both the male and female rats. Hypothalamic OT mRNA expression was not affected by fasting at any of the examined time points in either sex. These results indicate that hypothalamic OT expression is not sensitive to fasting during the developmental period. In addition, as a positive correlation was detected between hypothalamic OT and ER-α mRNA expression, these two molecules might interact with each other to induce appropriate neuronal development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Antidopaminergic-induced hypothalamic LHRH release and pituitary gonadotrophin secretion in 12 day-old female and male rats.

    Science.gov (United States)

    Lacau-Mengido, I M; Becú-Villalobos, D; Thyssen, S M; Rey, E B; Lux-Lantos, V A; Libertun, C

    1993-12-01

    In previous studies we have shown that the developing rat provides an interesting physiologic model in which the dopaminergic control of both LH and FSH is well defined in contrast to the controversial results obtained in adult rats. We wished to establish the role of testosterone in antidopaminergic induced gonadotrophins release in 12 day-old male and female rats, and evaluate the effect of antidopaminergic drugs at the hypothalamic level during this developmental stage. Haloperidol, an antidopaminergic drug, increased both LH and FSH in female 12 day-old rats but not in male littermates. The effect was blocked by bromocriptine and not by phentolamine indicating that haloperidol acted on the dopaminergic receptor, and that unspecific stimulation of the noradrenergic system was not involved. Haloperidol was ineffective when female rats were previously ovariectomized and injected with testosterone propionate at 9 days of age. If females were treated on the day of birth with testosterone propionate, haloperidol-induced FSH and LH release was also abolished. In control males haloperidol had no effect on the release of LH or FSH. But if males were orchidectomized at birth or at 9 days of age, haloperidol released both LH and FSH during the infantile period. In an attempt to establish the site of action of antidopaminergic drugs on gonadotrophin release, hypothalami (mediobasal and preoptic-suprachiasmatic area) from 12 day-old infant female rats were perifused with either haloperidol or domperidone (2*10(-6) M). Both drugs increased LHRH release into the perifusate. Besides haloperidol did not modify the release of LH or FSH from adenohypophyseal cells incubated in vitro. We therefore conclude that antidopaminergic-induced gonadotrophins release is modulated by serum testosterone concentrations, and that the site of action is probably the LHRH-secreting neuron of the hypothalamus.

  17. Neonatal exposure to bisphenol A alters the hypothalamic-pituitary-thyroid axis in female rats.

    Science.gov (United States)

    Fernandez, Marina O; Bourguignon, Nadia S; Arocena, Paula; Rosa, Matías; Libertun, Carlos; Lux-Lantos, Victoria

    2018-03-15

    Bisphenol A (BPA) is a component of polycarbonate plastics, epoxy resins and polystyrene found in many common products. Several reports revealed potent in vivo and in vitro effects. In this study we analyzed the effects of the exposure to BPA in the hypothalamic-pituitary-thyroid axis in female rats, both in vivo and in vitro. Female Sprague-Dawley rats were injected sc from postnatal day 1 (PND1) to PND10 with BPA: 500 μg 50 μl -1 oil (B500), or 50 μg 50 μl -1 (B50), or 5 μg 50 μl -1 (B5). Controls were injected with 50 μl vehicle during the same period. Neonatal exposure to BPA did not modify TSH levels in PND13 females, but it increased them in adults in estrus. Serum T4 was lower in B5 and B500 with regards to Control, whereas no difference was seen in T3. No significant differences were observed in TRH, TSHβ and TRH receptor expression between groups. TSH release from PPC obtained from adults in estrus was also higher in B50 with regard to Control. In vitro 24 h pre-treatment with BPA or E 2 increased basal TSH as well as prolactin release. On the other hand, both BPA and E 2 lowered the response to TRH. The results presented here show that the neonatal exposure to BPA alters the hypothalamic pituitary-thyroid axis in adult rats in estrus, possibly with effects on the pituitary and thyroid. They also show that BPA alters TSH release from rat PPC through direct actions on the pituitary. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Hyperosmotic stimulus induces reversible angiogenesis within the hypothalamic magnocellular nuclei of the adult rat: a potential role for neuronal vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Vincent Anne

    2005-03-01

    Full Text Available Abstract Background In mammals, the CNS vasculature is established during the postnatal period via active angiogenesis, providing different brain regions with capillary networks of various densities that locally supply adapted metabolic support to neurons. Thereafter this vasculature remains essentially quiescent excepted for specific pathologies. In the adult rat hypothalamus, a particularly dense network of capillary vessels is associated with the supraoptic (SON and paraventricular (PVN nuclei containing the magnocellular neurons secreting vasopressin and oxytocin, two neurohormones involved in the control of the body fluid homoeostasis. In the seventies, it was reported that proliferation of astrocytes and endothelial cells occurs within these hypothalamic nuclei when strong metabolic activation of the vasopressinergic and oxytocinergic neurons was induced by prolonged hyperosmotic stimulation. The aim of the present study was to determine whether such proliferative response to osmotic stimulus is related to local angiogenesis and to elucidate the cellular and molecular mechanisms involved. Results Our results provide evidence that cell proliferation occurring within the SON of osmotically stimulated adult rats corresponds to local angiogenesis. We show that 1 a large majority of the SON proliferative cells is associated with capillary vessels, 2 this proliferative response correlates with a progressive increase in density of the capillary network within the nucleus, and 3 SON capillary vessels exhibit an increased expression of nestin and vimentin, two markers of newly formed vessels. Contrasting with most adult CNS neurons, hypothalamic magnocellular neurons were found to express vascular endothelial growth factor (VEGF, a potent angiogenic factor whose production was increased by osmotic stimulus. When VEGF was inhibited by dexamethasone treatment or by the local application of a blocking antibody, the angiogenic response was strongly

  19. Faster gastric emptying of a liquid meal in rats after hypothalamic dorsomedial nucleus lesion

    Directory of Open Access Journals (Sweden)

    Denofre-Carvalho S.

    1997-01-01

    Full Text Available The effects of dorsomedial hypothalamic (DMH nucleus lesion on body weight, plasma glucose levels, and the gastric emptying of a liquid meal were investigated in male Wistar rats (170-250 g. DMH lesions were produced stereotaxically by delivering a 2.0-mA current for 20 s through nichrome electrodes (0.3-mm tip exposure. In a second set of experiments, the DMH and the ventromedial hypothalamic (VMH nucleus were lesioned with a 1.0-mA current for 10 s (0.1-mm tip exposure. The medial hypothalamus (MH was also lesioned separately using a nichrome electrode (0.3-mm tip exposure with a 2.0-mA current for 20 s. Gastric emptying was measured following the orogastric infusion of a liquid test meal consisting of physiological saline (0.9% NaCl, w/v plus phenol red dye (6 mg/dl as a marker. Plasma glucose levels were determined after an 18-h fast before the lesion and on the 7th and 15th postoperative day. Body weight was determined before lesioning and before sacrificing the rats. The DMH-lesioned rats showed a significantly faster (P<0.05 gastric emptying (24.7% gastric retention, N = 11 than control (33.0% gastric retention, N = 8 and sham-lesioned (33.5% gastric retention, N = 12 rats, with a transient hypoglycemia on the 7th postoperative day which returned to normal by the 15th postoperative day. In all cases, weight gain was slower among lesioned rats. Additional experiments using a smaller current to induce lesions confirmed that DMH-lesioned rats had a faster gastric emptying (25.1% gastric retention, N = 7 than control (33.4% gastric retention, N = 17 and VMH-lesioned (34.6% gastric retention, N = 7 rats. MH lesions resulted in an even slower gastric emptying (43.7% gastric retention, N = 7 than in the latter two groups. We conclude that although DMH lesions reduce weight gain, they do not produce consistent changes in plasma glucose levels. These lesions also promote faster gastric emptying of an inert liquid meal, thus suggesting a role for

  20. Levels of human and rat hypothalamic growth hormone-releasing factor as determined by specific radioimmunoassay systems

    International Nuclear Information System (INIS)

    Audhya, T.; Manzione, M.M.; Nakane, T.; Kanie, N.; Passarelli, J.; Russo, M.; Hollander, C.S.

    1985-01-01

    Polyclonal antibodies to synthetic human pancreatic growth hormone-releasing factor [hpGRF(1-44)NH 2 ] and rat hypothalamic growth hormone-releasing factor [rhGRF(1-43)OH] were produced in rabbits. A subsequent booster injection by the conventional intramuscular route resulted in high-titer antibodies, which at a 1:20,000 dilution were used to develop highly sensitive and specific radioimmunoassays for these peptides. The antibody to hpGRF(1-44)NH 2 is directed against the COOH-terminal region of the molecule, as shown by its cross reactivity with various hpGRF analogues. Serial dilutions of human and rat hypothalamic extracts demonstrated parallelism with the corresponding species-specific standard and 125 I-labeled tracer. There was no cross reactivity with other neuropeptides, gastrointestinal peptides, or hypothalamic extracts of other species. Age-related changes in hypothalamic GRF content were present in rats, with a gradual increase from 2 to 16 weeks and a correlation between increasing body weight and GRF content. These radioimmunoassays will serve as important tools for understanding the regulation of growth hormone secretion in both human and rat

  1. A putative role for hypothalamic glucocorticoid receptors in hypertension induced by prenatal undernutrition in the rat.

    Science.gov (United States)

    Pérez, Hernán; Soto-Moyano, Rubén; Ruiz, Samuel; Hernández, Alejandro; Sierralta, Walter; Olivares, Ricardo; Núñez, Héctor; Flores, Osvaldo; Morgan, Carlos; Valladares, Luis; Gatica, Arnaldo; Flores, Francisco J

    2010-10-08

    Prenatal undernutrition induces hypertension later in life, possibly by disturbing the hypothalamo-pituitary-adrenal axis through programming decreased expression of hypothalamic glucocorticoid receptors. We examined the systolic blood pressure, heart rate and plasma corticosterone response to intra-paraventricular dexamethasone, mifepristone and corticosterone in eutrophic and prenatally undernourished young rats. Undernutrition was induced during fetal life by restricting the diet of pregnant mothers to 10 g daily (40% of diet consumed by well-nourished controls). At day 40 of postnatal life (i) intra-paraventricular administration of dexamethasone significantly reduced at least for 24h both the systolic pressure (-11.6%), the heart rate (-20.8%) and the plasma corticosterone (-40.0%) in normal animals, while producing lower effects (-5.5, -8.7, and -22.3%, respectively) on undernourished rats; (ii) intra-paraventricular administration of the antiglucocorticoid receptor ligand mifepristone to normal rats produced opposite effects (8.2, 20.3, and 48.0% increase, respectively) to those induced by dexamethasone, being these not significant in undernourished animals; (iii) intra-paraventricular corticosterone did not exert any significant effect. Results suggest that the low sensitivity of paraventricular neurons to glucocorticoid receptor ligands observed in prenatally undernourished rats could be due to the already reported glucocorticoid receptor expression, found in the hypothalamus of undernourished animals. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Role of hypothalamic cannabinoid receptors in post-stroke depression in rats.

    Science.gov (United States)

    Wang, Shanshan; Sun, Hong; Liu, Sainan; Wang, Ting; Guan, Jinqun; Jia, Jianjun

    2016-03-01

    One of the most common psychological consequences of stroke is post-stroke depression (PSD). While more than 30 percent of stroke patients eventually develop PSD, the neurobiological mechanisms underlying such a phenomenon have not been well investigated. Given the critical involvement of hypothalamic-pituitary-adrenal axis and endocannabinoid system in response to stressful stimuli, we evaluated the hypothesis that cannabinoid receptors in the hypothalamus are critical for modulation of post-stroke depression-like behaviors in rats. To this end, rats were treated with middle cerebral artery occlusion (MCAO) followed by chronic unpredictable mild stress (CUMS) treatment procedure. We then assessed the expression of CB1 and CB2 receptors in the hypothalamus, and evaluated the effects of pharmacological stimulations of CB1 or CB2 receptors on the expression and development of depression-like behaviors in PSD rats. We found that PSD rats exhibited decreased the expression of CB1 receptor, but not CB2 receptor, in the ventral medial hypothalamus (VMH). Such an effect was not observed in the dorsally adjacent brain regions. Furthermore, intra-VMH injections of CB2 receptor agonist, but not CB1 receptor agonist, attenuated the expression of depression-like behaviors in PSD rats. Finally, repeated intraperitoneal injections of CB1 or CB2 receptor agonists during CUMS treatment inhibited the development of depression-like behaviors in PSD rats. Taken together, these results suggest that decreased CB1 receptor expression is likely associated with the development of post-stroke depression, and CB2 receptor may be a potential therapeutic target for the treatment post-stroke depressive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Fluoxetine Induces Proliferation and Inhibits Differentiation of Hypothalamic Neuroprogenitor Cells In Vitro

    Science.gov (United States)

    Sousa-Ferreira, Lígia; Aveleira, Célia; Botelho, Mariana; Álvaro, Ana Rita; Pereira de Almeida, Luís; Cavadas, Cláudia

    2014-01-01

    A significant number of children undergo maternal exposure to antidepressants and they often present low birth weight. Therefore, it is important to understand how selective serotonin reuptake inhibitors (SSRIs) affect the development of the hypothalamus, the key center for metabolism regulation. In this study we investigated the proliferative actions of fluoxetine in fetal hypothalamic neuroprogenitor cells and demonstrate that fluoxetine induces the proliferation of these cells, as shown by increased neurospheres size and number of proliferative cells (Ki-67+ cells). Moreover, fluoxetine inhibits the differentiation of hypothalamic neuroprogenitor cells, as demonstrated by decreased number of mature neurons (Neu-N+ cells) and increased number of undifferentiated cells (SOX-2+ cells). Additionally, fluoxetine-induced proliferation and maintenance of hypothalamic neuroprogenitor cells leads to changes in the mRNA levels of appetite regulator neuropeptides, including Neuropeptide Y (NPY) and Cocaine-and-Amphetamine-Regulated-Transcript (CART). This study provides the first evidence that SSRIs affect the development of hypothalamic neuroprogenitor cells in vitro with consequent alterations on appetite neuropeptides. PMID:24598761

  4. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats

    Science.gov (United States)

    Harrell, Constance S.; Burgado, Jillybeth; Kelly, Sean D.; Johnson, Zachary P.; Neigh, Gretchen N.

    2015-01-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038

  5. Role of the parabrachial complex in the cardiorespiratory response evoked from hypothalamic defense area stimulation in the anesthetized rat.

    Science.gov (United States)

    Díaz-Casares, Amelia; López-González, Manuel Víctor; Peinado-Aragonés, Carlos Antonio; Lara, José Pablo; González-Barón, Salvador; Dawid-Milner, Marc Stefan

    2009-07-07

    To analyze the role of parabrachial complex (PBc) in the modulation of cardiorespiratory response evoked from the hypothalamic defense area (HDA), cardiorespiratory changes were analyzed in spontaneously breathing anesthetised rats in response to electrical stimulation of the HDA (1 ms pulses, 30-50 microA, 100 Hz for 5 s) before and after the microinjection of muscimol (50 nl, 0.25 nmol, 5 s) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (pHDA stimulation (pHDA stimulation. The respiratory response persisted unchanged. Finally, extracellular recording of putative neurons from these regions were obtained during HDA stimulation to confirm functional interaction between HDA and parabrachial regions. 105 pontine cells were recorded during HDA stimulation, 57 from the lPB and 48 from the mPB-KF. In mPB-KF 34/48 (71%) and in lPB 38/57 (67%) cells were influenced from HDA. The results indicate that neurons from different regions of the PBc have an important function in mediating the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  6. Impact of maternal high fat diet on hypothalamic transcriptome in neonatal Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Sanna Barrand

    Full Text Available Maternal consumption of a high fat diet during early development has been shown to impact the formation of hypothalamic neurocircuitry, thereby contributing to imbalances in appetite and energy homeostasis and increasing the risk of obesity in subsequent generations. Early in postnatal life, the neuronal projections responsible for energy homeostasis develop in response to appetite-related peptides such as leptin. To date, no study characterises the genome-wide transcriptional changes that occur in response to exposure to high fat diet during this critical window. We explored the effects of maternal high fat diet consumption on hypothalamic gene expression in Sprague Dawley rat offspring at postnatal day 10. RNA-sequencing enabled discovery of differentially expressed genes between offspring of dams fed a high fat diet and offspring of control diet fed dams. Female high fat diet offspring displayed altered expression of 86 genes (adjusted P-value<0.05, including genes coding for proteins of the extra cellular matrix, particularly Collagen 1a1 (Col1a1, Col1a2, Col3a1, and the imprinted Insulin-like growth factor 2 (Igf2 gene. Male high fat diet offspring showed significant changes in collagen genes (Col1a1 and Col3a1 and significant upregulation of two genes involved in regulation of dopamine availability in the brain, tyrosine hydroxylase (Th and dopamine reuptake transporter Slc6a3 (also known as Dat1. Transcriptional changes were accompanied by increased body weight, body fat and body length in the high fat diet offspring, as well as altered blood glucose and plasma leptin. Transcriptional changes identified in the hypothalamus of offspring of high fat diet mothers could alter neuronal projection formation during early development leading to abnormalities in the neuronal circuitry controlling appetite in later life, hence priming offspring to the development of obesity.

  7. Recruitment of hypothalamic orexin neurons after formalin injections in adult male rats exposed to a neonatal immune challenge

    Directory of Open Access Journals (Sweden)

    Erin Jane Campbell

    2015-03-01

    Full Text Available Exposure to early life physiological stressors, such as infection, is thought to contribute to the onset of psychopathology in adulthood. In animal models, injections of the bacterial immune challenge, lipopolysaccharide (LPS, during the neonatal period has been shown to alter both neuroendocrine function and behavioural pain responses in adulthood. Interestingly, recent evidence suggests a role for the lateral hypothalamic peptide orexin in stress and nociceptive processing. However, whether neonatal LPS exposure affects the reactivity of the orexin system to formalin-induced inflammatory pain in later life remains to be determined. Male Wistar rats (n=13 were exposed to either LPS or saline (0.05mg/kg, i.p on postnatal days (PND 3 and 5. On PND 80-97, all rats were exposed to a subcutaneous hindpaw injection of 2.25% formalin. Following behavioural testing, animals were perfused and brains processed for Fos-protein and orexin immunohistochemistry. Rats treated with LPS during the neonatal period exhibited decreased licking behaviours during the interphase of the formalin test, the period typically associated with the active inhibition of pain, and increased grooming responses to formalin in adulthood. Interestingly, these behavioural changes were accompanied by an increase in the percentage of Fos-positive orexin cells in the dorsomedial and perifornical hypothalamus in LPS-exposed animals. Similar increases in Fos-protein were also observed in stress and pain sensitive brain regions that receive orexinergic inputs. These findings highlight a potential role for orexin in the behavioural responses to pain and provide further evidence that early life stress can prime the circuitry responsible for these responses in adulthood.

  8. Effect of head irradiation with X-rays on neuroendocrine in male rats of hypothalamic arcuate nucleus lesions

    International Nuclear Information System (INIS)

    Gong Shouliang; Li Xiuyi; Wei Jun; Liu Shuzheng

    1992-01-01

    It has been demonstrated that neonatal administration of monosodium glutamine (MSG) results in clearly defined lesions of the hypothalamic arcuate nucleus. The present study showed that neuroendocrine function changed significantly in adulthood when baby rats were injected with MSG (4 mg/g BW, ip) 2 and 4 days after their birth. The serum LH, FSH, TSH and GH and serum and urine testosterone (TS) levels and pituitary cAMP content were lower in MSG treated rats than those of intact rats, but the serum PRL level increased significantly and the testicular cAMP content did not change. Forty eight hours after head irradiation with 10 Gy X-rays in the male rats treated with MSG, the serum LH, FSH, TSH and GH and serum and urine TS levels tended to decrease, while the serum PRL level tended to increase and the pituitary and testicular cAMP contents didn't change. The results suggest that the functional irregularity of neuroendocrine system in MSG treated rats with extensive lesions of hypothalamic arcuate nucleus were not so significant as those of intact rats in response to irradiation

  9. The effect of intracerebroventricular injection of L-glutamate on the hypothalamic GnRH content in rat

    International Nuclear Information System (INIS)

    Fu Qiang; He Haoming

    2001-01-01

    Objective: To investigate the effect of intracerebroventricular injection of L-Glutamate (L-Glu) on hypothalamic gonadotrophin-releasing hormone (GnRH) content in male rats. Methods: The GnRH content in the supernatant of hypothalamic homogenates was measured by RIA. Results: The mean values of hypothalamic GnRH content in rat were 1.59 +- 0.41, 0.88 +- 0.34, 0.70 +- 0.42 ng/10mg wet tissue 40 min after intracerebroventricular injection of 0.01176, 0.1176, 1.176 μg/20 μl L-Glu respectively, which were significantly lower than those in controls with saline injections (P 3 H-Glu in rat at 40 min the author found that the intake of 3 H-glu by MBH was 1069.82 +- 490.33 cpm/10 mg wet tissues, the highest value among those taken by cerebrum, cerebellum, pituitary, POA and MBH itself. Conclusion: L-Glu probably participates in the regulation of functional activity of GnRH neurons in the hypothalamus

  10. Circadian and estral changes in the hypothalamic prostaglandin e content and [h]prostaglandin e binding in female rats.

    Science.gov (United States)

    Bommelaer-Bayet, M C; Wisner, A; Renard, C A; Levi, F A; Dray, F

    1990-04-01

    Abstract Prostaglandin E(2), (PGE(2)) is involved in the luteinizing hormone-releasing hormone-stimulated luteinizing hormone surge in female rats and may act via specific membrane receptors. The following studies were performed to determine whether there were any changes in the hypothalamic PGE(2) binding and/or PGE(2) content which were specific to proestrus and not to the rest of the estrous cycle. Groups of female Wistar rats were sacrificed at 3-h intervals throughout the estrous cycle to determine both the circadian and circaestral changes in the hypothalamic PGE(2) content and [(3)H]PGE(2) binding. The hypothalamic PGE(2) content was maximal at 1700 h on each of the 4 consecutive days of the estrous cycle but was independent of the stage of the cycle. [(3)H]PGE(2) binding also displayed a circadian rhythm; the lowest binding occurred near the circadian peak of PGE(2), suggesting that the PGE(2) binding sites were occupied by endogenous PGE(2). Since such circadian rhythms were not observed in the hypothalamus of male rats, they may be under the control of ovarian steroids. Also, since PGE(2) binding and the PGE(2) content both exhibit a diurnal pattern independent of the day of the cycle, there may be changes in the PGE(2) receptor-mediated process coupled to an adenylyl cyclase which could explain the luteinizing hormone surge in proestrus.

  11. Chlorpropamide action on renal concentrating mechanism in rats with hypothalamic diabetes insipidus.

    Science.gov (United States)

    Kusano, E; Braun-Werness, J L; Vick, D J; Keller, M J; Dousa, T P

    1983-10-01

    To determine vasopressin (VP)-potentiating effect of chlorpropamide (CPMD), we studied the effect of CPMD in vivo and in vitro in kidneys and in specific tubule segments of rats with hypothalamic diabetes insipidus, homozygotes of the Brattleboro strain (DI rats). Rats on ad lib. water intake were treated with CPMD (20 mg/100 g body wt s.c. daily) for 7 d. While on ad lib. water intake, the urine flow, urine osmolality, urinary excretion of Na +, K +, creatinine, or total solute excretion did not change. However, corticopapillary gradient of solutes was significantly increased in CPMD-treated rats. Higher tissue osmolality was due to significantly increased concentration of Na +, and to a lesser degree urea, in the medulla and papilla of CPMD-treated rats. Consequently, the osmotic gradient between urine and papillary tissue of CPMD-treated rats (delta = 385 +/- 47 mosM) was significantly (P less than 0.001) higher compared with controls (delta = 150 +/- 26 mosM). Minimum urine osmolality after water loading was higher in CPMD-treated DI rats than in controls. Oxidation of [14C]lactate to 14CO2 coupled to NaCl cotransport was measured in thick medullary ascending limb of Henle's loop (MAL) microdissected from control and CPMD-treated rats. The rate of 14CO2 production was higher (delta + 113% +/- 20; P less than 0.01) in CPMD-treated MAL compared with controls, but 14CO2 production in the presence of 10(-3) M furosemide did not differ between MAL from control and from CPMD-treated rats. These observations suggest that CPMD treatment enhances NaCl transport in MAL. Cyclic AMP metabolism was analyzed in microdissected MAL and in medullary collecting tubule (MCT). MCT from control and from CPMD-treated rats did not differ in the basal or VP-stimulated accumulated of cAMP. The increase in cAMP content elicited by 10(-6) M VP in MAL from CPMD-treated rats (delta + 12.0 +/- 1.8 fmol cAMP/mm) was significantly (P less than 0.02) higher compared with MAL from control rats

  12. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats.

    Science.gov (United States)

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M; Lam, Tony K T; Gutiérrez-Juárez, Roger

    2013-04-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline's action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA-mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well.

  13. Effects of endogenous pyrogen and prostaglandin E2 on hypothalamic neurons in rat brain slices.

    Science.gov (United States)

    Watanabe, T; Morimoto, A; Murakami, N

    1987-06-01

    We investigated the effects of endogenous pyrogen and prostaglandin E2 (PGE2) on the preoptic and anterior hypothalamic (POAH) neurons using brain slice preparations from the rat. Partially purified endogenous pyrogen did not change the activities of most of the neurons in the POAH region when applied locally through a micropipette attached to the recording electrode in proximity to the neurons. This indicates that partially purified endogenous pyrogen does not act directly on the neuronal activity in the POAH region. The partially purified endogenous pyrogen, applied into a culture chamber containing a brain slice, facilitated the activities in 24% of the total neurons tested, regardless of the thermal specificity of the neurons. Moreover, PGE2 added to the culture chamber facilitated 48% of the warm-responsive, 33% of the cold-responsive, and 29% of the thermally insensitive neurons. The direction of change in neuronal activity induced by partially purified endogenous pyrogen appears to be almost the same as that induced by PGE2 when these substances were applied by perfusion to the same neuron in the culture chamber. These results suggest that partially purified pyrogen applied to the perfusate of the culture chamber stimulates some constituents of brain tissue to synthesize and release prostaglandin, which in turn affects the neuronal activity of the POAH region.

  14. Involvement of hypothalamus autoimmunity in patients with autoimmune hypopituitarism: role of antibodies to hypothalamic cells.

    Science.gov (United States)

    De Bellis, A; Sinisi, A A; Pane, E; Dello Iacovo, A; Bellastella, G; Di Scala, G; Falorni, A; Giavoli, C; Gasco, V; Giordano, R; Ambrosio, M R; Colao, A; Bizzarro, A; Bellastella, A

    2012-10-01

    Antipituitary antibodies (APA) but not antihypothalamus antibodies (AHA) are usually searched for in autoimmune hypopituitarism. Our objective was to search for AHA and characterize their hypothalamic target in patients with autoimmune hypopituitarism to clarify, on the basis of the cells stained by these antibodies, the occurrence of autoimmune subclinical/clinical central diabetes insipidus (CDI) and/or possible joint hypothalamic contribution to their hypopituitarism. We conducted a cross-sectional cohort study. Ninety-five APA-positive patients with autoimmune hypopituitarism, 60 without (group 1) and 35 with (group 2) lymphocytic hypophysitis, were studied in comparison with 20 patients with postsurgical hypopituitarism and 50 normal subjects. AHA by immunofluorescence and posterior pituitary function were evaluated; then AHA-positive sera were retested by double immunofluorescence to identify the hypothalamic cells targeted by AHA. AHA were detected at high titer in 12 patients in group 1 and in eight patients in group 2. They immunostained arginine vasopressin (AVP)-secreting cells in nine of 12 in group 1 and in four of eight in group 2. All AVP cell antibody-positive patients presented with subclinical/clinical CDI; in contrast, four patients with GH/ACTH deficiency but with APA staining only GH-secreting cells showed AHA targeting CRH- secreting cells. The occurrence of CDI in patients with lymphocytic hypophysitis seems due to an autoimmune hypothalamic involvement rather than an expansion of the pituitary inflammatory process. To search for AVP antibody in these patients may help to identify those of them prone to develop an autoimmune CDI. The detection of AHA targeting CRH-secreting cells in some patients with GH/ACTH deficiency but with APA targeting only GH-secreting cells indicates that an autoimmune aggression to hypothalamus is jointly responsible for their hypopituitarism.

  15. PROTECTIVE EFFECTS OF HYPOTHALAMIC BETA-ENDORPHIN NEURONS AGAINST ALCOHOL-INDUCED LIVER INJURIES AND LIVER CANCERS IN RAT ANIMAL MODELS

    Science.gov (United States)

    Murugan, Sengottuvelan; Boyadjieva, Nadka; Sarkar, Dipak K.

    2014-01-01

    Background Recently, retrograde tracing has provided evidence for an influence of hypothalamic β-endorphin (BEP) neurons on the liver, but functions of these neurons are not known. We evaluated the effect of BEP neuronal activation on alcohol-induced liver injury and hepatocellular cancer. Methods Male rats received either BEP neuron transplants or control transplants in the hypothalamus and randomly assigned to feeding alcohol-containing liquid diet or control liquid diet for 8 weeks or to treatment of a carcinogen diethylnitrosamine (DEN). Liver tissues of these animals were analyzed histochemically and biochemically for tissue injuries or cancer. Results Alcohol-feeding increased liver weight and induced several histopathological changes such as prominent microvesicular steatosis and hepatic fibrosis. Alcohol feeding also increased protein levels of triglyceride, hepatic stellate cell activation factors and catecholamines in the liver and endotoxin levels in the plasma. However, these effects of alcohol on the liver were reduced in animals with BEP neuron transplants. BEP neuron transplants also suppressed carcinogen-induced liver histopathologies such as extensive fibrosis, large focus of inflammatory infiltration, hepatocelluar carcinoma, collagen deposition, numbers of preneoplastic foci, levels of hepatic stellate cell activation factors and catecholamines, as well as inflammatory milieu and the levels of NK cell cytotoxic factors in the liver. Conclusion These findings are the first evidence for a role of hypothalamic BEP neurons in influencing liver functions. Additionally, the data identify that BEP neuron transplantation prevents hepatocellular injury and hepatocellular carcinoma formation possibly via influencing the immune function. PMID:25581653

  16. Activity of the Hypothalamic-Pituitary-Adrenal System in Prenatally Stressed Male Rats on the Experimental Model of Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Pivina, S G; Rakitskaya, V V; Akulova, V K; Ordyan, N E

    2016-03-01

    Using the experimental model of post-traumatic stress disorder (stress-restress paradigm), we studied the dynamics of activity of the hypothalamic-pituitary-adrenal system (HPAS) in adult male rats, whose mothers were daily subjected to restraint stress on days 15-19 of pregnancy. Prenatally stressed males that were subjected to combined stress and subsequent restress exhibited not only increased sensitivity of HPAS to negative feedback signals (manifested under restress conditions), but also enhanced stress system reactivity. These changes persisted to the 30th day after restress. Under basal conditions, the number of cells in the hypothalamic paraventricular nucleus of these animals expressing corticotropin-releasing hormone and vasopressin was shown to decrease progressively on days 1-30. By contrast, combined stress and restress in control animals were followed by an increase in the count of CRH-immunopositive cells in the magnocellular and parvocellular parts of the paraventricular nucleus and number of vasopressin-immunopositive cells in the magnocellular part of the nucleus (to the 10th day after restress). Our results indicate a peculiar level of functional activity of HPAS in prenatally stressed males in the stress-restress paradigm: decreased activity under basal conditions and enhanced reactivity during stress.

  17. Pressor response to L-cysteine injected into the cisterna magna of conscious rats involves recruitment of hypothalamic vasopressinergic neurons.

    Science.gov (United States)

    Takemoto, Yumi

    2013-03-01

    The sulfur-containing non-essential amino acid L-cysteine injected into the cisterna magna of adult conscious rats produces an increase in blood pressure. The present study examined if the pressor response to L-cysteine is stereospecific and involves recruitment of hypothalamic vasopressinergic neurons and medullary noradrenergic A1 neurons. Intracisternally injected D-cysteine produced no cardiovascular changes, while L-cysteine produced hypertension and tachycardia in freely moving rats, indicating the stereospecific hemodynamic actions of L-cysteine via the brain. The double labeling immunohistochemistry combined with c-Fos detection as a marker of neuronal activation revealed significantly higher numbers of c-Fos-positive vasopressinergic neurons both in the supraoptic and paraventricular nuclei and tyrosine hydroxylase containing medullary A1 neurons, of L-cysteine-injected rats than those injected with D-cysteine as iso-osmotic control. The results indicate that the cardiovascular responses to intracisternal injection of L-cysteine in the conscious rat are stereospecific and include recruitment of hypothalamic vasopressinergic neurons both in the supraoptic and paraventricular nuclei, as well as of medullary A1 neurons. The findings may suggest a potential function of L-cysteine as an extracellular signal such as neuromodulators in central regulation of blood pressure.

  18. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats.

    Science.gov (United States)

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry.

  19. Predictors of ethanol consumption in adult Sprague-Dawley rats: relation to hypothalamic peptides that stimulate ethanol intake.

    Science.gov (United States)

    Karatayev, Olga; Barson, Jessica R; Carr, Ambrose J; Baylan, Jessica; Chen, Yu-Wei; Leibowitz, Sarah F

    2010-06-01

    To investigate mechanisms in outbred animals that increase the propensity to consume ethanol, it is important to identify and characterize these animals before or at early stages in their exposure to ethanol. In the present study, different measures were examined in adult Sprague-Dawley rats to determine whether they can predict long-term propensity to overconsume ethanol. Before consuming 9% ethanol with a two-bottle choice paradigm, rats were examined with the commonly used behavioral measures of novelty-induced locomotor activity and anxiety, as assessed during 15 min in an open-field activity chamber. Two additional measures, intake of a low 2% ethanol concentration or circulating triglyceride (TG) levels after a meal, were also examined with respect to their ability to predict chronic 9% ethanol consumption. The results revealed significant positive correlations across individual rats between the amount of 9% ethanol ultimately consumed and three of these different measures, with high scores for activity, 2% ethanol intake, and TGs identifying rats that consume 150% more ethanol than rats with low scores. Measurements of hypothalamic peptides that stimulate ethanol intake suggest that they contribute early to the greater ethanol consumption predicted by these high scores. Rats with high 2% ethanol intake or high TGs, two measures found to be closely related, had significantly elevated expression of enkephalin (ENK) and galanin (GAL) in the hypothalamic paraventricular nucleus (PVN) but no change in neuropeptide Y (NPY) in the arcuate nucleus (ARC). This is in contrast to rats with high activity scores, which in addition to elevated PVN ENK expression showed enhanced NPY in the ARC but no change in GAL. Elevated ENK is a common characteristic related to all three predictors of chronic ethanol intake, whereas the other peptides differentiate these predictors, with GAL enhanced with high 2% ethanol intake and TG measures but NPY related to activity. 2010 Elsevier

  20. Effects of denial of reward through maternal contact in the neonatal period on adult hypothalamic-pituitary-adrenal axis function in the rat.

    Science.gov (United States)

    Diamantopoulou, Anastasia; Raftogianni, Androniki; Stamatakis, Antonios; Oitzl, Melly S; Stylianopoulou, Fotini

    2013-06-01

    Emotional behavioral traits associated with stress response are well documented to be affected by early life events. In the present work, we used a novel paradigm of neonatal experience, in which pups were trained in a T-maze and either received (RER rats) or were denied (DER) the reward of maternal contact, during postnatal days 10-13. We then evaluated stress coping and key factors controlling the function of the hypothalamic-pituitary-adrenal axis in adulthood. Adult male DER rats exposed to a single session of forced swim stress (FSS) showed increased immobility, while RER rats exhibited increased escape attempts. The corticosterone response following this stressor was higher although not prolonged in the DER rats. Their CRH mRNA levels in the PVN were increased up to 2h after the forced swim. However, basal levels of these hormones did not differ among groups. In addition, the DER neonatal experience induced an increase in hippocampal GR but a decrease in CRH-R1 immunopositive cells in the CA1 area of the hippocampus and the central amygdala. Overall, these data show a distinct stress response profile in the DER male rats, characterized by passive coping during the forced swim, increased hormonal response following stress, increased inhibitory control through GR and an indirect contribution of CRH-R1, the latter two factors resulting in a modified regulation of the response termination. It thus appears that DER rats have an enhanced potential for appropriate reactivity upon an incoming challenge, while maintaining in parallel an adequate control of the duration of their stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone.

    Science.gov (United States)

    Pastor, Raúl; Aragon, Carlos M G

    2008-10-01

    It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.

  2. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink.

    Science.gov (United States)

    Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K

    2017-01-16

    Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. As expected, adult offspring fed the S diet post weaning became obese (body weight: Peffect of leptin than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with alterations in hypothalamic leptin signalling.

  3. Impact of maternal dietary exposure to endocrine-acting chemicals on progesterone receptor expression in microdissected hypothalamic medial preoptic areas of rat offspring

    International Nuclear Information System (INIS)

    Takagi, Hironori; Shibutani, Makoto; Lee, Kyoung-Youl; Masutomi, Naoya; Fujita, Haruka; Inoue, Kaoru; Mitsumori, Kunitoshi; Hirose, Masao

    2005-01-01

    We have previously examined the impact of perinatal exposure to ethinylestradiol (EE), methoxychlor (MXC), diisononyl phthalate (DINP), and genistein (GEN) in maternal diet on rat offspring, and found developmental and/or reproductive toxicity with 0.5 ppm EE, 1200 ppm MXC, and 20,000 ppm DINP. Although the toxicological profile with MXC was similar to the EE case, the population changes in pituitary hormone-producing cells totally differed between the two cases, changes being evident from 240 ppm with MXC. In the present study, to assess the impact of these agents on brain sexual differentiation, region-specific mRNA expression of estrogen receptors (ER) α and β, the progesterone receptor (PR), gonadotrophin-releasing hormone, steroid receptor coactivators (SRC)-1 and -2, and calbindin-D in microdissected hypothalamic medial preoptic areas (MPOAs) at postnatal day 10 was first analyzed in rats exposed to 0.5 ppm-EE from gestational day 15 by real-time RT-PCR. Sexually dimorphic expression of ERα and PR was noted with predominance in females and males, respectively, EE up-regulating SRC-1 in males and ERβ and PR in females. Next, we similarly examined expression changes of ERα and β, PR, and SRC-1 in animals exposed to MXC at 24, 240, and 1200 ppm, DINP at 4000 and 20,000 ppm, and GEN at 1000 ppm. MXC at 1200 ppm down- and up-regulated PR in males and females, respectively, and DINP at 20,000 ppm down-regulated PR in females, while GEN did not exert any clear effects. The results thus suggest that agents causing developmental and/or reproductive abnormalities in later life may affect hypothalamic PR expression during the exposure period in early life

  4. Supraependymal cells of hypothalamic third ventricle: identification as resident phagocytes of the brain.

    Science.gov (United States)

    Bleier, R; Albrecht, R; Cruce, J A

    1975-07-25

    Cells lying on the ventricular surface of the hypothalamic ependyma of the tegu lizard exhibit the pseudopodial and flaplike processes characteristic of macrophages found elsewhere. Since they ingest latex beads, they may be considered a resident phagocytic system of the brain. The importance of ependyma and ventricular phagocytes as a first line of defense against viral invasion of the brain, as well as their role in the pathogenesis of certain virus-related diseases, is suggested by a number of experimental and clinical observations.

  5. Intravenous beta-endorphin administration fails to alter hypothalamic blood flow in rats expressing normal or reduced nitric oxide synthase activity

    NARCIS (Netherlands)

    Benyo, Z.; Szabo, C; Velkel, M.H; Bohus, B.G J; Wahl, M.A; Sandor, P

    1996-01-01

    beta-Endorphin (beta-END) significantly contributes to the maintenance of hypothalamic blood flow (HBF) autoregulation during hemorrhagic hypotension in rats. Recently, several natural and synthetic opioid peptides were reported to induce nitric oxide (NO)-mediated dilation in the cerebrovascular

  6. Moderate long-term modulation of neuropeptide Y in hypothalamic arcuate nucleus induces energy balance alterations in adult rats.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Neuropeptide Y (NPY produced by arcuate nucleus (ARC neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change. The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase and down-regulation (0.5-fold decrease of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased, suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent.These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY.

  7. Chronic Deep Brain Stimulation of the Hypothalamic Nucleus in Wistar Rats Alters Circulatory Levels of Corticosterone and Proinflammatory Cytokines

    Science.gov (United States)

    Calleja-Castillo, Juan Manuel; De La Cruz-Aguilera, Dora Luz; Manjarrez, Joaquín; Velasco-Velázquez, Marco Antonio; Morales-Espinoza, Gabriel; Moreno-Aguilar, Julia; Hernández, Maria Eugenia; Aguirre-Cruz, Lucinda

    2013-01-01

    Deep brain stimulation (DBS) is a therapeutic option for several diseases, but its effects on HPA axis activity and systemic inflammation are unknown. This study aimed to detect circulatory variations of corticosterone and cytokines levels in Wistar rats, after 21 days of DBS-at the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), unilateral cervical vagotomy (UCVgX), or UCVgX plus DBS. We included the respective control (C) and sham (S) groups (n = 6 rats per group). DBS treated rats had higher levels of TNF-α (120%; P < 0.01) and IFN-γ (305%; P < 0.001) but lower corticosterone concentration (48%; P < 0.001) than C and S. UCVgX animals showed increased corticosterone levels (154%; P < 0.001) versus C and S. UCVgX plus DBS increased IL-1β (402%; P < 0.001), IL-6 (160%; P < 0.001), and corsticosterone (178%; P < 0.001 versus 48%; P < 0.001) compared with the C and S groups. Chronic DBS at VMHvl induced a systemic inflammatory response accompanied by a decrease of HPA axis function. UCVgX rats experienced HPA axis hyperactivity as result of vagus nerve injury; however, DBS was unable to block the HPA axis hyperactivity induced by unilateral cervical vagotomy. Further studies are necessary to explore these findings and their clinical implication. PMID:24235973

  8. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA Axis after Subchronic Exposure in Male Rats

    Directory of Open Access Journals (Sweden)

    Alya Annabi

    2015-11-01

    Full Text Available Imidacloprid (IMI is known to target the nicotinic acetylcholine receptors (nAChRs in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA level. The antioxidant catalase, superoxide dismutase, and glutathione S-transferase showed various alterations following administration, but a significantly depleted thiol (SH groups was only recorded in hypothalamic tissues. The increase in the relative weight of adrenal glands and the increased adrenal cholesterol and plasma adrenocorticotropic hormone (ACTH levels are indicative of general adaptation syndrome. The hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased, highlighting the alteration of cholinergic transmission. In conclusion, the findings obtained show that chronic exposure to IMI may alter biochemical processes of HPA axis.

  9. Hypothalamic Neuroendocrine Correlates of Cutaneous Burn Injury in the Rat. I. Scanning Electron Microscopy

    Science.gov (United States)

    1986-01-01

    cat [9], the rabbit [51], The emergence of a large population of neurons into the subhuman primates [10-12, 24, 25, 38--41], and the human as cerebral...active sub- normal hypothalamic fetal neurografts into the third cerebral stances has been well documented in mammalian cerebro - ventricular lumen of...in trauma. 10. Coates, P. W. Responses of tanycytes in primate third ventricle In: Mamlmalian Terimngenexsis, chapter 9, edited by L. Girar- to

  10. The release of 35S from the cut hypothalamic end of the pituitary stalk following intravenous infusion of 35S-cysteine in rats

    International Nuclear Information System (INIS)

    Guzek, J.W.; Tomas, T.

    1974-01-01

    The release of radioactive substances from the hypothalamic end of the cut pituitary stalk was determined following intravenous infusion of 35 S-cysteine in the rats dehydrated for 3 days. Intravenous injection of 5% sodium chloride, 1% of body weight, resulted in a distinct rise of radioactivity present in the fluid washing the cut infundibulum. In the same animals, the radioactivity of the hypothalamic tissue did not differ from that found in the controls (i.e., in animals simply dehydrated). The implications of these findings are discussed, as compared to the speed of axoplasmic transport in the infundibular axons. (author)

  11. Release of /sup 35/S from the cut hypothalamic end of the pituitary stalk following intravenous infusion of /sup 35/S-cysteine in rats

    Energy Technology Data Exchange (ETDEWEB)

    Guzek, J W; Tomas, T [Akademia Medyczna, Lodz (Poland)

    1974-01-01

    The release of radioactive substances from the hypothalamic end of the cut pituitary stalk was determined following intravenous infusion of /sup 35/S-cysteine in the rats dehydrated for 3 days. Intravenous injection of 5% sodium chloride, 1% of body weight, resulted in a distinct rise of radioactivity present in the fluid washing the cut infundibulum. In the same animals, the radioactivity of the hypothalamic tissue did not differ from that found in the controls (i.e., in animals simply dehydrated). The implications of these findings are discussed, as compared to the speed of axoplasmic transport in the infundibular axons.

  12. Hindbrain medulla catecholamine cell group involvement in lactate-sensitive hypoglycemia-associated patterns of hypothalamic norepinephrine and epinephrine activity.

    Science.gov (United States)

    Shrestha, P K; Tamrakar, P; Ibrahim, B A; Briski, K P

    2014-10-10

    Cell-type compartmentation of glucose metabolism in the brain involves trafficking of the oxidizable glycolytic end product, l-lactate, by astrocytes to fuel neuronal mitochondrial aerobic respiration. Lactate availability within the hindbrain medulla is a monitored function that regulates systemic glucostasis as insulin-induced hypoglycemia (IIH) is exacerbated by lactate repletion of that brain region. A2 noradrenergic neurons are a plausible source of lactoprivic input to the neural gluco-regulatory circuit as caudal fourth ventricular (CV4) lactate infusion normalizes IIH-associated activation, e.g. phosphorylation of the high-sensitivity energy sensor, adenosine 5'-monophosphate-activated protein kinase (AMPK), in these cells. Here, we investigated the hypothesis that A2 neurons are unique among medullary catecholamine cells in directly screening lactate-derived energy. Adult male rats were injected with insulin or vehicle following initiation of continuous l-lactate infusion into the CV4. Two hours after injections, A1, C1, A2, and C2 neurons were collected by laser-microdissection for Western blot analysis of AMPKα1/2 and phosphoAMPKα1/2 proteins. Results show that AMPK is expressed in each cell group, but only a subset, e.g. A1, C1, and A2 neurons, exhibit increased sensor activity in response to IIH. Moreover, hindbrain lactate repletion reversed hypoglycemic augmentation of pAMPKα1/2 content in A2 and C1 but not A1 cells, and normalized hypothalamic norepinephrine and epinephrine content in a site-specific manner. The present evidence for discriminative reactivity of AMPK-expressing medullary catecholamine neurons to the screened energy substrate lactate implies that that lactoprivation is selectively signaled to the hypothalamus by A2 noradrenergic and C1 adrenergic cells. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Effects of Crocin on The Pituitary-Gonadal Axis and Hypothalamic Kiss-1 Gene Expression in Female Wistar Rats

    Directory of Open Access Journals (Sweden)

    Dina Zohrabi

    2018-01-01

    Full Text Available Background Saffron (Crocus sativus L. has been traditionally used as a spice for coloring and flavoring in some countries cuisine. One of the main components of saffron is Crocin. Recent research have shown that crocin has various pharmacological effects. The aim of this study was to assess the effects of crocin on the Pituitary-Gonadal axis and Kiss-1 gene expression in hypothalamus and ovarian tissue organization in female Wistar rats. Materials and Methods In this experimental study, 18 adult female Wistar rats were randomly divided into three groups. Control group received normal saline and experimental groups received two different doses of crocin (100 and 200 mg/kg every two days for 30 days. After the treatment period, blood samples were obtained from the heart and centrifuged. Next, the serum levels of follicle-stimulating hormone (FSH and luteinizing hormone (LH, estrogen and progesterone hormones were measured by ELISA assay. The ovarian tissues were removed and fixed for histological investigation. The hypothalamic Kiss-1 gene expression was measured using real-time polymerase chain reaction (PCR. All data were analyzed using one-way ANOVA. Results A significant reduction (P=0.038 in the number of atretic graafian follicles (0.5 ± 0.31 was observed in rats treated with 200 mg/kg crocin. In addition, estrogen concentration in experimental groups (35.04 ± 0.85 and 36.18 ± 0.69 in crocin 100 and 200 mg/kg groups, respectively compared to control group (38.35 ± 0.64 and progesterone concentration in rats treated with crocin 200 mg/kg (2.06 ± 0.07 compared to control group (2.16 ± 0.04, significantly decreased. Interestingly, relative expressions of Kiss-1 mRNA significantly decreased in experimental groups (0.00053 ± 0.00051 and 0.0011 ± 0.00066 in crocin 100 and 200 mg/kg groups, respectively (P=0.000 compared to control group (1 ± 0. Conclusion Crocin, at hypothalamic level, reduces Kiss-1 gene expression and it can prevent

  14. l-Leucine Supplementation Worsens the Adiposity of Already Obese Rats by Promoting a Hypothalamic Pattern of Gene Expression that Favors Fat Accumulation

    Directory of Open Access Journals (Sweden)

    Thais T. Zampieri

    2014-04-01

    Full Text Available Several studies showed that l-leucine supplementation reduces adiposity when provided before the onset of obesity. We studied rats that were exposed to a high-fat diet (HFD for 10 weeks before they started to receive l-leucine supplementation. Fat mass was increased in l-leucine-supplemented rats consuming the HFD. Accordingly, l-leucine produced a hypothalamic pattern of gene expression that favors fat accumulation. In conclusion, l-leucine supplementation worsened the adiposity of rats previously exposed to HFD possibly by central mechanisms.

  15. Sex differences in the behavioural and hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats.

    Science.gov (United States)

    Daviu, Núria; Andero, Raül; Armario, Antonio; Nadal, Roser

    2014-11-01

    In recent years, special attention is being paid to sex differences in susceptibility to disease. In this regard, there is evidence that male rats present higher levels of both cued and contextual fear conditioning than females. However, little is known about the concomitant hypothalamic-pituitary-adrenal (HPA) axis response to those situations which are critical in emotional memories. Here, we studied the behavioural and HPA responses of male and female Wistar rats to context fear conditioning using electric footshock as the aversive stimulus. Fear-conditioned rats showed a much greater ACTH and corticosterone response than those merely exposed to the fear conditioning chamber without receiving shocks. Moreover, males presented higher levels of freezing whereas HPA axis response was greater in females. Accordingly, during the fear extinction tests, female rats consistently showed less freezing and higher extinction rate, but greater HPA activation than males. Exposure to an open-field resulted in lower activity/exploration in fear-conditioned males, but not in females, suggesting greater conditioned cognitive generalization in males than females. It can be concluded that important sex differences in fear conditioning are observed in both freezing and HPA activation, but the two sets of variables are affected in the opposite direction: enhanced behavioural impact in males, but enhanced HPA responsiveness in females. Thus, the role of sex differences on fear-related stimuli may depend on the variables chosen to evaluate it, the greater responsiveness of the HPA axis in females perhaps being an important factor to be further explored. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Proliferative hypothalamic neurospheres express NPY, AGRP, POMC, CART and Orexin-A and differentiate to functional neurons.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Some pathological conditions with feeding pattern alterations, including obesity and Huntington disease (HD are associated with hypothalamic dysfunction and neuronal cell death. Additionally, the hypothalamus is a neurogenic region with the constitutive capacity to generate new cells of neuronal lineage, in adult rodents. The aim of the present work was to evaluate the expression of feeding-related neuropeptides in hypothalamic progenitor cells and their capacity to differentiate to functional neurons which have been described to be affected by hypothalamic dysfunction. Our study shows that hypothalamic progenitor cells from rat embryos grow as floating neurospheres and express the feeding-related neuropeptides Neuropeptide Y (NPY, Agouti-related Protein (AGRP, Pro-OpioMelanocortin (POMC, Cocaine-and-Amphetamine Responsive Transcript (CART and Orexin-A/Hypocretin-1. Moreover the relative mRNA expression of NPY and POMC increases during the expansion of hypothalamic neurospheres in proliferative conditions.Mature neurons were obtained from the differentiation of hypothalamic progenitor cells including NPY, AGRP, POMC, CART and Orexin-A positive neurons. Furthermore the relative mRNA expression of NPY, CART and Orexin-A increases after the differentiation of hypothalamic neurospheres. Similarly to the adult hypothalamic neurons the neurospheres-derived neurons express the glutamate transporter EAAT3. The orexigenic and anorexigenic phenotype of these neurons was identified by functional response to ghrelin and leptin hormones, respectively. This work demonstrates the presence of appetite-related neuropeptides in hypothalamic progenitor cells and neurons obtained from the differentiation of hypothalamic neurospheres, including the neuronal phenotypes that have been described by others as being affected by hypothalamic neurodegeneration. These in vitro models can be used to study hypothalamic progenitor cells aiming a therapeutic intervention to

  17. Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats.

    Science.gov (United States)

    Faria, Juliana A; Kinote, Andrezza; Ignacio-Souza, Letícia M; de Araújo, Thiago M; Razolli, Daniela S; Doneda, Diego L; Paschoal, Lívia B; Lellis-Santos, Camilo; Bertolini, Gisele L; Velloso, Lício A; Bordin, Silvana; Anhê, Gabriel F

    2013-07-15

    Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

  18. Inhibition of cyclooxygenase-2 reduces hypothalamic excitation in rats with adriamycin-induced heart failure.

    Directory of Open Access Journals (Sweden)

    Min Zheng

    Full Text Available BACKGROUND: The paraventricular nucleus (PVN of the hypothalamus plays an important role in the progression of heart failure (HF. We investigated whether cyclooxygenase-2 (COX-2 inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS and renin-angiotensin system (RAS in rats with adriamycin-induced heart failure. METHODOLOGY/PRINCIPAL FINDING: Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg/kg. On day 19, rats received intragastric administration daily with either COX-2 inhibitor celecoxib (CLB or normal saline. Treatment with CLB reduced mortality and attenuated both myocardial atrophy and pulmonary congestion in HF rats. Compared with the HF rats, ventricle to body weight (VW/BW and lung to body weight (LW/BW ratios, heart rate (HR, left ventricular end-diastolic pressure (LVEDP, left ventricular peak systolic pressure (LVPSP and maximum rate of change in left ventricular pressure (LV±dp/dtmax were improved in HF+CLB rats. Angiotensin II (ANG II, norepinephrine (NE, COX-2 and glutamate (Glu in the PVN were increased in HF rats. HF rats had higher levels of ANG II and NE in plasma, higher level of ANG II in myocardium, and lower levels of ANP in plasma and myocardium. Treatment with CLB attenuated these HF-induced changes. HF rats had more COX-2-positive neurons and more corticotropin releasing hormone (CRH positive neurons in the PVN than did control rats. Treatment with CLB decreased COX-2-positive neurons and CRH positive neurons in the PVN of HF rats. CONCLUSIONS: These results suggest that PVN COX-2 may be an intermediary step for PVN neuronal activation and excitatory neurotransmitter release, which further contributes to sympathoexcitation and RAS activation in adriamycin-induced heart failure. Treatment with COX-2 inhibitor attenuates sympathoexcitation and RAS activation in adriamycin-induced heart failure.

  19. Sibutramine reduces feeding, body fat and improves insulin resistance in dietary-obese male Wistar rats independently of hypothalamic neuropeptide Y

    Science.gov (United States)

    Brown, Michael; Bing, Chen; King, Peter; Pickavance, Lucy; Heal, David; Wilding, John

    2001-01-01

    We studied the effects of the novel noradrenaline and serotonin (5-HT) reuptake inhibitor sibutramine on feeding and body weight in a rat model of dietary obesity, and whether it interacts with hypothalamic neuropeptide Y (NPY) neurones.Chow-fed and dietary-obese (DIO) male Wistar rats were given sibutramine (3 mg kg−1 day−1 p.o.) or deionized water for 21 days.Sibutramine decreased food intake throughout the treatment period in both dietary-obese rats (Psibutramine-treated dietary-obese rats (Psibutramine treatment (Psibutramine compared to untreated controls.The hypophagic and anti-obesity effects of sibutramine in dietary-obese Wistar rats appear not to be mediated by inhibition of ARC NPY neurones. PMID:11309262

  20. Evidence for a role of nitric oxide in hindlimb vasodilation induced by hypothalamic stimulation in anesthetized rats

    Directory of Open Access Journals (Sweden)

    Marcos L. Ferreira-Neto

    2005-06-01

    Full Text Available Electrical stimulation of the hypothalamus produces cardiovascular adjustments consisting of hypertension, tachycardia, visceral vasoconstriction and hindlimb vasodilation. Previous studies have demonstrated that hindlimb vasodilation is due a reduction of sympathetic vasoconstrictor tone and to activation of beta2-adrenergic receptors by catecholamine release. However, the existence of a yet unidentified vasodilator mechanism has also been proposed. Recent studies have suggested that nitric oxide (NO may be involved. The aim of the present study was to investigate the role of NO in the hindquarter vasodilation in response to hypothalamic stimulation. In pentobarbital-anesthetized rats hypothalamic stimulation (100 Hz, 150µA, 6 s produced hypertension, tachycardia, hindquarter vasodilation and mesenteric vasoconstriction. Alpha-adrenoceptor blockade with phentolamine (1.5 mg/kg, iv plus bilateral adrenalectomy did not modify hypertension, tachycardia or mesenteric vasoconstriction induced by hypothalamic stimulation. Hindquarter vasodilation was strongly reduced but not abolished. The remaining vasodilation was completely abolished after iv injection of the NOS inhibitor L-NAME (20 mg/kg, iv. To properly evaluate the role of the mechanism of NO in hindquarter vasodilation, in a second group of animals L-NAME was administered before alpha-adrenoceptor blockade plus adrenalectomy. L-NAME treatment strongly reduced hindquarter vasodilation in magnitude and duration. These results suggest that NO is involved in the hindquarter vasodilation produced by hypothalamic stimulation.Em animais anestesiados a EE do hipotálamo produz um padrão de ajustes cardiovasculares caracterizado por hipertensão arterial, taquicardia, vasodilatação muscular e vasoconstrição mesentérica, entretanto, os mecanismos periféricos envolvidos nestes ajustes cardiovasculares ainda não foram completamente esclarecidos. O presente estudo teve como objetivo caracterizar

  1. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Directory of Open Access Journals (Sweden)

    Vanessa R. Yingling

    2016-01-01

    Full Text Available Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV at maturity.Methods. Female rats (25 days old were assigned to a control (C group (n = 45 that received saline injections (.2 cc or an experimental group (GnRH-a (n = 45 that received gonadotropin releasing hormone antagonist injections (.24 mg per dose for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a. The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R (n = 15 and (G-R (n = 15. The remaining animals had an ovariectomy surgery (OVX at 185 days of age and were sacrificed 40 days later (C-OVX (n = 15 and (G-OVX (n = 15. After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX and insulin-like growth factor 1 (IGF-1 were measured. Two-way ANOVA (2 groups (GnRH-a and Control X 3 time points (Injection Protocol, Recovery, post-OVX was computed.Results. GnRH-a injections suppressed uterine weights (72% and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19% following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  2. Hypothalamic Energy Metabolism Is Impaired By Doxorubicin Independently Of Inflammation In Non-tumour-bearing Rats.

    OpenAIRE

    Antunes, Barbara M M; Lira, Fabio Santos; Pimentel, Gustavo Duarte; Rosa Neto, José Cesar; Esteves, Andrea Maculano; Oyama, Lila Missae; de Souza, Cláudio Teodoro; Gonçalves, Cinara Ludvig; Streck, Emilio Luiz; Rodrigues, Bruno; dos Santos, Ronaldo Vagner; de Mello, Marco Túlio

    2016-01-01

    We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothala...

  3. Effects of experimentally induced hyperthyroidism on central hypothalamic-pituitary-adrenal axis function in rats: in vitro and in situ studies.

    Science.gov (United States)

    Johnson, Elizabeth O; Calogero, Aldo E; Konstandi, Maria; Kamilaris, Themis C; La Vignera, Sandro; Vignera, Sandro La; Chrousos, George P

    2013-06-01

    Hyperthyroidism is associated with hypercorticosteronemia, although the locus that is principally responsible for the hypercorticosteronism remains unclear. The purpose of this study was to assess the effects of hyperthyroidism on the functional integrity of the hypothalamic-pituitary-adrenal (HPA) axis, to identify the locus in the HPA axis that is principally affected, and address the time-dependent effects of alterations in thyroid status. The functional integrity of each component of the HPA axis was examined in vitro and in situ in sham-thyroidectomized male Sprague-Dawley rats given placebo or in thyroidectomized rats given pharmacological dose (50 μg) of thyroxin for 7 or 60 days. Basal plasma corticosterone and corticosterone binding globulin (CBG) concentrations were significantly increased in short- and long-term hyperthyroid rats, and by 60 days. Basal plasma ACTH levels were similar to controls. Both hypothalamic CRH content and the magnitude of KCL- and arginine vasopressin (AVP)-induced CRH release from hypothalamic culture were increased in long-term hyperthyroid rats. There was a significant increase in the content of both ACTH and β-endorphin in the anterior pituitaries of both short- and long-term hyperthyroid animals. Short-term hyperthyroid rats showed a significant increase in basal POMC mRNA expression in the anterior pituitary, and chronically hyperthyroid animals showed increased stress-induced POMC mRNA expression. Adrenal cultures taken from short-term hyperthyroid rats responded to exogenous ACTH with an exaggerated corticosterone response, while those taken from 60-day hyperthyroid animals showed responses similar to controls. The findings show that hyperthyroidism is associated with hypercorticosteronemia and HPA axis dysfunction that becomes more pronounced as the duration of hyperthyroidism increases. The evidence suggests that experimentally induced hyperthyroidism is associated with central hyperactivity of the HPA axis.

  4. Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats.

    Science.gov (United States)

    López-González, M V; Díaz-Casares, A; Peinado-Aragonés, C A; Lara, J P; Barbancho, M A; Dawid-Milner, M S

    2013-08-01

    In order to assess the possible interactions between the pontine A5 region and the hypothalamic defence area (HDA), we have examined the pattern of double staining for c-Fos protein immunoreactivity (c-Fos-ir) and tyrosine hydroxylase, throughout the rostrocaudal extent of the A5 region in spontaneously breathing anaesthetized male Sprague-Dawley rats during electrical stimulation of the HDA. Activation of the HDA elicited a selective increase in c-Fos-ir with an ipsilateral predominance in catecholaminergic and non-catecholaminergic A5 somata (P HDA. Cardiorespiratory changes were analysed in response to electrical stimulation of the HDA before and after ipsilateral microinjection of muscimol within the A5 region. Stimulation of the HDA evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (P HDA stimulation were reduced (P HDA and the A5 region, extracellular recordings of putative A5 neurones were obtained during HDA stimulation. Seventy-five A5 cells were recorded, 35 of which were affected by the HDA (47%). These results indicate that neurones of the A5 region participate in the cardiovascular response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  5. Ecto-nucleoside triphosphate diphosphohydrolase 3 in the ventral and lateral hypothalamic area of female rats: morphological characterization and functional implications

    Directory of Open Access Journals (Sweden)

    Kiss David S

    2009-04-01

    Full Text Available Abstract Background Based on its distribution in the brain, ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3 may play a role in the hypothalamic regulation of homeostatic systems, including feeding, sleep-wake behavior and reproduction. To further characterize the morphological attributes of NTPDase3-immunoreactive (IR hypothalamic structures in the rat brain, here we investigated: 1. The cellular and subcellular localization of NTPDase3; 2. The effects of 17β-estradiol on the expression level of hypothalamic NTPDase3; and 3. The effects of NTPDase inhibition in hypothalamic synaptosomal preparations. Methods Combined light- and electron microscopic analyses were carried out to characterize the cellular and subcellular localization of NTPDase3-immunoreactivity. The effects of estrogen on hypothalamic NTPDase3 expression was studied by western blot technique. Finally, the effects of NTPDase inhibition on mitochondrial respiration were investigated using a Clark-type oxygen electrode. Results Combined light- and electron microscopic analysis of immunostained hypothalamic slices revealed that NTPDase3-IR is linked to ribosomes and mitochondria, is predominantly present in excitatory axon terminals and in distinct segments of the perikaryal plasma membrane. Immunohistochemical labeling of NTPDase3 and glutamic acid decarboxylase (GAD indicated that γ-amino-butyric-acid- (GABA ergic hypothalamic neurons do not express NTPDase3, further suggesting that in the hypothalamus, NTPDase3 is predominantly present in excitatory neurons. We also investigated whether estrogen influences the expression level of NTPDase3 in the ventrobasal and lateral hypothalamus. A single subcutaneous injection of estrogen differentially increased NTPDase3 expression in the medial and lateral parts of the hypothalamus, indicating that this enzyme likely plays region-specific roles in estrogen-dependent hypothalamic regulatory mechanisms. Determination of

  6. Hypothalamic projections to the ventral medulla oblongata in the rat, with special reference to the nucleus raphe pallidus: a study using autoradiographic and HRP techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, Yasuhiko

    1985-10-07

    Hypothalamic descending projections to the medullary ventral surface were studied autoradiographically in the rat. A small amount of (/sup 3/H)leucine was injected unilaterally into various parts of the hypothalamus by air pressure. Abundant and characteristic terminal labelings were observed bilaterally in the nucleus raphe pallidus, the ventral surface to the pyramidal tract and the nucleus interfascicularis hypoglossi, after injections into the dorsal posterior hypothalamic area caudal to the paraventricular hypothalamic nucleus. Conspicuous, but less numerous labelings were observed in the nucleus raphe obscurus and the ipsilateral raphe magnus. After an injection of (/sup 3/H)leucine into the hypothalamus and injections of horseradish peroxidase (HRP) into the spinal cord in the same animal, silver grains were densely distributed around HRP-labeled neurons in the nucleus raphe pallidus including the nucleus interfascicularis hypoglossi. The present results suggest that the dorsal posterior hypothalamic area projects directly to the spinal-projecting neurons of the nucleus raphe pallidus. 53 refs.; 9 figs.

  7. Essence of "Shen (Kidney) Controlling Bones": Conceptual Analysis Based on Hypothalamic-Pituitary-Adrenal-Osteo-Related Cells Axis.

    Science.gov (United States)

    Xu, Tao-Tao; Jin, Hong-Ting; Tong, Pei-Jian

    2018-04-12

    As a traditional concept of Chinese medicine (CM), the theory of "Shen (Kidney) controlling bones" has been gradually proven. And in modern allopathic medicine, the multiple mechanisms of bone growth, development and regeneration align with the theory. Shen defifi ciency as a pathological condition has a negative effect on the skeleton of body, specififi cally the disorder of bone homeostasis. Present studies indicate that Shen defifi ciency shares a common disorder characterized by dysfunction of hypothalamic-pituitary-adrenal (HPA) axis. HPA axis may be an important regulator of bone diseases with abnormal homeostasis. Therefore, we posit the existence of hypothalamic-pituitary-adrenal-osteo-related cells axis: cells that comprise bone tissue (osteo-related cells) are targets under the regulation of HPA axis in disorder of bone homeostasis. Chinese herbs for nourishing Shen have potential in the development of treatments for disorder of bone homeostasis.

  8. Comparative analysis of kisspeptin-immunoreactivity reveals genuine differences in the hypothalamic Kiss1 systems between rats and mice

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Tena-Sempere, Manuel; Franceschini, Isabelle

    2013-01-01

    cells, only after axonal transport inhibition. Interestingly, the density of kisspeptin innervation in the anterior periventricular area was higher in female compared to male in both species. Species differences in the ARC were evident, with the mouse ARC containing dense fibers, while the rat ARC......-immunoreactivity in the mouse compared to the rat, independently of brain region and gender. In the female mouse AVPV high numbers of kisspeptin-immunoreactive neurons were present, while in the rat, the female AVPV displays a similar number of kisspeptin-immunoreactive neurons compared to the level of Kiss1 mRNA expressing...... contains clearly discernable cells. In addition, we show a marked sex difference in the ARC, with higher kisspeptin levels in females. These findings show that the translation of Kiss1 mRNA and/or the degradation/transportation/release of kisspeptins are different in mice and rats....

  9. Preliminary Study of Quercetin Affecting the Hypothalamic-Pituitary-Gonadal Axis on Rat Endometriosis Model

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2014-01-01

    Full Text Available In this study, the endometriosis rats model was randomly divided into 6 groups: model control group, ovariectomized group, Gestrinone group, and quercetin high/medium/low dose group. Rats were killed after 3 weeks of administration. The expression levels of serum FSH and LH were detected by ELISA. The localizations and quantities of ERα, ERβ, and PR were detected by immunohistochemistry and western blot. The results showed that the mechanism of quercetin inhibiting the growth of ectopic endometrium on rat endometriosis model may be through the decreasing of serum FSH and LH levels and then reducing local estrogen content to make the ectopic endometrium atrophy. Quercetin can decrease the expression of ERα, ERβ, and PR in hypothalamus, pituitary, and endometrium, thereby inhibiting estrogen and progesterone binding to their receptors to play the role of antiestrogen and progesterone.

  10. The hypothalamic paraventricular nucleus has a pivotal role in regulation of prolactin release in lactating rats.

    Science.gov (United States)

    Kiss, J Z; Kanyicska, B; Nagy, G Y

    1986-08-01

    The affect of paraventricular nucleus (PVN) lesions on PRL secretory response to suckling was studied in adult female rats. Basal levels of PRL were similar in the control and lesioned groups. Substantial decreases in PRL levels occurred after separation of pups from their mothers in the control as well as lesioned animals. When mothers and pups were reunited, the circulating PRL concentrations of the control groups rose immediately from basal values of 50-100 micrograms/liter to reach peaks of 450-550 micrograms/liter. PVN lesions significantly decreased the suckling-induced rise of PRL levels. Furthermore, PVN lesions abolished the high amplitude, episodic pattern of PRL release in continuously lactating rats. These findings are consistent with the view that PVN neurons produce PRL releasing factor(s), which is (are) required for normal secretory patterns of PRL in lactating rats.

  11. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats

    Directory of Open Access Journals (Sweden)

    Hojatollah Karimi Jashni

    2016-02-01

    Full Text Available Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses (100, 200, 400 mg/kg/bw of aqueous extract of asparagus roots. All dosages were administered orally for 28 days. Blood samples were taken from rats to evaluate serum levels of Gonadotropin releasing hormone (GnRH, follicular stimulating hormone (FSH, Luteinal hormone (LH, estrogen, and progesterone hormones. The ovaries were removed, weighted, sectioned, and studied by light microscope. Results: Dose-dependent aqueous extract of asparagus roots significantly increased serum levels of GnRH, FSH, LH, estrogen, and progestin hormones compared to control and sham groups. Increase in number of ovarian follicles and corpus luteum in groups treated with asparagus root extract was also observed (p<0.05. Conclusion: Asparagus roots extract stimulates secretion of hypothalamic- pituitary- gonadal axis hormones. This also positively affects oogenesis in female rats.

  12. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats.

    Directory of Open Access Journals (Sweden)

    Gloria E Hoffman

    Full Text Available A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC, would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.

  13. Recovery by N-acetylcysteine from subchronic exposure to Imidacloprid-induced hypothalamic-pituitary-adrenal (HPA) axis tissues injury in male rats.

    Science.gov (United States)

    Annabi, Alya; Dhouib, Ines Bini; Lamine, Aicha Jrad; El Golli, Nargès; Gharbi, Najoua; El Fazâa, Saloua; Lasram, Mohamed Montassar

    2015-01-01

    Imidacloprid is the most important example of the neonicotinoid insecticides known to target the nicotinic acetylcholine receptor in insects, and potentially in mammals. N-Acetyl-l-cysteine (NAC) has been shown to possess curative effects in experimental and clinical investigations. The present study was designed to evaluate the recovery effect of NAC against Imidacloprid-induced oxidative stress and cholinergic transmission alteration in hypothalamic-pituitary-adrenal (HPA) axis of male rats following subchronic exposure. About 40 mg/kg of Imidacloprid was administered daily by intragastric intubation and 28 days later, the rats were sacrificed and HPA axis tissues were removed for different analyses. Imidacloprid increased adrenal relative weight and cholesterol level indicating an adaptive stage of the general alarm reaction to stress. Moreover, Imidacloprid caused a significant increase in malondialdehyde level, the antioxidants catalase, superoxide dismutase and glutathione-S-transferase showed various alterations following administration and significant depleted thiols content was only recorded in hypothalamic tissue. Furthermore, the hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased highlighting the alteration of cholinergic activity. The present findings revealed that HPA axis is a sensitive target to Imidacloprid (IMI). Interestingly, the use of NAC for only 7 days post-exposure to IMI showed a partial therapeutic effect against Imidacloprid toxicity.

  14. Computer Vision Evidence Supporting Craniometric Alignment of Rat Brain Atlases to Streamline Expert-Guided, First-Order Migration of Hypothalamic Spatial Datasets Related to Behavioral Control

    Science.gov (United States)

    Khan, Arshad M.; Perez, Jose G.; Wells, Claire E.; Fuentes, Olac

    2018-01-01

    The rat has arguably the most widely studied brain among all animals, with numerous reference atlases for rat brain having been published since 1946. For example, many neuroscientists have used the atlases of Paxinos and Watson (PW, first published in 1982) or Swanson (S, first published in 1992) as guides to probe or map specific rat brain structures and their connections. Despite nearly three decades of contemporaneous publication, no independent attempt has been made to establish a basic framework that allows data mapped in PW to be placed in register with S, or vice versa. Such data migration would allow scientists to accurately contextualize neuroanatomical data mapped exclusively in only one atlas with data mapped in the other. Here, we provide a tool that allows levels from any of the seven published editions of atlases comprising three distinct PW reference spaces to be aligned to atlas levels from any of the four published editions representing S reference space. This alignment is based on registration of the anteroposterior stereotaxic coordinate (z) measured from the skull landmark, Bregma (β). Atlas level alignments performed along the z axis using one-dimensional Cleveland dot plots were in general agreement with alignments obtained independently using a custom-made computer vision application that utilized the scale-invariant feature transform (SIFT) and Random Sample Consensus (RANSAC) operation to compare regions of interest in photomicrographs of Nissl-stained tissue sections from the PW and S reference spaces. We show that z-aligned point source data (unpublished hypothalamic microinjection sites) can be migrated from PW to S space to a first-order approximation in the mediolateral and dorsoventral dimensions using anisotropic scaling of the vector-formatted atlas templates, together with expert-guided relocation of obvious outliers in the migrated datasets. The migrated data can be contextualized with other datasets mapped in S space, including

  15. Computer Vision Evidence Supporting Craniometric Alignment of Rat Brain Atlases to Streamline Expert-Guided, First-Order Migration of Hypothalamic Spatial Datasets Related to Behavioral Control

    Directory of Open Access Journals (Sweden)

    Arshad M. Khan

    2018-05-01

    Full Text Available The rat has arguably the most widely studied brain among all animals, with numerous reference atlases for rat brain having been published since 1946. For example, many neuroscientists have used the atlases of Paxinos and Watson (PW, first published in 1982 or Swanson (S, first published in 1992 as guides to probe or map specific rat brain structures and their connections. Despite nearly three decades of contemporaneous publication, no independent attempt has been made to establish a basic framework that allows data mapped in PW to be placed in register with S, or vice versa. Such data migration would allow scientists to accurately contextualize neuroanatomical data mapped exclusively in only one atlas with data mapped in the other. Here, we provide a tool that allows levels from any of the seven published editions of atlases comprising three distinct PW reference spaces to be aligned to atlas levels from any of the four published editions representing S reference space. This alignment is based on registration of the anteroposterior stereotaxic coordinate (z measured from the skull landmark, Bregma (β. Atlas level alignments performed along the z axis using one-dimensional Cleveland dot plots were in general agreement with alignments obtained independently using a custom-made computer vision application that utilized the scale-invariant feature transform (SIFT and Random Sample Consensus (RANSAC operation to compare regions of interest in photomicrographs of Nissl-stained tissue sections from the PW and S reference spaces. We show that z-aligned point source data (unpublished hypothalamic microinjection sites can be migrated from PW to S space to a first-order approximation in the mediolateral and dorsoventral dimensions using anisotropic scaling of the vector-formatted atlas templates, together with expert-guided relocation of obvious outliers in the migrated datasets. The migrated data can be contextualized with other datasets mapped in S

  16. The effect of dermal benzophenone-2 administration on immune system activity, hypothalamic-pituitary-thyroid axis activity and hematological parameters in male Wistar rats.

    Science.gov (United States)

    Broniowska, Żaneta; Ślusarczyk, Joanna; Starek-Świechowicz, Beata; Trojan, Ewa; Pomierny, Bartosz; Krzyżanowska, Weronika; Basta-Kaim, Agnieszka; Budziszewska, Bogusława

    2018-04-13

    Benzophenones used as UV filters, in addition to the effects on the skin, can be absorbed into the blood and affect the function of certain organs. So far, their effects on the sex hormone receptors and gonadal function have been studied, but not much is known about their potential action on other systems. The aim of the present study was to determine the effect of benzophenone-2 (BP-2) on immune system activity, hypothalamic-pituitary-thyroid (HPT) axis activity and hematological parameters. BP-2 was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks to male Wistar rats. Immunological and hematological parameters and HPT axis activity were assayed 24 h after the last administration. It was found that BP-2 did not change relative weights of the thymus and spleen and did not exert toxic effect on tymocytes and splenocytes. However, this compound increased proliferative activity of splenocytes, enhanced metabolic activity of splenocytes and thymocytes and nitric oxide production of these cells. In animals exposed to BP-2, the HPT axis activity was increased, as evidenced by reduction in the thyroid stimulating hormone (TRH) level and increase in free fraction of triiodothyronine (fT3) and thyroxin (fT4) in blood. BP-2 had no effect on leukocyte, erythrocyte and platelet counts or on morphology and hemoglobin content in erythrocytes. The conducted research showed that dermal, sub-chronic BP-2 administration evoked hyperthyroidism, increased activity or function of the immune cells but did not affect hematological parameters. We suggest that topical administration of BP-2 leading to a prolonged elevated BP-2 level in blood causes hyperthyroidism, which in turn may be responsible for the increased immune cell activity or function. However, only future research can explain the mechanism and functional importance of the changes in thyroid hormones and immunological parameters observed after exposure to BP-2. Copyright © 2018 Elsevier B.V. All

  17. Long-term effects of a single exposure to stress in adult rats on behavior and hypothalamic-pituitary-adrenal responsiveness: comparison of two outbred rat strains.

    Science.gov (United States)

    Belda, Xavier; Márquez, Cristina; Armario, Antonio

    2004-10-05

    We have previously observed that a single exposure to immobilization (IMO), a severe stressor, caused long-term (days to weeks) desensitization of the response of the hypothalamic-pituitary-adrenal (HPA) axis to the homotypic stressor, with no changes in behavioral reactivity to novel environments. In contrast, other laboratories have reported that a single exposure to footshock induced a long-term sensitization of both HPA and behavioral responses to novel environments. To test whether these apparent discrepancies can be explained by the use of different stressors or different strains of rats, we studied in the present work the long-term effects of a single exposure to two different stressors (footshock or IMO) in two different strains of rats (Sprague-Dawley from Iffa-Credo and Wistar rats from Harlan). We found that both strains showed desensitization of the HPA response to the same (homotypic) stressor after a previous exposure to either shock or IMO. The long-term effects were higher after IMO than shock. No major changes in behavior in two novel environments (circular corridor, CC and elevated plus-maze, EPM) were observed after a single exposure to shock or IMO in neither strain, despite the fact that shocked rats showed a conditioned freezing response to the shock boxes. The present results demonstrate that long-term stress-induced desensitization of the HPA axis is a reliable phenomenon that can be observed with different stressors and strains. However, only behavioral changes related to shock-induced conditioned fear were found, which suggests that so far poorly characterized factors are determining the long-term behavioral consequences of a single exposure to stress.

  18. Hypothalamic energy metabolism is impaired by doxorubicin independently of inflammation in non-tumour-bearing rats.

    Science.gov (United States)

    Antunes, Barbara M M; Lira, Fabio Santos; Pimentel, Gustavo Duarte; Rosa Neto, José Cesar; Esteves, Andrea Maculano; Oyama, Lila Missae; de Souza, Cláudio Teodoro; Gonçalves, Cinara Ludvig; Streck, Emilio Luiz; Rodrigues, Bruno; dos Santos, Ronaldo Vagner; de Mello, Marco Túlio

    2015-08-01

    We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothalamus. The DOXO group exhibited a decreased body weight (p hypothalamus is a central organ that regulates a great number of functions, such as food intake, temperature and energy expenditure, among others. Doxorubicin can lead to deep anorexia and metabolic chaos; thus, we observed the effect of this chemotherapeutic drug on the inflammation and metabolism in rats after the administration of doxorubicin in order to understand the central effect in the hypothalamus. Drug treatment by doxorubicin is used as a cancer therapy; however the use of this drug may cause harmful alterations to the metabolism. Thus, further investigations are needed on the impact of drug therapy over the long term. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Influence of ERβ selective agonism during the neonatal period on the sexual differentiation of the rat hypothalamic-pituitary-gonadal (HPG axis

    Directory of Open Access Journals (Sweden)

    Patisaul Heather B

    2012-01-01

    Full Text Available Abstract Background It is well established that sexual differentiation of the rodent hypothalamic-pituitary-gonadal (HPG axis is principally orchestrated by estrogen during the perinatal period. Here we sought to better characterize the mechanistic role the beta form of the estrogen receptor (ERβ plays in this process. Methods To achieve this, we exposed neonatal female rats to three doses (0.5, 1 and 2 mg/kg of the ERβ selective agonist diarylpropionitrile (DPN using estradiol benzoate (EB as a positive control. Measures included day of vaginal opening, estrous cycle quality, GnRH and Fos co-localization following ovariectomy and hormone priming, circulating luteinizing hormone (LH levels and quantification of hypothalamic kisspeptin immunoreactivity. A second set of females was then neonatally exposed to DPN, the ERα agonist propyl-pyrazole-triol (PPT, DPN+PPT, or EB to compare the impact of ERα and ERβ selective agonism on kisspeptin gene expression in pre- and post-pubescent females. Results All three DPN doses significantly advanced the day of vaginal opening and induced premature anestrus. GnRH and Fos co-labeling, a marker of GnRH activation, following ovariectomy and hormone priming was reduced by approximately half at all doses; the magnitude of which was not as large as with EB or what we have previously observed with the ERα agonist PPT. LH levels were also correspondingly lower, compared to control females. No impact of DPN was observed on the density of kisspeptin immunoreactive (-ir fibers or cell bodies in the arcuate (ARC nucleus, and kisspeptin-ir was only significantly reduced by the middle (1 mg/kg DPN dose in the preoptic region. The second experiment revealed that EB, PPT and the combination of DPN+PPT significantly abrogated preoptic Kiss1 expression at both ages but ARC expression was only reduced by EB. Conclusion Our results indicate that selective agonism of ERβ is not sufficient to completely achieve male

  20. Roux-en-Y gastric bypass surgery suppresses hypothalamic PTP1B protein level and alleviates leptin resistance in obese rats.

    Science.gov (United States)

    Liu, Jia-Yu; Mu, Song; Zhang, Shu-Ping; Guo, Wei; Li, Qi-Fu; Xiao, Xiao-Qiu; Zhang, Jun; Wang, Zhi-Hong

    2017-09-01

    The present study aimed to explore the effect of Roux-en-Y gastric bypass (RYGB) surgery on protein tyrosine phosphatase 1B (PTP1B) expression levels and leptin activity in hypothalami of obese rats. Obese rats induced by a high-fat diet (HFD) that underwent RYGB (n=11) or sham operation (SO, n=9), as well as an obese control cohort (Obese, n=10) and an additional normal-diet group (ND, n=10) were used. Food efficiency was measured at 8 weeks post-operation. Plasma leptin levels were evaluated and hypothalamic protein tyrosine phosphatase 1B (PTP1B) levels and leptin signaling activity were examined at the genetic and protein levels. The results indicated that food efficiency was typically lower in RYGB rats compared with that in the Obese and SO rats. In the RYGB group, leptin receptor expression and proopiomelanocortin was significantly higher, while Neuropeptide Y levels were lower than those in the Obese and SO groups. Furthermore, the gene and protein expression levels of PTP1B in the RYGB group were lower, while levels of phosphorylated signal transducer and activator of transcription 3 protein were much higher compared with those in the Obese and SO groups. In conclusion, RYGB surgery significantly suppressed hypothalamic PTP1B protein expression. PTP1B regulation may partially alleviate leptin resistance.

  1. Down-regulation of hypothalamic pro-opiomelanocortin (POMC) expression after weaning is associated with hyperphagia-induced obesity in JCR rats overexpressing neuropeptide Y.

    Science.gov (United States)

    Diané, Abdoulaye; Pierce, W David; Russell, James C; Heth, C Donald; Vine, Donna F; Richard, Denis; Proctor, Spencer D

    2014-03-14

    We hypothesised that hypothalamic feeding-related neuropeptides are differentially expressed in obese-prone and lean-prone rats and trigger overeating-induced obesity. To test this hypothesis, in the present study, we measured energy balance and hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA expressions in male JCR:LA-cp rats. We compared, in independent cohorts, free-feeding obese-prone (Obese-FF) and lean-prone (Lean-FF) rats at pre-weaning (10 d old), weaning (21-25 d old) and early adulthood (8-12 weeks). A group of Obese-pair-feeding (PF) rats pair-fed to the Lean-FF rats was included in the adult cohort. The body weights of 10-d-old Obese-FF and Lean-FF pups were not significantly different. However, when the pups were shifted from dams' milk to solid food (weaning), the obese-prone rats exhibited more energy intake over the days than the lean-prone rats and higher body and fat pad weights and fasting plasma glucose, leptin, insulin and lipid levels. These differences were consistent with higher energy consumption and lower energy expenditure. In the young adult cohort, the differences between the Obese-FF and Lean-FF rats became more pronounced, yielding significant age effects on most of the parameters of the metabolic syndrome, which were reduced in the Obese-PF rats. The obese-prone rats displayed higher NPY expression than the lean-prone rats at pre-weaning and weaning, and the expression levels did not differ by age. In contrast, POMC expression exhibited significant age-by-genotype differences. At pre-weaning, there was no genotype difference in POMC expression, but in the weanling cohort, obese-prone pups exhibited lower POMC expression than the lean-prone rats. This genotype difference became more pronounced at adulthood. Overall, the development of hyperphagia-induced obesity in obese-prone JCR rats is related to POMC expression down-regulation in the presence of established NPY overexpression.

  2. Changes in responsiveness to serotonin on rat ventromedial hypothalamic neurons after food deprivation.

    Science.gov (United States)

    Nishimura, F; Nishihara, M; Torii, K; Takahashi, M

    1996-07-01

    The effects of food deprivation on responsiveness of neurons in the ventromedial nucleus of the hypothalamus (VMH) to serotonin (5-HT), norepinephrine (NE), gamma-aminobutyric acid (GABA), and neuropeptide Y (NPY) were investigated using brain slices in vitro along with behavioral changes in vivo during fasting. Adult male rats were fasted for 48 h starting at the beginning of the dark phase (lights on: 0700-1900 h). The animals showed a significant loss of body weight on the second day of fasting and an increase in food consumption on the first day of refeeding. During fasting, voluntary locomotor activity was significantly increased in the light phase but not during the dark phase. Plasma catecholamine levels were not affected by fasting. In vitro electrophysiological study showed that, in normally fed rats, 5-HT and NE induced both excitatory and inhibitory responses, while GABA and NPY intensively suppressed unit activity in the VMH. Food deprivation for 48 h significantly changed the responsiveness of VMH neurons to 5-HT, for instance, the ratio of neurons whose activity was facilitated by 5-HT was significantly decreased. The responsiveness of VMH neurons to NE, GABA, and NPY was not affected by food deprivation. These results suggest that food deprivation decreases the facilitatory response of VMH neurons to 5-HT, and that this change in responsiveness to 5-HT is at least partially involved in the increase in food intake motivation and locomotor activity during fasting.

  3. Hypothalamic inflammation is reversed by endurance training in anorectic-cachectic rats

    Directory of Open Access Journals (Sweden)

    Lira Fábio S

    2011-08-01

    Full Text Available Abstract Aim We tested the effects of a cancer cachexia-anorexia sydrome upon the balance of anti and pro-inflammatory cytokines in the hypothalamus of sedentary or trained tumour-bearing (Walker-256 carcinosarcoma rats. Methods Animals were randomly assigned to a sedentary control (SC, sedentary tumour-bearing (ST, and sedentary pair-fed (SPF groups or, exercised control (EC, exercised tumour-bearing (ET and exercised pair-fed (EPF groups. Trained rats ran on a treadmill (60%VO2max for 60 min/d, 5 days/wk, for 8 wks. We evaluated food intake, leptin and cytokine (TNF-α, IL1β levels in the hypothalamus. Results The cumulative food intake and serum leptin concentration were reduced in ST compared to SC. Leptin gene expression in the retroperitoneal adipose tissue (RPAT was increased in SPF in comparison with SC and ST, and in the mesenteric adipose tissue (MEAT the same parameter was decreased in ST in relation to SC. Leptin levels in RPAT and MEAT were decreased in ST, when compared with SC. Exercise training was also able to reduce tumour weight when compared to ST group. In the hypothalamus, IL-1β and IL-10 gene expression was higher in ST than in SC and SPF. Cytokine concentration in hypothalamus was higher in ST (TNF-α and IL-1β, p Conclusion Cancer-induced anorexia leads towards a pro-inflammatory state in the hypothalamus, which is prevented by endurance training which induces an anti-inflammatory state, with concomitant decrease of tumour weight.

  4. Adrenal-dependent and -independent stress-induced Per1 mRNA in hypothalamic paraventricular nucleus and prefrontal cortex of male and female rats.

    Science.gov (United States)

    Chun, Lauren E; Christensen, Jenny; Woodruff, Elizabeth R; Morton, Sarah J; Hinds, Laura R; Spencer, Robert L

    2018-01-01

    Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.

  5. Effect of Local Vibration and Passive Exercise on the Hormones and Neurotransmitters of Hypothalamic-Pituitary-Adrenal Axis in Hindlimb Unloading Rats

    Science.gov (United States)

    Luan, Huiqin; Huang, Yunfei; Li, Jian; Sun, Lianwen; Fan, Yubo

    2018-04-01

    Astronauts are severely affected by spaceflight-induced bone loss. Mechanical stimulation through exercise inhibits bone resorption and improves bone formation. Exercise and vibration can prevent the degeneration of the musculoskeletal system in tail-suspended rats, and long-term exercise stress will affect endocrine and immune systems that are prone to fatigue. However, the mechanisms through which exercise and vibration affect the endocrine system remain unknown. This study mainly aimed to investigate the changes in the contents of endocrine axis-related hormones and the effects of local vibration and passive exercise on hypothalamic-pituitary-adrenal (HPA) axis-related hormones in tail-suspended rats. A total of 32 Sprague-Dawley rats were randomly distributed into four groups (n = 8 per group): tail suspension (TS), TS + 35Hz vibration, TS + passive exercise, and control. The rats were placed on a passive exercise and local vibration regimen for 21 days. On day 22 of the experiment, the contents of corticotrophin-releasing hormone, adrenocorticotropic hormone, cortisol, and 5-hydroxytryptamine in the rats were quantified with kits in accordance with the manufacturer's instructions. Histomorphometry was applied to evaluate histological changes in the hypothalamus. Results showed that 35Hz local vibration cannot cause rats to remain in a stressed state and that it might not inhibit the function of the HPA axis. Therefore, we speculate that this local vibration intensity can protect the function of the HPA axis and helps tail-suspended rats to transition from stressed to adaptive state.

  6. Involvement of hypothalamic cyclooxygenase-2, interleukin-1β and melanocortin in the development of docetaxel-induced anorexia in rats.

    Science.gov (United States)

    Yamamoto, Kouichi; Asano, Keiko; Ito, Yui; Matsukawa, Naoki; Kim, Seikou; Yamatodani, Atsushi

    2012-12-16

    Docetaxel, a taxane derivative, is frequently used for the treatment of advanced breast cancer, non-small cell lung cancer, and metastatic prostate cancer. Clinical reports demonstrated that docetaxel-based chemotherapy often induces anorexia, but the etiology is not completely understood. To elucidate possible mechanisms, we investigated the involvement of central interleukin (IL)-1β, cyclooxygenase (COX)-2, and pro-opiomelanocortin (POMC) in the development of docetaxel-induced anorexia in rats. Rats received docetaxel (10mg/kg, i.p.) with or without pretreatment with selective COX-2 inhibitors, NS-398 (10 and 30 mg/kg, i.g.) or celecoxib (10 and 30 mg/kg, i.g.), and a non-selective COX inhibitor, indomethacin (10mg/kg, i.g.), then food intake was monitored for 24h after administration. We also examined expression of IL-1β, COX-2, and POMC mRNA in hypothalamus of docetaxel-treated rats and the effect of a COX-2 inhibitor on docetaxel-induced POMC mRNA expression. Food consumption in rats was significantly decreased 24h after administration of docetaxel and anorexia was partially reversed by all COX inhibitors. Administration of docetaxel increased IL-1β, COX-2, and POMC mRNA expression in the hypothalamus of rats. The time required to increase these gene expressions was comparable to the latency period of docetaxel-induced anorexia in rats. In addition, pretreatment with COX-2 inhibitors suppressed docetaxel-induced expression of POMC mRNA. These results suggest that IL-1β and COX-2 mRNA expression and subsequent activation of POMC in the hypothalamus may contribute to the development of docetaxel-induced anorexia in rats. Copyright © 2012. Published by Elsevier Ireland Ltd.

  7. Methyl vitamins contribute to obesogenic effects of a high multivitamin gestational diet and epigenetic alterations in hypothalamic feeding pathways in Wistar rat offspring.

    Science.gov (United States)

    Cho, Clara E; Pannia, Emanuela; Huot, Pedro S P; Sánchez-Hernández, Diana; Kubant, Ruslan; Dodington, David W; Ward, Wendy E; Bazinet, Richard P; Anderson, G Harvey

    2015-03-01

    High multivitamin (HV, tenfold AIN-93G) gestational diets fed to Wistar rats increase food intake, obesity, and characteristics of metabolic syndrome in the offspring. We hypothesized that methyl vitamins, and specifically folate, in the HV gestational diet contribute to the obesogenic phenotypes consistent with their epigenetic effects on hypothalamic food intake regulatory mechanisms. Male offspring of dams fed the AIN-93G diet with high methyl vitamins (HMethyl; tenfold folate, vitamins B12, and B6) (Study 1) and HV with recommended folate (HVRF) (Study 2) were compared with those from HV and recommended vitamin (RV) fed dams. All offspring were weaned to a high fat diet for 8 wks. HMethyl diet, similar to HV, and compared to RV, resulted in higher food intake, body weight, and metabolic disturbances. Removing folate additions to the HV diet in HVRF offspring normalized the obesogenic phenotype. Methyl vitamins, and folate in HV diets, altered hypothalamic gene expression toward increased food intake concurrent with DNA methylation and leptin and insulin receptor signaling dysfunction. Methyl vitamins in HV gestational diets contribute to obesogenic phenotypes and epigenetic alterations in the hypothalamic feeding pathways in the offspring. Folate alone accounts for many of these effects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Short-term enrichment makes male rats more attractive, more defensive and alters hypothalamic neurons.

    Directory of Open Access Journals (Sweden)

    Rupshi Mitra

    Full Text Available Innate behaviors are shaped by contingencies built during evolutionary history. On the other hand, environmental stimuli play a significant role in shaping behavior. In particular, a short period of environmental enrichment can enhance cognitive behavior, modify effects of stress on learned behaviors and induce brain plasticity. It is unclear if modulation by environment can extend to innate behaviors which are preserved by intense selection pressure. In the present report we investigate this issue by studying effects of relatively short (14-days environmental enrichment on two prominent innate behaviors in rats, avoidance of predator odors and ability of males to attract mates. We show that enrichment has strong effects on both the innate behaviors: a enriched males were more avoidant of a predator odor than non-enriched controls, and had a greater rise in corticosterone levels in response to the odor; and b had higher testosterone levels and were more attractive to females. Additionally, we demonstrate decrease in dendritic length of neurons of ventrolateral nucleus of hypothalamus, important for reproductive mate-choice and increase in the same in dorsomedial nucleus, important for defensive behavior. Thus, behavioral and hormonal observations provide evidence that a short period of environmental manipulation can alter innate behaviors, providing a good example of gene-environment interaction.

  9. The interaction of steroids with the hypothalamic-pituitary-testicular system in the adult male rat

    NARCIS (Netherlands)

    H.L.L.L. Verjans

    1976-01-01

    textabstractMajor functions of the mature male gonad are the production of gametes and steroid hormones. Extratesticular as well as intratesticular factors regulate these two male gonadal functions which are associated with two distinct cell compartments in the testis. It has been known for a

  10. Enhanced expressions of mRNA for neuropeptide Y and interleukin 1 beta in hypothalamic arcuate nuclei during adjuvant arthritis-induced anorexia in Lewis rats.

    Science.gov (United States)

    Stofkova, Andrea; Haluzik, Martin; Zelezna, Blanka; Kiss, Alexander; Skurlova, Martina; Lacinova, Zdenka; Jurcovicova, Jana

    2009-01-01

    Food intake is activated by hypothalamic orexigenic neuropeptide Y (NPY), which is mainly under the dual control of leptin and ghrelin. Rat adjuvant arthritis (AA), similarly as human rheumatoid arthritis, is associated with cachexia caused by yet unknown mechanisms. The aim of our study was to evaluate NPY expression in hypothalamic arcuate nuclei (nARC) under the conditions of AA-induced changes in leptin, ghrelin and adiponectin. Since IL-1beta is involved in the central induction of anorexia, we studied its expression in the nARC as well. AA was induced to Lewis rats using complete Freund's adjuvant. On days 12, 15 and 18 after complete Freund's adjuvant injection, the levels of leptin, adiponectin, ghrelin and IL-1beta were determined by RIA or ELISA. The mRNA expressions for NPY, leptin receptor (OB-R), ghrelin receptor (Ghsr) and IL-1beta were determined by TaqMan RT-PCR from isolated nARC. In AA rats, decreased appetite, body mass and epididymal fat stores positively correlated with reduced circulating and epididymal fat leptin and adiponectin. Ghrelin plasma levels were increased. In nARC, mRNA for OB-R, Ghsr and NPY were overexpressed in AA rats. AA rats showed overexpression of mRNA for IL-1beta in nARC while circulating, and spleen IL-1beta was unaltered. During AA, overexpression of orexigenic NPY mRNA in nARC along with enhanced plasma ghrelin and lowered leptin levels occur. Decreased food intake indicates a predominant effect of the anorexigenic pathway. Activated expression of IL-1beta in nARC suggests its role in keeping AA-induced anorexia in progress. The reduction in adiponectin may also contribute to AA-induced anorexia. Copyright 2009 S. Karger AG, Basel.

  11. [Effects of Chinese herbal medicines for regulating liver qi on expression of 5-hydroxytryptamine 3B receptor in hypothalamic tissues of rats with anger emotion].

    Science.gov (United States)

    Ge, Qing-fang; Zhang, Hui-yun

    2011-08-01

    To explore the central mechanisms of anger emotion and the effects of Chinese herbal medicines for regulating liver qi on the anger emotion and the expression level of 5-hydroxytryptamine 3B receptor (5-HT3BR) in rat hypothalamus. Rat models of anger-in or anger-out emotions were prepared by the methods of resident intruder paradigm. There were five groups in this study: control, anger-in model, Jingqianshu Granule-treated anger-in, anger-out model and Jingqianping Granule-treated anger-out groups. The treatment groups were orally given Jingqianshu granules and Jingqianping granules respectively, and the model groups and the normal control group were given sterile water. Open-field test and sucrose preference test were used to evaluate behavioristics of the rats. Semi-quantitative reverse transcription-polymerase chain reaction and Western blot methods were used to detect the expression levels of 5-HT3BR mRNA and protein in the rat hypothalamus. The expression of 5-HT3BR in hypothalamus of anger-in model rats increased obviously (Pexpressions of 5-HT3BR in the treatment groups were significantly improved (Pexpression and the anger-out emotion can obviously reduce its expression. Chinese herbal medicines for regulating liver qi may treat anger emotion in rats by improving the hypothalamic 5-HT3BR protein and gene expression levels.

  12. Hypothalamic transcriptional expression of the kisspeptin system and sex steroid receptors differs among polycystic ovary syndrome rat models with different endocrine phenotypes.

    Science.gov (United States)

    Marcondes, Rodrigo Rodrigues; Carvalho, Kátia Cândido; Giannocco, Gisele; Duarte, Daniele Coelho; Garcia, Natália; Soares-Junior, José Maria; da Silva, Ismael Dale Cotrim Guerreiro; Maliqueo, Manuel; Baracat, Edmund Chada; Maciel, Gustavo Arantes Rosa

    2017-08-01

    Polycystic ovary syndrome is a heterogeneous endocrine disorder that affects reproductive-age women. The mechanisms underlying the endocrine heterogeneity and neuroendocrinology of polycystic ovary syndrome are still unclear. In this study, we investigated the expression of the kisspeptin system and gonadotropin-releasing hormone pulse regulators in the hypothalamus as well as factors related to luteinizing hormone secretion in the pituitary of polycystic ovary syndrome rat models induced by testosterone or estradiol. A single injection of testosterone propionate (1.25 mg) (n=10) or estradiol benzoate (0.5 mg) (n=10) was administered to female rats at 2 days of age to induce experimental polycystic ovary syndrome. Controls were injected with a vehicle (n=10). Animals were euthanized at 90-94 days of age, and the hypothalamus and pituitary gland were used for gene expression analysis. Rats exposed to testosterone exhibited increased transcriptional expression of the androgen receptor and estrogen receptor-β and reduced expression of kisspeptin in the hypothalamus. However, rats exposed to estradiol did not show any significant changes in hormone levels relative to controls but exhibited hypothalamic downregulation of kisspeptin, tachykinin 3 and estrogen receptor-α genes and upregulation of the gene that encodes the kisspeptin receptor. Testosterone- and estradiol-exposed rats with different endocrine phenotypes showed differential transcriptional expression of members of the kisspeptin system and sex steroid receptors in the hypothalamus. These differences might account for the different endocrine phenotypes found in testosterone- and estradiol-induced polycystic ovary syndrome rats.

  13. Hypothalamic mTOR signaling regulates food intake.

    Science.gov (United States)

    Cota, Daniela; Proulx, Karine; Smith, Kathi A Blake; Kozma, Sara C; Thomas, George; Woods, Stephen C; Seeley, Randy J

    2006-05-12

    The mammalian Target of Rapamycin (mTOR) protein is a serine-threonine kinase that regulates cell-cycle progression and growth by sensing changes in energy status. We demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance. In the rat, mTOR signaling is controlled by energy status in specific regions of the hypothalamus and colocalizes with neuropeptide Y and proopiomelanocortin neurons in the arcuate nucleus. Central administration of leucine increases hypothalamic mTOR signaling and decreases food intake and body weight. The hormone leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling blunts leptin's anorectic effect. Thus, mTOR is a cellular fuel sensor whose hypothalamic activity is directly tied to the regulation of energy intake.

  14. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1?7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils

    OpenAIRE

    Mizuno, Dai; Konoha-Mizuno, Keiko; Mori, Miwako; Yamazaki, Kentaro; Haneda, Toshihiro; Koyama, Hironari; Kawahara, Masahiro

    2015-01-01

    Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer’s disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1–7 cells). In this study, we evaluated the effects of essential oils on neuronal deat...

  15. Differential protein expression profile in the hypothalamic GT1-7 cell line after exposure to anabolic androgenic steroids.

    Directory of Open Access Journals (Sweden)

    Freddyson J Martínez-Rivera

    Full Text Available The abuse of anabolic androgenic steroids (AAS has been considered a major public health problem during decades. Supraphysiological doses of AAS may lead to a variety of neuroendocrine problems. Precisely, the hypothalamic-pituitary-gonadal (HPG axis is one of the body systems that is mainly influenced by steroidal hormones. Fluctuations of the hormonal milieu result in alterations of reproductive function, which are made through changes in hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH. In fact, previous studies have shown that AAS modulate the activity of these neurons through steroid-sensitive afferents. To increase knowledge about the cellular mechanisms induced by AAS in GnRH neurons, we performed proteomic analyses of the murine hypothalamic GT1-7 cell line after exposure to 17α-methyltestosterone (17α-meT; 1 μM. These cells represent a good model for studying regulatory processes because they exhibit the typical characteristics of GnRH neurons, and respond to compounds that modulate GnRH in vivo. Two-dimensional difference in gel electrophoresis (2D-DIGE and mass spectrometry analyses identified a total of 17 different proteins that were significantly affected by supraphysiological levels of AAS. Furthermore, pathway analyses showed that modulated proteins were mainly associated to glucose metabolism, drug detoxification, stress response and cell cycle. Validation of many of these proteins, such as GSTM1, ERH, GAPDH, PEBP1 and PDIA6, were confirmed by western blotting. We further demonstrated that AAS exposure decreased expression of estrogen receptors and GnRH, while two important signaling pathway proteins p-ERK, and p-p38, were modulated. Our results suggest that steroids have the capacity to directly affect the neuroendocrine system by modulating key cellular processes for the control of reproductive function.

  16. Different critical perinatal periods and hypothalamic sites of oestradiol action in the defeminisation of luteinising hormone surge and lordosis capacity in the rat.

    Science.gov (United States)

    Sakakibara, M; Deura, C; Minabe, S; Iwata, Y; Uenoyama, Y; Maeda, K-I; Tsukamura, H

    2013-03-01

    Female rats show a gonadotrophin-releasing hormone (GnRH)/luteinising hormone (LH) surge in the presence of a preovulatory level of oestrogen, whereas males do not because of brain defeminisation during the developmental period by perinatal oestrogen converted from androgen. The present study aimed to identify the site(s) of oestrogen action and the critical period for defeminising the mechanism regulating the GnRH/LH surge. Animals given perinatal treatments, such as steroidal manipulations, brain local implantation of oestradiol (E(2) ) or administration of an NMDA antagonist, were examined for their ability to show an E(2) -induced LH surge at adulthood. Lordosis behaviour was examined to compare the mechanisms defeminising the GnRH/LH surge and sexual behaviour. A single s.c. oestradiol-benzoate administration on either the day before birth (E21), the day of birth (D0) or day 5 (D5) postpartum completely abolished the E(2) -induced LH surge at adulthood in female rats, although the same treatment did not inhibit lordosis. Perinatal castration on E21 or D0 partially rescued the E2-induced LH surge in genetically male rats, whereas castration from E21 to D5 totally rescued lordosis. Neonatal E(2) implantation in the anterior hypothalamus including the anteroventral periventricular nucleus (AVPV)/preoptic area (POA) abolished the E(2) -induced LH surge in female rats, whereas E(2) implantation in the mid and posterior hypothalamic regions had no inhibitory effect on the LH surge. Lordosis was not affected by neonatal E(2) implantation in any hypothalamic regions. In male rats, neonatal NMDA antagonist treatment rescued lordosis but not the LH surge. Taken together, these results suggest that an anterior hypothalamic region such as the AVPV/POA region is a perinatal site of oestrogen action where the GnRH/LH regulating system is defeminised to abolish the oestrogen-induced surge. The mechanism for defeminisation of the GnRH/LH surge system might be different from

  17. Validation of the long-term assessment of hypothalamic-pituitary-adrenal activity in rats using hair corticosterone as a biomarker.

    Science.gov (United States)

    Scorrano, Fabrizio; Carrasco, Javier; Pastor-Ciurana, Jordi; Belda, Xavier; Rami-Bastante, Alicia; Bacci, Maria Laura; Armario, Antonio

    2015-03-01

    The evaluation of chronic activity of the hypothalamic-pituitary-adrenal (HPA) axis is critical for determining the impact of chronic stressful situations. However, current methods have important limitations. The potential use of hair glucocorticoids as a noninvasive retrospective biomarker of long-term HPA activity is gaining acceptance in humans and wild animals. However, there is no study examining hair corticosterone (HC) in laboratory animals. The present study validates a method for measuring HC in rats and demonstrates that it properly reflects chronic HPA activity. The HC concentration was similar in male and female rats, despite higher total plasma corticosterone levels in females, tentatively suggesting that it reflects free rather than total plasma corticosterone. Exposure of male rats to 2 different chronic stress protocols (chronic immobilization and chronic unpredictable stress) resulted in similarly higher HC levels compared to controls (1.8-fold). HC also increased after a mild chronic stressor (30 min daily restraint). Chronic administration of 2 different doses of a long-acting ACTH preparation dramatically increased HC (3.1- and 21.5-fold, respectively), demonstrating that a ceiling effect in HC accumulation is unlikely under other more natural conditions. Finally, adrenalectomy significantly reduced HC. In conclusion, HC measurement in rats appears appropriate to evaluate integrated chronic changes in circulating corticosterone. © FASEB.

  18. Effects of chronic restraint stress on social behaviors and the number of hypothalamic oxytocin neurons in male rats.

    Science.gov (United States)

    Li, Jin; Li, Han-Xia; Shou, Xiao-Jing; Xu, Xin-Jie; Song, Tian-Jia; Han, Song-Ping; Zhang, Rong; Han, Ji-Sheng

    2016-12-01

    Oxytocin (OXT) and vasopressin (AVP) are considered to be related to mammalian social behavior and the regulation of stress responses. The present study investigated the effects of chronic homotypic restraint stress (CHRS) on social behaviors and anxiety, as well as its repercussions on OXT- and AVP-positive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) nuclei in rat. Male Sprague-Dawley rats receiving CHRS were exposed to repeated restraint stress of 30min per day for 10days. Changes in social approach behaviors were evaluated with the three-chambered social approach task. Changes in anxiety-like behaviors were evaluated in the light-dark box test. The number of neurons expressing oxytocin and/or vasopressin in PVN and SON were examined by immunohistochemistry techniques. The results demonstrated that social approach was increased and anxiety was decreased following 10-day exposure to CHRS. Furthermore, the number of OXT-immunoreactive cells in PVN was increased significantly, whereas no change in SON was seen. The number of AVP immunoreactive cells either in PVN or SON was unaffected. The results of this study suggest that certain types of stress could be effective in the treatment of social dysfunction in persons with mental disorders such as autism, social anxiety disorder. The therapeutic effects may be mediated by changes in the function of OXT neurons in PVN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Increase of long-term 'diabesity' risk, hyperphagia, and altered hypothalamic neuropeptide expression in neonatally overnourished 'small-for-gestational-age' (SGA rats.

    Directory of Open Access Journals (Sweden)

    Karen Schellong

    Full Text Available BACKGROUND: Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and 'diabesity' risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear. METHODS AND FINDINGS: By rearing in normal (NL vs. small litters (SL, small-for-gestational-age (SGA rats were neonatally exposed to either normal (SGA-in-NL or over-feeding (SGA-in-SL, and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL. SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60, as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05, and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern 'westernized' lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05. Lasercapture microdissection (LMD-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc in SGA-in-SL rats (p<0.05. Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy, agouti-related-peptide (Agrp and galanin (Gal was not significantly altered. In essence, the 'orexigenic index', proposed here as a neuroendocrine 'net-indicator', was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01, correlated to food intake (p<0.05. CONCLUSION: Adult SGA rats developed increased 'diabesity' risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal overfeeding

  20. Differential hypothalamic leptin sensitivity in obese rat offspring exposed to maternal and postnatal intake of chocolate and soft drink

    DEFF Research Database (Denmark)

    Gerstenberg, Marina Kjærgaard; Nilsson, C; Secher, A

    2017-01-01

    Background/objective: Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic...... for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with alterations in hypothalamic leptin signalling....... assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. Results: As expected, adult offspring fed the S diet post weaning became obese (body weight: P

  1. Evidence for a Role of Proline and Hypothalamic Astrocytes in the Regulation of Glucose Metabolism in Rats

    OpenAIRE

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M.; Lam, Tony K.T.; Gutiérrez-Juárez, Roger

    2013-01-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our result...

  2. Highly Palatable Food during Adolescence Improves Anxiety-Like Behaviors and Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Rats that Experienced Neonatal Maternal Separation

    Directory of Open Access Journals (Sweden)

    Jong-Ho Lee

    2014-06-01

    Full Text Available BackgroundThis study was conducted to examine the effects of ad libitum consumption of highly palatable food (HPF during adolescence on the adverse behavioral outcome of neonatal maternal separation.MethodsMale Sprague-Dawley pups were separated from dam for 3 hours daily during the first 2 weeks of birth (maternal separation, MS or left undisturbed (nonhandled, NH. Half of MS pups received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28 (MS+HPF. Pups were subjected to behavioral tests during young adulthood. The plasma corticosterone response to stress challenge was analyzed by radioimmunoassay.ResultsDaily caloric intake and body weight gain did not differ among the experimental groups. Ambulatory activities were decreased defecation activity and rostral grooming were increased in MS controls (fed with chow only compared with NH rats. MS controls spent less time in open arms, and more time in closed arms during the elevated plus maze test, than NH rats. Immobility duration during the forced swim test was increased in MS controls compared with NH rats. Cookie access normalized the behavioral scores of ambulatory and defecation activities and grooming, but not the scores during the elevated plus maze and swim tests in MS rats. Stress-induced corticosterone increase was blunted in MS rats fed with chow only, and cookie access normalized it.ConclusionProlonged access to HPF during adolescence and youth partly improves anxiety-related, but not depressive, symptoms in rats that experienced neonatal maternal separation, possibly in relation with improved function of the hypothalamic-pituitary-adrenal (HPA axis.

  3. Effects of black adzuki bean (Vigna angularis, Geomguseul extract on body composition and hypothalamic neuropeptide expression in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Mina Kim

    2015-10-01

    Full Text Available Background: Obesity is often considered to result from either excessive food intake or insufficient physical activity. Adzuki beans have been evaluated as potential remedies for various health conditions, and recent studies have reported their effects on the regulation of lipid metabolism, but it remains to be determined whether they may be effective in overcoming obesity by regulating appetite and satiety. Objective: This study investigated the effect of black adzuki bean (BAB extract on body composition and hypothalamic neuropeptide expression in Sprague Dawley rats (Rattus norvegicus fed a high-fat diet. Design: The rats were fed for 8 weeks with a control diet containing 10 kcal% from fat (CD, a high-fat diet containing 60 kcal% from fat (HD, or a high-fat diet with 1% or 2% freeze-dried ethanolic extract powder of BAB (BAB-1 and BAB-2. Results: The body weights and epididymal fat weights were significantly reduced and the serum lipid profiles were improved in the group fed the diet containing BAB compared to the HD group. The expression of AGRP mRNA significantly decreased in the BAB groups, and treatment with BAB-2 resulted in a marked induction of the mRNA expression of POMC and CART, which are anorexigenic neuropeptides that suppress food intake. Furthermore, mRNA expression levels of ObRb, a gene related to leptin sensitivity in the hypothalamus, were significantly higher in the BAB groups than in the HD group. Conclusions: These results suggest that supplementation with BAB has a significant effect on body weight via regulation of hypothalamic neuropeptides.

  4. Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Atrial natriuretic peptide (ANP provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A, is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of

  5. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin-Ai; Jia, Lin-Lin [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Meng [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Yuan, Zu-Yi [Department of Cardiovascular Medicine, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Guo, Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Li, Hui-Hua [Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Liu, Hao, E-mail: haoliu75@163.com [Department of Neurosurgery, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  6. Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus.

    Science.gov (United States)

    Irles, Claudine; Nava-Kopp, Alicia T; Morán, Julio; Zhang, Limei

    2014-05-01

    We have previously reported that in response to early life stress, such as maternal hyperthyroidism and maternal separation (MS), the rat hypothalamic vasopressinergic system becomes up-regulated, showing enlarged nuclear volume and cell number, with stress hyperresponsivity and high anxiety during adulthood. The detailed signaling pathways involving cell death/survival, modified by adverse experiences in this developmental window remains unknown. Here, we report the effects of MS on cellular density and time-dependent fluctuations of the expression of pro- and anti-apoptotic factors during the development of the hypothalamus. Neonatal male rats were exposed to 3 h-daily MS from postnatal days 2 to 15 (PND 2-15). Cellular density was assessed in the hypothalamus at PND 21 using methylene blue staining, and neuronal nuclear specific protein and glial fibrillary acidic protein immunostaining at PND 36. Expression of factors related to apoptosis and cell survival in the hypothalamus was examined at PND 1, 3, 6, 9, 12, 15, 20 and 43 by Western blot. Rats subjected to MS exhibited greater cell-density and increased neuronal density in all hypothalamic regions assessed. The time course of protein expression in the postnatal brain showed: (1) decreased expression of active caspase 3; (2) increased Bcl-2/Bax ratio; (3) increased activation of ERK1/2, Akt and inactivation of Bad; PND 15 and PND 20 were the most prominent time-points. These data indicate that MS can induce hypothalamic structural reorganization by promoting survival, suppressing cell death pathways, increasing cellular density which may alter the contribution of these modified regions to homeostasis.

  7. Hypothalamic expression of KiSS-1 system and gonadotropin-releasing effects of kisspeptin in different reproductive states of the female Rat.

    Science.gov (United States)

    Roa, J; Vigo, E; Castellano, J M; Navarro, V M; Fernández-Fernández, R; Casanueva, F F; Dieguez, C; Aguilar, E; Pinilla, L; Tena-Sempere, M

    2006-06-01

    Kisspeptins, products of the KiSS-1 gene with ability to bind G protein-coupled receptor 54 (GPR54), have been recently identified as major gatekeepers of reproductive function with ability to potently activate the GnRH/LH axis. Yet, despite the diversity of functional states of the female gonadotropic axis, pharmacological characterization of this effect has been mostly conducted in pubertal animals or adult male rodents, whereas similar studies have not been thoroughly conducted in the adult female. In this work, we evaluated maximal LH and FSH secretory responses to kisspeptin-10, as well as changes in sensitivity and hypothalamic expression of KiSS-1 and GPR54 genes, in different physiological and experimental models in the adult female rat. Kisspeptin-10 (1 nmol, intracerebroventricular) was able to elicit robust LH bursts at all phases of the estrous cycle, with maximal responses at estrus; yet, in diestrus LH, responses to kisspeptin were detected at doses as low as 0.1 pmol. In contrast, high doses of kisspeptin only stimulated FSH secretion at diestrus. Removal of ovarian sex steroids did not blunt the ability of kisspeptin to further elicit stimulated LH and FSH secretion, but restoration of maximal responses required replacement with estradiol and progesterone. Finally, despite suppressed basal levels, LH and FSH secretory responses to kisspeptin were preserved in pregnant and lactating females, although the magnitude of LH bursts and the sensitivity to kisspeptin were much higher in pregnant dams. Interestingly, hypothalamic KiSS-1 gene expression significantly increased during pregnancy, whereas GPR54 mRNA levels remained unaltered. In summary, our current data document for the first time the changes in hypothalamic expression of KiSS-1 system and the gonadotropic effects (maximal responses and sensitivity) of kisspeptin in different functional states of the female reproductive axis. The present data may pose interesting implications in light of the

  8. Seasoning ingredients in a medium-fat diet regulate lipid metabolism in peripheral tissues via the hypothalamic-pituitary axis in growing rats.

    Science.gov (United States)

    Tanaka, Mitsuru; Yasuoka, Akihito; Yoshinuma, Haruka; Saito, Yoshikazu; Asakura, Tomiko; Tanabe, Soichi

    2018-03-01

    We fed rats noodle (N) -diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same amount of nutrients (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. We then analyzed transcriptome of the hypothalamic-pituitary (HP), the liver and the white adipose tissue (WAT). Thyroid stimulating hormone (Tshb), and its partner, glycoprotein hormone genes were up-regulated in the HP of N-group. Sterol regulatory element binding transcription factors were activated in the liver of N-group, while an up-regulation of the angiogenic signal occurred in the WAT of N-group. N-group showed higher urine noradrenaline (NA) level suggesting that these tissue signals are regulated by NA and Tshb. The N-diet contains 0.326 wt.% glutamate, 0.00236 wt.% 6-shogaol and Maillard reaction products. Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.

  9. Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats.

    Science.gov (United States)

    Ríos-Lugo, María J; Jiménez-Ortega, Vanesa; Cano-Barquilla, Pilar; Mateos, Pilar Fernández; Spinedi, Eduardo J; Cardinali, Daniel P; Esquifino, Ana I

    2015-03-01

    Previous studies indicate that the administration of melatonin caused body weight and abdominal visceral fat reductions in rodent models of hyperadiposity. The objective of the present study performed in high-fat fed rats was to evaluate the activity of melatonin on gene expression of some medial basal hypothalamus (MBH) signals involved in feeding behavior regulation, including neuropeptide Y (NPY), proopiomelanocortin (POMC), prolactin-releasing peptide (PrRP), leptin- and insulin-receptors (R) and insulin-R substrate (IRS)-1 and -2. Blood levels of leptin and adiponectin were also measured. Adult Wistar male rats were divided into four groups (n=16 per group): (i) control diet (3% fat); (ii) high-fat (35%) diet; (iii) high-fat diet+melatonin; (iv) control diet+melatonin. Rats had free access to high-fat or control chow and one of the following drinking solutions: (a) tap water; (b) 25 μg/mL of melatonin. After 10 weeks, the high-fat fed rats showed augmented MBH mRNA levels of NPY, leptin-R, PrRP, insulin-R, IRS-1 and IRS-2. The concomitant administration of melatonin counteracted this increase. Feeding of rats with a high-fat diet augmented expression of the MBH POMC gene through an effect insensitive to melatonin treatment. The augmented levels of circulating leptin and adiponectin seen in high-fat fed rats were counteracted by melatonin as was the augmented body weight: melatonin significantly attenuated a body weight increase in high-fat fed rats without affecting chow or water consumption. Melatonin augmented plasma leptin and adiponectin in control rats. The results indicate that an effect on gene expression of feeding behavior signals at the central nervous system (CNS) may complement a peripheral rise of the energy expenditure produced by melatonin to decrease body weight in high-fat fed rats.

  10. A hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion.

    Science.gov (United States)

    Xu, D; Wu, Y; Liu, F; Liu, Y S; Shen, L; Lei, Y Y; Liu, J; Ping, J; Qin, J; Zhang, C; Chen, L B; Magdalou, J; Wang, H

    2012-11-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic-pituitary-adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Regulation of Kisspeptin Synthesis and Release in the Preoptic/Anterior Hypothalamic Region of Prepubertal Female Rats: Actions of IGF-1 and Alcohol.

    Science.gov (United States)

    Hiney, Jill K; Srivastava, Vinod K; Vaden Anderson, Danielle N; Hartzoge, Nicole L; Dees, William L

    2018-01-01

    Alcohol (ALC) causes suppressed secretion of prepubertal luteinizing hormone-releasing hormone (LHRH). Insulin-like growth factor-1 (IGF-1) and kisspeptin (Kp) are major regulators of LHRH and are critical for puberty. IGF-1 may be an upstream mediator of Kp in the preoptic area and rostral hypothalamic area (POA/RHA) of the rat brain, a region containing both Kp and LHRH neurons. We investigated the ability of IGF-1 to stimulate prepubertal Kp synthesis and release in POA/RHA, and the potential inhibitory effects of ALC. Immature female rats were administered either ALC (3 g/kg) or water via gastric gavage at 0730 hours. At 0900 hours, both groups were subdivided where half received either saline or IGF-1 into the brain third ventricle. A second dose of ALC (2 g/kg) or water was administered at 1130 hours. Rats were killed 6 hours after injection and POA/RHA region collected. IGF-1 stimulated Kp, an action blocked by ALC. Upstream to Kp, IGF-1 receptor (IGF-1R) activation, as demonstrated by the increase in insulin receptor substrate 1, resulted in activation of Akt, tuberous sclerosis 2, ras homologue enriched in brain, and mammalian target of rapamycin (mTOR). ALC blocked the central action of IGF-1 to induce their respective phosphorylation. IGF-1 specificity and ALC specificity for the Akt-activated mTOR pathway were demonstrated by the absence of effects on PRAS40. Furthermore, IGF-1 stimulated Kp release from POA/RHA incubated in vitro. IGF-1 stimulates prepubertal Kp synthesis and release following activation of a mTOR signaling pathway, and ALC blocks this pathway at the level of IGF-1R. Copyright © 2017 by the Research Society on Alcoholism.

  12. Imidazoline2 (I2) receptor- and alpha2-adrenoceptor-mediated modulation of hypothalamic-pituitary-adrenal axis activity in control and acute restraint stressed rats.

    Science.gov (United States)

    Finn, David P; Hudson, Alan L; Kinoshita, Hiroshi; Coventry, Toni L; Jessop, David S; Nutt, David J; Harbuz, Michael S

    2004-03-01

    Central noradrenaline regulates the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the neuroendocrine response to stress. alpha2-adrenoceptors and imidazoline2 (I2) receptors modulate the activity of the central noradrenergic system. The present set of experiments investigated the role of alpha2-adrenoceptors and I2 receptors in the regulation of HPA axis activity under basal conditions and during exposure to the acute psychological stress of restraint. Three separate experiments were carried out in which rats were given an i.p. injection of either saline vehicle, the combined alpha2-adrenoceptor antagonist and I2 receptor ligand idazoxan (10 mg/kg), the selective I2 receptor ligand BU224 (2.5 or 10 mg/kg) or the selective alpha2-adrenoceptor antagonist RX821002 (2.5 mg/kg) with or without restraint stress. Drugs were administered immediately prior to restraint of 60 min duration. Blood was sampled pre-injection, 30, 60 and 240 min post-injection and plasma corticosterone was measured by radioimmunoassay. In experiment 1, idazoxan increased plasma corticosterone levels in naive animals and potentiated the corticosterone response to acute restraint stress. In experiment 2, BU224 administration increased plasma corticosterone levels in a dose-related manner in naive rats. The results of experiment 3 indicated that RX821002 also elevated plasma corticosterone levels in naive rats, however, only BU224 potentiated the corticosterone response to restraint stress. These studies suggest that both alpha2-adrenoceptors and I2 receptors play a role in modulating basal HPA axis activity and that I2 receptors may play a more important role than alpha2-adrenoceptors in modulating the HPA axis response to the acute psychological stress of restraint.

  13. Assessment of the role of intracranial hypertension and stress on hippocampal cell apoptosis and hypothalamic-pituitary dysfunction after TBI.

    Science.gov (United States)

    Tan, Huajun; Yang, Weijian; Wu, Chenggang; Liu, Baolong; Lu, Hao; Wang, Hong; Yan, Hua

    2017-06-19

    In recent years, hypopituitarism caused by traumatic brain injury (TBI) has been explored in many clinical studies; however, few studies have focused on intracranial hypertension and stress caused by TBI. In this study, an intracranial hypertension model, with epidural hematoma as the cause, was used to explore the physiopathological and neuroendocrine changes in the hypothalamic-pituitary axis and hippocampus. The results demonstrated that intracranial hypertension increased the apoptosis rate, caspase-3 levels and proliferating cell nuclear antigen (PCNA) in the hippocampus, hypothalamus, pituitary gland and showed a consistent rate of apoptosis within each group. The apoptosis rates of hippocampus, hypothalamus and pituitary gland were further increased when intracranial pressure (ICP) at 24 hour (h) were still increased. The change rates of apoptosis in hypothalamus and pituitary gland were significantly higher than hippocampus. Moreover, the stress caused by surgery may be a crucial factor in apoptosis. To confirm stress leads to apoptosis in the hypothalamus and pituitary gland, we used rabbits to establish a standard stress model. The results confirmed that stress leads to apoptosis of neuroendocrine cells in the hypothalamus and pituitary gland, moreover, the higher the stress intensity, the higher the apoptosis rate in the hypothalamus and pituitary gland.

  14. The Environmental Pollutant Tributyltin Chloride Disrupts the Hypothalamic-Pituitary-Adrenal Axis at Different Levels in Female Rats.

    Science.gov (United States)

    Merlo, Eduardo; Podratz, Priscila L; Sena, Gabriela C; de Araújo, Julia F P; Lima, Leandro C F; Alves, Izabela S S; Gama-de-Souza, Letícia N; Pelição, Renan; Rodrigues, Lívia C M; Brandão, Poliane A A; Carneiro, Maria T W D; Pires, Rita G W; Martins-Silva, Cristina; Alarcon, Tamara A; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2016-08-01

    Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.

  15. Intraperitoneal injection of neuropeptide Y (NPY) alters neurotrophin rat hypothalamic levels: Implications for NPY potential role in stress-related disorders.

    Science.gov (United States)

    Gelfo, Francesca; De Bartolo, Paola; Tirassa, Paola; Croce, Nicoletta; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco

    2011-06-01

    Neuropeptide Y (NPY) is a 36-amino acid peptide which exerts several regulatory actions within peripheral and central nervous systems. Among NPY actions preclinical and clinical data have suggested that the anxiolytic and antidepressant actions of NPY may be related to its antagonist action on the hypothalamic-pituitary-adrenal (HPA) axis. The neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are proteins involved in the growth, survival and function of neurons. In addition to this, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has been proposed. To characterize the effect of NPY on the production of neurotrophins in the hypothalamus we exposed young adult rats to NPY intraperitoneal administration for three consecutive days and then evaluated BDNF and NGF synthesis in this brain region. We found that NPY treatment decreased BDNF and increased NGF production in the hypothalamus. Given the role of neurotrophins in the hypothalamus, these findings, although preliminary, provide evidence for a role of NPY as inhibitor of HPA axis and support the idea that NPY might be involved in pathologies characterized by HPA axis dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. [Effects of hypothalamic microinjections of 6-hydroxydopamine (6-OHDA) on estral cycle and morphology of the genital tract in the female rat (author's transl)].

    Science.gov (United States)

    Sala, M A; Oteui, J T; Benedetti, W I

    1975-01-01

    To determine whether central catecholaminergic pathways are involved in the neural contral of gonadotrophin secretion, they were interrupted at the hypothalamic level by microinjections of 6-hydroxydopamine (6-OHDA). The effects on ovulation, estral cycle and ovarian and uterine histology were studied. Microinjections of 50 mug of 6-OHDA hydrobromyde were made bilaterally into the anterolateral hypothalamus in a group of rats. Another group was injected with 25 mug of 6-OHDA, while a control group recieved an equivalent volume (5 mul) of saline with ascorbic acid. Animals injected with 50 mug of 6-OHDA showed blockade of ovulation, vaginal cytology characteristics of persistent estrous, polyfollicular ovaries and enlarged uteri with hypertrophic endometrial glands. In the group injected with 25 mug, similiar effects were demonstrated, but the number of affected animals was smaller than that in the 50 mug group. Control animals dit not show modifications, either in estral cycle or in ovarian and uterine histology. These results suggest that 6-OHDA injected into the anterolateral hypothalmus interferes with catecholaminergic pathways that participate in the neural control of ovulation.

  17. Hypothalamic demyelination causing panhypopituitarism.

    Science.gov (United States)

    Dixon-Douglas, Julia; Burgess, John; Dreyer, Michael

    2018-05-01

    Hypothalamic involvement in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) is rare and endocrinopathies involving the hypothalamic-pituitary axis in patients with demyelinating conditions have rarely been reported. We present two cases of MS/NMOSD with associated hypothalamic-pituitary involvement and subsequent hypopituitarism, including the first report of a patient with hypothalamic demyelination causing panhypopituitarism. Differential diagnoses, including alemtuzumab-related and primary pituitary pathology are discussed. © 2018 Royal Australasian College of Physicians.

  18. Zolpidem, a selective GABA(A) receptor alpha1 subunit agonist, induces comparable Fos expression in oxytocinergic neurons of the hypothalamic paraventricular and accessory but not supraoptic nuclei in the rat

    DEFF Research Database (Denmark)

    Kiss, Alexander; Søderman, Andreas; Bundzikova, Jana

    2006-01-01

    Functional activation of oxytocinergic (OXY) cells in the hypothalamic paraventricular (PVN), supraoptic (SON), and accessory (ACC) nuclei was investigated in response to acute treatment with Zolpidem (a GABA(A) receptor agonist with selectivity for alpha(1) subunits) utilizing dual Fos/OXY immun...

  19. Responsiveness of the hypothalamic-pituitary-adrenal axis to different novel environments is a consistent individual trait in adult male outbred rats.

    Science.gov (United States)

    Márquez, Cristina; Nadal, Roser; Armario, Antonio

    2005-02-01

    Susceptibility to some stress-induced pathologies may be strongly related to individual differences in the responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis to stressors. However, there have been few attempts in rodents to study the reliability of the individual differences in the responsiveness of the HPA to stressors and the relationship to resting corticosterone levels. In the present work, we used a normal population of Sprague-Dawley rats, with a within-subject design. Our objectives were to study: (a) the reliability of the ACTH and corticosterone response to three different novel environments widely used in psychopharmacology and (b) the relationship between stress levels of HPA hormones and the daily pattern of corticosterone secretion (six samples over a 24-h-period). Animals were repeatedly sampled using tail-nick procedure. The novel environments were the elevated plus-maze, the hole-board and the circular corridor. Animals were sampled just after 15 min exposure to the tests and again at 15 and 30 min after the termination of exposure to them (post-tests). The hormonal levels just after the tests indicate that the hole-board seems to be more stressful than the circular corridor and the elevated plus-maze, the latter being characterized by the lowest defecation rate. Correlational analysis revealed that daily pattern of resting plasma corticosterone levels did not correlate to HPA responsiveness to the tests, suggesting no relationship between resting and stress levels of HPA hormones. In contrast, the present study demonstrates, for the first time, a good within-subject reliability of the ACTH and corticosterone responses to the three environments, suggesting that HPA responsiveness to these kind of stressors is a consistent individual trait in adult rats, despite differences in the physical characteristics of the novel environments.

  20. Hypothalamic tumor

    Science.gov (United States)

    ... in the brain to reduce spinal fluid pressure. Risks of radiation therapy include damage to healthy brain cells when tumor cells are destroyed. Common side effects from chemotherapy include loss of appetite, nausea and vomiting, and fatigue.

  1. Blunted hypothalamic ghrelin signaling reduces diet intake in rats fed a low-protein diet in late pregnancy

    Science.gov (United States)

    Diet intake in pregnant rats fed a low-protein (LP) diet was significantly reduced during late pregnancy despite elevated plasma levels of ghrelin. In this study, we hypothesized that ghrelin signaling in the hypothalamus is blunted under a low-protein diet condition and therefore, it does not stimu...

  2. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals

    Science.gov (United States)

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744

  3. Water deprivation increases Fos expression in hypothalamic corticotropin-releasing factor neurons induced by right atrial distension in awake rats.

    Science.gov (United States)

    Benedetti, Mauricio; Rorato, Rodrigo; Castro, Margaret; Machado, Benedito H; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2008-11-01

    Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.

  4. The Frequency-Dependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-06-01

    Full Text Available A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months and old (24 months male Wistar rats were divided into young control (YC, old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks. Exercise training indexes were obtained, including resting heart rate (HR, blood pressure (BP, plasma norepinephrine (NE, and heart weight (HW-to-body weight (BW ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN.

  5. The Frequency-Dependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats

    Science.gov (United States)

    Li, Yan; Zhao, Ziqi; Cai, Jiajia; Gu, Boya; Lv, Yuanyuan; Zhao, Li

    2017-01-01

    A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs) such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN) in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months) and old (24 months) male Wistar rats were divided into young control (YC), old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks) and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks). Exercise training indexes were obtained, including resting heart rate (HR), blood pressure (BP), plasma norepinephrine (NE), and heart weight (HW)-to-body weight (BW) ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN. PMID:28713263

  6. The effect of 8 weeks of endurance training on hypothalamic Nesfatin-1 gene expression and its concentration in male rats

    Directory of Open Access Journals (Sweden)

    Abbas Ghanbari Niaki

    2012-09-01

    Full Text Available Background: Hypothalamus is mentioned as the major center of appetite and energy balance. Physical activity and the exersice are able to disturb the energy balance to negative. Nesfatin-1 is a regulating neuropeptide that is produced by hypothalamus and has an important role in establishing energy balance. The purpose of this study was to examine the effect of endurance training regimen on nesfatin-1 gene expression and its concentration in the male rat hypothalamus. Materials and Methods: Eleven adult wistar male rats (8-10 week old, 130-145g assigned into control(C, n=5 and training (E, n=6 groups. Training group was given exercise on a motor-driven treadmill (20m/min, 0% grade, 60 min/session, 5days/week for 8 weeks. Rats were sacrificed 72h after the last training session and then the hypothalamus tissue was excised for determination of nesfatin-1 gene expression and its concentration by RT-PCR & ELIZA methods, respectively. Four hours before the experiment the food not tap water was removed from the animal cages. Data was analyzed by using an independent t-student test. Results: The current results indicated that the levels of nesfatin-1 gene expression and its concentration, ATP, and glycogen concentrations were non-significantly lower in trained group when compared with control group. Conclusion: This research showed for the first time, that a low-intensity exercises, decreases nesfatin-1 expression and concentration in the hypothalamus, which accompanied insignificant reduction in energy source. It seems that in the present research, the exercise has had the same fasting and being hungry like effect on nesfatin-1 expression and concentration in the hypothalamus.

  7. Dominant dwarfism in transgenic rats by targeting human growth hormone (GH) expression to hypothalamic GH-releasing factor neurons.

    OpenAIRE

    Flavell, D M; Wells, T; Wells, S E; Carmignac, D F; Thomas, G B; Robinson, I C

    1996-01-01

    Expression of human growth hormone (hGH) was targeted to growth hormone-releasing (GRF) neurons in the hypothalamus of transgenic rats. This induced dominant dwarfism by local feedback inhibition of GRF. One line, bearing a single copy of a GRF-hGH transgene, has been characterized in detail, and has been termed Tgr (for Transgenic growth-retarded). hGH was detected by immunocytochemistry in the brain, restricted to the median eminence of the hypothalamus. Low levels were also detected in the...

  8. Topography of subnuclei of the hypothalamic paraventricular nucleus in rats and sensitivity of their neurons to insulin defficiency

    International Nuclear Information System (INIS)

    Goufman, E.I.

    1985-01-01

    This investigation was undertaken to study the reaction of paraventricular nuclei (PVN) subnuclei to insulin deficiency and to elevation of the blood glucose level under conditions of experimental alloxan diabetes. Experiments were carried out on 15 control and 15 experimental mature male Wistar rats. The state of the carbohydrate metabolism of the diabetic and control animals was judged by the blood glucose and radioimmune insulin levels. The results of these investigations show that both magnocellular and parvocellular neurons of PVN react to alloxan diabetes, which supports the hypothesis that PVN of the hypothalamus participates in the control of carbohydrate metabolism

  9. Antidepressant-Like Effects of Shuyusan in Rats Exposed to Chronic Stress: Effects on Hypothalamic-Pituitary-Adrenal Function

    Directory of Open Access Journals (Sweden)

    Liping Chen

    2012-01-01

    Full Text Available This study was to investigate antidepressant activities of Shuyusan (a Chinese herb, using a rats model of depression induced by unpredictable chronic mild stress (UCMS. The administration groups were treated with Shuyusan decoction for 3 weeks and compared with fluoxetine treatment. In order to understand the potential antidepressant-like activities of Shuyusan, tail suspension test (TST and forced swimming test (FST were used as behavioral despair study. The level of corticotropin-releasing factor (CRH, adrenocorticotropic hormone (ACTH, corticosterone (CORT and hippocampus glucocorticoid receptor expression were examined. After modeling, there was a significant prolongation of immobility time in administration groups with the TST and FST. High-dose Shuyusan could reduce the immobility time measured with the TST and FST. The immobility time in high-dose herbs group and fluoxetine group was increased significantly compared with the model group. After 3 weeks herbs fed, the serum contents level of CRH, ACTH, and CORT in high-dose herb group was significantly decreased compared to the model group. The result indicated that Shuyusan had antidepressant activity effects on UCMS model rats. The potential antidepressant effect may be related to decreasing glucocorticoid levels activity, regulating the function of HPA axis, and inhibiting glucocorticoid receptor expression in hippocampus.

  10. Effects of insulin and leptin in the ventral tegmental area and arcuate hypothalamic nucleus on food intake and brain reward function in female rats.

    Science.gov (United States)

    Bruijnzeel, Adrie W; Corrie, Lu W; Rogers, Jessica A; Yamada, Hidetaka

    2011-06-01

    There is evidence for a role of insulin and leptin in food intake, but the effects of these adiposity signals on the brain reward system are not well understood. Furthermore, the effects of insulin and leptin on food intake in females are underinvestigated. These studies investigated the role of insulin and leptin in the ventral tegmental area (VTA) and the arcuate hypothalamic nucleus (Arc) on food intake and brain reward function in female rats. The intracranial self-stimulation procedure was used to assess the effects of insulin and leptin on the reward system. Elevations in brain reward thresholds are indicative of a decrease in brain reward function. The bilateral administration of leptin into the VTA (15-500 ng/side) or Arc (15-150 ng/side) decreased food intake for 72 h. The infusion of leptin into the VTA or Arc resulted in weight loss during the first 48 (VTA) or 24 h (Arc) after the infusions. The administration of insulin (0.005-5 mU/side) into the VTA or Arc decreased food intake for 24 h but did not affect body weights. The bilateral administration of low, but not high, doses of leptin (15 ng/side) or insulin (0.005 mU/side) into the VTA elevated brain reward thresholds. Neither insulin nor leptin in the Arc affected brain reward thresholds. These studies suggest that a small increase in leptin or insulin levels in the VTA leads to a decrease in brain reward function. A relatively large increase in insulin or leptin levels in the VTA or Arc decreases food intake. Published by Elsevier B.V.

  11. Expression of neuropeptide Y and pro-opiomelanocortin in hypothalamic arcuate nucleus in 17α-ethinyl estradiol-induced intrahepatic cholestasis pregnant rat offspring.

    Science.gov (United States)

    Shi, Qingyun; Wang, Jingjing; Yan, Shi; Zhao, Jin; Li, Hongxia

    2014-02-01

    The purpose of this study was to investigate the expression of neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) in the hypothalamic arcuate nucleus of intrahepatic cholestasis pregnant (ICP) offspring. The model of ICP rats was established by injecting s.c. 17α-ethinyl estradiol. The expression of NPY and POMC in female offspring was determined by quantitative real-time reverse transcription polymerase chain reaction, western blotting and immunohistochemistry at birthday and 6 months. ICP group offspring had lower bodyweight at birthday. ICP offspring were markedly heavier than control offspring after 6 months. mRNA and protein expression of NPY and POMC significantly increased at 6 months as compared with the birthday among control offspring. Among ICP offspring, mRNA and protein expression of NPY and POMC also were higher at 6 months than at birthday. The mRNA and protein expression of NPY were higher in ICP offspring than that of control offspring at birthday. The mRNA and protein expression of POMC were decreased in ICP offspring than that of control offspring. After 6 months, the mRNA expression and protein expression of NPY also were higher in ICP offspring than that of control offspring. The mRNA expression and protein expression of POMC also were decreased in ICP offspring than that of control offspring. The results were confirmed by immunohistochemistry. ICP offspring demonstrated evidence of persistent appetite stimulation with significantly upregulated NPY expression and reduced POMC expression at birthday and 6 months. ICP offspring showed a hunger state and then gained weight. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  12. Hepatic vagotomy alters limbic and hypothalamic neuropeptide responses to insulin-dependent diabetes and voluntary lard ingestion

    NARCIS (Netherlands)

    la Fleur, Susanne E.; Manalo, Sotara L.; Roy, Monica; Houshyar, Hani; Dallman, Mary F.

    2005-01-01

    Hypothalamic anorexigenic [corticotropin-releasing factor (CRF) and proopiomelanocortin] peptides decrease and the orexigen, neuropeptide Y, increases with diabetic hyperphagia. However, when diabetic rats are allowed to eat lard (saturated fat) as well as chow, both caloric intake and hypothalamic

  13. Phaseolus vulgaris Leuco-Agglutinin Tracing of Intrahypothalamic Connections of the Lateral, Ventromedial, Dorsomedial and Paraventricular Hypothalamic Nuclei in the Rat

    NARCIS (Netherlands)

    Horst, G.J. ter; Luiten, P.G.M.

    Intrahypothalamic connections of the lateral (LHA), ventromedial (VMH), dorsomedial (DMH) and paraventricular (PVN) hypothalamic nuclei were studied with anterograde transport of iontophoretically injected Phaseolus vulgaris leuco-agglutinin and the immunocytochemical detection of labeled

  14. Pre- and postnatal nutrition in sheep affects ß-cell secretion and hypothalamic control

    DEFF Research Database (Denmark)

    Kongsted, Anna Hauntoft; Husted, Sanne Vinter; Thygesen, Malin P.

    2013-01-01

    Maternal undernutrition increases the risk of type 2 diabetes and metabolic syndrome later in life, particularly upon postnatal exposure to a high-energy diet. However, dysfunctions of, for example, the glucose–insulin axis are not readily detectable by conventional tests early in life, making...... and short-term abundance of food. In this study, twin-pregnant sheep were fed diets meeting 100% (NORM) or 50% (LOW) of energy and protein requirements during the last trimester. Twin offspring were fed either a normal moderate (CONV) diet or a high-carbohydrate–high-fat (HCHF) diet from 3 days to 6 months...... abundance) and adrenalin challenges. At 6 months of age, postnatal HCHF diet exposure caused metabolic alterations, reflecting hypertriglyceridaemia and altered pancreatic β-cell secretion. Irrespective of postnatal diet, prenatal undernutrition was found to be associated with unexpected endocrine responses...

  15. [Protective effect of melatonin and epithalon on hypothalamic regulation of reproduction in female rats in its premature aging model and on estrous cycles in senescent animals in various lighting regimes].

    Science.gov (United States)

    Korenevsky, A V; Milyutina, Yu P; Bukalyov, A V; Baranova, Yu P; Vinogradova, I A; Arutjunyan, A V

    2013-01-01

    Potential neuroprotective effects of the pineal gland hormone melatonin and peptide preparation epitalon on estrous cycles and the central regulation of reproduction in female rats exposed to unfavourable environmental factors have been studied. Estrous cycles of young, mature and aging rats exposed to light pollution were described. The diurnal dynamics and daily mean content of biogenic amines in the hypothalamic areas responsible for gonadotropin-releasing hormone synthesis and secretion in animals of different age groups were investigated. An effect of a chemical factor on the noradrenergic system of the medial preoptic area and on the dopaminergic system of the median eminence with arcuate nuclei of the hypothalamus was studied in premature aging of reproduction model. Administration of the pineal gland peptide melatonin and peptide preparation epitalon was shown to be able to correct a number of impairments of the hypothalamic-pituitary-gonadal axis that can be observed, when the experimental animals were exposed to permanent artificial lighting and a neurotoxic xenobiotic 1,2-dimethylhydrazine. The data obtained testify to an important role of the pineal gland in the circadian signal formation needed for gonadotropin-releasing hormone in order to exert its preovulatory peak secretion and to the protective effect of melatonin and epitalon, which are able to reduce unfavourable environmental influences on reproduction of young and aging female rats.

  16. Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons.

    Science.gov (United States)

    Takahashi, Hiroyuki; Takata, Fuyuko; Matsumoto, Junichi; Machida, Takashi; Yamauchi, Atsushi; Dohgu, Shinya; Kataoka, Yasufumi

    2015-02-20

    Insulin signaling in the hypothalamus plays an important role in food intake and glucose homeostasis. Hypothalamic neuronal functions are modulated by glial cells; these form an extensive network connecting the neurons and cerebral vasculature, known as the neurovascular unit (NVU). Brain pericytes are periendothelial accessory structures of the blood-brain barrier and integral members of the NVU. However, the interaction between pericytes and neurons is largely unexplored. Here, we investigate whether brain pericytes could affect hypothalamic neuronal insulin signaling. Our immunohistochemical observations demonstrated the existence of pericytes in the mouse hypothalamus, exhibiting immunoreactivity of platelet-derived growth factor receptor β (a pericyte marker), and laminin, a basal lamina marker. We then exposed a murine hypothalamic neuronal cell line, GT1-7, to conditioned medium obtained from primary cultures of rat brain pericytes. Pericyte-conditioned medium (PCM), but not astrocyte- or aortic smooth muscle cell-conditioned medium, increased the insulin-stimulated phosphorylation of Akt in GT1-7 cells in a concentration-dependent manner. PCM also enhanced insulin-stimulated tyrosine phosphorylation of insulin receptor β without changing its expression or localization in cytosolic or plasma membrane fractions. These results suggest that pericytes, rather than astrocytes, increase insulin sensitivity in hypothalamic neurons by releasing soluble factors under physiological conditions in the NVU. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    International Nuclear Information System (INIS)

    Eissa, Laila A.; Smith, Sylvia B.; El-sherbeny, Amira A.

    2006-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  18. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  19. The contribution of hypothalamic neuroendocrine, neuroplastic and neuroinflammatory processes to lipopolysaccharide-induced depressive-like behaviour in female and male rats: Involvement of glucocorticoid receptor and C/EBP-β.

    Science.gov (United States)

    Adzic, Miroslav; Djordjevic, Jelena; Mitic, Milos; Brkic, Zeljka; Lukic, Iva; Radojcic, Marija

    2015-09-15

    Peripheral inflammation induced by lipopolysaccharide (LPS) causes behavioural changes indicative for depression. The possible mechanisms involve the interference with neuroinflammatory, neuroendocrine, and neurotrophic processes. Apart from heterogeneity in the molecular background, sexual context may be another factor relevant to the manifestation of mood disturbances upon an immune challenge. We investigated sex-dependent effects of a 7-day LPS treatment of adult Wistar rats on depressive-like behaviour and their relation with hypothalamic neuroendocrine factor, corticotrophin-releasing hormone (CRH), proplastic brain-derived neurotropic factor (BDNF), pro-inflammatory cyclooxygenase-2 (COX-2) and nuclear factor kappa beta (NFkB). Also, their regulators, the glucocorticoid receptor (GR) and CCAAT enhancer-binding protein (C/EBP) β were followed. LPS induced depressive-like behaviour in females was associated with the increased hypothalamic CRH and decreased BDNF, but not with COX-2. These changes were paralleled by an increase in nuclear GR, NFkB and 20 kDa C/EBPβ. LPS also altered behaviour in males and increased CRH expression, but in contrast to females, this was accompanied with the elevated COX-2, accumulation of cytosolic GR and elevated nuclear 38 kDa C/EBPβ and NFkB. In conclusion, depressive-like phenotype induced by LPS in both sexes emerges from similar HPA axis activation and sex-specific alterations of hypothalamic molecular signalling: in males it is related to compromised control of neuroinflamation connected with cytoplasmic GR retention, while in females it is related to diminished proplastic capacity of BDNF. Sex-dependent mechanisms by which inflammation alters hypothalamic processes and cause pathological behaviour in animals, could be operative in the treatment of depression-related brain inflammation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    Directory of Open Access Journals (Sweden)

    Malgorzata S. Martin-Gronert

    2016-04-01

    Full Text Available Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC peptides within the arcuate nucleus of the hypothalamus (ARC. We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.

  1. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats.

    Science.gov (United States)

    Martin-Gronert, Malgorzata S; Stocker, Claire J; Wargent, Edward T; Cripps, Roselle L; Garfield, Alastair S; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S H; Cawthorne, Michael A; Arch, Jonathan R S; Heisler, Lora K; Ozanne, Susan E

    2016-04-01

    Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. © 2016. Published by The Company of Biologists Ltd.

  2. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit.

    Science.gov (United States)

    Larsen, P J; Seier, V; Fink-Jensen, A; Holst, J J; Warberg, J; Vrang, N

    2003-03-01

    Cocaine- and amphetamine-regulated transcript (CART) is present in a number of hypothalamic nuclei. Besides actions in circuits regulating feeding behaviour and stress responses, the hypothalamic functions of CART are largely unknown. We report that CART immunoreactivity is present in hypothalamic neuroendocrine neurones. Adult male rats received a systemic injection of the neuronal tracer Fluorogold (FG) 2 days before fixation, and subsequent double- and triple-labelling immunoflourescence analysis demonstrated that neuroendocrine CART-containing neurones were present in the anteroventral periventricular, supraoptic, paraventricular (PVN) and periventricular nuclei of the hypothalamus. In the PVN, CART-positive neuroendocrine neurones were found in all of cytoarchitectonically identified nuclei. In the periventricular nucleus, approximately one-third of somatostatin cells were also CART-immunoreactive. In the medial parvicellular subnucleus of the PVN, CART and FG coexisted with thyrotrophin-releasing hormone, whereas very few of the corticotrophin-releasing hormone containing cells were CART-immunoreactive. In the arcuate nucleus, CART was extensively colocalized with pro-opiomelanocortin in the ventrolateral part, but completely absent from neuroendocrine neurones of the dorsomedial part. To assess the possible role of CART as a hypothalamic-releasing factor, immunoreactive CART was measured in blood samples from the long portal vessels connecting the median eminence with the anterior pituitary gland. Adult male rats were anaesthetized and the infundibular stalk exposed via a transpharyngeal approach. The long portal vessels were transected and blood collected in 30-min periods (one prestimulatory and three poststimulatory periods). Compared to systemic venous plasma samples, baseline concentrations of immunoreactive CART were elevated in portal plasma. Exposure to sodium nitroprusside hypotension triggered a two-fold elevation of portal CART42

  3. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1-7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils.

    Science.gov (United States)

    Mizuno, Dai; Konoha-Mizuno, Keiko; Mori, Miwako; Yamazaki, Kentaro; Haneda, Toshihiro; Koyama, Hironari; Kawahara, Masahiro

    2015-01-01

    Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer's disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1-7 cells). In this study, we evaluated the effects of essential oils on neuronal death induced by hydrogen peroxide (H2O2), aluminum, zinc, or the antagonist of estrogen receptor (tamoxifen). Among tests of various essential oils, we found that H2O2-induced neuronal death was attenuated by the essential oils of damask rose, eucalyptus, fennel, geranium, ginger, kabosu, mandarin, myrrh, and neroli. Damask rose oil had protective effects against aluminum-induced neurotoxicity, while geranium and rosemary oil showed protective activity against zinc-induced neurotoxicity. In contrast, geranium oil and ginger oil enhanced the neurotoxicity of tamoxifen. Our in vitro assay system could be useful for the neuropharmacological and endocrine pharmacological studies of essential oils.

  4. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1–7 Cells for Evaluation of the Neuroendocrine Effects of Essential Oils

    Directory of Open Access Journals (Sweden)

    Dai Mizuno

    2015-01-01

    Full Text Available Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer’s disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1–7 cells. In this study, we evaluated the effects of essential oils on neuronal death induced by hydrogen peroxide (H2O2, aluminum, zinc, or the antagonist of estrogen receptor (tamoxifen. Among tests of various essential oils, we found that H2O2-induced neuronal death was attenuated by the essential oils of damask rose, eucalyptus, fennel, geranium, ginger, kabosu, mandarin, myrrh, and neroli. Damask rose oil had protective effects against aluminum-induced neurotoxicity, while geranium and rosemary oil showed protective activity against zinc-induced neurotoxicity. In contrast, geranium oil and ginger oil enhanced the neurotoxicity of tamoxifen. Our in vitro assay system could be useful for the neuropharmacological and endocrine pharmacological studies of essential oils.

  5. Effect of hyperthyroidism on circulating prolactin and hypothalamic expression of tyrosine hydroxylase, prolactin signaling cascade members and estrogen and progesterone receptors during late pregnancy and lactation in the rat.

    Science.gov (United States)

    Pennacchio, Gisela E; Neira, Flavia J; Soaje, Marta; Jahn, Graciela A; Valdez, Susana R

    2017-02-15

    Hyperthyroidism (HyperT) compromises pregnancy and lactation, hindering suckling-induced PRL release. We studied the effect of HyperT on hypothalamic mRNA (RT-qPCR) and protein (Western blot) expression of tyrosine hydroxylase (TH), PRL receptor (PRLR) and signaling pathway members, estrogen-α (ERα) and progesterone (PR) receptors on late pregnancy (days G19, 20 and 21) and early lactation (L2) in rats. HyperT advanced pre-partum PRL release, reduced circulating PRL on L2 and increased TH mRNA (G21 and L2), p-TH, PRLR mRNA, STAT5 protein (G19 and L2), PRLR protein (G21) and CIS protein (G19). PRs mRNAs and protein decreased on G19 but afterwards PRA mRNA (G20), PRB mRNA (G21) and PRA mRNA and protein (L2) increased. ERα protein increased on G19 and decreased on G20. Thus, the altered hypothalamic PRLR, STAT5, PR and ERα expression in hyperthyroid rats may induce elevated TH expression and activation, that consequently, elevate dopaminergic tone during lactation, blunting suckling-induced PRL release and litter growth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. The alpha(2)-adrenoceptors do not modify the activity of tyrosine hydroxylase, corticoliberine, and neuropeptide Y producing hypothalamic magnocellular neurons ion the Long Evans and Brattleboro rats

    DEFF Research Database (Denmark)

    Bundzikova, J; Pirnik, Z; Zelena, D

    2010-01-01

    The hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei are activated by body salt-fluid variations. Stimulation of alpha(2)-adrenoceptors by an agonist-xylazine (XYL) activates oxytocinergic but not vasopressinergic magnocellular neurons. In this study, tyrosine hydroxylase (TH), cort...

  7. Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances β-cell function of obese Zucker rats

    Directory of Open Access Journals (Sweden)

    Mélanie Campana

    2018-02-01

    Full Text Available Objectives: Hypothalamic lipotoxicity has been shown to induce central insulin resistance and dysregulation of glucose homeostasis; nevertheless, elucidation of the regulatory mechanisms remains incomplete. Here, we aimed to determine the role of de novo ceramide synthesis in hypothalamus on the onset of central insulin resistance and the dysregulation of glucose homeostasis induced by obesity. Methods: Hypothalamic GT1-7 neuronal cells were treated with palmitate. De novo ceramide synthesis was inhibited either by pharmacological (myriocin or molecular (si-Serine Palmitoyl Transferase 2, siSPT2 approaches. Obese Zucker rats (OZR were intracerebroventricularly infused with myriocin to inhibit de novo ceramide synthesis. Insulin resistance was determined by quantification of Akt phosphorylation. Ceramide levels were quantified either by a radioactive kinase assay or by mass spectrometry analysis. Glucose homeostasis were evaluated in myriocin-treated OZR. Basal and glucose-stimulated parasympathetic tonus was recorded in OZR. Insulin secretion from islets and β-cell mass was also determined. Results: We show that palmitate impaired insulin signaling and increased ceramide levels in hypothalamic neuronal GT1-7 cells. In addition, the use of deuterated palmitic acid demonstrated that palmitate activated several enzymes of the de novo ceramide synthesis pathway in hypothalamic cells. Importantly, myriocin and siSPT2 treatment restored insulin signaling in palmitate-treated GT1-7 cells. Protein kinase C (PKC inhibitor or a dominant-negative PKCζ also counteracted palmitate-induced insulin resistance. Interestingly, attenuating the increase in levels of hypothalamic ceramides with intracerebroventricular infusion of myriocin in OZR improved their hypothalamic insulin-sensitivity. Importantly, central myriocin treatment partially restored glucose tolerance in OZR. This latter effect is related to the restoration of glucose-stimulated insulin

  8. Exposure to a highly caloric palatable diet during pregestational and gestational periods affects hypothalamic and hippocampal endocannabinoid levels at birth and induces adiposity and anxiety-like behaviors in male rat offspring

    Directory of Open Access Journals (Sweden)

    Maria Teresa eRamírez-López

    2016-01-01

    Full Text Available Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and, although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory and emotions.

  9. Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats.

    Science.gov (United States)

    Wanner, Samuel P; Almeida, M Camila; Shimansky, Yury P; Oliveira, Daniela L; Eales, Justin R; Coimbra, Cândido C; Romanovsky, Andrej A

    2017-07-19

    In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 μg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 μg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever-hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking. SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest

  10. Hypothalamic and pituitary clusterin modulates neurohormonal responses to stress.

    Science.gov (United States)

    Shin, Mi-Seon; Chang, Hyukki; Namkoong, Churl; Kang, Gil Myoung; Kim, Hyun-Kyong; Gil, So Young; Yu, Ji Hee; Park, Kyeong Han; Kim, Min-Seon

    2013-01-01

    Clusterin is a sulfated glycoprotein abundantly expressed in the pituitary gland and hypothalamus of mammals. However, its physiological role in neuroendocrine function is largely unknown. In the present study, we investigated the effects of intracerebroventricular (ICV) administration of clusterin on plasma pituitary hormone levels in normal rats. Single ICV injection of clusterin provoked neurohormonal changes seen under acute stress condition: increased plasma adrenocorticotropic hormone (ACTH), corticosterone, GH and prolactin levels and decreased LH and FSH levels. Consistently, hypothalamic and pituitary clusterin expression levels were upregulated following a restraint stress, suggesting an involvement of endogenous clusterin in stress-induced neurohormonal changes. In the pituitary intermediate lobe, clusterin was coexpressed with proopiomelanocortin (POMC), a precursor of ACTH. Treatment of clusterin in POMC expressing AtT-20 pituitary cells increased basal and corticotropin-releasing hormone (CRH)-stimulated POMC promoter activities and intracellular cAMP levels. Furthermore, clusterin treatment triggered ACTH secretion from AtT-20 cells in a CRH-dependent manner, indicating that increased clusterin under stressful conditions may augment CRH-stimulated ACTH production and release. In summary, hypothalamic and pituitary clusterin may function as a modulator of neurohormonal responses under stressful conditions. © 2013 S. Karger AG, Basel.

  11. Neural input is critical for arcuate hypothalamic neurons to mount intracellular signaling responses to systemic insulin and deoxyglucose challenges in male rats: implications for communication within feeding and metabolic control networks.

    Science.gov (United States)

    Khan, Arshad M; Walker, Ellen M; Dominguez, Nicole; Watts, Alan G

    2014-02-01

    The hypothalamic arcuate nucleus (ARH) controls rat feeding behavior in part through peptidergic neurons projecting to the hypothalamic paraventricular nucleus (PVH). Hindbrain catecholaminergic (CA) neurons innervate both the PVH and ARH, and ablation of CA afferents to PVH neuroendocrine neurons prevents them from mounting cellular responses to systemic metabolic challenges such as insulin or 2-deoxy-d-glucose (2-DG). Here, we asked whether ablating CA afferents also limits their ARH responses to the same challenges or alters ARH connectivity with the PVH. We examined ARH neurons for three features: (1) CA afferents, visualized by dopamine-β-hydroxylase (DBH)- immunoreactivity; (2) activation by systemic metabolic challenge, as measured by increased numbers of neurons immunoreactive (ir) for phosphorylated ERK1/2 (pERK1/2); and (3) density of PVH-targeted axons immunoreactive for the feeding control peptides Agouti-related peptide and α-melanocyte-stimulating hormone (αMSH). Loss of PVH DBH immunoreactivity resulted in concomitant ARH reductions of DBH-ir and pERK1/2-ir neurons in the medial ARH, where AgRP neurons are enriched. In contrast, pERK1/2 immunoreactivity after systemic metabolic challenge was absent in αMSH-ir ARH neurons. Yet surprisingly, axonal αMSH immunoreactivity in the PVH was markedly increased in CA-ablated animals. These results indicate that (1) intrinsic ARH activity is insufficient to recruit pERK1/2-ir ARH neurons during systemic metabolic challenges (rather, hindbrain-originating CA neurons are required); and (2) rats may compensate for a loss of CA innervation to the ARH and PVH by increased expression of αMSH. These findings highlight the existence of a hierarchical dependence for ARH responses to neural and humoral signals that influence feeding behavior and metabolism.

  12. Enhancement of BDNF Concentration and Restoration of the Hypothalamic-Pituitary-Adrenal Axis Accompany Reduced Depressive-Like Behaviour in Stressed Ovariectomised Rats Treated with Either Tualang Honey or Estrogen

    Directory of Open Access Journals (Sweden)

    Badriya Al-Rahbi

    2014-01-01

    Full Text Available A possible interaction between glucocorticoids and estrogen-induced increases in brain-derived-neurotrophic factor (BDNF expression in enhancing depressive-like behaviour has been documented. Here we evaluated the effects of Tualang honey, a phytoestrogen, and 17β-estradiol (E2 on the depressive-like behaviour, stress hormones, and BDNF concentration in stressed ovariectomised (OVX rats. The animals were divided into six groups: (i nonstressed sham-operated control, (ii stressed sham-operated control, (iii nonstressed OVX, (iv stressed OVX, (v stressed OVX treated with E2 (20 μg daily, sc, and (vi stressed OVX treated with Tualang honey (0.2 g/kg body weight daily, orally. Two months after surgery, the animals were subjected to social instability stress procedure followed by forced swimming test. Struggling time, immobility time, and swimming time were scored. Serum adrenocorticotropic hormone (ACTH and corticosterone levels, and the BDNF concentration were determined using commercially available ELISA kits. Stressed OVX rats displayed increased depressive-like behaviour with significantly increased serum ACTH and corticosterone levels, while the BDNF concentration was significantly decreased compared to other experimental groups. These changes were notably reversed by both E2 and Tualang honey. In conclusion, both Tualang honey and E2 mediate antidepressive-like effects in stressed OVX rats, possibly acting via restoration of hypothalamic-pituitary-adrenal axis and enhancement of the BDNF concentration.

  13. Mast cells in lung of rat

    Directory of Open Access Journals (Sweden)

    I. Ivanova

    2017-09-01

    Full Text Available This paper is a short review of scientific literature on lung mast cells in norm and pathology that shows the current state of this problem. Particular attention is paid to the quantity, location and arrangement of the mast cells. The mast cells are a part of immune system whom origin are myeloid stem cells. They are a kind of white blood cells. Many authors from the 19th century to the present day have traced and described the role of mast cells in the human body, their structure and changes depending on the functional state of the organism. Paul Ehrlich is the first author that described in his doctoral thesis the mast cells as effectors of allergy particularly in the beginning of reaction and in acute phase of the process. Research has continued through out the 20th century and researchers' efforts are primarily focused on clarifying the structure and function of mast cells and identifying their role in pathological responses in the human body. Mast cells are found in all organs, but they predominate in peripheral blood, spleen and bone marrow. There are cells in the rat skin that live for about 12 weeks, and more recent studies have found that proliferation of mature mast cells is caused by various factors.

  14. Glial cell activity is maintained during prolonged inflammatory challenge in rats

    Energy Technology Data Exchange (ETDEWEB)

    Borges, B.C.; Rorato, R.; Antunes-Rodrigues, J.; Elias, L.L.K. [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP (Brazil)

    2012-05-04

    We evaluated the expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), ionized calcium binding adaptor protein-1 (Iba-1), and ferritin in rats after single or repeated lipopolysaccharide (LPS) treatment, which is known to induce endotoxin tolerance and glial activation. Male Wistar rats (200-250 g) received ip injections of LPS (100 µg/kg) or saline for 6 days: 6 saline (N = 5), 5 saline + 1 LPS (N = 6) and 6 LPS (N = 6). After the sixth injection, the rats were perfused and the brains were collected for immunohistochemistry. After a single LPS dose, the number of GFAP-positive cells increased in the hypothalamic arcuate nucleus (ARC; 1 LPS: 35.6 ± 1.4 vs control: 23.1 ± 2.5) and hippocampus (1 LPS: 165.0 ± 3.0 vs control: 137.5 ± 2.5), and interestingly, 6 LPS injections further increased GFAP expression in these regions (ARC = 52.5 ± 4.3; hippocampus = 182.2 ± 4.1). We found a higher GS expression only in the hippocampus of the 6 LPS injections group (56.6 ± 0.8 vs 46.7 ± 1.9). Ferritin-positive cells increased similarly in the hippocampus of rats treated with a single (49.2 ± 1.7 vs 28.1 ± 1.9) or repeated (47.6 ± 1.1 vs 28.1 ± 1.9) LPS dose. Single LPS enhanced Iba-1 in the paraventricular nucleus (PVN: 92.8 ± 4.1 vs 65.2 ± 2.2) and hippocampus (99.4 ± 4.4 vs 73.8 ± 2.1), but had no effect in the retrochiasmatic nucleus (RCA) and ARC. Interestingly, 6 LPS increased the Iba-1 expression in these hypothalamic and hippocampal regions (RCA: 57.8 ± 4.6 vs 36.6 ± 2.2; ARC: 62.4 ± 6.0 vs 37.0 ± 2.2; PVN: 100.7 ± 4.4 vs 65.2 ± 2.2; hippocampus: 123.0 ± 3.8 vs 73.8 ± 2.1). The results suggest that repeated LPS treatment stimulates the expression of glial activation markers, protecting neuronal activity during prolonged inflammatory challenges.

  15. Differentiation ability of rat postnatal dental pulp cells in vitro.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Wolke, J.G.C.; Bian, Z.; Fan, M.W.; Jansen, J.A.

    2005-01-01

    The current rapid progression in stem cell research has enhanced our knowledge of dental tissue regeneration. In this study, rat dental pulp cells were isolated and their differentiation ability was evaluated. First, dental pulp cells were obtained from maxillary incisors of male Wistar rats.

  16. Hypothalamic glioma masquerading as craniopharyngioma

    Directory of Open Access Journals (Sweden)

    Sameer Vyas

    2013-01-01

    Full Text Available Hypothalamic glioma account for 10-15% of supratentorial tumors in children. They usually present earlier (first 5 years of age than craniopharyngioma. Hypothalamic glioma poses a diagnostic dilemma with craniopharyngioma and other hypothalamic region tumors, when they present with atypical clinical or imaging patterns. Neuroimaging modalities especially MRI plays a very important role in scrutinizing the lesions in the hypothalamic region. We report a case of a hypothalamic glioma masquerading as a craniopharyngioma on imaging along with brief review of both the tumors.

  17. Chronic treatment with polychlorinated biphenyls (PCB) during pregnancy and lactation in the rat Part 2: Effects on reproductive parameters, on sex behavior, on memory retention and on hypothalamic expression of aromatase and 5alpha-reductases in the offspring.

    Science.gov (United States)

    Colciago, A; Casati, L; Mornati, O; Vergoni, A V; Santagostino, A; Celotti, F; Negri-Cesi, P

    2009-08-15

    The gender-specific expression pattern of aromatase and 5alpha-reductases (5alpha-R) during brain development provides neurons the right amount of estradiol and DHT to induce a dimorphic organization of the structure. Polychlorinated biphenyls (PCBs) are endocrine disruptive pollutants; exposure to PCBs through placental transfer and breast-feeding may adversely affect the organizational action of sex steroid, resulting in long-term alteration of reproductive neuroendocrinology. The study was aimed at: a) evaluating the hypothalamic expression of aromatase, 5alpha-R1 and 5alpha-R2 in fetuses (GD20), infant (PN12), weaning (PN21) and young adult (PN60) male and female rats exposed to PCBs during development; b) correlating these parameters with the time of testicular descent, puberty onset, estrous cyclicity and copulatory behavior; c) evaluating possible alterations of some non reproductive behaviors (locomotion, learning and memory, depression/anxiety behavior). A reconstituted mixture of four indicator congeners (PCB 126, 138, 153 and 180) was injected subcutaneously to dams at the dose of 10 mg/kg daily from GD15 to GD19 and then twice a week till weanling. The results indicated that developmental PCB exposure produced important changes in the dimorphic hypothalamic expression of both aromatase and the 5alpha-Rs, which were still evident in adult animals. We observed that female puberty onset occurs earlier than in control animals without cycle irregularity, while testicular descent in males was delayed. A slight but significant impairment of sexual behavior and an important alteration in memory retention were also noted specifically in males. We conclude that PCBs might affect the dimorphic neuroendocrine control of reproductive system and of other neurobiological processes.

  18. Paraneoplastic limbic encephalitis with associated hypothalamitis mimicking a hyperdense hypothalamic tumor: a case report

    International Nuclear Information System (INIS)

    Bataduwaarachchi, Vipula R.; Tissera, Nirmali

    2016-01-01

    Paraneoplastic limbic encephalitis is an uncommon association of common malignancies such as small cell lung carcinoma, testicular teratoma, and breast carcinoma. The nonspecific nature of the clinical presentation, lack of freely available diagnostic markers, and requirement for advanced imaging techniques pose a great challenge in the diagnosis of this disease in resource-poor settings. A 64-year-old previously healthy Sri Lankan man was admitted to the general medical unit with subacute memory impairment regarding recent events that had occurred during the previous 3 weeks. Initial noncontrast computed tomography of the brain revealed a hyperdensity in the hypothalamic region surrounded by hypodensities extending toward the bilateral temporal lobes; these findings were consistent with a possible hypothalamic tumor with perilesional edema. The patient later developed cranial diabetes insipidus, which was further suggestive of hypothalamic disease. Interestingly, gadolinium-enhanced magnetic resonance imaging of the brain showed no such lesions; instead, it showed prominent T2-weighted signals in the inner mesial region, characteristic of encephalitis. The possibility of tuberculosis and viral encephalitis was excluded based on cerebrospinal fluid analysis results. Limbic encephalitis with predominant hypothalamitis was suspected based on the radiological pattern. Subsequent screening for underlying malignancy revealed a mass lesion in the right hilum on chest radiographs. Histological examination of the lesion showed small cell lung cancer of the “oat cell” variety. We suggest that the initial appearance of a hyperdensity in the hypothalamus region on noncontrast computed tomography is probably due to hyperemia caused by hypothalamitis. If hypothalamitis is predominant in a patient with paraneoplastic limbic encephalitis, magnetic resonance imaging will help to differentiate it from a hypothalamic secondary deposit. Limbic encephalitis should be considered in

  19. Parathyroid hormone dependent T cell proliferation in uremic rats

    DEFF Research Database (Denmark)

    Lewin, E; Ladefoged, Jens; Brandi, L

    1993-01-01

    Chronic renal failure (CRF) is combined with an impairment of the immune system. The T cell may be a target for the action of parathyroid hormone (PTH). Rats with CRF have high blood levels of PTH. Therefore, the present investigation examined some aspects of the T cell function in both normal...... and CRF rats before and after parathyroidectomy and after an isogenic kidney transplantation. The T cell proliferative response to phytohemagglutinin (PHA) stimulation was significantly higher in peripheral blood mononuclear cell (PBMC) cultures obtained from CRF rats than from normal rats. After...... parathyroidectomy the T cells of normal as well as of uremic rats could still be significantly stimulated by PHA, but now no significant difference was seen. When CRF was reversed after an isogenic kidney transplantation and PTH reversed to levels in the normal range, the T cell proliferative response to PHA...

  20. ERK1/2 mediates glucose-regulated POMC gene expression in hypothalamic neurons.

    Science.gov (United States)

    Zhang, Juan; Zhou, Yunting; Chen, Cheng; Yu, Feiyuan; Wang, Yun; Gu, Jiang; Ma, Lian; Ho, Guyu

    2015-04-01

    Hypothalamic glucose-sensing neurons regulate the expression of genes encoding feeding-related neuropetides POMC, AgRP, and NPY - the key components governing metabolic homeostasis. AMP-activated protein kinase (AMPK) is postulated to be the molecular mediator relaying glucose signals to regulate the expression of these neuropeptides. Whether other signaling mediator(s) plays a role is not clear. In this study, we investigated the role of ERK1/2 using primary hypothalamic neurons as the model system. The primary neurons were differentiated from hypothalamic progenitor cells. The differentiated neurons possessed the characteristic neuronal cell morphology and expressed neuronal post-mitotic markers as well as leptin-regulated orexigenic POMC and anorexigenic AgRP/NPY genes. Treatment of cells with glucose dose-dependently increased POMC and decreased AgRP/NPY expression with a concurrent suppression of AMPK phosphorylation. In addition, glucose treatment dose-dependently increased the ERK1/2 phosphorylation. Blockade of ERK1/2 activity with its specific inhibitor PD98059 partially (approximately 50%) abolished glucose-induced POMC expression, but had little effect on AgRP/NPY expression. Conversely, blockade of AMPK activity with its specific inhibitor produced a partial (approximately 50%) reversion of low-glucose-suppressed POMC expression, but almost completely blunted the low-glucose-induced AgRP/NPY expression. The results indicate that ERK1/2 mediated POMC but not AgRP/NPY expression. Confirming the in vitro findings, i.c.v. administration of PD98059 in rats similarly attenuated glucose-induced POMC expression in the hypothalamus, but again had little effect on AgRP/NPY expression. The results are indicative of a novel role of ERK1/2 in glucose-regulated POMC expression and offer new mechanistic insights into hypothalamic glucose sensing. © 2015 Society for Endocrinology.

  1. Nuclear microscopy of rat colon epithelial cells

    Science.gov (United States)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  2. Nuclear microscopy of rat colon epithelial cells

    International Nuclear Information System (INIS)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-01-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  3. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  4. A diphenyl diselenide-supplemented diet and swimming exercise promote neuroprotection, reduced cell apoptosis and glial cell activation in the hypothalamus of old rats.

    Science.gov (United States)

    Leite, Marlon R; Cechella, José L; Pinton, Simone; Nogueira, Cristina W; Zeni, Gilson

    2016-09-01

    Aging is a process characterized by deterioration of the homeostasis of various physiological systems; although being a process under influence of multiple factors, the mechanisms involved in aging are not well understood. Here we investigated the effect of a (PhSe)2-supplemented diet (1ppm, 4weeks) and swimming exercise (1% of body weight, 20min per day, 4weeks) on proteins related to glial cells activation, apoptosis and neuroprotection in the hypothalamus of old male Wistar rats (27month-old). Old rats had activation of astrocytes and microglia which was demonstrated by the increase in the levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1) in hypothalamus. A decrease of B-cell lymphoma 2 (Bcl-2) and procaspase-3 levels as well as an increase of the cleaved PARP/full length PARP ratio (poly (ADP-ribose) polymerase, PARP) and the pJNK/JNK ratio (c-Jun N-terminal kinase, JNK) were observed. The levels of mature brain-derived neurotrophic factor (mBDNF), the pAkt/Akt ratio (also known as protein kinase B) and NeuN (neuronal nuclei), a neuron marker, were decreased in the hypothalamus of old rats. Old rats that received a (PhSe)2-supplemented diet and performed swimming exercise had the hypothalamic levels of Iba-1 and GFAP decreased. The combined treatment also increased the levels of Bcl-2 and procaspase-3 and decreased the ratios of cleaved PARP/full length PARP and pJNK/JNK in old rats. The levels of mBDNF and NeuN, but not the pAkt/Akt ratio, were increased by combined treatment. In conclusion, a (PhSe)2-supplemented diet and swimming exercise promoted neuroprotection in the hypothalamus of old rats, reducing apoptosis and glial cell activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hypothalamic inflammation: a double-edged sword to nutritional diseases

    Science.gov (United States)

    Cai, Dongsheng; Liu, Tiewen

    2015-01-01

    The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and non-neuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from overnutrition-induced intracellular stresses or disease-associated systemic inflammatory factors, extracellular and intracellular environments of hypothalamic cells are disrupted, leading to central metabolic dysregulations and various diseases. Recent research has begun to elucidate the effects of hypothalamic inflammation in causing diverse components of metabolic syndrome leading to diabetes and cardiovascular disease. These new understandings have provocatively expanded previous knowledge on the cachectic roles of brain inflammatory response in diseases, such as infections and cancers. This review describes the molecular and cellular characteristics of hypothalamic inflammation in metabolic syndrome and related diseases as opposed to cachectic diseases, and also discusses concepts and potential applications of inhibiting central/hypothalamic inflammation to treat nutritional diseases. PMID:22417140

  6. Early life stress experience may blunt hypothalamic leptin signalling

    Indian Academy of Sciences (India)

    2016-12-21

    Dec 21, 2016 ... membrane-filtered purified water were available ad libi- tum. Animals were cared for according ... Care and Use of Laboratory Animals, revised 1996. All .... section was blind-counted by hand, and STAT3 auto- counted, after ..... the hypothalamic 5-HT concentration and increases plasma lep- tin in rats. Eur.

  7. Computed tomography in hypothalamic hamartoma

    International Nuclear Information System (INIS)

    Mori, Koreaki; Takeuchi, Juji; Hanakita, Junya; Handa, Hajime; Nakano, Yoshihisa.

    1981-01-01

    Two cases of hypothalamic hamartoma were reported. Hypothalamic hamartoma is a rate tumor. The onset of symptoms is in infancy and early childhood. Clinical symptoms are composed of convulsive seizures, laughing spells and precocious puberty. CT finding of hypothalamic hamartoma is a mass in the suprasellar and interpeduncular cisterns which has the same density as the surrounding normal brain. The mass is not enhanced by injection of the contrast material and is easily differentiated from other masses in the suprasellar region. (author)

  8. MR appearance of hypothalamic hamartoma

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F.J.; Leibrock, L.G.; Huseman, C.A.; Makos, M.M.

    1988-02-01

    Hypothalamic hamartoma is the most common detectable cerebral lesion causing precocious puberty. Two histologically confirmed cases were studied by computerized tomography (CT) and magnetic resonance (MR) imaging. T2 weighted, sagittal MR images were superior to CT in delineating the tumor from surrounding grey matter. The lesion was isointense to grey matter on T1 weighted images allowing exclusion of other hypothalamic tumors. MR will undoubtedly become the imaging modality of choice in the detection of hypothalamic hamartoma.

  9. Embryonic GABA(B receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Directory of Open Access Journals (Sweden)

    Matthew S Stratton

    Full Text Available Neurons of the paraventricular nucleus of the hypothalamus (PVN regulate the hypothalamic- pituitary-adrenal (HPA axis and the autonomic nervous system. Females lacking functional GABA(B receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B receptor to a 7-day critical period (E11-E17 during embryonic development. Experiments tested the role of GABA(B receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B receptor antagonist. Embryonic exposure to GABA(B receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  10. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo, Eduardo; Podratz, Priscila L.; Araújo, Julia F.P. de [Department of Morphology, Federal University of Espírito Santo (Brazil); Brandão, Poliane A.A.; Carneiro, Maria T.W.D. [Department of Chemistry, Federal University of Espírito Santo (Brazil); Zicker, Marina C. [Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais (Brazil); Ferreira, Adaliene V.M. [Department of Basic Nursing, Nursing School, Federal University of Minas Gerais (Brazil); Takiya, Christina M.; Lemos Barbosa, Carolina M. de; Morales, Marcelo M. [Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Brazil); Santos-Silva, Ana Paula [Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Brazil); Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (Brazil); Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro (Brazil); Miranda-Alves, Leandro [Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (Brazil); Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro (Brazil); Silva, Ian V. [Department of Morphology, Federal University of Espírito Santo (Brazil); Graceli, Jones B., E-mail: jbgraceli@gmail.com [Department of Morphology, Federal University of Espírito Santo (Brazil)

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may

  11. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    International Nuclear Information System (INIS)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo, Eduardo; Podratz, Priscila L.; Araújo, Julia F.P. de; Brandão, Poliane A.A.; Carneiro, Maria T.W.D.; Zicker, Marina C.; Ferreira, Adaliene V.M.; Takiya, Christina M.; Lemos Barbosa, Carolina M. de; Morales, Marcelo M.; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V.; Graceli, Jones B.

    2017-01-01

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may

  12. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  13. Preganglionic innervation of the pancreas islet cells in the rat

    NARCIS (Netherlands)

    LUITEN, PGM; TERHORST, GJ; KOOPMANS, SJ; RIETBERG, M; STEFFENS, AB

    1984-01-01

    The position and number of preganglionic somata innervating the insulin-secreting β-cells of the endocrine pancreas were investigated in Wistar rats. This question was approached by comparing the innervation of the pancreas of normal rats with the innervation of the pancreas in alloxan-induced

  14. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors.

    Science.gov (United States)

    Carreno, Gabriela; Apps, John R; Lodge, Emily J; Panousopoulos, Leonidas; Haston, Scott; Gonzalez-Meljem, Jose Mario; Hahn, Heidi; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro

    2017-09-15

    Sonic hedgehog (SHH) is an essential morphogenetic signal that dictates cell fate decisions in several developing organs in mammals. In vitro data suggest that SHH is required to specify LHX3 + /LHX4 + Rathke's pouch (RP) progenitor identity. However, in vivo studies have failed to reveal such a function, supporting instead a crucial role for SHH in promoting proliferation of these RP progenitors and for differentiation of pituitary cell types. Here, we have used a genetic approach to demonstrate that activation of the SHH pathway is necessary to induce LHX3 + /LHX4 + RP identity in mouse embryos. First, we show that conditional deletion of Shh in the anterior hypothalamus results in a fully penetrant phenotype characterised by a complete arrest of RP development, with lack of Lhx3/Lhx4 expression in RP epithelium at 9.0 days post coitum (dpc) and total loss of pituitary tissue by 12.5 dpc. Conversely, overactivation of the SHH pathway by conditional deletion of Ptch1 in RP progenitors leads to severe hyperplasia and enlargement of the Sox2 + stem cell compartment by the end of gestation. © 2017. Published by The Company of Biologists Ltd.

  15. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors

    Science.gov (United States)

    Lodge, Emily J.; Panousopoulos, Leonidas; Haston, Scott; Gonzalez-Meljem, Jose Mario; Hahn, Heidi; Martinez-Barbera, Juan Pedro

    2017-01-01

    Sonic hedgehog (SHH) is an essential morphogenetic signal that dictates cell fate decisions in several developing organs in mammals. In vitro data suggest that SHH is required to specify LHX3+/LHX4+ Rathke's pouch (RP) progenitor identity. However, in vivo studies have failed to reveal such a function, supporting instead a crucial role for SHH in promoting proliferation of these RP progenitors and for differentiation of pituitary cell types. Here, we have used a genetic approach to demonstrate that activation of the SHH pathway is necessary to induce LHX3+/LHX4+ RP identity in mouse embryos. First, we show that conditional deletion of Shh in the anterior hypothalamus results in a fully penetrant phenotype characterised by a complete arrest of RP development, with lack of Lhx3/Lhx4 expression in RP epithelium at 9.0 days post coitum (dpc) and total loss of pituitary tissue by 12.5 dpc. Conversely, overactivation of the SHH pathway by conditional deletion of Ptch1 in RP progenitors leads to severe hyperplasia and enlargement of the Sox2+ stem cell compartment by the end of gestation. PMID:28807898

  16. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  17. Turnover time of Leydig cells and other interstitial cells in testes of adult rats

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; Rommerts, F. F.; van der Tweel, I.; Wensing, C. J.

    1989-01-01

    The aim of this study was to investigate the turnover of Leydig cells and other interstitial cells in the adult rat testis. Normal adult rats received injections of [3H]thymidine at 9:00 and 21:00 for 2, 5, or 8 days. The percentage of labeled Leydig cells, which was initially low (0.8% +/- 0.2%),

  18. Chronic exposure to KATP channel openers results in attenuated glucose sensing in hypothalamic GT1-7 neurons.

    Science.gov (United States)

    Haythorne, Elizabeth; Hamilton, D Lee; Findlay, John A; Beall, Craig; McCrimmon, Rory J; Ashford, Michael L J

    2016-12-01

    Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (K ATP ) activity, with K ATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and K ATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished K ATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic K ATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. K ATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains K ATP closure. Single channel recordings indicate that NN414 alters K ATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to K ATP , probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    Science.gov (United States)

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  20. Tamoxifen and ICI 182,780 activate hypothalamic G protein-coupled estrogen receptor 1 to rapidly facilitate lordosis in female rats.

    Science.gov (United States)

    Long, Nathan; Long, Bertha; Mana, Asma; Le, Dream; Nguyen, Lam; Chokr, Sima; Sinchak, Kevin

    2017-03-01

    In the female rat, sexual receptivity (lordosis) can be facilitated by sequential activation of estrogen receptor (ER) α and G protein-coupled estrogen receptor 1 (GPER) by estradiol. In the estradiol benzoate (EB) primed ovariectomized (OVX) rat, EB initially binds to ERα in the plasma membrane that complexes with and transactivates metabotropic glutamate receptor 1a to activate β-endorphin neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). This activates MPN μ-opioid receptors (MOP), inhibiting lordosis. Infusion of non-esterified 17β-estradiol into the ARH rapidly reduces MPN MOP activation and facilitates lordosis via GPER. Tamoxifen (TAM) and ICI 182,780 (ICI) are selective estrogen receptor modulators that activate GPER. Therefore, we tested the hypothesis that TAM and ICI rapidly facilitate lordosis via activation of GPER in the ARH. Our first experiment demonstrated that injection of TAM intraperitoneal, or ICI into the lateral ventricle, deactivated MPN MOP and facilitated lordosis in EB-primed rats. We then tested whether TAM and ICI were acting rapidly through a GPER dependent pathway in the ARH. In EB-primed rats, ARH infusion of either TAM or ICI facilitated lordosis and reduced MPN MOP activation within 30min compared to controls. These effects were blocked by pretreatment with the GPER antagonist, G15. Our findings demonstrate that TAM and ICI deactivate MPN MOP and facilitate lordosis in a GPER dependent manner. Thus, TAM and ICI may activate GPER in the CNS to produce estrogenic actions in neural circuits that modulate physiology and behavior. Published by Elsevier Inc.

  1. The Effect of High Intensity Interval Training on Hormonal Hypothalamic-Pituitary-Gonadal Axisand Fertility in Type 2 Diabetic Male Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Parastesh

    2018-05-01

    Full Text Available Abstract Background: Diabetes mellitus is associated with reductions in fertility indices. Interval training, on the other hand, through reducing the adverse effects of diabetes, exerts a positive impact on diabetic individuals.The aim of the present study was to examine the effects of ten weeks of High Intensity Interval Training (HIIT on reproductive hormones and sperm parameters in Wistar rats with diabetes mellitus type 2. Materials and Methods: In this experimental study, 36 Wistar rats with mean weight of 200±48 were randomly assigned to healthy control, diabetic control and diabetic + high intensity interval training groups. The diabetic training group received ten weeks of HIIT training by treadmill following the induction of diabetes. Twenty-four hours after the last training session, left epididymis of the rats was examined for studying sperm parameters and blood serum samples were examined for evaluating reproductive hormones. Data were analyzed by one-way ANOVA and Tukey's post hoc test at a significant level of 0.05%. Results: Ten weeks of HIIT training reduces fasting blood glucose (p=0.001 and significantly increases serum testosterone (p=0.001, LH (p=0.042 and FSH (p=0.024 levels in the HIIT training group in comparison to the diabetic group. In addition, sperm parameters (sperm count, survival rate and motility presented significant improvements compared to the diabetic group (p<0.05. Conclusion: It seems that HIIT training can improve sperm count, survival rate and motility, through increasing serum testosterone, LH and FSH levels (reproductive hormones in rats with diabetes mellitus type 2.

  2. Umbilical Cord Blood-Derived Stem Cells Improve Heat Tolerance and Hypothalamic Damage in Heat Stressed Mice

    Directory of Open Access Journals (Sweden)

    Ling-Shu Tseng

    2014-01-01

    Full Text Available Heatstroke is characterized by excessive hyperthermia associated with systemic inflammatory responses, which leads to multiple organ failure, in which brain disorders predominate. This definition can be almost fulfilled by a mouse model of heatstroke used in the present study. Unanesthetized mice were exposed to whole body heating (41.2°C for 1 hour and then returned to room temperature (26°C for recovery. Immediately after termination of whole body heating, heated mice displayed excessive hyperthermia (body core temperature ~42.5°C. Four hours after termination of heat stress, heated mice displayed (i systemic inflammation; (ii ischemic, hypoxic, and oxidative damage to the hypothalamus; (iii hypothalamo-pituitary-adrenocortical axis impairment (reflected by plasma levels of both adrenocorticotrophic-hormone and corticosterone; (iv decreased fractional survival; and (v thermoregulatory deficits (e.g., they became hypothermia when they were exposed to room temperature. These heatstroke reactions can be significantly attenuated by human umbilical cord blood-derived CD34+ cells therapy. Our data suggest that human umbilical cord blood-derived stem cells therapy may improve outcomes of heatstroke in mice by reducing systemic inflammation as well as hypothalamo-pituitary-adrenocortical axis impairment.

  3. Hypothalamic-pituitary-testicular system following testicular X-irradiation

    International Nuclear Information System (INIS)

    Verjans, H.L.; Eik-Nes, K.B.

    1976-01-01

    Testes of adult, male rats were exposed to a total dose of 1500 R of X-irradiation. Testicular weight decreased from day 8 after X-ray treatment. This decrease was, however, precded by an increment of the testis weight on day 4 following treatment. X-ray treatment of testes was associated with significant increase in serum FSH. Testicular irradiation had, however, no effect on ventral prostate and seminal vesicles weights. Serum testosterone increased only on day 1, 2 and 4 after irradiation, while serum LH levels tended to increase from day 8 post-irradiation. These changes were not significant, however, when compared with non-irradiated controls. At 7, 13 and 20 days following 1500 R of bilateral, testicular X-irradiation, the hypothalamic-pituitary unit was still capable of responding to exogenous gonadotrophin releasing factor. Serum FSH may in male rats be regulated at least partly by circulating steroids of testicular origin and partly by an unknown factor of non-interstitial cell nature. (author)

  4. Hypothalamic growth hormone-releasing hormone (GHRH) cell number is increased in human illness, but is not reduced in Prader-Willi syndrome or obesity

    NARCIS (Netherlands)

    Goldstone, Anthony P.; Unmehopa, Unga A.; Swaab, Dick F.

    2003-01-01

    Acute illness leads to increased GH, but reduced IGF-I secretion, while both are reduced in chronic illness. Prader-Willi syndrome (PWS) is a genetic obesity syndrome, with GH deficiency a feature independent of obesity. Reduced GH secretion may result from decreased hypothalamic release of

  5. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats.

    Science.gov (United States)

    Sena, Gabriela C; Freitas-Lima, Leandro C; Merlo, Eduardo; Podratz, Priscila L; de Araújo, Julia F P; Brandão, Poliane A A; Carneiro, Maria T W D; Zicker, Marina C; Ferreira, Adaliene V M; Takiya, Christina M; de Lemos Barbosa, Carolina M; Morales, Marcelo M; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100ng/kg/day) for 15days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be

  6. Global analysis of gene expression mediated by OX1 orexin receptor signaling in a hypothalamic cell line.

    Directory of Open Access Journals (Sweden)

    Eric Koesema

    Full Text Available The orexins and their cognate G-protein coupled receptors have been widely studied due to their associations with various behaviors and cellular processes. However, the detailed downstream signaling cascades that mediate these effects are not completely understood. We report the generation of a neuronal model cell line that stably expresses the OX1 orexin receptor (OX1 and an RNA-Seq analysis of changes in gene expression seen upon receptor activation. Upon treatment with orexin, several families of related transcription factors are transcriptionally regulated, including the early growth response genes (Egr, the Kruppel-like factors (Klf, and the Nr4a subgroup of nuclear hormone receptors. Furthermore, some of the transcriptional effects observed have also been seen in data from in vivo sleep deprivation microarray studies, supporting the physiological relevance of the data set. Additionally, inhibition of one of the most highly regulated genes, serum and glucocorticoid-regulated kinase 1 (Sgk1, resulted in the diminished orexin-dependent induction of a subset of genes. These results provide new insight into the molecular signaling events that occur during OX1 signaling and support a role for orexin signaling in the stimulation of wakefulness during sleep deprivation studies.

  7. Regulation of hypothalamic NPY by diet and smoking.

    Science.gov (United States)

    Chen, Hui; Hansen, Michelle J; Jones, Jessica E; Vlahos, Ross; Bozinovski, Steve; Anderson, Gary P; Morris, Margaret J

    2007-02-01

    Appetite is regulated by a number of hypothalamic neuropeptides including neuropeptide Y (NPY), a powerful feeding stimulator that responds to feeding status, and drugs such as nicotine and cannabis. There is debate regarding the extent of the influence of obesity on hypothalamic NPY. We measured hypothalamic NPY in male Sprague-Dawley rats after short or long term exposure to cafeteria-style high fat diet (32% energy as fat) or laboratory chow (12% fat). Caloric intake and body weight were increased in the high fat diet group, and brown fat and white fat masses were significantly increased after 2 weeks. Hypothalamic NPY concentration was only significantly decreased after long term consumption of the high fat diet. Nicotine decreases food intake and body weight, with conflicting effects on hypothalamic NPY reported. Body weight, plasma hormones and brain NPY were investigated in male Balb/c mice exposed to cigarette smoke for 4 days, 4 and 12 weeks. Food intake was significantly decreased by smoke exposure (2.32+/-0.03g/24h versus 2.71+/-0.04g/24h in control mice (non-smoke exposed) at 12 weeks). Relative to control mice, smoke exposure led to greater weight loss, while pair-feeding the equivalent amount of chow caused an intermediate weight loss. Chronic smoke exposure, but not pair-feeding, was associated with decreased hypothalamic NPY concentration, suggesting an inhibitory effect of cigarette smoking on brain NPY levels. Thus, consumption of a high fat diet and smoke exposure reprogram hypothalamic NPY. Reduced NPY may contribute to the anorexic effect of smoke exposure.

  8. Rat Merkel cells are mechanoreceptors and osmoreceptors.

    Directory of Open Access Journals (Sweden)

    Nicholas Boulais

    Full Text Available Merkel cells (MCs associated with nerve terminals constitute MC-neurite complexes, which are involved in slowly-adapting type I mechanoreception. Although MCs are known to express voltage-gated Ca2+ channels and hypotonic-induced membrane deformation is known to lead to Ca2+ transients, whether MCs initiate mechanotransduction is currently unknown. To answer to this question, rat MCs were transfected with a reporter vector, which enabled their identification.Their properties were investigated through electrophysiological studies. Voltage-gated K+, Ca2+ and Ca2+-activated K+ (KCachannels were identified, as previously described. Here, we also report the activation of Ca2+ channels by histamine and their inhibition by acetylcholine. As a major finding, we demonstrated that direct mechanical stimulations induced strong inward Ca2+ currents in MCs. Depolarizations were dependent on the strength and the length of the stimulation. Moreover, touch-evoked currents were inhibited by the stretch channel antagonist gadolinium. These data confirm the mechanotransduction capabilities of MCs. Furthermore, we found that activation of the osmoreceptor TRPV4 in FM1-43-labeled MCs provoked neurosecretory granule exocytosis. Since FM1-43 blocks mechanosensory channels, this suggests that hypo-osmolarity activates MCs in the absence of mechanotransduction. Thus, mechanotransduction and osmoreception are likely distinct pathways.

  9. T-cell proliferative responses following sepsis in neonatal rats.

    Science.gov (United States)

    Dallal, Ousama; Ravindranath, Thyyar M; Choudhry, Mashkoor A; Kohn, Annamarie; Muraskas, Jonathan K; Namak, Shahla Y; Alattar, Mohammad H; Sayeed, Mohammed M

    2003-01-01

    Both experimental and clinical evidence suggest a suppression of T-cell function in burn and sepsis. The objective of the present study was to evaluate splenocyte and purified T-cell proliferative response and IL-2 production in septic neonatal rats. We also examined if alterations in T-cell proliferation and IL-2 production in neonatal sepsis is due to elevation in PGE2. PGE2 is known to play a significant role in T-cell suppression during sepsis in adults. Sepsis was induced in 15-day-old neonatal Sprague-Dawley rats by implanting 0.1 cm3 of fecal pellet impregnated with Escherichia coli (50 CFU) and Bacteroides fragilis (10(3) CFU). Animals receiving fecal pellets without the bacteria were designated as sterile. A group of septic and sterile rats were treated with PGE2 synthesis inhibitors, NS398 and resveratrol. These treatments of animals allowed us to evaluate the role of PGE2 in T-cell suppression during neonatal sepsis. Splenocytes as well as purified T cells were prepared and then proliferative response and IL-2 productive capacities were measured. A significant suppression of splenocyte proliferation and IL-2 production was noticed in both sterile and septic animals compared to the T cells from unoperated control rats. In contrast, the proliferation and IL-2 production by nylon wool purified T cells in sterile rats was not significantly different from control rats, whereas, a significant suppression in Con A-mediated T-cell proliferation and IL-2 production noticed in septic rat T cells compared to the sterile and control rat T cells. Such decrease in T-cell proliferation and IL-2 production was accompanied with 20-25% deaths in neonates implanted with septic pellets. No mortality was noted in sterile-implanted neonates. Treatment of animals with COX-1 inhibitor had no effect on T-cell proliferation response in both septic and sterile groups, whereas COX-2 inhibitor abrogated the decrease in T-cell proliferative response in the septic group. The treatment

  10. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    Science.gov (United States)

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  11. Functional expression of P2 purinoceptors in a primary neuroglial cell culture of the rat arcuate nucleus.

    Science.gov (United States)

    Pollatzek, Eric; Hitzel, Norma; Ott, Daniela; Raisl, Katrin; Reuter, Bärbel; Gerstberger, Rüdiger

    2016-07-07

    The arcuate nucleus (ARC) plays an important role in the hypothalamic control of energy homeostasis. Expression of various purinoceptor subtypes in the rat ARC and physiological studies suggest a modulatory function of P2 receptors within the neuroglial ARC circuitry. A differentiated mixed neuronal and glial microculture was therefore established from postnatal rat ARC, revealing neuronal expression of ARC-specific transmitters involved in food intake regulation (neuropeptide Y (NPY), proopiomelanocortin (POMC), tyrosine hydroxylase (TH)). Some NPYergic neurons cosynthesized TH, while POMC and TH expression proved to be mutually exclusive. Stimulation with the general purinoceptor agonists 2-methylthioadenosine-5'triphosphate (2-MeSATP) and ATP but not the P2X1/P2X3 receptor subtype agonist α,β-methyleneadenosine-5'triphosphate (α,β-meATP) induced intracellular calcium signals in ARC neurons and astrocytes. Some 5-10% each of 2-MeSATP responsive neurons expressed POMC, NYP or TH. Supporting the calcium imaging data, radioligand binding studies to hypothalamic membranes showed high affinity for 2-MeSATP, ATP but not α,β-meATP to displace [α-(35)S]deoxyadenosine-5'thiotriphosphate ([(35)S]dATPαS) from P2 receptors. Repetitive superfusion with equimolar 2-MeSATP allowed categorization of ARC cells into groups with a high or low (LDD) degree of purinoceptor desensitization, the latter allowing further receptor characterization. Calcium imaging experiments performed at 37°C vs. room temperature showed further reduction of desensitization. Agonist-mediated intracellular calcium signals were suppressed in all LDD neurons but only 25% of astrocytes in the absence of extracellular calcium, suggestive of metabotropic P2Y receptor expression in the majority of ARC astrocytes. The highly P2Y1-selective receptor agonists MRS2365 and 2-methylthioadenosine-5'diphosphate (2-MeSADP) activated 75-85% of all 2-MeSATP-responsive ARC astrocytes. Taking into consideration the

  12. Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model.

    Science.gov (United States)

    Park, Sunmin; Ahn, Il Sung; Kim, Da Sol

    2010-06-05

    We investigated whether hypothalamic leptin alters beta-cell function and mass directly via the sympathetic nervous system (SNS) or indirectly as the result of altered insulin resistant states. The 90% pancreatectomized male Sprague Dawley rats had sympathectomy into the pancreas by applying phenol into the descending aorta (SNSX) or its sham operation (Sham). Each group was divided into two sections, receiving either leptin at 300ng/kgbw/h or artificial cerebrospinal fluid (aCSF) via intracerebroventricular (ICV) infusion for 3h as a short-term study. After finishing the infusion study, ICV leptin (3mug/kg bw/day) or ICV aCSF (control) was infused in rats fed 30 energy % fat diets by osmotic pump for 4weeks. At the end of the long-term study, glucose-stimulated insulin secretion and islet morphometry were analyzed. Acute ICV leptin administration in Sham rats, but not in SNSX rats, suppressed the first- and second-phase insulin secretion at hyperglycemic clamp by about 48% compared to the control. Regardless of SNSX, the 4-week administration of ICV leptin improved glucose tolerance during oral glucose tolerance tests and insulin sensitivity at hyperglycemic clamp, compared to the control, while it suppressed second-phase insulin secretion in Sham rats but not in SNSX rats. However, the pancreatic beta-cell area and mass were not affected by leptin and SNSX, though ICV leptin decreased individual beta-cell size and concomitantly increased beta-cell apoptosis in Sham rats. Leptin directly decreases insulin secretion capacity mainly through the activation of SNS without modulating pancreatic beta-cell mass.

  13. Shilajit attenuates behavioral symptoms of chronic fatigue syndrome by modulating the hypothalamic-pituitary-adrenal axis and mitochondrial bioenergetics in rats.

    Science.gov (United States)

    Surapaneni, Dinesh Kumar; Adapa, Sree Rama Shiva Shanker; Preeti, Kumari; Teja, Gangineni Ravi; Veeraragavan, Muruganandam; Krishnamurthy, Sairam

    2012-08-30

    Shilajit has been used as a rejuvenator for ages in Indian ancient traditional medicine and has been validated for a number of pharmacological activities. The effect of processed shilajit which was standardized to dibenzo-α-pyrones (DBPs;0.43% w/w), DBP-chromoproteins (DCPs; 20.45% w/w) and fulvic acids (56.75% w/w) was evaluated in a rat model of chronic fatigue syndrome (CFS). The mitochondrial bioenergetics and the activity of hypothalamus-pituitary-adrenal (HPA) axis were evaluated for the plausible mechanism of action of shilajit. CFS was induced by forcing the rats to swim for 15mins for 21 consecutive days. The rats were treated with shilajit (25, 50 and 100mg/kg) for 21 days before exposure to stress procedure. The behavioral consequence of CFS was measured in terms of immobility and the climbing period. The post-CFS anxiety level was assessed by elevated plus maze (EPM) test. Plasma corticosterone and adrenal gland weight were estimated as indices of HPA axis activity. Analysis of mitochondrial complex chain enzymes (Complex I, II, IV and V) and mitochondrial membrane potential (MMP) in prefrontal cortex (PFC) were performed to evaluate the mitochondrial bioenergetics and integrity respectively. Shilajit reversed the CFS-induced increase in immobility period and decrease in climbing behavior as well as attenuated anxiety in the EPM test. Shilajit reversed CFS-induced decrease in plasma corticosterone level and loss of adrenal gland weight indicating modulation of HPA axis. Shilajit prevented CFS-induced mitochondrial dysfunction by stabilizing the complex enzyme activities and the loss of MMP. Shilajit reversed CFS-induced mitochondrial oxidative stress in terms of NO concentration and, LPO, SOD and catalase activities. The results indicate that shilajit mitigates the effects of CFS in this model possibly through the modulation of HPA axis and preservation of mitochondrial function and integrity. The reversal of CFS-induced behavioral symptoms and

  14. Interactions of ozone and antineoplastic drugs on rat lung fibroblasts and Walker rat carcinoma cells

    International Nuclear Information System (INIS)

    Wenzel, D.G.; Morgan, D.L.

    1983-01-01

    Cultured rat lung fibroblasts (F-cells) and Walker rat carcinoma cells (WRC-cells) labeled with 51 Cr were exposed to the following antitumor drugs alone or with O 3 : carmustine (BCNU), doxorubicin (Dox), cisplatin (CPt), mitomycin C (Mit C) or vitamin K 3 (Vit K). Release of 51 Cr (cell injury) was greater for F-cells than WRC-cells with any single treatment. Pretreatment with any drug (400 microM), except for Vit K with WRC-cells, did not significantly increase O 3 -induced loss of 51 Cr. Co-exposure of F-cells to drugs and O 3 resulted in a marked potentiation of O 3 -induced injury with Vit K, and an inhibition with Dox

  15. The 5-HT(1A) receptor agonist, 8-OH-DPAT, attenuates stress-induced anorexia in conjunction with the suppression of hypothalamic serotonin release in rats.

    Science.gov (United States)

    Shimizu, N; Hori, T; Ogino, C; Kawanishi, T; Hayashi, Y

    2000-12-22

    The effect of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on stress-induced anorexia and serotonin (5-HT) release in the rat hypothalamus was studied with brain microdialysis. Subcutaneous injection of 8-OH-DPAT (1 mg/kg) significantly attenuated the immobilization-induced anorexia for 3 h, but had no effect during the following 9 h. Injection of 8-OH-DPAT itself had no effect on basal release of 5-HT, while it significantly blocked the immobilization-induced 5-HT release in the lateral hypothalamus. The results suggest that 8-OH-DPAT attenuated the stress-induced anorexia through the activation of 5-HT(1A) autoreceptors in dorsal raphe nucleus.

  16. Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure

    Science.gov (United States)

    Kuijk, Ewart W.; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M.; Cuppen, Edwin

    2016-01-01

    The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah−/− Il2rg−/− rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat. PMID:26915950

  17. Medical therapy of hypothalamic diseases

    International Nuclear Information System (INIS)

    Werder, K. von; Mueller, O.A.

    1985-01-01

    Hormonal disturbances caused by hypothalamic pathology can be treated effectively by target hormone replacement in the case of failure of glandotropic hormone secretion. Hyposomatotropism in children has to be substituted by parenteral administration of growth hormone. In addition gonadotropins respectively gonadotropin releasing factor have to be given in order to restore fertility in hypothalamic hypogonadism. Posterior pituitary failure can be adequately replaced by administration of analogues of antidiuretic hormone. Hypothalamic pathology causing hypersecretion of anterior pituitary hormones may also be accessable to medical treatment. This pertains particularly to hyperprolactinemia and precocious puberty. However, there is no medical therapy so far for hypothalamic disturbances leading to veterative dysfunction like disturbances of temperature regulation and control of thirst and polyphagia. In this situation symptomatic correction of the abnormality represents the only possibility to keep these patients alive. (Author)

  18. Hypothalamic lipophagy and energetic balance

    OpenAIRE

    Singh, Rajat

    2011-01-01

    Autophagy is a conserved cellular turnover process that degrades unwanted cytoplasmic material within lysosomes. Through ?in bulk? degradation of cytoplasmic proteins and organelles, including lipid droplets, autophagy helps provide an alternative fuel source, in particular, when nutrients are scarce. Recent work demonstrates a role for autophagy in hypothalamic agouti-related peptide (AgRP) neurons in regulation of food intake and energy balance. The induction of autophagy in hypothalamic ne...

  19. Agnus castus extracts inhibit prolactin secretion of rat pituitary cells.

    Science.gov (United States)

    Sliutz, G; Speiser, P; Schultz, A M; Spona, J; Zeillinger, R

    1993-05-01

    In our studies on prolactin inhibition by plant extracts we focused on the effects of extracts of Vitex agnus castus and its preparations on rat pituitary cells under basal and stimulated conditions in primary cell culture. Both extracts from Vitex agnus castus as well as synthetic dopamine agonists (Lisuride) significantly inhibit basal as well as TRH-stimulated prolactin secretion of rat pituitary cells in vitro and as a consequence inhibition of prolactin secretion could be blocked by adding a dopamine receptor blocker. Therefore because of its dopaminergic effect Agnus castus could be considered as an efficient alternative phytotherapeutic drug in the treatment of slight hyperprolactinaemia.

  20. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    Science.gov (United States)

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  1. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the ...

  2. Immunohistochemical localization of glucagon and pancreatic polypeptide on rat endocrine pancreas: coexistence in rat islet cells

    Directory of Open Access Journals (Sweden)

    YH Huang

    2009-08-01

    Full Text Available We used immunofluorescence double staining method to investigate the cellular localization of glucagon and pancreatic polypeptide (PP in rat pancreatic islets. The results showed that both A-cells (glucagon-secreting cells and PP-cells (PPsecreting cells were located in the periphery of the islets. However, A-cells and PP-cells had a different regional distribution. Most of A-cells were located in the splenic lobe but a few of them were in the duodenal lobe of the pancreas. In contrast, the majority of PP-cells were found in the duodenal lobe and a few of them were in the splenic lobe of the pancreas. Furthermore, we found that 67.74% A-cells had PP immunoreactivity, 70.92% PP-cells contained glucagon immunoreactivity with immunofluorescence double staining. Our data support the concept of a common precursor stem cell for pancreatic hormone-producing cells.

  3. Quantitative assessment of the synergistic and independent effects of estradiol and progesterone on ventromedial hypothalamic and preoptic-area proteins in female rat brain

    International Nuclear Information System (INIS)

    Jones, K.J.; McEwen, B.S.; Pfaff, D.W.

    1987-01-01

    In this study, quantitative assessment of the synergistic and independent effects of estradiol and progesterone on protein synthesis in the ventromedial hypothalamus (VMN) and the preoptic area (POA) was accomplished using in vitro 35S-methionine and 35S-cystein labeling, two-dimensional gel electrophoresis, and computerized densitometry. Ovariectomized (OVX) rats were divided into four groups. Group 1 was implanted with estradiol (E) capsules for 6 hr and injected with progesterone (P; 0.1 ml, 5 mg/ml propylene glycol) at 20 hr. Group 3 was sham-implanted for 6 hr and injected with 0.01 ml P at 20 hr. Group 4 was sham-planted for 6 hr and injected with vehicle alone at 20 hr. All animals were sacrificed at 24 hr. A number of proteins in both VMN and POA were found to be increased or decreased in labeling by E plus P, E alone, and P alone. Two important synergistic effects of the hormones were found. First, the effects of E on labeling of several proteins in both brain regions were countered by P, and conversely, the effects of P on labeling of several proteins in both brain regions were countered by E. Second, E priming increased the number of proteins affected in labeling by P in both brain regions. Comparison of the effects of E and P on proteins in the VMN and POA indicated that the populations of proteins affected in labeling were markedly different. These results begin to clarify the mechanism in which E and P affect neuronal functioning in two regions involved in the control of reproduction and lend support to the hypothesis that gonadal steroids accomplished their action on brain tissue via a mechanism that is partly unique to the brain region

  4. [Functional hypothalamic amenorrhea].

    Science.gov (United States)

    Stárka, Luboslav; Dušková, Michaela

    2015-10-01

    Functional hypothalamic amenorrhea (FHA) besides pregnancy and syndrome of polycystic ovary is one of the most common causes of secondary amenorrhea. FHA results from the aberrations in pulsatile gonadotropin-releasing hormone (GnRH) secretion, which in turn causes impairment of the gonadotropins (follicle-stimulating hormone and luteinizing hormone). FHA is a form of the defence of organism in situations where life functions are more important than reproductive function. FHA is reversible; it can be normalized after ceasing the stress situation. There are three types of FHA: weight loss related, stress-related, and exercise-related amenorrhea. The final consequences are complex hormonal changes manifested by profound hypoestrogenism. Additionally, these patients present mild hypercortisolemia, low serum insulin levels, low insulin-like growth factor 1 (IGF-1) and low total triiodothyronine. Women health in this disorder is disturbed in several aspects including the skeletal system, cardiovascular system, and mental problems. Patients manifest a decrease in bone mass density, which is related to an increase in fracture risk. Therefore, osteopenia and osteoporosis are the main long-term complications of FHA. Cardiovascular complications include endothelial dysfunction and abnormal changes in the lipid profile. FHA patients present significantly higher depression and anxiety and also sexual problems compared to healthy subjects.

  5. Mast cells in the sheep, hedgehog and rat forebrain

    Science.gov (United States)

    MICHALOUDI, HELEN C.; PAPADOPOULOS, GEORGIOS C.

    1999-01-01

    The study was designed to reveal the distribution of various mast cell types in the forebrain of the adult sheep, hedgehog and rat. Based on their histochemical and immunocytochemical characteristics, mast cells were categorised as (1) connective tissue-type mast cells, staining metachromatically purple with the toluidine blue method, or pale red with the Alcian blue/safranin method, (2) mucosal-type or immature mast cells staining blue with the Alcian blue/safranin method and (3) serotonin immunopositive mast cells. All 3 types of brain mast cells in all species studied were located in both white and grey matter, often associated with intraparenchymal blood vessels. Their distribution pattern exhibited interspecies differences, while their number varied considerably not only between species but also between individuals of each species. A distributional left-right asymmetry, with more cells present on the left side, was observed in all species studied but it was most prominent in the sheep brain. In the sheep, mast cells were abundantly distributed in forebrain areas, while in the hedgehog and the rat forebrain, mast cells were less widely distributed and were relatively or substantially fewer in number respectively. A limited number of brain mast cells, in all 3 species, but primarily in the rat, were found to react both immunocytochemically to 5-HT antibody and histochemically with Alcian blue/safranin staining. PMID:10634696

  6. β-Cell dedifferentiation, reduced duct cell plasticity, and impaired β-cell mass regeneration in middle-aged rats.

    Science.gov (United States)

    Téllez, Noèlia; Vilaseca, Marina; Martí, Yasmina; Pla, Arturo; Montanya, Eduard

    2016-09-01

    Limitations in β-cell regeneration potential in middle-aged animals could contribute to the increased risk to develop diabetes associated with aging. We investigated β-cell regeneration of middle-aged Wistar rats in response to two different regenerative stimuli: partial pancreatectomy (Px + V) and gastrin administration (Px + G). Pancreatic remnants were analyzed 3 and 14 days after surgery. β-Cell mass increased in young animals after Px and was further increased after gastrin treatment. In contrast, β-cell mass did not change after Px or after gastrin treatment in middle-aged rats. β-Cell replication and individual β-cell size were similarly increased after Px in young and middle-aged animals, and β-cell apoptosis was not modified. Nuclear immunolocalization of neurog3 or nkx6.1 in regenerative duct cells, markers of duct cell plasticity, was increased in young but not in middle-aged Px rats. The pancreatic progenitor-associated transcription factors neurog3 and sox9 were upregulated in islet β-cells of middle-aged rats and further increased after Px. The percentage of chromogranin A+/hormone islet cells was significantly increased in the pancreases of middle-aged Px rats. In summary, the potential for compensatory β-cell hyperplasia and hypertrophy was retained in middle-aged rats, but β-cell dedifferentiation and impaired duct cell plasticity limited β-cell regeneration. Copyright © 2016 the American Physiological Society.

  7. Differential sensitivity to nicotine among hypothalamic magnocellular neurons

    DEFF Research Database (Denmark)

    Mikkelsen, J D; Jacobsen, Julie; Kiss, Adrian Emil

    2012-01-01

    The magnocellular neurons in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) either contain vasopressin or oxytocin. Even though both hormones are released after systemic administration of nicotine, the mechanism through which the two populations of neurons are activated...... is not known. This study was carried out in the rat to investigate the effect of increasing doses of nicotine on subsets of magnocellular neurons containing either oxytocin or vasopressin....

  8. high doses of prolactin inhibit testosterone secretion in rat leydig cells

    African Journals Online (AJOL)

    Femi Olaleye

    1 The effect of prolactin on dispersed rat Leydig cells was investigated. Leydig cells from adult rat testes of proven fertility were isolated via collagenase digestion and dispersion. About 100,000 Leydig .... Hormones, Drugs and Reagents.

  9. Lansoprazole increases testosterone metabolism and clearance in male Sprague-Dawley rats: implications for leydig cell carcinogenesis

    International Nuclear Information System (INIS)

    Coulson, Michelle; Gibson, G. Gordon; Plant, Nick; Hammond, Tim; Graham, Mark

    2003-01-01

    Leydig cell tumours (LCTs) are frequently observed during rodent carcinogenicity studies, however, the significance of this effect to humans remains a matter of debate. Many chemicals that produce LCTs also induce hepatic cytochromes P450 (CYPs), but it is unknown whether these two phenomena are causally related. Our aim was to investigate the existence of a liver-testis axis wherein microsomal enzyme inducers enhance testosterone metabolic clearance, resulting in a drop in circulating hormone levels and a consequent hypertrophic response from the hypothalamic-pituitary-testis axis. Lansoprazole was selected as the model compound as it induces hepatic CYPs and produces LCTs in rats. Male Sprague-Dawley rats were dosed with lansoprazole (150 mg/kg/day) or vehicle for 14 days. Lansoprazole treatment produced effects on the liver consistent with an enhanced metabolic capacity, including significant increases in relative liver weights, total microsomal CYP content, individual CYP protein levels, and enhanced CYP-dependent testosterone metabolism in vitro. Following intravenous administration of [ 14 C]testosterone, lansoprazole-treated rats exhibited a significantly smaller area under the curve and significantly higher plasma clearance. Significant reductions in plasma and testicular testosterone levels were observed, confirming the ability of this compound to perturb androgen homeostasis. No significant changes in plasma LH, FSH, or prolactin levels were detected under our experimental conditions. Lansoprazole treatment exerted no marked effects on testicular testosterone metabolism. In summary, lansoprazole treatment induced hepatic CYP-dependent testosterone metabolism in vitro and enhanced plasma clearance of radiolabelled testosterone in vivo. These effects may contribute to depletion of circulating testosterone levels and hence play a role in the mode of LCT induction in lansoprazole-treated rats

  10. Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats.

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    Full Text Available Hypothalamus is the highest center and the main crossroad of numerous homeostatic regulatory pathways including reproduction and energy metabolism. Previous reports indicate that some of these functions may be driven by the synchronized but distinct functioning of the left and right hypothalamic sides. However, the nature of interplay between the hemispheres with regard to distinct hypothalamic functions is still unclear. Here we investigated the metabolic asymmetry between the left and right hypothalamic sides of ovariectomized female rats by measuring mitochondrial respiration rates, a parameter that reflects the intensity of cell and tissue metabolism. Ovariectomized (saline injected and ovariectomized+estrogen injected animals were fed ad libitum or fasted to determine 1 the contribution of estrogen to metabolic asymmetry of hypothalamus; and 2 whether the hypothalamic asymmetry is modulated by the satiety state. Results show that estrogen-priming significantly increased both the proportion of animals with detected hypothalamic lateralization and the degree of metabolic difference between the hypothalamic sides causing a right-sided dominance during state 3 mitochondrial respiration (St3 in ad libitum fed animals. After 24 hours of fasting, lateralization in St3 values was clearly maintained; however, instead of the observed right-sided dominance that was detected in ad libitum fed animals here appeared in form of either right- or left-sidedness. In conclusion, our results revealed estrogen- and satiety state-dependent metabolic differences between the two hypothalamic hemispheres in female rats showing that the hypothalamic hemispheres drive the reproductive and satiety state related functions in an asymmetric manner.

  11. Separation of cells from the rat anterior pituitary gland

    Science.gov (United States)

    Hymer, W. C.; Hatfield, J. Michael

    1984-01-01

    Data concerned with analyzing the cellular organization of the rat anterior pituitary gland are examined. The preparation of the cell suspensions and the methods used to separate pituitary cell types are described. Particular emphasis is given to velocity sedimentation at unit gravity, density gradient centrifugation, affinity methods, fluorescence activated cell sorting, and density gradient and continuous-flow electrophoresis. The difficulties encountered when attempting to compare data from different pituitary cell separation studies are discussed, and results from various experiments are presented. The functional capabilities of the separated cell populations can be tested in various culture systems.

  12. HIV-1 transgenic rats develop T cell abnormalities

    International Nuclear Information System (INIS)

    Reid, William; Abdelwahab, Sayed; Sadowska, Mariola; Huso, David; Neal, Ashley; Ahearn, Aaron; Bryant, Joseph; Gallo, Robert C.; Lewis, George K.; Reitz, Marvin

    2004-01-01

    HIV-1 infection leads to impaired antigen-specific T cell proliferation, increased susceptibility of T cells to apoptosis, progressive impairment of T-helper 1 (Th1) responses, and altered maturation of HIV-1-specific memory cells. We have identified similar impairments in HIV-1 transgenic (Tg) rats. Tg rats developed an absolute reduction in CD4 + and CD8 + T cells able to produce IFN-γ following activation and an increased susceptibility of T cells to activation-induced apoptosis. CD4 + and CD8 + effector/memory (CD45RC - CD62L - ) pools were significantly smaller in Tg rats compared to non-Tg controls, although the converse was true for the naieve (CD45RC + CD62L + ) T cell pool. Our interpretation is that the HIV transgene causes defects in the development of T cell effector function and generation of specific effector/memory T cell subsets, and that activation-induced apoptosis may be an essential factor in this process

  13. Postirradiation recovery of lymphoid cells in the rat

    International Nuclear Information System (INIS)

    Farnsworth, A.; Wotherspoon, J.S.; Dorsch, S.E.

    1988-01-01

    Whole-body irradiation has been extensively used to remove immune responsiveness in rodent recipients in adoptive allograft assays. This study was undertaken to determine the relative radioresistance and the tempo of regeneration, following whole-body irradiation, of cells involved in the allograft response. Six distinct cell populations have been identified in the lymphoid tissues of rats subjected to sublethal whole-body irradiation. The relative representation of these subpopulations was significantly different from that in nonirradiated controls. NK cells, macrophages, and plasma cells, which are present in very low numbers in cell suspensions prepared from normal lymphoid tissues, made up a significant proportion of the residual/regenerating population in the tissues of rats recovering from whole-body irradiation. More significantly perhaps, the mature T cell populations showed a significant increase in the T cytotoxic/suppressor to T helper cell ratio. These observations support the suggestion that a number of the cell types within the mixed cell population observed in the rejecting indicator grafts of irradiated recipients in adoptive allograft assays are host derived. The finding that the T cytotoxic/suppressor population is apparently more radioresistant than the T helper population supports a conclusion that graft rejection in irradiated recipients, restored with pure populations of T helper cells, may not be directly mediated by the injected cells but may be the result of collaboration between these and host-derived cytotoxic cell populations

  14. Effect of methylmercury on histamine release from rat mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Graevskaya, Elizabeth E.; Rubin, Andrew B. [Moscow State University, Biological Faculty, Department of Biophysics, 119899, Vorobjovy Gory, Moscow (Russian Federation); Yasutake, Akira; Aramaki, Ryoji [National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008 (Japan)

    2003-01-01

    Methylmercury chloride (MeHgCl) is well known as a significant environmental hazard, particularly as a modulator of the immune system. As it is acknowledged that the critical effector cells in the host response participating in various biological responses are mast cells, we tried to define the possible contribution of mast cells in the development of methylmercury-evoked effects. We investigated the effects of methylmercury on the rat mast cell degranulation induced by non-immunological stimuli (the selective liberator of histamine, compound 48/80, and calcium ionophore A23187) both in vivo and in vitro. Using the cells prepared from methylmercury-intoxicated rats through a 5-day treatment of MeHgCl (10 mg/kg/day), we observed the suppression of calcium ionophore A23187- and 48/80-induced histamine release, which was enhanced with time after treatment. Similar suppression was observed in the ionophore-stimulated release, when cells were prepared from rat with a single treatment of MeHgCl (20 mg/kg). It should be noted that when cells from the control rat were pre-incubated with methylmercury in vitro at a 10{sup -8} M concentration for 10 min, A23187 and compound 48/80-stimulated histamine release was significantly enhanced. However, when the pre-incubation period was prolonged to 30 min, the release was suppressed. An increase in the methylmercury concentration to 10{sup -6} M also suppressed the histamine release. These results show that methylmercury treatment can modify mast cell function depending on concentration and time, and might provide an insight into the role of mast cells in the development of methylmercury-stimulated effects. (orig.)

  15. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area – an anterograde tract-tracing study

    Directory of Open Access Journals (Sweden)

    Rege Sugárka Papp

    2014-05-01

    Full Text Available The projections from the dorsolateral hypothalamic area (DLH to the lower brainstem have been investigated by using biotinylated dextran amine (BDA, an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area, and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington’s and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline and 9 serotonin cell groups received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.

  16. Sensorimotor cortex ablation induces time-dependent response of ACTH cells in adult rats: behavioral, immunohistomorphometric and hormonal study.

    Science.gov (United States)

    Lavrnja, Irena; Trifunovic, Svetlana; Ajdzanovic, Vladimir; Pekovic, Sanja; Bjelobaba, Ivana; Stojiljkovic, Mirjana; Milosevic, Verica

    2014-02-10

    Traumatic brain injury (TBI) represents a serious event with far reaching complications, including pituitary dysfunction. Pars distalis corticotropes (ACTH cells), that represent the active module of hypothalamo-pituitary-adrenocortical axis, seem to be affected as well. Since pituitary failure after TBI has been associated with neurobehavioral impairments the aim of this study was to evaluate the effects of TBI on recovery of motor functions, morphology and secretory activity of ACTH cells in the pituitary of adult rats. Wistar male rats, initially exposed to sensorimotor cortex ablation (SCA), were sacrificed at the 2nd, 7th, 14th and 30th days post-surgery (dps). A beam walking test was used to evaluate the recovery of motor functions. Pituitary glands and blood were collected for morphological and hormonal analyses. During the first two weeks post-injury increased recovery of locomotor function was detected, reaching almost the control value at day 30. SCA induces significant increase of pituitary weights compared to their time-matched controls. The volume of ACTH-immunopositive cells was reduced at the 7th dps, while at the 14th dps their volume was enlarged, in comparison to corresponding sham controls. Volume density of ACTH cells was increased only at 14th dps, while at day 30 this increase was insignificant. The plasma level of ACTH transiently increased after the injury. The most pronounced changes were observed at the 7th and 14th dps, and were followed by decrease toward control levels at the 30th dps. Thus, temporal changes in the hypothalamic-pituitary-adrenal axis after traumatic brain injury appear to correlate with the recovery process. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Characterization of three newly established rat sarcoma cell clones

    Czech Academy of Sciences Publication Activity Database

    Holubová, Monika; Leba, M.; Sedmíková, M.; Vannucci, Luca; Horák, Vratislav

    2012-01-01

    Roč. 48, č. 10 (2012), s. 610-618 ISSN 1071-2690 R&D Projects: GA MŠk 2B08063 Institutional support: RVO:67985904 Keywords : sarcoma * cell clones * lewis rat Subject RIV: FD - Oncology ; Hematology Impact factor: 1.289, year: 2012

  18. Cell swelling and glycogen metabolism in hepatocytes from fasted rats

    NARCIS (Netherlands)

    Gustafson, L. A.; Jumelle-Laclau, M. N.; van Woerkom, G. M.; van Kuilenburg, A. B.; Meijer, A. J.

    1997-01-01

    Cell swelling is known to increase net glycogen production from glucose in hepatocytes from fasted rats by activating glycogen synthase. Since both active glycogen synthase and phosphorylase are present in hepatocytes, suppression of flux through phosphorylase may also contribute to the net increase

  19. the response of muscle cells during compensatory growth in rats

    African Journals Online (AJOL)

    selle het teen die hoogste tempo vermenigvuldig, maar die toename in spierselgroolte was laag. ... Today much is known of the interplay of the factors which determine rate and degree of recovery from under- nutrition. Again, a ~alth of information is available on ... fluence of nutrition on muscle cell growth in rats and dis·.

  20. Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats

    NARCIS (Netherlands)

    M. Verburg (Melissa); I.B. Renes (Ingrid); H.P. Meijer; J.A. Taminiau; H.A. Büller (Hans); A.W.C. Einerhand (Sandra); J. Dekker (Jan)

    2000-01-01

    textabstractProliferation, differentiation, and cell death were studied in small intestinal and colonic epithelia of rats after treatment with methotrexate. Days 1-2 after treatment were characterized by decreased proliferation, increased apoptosis, and decreased numbers and depths

  1. Isolation, culture and intraportal transplantation of rat marrow stromal cell

    International Nuclear Information System (INIS)

    Wang Ping; Wang Jianhua; Yan Zhiping; Li Wentao; Lin Genlai; Hu Meiyu; Wang Yanhong

    2004-01-01

    Objective: To observe the tracing and evolution of marrow stromal cell (MSC) after intraportal transplantation into the liver of homogenous rats, and to provide experimental data for MSC differentiation to hepatocyte in vivo. Methods: The MSC was isolated from the leg bone marrow of adult SD rats, and purified by culture-expanded in vitro. Before transplantation, MSC was labeled with DAPI. Then 10 5 MSC were intraportally transplanted into the homogenous rat liver. Rats were killed at 2 hours and 1, 2, 3 and 4 weeks after transplantation. The cryosection samples of liver and lung were observed under fluorescence microscopy. Results: MSC in vitro culture had high ability of proliferation. Except 4 rats were dead because of abdominal bleeding or infection, other recipients were healthy until sacrificed. The implantation cells were detected by identifying the DAPI labeled MSC in the host livers, but not in the host lungs. Conclusion: Intraportal transplanted MSC could immigrate and survive in the host livers at least for 4 weeks. They could immigrate from the small branches of portal veins to hepatic parenchyma

  2. Isolation and Osteogenic Differentiation of Rat Periosteum-derived Cells

    OpenAIRE

    Declercq, Heidi Andrea; De Ridder, Leo Isabelle; Cornelissen, Maria Jozefa

    2005-01-01

    Selection of appropriate cultures having an osteogenic potential is a necessity if cell/biomaterial interactions are studied in long-term cultures. Osteoblastic cells derived from rat long bones or calvaria have the disadvantage of being in an advanced differentiation stage which results in terminal differentiation within 21 days. In this regard, less differentiated periosteum-derived osteoprogenitors could be more suitable.

  3. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    Science.gov (United States)

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-θ to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-θ nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-θ attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-θ activation, resulting in reduced insulin activity. PMID:19726875

  4. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.

    Science.gov (United States)

    Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J

    2009-09-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.

  5. Specific in vitro uptake of serotonin by cells in the anterior pituitary of the rat

    International Nuclear Information System (INIS)

    Johns, M.A.; Azmitia, E.C.; Krieger, D.T.

    1982-01-01

    In vivo studies have suggested that serotonin (5HT) influences anterior pituitary function at the hypothalamic level. The present in vitro study investigated the possibility that 5HT may act directly on the anterior pituitary. The high affinity uptake of [3H]5HT into adult rat anterior pituitary tissue was examined in two types of experiments. 1) To test the specificity and saturability of uptake of 5HT in the anterior pituitary, pituitary tissue was incubated (37 C) with [3H]5HT (10(-8)-10(-6) M) in the presence and absence of excess (10(-5) M) unlabeled 5HT, norepinephrine, fluoxetine (FLUOX), metergoline, or cyproheptadine. A Hofstee analysis of the specific uptake of [3H]5HT gave an apparent Km value of 4.23 x 10(-7) M and a Vmax of 1576 pmol/g/10 min [3H]5HT. The total uptake of [3H]5HT was not altered by norepinephrine or metergoline, but was significantly reduced (P less than 0.01-0.001) by FLUOX and cyproheptadine. Uptake was shown to be temperature and sodium dependent and not directly dependent on energy derived from glycolysis or aerobic metabolism. 2) To study the site of uptake of 5 HT in the anterior pituitary, in concomitant radioautographic experiments, tissue was incubated with [3H]5HT with and without excess 5HT or FLUOX. Three patterns of silver grain distribution were observed: 1) nonrandom concentrations over select anterior pituitary cells near blood vessels, 2) heavy aggregates of silver grains usually associated with blood vessels, and 3) a seemingly random dispersal of grains over pituitary tissue. Tissue incubated with [3H]5HT alone contained 10% heavily labeled cells, 32% moderately labeled cells, and 58% weakly labeled cells. In contrast, no heavily labeled cells were seen when tissue was incubated with either excess 5HT or FLUOX in addition to [3H]5HT. Our findings of saturable and specific high affinity uptake of [3H]5HT into a subgroup of anterior pituitary cells suggest a direct pituitary action of 5HT

  6. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chengqun Ju

    Full Text Available The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC to differentiate to functional corneal endothelial cell (CEC-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na(+/K(+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet's membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.

  7. Hypocretin/orexin loss changes the hypothalamic immune response.

    Science.gov (United States)

    Tanaka, Susumu; Takizawa, Nae; Honda, Yoshiko; Koike, Taro; Oe, Souichi; Toyoda, Hiromi; Kodama, Tohru; Yamada, Hisao

    2016-10-01

    Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy. Copyright © 2016 Elsevier Inc. All

  8. Cholesterol metabolism in blood cells of irradiated rats

    International Nuclear Information System (INIS)

    Novoselova, E.G.; Kulagina, T.P.; Potekhina, N.I.

    1985-01-01

    Cholesterol metabolism in blood erythrocytes and lymphocytes of irradiated rats has been investigated. It has been found that at all terms and doses of irradiation, a suppression of the synthesis of erythrocyte cholesterol is observed. The increase of cholesterol quantiy in erythrocytes upon total gamma irradiation in the 10 Gr dose possibly is the result of growth of cholesterol transfer from plasma into erythrocyte cells. The study of the cholesterol synthesis in suspension of lymphocytes elminated from peripheral blood of control and irradiated rats has shown that at irradiation doses of 4 and 10 Gr in an hour acivation of cholesterol synthesis in vitro takes places

  9. Kupffer cell blockade prevents rejection of human insulinoma cell xenograft in rats

    International Nuclear Information System (INIS)

    Lazar, G. Jr.; Farkas, G.; Lazar, G.

    1998-01-01

    Alloantigens are recognized by T-cells in the context of both class I and class II antigen, but class II antigens predominate in the recognition of xenoantigens. Since class II molecules bind peptides derived from exogenous proteins that have been phagocytized and digested into small fragments by antigen presenting cells, in the present studies the effect of gadolinium chloride (GdCl 3 )-induced Kupffer cell blockade on the survival of discordant insulinoma cell xenografts was investigated. Insulinoma cells isolated by means of collagenase from human insulinoma and cultured were transplanted through the v. portae into the liver of streptozotocin-induced diabetic, male, CFY inbred rats. In the control, streptozotocin-treated rats, the decrease in blood glucose level was only transitory, in contrast with the GdCl 3 -pretreated diabetic rats, which remained normoglycaemic during the 2-week observation period. Histologically, in the liver and lung of rats pre-treated with GdCl 3 , large areas of extensively proliferating insulinoma cells were seen, whereas no insulinoma cells were seen in either the liver or the lung of diabetic-control rats, not-treated with GdCl 3 . These studies suggest that the Kupffer cells play significant roles in the recognition of xenoantigens and the induction of xenograft rejection. (orig.)

  10. Cerebral gigantism of hypothalamic origin.

    Science.gov (United States)

    Ranke, M B; Bierich, J R

    1983-04-01

    In five cases of Sotos Syndrome serum somatomedin activities were measured. In two of these cases elevated levels and an increased secretion of growth hormone was observed. In one case (index case) a suspected hypothalamic tumor mass could be excluded, but hydrocephalus with increased intracranial pressure was present. The pathogenesis of gigantism in this syndrome is discussed.

  11. Presence of stem/progenitor cells in the rat penis.

    Science.gov (United States)

    Lin, Guiting; Alwaal, Amjad; Zhang, Xiaoyu; Wang, Jianwen; Wang, Lin; Li, Huixi; Wang, Guifang; Ning, Hongxiu; Lin, Ching-Shwun; Xin, Zhongcheng; Lue, Tom F

    2015-01-15

    Tissue resident stem cells are believed to exist in every organ, and their identification is commonly done using a combination of immunostaining for putative stem cell markers and label-retaining cell (LRC) strategy. In this study, we employed these approaches to identify potential stem cells in the penis. Newborn rats were intraperitoneally injected with thymidine analog, 5-ethynyl-2-deoxyuridine (EdU), and their penis was harvested at 7 h, 3 days, 1 week, and 4 weeks. It was processed for EdU stains and immunofluorescence staining for stem cell markers A2B5, PCNA, and c-kit. EdU-positive cells were counted for each time point and co-localized with each stem cell marker, then isolated and cultured in vitro followed by their characterization using flowcytometry and immunofluorescence. At 7 h post-EdU injection, 410 ± 105.3 penile corporal cells were labeled in each cross-section (∼28%). The number of EdU-positive cells at 3 days increased to 536 ± 115.6, while their percentage dropped to 25%. Progressively fewer EdU-positive cells were present in the sacrificed rat penis at longer time points (1 and 4 weeks). They were mainly distributed in the subtunic and perisinusoidal spaces, and defined as subtunic penile progenitor cells (STPCs) and perisinusoidal penile progenitor cells (PPCs). These cells expressed c-kit, A2B5, and PCNA. After culturing in vitro, only ∼0.324% corporal cells were EdU-labeled LRCs and expressed A2B5/PCNA. Therefore, labeling of penis cells by EdU occurred randomly, and label retaining was not associated with expression of c-kit, A2B5, or PCNA. The penile LRCs are mainly distributed within the subtunic and perisinusoidal space.

  12. Bronchoalveolar lavage fluid from normal rats stimulates DNA synthesis in rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Mason, R.J.

    1989-01-01

    Proliferation of alveolar type II cells after lung injury is important for the restoration of the alveolar epithelium. Bronchoalveolar lavage fluid (BALF) may represent an important source of growth factors for alveolar type II cells. To test this possibility, BALF fluid was collected from normal rats, concentrated 10-fold by Amicon filtration, and tested for its ability to stimulate DNA synthesis in rat alveolar type II cells in primary culture. BALF induced a dose-dependent increase in type II cell DNA synthesis resulting in a 6-fold increase in [3H]thymidine incorporation. Similar doses also stimulated [3H]thymidine incorporation into rat lung fibroblasts by 6- to 8-fold. Removal of pulmonary surface active material by centrifugation did not significantly reduce the stimulatory activity of BALF for type II cells. The stimulation of type II cell DNA synthesis by BALF was reduced by 100% after heating at 100 degrees C for 10 min, and by approximately 80% after reduction with dithiothreitol, and after trypsin treatment. Dialysis of BALF against 1 N acetic acid resulted in a 27% reduction in stimulatory activity. The effect of BALF in promoting type II cell DNA synthesis was more pronounced when tested in the presence of serum, although serum itself has very little effect on type II cell DNA synthesis. When BALF was tested in combination with other substances that stimulate type II cell DNA synthesis (cholera toxin, insulin, epidermal growth factor, and acidic fibroblast growth factor), additive effects or greater were observed. When BALF was chromatographed over Sephadex G150, the activity eluted with an apparent molecular weight of 100 kDa

  13. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: a rat model.

    Directory of Open Access Journals (Sweden)

    Goichi Yanai

    Full Text Available Islet transplantation is a minimally invasive treatment for severe diabetes. However, it often requires multiple donors to accomplish insulin-independence and the long-term results are not yet satisfying. Therefore, novel ways to overcome these problems have been explored. Isolated islets are fragile and susceptible to pro-apoptotic factors and poorly proliferative. In contrast, mesenchymal stem cells (MSCs are highly proliferative, anti-apoptotic and pluripotent to differentiate toward various cell types, promote angiogenesis and modulate inflammation, thereby studied as an enhancer of islet function and engraftment. Electrofusion is an efficient method of cell fusion and nuclear reprogramming occurs in hybrid cells between different cell types. Therefore, we hypothesized that electrofusion between MSC and islet cells may yield robust islet cells for diabetes therapy. We establish a method of electrofusion between dispersed islet cells and MSCs in rats. The fusion cells maintained glucose-responsive insulin release for 20 days in vitro. Renal subcapsular transplantation of fusion cells prepared from suboptimal islet mass (1,000 islets that did not correct hyperglycemia even if co-transplanted with MSCs, caused slow but consistent lowering of blood glucose with significant weight gain within the observation period in streptozotocin-induced diabetic rats. In the fusion cells between rat islet cells and mouse MSCs, RT-PCR showed new expression of both rat MSC-related genes and mouse β-cell-related genes, indicating bidirectional reprogramming of both β-cell and MSCs nuclei. Moreover, decreased caspase3 expression and new expression of Ki-67 in the islet cell nuclei suggested alleviated apoptosis and gain of proliferative capability, respectively. These results show that electrofusion between MSCs and islet cells yield special cells with β-cell function and robustness of MSCs and seems feasible for novel therapeutic strategy for diabetes

  14. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P Skeletal muscle cells were...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P contracted, but not in the moderately contracted muscle cells...

  15. Radiosensitivity and thermoresistance of rat RA-2 rhabdomyosarcoma cells

    International Nuclear Information System (INIS)

    Fedorova, E.V.; Trusova, V.D.; Vakhtin, Yu.B.

    1990-01-01

    The data obtained show that clonogenic RA-2T cells are 2-3 times more thermoresistant than clonogenic cells of the original thermosensitive RA-2T strain as estimated by D 0 value upon heating up to 43-45 deg C. After X-irradiation of rat rhabdomyosarcoma, a decrease in the capacity of forming pulmonary colonies is more pronounced in cells of the thermosensitive RA-2 strain cells than in those of the thermoresistant strain RA-2T (D 0 =1.6 Gy and D 0 =2.4 Gy, respectively). In all appearance, within one and the same tumor cell population, the hereditarily thermoresistant cells are more radioresistant than the thermosensitive ones

  16. Dissemination of Walker 256 carcinoma cells to rat skeletal muscle

    International Nuclear Information System (INIS)

    Ueoka, H.; Hayashi, K.; Namba, T.; Grob, D.

    1986-01-01

    After injection of 10 6 Walker 256 carcinoma cells labelled with 125 I-5-iodo-2'-deoxyuridine into the tail vein, peak concentration in skeletal muscle was 46 cells/g at 60 minutes, which was lower than 169202, 1665, 555, 198 and 133 cells/g, respectively, at 30 or 60 minutes in lung, liver, spleen, kidney and heart. Because skeletal muscle constitutes 37.4% of body weight, the total number of tumor cells was 2323 cells, which was much greater than in spleen, kidney and heart with 238, 271, and 85 cells, respectively, and only less than in lung and liver, at 222857 and 11700 cells, respectively. The total number in skeletal muscle became greater than in liver at 4 hours and than in lung at 24 hours. Ten minutes after injection of 7.5 x 10 6 Walker 256 carcinoma cells into the abdominal aorta of rats, a mean of 31 colony-forming cells were recovered from the gastrocnemius, while 106 cells were recovered from the lung after injection into the tail vein. These results indicate that a large number of viable tumor cells can be arrested in skeletal muscle through circulation. The rare remote metastasis of malignancies into skeletal muscle despite constantly circulating tumor cells does not appear to be due to poor dissemination of tumor cells into muscle but due to unhospitable environment of skeletal muscle

  17. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Shu-quan Zhang

    2015-01-01

    Full Text Available Edaravone has been shown to delay neuronal apoptosis, thereby improving nerve function and the microenvironment after spinal cord injury. Edaravone can provide a favorable environment for the treatment of spinal cord injury using Schwann cell transplantation. This study used rat models of complete spinal cord transection at T 9. Six hours later, Schwann cells were transplanted in the head and tail ends of the injury site. Simultaneously, edaravone was injected through the caudal vein. Eight weeks later, the PKH-26-labeled Schwann cells had survived and migrated to the center of the spinal cord injury region in rats after combined treatment with edaravone and Schwann cells. Moreover, the number of PKH-26-labeled Schwann cells in the rat spinal cord was more than that in rats undergoing Schwann cell transplantation alone or rats without any treatment. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive nerve fibers was greater in rats treated with edaravone combined withSchwann cells than in rats with Schwann cell transplantation alone. The results demonstrated that lower extremity motor function and neurophysiological function were better in rats treated with edaravone and Schwann cells than in rats with Schwann cell transplantation only. These data confirmed that Schwann cell transplantation combined with edaravone injection promoted the regeneration of nerve fibers of rats with spinal cord injury and improved neurological function.

  18. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  19. Rats, cats, and elephants, but still no unicorn: induced pluripotent stem cells from new species.

    Science.gov (United States)

    Trounson, Alan

    2009-01-09

    Two independent studies in this issue of Cell Stem Cell (Liao et al., 2009; Li et al., 2009) derive rat induced pluripotent stem cells (iPSCs). In one report, the method used results in rat and human iPSCs that exhibit phenotypic traits similar to mouse embryonic stem cells.

  20. Cancer of rat ovaries: Sertoli cell or granulosa-theca cell tumours

    International Nuclear Information System (INIS)

    Knowles, J.F.

    1983-01-01

    The effects of X-radiation (0-1.25 Gy) given 24 hours after neonatal injections of the carcinogen ethyl nitrosourea (ENU) (0-10 mg/kg) in female rats were studied. Twelve out of 118 rats bore single ovarian tumours. A substantial excess of ovarian tumours occurred in the rats given 4 mg/kg ENU and 1.25 GY X-rays but not in others given ENU alone, radiation alone or 10 mg/kg ENU and 1.25 Gy. The tumours were all found in old rats (657-1085 days). In all of the tumours the presence of tubular formations suggested a diagnosis of ovarian Sertoli cell tumour. In two tumours, only a few tubular structures were seen and fibrous stromal tissue predominated, suggesting a diagnosis of granulosa-theca cell tumour. All other tumours were a mixture of both elements. (U.K.)

  1. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  2. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    Science.gov (United States)

    Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo

    2014-01-01

    In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  3. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    Directory of Open Access Journals (Sweden)

    Bart Spronck

    Full Text Available In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  4. Exercise reduces inflammation and cell proliferation in rat colon carcinogenesis.

    Science.gov (United States)

    Demarzo, Marcelo Marcos Piva; Martins, Lisandra Vanessa; Fernandes, Cleverson Rodrigues; Herrero, Fábio Augusto; Perez, Sérgio Eduardo de Andrade; Turatti, Aline; Garcia, Sérgio Britto

    2008-04-01

    There is evidence that the risk of colon cancer is reduced by appropriate levels of physical exercise. Nevertheless, the mechanisms involved in this protective effect of exercise remain largely unknown. Inflammation is emerging as a unifying link between a range of environment exposures and neoplastic risk. The carcinogen dimethyl-hydrazine (DMH) induces an increase in epithelial cell proliferation and in the expression of the inflammation-related enzyme cyclooxigenase-2 (COX-2) in the colon of rats. Our aim was to verify whether these events could be attenuated by exercise. Four groups of eight Wistar rats were used in the experiment. The groups G1 and G3 were sedentary (controls), and the groups G2 and G4 were submitted to 8 wk of swimming training, 5 d.wk. The groups G3 and G4 were given subcutaneous injections of DMH immediately after the exercise protocols. Fifteen days after the neoplasic induction, the rats were sacrificed and the colon was processed for histological examination and immunohistochemistry staining of proliferating cell nuclear antigen (PCNA) and COX-2. We found a significant increase in the PCNA-labeling index in both DMH-treated groups of rats. However, this increase was significantly attenuated in the training group G4 (P < 0.01). Similar results were observed in relation to the COX-2 expression. From our findings, we conclude that exercise training exerts remarkable antiproliferative and antiinflammatory effects in the rat colonic mucosa, suggesting that this may be an important mechanism to explain how exercise protects against colonic cancer.

  5. Experimental rat lung tumor model with intrabronchial tumor cell implantation.

    Science.gov (United States)

    Gomes Neto, Antero; Simão, Antônio Felipe Leite; Miranda, Samuel de Paula; Mourão, Lívia Talita Cajaseiras; Bezerra, Nilfácio Prado; Almeida, Paulo Roberto Carvalho de; Ribeiro, Ronaldo de Albuquerque

    2008-01-01

    The objective of this study was to develop a rat lung tumor model for anticancer drug testing. Sixty-two female Wistar rats weighing 208 +/- 20 g were anesthetized intraperitoneally with 2.5% tribromoethanol (1 ml/100 g live weight), tracheotomized and intubated with an ultrafine catheter for inoculation with Walker's tumor cells. In the first step of the experiment, a technique was established for intrabronchial implantation of 10(5) to 5 x 10(5) tumor cells, and the tumor take rate was determined. The second stage consisted of determining tumor volume, correlating findings from high-resolution computed tomography (HRCT) with findings from necropsia and determining time of survival. The tumor take rate was 94.7% for implants with 4 x 10(5) tumor cells, HRCT and necropsia findings matched closely (r=0.953; p<0.0001), the median time of survival was 11 days, and surgical mortality was 4.8%. The present rat lung tumor model was shown to be feasible: the take rate was high, surgical mortality was negligible and the procedure was simple to perform and easily reproduced. HRCT was found to be a highly accurate tool for tumor diagnosis, localization and measurement and may be recommended for monitoring tumor growth in this model.

  6. Bariatric Surgery in Hypothalamic Obesity

    OpenAIRE

    Bingham, Nathan C.; Rose, Susan R.; Inge, Thomas H.

    2012-01-01

    Craniopharyngiomas (CP) are epithelial neoplasms generally found in the area of the pituitary and hypothalamus. Despite benign histology, these tumors and/or their treatment often result in significant, debilitating disorders of endocrine, neurological, behavioral, and metabolic systems. Severe obesity is observed in a high percentage of patients with CP resulting in significant comorbidities and negatively impacting quality of life. Obesity occurs as a result of hypothalamic damage and disru...

  7. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area – an anterograde tract-tracing study

    OpenAIRE

    Rege Sugárka Papp; Rege Sugárka Papp; Miklos ePalkovits; Miklos ePalkovits

    2014-01-01

    The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribu...

  8. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area—an anterograde tract-tracing study

    OpenAIRE

    Papp, Rege S.; Palkovits, Miklós

    2014-01-01

    The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribu...

  9. Electrophoretic separation of cells and particles from rat pituitary and rat spleen

    Science.gov (United States)

    Hymer, Wesley C.

    1993-01-01

    There are 3 parts to the IML-2 TX-101 experiment. Part 1 is a pituitary cell culture experiment. Part 2 is a pituitary cell separation experiment using the Japanese free flow electrophoresis unit (FFEU). Part 3 is a pituitary secretory granule separation experiment using the FFEU. The objectives of this three part experiment are: (1) to determine the kinetics of production of biologically active growth hormone (GH) and prolactin (PRL) in rat pituitary GH and PRL cells in microgravity (micro-g); (2) to investigate three mechanisms by which a micro-g-induced lesion in hormone production may occur; and (3) to determine the quality of separations of pituitary cells and organelles by continuous flow electrophoresis (CFE) in micro-g under conditions where buoyancy-induced convection is eliminated.

  10. Tuning differentiation signals for efficient propagation and in vitro validation of rat embryonic stem cell cultures.

    Science.gov (United States)

    Meek, Stephen; Sutherland, Linda; Burdon, Tom

    2015-01-01

    The rat is one of the most commonly used laboratory animals in biomedical research and the recent isolation of genuine pluripotent rat embryonic stem (ES) cell lines has provided new opportunities for applying contemporary genetic engineering techniques to the rat and enhancing the use of this rodent in scientific research. Technical refinements that improve the stability of the rat ES cell cultures will undoubtedly further strengthen and broaden the use of these stem cells in biomedical research. Here, we describe a relatively simple and robust protocol that supports the propagation of germ line competent rat ES cells, and outline how tuning stem cell signaling using small molecule inhibitors can be used to both stabilize self-renewal of rat ES cell cultures and aid evaluation of their differentiation potential in vitro.

  11. Communication between mast cells and rat submucosal neurons.

    Science.gov (United States)

    Bell, Anna; Althaus, Mike; Diener, Martin

    2015-08-01

    Histamine is a mast cell mediator released e.g. during food allergy. The aim of the project was to identify the effect of histamine on rat submucosal neurons and the mechanisms involved. Cultured submucosal neurons from rat colon express H1, H2 and H3 receptors as shown by immunocytochemical staining confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) isolated from submucosal homogenates as starting material. Histamine evoked a biphasic rise of the cytosolic Ca(2+) concentration in cultured submucosal neurons, consisting in a release of intracellularly stored Ca(2+) followed by an influx from the extracellular space. Although agonists of all three receptor subtypes evoked an increase in the cytosolic Ca(2+) concentration, experiments with antagonists revealed that mainly H1 (and to a lesser degree H2) receptors mediate the response to histamine. In coculture experiments with RBL-2H3 cells, a mast cell equivalent, compound 48/80, evoked an increase in the cytosolic Ca(2+) concentration of neighbouring neurons. Like the response to native histamine, the neuronal response to the mast cell degranulator was strongly inhibited by the H1 receptor antagonist pyrilamine and reduced by the H2 receptor antagonist cimetidine. In rats sensitized against ovalbumin, exposure to the antigen induced a rise in short-circuit current (I sc) across colonic mucosa-submucosa preparations without a significant increase in paracellular fluorescein fluxes. Pyrilamine strongly inhibited the increase in I sc, a weaker inhibition was observed after blockade of protease receptors or 5-lipoxygenase. Consequently, H1 receptors on submucosal neurons seem to play a pivotal role in the communication between mast cells and the enteric nervous system.

  12. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    NARCIS (Netherlands)

    Meerlo, P; Koehl, M; van der Borght, K; Turek, FW

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine

  13. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  14. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  15. Rapid development of Leydig cell tumors in a Wistar rat substrain

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; de Jong, F. H.; Rommerts, F. F.

    1991-01-01

    In 78% of the Wistar rats (substrain U) studied, spontaneous Leydig cell tumors developed between the ages of 12 and 30 months. The first signs of tumor development, in the form of nodules of Leydig cells, were already apparent in 1-month-old U-rats. These nodules of Leydig cells were found in all

  16. Lovastatin enhances in vitro radiation-induced apoptosis of rat B-cell lymphoma cells

    International Nuclear Information System (INIS)

    Rozados, V.R.; Hinrichsen, L.I.; Scharovsky, O.G.; Rosario Univ., Rosario; McDonnel, J.

    2005-01-01

    Our previous demonstration of an antimetastatic effect of lovastatin, both in rat sarcoma and lymphoma tumor-models, as well as the fact that lovastatin and radiation are able to stop the cell cycle in different phases, suggested the feasibility of a combined treatment. We studied the effect of the in vitro combined treatment of a B-cell rat lymphoma (L-TACB) with lovastatin and irradiation. The results herein obtained provide new information about the role of statins as radiosensitizers. The antitumor effect of the combined treatment was higher than that elicited by either treatment alone. This effect could be a consequence, at least in part, of an enhanced apoptosis

  17. A method for isolating identifying and culturing of rat trachea-bronchia epithelial cells

    International Nuclear Information System (INIS)

    Cui Fengmei; Su Shibiao; Nie Jihua; Li Bingyan; Tong Jian

    2005-01-01

    Objective: To explore a method for isolating identifying and culturing the rat trachea-bronchia epithelial cells. Methods: The rat trachea-bronchia epithelial cells were isolated by digestion with pronase and brushing with cell brush, identified using confocul and cultured in entire F12 media with no serum. Results: With this method, cells in high purity and high viability could be obtained, and about 10 6 cells per rat. The cells grow well in entire F12 media with no serum. Conclusion: The method is useful for isolating rate trachea-bronchia epithelial cells and the entire F12 media with no serum is effective for culturing. (authors)

  18. Adrenergic nerve fibres and mast cells: correlation in rat thymus.

    Science.gov (United States)

    Artico, Marco; Cavallotti, Carlo; Cavallotti, Daniela

    2002-10-21

    The interactions between adrenergic nerve fibres and mast cells (MCs) were studied in the thymus of adult and old rats by morphological methods and by quantitative analysis of images (QAIs). The whole thymus was drawn in adult (12 months old) rats: normal, sympathectomized or electrostimulated. Thymuses from the above-mentioned animals were weighed, measured and dissected. Thymic slices were stained with eosin orange for detection of microanatomical details and with Bodian's method for identification of the whole nerve fibres. Thymic MCs were stained with Astrablau. Histofluorescence microscopy was used for staining of adrenergic nerve fibres. Finally, all morphological results were submitted to the QAIs and statistical analysis of data. Our results suggest that after surgical sympathectomy, the greater part of adrenergic nerve fibres disappear while related MCs appear to show less evident fluorescence and few granules. On the contrary, electrostimulation of the cervical superior ganglion induced an increase in the fluorescence of adrenergic nerve fibres and of related MCs.

  19. Characterization of RNA interference in rat PC12 cells

    DEFF Research Database (Denmark)

    Thonberg, Håkan; Schéele, Camilla C; Dahlgren, Cecilia

    2004-01-01

    strand of the siRNA guides a multi-protein complex, RNA-induced silencing complex (RISC), to cleave target mRNA. Although the exact function and composition of RISC is still unclear, it has been shown to include several proteins of the Argonaute protein family. Here we report of a robust system...... of the rat Golgi-ER protein 95 kDa (GERp95), an Argonaute family protein, by siRNA methodology. After GERp95-ablation, sequential knockdown of NPY by siRNA was shown to be impaired. Thus, we report that the GERp95 protein is functionally required for RNAi targeting NPY in rat PC12 cells....

  20. Hypothalamic control of pituitary and adrenal hormones during hypothermia.

    Science.gov (United States)

    Okuda, C; Miyazaki, M; Kuriyama, K

    1986-01-01

    In order to investigate neuroendocrinological mechanisms of hypothermia, we determined the changes in plasma concentrations of corticosterone (CS), prolactin (PRL), and thyrotropin (TSH), and their correlations with alterations in hypothalamic dopamine (DA) and thyrotropin releasing hormone (TRH), in rats restrained and immersed in a water bath at various temperatures. A graded decrease of body temperature induced a progressive increase in the plasma level of CS, whereas that of PRL showed a drastic decrease. The plasma level of TSH also showed an increase during mild hypothermia (about 35 degrees C), but this increase was not evident during profound hypothermia (below 24 degrees C). The changes in these hormones were readily reversed by rewarming animals. Although DA content in the hypothalamus was not affected, its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), showed an increase following the decrease of body temperature. Pretreatment of the animals with sulpiride, a D2-antagonist, prevented the hypothermia-induced inhibition of PRL release. Hypothalamic TRH was significantly decreased during mild hypothermia, and it returned to control levels after rewarming. These results suggest that the decrease in plasma PRL induced by hypothermia may be associated with the activation of hypothalamic DA neurons, whereas the increase in plasma TSH during mild hypothermia seems to be caused by the increased release of TRH in the hypothalamus.

  1. Effects of sugar solutions on hypothalamic appetite regulation.

    Science.gov (United States)

    Colley, Danielle L; Castonguay, Thomas W

    2015-02-01

    Several hypotheses for the causes of the obesity epidemic in the US have been proposed. One such hypothesis is that dietary intake patterns have significantly shifted to include unprecedented amounts of refined sugar. We set out to determine if different sugars might promote changes in the hypothalamic mechanisms controlling food intake by measuring several hypothalamic peptides subsequent to overnight access to dilute glucose, sucrose, high fructose corn syrup, or fructose solutions. Rats were given access to food, water and a sugar solution for 24h, after which blood and tissues were collected. Fructose access (as opposed to other sugars that were tested) resulted in a doubling of circulating triglycerides. Glucose consumption resulted in upregulation of 7 satiety-related hypothalamic peptides whereas changes in gene expression were mixed for remaining sugars. Also, following multiple verification assays, 6 satiety related peptides were verified as being affected by sugar intake. These data provide evidence that not all sugars are equally effective in affecting the control of intake. Copyright © 2014. Published by Elsevier Inc.

  2. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  3. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  4. The influence of sexual hormones on lipogenesis and lipolysis in rat fat cells

    DEFF Research Database (Denmark)

    Hansen, Finn Mølgård; Fahmy, N; Nielsen, Jens Høiriis

    1980-01-01

    and prooestrus than in dioestrus. Oestradiol treatment of both female and male rats and testosterone treatment of male rats for three days lowered the fatty acid synthesis and increased the lipolysis. The metabolic oscillation disappeared in ovariectomized rats, and the fat cells from these animals showed...

  5. Effect of Light and Darkness on Packed Cell Volume in the Rat ...

    African Journals Online (AJOL)

    The aim of the study is to identify and characterize the circadian oscillation of Packed Cell Volume (PCV) within a 24-hour time frame in adult Sprague-Dawley rats. 56 adult Sprague-Dawley rats consists of 28 male and 28 female rats were used. Male animals weighed 150-170g while the females weighed 130140g.

  6. Frequency of polyploid cells in the bone marrow of rats fed irradiated wheat

    International Nuclear Information System (INIS)

    George, K.P.; Chaubey, R.C.; Sundaram, K.; Gopal-Ayengar, A.R.

    1976-01-01

    Diets containing different proportions of non-irradiated or irradiated wheat were fed to Wistar rats for 1 or 6 wk. Cytological analysis of the bone marrow showed no significant difference in the frequency of polyploid cells in the rats fed non-irradiated or irradiated wheat diets, even when the treated wheat was fed to the rats within 24 hr of irradiation. (author)

  7. Induction of plaque-forming cell response in adrenalectomized nude rats using Thymosin fraction 5

    DEFF Research Database (Denmark)

    Klausen, B; Hougen, H P; Rygaard, J

    1982-01-01

    In adrenalectomized nude rats treated with Thymosin fraction 5 a plaque-forming cell (PFC) response comparable to that found in normal rats was obtained. The PFC response found after adrenalectomy alone or thymosin-treatment in unoperated animals was comparable to that of untreated nude rats....

  8. Transmural changes in mast cell density in rat heart after infarct induction in vivo

    NARCIS (Netherlands)

    Engels, W.; Reiters, P. H.; Daemen, M. J.; Smits, J. F.; van der Vusse, G. J.

    1995-01-01

    The cardiac distribution of mast cells was investigated after the induction of acute myocardial infarction in the rat. The left anterior descending coronary artery (LAD) was occluded by ligation in the infarct group, whereas in sham rats only a superficial ligature was placed beside the LAD. Rats of

  9. Programmed cell death and cell extrusion in rat duodenum

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Larsson, Lars-Inge

    2005-01-01

    The small intestinal epithelium is continously renewed through a balance between cell division and cell loss. How this balance is achieved is uncertain. Thus, it is unknown to what extent programmed cell death (PCD) contributes to intestinal epithelial cell loss. We have used a battery...... of techniques detecting the events associated with PCD in order to better understand its role in the turnover of the intestinal epithelium, including modified double- and triple-staining techniques for simultaneously detecting multiple markers of PCD in individual cells. Only a partial correlation between TUNEL...... positivity for DNA fragmentation, c-jun phosphorylation on serine-63, positivity for activated caspase-3 and apoptotic morphology was observed. Our results show that DNA fragmentation does not invariable correlate to activation of caspase-3. Moreover, many cells were found to activate caspase-3 early...

  10. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  11. [Electroacupuncture Intervention Enhances Splenic Natural Killer Cell Activity via Inhibiting Phosphorylation of ERK 5 in the Hypothalamus of Surgically Traumatized Rats].

    Science.gov (United States)

    Chen, Yan; Li, Jing; Zhu, Ke-ying; Xiao, Sheng; Wang, Yan-qing; Wu, Gen-cheng; Wang, Jun

    2015-06-01

    To observe the effect of electroacupuncture (EA) on cytotoxic activity of splenic natural killer (NK) cells after surgical trauma via extracellular signal-regulated kinase (ERK) 5 pathway in the rats' hypothalamus, so as to explore its mechanism underlying improving immune disorders after surgery. Sprague-Dawley rats were randomly divided into the following 6 groups: control, trauma model, EA, sham EA, 4 nmol-BIX 02188 (an inhibitor for ERK 5 catalytic activity) and 20 nmol-BIX 02188 (n = 6 rats per group). The surgical trauma model was established by making a longitudinal incision (6 cm in length) along the median line of the back to expose the spinal column and another longitudinal incision along the abdominal median line. EA (2 Hz/15 Hz, 1 - 2 mA) was applied to bilateral "Zusanli" (ST 36) for 30 min immediately after surgery. For rats of the BIX groups, intra-lateral ventricular microinjection of BIX 02188 (10 µL, 4 nmol or 20 nmol, or saline for control rats) was conducted 30 min before the surgery. The expression level and protein of phosphorylated ERK 5 (p-ERK 5) and corticotropin-releasing factor (CRF) protein were measured by immunohistochemistry and Western blot, respectively. The cytotoxicity of splenic NK cells and the expression of splenic Perforin and Granzyme-B genes were measured by lactate dehydrogenase (LDH) release assay and real-time PCR, respectively. In comparison with the control group, hypothalamic p-ERK 5 immunoactivity, p-ERK 5 protein and CRF protein expression levels were significantly up-regulated in the model group (Psplenic NK cell cytotoxicity and Perforin mRNA and Granzyme-B mRNA expression levels were notably down-regulated in the model group (P 0. 05) except the increased p-ERK 5 protein in the 4 nmol-BIX 02188 group. In addition, the down-regulated NK cell activity, Perforin mRNA and Granzyme-B mRNA expression levels were significantly reversed in the EA and 20 nmol-BIX 02188 groups (Psplenic NK cytotoxicity and Perforin and

  12. Metabolism of 4-nitrobiphenyl (NBP) by cultured rat urothelial cells

    International Nuclear Information System (INIS)

    Swaminathan, S.; Lang, D.B.; Reznikoff, C.A.

    1986-01-01

    The potential of rat urothelial cells to metabolize NBP was evaluated by incubating 4.3 x 10 7 viable cells with 20 μM [ 3 H]NBP in a serum free medium for 48 hours. The culture medium was examined for metabolites of NBP by extraction with ethyl acetate and subsequent chromatographic analysis. High pressure liquid chromatography of the solvent extract using a Whatman ODS-3, C-18 column in 70% methanol-water at a flow rate of 1 ml/min revealed two major peaks at retention times of approximately 8 and 13 min. Thin layer chromatography showed two regions of radioactivity at Rf values of 0.35 and 0.83, the latter corresponding with NBP. Based on the chromatographic data the metabolite with the retention time of 8.0 min in HPLC and an Rf of 0.35 in TLC has been tentatively identified as 4-acetylaminobiphenyl. Analysis of binding to proteins and nucleic acids following exposure to [ 3 H]NBP revealed a significant amount (0.03% of initially applied radioactivity) in the protein fractions. Control samples of NBP incubated in medium, without the urothelial cells revealed only the parent compound. These data suggest that rat bladder cells possess the metabolic capability to reduce NBP and to generate reactive metabolites that bind to cellular macromolecules

  13. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing.

    Science.gov (United States)

    Le Foll, Christelle; Irani, Boman G; Magnan, Christophe; Dunn-Meynell, Ambrose A; Levin, Barry E

    2009-09-01

    We assessed the mechanisms by which specialized hypothalamic ventromedial nucleus (VMN) neurons utilize both glucose and long-chain fatty acids as signaling molecules to alter their activity as a potential means of regulating energy homeostasis. Fura-2 calcium (Ca(2+)) and membrane potential dye imaging, together with pharmacological agents, were used to assess the mechanisms by which oleic acid (OA) alters the activity of dissociated VMN neurons from 3- to 4-wk-old rats. OA excited up to 43% and inhibited up to 29% of all VMN neurons independently of glucose concentrations. In those neurons excited by both 2.5 mM glucose and OA, OA had a concentration-dependent effective excitatory concentration (EC(50)) of 13.1 nM. Neurons inhibited by both 2.5 mM glucose and OA had an effective inhibitory concentration (IC(50)) of 93 nM. At 0.5 mM glucose, OA had markedly different effects on these same neurons. Inhibition of carnitine palmitoyltransferase, reactive oxygen species formation, long-chain acetyl-CoA synthetase and ATP-sensitive K(+) channel activity or activation of uncoupling protein 2 (UCP2) accounted for only approximately 20% of OA's excitatory effects and approximately 40% of its inhibitory effects. Inhibition of CD36, a fatty acid transporter that can alter cell function independently of intracellular fatty acid metabolism, reduced the effects of OA by up to 45%. Thus OA affects VMN neuronal activity through multiple pathways. In glucosensing neurons, its effects are glucose dependent. This glucose-OA interaction provides a potential mechanism whereby such "metabolic sensing" neurons can respond to differences in the metabolic states associated with fasting and feeding.

  14. Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis

    International Nuclear Information System (INIS)

    Pabst, R.; Sterzel, R.B.

    1983-01-01

    Normal adult Sprague-Dawley rats received either a single or repetitive injection of the DNA precursor 3 H-thymidine ( 3 H-TdR). For autoradiography semi-thin sections were prepared 2 hr to 14 days after labeling. The majority of labeled cells noted in glomerular tufts were endothelial cells. Mesangial cells had a lower production rate. Podocytes revealed no evidence of proliferation. Bowman's capsule cells showed a higher labeling index than tuft cells at all times. Neither the urinary nor the vascular pole was found to be a proliferative zone for Bowman's capsule cells. The flash and repetitive labeling experiments demonstrated a constant rate of cell renewal of about 1% per day, resulting in a long life span for endothelial and mesangial cells as well as Bowman's capsule cells. These data provide a basis for cell kinetic studies in models of glomerular diseases

  15. Changes in pituitary growth hormone cells prepared from rats flown on Spacelab 3

    Science.gov (United States)

    Grindeland, R.; Hymer, W. C.; Farrington, M.; Fast, T.; Hayes, C.; Motter, K.; Patil, L.; Vasques, M.

    1987-01-01

    The effect of exposure to microgravity on pituitary gland was investigated by examining cells isolated from anterior pituitaries of rats flown on the 7-day Spacelab 3 mission and, subsequently, cultured for 6 days. Compared with ground controls, flight cells contained more intracellular growth hormone (GH); however, the flight cells released less GH over the 6-day culture period and after implantation into hypophysectomized rats than did the control cells. Compared with control rats, glands from large rats (400 g) contained more somatotrophs (44 percent compared with 37 percent in control rats); small rats (200 g) showed no difference. No major differences were found in the somatotroph ultrastructure (by TEM) or in the pattern of the immunoactive GH variants. However, high-performance liquid chromatography fractionation of culture media indicated that flight cells released much less of a biologically active high-molecular weight GH variant, suggesting that space flight may lead to secretory dysfunction.

  16. Function of oval cells in hepatocellular carcinoma in rats.

    Science.gov (United States)

    Fang, Chi-Hua; Gong, Jia-Qing; Zhang, Wei

    2004-09-01

    To study oval cells' pathological characteristics and relationship with the occurrence of hepatocellular carcinoma (HCC); to observe the form and structural characteristics of oval cells; to explore the expression characteristics of C-kit, PCNA mRNA and c-myc gene during the occurrence and development of HCC and the effect of ulinastatin (UTI) on C-kit and PCNA expression. One hundred and twenty-five SD rats fed on 3,3'-diaminobenzidine (DAB) to construct HCC models were divided into control group, cancer-inducing group and UTI intervention group. In each group, rat liver samples were collected at weeks 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 respectively to study pathological distribution characteristics of oval cells in the process of carcinogenesis under optical microscope. Oval cells were separated by the methods of improved density gradient centrifugation and their structural characteristics were observed under optical microscope and electronic microscope respectively; the oval cells expressing C-kit and PCNA in the collected samples were observed by the methods of immunohistochemistry and image analysis and the expression of c-myc mRNA was also detected by reverse transcription polymerase chain reaction (RT-PCR). Oval cells proliferated firstly in the portal area then gradually migrated into hepatic parenchyma in the inducing group and intervention group. The oval cells distributed inside and outside the carcinoma nodes. The oval cells presented the characteristics of undifferentiated cells: a high ratio of nucleolus and cellular plasm and obvious nucleoli, rare organelle in plasm. Only a few mitochondria and endoplasmic reticulum and some villus-like apophysis on surface of cells could be seen. Cells stained with C-kit and PCNA antibody were mainly oval cells distributed in the portal area. The expression of c-myc mRNA increased with the progression of HCC. However, in the intervention group, UTI could retard its increase. Oval cells work throughout

  17. Heterogeneous response of isolated adult rat heart cells to insulin

    International Nuclear Information System (INIS)

    Haworth, R.A.; Hunter, D.R.; Berkoff, H.A.

    1984-01-01

    3-O-Methylglucose uptake by Ca2+-resistant adult rat heart cells in suspension was measured, free of artifactual inhibitor-insensitive uptake, and with an accuracy of +/- 1.9% pellet water. (Ca2+-resistant cells are cells which retain their original rod-shaped morphology in the presence of physiological levels of Ca2+.) High levels of insulin (10(-6) M) stimulated the rate of 3-O-methylglucose uptake approximately 10-fold. In the presence of low levels of insulin (3 X 10(-11) M, 10(-10) M) uptake was biphasic; it could not be described by a single exponential function within experimental error, but required the sum of two exponentials. Deviation from a single exponential function was not so great with high levels of insulin (10(-6) M) or no insulin. Cell sugar uptake was also investigated using autoradiography of cells which had accumulated [2-14C]deoxyglucose under similar conditions. This showed considerable heterogeneity of 2-deoxyglucose uptake by cells treated with low levels of insulin, but significantly less heterogeneity of 2-deoxyglucose uptake by cells treated with high levels of insulin. It is concluded that the deviation of 3-O-methylglucose uptake from a single exponential observed at low insulin levels can be accounted for in terms of a heterogeneous response of cells to insulin

  18. Formation of Cell-To-Cell Connection between Bone Marrow Cells and Isolated Rat Cardiomyocytes in a Cocultivation Model

    Czech Academy of Sciences Publication Activity Database

    Skopalík, J.; Pásek, Michal; Rychtárik, M.; Koristek, Z.; Gabrielová, E.; Sheer, P.; Matejovič, P.; Modrianský, M.; Klabusay, M.

    2014-01-01

    Roč. 5, č. 5 (2014), s. 1000185 ISSN 2157-7013 Institutional support: RVO:61388998 Keywords : bone marrow * mononuclear cells * isolated cardiomyocytes * cocultivation Subject RIV: BO - Biophysics http://omicsonline.org/ open - access /formation-of-celltocell-connection-between-bone-marrow-cells- and -isolated-rat-cardiomyocytes-2157-7013.1000185.php?aid=33364

  19. Bariatric surgery in hypothalamic obesity

    Directory of Open Access Journals (Sweden)

    Nathan eBingham

    2012-02-01

    Full Text Available Craniopharyngiomas (CP are epithelial neoplasms generally found in the area of the pituitary and hypothalamus. Despite benign histology, these tumors and/or their treatment often result in significant, debilitating disorders of endocrine, neurological, behavioral, and metabolic systems. Severe obesity is observed in a high percentage of patients with CP resulting in significant comorbidities and negatively impacting quality of life. Obesity occurs as a result of hypothalamic damage and disruption of normal homeostatic mechanisms regulating energy balance. Such pathological weight gain, termed hypothalamic obesity (HyOb, is often severe and refractory to therapy.Unfortunately, neither lifestyle intervention nor pharmacotherapy has proven truly effective in the treatment of CP-HyOb. Given the limited choices and poor results of these treatments, several groups have examined bariatric surgery as a treatment alternative for patients with CP-HyOb. While a large body of evidence exists supporting the use of bariatric surgery in the treatment of exogenous obesity and its comorbidities, its role in the treatment of HyOb has yet to be well defined. To date, the existing literature on bariatric surgery in CP-HyOb is largely limited to case reports and series with short term follow-up. Here we review the current reports on the use of bariatric surgery in the treatment of CP-HyOb. We also compare these results to those reported for other populations of HyOb, including Prader-Willi Syndrome and patients with melanocortin signaling defects. While initial reports of bariatric surgery in CP-HyOb are promising, their limited scope makes it difficult to draw any substantial conclusions as to the long term safety and efficacy of bariatric surgery in CP-HyOb. There continues to be a need for more robust, controlled, prospective trials with long term follow-up in order to better define the role of bariatric surgery in the treatment of all types of hypothalamic

  20. Olfactory granule cell development in normal and hyperthyroid rats.

    Science.gov (United States)

    Brunjes, P C; Schwark, H D; Greenough, W T

    1982-10-01

    Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.

  1. Control of fibronectin synthesis by rat granulosa cells in culture

    International Nuclear Information System (INIS)

    Skinner, M.K.; Dorrington, J.H.

    1984-01-01

    The secreted and cellular [ 35 S]methionine-radiolabeled proteins of cultured rat granulosa cells were separated by electrophoresis on sodium dodecylsulfate (SDS) polyacrylamide gradient slab gels. From 24 to 72 h of culture FSH increased the intensity of labeling of most of the secreted proteins. A 220,000-dalton protein, however, increased in intensity only in control cultures and became the major secreted protein after 72 h, comprising 20% of the total radiolabeled proteins. This protein was identified as fibronectin by immunoprecipitation. There was no increase in the secreted or cellular fibronectin in FSH- or testosterone- and insulin-treated cultures. These studies indicate that a component of extracellular matrix is a major secretory product of unstimulated immature granulosa cells. As hormones induce the differentiated functions of granulosa cells in culture, the secretion of fibronectin is inhibited

  2. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    Science.gov (United States)

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P fatty acid (100, 250, or 500 microM for neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  3. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Aires, M.B. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Santos, J.R.A. [Departamento de Enfermagem, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Souza, K.S.; Farias, P.S. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Santos, A.C.V. [Departamento de Enfermagem, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Fioretto, E.T. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Maria, D.A. [Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP (Brazil)

    2015-07-10

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers.

  4. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    International Nuclear Information System (INIS)

    Aires, M.B.; Santos, J.R.A.; Souza, K.S.; Farias, P.S.; Santos, A.C.V.; Fioretto, E.T.; Maria, D.A.

    2015-01-01

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers

  5. Nitric oxide-induced signalling in rat lacrimal acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    -adrenergic stimulation and not by a rise in [Ca2+]i alone.   We show that in rat lacrimal acinar cells, NO and cGMP induce Ca2+ release from intracellular stores via G kinase activation. However, the changes in [Ca2+]i are relatively small, suggesting that this pathway plays a modulatory role in Ca2+ signalling, thus...... not by itself causing fast transient increases in [Ca2+]i. In addition, we suggest that endogenously produced NO activated by ß-adrenergic receptor stimulation, plays an important role in signalling to the surrounding tissue....

  6. Computed tomography demonstration of a hypothalamic metastasis

    International Nuclear Information System (INIS)

    Chakeres, D.W.

    1983-01-01

    This case report describes a patient who presented with panhypopituitarism secondary to hypothalamic metastasis. A primary hypothalamic abnormality was suggested by computed tomographic (CT) demonstration of a small enhancing circular mass centered within the hypothalamus. Sellar radiographs and cerebral angiography were normal. (orig.)

  7. Computed tomography demonstration of a hypothalamic metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Chakeres, D.W.

    1983-05-01

    This case report describes a patient who presented with panhypopituitarism secondary to hypothalamic metastasis. A primary hypothalamic abnormality was suggested by computed tomographic (CT) demonstration of a small enhancing circular mass centered within the hypothalamus. Sellar radiographs and cerebral angiography were normal.

  8. Dietary sugars, not lipids, drive hypothalamic inflammation

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2017-08-01

    Conclusions: Combined overconsumption of fat and sugar, but not the overconsumption of fat per se, leads to excessive CML production in hypothalamic neurons, which, in turn, stimulates hypothalamic inflammatory responses such as microgliosis and eventually leads to neuronal dysfunction in the control of energy metabolism.

  9. Rapid internalization of the insulin receptor in rat hepatoma cells

    International Nuclear Information System (INIS)

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-01-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4 0 C, stimulated with insulin at 37 0 C, and then cooled rapidly, trypsinized at 4 0 C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37 0 C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4 0 C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific [ 125 I]insulin binding measured at 4 0 C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways

  10. The Effects of Urethane on Rat Outer Hair Cells

    Directory of Open Access Journals (Sweden)

    Mingyu Fu

    2016-01-01

    Full Text Available The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microphonic responses between awake and urethane-anesthetized rats. The results revealed that the amplitude of the cochlear microphonic was decreased by urethane, resulting in an increase in the threshold at all of the sound frequencies examined. To deduce the possible mechanism underlying the urethane-induced decrease in cochlear sensitivity, we examined the electrical response properties of isolated outer hair cells using whole-cell patch-clamp recording. We found that urethane hyperpolarizes the outer hair cell membrane potential in a dose-dependent manner and elicits larger outward current. This urethane-induced outward current was blocked by strychnine, an antagonist of the α9 subunit of the nicotinic acetylcholine receptor. Meanwhile, the function of the outer hair cell motor protein, prestin, was not affected. These results suggest that urethane anesthesia is expected to decrease the responses of outer hair cells, whereas the frequency selectivity of cochlea remains unchanged.

  11. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Simenc, Janez; Lipnik-Stangelj, Metoda

    2012-01-01

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10 −7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10 −6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  12. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  13. Immunity to Schistosoma mansoni in congenitally athymic, irradiated and mast cell-depleted rats

    International Nuclear Information System (INIS)

    Ford, M.J.; Bickle, Q.D.; Taylor, M.G.

    1987-01-01

    Immunity to Schistosoma mansoni was investigated in congenitally athymic (Nu/Nu) rats, irradiated rats and in mast cell-depleted rats. Nu/Nu rats failed to develop significant resistance following vaccination with irradiated cercariae, although Nu/Nu recipients of serum from vaccinated Fischer rats (VRS) manifested resistance comparable to heterozygous controls, suggesting that T-cells were required in the induction of resistance but were not involved in the efferent arm of antibody-dependent elimination. Radiosensitive cells (including eosinophils, basophils, neutrophils, lymphocytes and mast cells) were apparently not essential for the antibody-dependent elimination of lung or post-lung stages since irradiated (700-750 rad.) recipients of VRS manifested comparable degrees of resistance to unirradiated controls in spite of a greater than 85% reduction in total blood leucocyte counts after irradiation. Depletion of 99% of tissue mast cells by treatment of rats with Compound 48/80 had no significant effect on the attrition of a challenge infection in rats rendered immune by vaccination with irradiated cercariae or by transfer of VRS. However, there was a significant increase in worm recovery in unimmunized and mast cell-depleted or irradiated rats, indicating that mast cells and perhaps other radio-isotope sensitive cells may be involved in innate resistance. (author)

  14. Immunity to Schistosoma mansoni in congenitally athymic, irradiated and mast cell-depleted rats

    Energy Technology Data Exchange (ETDEWEB)

    Ford, M.J.; Bickle, Q.D.; Taylor, M.G.

    1987-04-01

    Immunity to Schistosoma mansoni was investigated in congenitally athymic (Nu/Nu) rats, irradiated rats and in mast cell-depleted rats. Nu/Nu rats failed to develop significant resistance following vaccination with irradiated cercariae, although Nu/Nu recipients of serum from vaccinated Fischer rats (VRS) manifested resistance comparable to heterozygous controls, suggesting that T-cells were required in the induction of resistance but were not involved in the efferent arm of antibody-dependent elimination. Radiosensitive cells (including eosinophils, basophils, neutrophils, lymphocytes and mast cells) were apparently not essential for the antibody-dependent elimination of lung or post-lung stages since irradiated (700-750 rad.) recipients of VRS manifested comparable degrees of resistance to unirradiated controls in spite of a greater than 85% reduction in total blood leucocyte counts after irradiation. Depletion of 99% of tissue mast cells by treatment of rats with Compound 48/80 had no significant effect on the attrition of a challenge infection in rats rendered immune by vaccination with irradiated cercariae or by transfer of VRS. However, there was a significant increase in worm recovery in unimmunized and mast cell-depleted or irradiated rats, indicating that mast cells and perhaps other radio-isotope sensitive cells may be involved in innate resistance.

  15. Endovascular transplantation of stem cells to the injured rat CNS

    International Nuclear Information System (INIS)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan; Le Blanc, Katarina

    2009-01-01

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  16. Endovascular transplantation of stem cells to the injured rat CNS

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan [Karolinska University Hospital, Department of Clinical Neuroscience, Karolinska Institutet, Department of Neuroradiology, Stockholm (Sweden); Le Blanc, Katarina [Karolinska University Hospital, Department of Stem Cell Research, Karolinska Institutet, Department of Clinical Immunology, Stockholm (Sweden)

    2009-10-15

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  17. Age and radiation sensitivity of rat mammary clonogenic cells

    International Nuclear Information System (INIS)

    Shimada, Yoshiya; Yasukawa-Barnes, J.; Kim, R.Y.; Gould, M.N.; Clifton, K.H.

    1994-01-01

    The relative risk of breast cancer is very high among women who were exposed to ionizing radiation during or before puberty. In the current studies, the surviving fractions of clonogenic mammary cells of groups of virgin rats were estimated after single exposures to 137 Cs γ rays at intervals from 1 to 12 weeks after birth. The radiosensitivity of clonogens from prepubertal rats was high and changed with the onset of puberty at between 4 and 6 weeks of age. By this time, the increase in the size of the clonogenic cell subpopulation was slowing and differentiation of terminal mammary end buds and alveolar structures was occurring. Analysis of the relationship of clonogen survival and radiation dose according to the α/β model showed that the exponential αD term predominated at the second and fourth weeks of age. By the eighth week of age, the βD 2 term had come to predominate and the survival curve had a pronounced initial convex shoulder. Further experiments are required to determine whether there is an association between the high sensitivity of the prepubertal and pubertal mammary clonogens to radiation killing and a high susceptibility to radiogenic initiation of cancer. 24 refs., 4 figs., 1 tab

  18. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph W McFadden

    Full Text Available Modification of hypothalamic fatty acid (FA metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1 and fatty acid oxidation (FAOx, exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS, and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.

  19. PPARα agonists up-regulate organic cation transporters in rat liver cells

    International Nuclear Information System (INIS)

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus

    2006-01-01

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-α agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPARα agonists in livers of rats and in Fao cells. We conclude that PPARα agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis

  20. Stress-induced oxytocin release and oxytocin cell number and size in prepubertal and adult male and female rats.

    Science.gov (United States)

    Minhas, Sumeet; Liu, Clarissa; Galdamez, Josselyn; So, Veronica M; Romeo, Russell D

    2016-08-01

    Studies indicate that adolescent exposure to stress is a potent environmental factor that contributes to psychological and physiological disorders, though the mechanisms that mediate these dysfunctions are not well understood. Periadolescent animals display greater stress-induced hypothalamic-pituitary-adrenal (HPA) axis responses than adults, which may contribute to these vulnerabilities. In addition to the HPA axis, the hypothalamo-neurohypophyseal tract (HNT) is also activated in response to stress. In adults, stress activates this system resulting in secretion of oxytocin from neurons in the supraoptic (SON) and paraventricular (PVN) nuclei. However, it is currently unknown whether a similar or different response occurs in prepubertal animals. Given the influence of these hormones on a variety of emotional behaviors and physiological systems known to change as an animal transitions into adulthood, we investigated stress-induced HPA and HNT hormonal responses before and after stress, as well as the number and size of oxytocin-containing cells in the SON and PVN of prepubertal (30d) and adult (70d) male and female rats. Though we found the well-established protracted adrenocorticotropic hormone and corticosterone response in prepubertal males and females, only adult males and prepubertal females showed a significant stress-induced increase in plasma oxytocin levels. Moreover, though we found no pubertal changes in the number of oxytocin cells, we did find a pubertal-related increase in oxytocin somal size in both the SON and PVN of males and females. Taken together, these data indicate that neuroendocrine systems can show different patterns of stress reactivity before and after adolescent development and that these responses can be further modified by sex. Given the impact of these hormones on a variety of systems, it will be imperative to further explore these changes in hormonal stress reactivity and their role in adolescent health. Copyright © 2016 Elsevier

  1. Inhibitory effect of tanshinone IIA on rat hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Ya-Wei Liu

    Full Text Available Anti-inflammation via inhibition of NF-κB pathways in hepatic stellate cells (HSCs is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C19H18O3, Tan IIA is a lipophilic diterpene isolated from Salvia miltiorrhiza Bunge, with reported anti-inflammatory activity. We tested whether Tan IIA could inhibit HSC activation.The cell line of rat hepatic stellate cells (HSC-T6 was stimulated with lipopolysaccharide (LPS (100 ng/ml. Cytotoxicity was assessed by MTT assay. HSC-T6 cells were pretreated with Tan IIA (1, 3 and 10 µM, then induced by LPS (100 ng/ml. NF-κB activity was evaluated by the luciferase reporter gene assay. Western blotting analysis was performed to measure NF-κB-p65, and phosphorylations of MAPKs (ERK, JNK, p38. Cell chemotaxis was assessed by both wound-healing assay and trans-well invasion assay. Quantitative real-time PCR was used to detect gene expression in HSC-T6 cells.All concentrations of drugs showed no cytotoxicity against HSC-T6 cells. LPS stimulated NF-κB luciferase activities, nuclear translocation of NF-κB-p65, and phosphorylations of ERK, JNK and p38, all of which were suppressed by Tan IIA. In addition, Tan IIA significantly inhibited LPS-induced HSCs chemotaxis, in both wound-healing and trans-well invasion assays. Moreover, Tan IIA attenuated LPS-induced mRNA expressions of CCL2, CCL3, CCL5, IL-1β, TNF-α, IL-6, ICAM-1, iNOS, and α-SMA in HSC-T6 cells.Our results demonstrated that Tan IIA decreased LPS-induced HSC activation.

  2. Effects of voluntary wheel running on satellite cells in the rat plantaris muscle.

    Science.gov (United States)

    Kurosaka, Mitsutoshi; Naito, Hisashi; Ogura, Yuji; Kojima, Atsushi; Goto, Katsumasa; Katamoto, Shizuo

    2009-01-01

    This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p run in the training group (r = 0.61, p running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run. Key pointsThere is no study about the effect of voluntary running on satellite cells in the rat plantaris muscle.Voluntary running training causes an increase of citrate synthase activity in the rat plantaris muscle but does not affect muscle weight and mean fiber area in the rat plantaris muscle.Voluntary running can induce an increase in the number of satellite cells without hypertrophy of the rat plantaris muscle.

  3. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    Directory of Open Access Journals (Sweden)

    Antonio eZorzano

    2015-06-01

    Full Text Available Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1 cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy. Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

  4. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction.

    Science.gov (United States)

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-08-15

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12(th) day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  5. Synthesis of DNA in oestrogen-induced pituitary tumurs in rats: effect of bromocriptine.

    Science.gov (United States)

    Kalbermann, L E; Machiavelli, G A; De Nicola, A F; Weissenberg, L S; Burdman, J A

    1980-11-01

    Bromocriptine increased the concentration of prolactin in oestrogen-induced tumours of the rat pituitary gland. Prolactinaemia was significantly reduced and at the same time there was a considerable decrease in the weight of the tumour, in the incorporation of tritiated thymidine into DNA and in the activity of DNA polymerase alpha. The results suggested that the intracellular content of prolactin controls cell proliferation in this experimental tumour. A hypothalamic disorder is proposed as the primary cause of these tumours.

  6. Hypothalamic pathogenesis of type 2 diabetes.

    Science.gov (United States)

    Koshiyama, Hiroyuki; Hamamoto, Yoshiyuki; Honjo, Sachiko; Wada, Yoshiharu; Lkeda, Hiroki

    2006-01-01

    There have recently been increasing experimental and clinical evidences suggesting that hypothalamic dysregulation may be one of the underlying mechanisms of abnormal glucose metabolism. First, increased hypothalamic-pituitary-adrenal axis activity induced by uncontrollable excess stress may cause diabetes mellitus as well as dyslipidemia, visceral obesity, and osteoporosis with some resemblance to Cushing's disease. Second, several molecules are known to be expressed both in pancreas and hypothalamus; adenosine triphosphate-sensitive potassium channels, malonyl-CoA, glucokinase, and AMP-activated protein kinase. Those molecules appear to form an integrated hypothalamic system, which may sense hypothalamic fuel status, especially glucose level, and inhibit action of insulin on hepatic gluconeogenesis, thereby forming a brain-liver circuit. Third, hypothalamic resistance to insulin as an adiposity signal may be involved in pathogenesis of peripheral insulin resistance. The results with mice with a neuron-specific disruption of the insulin receptor gene or those lacking insulin receptor substrate 2 in hypothalamus supported this possibility. Finally, it has very recently been suggested that dysregulation of clock genes in hypothalamus may cause abnormal glucose metabolism. Taken together, it is plausible that some hypothalamic abnormality may underlie at least some portion of type 2 diabetes or insulin resistance in humans, and this viewpoint of hypothalamic pathogenesis of type 2 diabetes may lead to the development of new drugs for type 2 diabetes.

  7. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    Science.gov (United States)

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.

  8. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  9. Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools.

    Science.gov (United States)

    Kelsen, Jesper; Larsen, Marianne H; Sørensen, Jens Christian; Møller, Arne; Frøkiaer, Jørgen; Nielsen, Søren; Nyengaard, Jens R; Mikkelsen, Jens D; Rønn, Lars Christian B

    2010-04-06

    We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats (SHRs) and Sprague-Dawley rats (SDs) one week after tMCAo; (2) to present the practical use of the optical fractionator and 2D nucleator in stereological brain tissue analyses; and (3) to report our experiences with an intraluminal tMCAo model where the occluding filament is advanced 22 mm beyond the carotid bifurcation and the common carotid artery is clamped during tMCAo. Twenty-three SDs and twenty SHRs were randomized into four groups subjected to 90 minutes tMCAo or sham. BrdU (50 mg/kg) was administered intraperitoneally twice daily on Day 4 to 7 after surgery. On Day 8 all animals were euthanized. NeuN-stained tissue sections were used for brain and infarct volume estimation with the 2D nucleator and Cavalieri principle. Brains were studied for the presence of activated microglia (ED-1) and hippocampal BrdU incorporation using the optical fractionator. We found no significant difference or increase in post-ischemic NPC proliferation between the two strains. However, the response to remote ischemia may differ between SDs and SHRs. In three animals increased post-stroke NPC proliferation was associated with hippocampal ischemic injury. The mean infarct volume was 89.2 +/- 76.1 mm3 in SHRs and 16.9 +/- 22.7 mm3 in SDs (p < 0.005). Eight out of eleven SHRs had ischemic neocortical damage in contrast to only one out of 12 SDs. We observed involvement of the anterior choroidal and hypothalamic arteries in several animals from both strains and the anterior cerebral artery in two SHRs. We found no evidence of an early hippocampal NPC proliferation one week after tMCAo in both strains. Infarction within the anterior choroidal artery could induce hippocampal ischemia and

  10. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  11. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    International Nuclear Information System (INIS)

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-01-01

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects

  12. Lowering glucose level elevates [Ca2+]i in hypothalamic arcuate nucleus NPY neurons through P/Q-type Ca2+ channel activation and GSK3β inhibition

    Science.gov (United States)

    Chen, Yu; Zhou, Jun; Xie, Na; Huang, Chao; Zhang, Jun-qi; Hu, Zhuang-li; Ni, Lan; Jin, You; Wang, Fang; Chen, Jian-guo; Long, Li-hong

    2012-01-01

    Aim: To identify the mechanisms underlying the elevation of intracellular Ca2+ level ([Ca2+]i) induced by lowering extracellular glucose in rat hypothalamic arcuate nucleus NPY neurons. Methods: Primary cultures of hypothalamic arcuate nucleus (ARC) neurons were prepared from Sprague-Dawley rats. NPY neurons were identified with immunocytochemical method. [Ca2+]i was measured using fura-2 AM. Ca2+ current was recorded using whole-cell patch clamp recording. AMPK and GSK3β levels were measured using Western blot assay. Results: Lowering glucose level in the medium (from 10 to 1 mmol/L) induced a transient elevation of [Ca2+]i in ARC neurons, but not in hippocampal and cortical neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons depended on extracellular Ca2+, and was blocked by P/Q-type Ca2+channel blocker ω-agatoxin TK (100 nmol/L), but not by L-type Ca2+ channel blocker nifedipine (10 μmol/L) or N-type Ca2+channel blocker ω-conotoxin GVIA (300 nmol/L). Lowering glucose level increased the peak amplitude of high voltage-activated Ca2+ current in ARC neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons was blocked by the AMPK inhibitor compound C (20 μmol/L), and enhanced by the GSK3β inhibitor LiCl (10 mmol/L). Moreover, lowering glucose level induced the phosphorylation of AMPK and GSK3β, which was inhibited by compound C (20 μmol/L). Conclusion: Lowering glucose level enhances the activity of P/Q type Ca2+channels and elevates [Ca2+]i level in hypothalamic arcuate nucleus neurons via inhibition of GSK3β. PMID:22504905

  13. Comparative study of muscarinic acetylcholine receptors of human and rat cortical glial cells

    International Nuclear Information System (INIS)

    Demushkin, V.P.; Burbaeva, G.S.; Dzhaliashvili, T.A.; Plyashkevich, Y.G.

    1985-01-01

    The aim of the present investigation was a comparative studyof muscarinic acetylcholine receptors in human and rat glial cells. ( 3 H)Quinuclidinyl-benzylate (( 3 H)-QB), atropine, platiphylline, decamethonium, carbamylcholine, tubocurarine, and nicotine were used. The glial cell fraction was obtained from the cerebral cortex of rats weighing 130-140 g and from the frontal pole of the postmortem brain from men aged 60-70 years. The use of the method of radioimmune binding of ( 3 H)-QB with human and rat glial cell membranes demonstrated the presence of a muscarinic acetylcholine receptor in the glial cells

  14. [Effects of tributyltin chloride (TBT) and triphenyltin chloride (TPT) on rat testicular Leydig cells].

    Science.gov (United States)

    Wang, Bao-an; Li, Ming; Mu, Yi-ming; Lu, Zhao-hui; Li, Jiang-yuan

    2006-06-01

    To investigate the effects of tributyltin chloride (TBT) and triphenyltin chloride (TPT) on rat testicular Leydig cells. The rat Leydig cells (LC-540) were incubated with 0 to 80 nmol/L TBT and TPT for 24 to approximately 96 h, and then the cell viability was determined by MTT. DNA fragmentation ladder formation of cell apoptosis was examined by agarose electrophoresis. Effects of chelator of intracellular Ca2+ (BAPTA) and the inhibitors of PKA, PKC and TPK on cell apoptosis induced by TBT were observed. Effects of TBT on testosterone production in primary cultured rat Leydig cells treated with or without hCG were detected. TBT and TPT suppressed Leydig cell survival in a time- and dose-dependent manner. The suppressive effects of TBT and TPT on the cell survival was caused by apoptosis which was determined by DNA ladder formation. The apoptotic effect of TBT was possibly mediated by the rise in intracellular Ca2+ because it could be blocked by BAPTA, the chelator of intracellular Ca2+; PKA, PKC and TPK inhibitors did not prevent the apoptotic effects induced by TBT. TBT markedly suppressed testosterone production of primary cultured rat Leydig cells with or without hCG stimulation. TBT and TPT induced apoptosis in rat testicular Leydig cells possibly through increasing intracellular Ca2+. TBT reduced the testosterone production of rat Leydig cells.

  15. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  16. Antidepressant-Like Effects of Fractions Prepared from Danzhi-Xiaoyao-San Decoction in Rats with Chronic Unpredictable Mild Stress: Effects on Hypothalamic-Pituitary-Adrenal Axis, Arginine Vasopressin, and Neurotransmitters

    Directory of Open Access Journals (Sweden)

    Li-Li Wu

    2016-01-01

    Full Text Available The aim of the present study was to investigate the antidepressant-like effects of two fractions, including petroleum ether soluble fraction (Fraction A, FA and water-EtOH soluble fraction (Fraction B, FB prepared from the Danzhi-xiaoyao-san (DZXYS by using chronic unpredictable mild stress-induced depressive rat model. The results indicated that DZXYS could ameliorate the depression-like behavior in chronic stress model of rats. The inhibition of hyperactivity of HPA axis and the modulation of monoamine and amino acid neurotransmitters in the hippocampus may be the important mechanisms underlying the action of DZXYS antidepressant-like effect in chronically stressed rats.

  17. Moringa oleifera-rich diet and T cell calcium signaling in spontaneously hypertensive rats.

    Science.gov (United States)

    Attakpa, E S; Bertin, G A; Chabi, N W; Ategbo, J-M; Seri, B; Khan, N A

    2017-11-24

    Moringa oleifera is a plant whose fruits, roots and leaves have been advocated for traditional medicinal uses. The physicochemical analysis shows that Moringa oleifera contains more dietary polyunsaturated fatty acids (PUFA) than saturated fatty acids (SFA). The consumption of an experimental diet enriched with Moringa oleifera extracts lowered blood pressure in spontaneously hypertensive rats (SHR), but not in normotensive Wistar-Kyoto (WKY) rats as compared to rats fed an unsupplemented control diet. Anti-CD3-stimulated T cell proliferation was diminished in both strains of rats fed the Moringa oleifera. The experimental diet lowered secretion of interleukin-2 in SHR, but not in WKY rats compared with rats fed the control diet. Studies of platelets from patients with primary hypertension and from SHR support the notion that the concentration of intracellular free calcium [Ca(2+)](i) is modified in both clinical and experimental hypertension. We observed that the basal, [Ca(2+)](i) was lower in T cells of SHR than in those of WKY rats fed the control diet. Feeding the diet with Moringa oleifera extracts to WKY rats did not alter basal [Ca(2+)](i) in T cells but increased basal [Ca(2+)](i) in SHR. Our study clearly demonstrated that Moringa oleifera exerts antihypertensive effects by inhibiting the secretion of IL-2 and modulates T cell calcium signaling in hypertensive rats.

  18. Abnormal G1 arrest in the cell lines from LEC strain rats after X-irradiation

    International Nuclear Information System (INIS)

    Hayashi, M.; Uehara, K.; Kirisawa, R.; Endoh, D.; Arai, S.; Okui, T.

    1997-01-01

    The effect of X-irradiation of cell lines from LEC and WKAH strain rats on a progression o cell cycle was investigated. When WKAH rat ells were exposed to 5 Gy of X-rays and their cell cycle distribution was determined by a flow cytometer, the proportion of S-phase cells decrease and that of G2/M-phase cells in creased at 8 hr post-irradiation. At 18 and 24 hr post-irradiation, approximately 80% of the cells appeared in the G1 phase. On the contrary, the proportion of S-phase cells increased and that of G1-phase cells decreased in LEC rats during 8-24 hr post-irradiation, compared with that at 0 hr post-irradiation. Thus, radiation-induced delay in the progression from the G1 phase to S phase (G1 arrest) was observed inWKAH rat cells but not in LEC rat cells. In the case of WKAH rat cells, the intensities of the bands of p53 protein increased at 1 and 2 hr after X-irradiation at 5 Gy, compared with those of un-irradiated cells and at 0 hr post-irradiation. In contrast, the intensities of the bands were faint and did not significantly increase in LEC rat ells during 0-6 hr incubation after X-irradiation. Present results suggested that the radioresistant DNA synthesis in LEC rat cells is thought to be due to the abnormal G1 arrest following X-irradiation

  19. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2011-07-01

    Full Text Available Hypoxia-inducible factor (HIF is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  20. Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J.; Park, Sung-min; Cai, Dongsheng

    2011-01-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance. PMID:21814490

  1. The volume of Purkinje cells decreases in the cerebellum of acrylamide-intoxicated rats, but no cells are lost

    DEFF Research Database (Denmark)

    Larsen, Jytte Overgaard; Tandrup, T; Braendgaard, H

    1994-01-01

    The effects of acrylamide intoxication on the numbers of granule and Purkinje cells and the volume of Purkinje cell perikarya have been evaluated with stereological methods. The analysis was carried out in the cerebella of rats that had received a dose of 33.3 mg/kg acrylamide, twice a week, for 7.......5 weeks. The total numbers of cerebellar granule and Purkinje cells were estimated using the optical fractionator and the mean volume of the Purkinje cell perikarya was estimated with the vertical rotator technique. The volumes of the molecular layer, the granular cell layer and the white matter were...... estimated using the Cavalieri principle. The mean weight of the cerebellum of the intoxicated rats was 7% lower than that of the control rats (2P = 0.001). The numbers of the Purkinje cells and granule cells were the same in both groups, but the mean volume of the perikarya of the Purkinje cells...

  2. Numeric and volumetric changes in Leydig cells during aging of rats.

    Science.gov (United States)

    Neves, Bruno Vinicius Duarte; Lorenzini, Fernando; Veronez, Djanira; Miranda, Eduardo Pereira de; Neves, Gabriela Duarte; Fraga, Rogério de

    2017-10-01

    To analyze the effects of aging in rats on the nuclear volume, cytoplasmic volume, and total volume of Leydig cells, as well as their number. Seventy-two Wistar rats were divided into six subgroups of 12 rats, which underwent right orchiectomy at 3, 6, 9, 12, 18, and 24 months of age. The weight and volume of the resected testicles were assessed. A stereological study of Leydig cells was conducted, which included measurements of cell number and nuclear, cytoplasmic, and total cell volumes. The weight and volume of the resected testicles showed reductions with age. Only the subgroup composed of 24-month old rats showed a decrease in the nuclear volume of Leydig cells. Significant reductions in the cytoplasmic volume and total volume of Leydig cells were observed in 18- and 24-month old rats. The number of Leydig cells did not vary significantly with age. Aging in rats resulted in reduction of the nuclear, cytoplasmic, and total cell volumes of Leydig cells. There was no change in the total number of these cells during aging.

  3. Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy

    International Nuclear Information System (INIS)

    Clubb, F.J. Jr.; Bishop, S.P.

    1984-01-01

    The purposes of this study were to characterize myocardial cell growth in neonatal rats and investigate the mechanism of binucleation in myocardial cells. To test the hypothesis that binucleated myocardial cells result from karyokinesis without cytokinesis, experiments were designed to measure the rate of DNA synthesis and the percentage of binucleated myocardial cells in neonatal rats during growth. Estimates of myocardial cell nuclear divisions were obtained from rats pulsed with tritiated thymidine at 17 days of gestation. Autoradiograms were prepared from isolated myocardial cells of rats killed at various ages postpartum, and the number of developed silver halide grains over myocardial cell nuclei was calculated. This estimated the mitotic activity of nuclei. To determine myocardial cell DNA synthesis postpartum, another set of rats were injected at various time periods with 4 hourly doses of tritiated thymidine, and hearts were fixed by perfusion 1 hour later. Labeling index of myocardial cells was calculated (labeled/total myocardial cells) from autoradiograms. Results indicated that the growth of myocardial cells in period can be divided into three phases: (a) a hyperplastic phase, (b) a transitional phase, and (c) a hypertrophic phase. Binucleation of myocardial cells was not due to fusion of mononucleated cells

  4. Effects of chronic morphine and morphine withdrawal on gene expression in rat peripheral blood mononuclear cells.

    OpenAIRE

    Desjardins , Stephane; Belkai , Emilie; Crete , Dominique; Cordonnier , Laurie; Scherrmann , Jean-Michel; Noble , Florence; Marie-Claire , Cynthia

    2008-01-01

    International audience; Chronic morphine treatment alters gene expression in brain structures. There are increasing evidences showing a correlation, in gene expression modulation, between blood cells and brain in psychological troubles. To test whether gene expression regulation in blood cells could be found in drug addiction, we investigated gene expression profiles in peripheral blood mononuclear (PBMC) cells of saline and morphine-treated rats. In rats chronically treated with morphine, th...

  5. Erythroid differentiation and commitment in rat erythroleukemia cells with hypertonic culture conditions.

    OpenAIRE

    Yamaguchi, Y; Kluge, N; Ostertag, W; Furusawa, M

    1981-01-01

    Cell cultures of 7,12-dimethylbenz[a]anthracene-induced rat erythroleukemia can be stimulated to synthesize hemoglobin when cultured in hypertonic media. During hypertonic treatment the intracellular osmotic conditions immediately readjust to those of the extracellular medium. None of the Friend virus-induced mouse erythroleukemia cell lines was inducible for differentiation with the same hypertonic culture conditions used for rat cells. Earliest commitment to erythroid terminal differentiati...

  6. Ouabain binding to cultured vascular smooth muscle cells of the spontaneously hypertensive rat

    International Nuclear Information System (INIS)

    Hopp, L.; Khalil, F.; Tamura, H.; Kino, M.; Searle, B.M.; Tokushige, A.; Aviv, A.

    1986-01-01

    The binding of ouabain and K + to the Na + pump were analyzed in serially passed cultured vascular smooth muscle cells (VSMCs) originating from spontaneously hypertensive (SH) Wistar-Kyoto (WKY), and American Wistar (W) rats. The techniques have utilized analyses of displacement of [ 3 H]ouabain by both unlabeled ouabain and K + from specific binding sites on the VSMCs. The authors have found that 1) each of the VSMC preparations from the three rat strains appeared to demonstrate one population of specific ouabain receptors (Na + pumps); 2) the number of Na + pump units of both the SH and WKY rats was significantly lower than the number of Na + pump units of W rat VSMCs; 3) the equilibrium dissociation constant values (μM) for ouabain in VSMCs of SH and WKY rats were similar but were significantly higher than that of VSMCs derived from W rats; and 4) among the VSMCs originating from the three rat strains, the apparent equilibrium dissociation constant value for K + (mM) was the lowest in those of the SH rat compared with VSMCs of the WKY rat and W rat. Previous studies have demonstrated increased passive Na + and K + transport rate constants of SH rat VSMCs compared with either W or WKY rat cells. These findings suggest the possibility of higher permeabilities of the SH cells. They propose that the combined effect of a low number of Na + pump units with higher permeabilities to Na + and K + predisposes VSMCs of the SH rat to disturbances in their cellular ionic regulation. These genetic defects, if they occur in vivo, may lead to an increase in the vascular tone

  7. NEUROANATOMICAL ASSOCIATION OF HYPOTHALAMIC HSD2-CONTAINING NEURONS WITH ERα, CATECHOLAMINES, OR OXYTOCIN: IMPLICATIONS FOR FEEDING?

    Directory of Open Access Journals (Sweden)

    Maegan L. Askew

    2015-06-01

    Full Text Available This study used immunohistochemical methods to investigate the possibility that hypothalamic neurons that contain 11-β-hydroxysteroid dehydrogenase type 2 (HSD2 are involved in the control of feeding by rats via neuroanatomical associations with the α subtype of estrogen receptor (ERα, catecholamines, and/or oxytocin. An aggregate of HSD2-containing neurons is located laterally in the hypothalamus, and the numbers of these neurons were greatly increased by estradiol treatment in ovariectomized rats compared to numbers in male rats and in ovariectomized rats that were not given estradiol. However, HSD2-containing neurons were anatomically segregated from ERα-containing neurons in the Ventromedial Hypothalamus and the Arcuate Nucleus. There was an absence of oxytocin-immunolabeled fibers in the area of HSD2-labeled neurons. Taken together, these findings provide no support for direct associations between hypothalamic HSD2 and ERα or oxytocin neurons in the control of feeding. In contrast, there was catecholamine-fiber labeling in the area of HSD2-labeled neurons, and these fibers occasionally were in close apposition to HSD2-labeled neurons. Therefore, we cannot rule out interactions between HSD2 and catecholamines in the control of feeding; however, given the relative sparseness of the appositions, any such interaction would appear to be modest. Thus, these studies do not conclusively identify a neuroanatomical substrate by which HSD2-containing neurons in the hypothalamus may alter feeding, and leave the functional role of hypothalamic HSD2-containing neurons subject to further investigation.

  8. Expression of rat class I major histocompatibility complex (MHC) alloantigens and hepatocytes and hepatoma cells

    International Nuclear Information System (INIS)

    Hunt, J.M.; Desai, P.A.; Chakraborty, S.

    1986-01-01

    Altered expression of Class I MHC alloantigens has been reported for murine tumors, and may be associated with the tumorigenic phenotype of tumor cells. To characterize MHC Class I alloantigen expression on a chemically-induced transplantable rat hepatoma cell line, 17X, derived from a (WF x F344) F 1 rat, polyvalent anti-F344 and anti-WF rat alloantisera were first used to immunoprecipitate the rat RT1.A Class I MHC alloantigens expressed on primary (WF x F344) F 1 hepatocyptes in short-term monolayer cultures. Two-dimensional isoelectric focusing and SDS-PAGE of immunoprecipitates from 35 S-methionine-labeled (WF x F344) F 1 hepatocytes clearly resolved the RT1.A/sup u/ (WF) and RT1.A/sup LvI/ (F344) parental alloantigens. Identical radiolabeling and immunoprecipitation failed to detect either parental alloantigen on the 17X hepatoma cells. However, indirect immunofluorescence and immunoblot analyses demonstrated the presence of parental alloantigens on the 17X cells. Immunization of F344 rats but not of WF rats with 17X cells resulted in antibodies cytotoxic for normal (WF X F344) F 1 spleen cells in the presence of complement. These findings indicate that a combination of detection techniques will be necessary to characterize altered alloantigen expression on rat hepatoma cells

  9. Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alternations in hippocampal BDNF and mRNA expression of apoptosis - related proteins in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Shafia, Sakineh; Vafaei, Abbas Ali; Samaei, Seyed Afshin; Bandegi, Ahmad Reza; Rafiei, Alireza; Valadan, Reza; Hosseini-Khah, Zahra; Mohammadkhani, Raziyeh; Rashidy-Pour, Ali

    2017-03-01

    Post-traumatic stress disorder (PTSD) is a condition that develops after an individual has experienced a major trauma. Currently, selective serotonin reuptake inhibitors (SSRIs) like fluoxetine are the first-line choice in PTSD drug treatment but their moderate response rates and side effects indicate an urgent need for the development of new treatment. Physical activity is known to improve symptoms of certain neuropsychiatric disorders. The present study investigated the effects of moderate treadmill exercise, the antidepressant fluoxetine and the combined treatment on behavioural deficits, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. We also examined alternations in hippocampal brain-derived neurotrophic factor (BDNF) and mRNA expression of apoptosis - related proteins in a rat model of PTSD: the single prolonged stress (SPS) model. Rats were exposed to SPS (restraint for 2h, forced swimming for 20min and ether anaesthesia) and were then kept undisturbed for 14days. After that, SPS rats were subjected to chronic treatment with fluoxetine (10mg/kg/day, for 4weeks), moderate treadmill running (4weeks, 5day per week) and the combined treatment (fluoxetine plus treadmill exercise), followed by behavioural, biochemical and apoptosis markers assessments. SPS rats exhibited increased anxiety levels in the elevated plus maze and light/dark box, impaired fear conditioning and extinction in inhibitory avoidance (IA) task, impaired spatial memory in a recognition location memory task and enhanced negative feedback on the HPA axis following a dexamethasone suppression test. SPS rats also showed reduced hippocampal BDNF and enhanced apoptosis. Moderate treadmill exercise, fluoxetine and the combined treatment alleviated the SPS-induced alterations in terms of anxiety levels, HPA axis inhibition, IA conditioning and extinction, hippocampal BDNF and apoptosis markers. Furthermore, the combined treatment was more effective than fluoxetine alone, but in most tests

  10. Ulinastatin Reduces T Cell Apoptosis in Rats with Severe Acute ...

    African Journals Online (AJOL)

    in rats with severe acute pancreatitis (SAP) and to elucidate its underlying molecular mechanism. Methods: Thirty .... on T lymphocytes apoptosis in SAP rat model and elucidated ..... oxygen radicals, the exhaustion of adenine nucleotide and ...

  11. Efficacy of Mesenchymal Stem Cells in Suppression of Hepatocarcinorigenesis in Rats: Possible Role of Wnt Signaling

    LENUS (Irish Health Repository)

    Abdel Aziz, Mohamed T

    2011-05-05

    Abstract Background The present study was conducted to evaluate the tumor suppressive effects of bone marrow derived mesenchymal stem cells (MSCs) in an experimental hepatocellular carcinoma (HCC) model in rats and to investigate the possible role of Wnt signaling in hepato-carcinogenesis. Methods Ninety rats were included in the study and were divided equally into: Control group, rats which received MSCs only, rats which received MSCs vehicle only, HCC group induced by diethylnitroseamine (DENA) and CCl 4 , rats which received MSCs after HCC induction, rats which received MSCs before HCC induction. Histopathological examination and gene expression of Wnt signaling target genes by real time, reverse transcription-polymerase chain reaction (RT-PCR) in rat liver tissue, in addition to serum levels of ALT, AST and alpha fetoprotein were performed in all groups. Results Histopathological examination of liver tissue from animals which received DENA-CCl4 only, revealed the presence of anaplastic carcinoma cells and macro-regenerative nodules type II with foci of large and small cell dysplasia. Administration of MSCs into rats after induction of experimental HCC improved the histopathological picture which showed minimal liver cell damage, reversible changes, areas of cell drop out filled with stem cells. Gene expression in rat liver tissue demonstrated that MSCs downregulated β-catenin, proliferating cell nuclear antigen (PCNA), cyclin D and survivin genes expression in liver tissues after HCC induction. Amelioration of the liver status after administration of MSCs has been inferred by the significant decrease of ALT, AST and Alpha fetoprotein serum levels. Administration of MSCs before HCC induction did not show any tumor suppressive or protective effect. Conclusions Administration of MSCs in chemically induced HCC has tumor suppressive effects as evidenced by down regulation of Wnt signaling target genes concerned with antiapoptosis, mitogenesis, cell proliferation

  12. Dietary sugars, not lipids, drive hypothalamic inflammation

    OpenAIRE

    Gao, Yuanqing; Bielohuby, Maximilian; Fleming, Thomas; Grabner, Gernot F.; Foppen, Ewout; Bernhard, Wagner; Guzm?n-Ruiz, Mara; Layritz, Clarita; Legutko, Beata; Zinser, Erwin; Garc?a-C?ceres, Cristina; Buijs, Ruud M.; Woods, Stephen C.; Kalsbeek, Andries; Seeley, Randy J.

    2017-01-01

    Objective: The hypothalamus of hypercaloric diet-induced obese animals is featured by a significant increase of microglial reactivity and its associated cytokine production. However, the role of dietary components, in particular fat and carbohydrate, with respect to the hypothalamic inflammatory response and the consequent impact on hypothalamic control of energy homeostasis is yet not clear. Methods: We dissected the different effects of high-carbohydrate high-fat (HCHF) diets and low-car...

  13. A genetic basis for functional hypothalamic amenorrhea.

    OpenAIRE

    Caronia, L.M.; Martin, C.; Welt, C.K.; Sykiotis, G.P.; Quinton, R.; Thambundit, A.; Avbelj, M.; Dhruvakumar, S.; Plummer, L.; Hughes, V.A.; Seminara, S.B.; Boepple, P.A.; Sidis, Y.; Crowley, W.F.; Martin, K.A.

    2011-01-01

    Background: Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogon...

  14. Application of cell sheet technology to bone marrow stromal cell transplantation for rat brain infarct.

    Science.gov (United States)

    Ito, Masaki; Shichinohe, Hideo; Houkin, Kiyohiro; Kuroda, Satoshi

    2017-02-01

    Bone marrow stromal cells (BMSC) transplantation enhances functional recovery after cerebral infarct, but the optimal delivery route is undetermined. This study was aimed to assess whether a novel cell-sheet technology non-invasively serves therapeutic benefits to ischemic stroke. First, the monolayered cell sheet was engineered by culturing rat BMSCs on a temperature-responsive dish. The cell sheet was analysed histologically and then transplanted onto the ipsilateral neocortex of rats subjected to permanent middle cerebral artery occlusion at 7 days after the insult. Their behaviours and histology were compared with those in the animals treated with direct injection of BMSCs or vehicle over 4 weeks post-transplantation. The cell sheet was 27.9 ± 8.0 μm thick and was composed of 9.8 ± 2.4 × 10 5 cells. Cell sheet transplantation significantly improved motor function when compared with the vehicle-injected animals. Histological analysis revealed that the BMSCs were densely distributed to the neocortex adjacent to the cerebral infarct and expressed neuronal phenotype in the cell sheet-transplanted animals. These findings were almost equal to those for the animals treated with direct BMSC injection. The attachment of the BMSC sheet to the brain surface did not induce reactive astrocytes in the adjacent neocortex, although direct injection of BMSCs profoundly induced reactive astrocytes around the injection site. These findings suggest that the BMSCs in cell sheets preserve their biological capacity of migration and neural differentiation. Cell-sheet technology may enhance functional recovery after ischaemic stroke, using a less invasive method. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Differentiated cells derived from fetal neural stem cells improve motor deficits in a rat model of Parkinson’s disease

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Hao Song; Aifang Shen; Chao Chen; Yanming Liu; Yabing Dong; Fabin Han

    2015-01-01

    Objective: Parkinson’s disease(PD), which is one of the most common neuro‐degenerative disorders, is characterized by the loss of dopamine(DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells(NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods: NSCs were isolated from 14‐week‐old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers: βⅢ‐tubulin and microtubule‐associated protein 2(neurons), tyrosine hydroxylase(DA neurons), and glial fibrillary acidic protein(glial cells). After a 6‐hydroxydopamine(6‐OHDA)‐lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6‐OHDA‐lesioned PD rats. Results: The motor behaviors of the PD rats were assessed by the number of apomorphine‐induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine‐induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions: Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.

  16. Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats.

    Science.gov (United States)

    Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

    2014-08-01

    During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.

  17. Effects of X-irradiation on glial cells in the developing rat brain

    International Nuclear Information System (INIS)

    Ferrer, I.; Borras, D.

    1994-01-01

    Sprague-Dawley rats were given a single dose of 2Gy X-rays when 1 or 3 days of age. Dying cells in the germinal layer of the telencephalon reached peak values 6h after irradiation; dead cells were cleared 48h later. These effects were almost abolished with the injection of cyclohexamide (1 μg/g body weight) given at the time of irradiation. PCNA-immunoreactive cells (cells in late G 1 and S phases of the cell cycle) and PCNA-negative cells were sensitive to X-rays. Long-term effects on glial cell populations in the subcortical white matter of the cingulum were examined in irradiated rats, killed at postnatal day 30 (P30), by means of glial fibrillary acidic protein, vimentin and S-100 immunohistochemistry, as well as with anti-TGF-α (transformerly growth factor) antibodies that are used as putative oligodendrogial cell markers in the white matter of rat. (author)

  18. Hypothalamic Circuits for Predation and Evasion.

    Science.gov (United States)

    Li, Yi; Zeng, Jiawei; Zhang, Juen; Yue, Chenyu; Zhong, Weixin; Liu, Zhixiang; Feng, Qiru; Luo, Minmin

    2018-02-21

    The interactions between predator and prey represent some of the most dramatic events in nature and constitute a matter of life and death for both sides. The hypothalamus has been implicated in driving predation and evasion; however, the exact hypothalamic neural circuits underlying these behaviors remain poorly defined. Here, we demonstrate that inhibitory and excitatory projections from the mouse lateral hypothalamus (LH) to the periaqueductal gray (PAG) in the midbrain drive, respectively, predation and evasion. LH GABA neurons were activated during predation. Optogenetically stimulating PAG-projecting LH GABA neurons drove strong predatory attack, and inhibiting these cells reversibly blocked predation. In contrast, LH glutamate neurons were activated during evasion. Stimulating PAG-projecting LH glutamate neurons drove evasion and inhibiting them impeded predictive evasion. Therefore, the seemingly opposite behaviors of predation and evasion are tightly regulated by two dissociable modular command systems within a single neural projection from the LH to the PAG. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Degradation of high density lipoprotein in cultured rat luteal cells

    International Nuclear Information System (INIS)

    Rajan, V.P.; Menon, K.M.J.

    1986-01-01

    In rat ovary luteal cells, degradation of high density lipoprotein (HDL) to tricholoracetic acid (TCA)-soluble products accounts for only a fraction of the HDL-derived cholesterol used for steroidogenesis. In this study the authors have investigated the fate of 125 I]HDL bound to cultured luteal cells using pulse-chase technique. Luteal cell cultures were pulse labeled with [ 125 I]HDL 3 and reincubated in the absence of HDL. By 24 h about 50% of the initallay bound radioactivity was released into the medium, of which 60-65% could be precipitated with 10% TCA. Gel filtration of the chase incubation medium on 10% agarose showed that the amount of TCA-soluble radioactivity was nearly completely accounted for by a sharp peak in the low molecular weight region which was identified as 96% monoiodotyrosine by paper chromatography. The TCA-precipitable radioactivity was nearly completely accounted for by a sharp peak in the low molecular weight region which was identified as 96% monoiodotyrosine by paper chromatography. The TCA-precipitable radioactivity eluted over a wide range of molecular weights (15,000-80,000), and there was very little intact HDL present. Electrophoresis of the chase medium showed that component of the TCA-precipitable portion had mobility similar to apo AI. Lysosomal inhibitors of receptor-mediated endocytosis had no effect on the composition or quantity of radioactivity released during chase incubation. The results show that HDL 3 binding to luteal cells is followed by complete degradation of the lipoprotein, although the TCA-soluble part does not reflect the extent of degradation

  20. Construction of rat beta defensin-2 eukaryotic expression vector and expression in the transfected rat corneal epithelial cell

    Directory of Open Access Journals (Sweden)

    Jing Dan

    2017-03-01

    Full Text Available AIM: To construct a recombinant eukaryotic expression vector of rat beta defensin-2(rBD-2, transfect it into the rat corneal epithelial cells with lipofection, determine the expression of target gene in the transfected cells, and discuss the potentiality of recombinant plasmid expressed in corneal epithelial cells, hoping to provide an experimental foundation for further study on the antimicrobial activity of rBD-2 in vitro and in vivo and to assess the probability of defensins as a new application for infectious corneal diseases in the future. METHODS: The synthetic rBD-2 DNA fragment was inserted between the XhoI and BamHI restriction enzyme cutting sites of eukaryotic expression vector pIRES2-ZsGreen1 to construct the recombinant plasmid pIRES2-ZsGreen1-rBD-2, then transformed it into E.coli DH5α, positive clones were screened by kanamycin and identified with restriction endonucleases and sequencing analysis. Transfection into the rat corneal epithelial cells was performed by lipofection. Then the experiment was divided into three groups: rat corneal epithelial cell was transfected with the recombinant plasmid pIRES2- ZsGreen1-rBD-2, rat corneal epithelial cell was transfected with the empty plasmid pIRES2-ZsGreen1 and the non-transfected group. The inverted fluorescence microscope was used to observe the transfection process. At last, the level of rBD-2 mRNA expressed in the transfected cells and the control groups are compared by the real-time fluoresence relative quantitative PCR. RESULTS: The recombinant eukaryotic expression vector of pIRES2-ZsGreen1-rBD-2 was successfully constructed. The level of rBD-2 mRNA in transfected cells was significantly higher than that in control groups through the real-time fluorescence relative quantitative PCR. CONCLUSION: The recombinant eukaryotic expression vector pIRES2-ZsGreen1-rBD-2 could be transfected into rat corneal epithelial cells, and exogenous rBD-2 gene could be transcripted into mRNA in

  1. Arthritis by autoreactive T cell lines obtained from rats after injection of intestinal bacterial cell wall fragments

    NARCIS (Netherlands)

    I. Klasen (Ina); J. Kool (Jeanette); M.J. Melief (Marie-José); I. Loeve (I.); W.B. van den Berg (Wim); A.J. Severijnen; M.P.H. Hazenberg (Maarten)

    1992-01-01

    markdownabstract__Abstract__ T cell lines (B13, B19) were isolated from the lymph nodes of Lewis rats 12 days after an arthritogenic injection of cell wall fragments of Eubacterium aerofaciens (ECW), a major resident of the human intestinal flora. These cell wall fragments consist of

  2. Reduced ghrelin secretion in the hypothalamus of rats due to cisplatin-induced anorexia.

    Science.gov (United States)

    Yakabi, Koji; Sadakane, Chiharu; Noguchi, Masamichi; Ohno, Shino; Ro, Shoki; Chinen, Katsuya; Aoyama, Toru; Sakurada, Tomoya; Takabayashi, Hideaki; Hattori, Tomohisa

    2010-08-01

    Although chemotherapy with cisplatin is a widely used and effective cancer treatment, the undesirable gastrointestinal side effects associated with it, such as nausea, vomiting, and anorexia, markedly decrease patients' quality of life. To elucidate the mechanism underlying chemotherapy-induced anorexia, focusing on the hypothalamic ghrelin secretion-anorexia association, we measured hypothalamic ghrelin secretion in fasted and cisplatin-treated rats. Hypothalamic ghrelin secretion changes after vagotomy or administration of cisplatin. Cisplatin + rikkunshito, a serotonin 2C receptor antagonist or serotonin 3 receptor antagonist, was investigated. The effects of intracerebroventricular (icv) administration of ghrelin or the serotonin 2C receptor antagonist SB242084 on food intake were also evaluated in cisplatin-treated rats. Hypothalamic ghrelin secretion significantly increased in 24-h-fasted rats compared to freely fed rats and was markedly reduced 24 and 48 h after cisplatin treatment in cisplatin-treated rats compared to saline-treated rats, although their plasma ghrelin levels were comparable. In cisplatin-treated rats, icv ghrelin administration reversed the decrease in food intake, vagotomy partially restored hypothalamic ghrelin secretion, and hypothalamic serotonin 2C receptor mRNA expression increased significantly. Administration of rikkunshito (an endogenous ghrelin enhancer) or a serotonin 2C receptor antagonist reversed the decrease in hypothalamic ghrelin secretion and food intake 24 h after cisplatin treatment. Cisplatin-induced anorexia is mediated through reduced hypothalamic ghrelin secretion. Cerebral serotonin 2C receptor activation partially induces decrease in hypothalamic ghrelin secretion, and rikkunshito suppresses cisplatin-induced anorexia by enhancing this secretion.

  3. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells.

    Science.gov (United States)

    Yeh, Lee-Chuan C; Ford, Jeffery J; Lee, John C; Adamo, Martin L

    2014-07-18

    Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A comparative study of myosin and its subunits in adult and neonatal-rat hearts and in rat heart cells from young and old cultures.

    OpenAIRE

    Ghanbari, H A; McCarl, R L

    1980-01-01

    A possible explanation for the decrease in myosin Ca2+-dependent ATPase activity as rat heart cells age in culture is presented. The subunit structure and enzyme kinetics of myosin from adult and neonatal rat hearts and from rat heart cells of young and old cultures are compared. These studies indicate that the loss in Ca-ATPase activity of myosin from older cultures was an intrinsic property of the myosin itself. Myofibrillar fractions from the indicated four sources showed no qualitative or...

  5. [Red Blood Cells Raman Spectroscopy Comparison of Type Two Diabetes Patients and Rats].

    Science.gov (United States)

    Wang, Lei; Liu, Gui-dong; Mu, Xin; Xiao, Hong-bin; Qi, Chao; Zhang, Si-qi; Niu Wen-ying; Jiang, Guang-kun; Feng, Yue-nan; Bian, Jing-qi

    2015-10-01

    By using confocal Raman spectroscopy, Raman spectra were measured in normal rat red blood cells, normal human red blood cells, STZ induced diabetetic rats red blood cells, Alloxan induced diabetetic rats red blood cells and human type 2 diabetes red blood cells. Then principal component analysis (PCA) with support vector machine (SVM) classifier was used for data analysis, and then the distance between classes was used to judge the degree of close to two kinds of rat model with type 2 diabetes. The results found significant differences in the Raman spectra of red blood cell in diabetic and normal red blood cells. To diabetic red blood cells, the peak in the amide VI C=O deformation vibration band is obvious, and amide V N-H deformation vibration band spectral lines appear deviation. Belong to phospholipid fatty acyl C-C skeleton, the 1 130 cm(-1) spectral line is enhanced and the 1 088 cm(-1) spectral line is abated, which show diabetes red cell membrane permeability increased. Raman spectra of PCA combined with SVM can well separate 5 types of red blood cells. Classifier test results show that the classification accuracy is up to 100%. Through the class distance between the two induced method and human type 2 diabetes, it is found that STZ induced model is more close to human type 2 diabetes. In conclusion, Raman spectroscopy can be used for diagnosis of diabetes and rats STZ induced diabetes method is closer to human type 2 diabetes.

  6. Effects of sciatic-conditioned medium on neonatal rat retinal cells in vitro

    Directory of Open Access Journals (Sweden)

    Torres P.M.M.

    1998-01-01

    Full Text Available Schwann cells produce and release trophic factors that induce the regeneration and survival of neurons following lesions in the peripheral nerves. In the present study we examined the in vitro ability of developing rat retinal cells to respond to factors released from fragments of sciatic nerve. Treatment of neonatal rat retinal cells with sciatic-conditioned medium (SCM for 48 h induced an increase of 92.5 ± 8.8% (N = 7 for each group in the amount of total protein. SCM increased cell adhesion, neuronal survival and glial cell proliferation as evaluated by morphological criteria. This effect was completely blocked by 2.5 µM chelerythrine chloride, an inhibitor of protein kinase C (PKC. These data indicate that PKC activation is involved in the effect of SCM on retinal cells and demonstrate that fragments of sciatic nerve release trophic factors having a remarkable effect on neonatal rat retinal cells in culture.

  7. Preservation of photoreceptors in dystrophic RCS rats following allo- and xenotransplantation of IPE cells.

    Science.gov (United States)

    Thumann, Gabriele; Salz, Anna Katharina; Walter, Peter; Johnen, Sandra

    2009-03-01

    To examine whether iris pigment epithelial (IPE) cells transplanted into the subretinal space of Royal College of Surgeons (RCS) rats have the ability to rescue photoreceptors. Rat IPE (rIPE) or human IPE (hIPE) cells were transplanted subretinally in 23-day-old RCS rats. Sham injection and transplantation of ARPE-19 cells served as controls. After 12 weeks, eyes were evaluated for photoreceptor survival by morphometric analysis and electron microscopy. Morphometric analysis showed photoreceptor rescue in all transplanted and sham-injected animals (number of photoreceptors/300 microm retina+/-sd: rIPE 41.67 +/- 28; hIPE 29.50 +/- 16; ARPE-19 36.12 +/- 21; sham 16.56 +/- 6) compared to age-matched, control rats (number of photoreceptors/300 microm retina+/-sd: 9.71 +/- 4). Photoreceptor rescue was prominent in IPE cell-transplanted rats and was significantly greater than sham-injected eyes (p = 0.02 for rIPE and p = 0.04 for hIPE). Since IPE cells transplanted into the subretinal space have the ability to rescue photoreceptors from degeneration in the RCS rat without any harmful effects, IPE cells may represent an ideal cell to genetically modify and thus carry essential genetic information for the repair of defects in the subretinal space.

  8. Profile of blood glucose and ultrastucture of beta cells pancreatic islet in alloxan compound induced rats

    Directory of Open Access Journals (Sweden)

    I Nyoman Suarsana

    2010-06-01

    Full Text Available Diabetes is marked by elevated levels of blood glucose, and progressive changes of the structure of pancreatic islet histopathology. The objective of this research was to analyse the glucose level and histophatological feature in pancreatic islet in alloxan compound induced rats. A total of ten male Spraque Dawley rats of 2 months old were used in this study. The rats were divided into two groups: (1 negative control group (K-, and (2 positif induced alloxan group (diabetic group =DM. The rats were induced by a single dose intraperitonial injection of alloxan compound 120 mg/kg of body weight. The treatment was conducted for 28 days. Blood glucose levels of rats were analysed at 0, 4, 7, 14, 21, and 28 days following treatment. At the end of the experiment, rats were sacrificed by cervical dislocation. Pancreas was collected for analysis of histopathological study by Immunohistochemical technique, and ultrastructural study using transmission electron microscope (TEM. The result showed that Langerhans islet of diabetic rat (rat of DM group showed a marked reduction of size, number of Langerhans islet of diabetic rat decrease, and characterized by hyperglycemic condition. By using TEM, beta cells of DM group showed the rupture of mitochondrial membrane, the lost of cisternal structure of inner membrane of mitocondria, reduction of insulin secretory granules, linkage between cells acinar with free Langerhans islet, and the caryopicnotic of nucleus.

  9. Characteristics of monolayer culture of bone marrow cells of rats bearing 239Pu-induced osteosarcoma

    International Nuclear Information System (INIS)

    Bukhtoyarova, Z.M.; Lemberg, V.K.

    1984-01-01

    The report is concerned with a monolayer culture of bone marrow cells of rats in which optimal blastogenic dose (92.5 kBq/kg) induced osteosarcoma. The cell culture showed an enhanced rate of fibroblast-like cell proliferation (increased number of mitoses and symplasts and larger colonies of cells), apparent signs of radiation in ury (pathologic mitoses, chromosome aberrations and gaps) as well as an increase in ploidy. Diffusion chamber measurements demonstrated osteogenic precursor-cells in osteosarcoma-bearing rats to be highly capable of bone formation. This relatively high ability seems to occur outside bone marrow as well

  10. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  11. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    OpenAIRE

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of ...

  12. Inverse relationship of tumors and mononuclear cell leukemia infiltration in the lungs of F344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, D.L.; Griffith, W.C.; Hahn, F.F.

    1995-12-01

    In 1970 and F344 rat, along with the B6C3F{sub 1} mouse, were selected as the standard rodents for the National Cancer Institute Carcinogenic Bioassay program for studies of potentially carcinogenic chemicals. The F344 rat has also been used in a variety of other carcinogenesis studies, including numerous studies at ITRI. A major concern to be considered in evaluating carcinogenic bioassay studies using the F344 rat is the relatively high background incidence of mononuclear cell leukemia (MCL) (also referred to as large granular lymphocytic leukemia, Fischer rat leukemia, or monocytic leukemia). Incidences of MCL ranging from 10 to 72% in male F344 rats to 6 to 31% in female F344 rats have been reported. Gaining the understanding of the mechanisms involved in the negative correlations noted should enhance our understanding of the mechanisms involved in the development of lung cancer.

  13. A Genetic Basis for Functional Hypothalamic Amenorrhea

    Science.gov (United States)

    Caronia, Lisa M.; Martin, Cecilia; Welt, Corrine K.; Sykiotis, Gerasimos P.; Quinton, Richard; Thambundit, Apisadaporn; Avbelj, Magdalena; Dhruvakumar, Sadhana; Plummer, Lacey; Hughes, Virginia A.; Seminara, Stephanie B.; Boepple, Paul A.; Sidis, Yisrael; Crowley, William F.; Martin, Kathryn A.; Hall, Janet E.; Pitteloud, Nelly

    2011-01-01

    BACKGROUND Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. METHODS We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. RESULTS Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kall-mann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. CONCLUSIONS Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.) PMID:21247312

  14. A genetic basis for functional hypothalamic amenorrhea.

    Science.gov (United States)

    Caronia, Lisa M; Martin, Cecilia; Welt, Corrine K; Sykiotis, Gerasimos P; Quinton, Richard; Thambundit, Apisadaporn; Avbelj, Magdalena; Dhruvakumar, Sadhana; Plummer, Lacey; Hughes, Virginia A; Seminara, Stephanie B; Boepple, Paul A; Sidis, Yisrael; Crowley, William F; Martin, Kathryn A; Hall, Janet E; Pitteloud, Nelly

    2011-01-20

    Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kallmann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.).

  15. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats.

    Science.gov (United States)

    Lund, Raymond D; Wang, Shaomei; Klimanskaya, Irina; Holmes, Toby; Ramos-Kelsey, Rebeca; Lu, Bin; Girman, Sergej; Bischoff, N; Sauvé, Yves; Lanza, Robert

    2006-01-01

    Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium. Improvement in visual performance was 100% over untreated controls (spatial acuity was approximately 70% that of normal nondystrophic rats) without evidence of untoward pathology. The use of somatic cell nuclear transfer (SCNT) and/or the creation of banks of reduced complexity human leucocyte antigen (HLA) hES-RPE lines could minimize or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols.

  16. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 colocalizes with insulin receptor substrate 4 (IRS4 in the hypothalamic neurons and mediates IRS4 degradation

    Directory of Open Access Journals (Sweden)

    Xia Zefeng

    2011-09-01

    Full Text Available Abstract Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 is expressed in neuropeptide Y and proopiomelanocortin (POMC neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4 is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC and neuropeptide Y (NPY neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.

  17. Could Cells from Your Nose Fix Your Heart? Transplantation of Olfactory Stem Cells in a Rat Model of Cardiac Infarction

    Directory of Open Access Journals (Sweden)

    Cameron McDonald

    2010-01-01

    Full Text Available This study examines the hypothesis that multipotent olfactory mucosal stem cells could provide a basis for the development of autologous cell transplant therapy for the treatment of heart attack. In humans, these cells are easily obtained by simple biopsy. Neural stem cells from the olfactory mucosa are multipotent, with the capacity to differentiate into developmental fates other than neurons and glia, with evidence of cardiomyocyte differentiation in vitro and after transplantation into the chick embryo. Olfactory stem cells were grown from rat olfactory mucosa. These cells are propagated as neurosphere cultures, similar to other neural stem cells. Olfactory neurospheres were grown in vitro, dissociated into single cell suspensions, and transplanted into the infarcted hearts of congeneic rats. Transplanted cells were genetically engineered to express green fluorescent protein (GFP in order to allow them to be identified after transplantation. Functional assessment was attempted using echocardiography in three groups of rats: control, unoperated; infarct only; infarcted and transplanted. Transplantation of neurosphere-derived cells from adult rat olfactory mucosa appeared to restore heart rate with other trends towards improvement in other measures of ventricular function indicated. Importantly, donor-derived cells engrafted in the transplanted cardiac ventricle and expressed cardiac contractile proteins.

  18. Characterization of Rat Hair Follicle Stem Cells Selected by Vario Magnetic Activated Cell Sorting System

    International Nuclear Information System (INIS)

    Huang, Enyi; Lian, Xiaohua; Chen, Wei; Yang, Tian; Yang, Li

    2009-01-01

    Hair follicle stem cells (HfSCs) play crucial roles in hair follicle morphogenesis and hair cycling. These stem cells are self-renewable and have the multi-lineage potential to generate epidermis, sebaceous glands, and hair follicle. The separation and identification of hair follicle stem cells are important for further research in stem cell biology. In this study, we report on the successful enrichment of rat hair follicle stem cells through vario magnetic activated cell sorting (Vario MACS) and the biological characteristics of the stem cells. We chose the HfSCs positive surface markers CD34, α6-integrin and the negative marker CD71 to design four isolation strategies: positive selection with single marker of CD34, positive selection with single marker of α6-integrin, CD71 depletion followed by CD34 positive selection, and CD71 depletion followed by α6-integrin positive selection. The results of flow cytometry analysis showed that all four strategies had ideal effects. Specifically, we conducted a series of researches on HfSCs characterized by their high level of CD34, termed CD34 bri cells, and low to undetectable expression of CD34, termed CD34 dim cells. CD34 bri cells had greater proliferative potential and higher colony-forming ability than CD34 dim cells. Furthermore, CD34 bri cells had some typical characteristics as progenitor cells, such as large nucleus, obvious nucleolus, large nuclear:cytoplasmic ratio and few cytoplasmic organelles. Our findings clearly demonstrated that HfSCs with high purity and viability could be successfully enriched with Vario MACS

  19. Heterogeneity within the spleen colony-forming cell population in rat bone marrow

    International Nuclear Information System (INIS)

    Martens, A.C.; van Bekkum, D.W.; Hagenbeek, A.

    1986-01-01

    The pluripotent hemopoietic stem cell (HSC) of the rat can be enumerated in a spleen colony assay (SCA) in rats as well as mice. After injection of rat bone marrow into lethally irradiated mice, macroscopically visible spleen colonies (CFU-S) are found from day 6 through 14, but the number varies on consecutive days. In normal bone marrow a constant ratio of day-8 to day-12 colony numbers is observed. However, this ratio is changed after in vivo treatment of rats with cyclophosphamide, as well as after in vitro treatment of rat bone marrow with cyclophosphamide derivatives. This indicates that the CFU-S that form colonies on day 8 react differently to this treatment than the CFU-S that form colonies on day 12, and suggests heterogeneity among the CFU-S population. Posttreatment regrowth of day-8 and day-12 CFU-S is characterized by differences in population-doubling times (Td = 0.85 days vs 1.65 days). Another argument in support of the postulate of heterogeneity within the rat CFU-S population is derived from the fact that (in contrast to normal rat spleen) the spleen of leukemic rats contains high numbers of CFU-S that show a ratio of day-8 to day-12 CFU-S of 4.5, which is different than that observed for a CFU-S population in normal bone marrow (a ratio of 2.4). It is concluded that, in rat hemopoiesis, two populations of spleen colony-forming cells can be distinguished using the rat-to-mouse SCA. This indicates that mouse and rat hemopoiesis are comparable in this respect and that heterogeneity in the stem cell compartment is a general phenomenon

  20. Radiation-induced cell disintegrations in cultured rat hepatoma cells JTC 2

    International Nuclear Information System (INIS)

    Sakka, Masatoshi

    1979-01-01

    Disintegration of hepatoma cells of rat were recorded by time lapse cinemicrography for more than 5 days and about 1000 pedigrees were analyzed. Five generations were followed up in control and 2 or 3 generations in irradiated cells. Cells were attached on vessel wall spreading themselves in intermitotic phase while they stood up from the wall in mitotic phase taking a roun form. When a cell disintegrates in interphase the disintegration is called D sub( s) and one in mitotic period D sub( r). The frequency of D sub( s)S' is about 3 times as much as D sub( r)S'. An age of a disintegrated cell in generation 1 and 2 was measured as the previous mitosis was age 0. Generation times of the comparable generations of surviving sister branches of the same pedigrees were used as controls. Most disintegration took place at the same age with surviving sisters indicating a determined, not at random, age of cell death. A cell in an initial state flowed to any one of the following states with or without irradiation; surviving, disintegrated, end cell or escaping out of observation field. A single exposure of 400 to 900 R induced a typical reproductive death but effective extinction of clones was observed only in small pedigrees. Temporary hypothermia and hyperthermia immediately after exposure had no remarkable lethal effects on several early generations. (author)

  1. Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: interaction with postnatal nutritional environment.

    Directory of Open Access Journals (Sweden)

    Hui Chen

    Full Text Available OBJECTIVE: Early life nutrition is critical for the development of hypothalamic neurons involved in energy homeostasis. We previously showed that intrauterine and early postnatal overnutrition programmed hypothalamic neurons expressing the appetite stimulator neuropeptide Y (NPY and suppressor proopiomelanocortin (POMC in offspring at weaning. However, the long-term effects of such programming and its interactions with post-weaning high-fat-diet (HFD consumption are unclear. RESEARCH DESIGN AND METHODS: Female Sprague Dawley rats were exposed to chow or HFD for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1, litters were adjusted to 3/litter to induce postnatal overnutrition (vs. 12 in control. At postnatal day 20, half of the rats from each maternal group were weaned onto chow or HFD for 15 weeks. Hypothalamic appetite regulators, and fuel (glucose and lipid metabolic markers were measured. RESULTS: Offspring from obese dams gained more weight than those from lean dams independent of post-weaning diet. Maternal obesity interacted with post-weaning HFD consumption to cause greater levels of hyperphagia, adiposity, hyperlipidemia, and glucose intolerance in offspring. This was linked to increased hypothalamic NPY signaling and leptin resistance in adult offspring. Litter size reduction had a detrimental impact on insulin and adiponectin, while hypothalamic NPY and POMC mRNA expression were suppressed in the face of normal energy intake and weight gain. CONCLUSIONS: Maternal obesity, postnatal litter size reduction and post-weaning HFD consumption caused obesity via different neuroendocrine mechanism. There were strong additive effects of maternal obesity and post-weaning HFD consumption to increase the metabolic disorders in offspring.

  2. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.

    Directory of Open Access Journals (Sweden)

    Claudia Merkl

    Full Text Available Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4 into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.

  3. Glutamate and GABA as rapid effectors of hypothalamic peptidergic neurons

    Directory of Open Access Journals (Sweden)

    Cornelia eSchöne

    2012-11-01

    Full Text Available Vital hypothalamic neurons regulating hunger, wakefulness, reward-seeking, and body weight are often defined by unique expression of hypothalamus-specific neuropeptides. Gene-ablation studies show that some of these peptides, notably orexin/hypocretin (hcrt/orx, are themselves critical for stable states of consciousness and metabolic health. However, neuron-ablation studies often reveal more severe phenotypes, suggesting key roles for co-expressed transmitters. Indeed, most hypothalamic neurons, including hcrt/orx cells, contain fast transmitters glutamate and GABA, as well as several neuropeptides. What are the roles and relations between different transmitters expressed by the same neuron? Here, we consider signaling codes for releasing different transmitters in relation to transmitter and receptor diversity in behaviorally-defined, widely-projecting peptidergic neurons, such as hcrt/orx cells. We then discuss latest optogenetic studies of endogenous transmitter release from defined sets of axons in situ, which suggest that recently-characterized vital peptidergic neurons (e.g. hcrt/orx, proopiomelanocortin , and agouti-related peptide cells, as well as classical modulatory neurons (e.g. dopamine and acetylcholine cells, all use fast transmitters to control their postsynaptic targets. These optogenetic insights are complemented by recent observations of behavioral deficiencies caused by genetic ablation of fast transmission from specific neuropeptidergic and aminergic neurons. Powerful and fast (millisecond-scale GABAergic and glutamatergic signaling from neurons previously considered to be primarily modulatory raises new questions about the roles of slower co-transmitters they co-express.

  4. Relations between fatty acid synthesis, pyruvate concentration and cell concentration of suspensions of isolated rat hepatocytes

    NARCIS (Netherlands)

    Beynen, A.C.; Geelen, M.J.H.

    1984-01-01

    1. 1. The cell concentration of suspensions of isolated rat hepatocytes affects both the rate of pyruvate accumulation in the incubation medium and the rate of fatty acid synthesis. 2. 2. At low cell concentrations pyruvate accumulation is directly related to the cell concentration but levels off

  5. Effect of TheraCyte-encapsulated parathyroid cells on lumbar fusion in a rat model

    OpenAIRE

    Chen, Sung-Hsiung; Huang, Shun-Chen; Lui, Chun-Chung; Lin, Tzu-Ping; Chou, Fong-Fu; Ko, Jih-Yang

    2012-01-01

    Introduction Implantation of TheraCyte 4 × 106 live parathyroid cells can increase the bone marrow density of the spine of ovariectomized rats. There has been no published study examining the effect of such implantation on spinal fusion outcomes. The purpose of this study was to examine the effect of TheraCyte-encapsulated parathyroid cells on posterolateral lumbar fusions in a rat model. Materials and methods Forty Sprague-Dawley rats underwent single-level, intertransverse process spinal fu...

  6. Effect of irradiation on the acinar cells of submandibular gland in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Hwang, Eui Hwan; Lee, Sang Rae

    2003-01-01

    To observe the histologic changes and clusterin expression in the acinar cells of the submandibular gland in streptozotocin-induced diabetic rat following irradiation. Mature Sprague-Dawley rats were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the Sprague-Dawley rats by injecting streptozotocin, while the control rats were injected with citrate buffer only. After 5 days, rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy to the head and neck region. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the submandibular gland were sectioned and observed using histologic and immunohistochemical methods. Morphologic change of acinar cells was remarkable in the diabetic group, but was not observed in the diabetic-irradiated group. Necrotic tissues were observed in the diabetic-irradiated group. Coloring of toluidine blue stain was most increased at 14 days in the diabetic group, however there were no significant change throughout the period of the experiment in the diabetic-irradiated group. Expression of clusterin was most significant at 14 days in the diabetic group, but gradually decreased with time after 7 days in the diabetic-irradiated group. Degeneration of clusterin was observed in the diabetic-irradiated group. This experiment suggests that the acinar cells of submandibular gland in rats are physiologically apoptosis by the induction of diabetes, but that the apoptosis is inhibited and the acinar cells necrotized after irradiation.

  7. Transplantation of rat embryonic stem cell-derived retinal progenitor cells preserves the retinal structure and function in rat retinal degeneration.

    Science.gov (United States)

    Qu, Zepeng; Guan, Yuan; Cui, Lu; Song, Jian; Gu, Junjie; Zhao, Hanzhi; Xu, Lei; Lu, Lixia; Jin, Ying; Xu, Guo-Tong

    2015-11-09

    Degenerative retinal diseases like age-related macular degeneration (AMD) are the leading cause of blindness. Cell transplantation showed promising therapeutic effect for such diseases, and embryonic stem cell (ESC) is one of the sources of such donor cells. Here, we aimed to generate retinal progenitor cells (RPCs) from rat ESCs (rESCs) and to test their therapeutic effects in rat model. The rESCs (DA8-16) were cultured in N2B27 medium with 2i, and differentiated to two types of RPCs following the SFEBq method with modifications. For rESC-RPC1, the cells were switched to adherent culture at D10, while for rESC-RPC2, the suspension culture was maintained to D14. Both RPCs were harvested at D16. Primary RPCs were obtained from P1 SD rats, and some of them were labeled with EGFP by infection with lentivirus. To generate Rax::EGFP knock-in rESC lines, TALENs were engineered to facilitate homologous recombination in rESCs, which were cotransfected with the targeting vector and TALEN vectors. The differentiated cells were analyzed with live image, immunofluorescence staining, flow cytometric analysis, gene expression microarray, etc. RCS rats were used to mimic the degeneration of retina and test the therapeutic effects of subretinally transplanted donor cells. The structure and function of retina were examined. We established two protocols through which two types of rESC-derived RPCs were obtained and both contained committed retina lineage cells and some neural progenitor cells (NPCs). These rESC-derived RPCs survived in the host retinas of RCS rats and protected the retinal structure and function in early stage following the transplantation. However, the glia enriched rESC-RPC1 obtained through early and longer adherent culture only increased the b-wave amplitude at 4 weeks, while the longer suspension culture gave rise to evidently neuronal differentiation in rESC-RPC2 which significantly improved the visual function of RCS rats. We have successfully differentiated

  8. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Directory of Open Access Journals (Sweden)

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  9. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul [Univ. of Rochester, NY (United States)

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means of labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.

  10. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes.

    Science.gov (United States)

    Rorato, Rodrigo; Borges, Beatriz de Carvalho; Uchoa, Ernane Torres; Antunes-Rodrigues, José; Elias, Carol Fuzeti; Elias, Lucila Leico Kagohara

    2017-07-04

    Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.

  11. Hypothalamic dysfunction following whole-brain irradiation

    International Nuclear Information System (INIS)

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-01-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage

  12. Autoradiographic studies on the kinetics of fetal supporting cells and wall cells in rats 19 days after conception

    International Nuclear Information System (INIS)

    Lugani-Mehta, S.

    1980-01-01

    The duration of the S-phase of supporting cells and wall cells of rat fetuses aged 19 days was determined by the ''labelled mitosis'' method. The supporting cells are predecessors of the sertoli cells while the wall cells are predecessors of the boundary tissue and, possibly, of part of the peritubular Leydig cell system. The S-phase of the supporting cells was found to last 10.1 h while the S-phase of the wall cells lasted 9.2 h. The data were not in agreement with the data of other authors. (orig./MG) [de

  13. Growth hormone modulates hypothalamic inflammation in long-lived pituitary dwarf mice.

    Science.gov (United States)

    Sadagurski, Marianna; Landeryou, Taylor; Cady, Gillian; Kopchick, John J; List, Edward O; Berryman, Darlene E; Bartke, Andrzej; Miller, Richard A

    2015-12-01

    Mice in which the genes for growth hormone (GH) or GH receptor (GHR(-/-) ) are disrupted from conception are dwarfs, possess low levels of IGF-1 and insulin, have low rates of cancer and diabetes, and are extremely long-lived. Median longevity is also increased in mice with deletion of hypothalamic GH-releasing hormone (GHRH), which leads to isolated GH deficiency. The remarkable extension of longevity in hypopituitary Ames dwarf mice can be reversed by a 6-week course of GH injections started at the age of 2 weeks. Here, we demonstrate that mutations that interfere with GH production or response, in the Snell dwarf, Ames dwarf, or GHR(-/-) mice lead to reduced formation of both orexigenic agouti-related peptide (AgRP) and anorexigenic proopiomelanocortin (POMC) projections to the main hypothalamic projection areas: the arcuate nucleus (ARH), paraventricular nucleus (PVH), and dorsomedial nucleus (DMH). These mutations also reduce hypothalamic inflammation in 18-month-old mice. GH injections, between 2 and 8 weeks of age, reversed both effects in Ames dwarf mice. Disruption of GHR specifically in liver (LiGHRKO), a mutation that reduces circulating IGF-1 but does not lead to lifespan extension, had no effect on hypothalamic projections or inflammation, suggesting an effect of GH, rather than peripheral IGF-1, on hypothalamic development. Hypothalamic leptin signaling, as monitored by induction of pStat3, is not impaired by GHR deficiency. Together, these results suggest that early-life disruption of GH signaling produces long-term hypothalamic changes that may contribute to the longevity of GH-deficient and GH-resistant mice. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Myenteric denervation differentially reduces enteroendocrine serotonin cell population in rats during postnatal development.

    Science.gov (United States)

    Hernandes, Luzmarina; Fernandes, Marilda da Cruz; Pereira, Lucieni Cristina Marques da Silva; Freitas, Priscila de; Gama, Patrícia; Alvares, Eliana Parisi

    2006-05-01

    The enteric nervous and enteroendocrine systems regulate different processes in the small intestine. Ablation of myenteric plexus with benzalkonium chloride (BAC) stimulates epithelial cell proliferation, whereas endocrine serotonin cells may inhibit the process. To evaluate the connection between the systems and the influence of myenteric plexus on serotoninergic cells in rats during postnatal development, the ileal plexus was partially removed with BAC. Rats were treated at 13 or 21 days and sacrificed after 15 days. The cell bodies of myenteric neurons were stained by beta NADH-diaphorase to detect the extension of denervation. The number of enteroendocrine cells in the ileum was estimated in crypts and villi in paraffin sections immunostained for serotonin. The number of neurons was reduced by 27.6 and 45% in rats treated on the 13th and 21st days, respectively. We tried to establish a correlation of denervation and the serotonin population according to the age of treatment. We observed a reduction of immunolabelled cells in the crypts of rats treated at 13 days, whereas this effect was seen in the villi of rats denervated at 21 days. These results suggest that the enteric nervous system might control the enteroendocrine cell population and this complex mechanism could be correlated to changes in cell proliferation.

  15. Neuroprotective and behavioral efficacy of intravenous transplanted adipose stem cells in experimental Parkinsonian rat models

    Directory of Open Access Journals (Sweden)

    Malihe Nakhaeifard

    2016-02-01

    Full Text Available Background: Parkinson's disease is a deficiency of dopamine in the striatum, characterized by bradykinesis, rigidity and resting tremor. Adipose tissue-Derived Stem Cells (ADSCs have many advantages for cell therapy because of the easy availability and pluripotency without ethical problems. In this research, the effects of ADSCs transplantation on motor impairment of rat Parkinsonian models were evaluated. Materials and Methods: Parkinson model was constructed by the unilateral lesion of striatum of male Wistar rats using 20µg of 6-hydroxydopamine (6-OHDA as lesion group. Cell and α-MEM (α-minimal essential medium groups were lesioned animals that received intravenous injection of 3×106 cells suspended in medium and medium repectively. All rats were evaluated behaviorally with rotarod and apomorphine-induced rotation tests, at 4 and 8 weeks after cell transplantation. Results: Lesion and α-MEM groups showed increased contralateral turns while cell group significantly ameliorated both in rotarod and apomorphine-induced rotation tests. There was a significant difference of contralateral turns between cell and lesioned groups at 8 weeks after transplantation. Lesioned rats showed significant decrease of staying on the rod as compared to control, but in cell group there was a significant increase in comparision with the lesioned animals. Conclusion: ADSCs injected intravenously promote functional recovery in Parkinsonian rats.

  16. Positive effects of bFGF modified rat amniotic epithelial cells transplantation on transected rat optic nerve.

    Directory of Open Access Journals (Sweden)

    Jia-Xin Xie

    Full Text Available Effective therapy for visual loss caused by optic nerve injury or diseases has not been achieved even though the optic nerve has the regeneration potential after injury. This study was designed to modify amniotic epithelial cells (AECs with basic fibroblast growth factor (bFGF gene, preliminarily investigating its effect on transected optic nerve.A human bFGF gene segment was delivered into rat AECs (AECs/hbFGF by lentiviral vector, and the gene expression was examined by RT-PCR and ELISA. The AECs/hbFGF and untransfected rat AECs were transplanted into the transected site of the rat optic nerve. At 28 days post transplantation, the survival and migration of the transplanted cells was observed by tracking labeled cells; meanwhile retinal ganglion cells (RGCs were observed and counted by employing biotin dextran amine (BDA and Nissl staining. Furthermore, the expression of growth associated protein 43 (GAP-43 within the injury site was examined with immunohistochemical staining.The AECs/hbFGF was proven to express bFGF gene and secrete bFGF peptide. Both AECs/hbFGF and AECs could survive and migrate after transplantation. RGCs counting implicated that RGCs numbers of the cell transplantation groups were significantly higher than that of the control group, and the AECs/hbFGF group was significantly higher than that of the AECs group. Moreover GAP-43 integral optical density value in the control group was significantly lower than that of the cell transplantation groups, and the value in the AECs/hbFGF group was significantly higher than that of the AECs group.AECs modified with bFGF could reduce RGCs loss and promote expression of GAP-43 in the rat optic nerve transected model, facilitating the process of neural restoration following injury.

  17. Cell proliferation and migration in the jejunum of suckling rats submitted to progressive fasting

    Directory of Open Access Journals (Sweden)

    Gomes J.R.

    1998-01-01

    Full Text Available Cell proliferation and migration in the intestinal crypts, and cell migration in the villus are controlled by different mechanisms in adult rats. In the present study, weanling rats and fasting rats were used to quantitatively study the correlation of cell cycle parameters and epithelial cell migration in crypts and intestinal villi. Eighteen-day-old rats received a single injection of tritiated thymidine [3H]TdR (23:00 h; half of the pups were submitted to fasting 5 h earlier. Cell proliferation was determined in radioautographs of jejunal crypts, on the basis of the labeling indices (LI taken 1, 8, 13 and 19 h after [3H]TdR. The results showed that the labeling index did not differ 1 h or 19 h after [3H]TdR between the fed (38.7% or 48% and fasting groups (34.6% or 50.4%. The modified method of grain count halving indicated that cell cycle time did not differ between fed (16.5 h and fasting rats (17.8 h; the growth fraction, however, had lower values in fasting (59% than in fed rats (77%. Cell migration in the crypt, estimated by the LI obtained for each cell position, did not change with treatment. As for the villi, the cell migration rate was significantly retarded by 3 cell positions (8%. These results suggest that the cell migration in the villi of weanling pups does not depend directly on the cell proliferation and migration in the intestinal crypt, but is directly affected by the absence of food in the lumen

  18. Rat hepatic β2-adrenergic receptor: structural similarities to the rat fat cell β1-adrenergic receptor

    International Nuclear Information System (INIS)

    Graziano, M.P.

    1984-01-01

    The mammalian β 2 -adrenergic receptor from rat liver has been purified by sequential cycles of affinity chromatography followed by steric-exclusion high performance liquid chromatography. Electrophoresis of highly purified receptor preparations on polyacrylamide gels in the presence of sodium dodecyl sulfate under reducing conditions reveals a single peptide M/sub r/ = 67,000, as judged by silver staining. Purified β 2 -adrenergic receptor migrates on steric-exclusion high performance liquid chromatography in two peaks, with M/sub r/ = 140,000 and 67,000. Specific binding of the high affinity, β-adrenergic receptor antagonists (-)[ 3 H]dihydroalprenolol and (-)[ 125 I]iodocyanopindolol to purified rat liver β-adrenergic receptor preparations displays stereoselectivity for (-)isomers of agonists and a rank order of potencies for agonists characteristics of a β 2 -adrenergic receptor. Radioiodinated, β 1 -adrenergic receptors from rat fat cells and β 2 -adrenergic receptors from rat liver purified in the presence of protease inhibitors comigrate in electrophoretic separations on polyacrylamide gels in the presence of sodium dodecyl sulfate as 67,000-M/sub r/ peptides. Autoradiograms of two dimensional partial proteolytic digests of the purified, radioiodinated rat liver β 2 -adrenergic receptor, generated with α-chymotrypsin, S. aureus V8 protease and elastase reveal a pattern of peptide fragments essentially identical to those generated by partial proteolytic digests of the purified, radioiodinated β 1 -adrenergic receptor from rat fat cells, by these same proteases. These data indicate that a high degree of homology exists between these two pharmacologically distinct mammalian β-adrenergic receptor proteins

  19. Cell proliferation and apoptosis in rat mammary glands following combinational exposure to bisphenol A and genistein

    International Nuclear Information System (INIS)

    Wang, Jun; Jenkins, Sarah; Lamartiniere, Coral A

    2014-01-01

    Humans are exposed to an array of both harmful and beneficial hormonally active compounds in the environment and through diet. Two such chemicals are Bisphenol A (BPA), a plasticizer, and genistein, a component of soy. Prepubertal exposure to BPA increased mammary carcinogenesis, while genistein suppressed cancer in a chemically-induced model of rodent mammary cancer. The purpose of this research was to determine the effects of combinational exposure to genistein and BPA on cell proliferation, apoptosis, and associated proteins as markers of cancer in mammary glands of rats exposed prepubertally to these environmental chemicals. Prepubertal rats (postpartum days (PND) 2–20) were exposed through lactation via nursing dams treated orally with sesame oil (SO), BPA, genistein, or a combination of BPA and genistein (BPA + Gen). Cell proliferation, apoptosis and protein expressions were investigated for mechanistic studies in mammary glands of rats exposed to these environmental chemicals. Prepubertal exposure to genistein increased cell proliferation in mammary glands of PND21 rats, while BPA increased cell proliferation in adult (PND50) rats. Prepubertal combinational exposure to BPA + Gen increased cell proliferation and reduced apoptosis in PND21 rats, but reduced cell proliferation and increased apoptosis in PND50 rats. The altered mechanisms behind these cellular responses appear to be centered on differential protein expression of caspases, PARP, Bad, p21, Akts, PTEN, ER-β and SRCs 1–3, in the rat mammary gland. Prepubertal BPA exposure resulted in increased cell proliferation in mammary glands of PND50 rats, a process associated with increased risk of cancer development in a chemically-induced mammary cancer. On the other hand, genistein stimulated cell proliferation at PND21, a process that correlates with mammary gland maturation and chemoprevention. In contrast to single chemical exposure, combinational exposure to BPA + Gen performed most similarly to

  20. RPE cell surface proteins in normal and dystrophic rats

    International Nuclear Information System (INIS)

    Clark, V.M.; Hall, M.O.

    1986-01-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  1. Heterogeneity in induced thermal resistance of rat tumor cell clones

    International Nuclear Information System (INIS)

    Tomasovic, S.P.; Rosenblatt, P.L.; Heitzman, D.

    1983-01-01

    Four 13762NF rat mammary adenocarcinoma clones were examined for their survival response to heating under conditions that induced transient thermal resistance (thermotolerance). Clones MTC and MTF7 were isolated from the subcutaneous locally growing tumor, whereas clones MTLn2 and MTLn3 were derived from spontaneous lung metastases. There was heterogeneity among these clones in thermotolerance induced by either fractionated 45 0 C or continuous 42 0 C heating, but the order of sensitivity was not necessarily the same. The clones developed thermal resistance at different rates and to different degrees within the same time intervals. There was heterogeneity between clones isolated from within either the primary site or metastatic lesions. However, clones derived from metastatic foci did not intrinsically acquire more or less thermotolerance to fractionated 45 0 C or continuous 42 0 C heating than did clones from the primary tumor. Further, there was no apparent relationship between any phenotypic properties that conferred more or less thermotolerance in vitro and any phenotypic properties that conferred enhanced metastatic success of these same clones by spontaneous (subcutaneous) or experimental (intravenous) routes in vivo. These tumor clones also differ in their karyotype, metastatic potential, cell surface features, sensitivity to x-irradiation and drugs, and ability to repair sublethal radiation damage. These results provide further credence to the concept that inherent heterogeneity within tumors may be as important in therapeutic success as other known modifiers of outcome such as site and treatment heterogeneity

  2. Effect of elevated temperatures on cell cycle kinetics of rat gliosarcoma cells

    International Nuclear Information System (INIS)

    Ross-Riveros, P.

    1978-07-01

    9L rat gliosarcoma cells were examined in vitro for survival response to hyperthermic temperatures ranging from 39.0 0 to 45.0 0 C for graded exposure times. At 43.0 0 C, the split exposure response was also studied. Changes in cell cycle kinetics resulting from hyperthermia were compared for isosurvival levels achieved by appropriate exposure time to either 42.5 0 C or 43.0 0 C. After heat treatment, cells were held at 37.0 0 C for varying recovery periods. Cells were then either prepared for flow microfluorometry (FMF), or exposed to tritiated thymidine ( 3 HTdR) for autoradiography. The survival studies indicated that the rate of change in cell killing for each increasing degree centigrade was greater for temperatures below 43.0 0 C than for temperatures above 43.0 0 C. The shoulder width of the survival curves was maximal at 42.5 0 C. The shoulder width represents an important parameter since it describes a threshold time after which significant cell killing occurs. Thus both 43.0 0 C, the temperature at which mortality kinetics changed, and 42.5 0 C, the temperature at which the shoulder width was maximum, represent critical temperatures for the 9L cells. When 9L cells were given an initial conditioning exposure to 43.0 0 C, then returned to 37 0 C for 3 hrs, followed by graded exposure intervals at 43.0 0 , the resulting survival curve indicated that cells required longer times for equal cell killing than for the single exposure condition, suggesting that the cells possess a capability to adapt to the higher temperature

  3. Cell apoptosis of taste buds in circumvallate papillae in diabetic rats.

    Science.gov (United States)

    Cheng, B; Pan, S; Liu, X; Zhang, S; Sun, X

    2011-09-01

    Diabetes mellitus may result in taste disturbance. The present study has revealed that cell apoptosis of taste buds in circumvallate papillae may contribute to the taste disturbance in a rat model of type2 diabetes. Type2 diabetes was induced in Wistar rats by feeding them with a high-fat diet (30% fat), and a single intraperitoneal injection of streptozotocin (30 mg/kg). The increased cell apoptosis of taste buds in circumvallate papilla sections was detected by TUNEL staining in diabetic rats, and the ultrastructure was further examined by transmission electronic microscopy. Immunohistochemical and Western blot analyses revealed the downregulation of Bcl-2, upregulation of Bax, and increased activation of caspase-9 and -3, in diabetic rats, indicating that the apoptosis of taste bud cells may be mediated via the intrinsic mitochondrial pathway in diabetics. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  4. Arginine vasopressin stimulates phosphoinositide turnover in an enriched rat Leydig cell preparation

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol and phosphatidyl......An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol...

  5. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  6. Glucose Regulates Hypothalamic Long-chain Fatty Acid Metabolism via AMP-activated Kinase (AMPK) in Neurons and Astrocytes*

    Science.gov (United States)

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-01-01

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance. PMID:24240094

  7. Glucose regulates hypothalamic long-chain fatty acid metabolism via AMP-activated kinase (AMPK) in neurons and astrocytes.

    Science.gov (United States)

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-12-27

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.

  8. Mitochondria-targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats.

    Science.gov (United States)

    Vilaseca, Marina; García-Calderó, Héctor; Lafoz, Erica; Ruart, Maria; López-Sanjurjo, Cristina Isabel; Murphy, Michael P; Deulofeu, Ramon; Bosch, Jaume; Hernández-Gea, Virginia; Gracia-Sancho, Jordi; García-Pagán, Juan Carlos

    2017-07-01

    In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We have shown that cirrhotic livers have increased reactive oxygen species (ROS), and that antioxidant therapy decreases portal pressure. Considering that mitochondria produce many of these ROS, our aim was to assess the effects of the oral mitochondria-targeted antioxidant mitoquinone on hepatic oxidative stress, HSC phenotype, liver fibrosis and portal hypertension. Ex vivo: Hepatic stellate cells phenotype was analysed in human precision-cut liver slices in response to mitoquinone or vehicle. In vitro: Mitochondrial oxidative stress was analysed in different cell type of livers from control and cirrhotic rats. HSC phenotype, proliferation and viability were assessed in LX2, and in primary human and rat HSC treated with mitoquinone or vehicle. In vivo: CCl 4 - and thioacetamide-cirrhotic rats were treated with mitoquinone (5 mg/kg/day) or the vehicle compound, DecylTPP, for 2 weeks, followed by measurement of oxidative stress, systemic and hepatic haemodynamic, liver fibrosis, HSC phenotype and liver inflammation. Mitoquinone deactivated human and rat HSC, decreased their proliferation but with no effects on viability. In CCl 4 -cirrhotic rats, mitoquinone decreased hepatic oxidative stress, improved HSC phenotype, reduced intrahepatic vascular resistance and diminished liver fibrosis. These effects were associated with a significant reduction in portal pressure without changes in arterial pressure. These results were further confirmed in the thioacetamide-cirrhotic model. We propose mitochondria-targeted antioxidants as a novel treatment approach against portal hypertension and cirrhosis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Sustained glucagon-like peptide 1 expression from encapsulated transduced cells to treat obese diabetic rats.

    Science.gov (United States)

    Moralejo, Daniel; Yanay, Ofer; Kernan, Kelly; Bailey, Adam; Lernmark, Ake; Osborne, William

    2011-04-01

    Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyte(TM) encapsulation devices, implanted subcutaneously and rats were monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3 ± 10.2pM that was significantly elevated over control values of 32.4 ± 2.9pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9 ± 2.3ng/ml that were significantly increased over control levels of 7.3±1.5ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with α-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of α-cells and increased islet mass. These data suggest that encapsulated transduced cells may offer a potential long term treatment of patients. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Fraction from human and rat liver which is inhibitory for proliferation of liver cells.

    Science.gov (United States)

    Chen, T S; Ottenweller, J; Luke, A; Santos, S; Keeting, P; Cuy, R; Lea, M A

    1989-01-01

    A comparative study was undertaken with human and rat liver of a fraction reported to have growth inhibitory activity when prepared from rat liver. Fractions which were soluble in 70% ethanol and insoluble in 87% ethanol were prepared from liver cytosols. Electrophoretic analysis under denaturing conditions indicated that there were several quantitative or qualitative differences in the fractions from the two species. Fractions from both human and rat liver were found to be inhibitory for the incorporation of 3H-thymidine into DNA of foetal chick hepatocytes. Under conditions in which the rat fraction inhibited precursor incorporation into DNA of rat liver epithelial cells there was not a significant inhibitory effect with the fraction from human liver. DNA synthesis in a rat hepatoma cell line was not significantly inhibited by preparations from either species. The data suggested that corresponding fractions from both rat and human liver could have inhibitory effects on precursor incorporation into DNA but the magnitude of the effects and target cell specificity may differ.

  11. Effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats.

    Science.gov (United States)

    Peng, Tao; Wang, Jie; Zhen, Junhui; Hu, Zhao; Yang, Xiangdong

    2014-07-01

    The aim of this study was to investigate the effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats. Thirty male Sprague-Dawley rats were included in the present study. Eight of the 30 rats were randomly selected and served as the normal control group (N group), while the remaining 22 rats, injected with streptozotocin (STZ), comprised the diabetic rat model. Rats with diabetes were randomly divided into the diabetic (DM group) and benazepril (B group) groups. The total course was conducted over 12 weeks. Blood glucose, body weight, kidney/body weight, 24-h urinary protein, serum creatinine and blood urea nitrogen were measured at the start and end of the study. We observed the tubulointerstitial pathological changes, and applied immunohistochemistry and western blotting to detect the expression of α-smooth muscle actin (α-SMA) in renal tissue. The levels of blood glucose, kidney/body weight, 24-h urinary protein, serum creatinine, blood urea nitrogen and tubulointerstitial damage index (TII) in the DM group were significantly higher than that in the N group (pbenazepril significantly reduced the expression of α-SMA in renal tubular epithelial cells obtained from diabetic rats, inhibited the transdifferentiation of renal tubular epithelial cells and played an important role in kidney protection.

  12. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated 3 H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of 3 H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture

  13. Axotomy induces MHC class I antigen expression on rat nerve cells

    DEFF Research Database (Denmark)

    Maehlen, J; Schröder, H D; Klareskog, L

    1988-01-01

    Immunomorphological staining demonstrates that class I major histocompatibility complex (MHC)-coded antigen expression can be selectively induced on otherwise class I-negative rat nerve cells by peripheral axotomy. Induction of class I as well as class II antigen expression was simultaneously seen...... on non-neural cells in the immediate vicinity of the injured nerve cells. As nerve regeneration after axotomy includes growth of new nerve cell processes and formation of new nerve cell contacts, the present findings raise the question of a role for MHC-coded molecules in cell-cell interactions during...... nerve cell growth....

  14. Biosynthesis of the D2 cell adhesion molecule: pulse-chase studies in cultured fetal rat neuronal cells

    DEFF Research Database (Denmark)

    Lyles, J M; Norrild, B; Bock, E

    1984-01-01

    D2 is a membrane glycoprotein that is believed to function as a cell adhesion molecule (CAM) in neural cells. We have examined its biosynthesis in cultured fetal rat brain neurones. We found D2-CAM to be synthesized initially as two polypeptides: Mr 186,000 (A) and Mr 136,000 (B). With increasing...

  15. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance

    Science.gov (United States)

    Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben

    2015-01-01

    Objective Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Methods Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. Results The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca2+-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. Conclusions This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia. PMID:26909312

  16. Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons.

    Science.gov (United States)

    Wellhauser, Leigh; Belsham, Denise D

    2014-03-27

    Overnutrition and the ensuing hypothalamic inflammation is a major perpetuating factor in the development of metabolic diseases, such as obesity and diabetes. Inflamed neurons of the CNS fail to properly regulate energy homeostasis leading to pathogenic changes in glucose handling, feeding, and body weight. Hypothalamic neurons are particularly sensitive to pro-inflammatory signals derived locally and peripherally, and it is these neurons that become inflamed first upon high fat feeding. Given the prevalence of metabolic disease, efforts are underway to identify therapeutic targets for this inflammatory state. At least in the periphery, omega-3 fatty acids and their receptor, G-protein coupled receptor 120 (GPR120), have emerged as putative targets. The role for GPR120 in the hypothalamus or CNS in general is poorly understood. Here we introduce a novel, immortalized cell model derived from the rat hypothalamus, rHypoE-7, to study GPR120 activation at the level of the individual neuron. Gene expression levels of pro-inflammatory cytokines were studied by quantitative reverse transcriptase-PCR (qRT-PCR) upon exposure to tumor necrosis factor α (TNFα) treatment in the presence or absence of the polyunsaturated omega-3 fatty acid docosahexaenoic acid (DHA). Signal transduction pathway involvement was also studied using phospho-specific antibodies to key proteins by western blot analysis. Importantly, rHypoE-7 cells exhibit a transcriptional and translational inflammatory response upon exposure to TNFα and express abundant levels of GPR120, which is functionally responsive to DHA. DHA pretreatment prevents the inflammatory state and this effect was inhibited by the reduction of endogenous GPR120 levels. GPR120 activates both AKT (protein kinase b) and ERK (extracellular signal-regulated kinase); however, the anti-inflammatory action of this omega-3 fatty acid (FA) receptor is AKT- and ERK-independent and likely involves the GPR120-transforming growth factor

  17. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway.

    Science.gov (United States)

    Chaker, Zayna; George, Caroline; Petrovska, Marija; Caron, Jean-Baptiste; Lacube, Philippe; Caillé, Isabelle; Holzenberger, Martin

    2016-05-01

    Hypothalamic tanycytes are specialized glial cells lining the third ventricle. They are recently identified as adult stem and/or progenitor cells, able to self-renew and give rise to new neurons postnatally. However, the long-term neurogenic potential of tanycytes and the pathways regulating lifelong cell replacement in the adult hypothalamus are largely unexplored. Using inducible nestin-CreER(T2) for conditional mutagenesis, we performed lineage tracing of adult hypothalamic stem and/or progenitor cells (HySC) and demonstrated that new neurons continue to be born throughout adult life. This neurogenesis was targeted to numerous hypothalamic nuclei and produced different types of neurons in the dorsal periventricular regions. Some adult-born neurons integrated the median eminence and arcuate nucleus during aging and produced growth hormone releasing hormone. We showed that adult hypothalamic neurogenesis was tightly controlled by insulin-like growth factors (IGF). Knockout of IGF-1 receptor from hypothalamic stem and/or progenitor cells increased neuronal production and enhanced α-tanycyte self-renewal, preserving this stem cell-like population from age-related attrition. Our data indicate that adult hypothalamus retains the capacity of cell renewal, and thus, a substantial degree of structural plasticity throughout lifespan. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Parabrachial and hypothalamic interaction in sodium appetite

    Science.gov (United States)

    Dayawansa, S.; Peckins, S.; Ruch, S.

    2011-01-01

    Rats with bilateral lesions of the lateral hypothalamus (LH) fail to exhibit sodium appetite. Lesions of the parabrachial nuclei (PBN) also block salt appetite. The PBN projection to the LH is largely ipsilateral. If these deficits are functionally dependent, damaging the PBN on one side and the LH on the other should also block Na appetite. First, bilateral ibotenic acid lesions of the LH were needed because the electrolytic damage used previously destroyed both cells and axons. The ibotenic LH lesions produced substantial weight loss and eliminated Na appetite. Controls with ipsilateral PBN and LH lesions gained weight and displayed robust sodium appetite. The rats with asymmetric PBN-LH lesions also gained weight, but after sodium depletion consistently failed to increase intake of 0.5 M NaCl. These results dissociate loss of sodium appetite from the classic weight loss after LH damage and prove that Na appetite requires communication between neurons in the LH and the PBN. PMID:21270347

  19. Participation of hypothalamic CB1 receptors in reproductive axis disruption during immune challenge.

    Science.gov (United States)

    Surkin, P N; Di Rosso, M E; Correa, F; Elverdin, J C; Genaro, A M; De Laurentiis, A; Fernández-Solari, J

    2017-08-01

    Immune challenge inhibits reproductive function and endocannabinoids (eCB) modulate sexual hormones. However, no studies have been performed to assess whether the eCB system mediates the inhibition of hormones that control reproduction as a result of immune system activation during systemic infections. For that reason, we evaluated the participation of the hypothalamic cannabinoid receptor CB1 on the hypothalamic-pituitary-gonadal (HPG) axis activity in rats submitted to immune challenge. Male adult rats were treated i.c.v. administration with a CB1 antagonist/inverse agonist (AM251) (500 ng/5 μL), followed by an i.p. injection of lipopolysaccharide (LPS) (5 mg/kg) 15 minutes later. Plasmatic, hypothalamic and adenohypophyseal pro-inflammatory cytokines, hormones and neuropeptides were assessed 90 or 180 minutes post-LPS. The plasma concentration of tumour necrosis factor α and adenohypophyseal mRNA expression of Tnfα and Il1β increased 90 and 180 minutes post i.p. administration of LPS. However, cytokine mRNA expression in the hypothalamus increased only 180 minutes post-LPS, suggesting an inflammatory delay in this organ. CB1 receptor blockade with AM251 increased LPS inflammatory effects, particularly in the hypothalamus. LPS also inhibited the HPG axis by decreasing gonadotrophin-releasing hormone hypothalamic content and plasma levels of luteinising hormone and testosterone. These disruptor effects were accompanied by decreased hypothalamic Kiss1 mRNA expression and prostaglandin E2 content, as well as by increased gonadotrophin-inhibitory hormone (Rfrp3) mRNA expression. All these disruptive effects were prevented by the presence of AM251. In summary, our results suggest that, in male rats, eCB mediate immune challenge-inhibitory effects on reproductive axis at least partially via hypothalamic CB1 activation. In addition, this receptor also participates in homeostasis recovery by modulating the inflammatory process taking place after LPS

  20. Ferritin expression in rat hepatocytes and Kupffer cells after lead nitrate treatment.

    Science.gov (United States)

    Fan, Yang; Yamada, Toshiyuki; Shimizu, Takeshi; Nanashima, Naoki; Akita, Miki; Suto, Kohji; Tsuchida, Shigeki

    2009-02-01

    Lead nitrate induces hepatocyte proliferation and subsequent apoptosis in rat livers. Iron is a constituent of heme and is also required for cell proliferation. In this study, the expression of ferritin light-chain (FTL), the major iron storage protein, was investigated in rat livers after a single intravenous injection of lead nitrate. Western blotting and immunohistochemistry revealed that FTL was increased in hepatocytes around the central veins and strongly expressed in nonparenchymal cells. Some FTL-positive nonparenchymal cells were identified as Kupffer cells that were positive for CD68. FTL-positive Kupffer cells occupied about 60% of CD68-positive cells in the periportal and perivenous areas. The relationships between FTL expression and apoptosis induction or the engulfment of apoptotic cells were examined. TUNEL-positive cells were increased in the treatment group, and enhanced expression of milk fat globule EGF-like 8 was demonstrated in some Kupffer cells and hepatocytes, indicating enhanced apoptosis induction and phagocytosis of apoptotic cells. FTL-positive Kupffer cells were not detected without lead nitrate treatment or in rat livers treated with clofibrate, which induces hepatocyte proliferation but not apoptosis. These results suggest that FTL expression in Kupffer cells after lead treatment is dependent on phagocytosis of apoptotic cells.

  1. Experimental induction of ovarian Sertoli cell tumors in rats by N-nitrosoureas.

    Science.gov (United States)

    Maekawa, A; Onodera, H; Tanigawa, H; Furuta, K; Kanno, J; Ogiu, T; Hayashi, Y

    1987-01-01

    Spontaneous ovarian tumors are very rare in ACI, Wistar, F344 and Donryu rats; the few neoplasms found are of the granulosa/theca cell type. Ovarian tumors were also rare in these strains of rats when given high doses of N-alkyl-N-nitrosoureas continuously in the drinking water for their life-span; however, relatively high incidences of Sertoli cell tumors or Sertoli cell tumors mixed with granulosa cell tumors were induced in Donryu rats after administration of either a 400 ppm N-ethyl-N-nitrosourea solution in the drinking water for 4 weeks or as a single dose of 200 mg N-propyl-N-nitrosourea per kg body weight by stomach tube. Typical Sertoli cell tumors consisted of solid areas showing tubular formation. The tubules were lined by tall, columnar cells, with abundant, faintly eosinophilic, often vacuolated cytoplasm, and basally oriented, round nuclei, resembling seminiferous tubules in the testes. In some cases, Sertoli cell tumor elements were found mixed with areas of granulosa cells. The induction of ovarian Sertoli cell tumors in Donryu rats by low doses of nitrosoureas may provide a useful model for these tumors in man. Images PLATE 1. PLATE 2. PLATE 3. PLATE 4. PLATE 5. PLATE 6. PLATE 7. PLATE 8. PLATE 9. PLATE 10. PLATE 11. PLATE 12. PLATE 13. PLATE 14. PLATE 15. PLATE 16. PMID:3665856

  2. Total white blood cell counts and LPS-induced TNF alpha production by monocytes of pregnant, pseudopregnant and cyclic rats

    NARCIS (Netherlands)

    Faas, MM; Moes, H; van der Schaaf, G; de Leij, LFMH; Heineman, MJ

    Pregnancy in the rat may be associated with an activated innate immune system. Therefore, we investigated monocyte function as well as total white blood cell (WBC) counts during the follicular phase of the ovarian cycle, pregnancy and pseudopregnancy in the rat. Rats were equipped with a permanent

  3. Total white blood cell counts and LPS-induced TNF alpha production by monocytes of pregnant, pseudopregnant and cyclic rats

    NARCIS (Netherlands)

    Faas, M. M.; Moes, H.; van der Schaaf, G.; de Leij, L. F. M. H.; Heineman, M. J.

    2003-01-01

    Pregnancy in the rat may be associated with an activated innate immune system. Therefore, we investigated monocyte function as well as total white blood cell (WBC) counts during the follicular phase of the ovarian cycle, pregnancy and pseudopregnancy in the rat. Rats were equipped with a permanent

  4. Fibroblast-mediated in vivo and in vitro growth promotion of tumorigenic rat thyroid carcinoma cells but not normal Fisher rat thyroid follicular cells.

    Science.gov (United States)

    Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji

    2009-07-01

    It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low

  5. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    Science.gov (United States)

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  6. Mangosteen peel extract reduces formalin-induced liver cell death in rats

    Directory of Open Access Journals (Sweden)

    Afiana Rohmani

    2014-08-01

    Full Text Available Background Formalin is a xenobiotic that is now commonly used as a preservative in the food industry. The liver is an organ that has the highest metabolic capacity as compared to other organs. Mangosteen or Garcinia mangostana Linn (GML peel contains xanthones, which are a source of natural antioxidants. The purpose of this study was to evaluate the effect of mangosteen peel extract on formalin-induced liver cell mortality rate and p53 protein expression in Wistar rats. Methods Eighteen rats received formalin orally for 2 weeks, and were subsequently divided into 3 groups, consisting of the formalin-control group receiving a placebo and treatment groups 1 and 2, which were treated with mangosteen peel extract at doses of 200 and 400 mg/kgBW/day, respectively. The treatment was carried out for 1 week, and finally the rats were terminated. The differences in liver cell mortality rate and p53 protein expression were analyzed. Results One-way ANOVA analysis showed significant differences in liver cell mortality rate among the three groups (p=0.004. The liver cell mortality rate in the treatment group receiving 400 mg/kgBW/day extract was lower than that in the formalin-control group. There was no p53 expression in all groups. Conclusions Garcinia mangostana Linn peel extract reduced the mortality rate of liver cells in rats receiving oral formalin. Involvement of p53 expression in liver cell mortality in rats exposed to oral formalin is presumably negligible.

  7. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2016-01-01

    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms

  8. The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord

    NARCIS (Netherlands)

    Luiten, P.G.M.; Horst, G.J. ter; Karst, H.; Steffens, A.B.

    1985-01-01

    By application of the anterograde transport technique of Phaseolus vulgaris leuco-agglutinin the descending autonomic projection of the paraventricular hypothalamic nucleus was investigated. The Phaseolus lectin technique allowed the detection of the cells of origin in the paraventricular PVN, the

  9. Exercise protects against high-fat diet-induced hypothalamic inflammation

    NARCIS (Netherlands)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D.; Woods, Stephen C.; Hofmann, Susanna M.

    2012-01-01

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing

  10. Characterization of nonlymphoid cells in rat spleen, with special reference to strongly Ia-positive branched cells in T-cell areas

    International Nuclear Information System (INIS)

    Dijkstra, C.D.

    1982-01-01

    By use of a monoclonal antibody against Ia antigen in an immunoperoxidase method, strongly Ia-positive branched cells are found in the T-cell areas of the splenic white pulp of the rat. In order to further characterize these cells, enzyme histochemical characteristics, phagocytic capacity, and irradiation sensitivity have been studied. Evidence is presented that these strongly Ia-positive branched cells represent interdigitating cells. The influence of whole-body irradiation on interdigitating cells is discussed. Comparison with data from the literature on the in vitro dendritic cell isolated from spleen cell suspensions reveals many similarities between the described interdigitating cell in vivo and the dendritic cell in vitro

  11. Radioprotective effect of calorie restriction in Hela cells and SD rats

    International Nuclear Information System (INIS)

    Yang Yang; Chong Yu; Jiao Yang; Xu Jiaying; Fan Saijun

    2012-01-01

    Objective: To explore the effect of low calorie metabolism on the survival of HeLa cells exposed to X-rays, and the influence of starvation on the antioxidative factors in the blood of rats after irradiation. Methods: MTT method was used to evaluate the impact of different concentration glucose on the proliferation of HeLa cells. Colony formation assay was employed to detect the influence of glucose (1, 5, 10 and 25 mmol/L) on radiosensitivity of HeLa cells. Flow cytometry assay was used to analyze distribution of cell cycle and apoptosis. 60 male SD rats were randomly divided into 6 groups with 10 rats each. Rats in every two groups were fed ad libitum, fasted for 24 h and fasted for 48 h, respectively. Rats in one group of each approach were respectively exposed to whole-body X-rays at 11 Gy. At 2 h after irradiation,all of rats were sacrificed and their venous blood was collected. Elisa kits were used to detect superoxide dismutase (SOD) and total antioxidant capacity (T-AOC). Results: An increased viability was observed in HeLa cells treated with the glucose at low concentration (<25 mmol/L), while HeLa cell growth was inhibited by glucose at doses of >25 mmol/L. Relevant to cells treated with 1 mmoL/L glucose, SERs (sensitive enhancement ratio) in cells exposed to 5, 10 and 25 mmol/L glucose were 1.07, 1.10 and 1.23,respectively. A reduction of G 2 /M and S arrests and apoptosis caused by 6 Gy X-ray irradiation were observed [(49.68 ±1.88)% and (35.54±1.45)% at G 2 /M phase, (16.88 ±1.22)% and (10.23 ±1.65)% at S phase, t=10.42, 5.61, P<0.05] and in the cells treated with 1 mmol/L glucose compared with cells treated with 25 mmol/L glucose [(25.50 ± 0.95)% and (7.56 ± 1.07)%, t=21.72, P<0.05].Without irradiation, calorie restriction exhibited a negligible influence on SOD and T-AOC in rats. However, after 11 Gy irradiation, compared with rats fed ad libitum, the levels of SOD and T-AOC were significantly increased in rats with calorie restriction (t=40

  12. Morphometry of Hilar Ectopic Granule Cells in the Rat

    Science.gov (United States)

    Pierce, Joseph P.; McCloskey, Daniel P.; Scharfman, Helen E.

    2014-01-01

    Granule cell (GC) neurogenesis in the dentate gyrus (DG) does not always proceed normally. After severe seizures (e.g., status epilepticus [SE]) and some other conditions, newborn GCs appear in the hilus. Hilar ectopic GCs (EGCs) can potentially provide insight into the effects of abnormal location and seizures on GC development. Additionally, hilar EGCs that develop after SE may contribute to epileptogenesis and cognitive impairments that follow SE. Thus, it is critical to understand how EGCs differ from normal GCs. Relatively little morphometric information is available on EGCs, especially those restricted to the hilus. This study quantitatively analyzed the structural morphology of hilar EGCs from adult male rats several months after pilocarpineinduced SE, when they are considered to have chronic epilepsy. Hilar EGCs were physiologically identified in slices, intracellularly labeled, processed for light microscopic reconstruction, and compared to GC layer GCs, from both the same post-SE tissue and the NeuroMorpho database (normal GCs). Consistently, hilar EGC and GC layer GCs had similar dendritic lengths and field sizes, and identifiable apical dendrites. However, hilar EGC dendrites were topologically more complex, with more branch points and tortuous dendritic paths. Three-dimensional analysis revealed that, remarkably, hilar EGC dendrites often extended along the longitudinal DG axis, suggesting increased capacity for septotemporal integration. Axonal reconstruction demonstrated that hilar EGCs contributed to mossy fiber sprouting. This combination of preserved and aberrant morphological features, potentially supporting convergent afferent input to EGCs and broad, divergent efferent output, could help explain why the hilar EGC population could impair DG function. PMID:21344409

  13. Increased DNA damage in blood cells of rat treated with lead as assessed by comet assay

    Directory of Open Access Journals (Sweden)

    Mohammad Arif

    2008-06-01

    Full Text Available A growing body of evidence suggests that oxidative stress is the key player in the pathogenesis of lead-induced toxicity. The present study investigated lead induced oxidative DNA damage, if any in rat blood cells by alkaline comet assay. Lead was administered intraperitoneally to rats at doses of 25, 50 and 100 mg/kg body weight for 5 days consecutively. Blood collected on day six from sacrificed lead-treated rats was used to assess the extent of DNA damage by comet assay which entailed measurement of comet length, olive tail moment, tail DNA (% and tail length. The results showed that treatment with lead significantly increased DNA damage in a dose-dependent manner. Therefore, our data suggests that lead treatment is associated with oxidative stress-induced DNA damage in rat blood cells which could be used as an early bio-marker of lead-toxicity.

  14. Quantitative analysis of rat Ig (sub)classes binding to cell surface antigens

    International Nuclear Information System (INIS)

    Nilsson, R.; Brodin, T.; Sjoegren, H.-O.

    1982-01-01

    An indirect 125 I-labeled protein A assay for detection of cell surface-bound rat immunoglobulins is presented. The assay is quantitative and rapid and detects as little as 1 ng of cell surface-bound Ig. It discriminates between antibodies belonging to different IgG subclasses, IgM and IgA. The authors describe the production and specificity control of the reagents used and show that the test can be used for quantitative analysis. A large number of sera from untreated rats are tested to evaluate the frequency of falsely positive responses and variation due to age, sex and strain of rat. With this test it is relatively easy to quantitate the binding of classes and subclasses of rat immunoglobulins in a small volume (6 μl) of untreated serum. (Auth.)

  15. Effect of coffee drinking on cell proliferation in rat urinary bladder epithelium.

    Science.gov (United States)

    Lina, B A; Rutten, A A; Woutersen, R A

    1993-12-01

    A possible effect of freshly brewed drip coffee on urinary bladder carcinogenesis was investigated in male Wistar rats using cell proliferation in urinary bladder epithelium as the indicator of tumour promotion. Male rats were given either undiluted coffee brew (100% coffee), coffee diluted 10 times (10% coffee) or tap water (controls), as their only source of drinking fluid for 2 or 6 wk. Uracil, known to induce cell proliferation in urinary bladder epithelium, was included in the study as a positive control. In rats receiving 100% coffee, body weights, liquid intake and urinary volume were decreased. Neither histopathological examination of urinary bladder tissue nor the bromodeoxyuridine labelling index revealed biologically significant differences between rats receiving coffee and the tap water controls. Uracil increased the labelling index and induced hyperplasia of the urinary bladder epithelium, as expected. It was concluded that these results produced no evidence that drinking coffee predisposes to tumour development in the urinary bladder.

  16. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance

    Science.gov (United States)

    Loh, Kim; Fukushima, Atsushi; Zhang, Xinmei; Galic, Sandra; Briggs, Dana; Enriori, Pablo J.; Simonds, Stephanie; Wiede, Florian; Reichenbach, Alexander; Hauser, Christine; Sims, Natalie A.; Bence, Kendra K.; Zhang, Sheng; Zhang, Zhong-Yin; Kahn, Barbara B.; Neel, Benjamin G.; Andrews, Zane B.; Cowley, Michael A.; Tiganis, Tony

    2011-01-01

    SUMMARY In obesity, anorectic responses to leptin are diminished, giving rise to the concept of ‘leptin resistance’. Increased expression of protein tyrosine phosphatase 1B (PTP1B) has been associated with the attenuation of leptin signaling and development of cellular leptin resistance. Here we report that hypothalamic levels of the tyrosine phosphatase TCPTP are also elevated in obesity to attenuate the leptin response. We show that mice that lack TCPTP in neuronal cells have enhanced leptin sensitivity and are resistant to high fat diet-induced weight gain and the development of leptin resistance. Also, intracerebroventricular administration of a TCPTP inhibitor enhances leptin signaling and responses in mice. Moreover, the combined deletion of TCPTP and PTP1B in neuronal cells has additive effects in the prevention of diet-induced obesity. Our results identify TCPTP as a critical negative regulator of hypothalamic leptin signaling and causally link elevated TCPTP to the development of cellular leptin resistance in obesity. PMID:22000926

  17. Glucose and hypothalamic astrocytes: More than a fueling role?

    Science.gov (United States)

    Leloup, C; Allard, C; Carneiro, L; Fioramonti, X; Collins, S; Pénicaud, L

    2016-05-26

    Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an increasing number of neuronal functions. One of these functions consists in the regulation of energy homeostasis through neuronal fueling and nutrient sensing. Twenty years ago, we discovered that the glucose transporter GLUT2, the canonical "glucosensor" of the pancreatic beta-cell together with the glucokinase, was also present in astrocytes and participated in hypothalamic glucose sensing. Since then, many studies have identified other actors and emphasized the astroglial participation in this mechanism. Growing evidence suggest that astrocytes form a complex network and have to be considered as spatially coordinated and regulated metabolic units. In this review we aim to provide an updated view of the molecular and respective cellular pathways involved in hypothalamic glucose sensing, and their relevance in physiological and pathological states. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Effect of amiloride on arachidonic acid and histamine release from rat mast cells

    DEFF Research Database (Denmark)

    Linnebjerg, H.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    The effect of a putative Na/H exchange inhibition on histamine and [C]arachidonic acid ([C]AA) release has been examined in rat peritoneal mast cells, using either addition of amiloride or removal of extracellular Na. The cells were stimulated by non-immunological agents, i.e. calcium ionophore A......23187, nerve growth factor (NGF), thapsigargin and compound 48/80. On the basis of the results obtained, a possible role for Na/H exchange in rat mast cell secretion is discussed....

  19. Repair effect of transplantation of bone marrow mesenchymal stem cells on liver injury in severe burned rats and its mechanism

    International Nuclear Information System (INIS)

    Chen Hao; Zhou Yubo; Zhang Ying; Qin Yonggang; Guo Li; Yin Fei; Meng Chunyang; Yang Xiaoyu

    2014-01-01

    Objective: To investigate the repair effect of transplantation of bone marrow mesenchymal stem cells (BMSCs) on liver injury in severe burned rats, and to clarify its mechanism. Methods: The BMSCs of rats were isolated, cultured, amplified, identified, and labeled in vitro. 30 Wistar rats were randomly divided into normal control group (n=10), model group (n=10) and cell therapy group (n=10). The burned rat model was established. The BMSCs labeled by chlormethyl-benzamidodialkylcarbocyanine (CM-Dil) were transplanted into the rats in cell therapy group by retro-orbital intravenous injection and the saline was injected into the rats in model group. The general status of all rats were observed. The liver tissues of rats were obtained 2 weeks after transplantation, and the pathohistological changes were observed and the pathohistological scores were detected; the apoptotic rate of liver cells was detected by TUNEL method; the engraftment of BMSCs in liver tissues of the rats was observed under laser scanning confocal microscope. Results: 2 weeks after transplantation, the rats in model group were obviously malaise dispirited and the rats in cell therapy group showed obviously better, and the body weight of the rats in cell therapy group was higher than that in model group (P<0.05). The pathohistological results showed the normal liver lobules of the rats in model group disappeared, and the liver cords disordered, and some liver sinusoids dilated and congested, lymphocytes infiltrated with occasional focal aggregating, and cell edema was found, cytoplasm loose and steatosis were seen in liver tissue. However, the pathohistological changes of liver tissue of the rats in cell therapy group were significantly better than those in model group. The pathohistological score of the rats in cell therapy group was significantly lower than that in model group (P<0.05). The TUNEL staining results showed that there were lots of apoptotic liver cells in liver tissue of the rats in

  20. Histamine and TNF-α release by rat peritoneal mast cells stimulated with Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Im S.J.

    2011-02-01

    Full Text Available Mast cells have been reported to be predominant in the vaginal smears of patients infected with T. vaginalis. In this study, we investigated whether T. vaginalis could induce mast cells to migrate and to produce TNF-α and histamine. Rat peritoneal mast cells (RPMC, a primary mast cell, were used for the study. T. vaginalis induced an increase in chemotactic migration of the mast cells toward excretory and secretory product (ESP of T. vaginalis, and the mast cells activated with T. vaginalis showed an increased release of histamine and TNF-α. Therefore, mast cells may be involved in the inflammatory response caused by T. vaginalis.

  1. Proteinase activity in cell nuclei of rats exposed to γ-radiation and methyl nitrosourea

    International Nuclear Information System (INIS)

    Malakhova, L.V.; Surkenova, G.N.; Gaziev, A.I.

    1990-01-01

    Activity of nuclear proteinases in blood and liver cells of rats exposed to whole-body γ-irradiation (10 Gy) has been comparatively studied by the capacity of splitting the caseic substrate. Proteinase activity in nuclei of irradiated rat leukocytes was shown to increase by 2.5 times and to gradually decrease after 48 h reaching 150-160% as compared to the control. Two hours following a single injection of methyl nitrosourea the alteration in the activity of proteinases in nuclei of rat hepatocytes and leukocytes was different from the alteration of this index after γ-irradiation

  2. Effect of insulin on the mitotic activity of bone marrow cells after irradiation. [Gamma radiation, rats

    Energy Technology Data Exchange (ETDEWEB)

    Barkalaya, A I

    1976-02-01

    A total of 236 white rats were given a whole-body gamma dose of 750 R. Part of the rats were given a subcutaneous insulin injection of 0.2 units/kg. After 10, 20, 30 min, 1, 2, 3, 5, 8, 10 and 12 hours the mitotic index was determined in both groups of rats in the bone marrow of the femur. The content of glucose and insulin in the blood was determined. The mitotic index was found to be higher on administering insulin. The use of insulin in radiation sickness intensifies the mitotic activity of bone marrow cells and stimulates the recovery of bone marrow hematopoiesis. 5 references.

  3. Phospholipid metabolism in lymphoid cells at delayed periods following sublethal γ-irradiation of rats

    International Nuclear Information System (INIS)

    Novoselova, E.G.

    1991-01-01

    Dynamics of phospholipid metabolism in rat thymocytes and bone marrow cells was studied 1-6 months after fractionated irradiation. The rate of total and individual lipid synthesis was shown to increase in the exposed cells. The rate of lipid synthesis increased 1 and 2 months after irradiation and was normalized 3 and 6 months after irradiation

  4. Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells

    DEFF Research Database (Denmark)

    Ghisari, Mandana; Bonefeld-Jørgensen, Eva

    2005-01-01

    -nonylphenol, 4-octylphenol), pesticides (prochloraz, iprodion, chlorpyrifos), PCB metabolites (OH-PCB 106, OH-PCB 121, OH-PCB 69) and brominated flame-retardants (tetrabromobisphenol A). The ED potential of a chemical was determined by its effect on the cell proliferation of TH-dependent rat pituitary GH3 cell...

  5. Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Beucken, J.J.J.P van den; Bian, Z.; Fan, M.; Jansen, J.A.

    2009-01-01

    The objective of this study was to examine hard tissue formation of STRO-1-selected rat dental pulp-derived stem cells, seeded into a calcium phosphate ceramic scaffold, and implanted subcutaneously in mice. Previously, STRO-1 selection was used to obtain a mesenchymal stem cell progenitor

  6. Maintenance of DNA repair capacity in differentiating rat muscle cells in vitro

    International Nuclear Information System (INIS)

    Koval, T.M.; Kaufman, S.J.

    1981-01-01

    Unscheduled DNA synthesis was measured at several times during the differentiation of cultured rat skeletal muscle cells in response to exposures to 254 nm UV light. There was no change in the amount of repair DNA synthesis as the cells fuse and differentiate from postmitotic prefusion myoblasts to multinucleated contracting myotubes. (author)

  7. In vitro dynamics of supra-posomal structures in RSK4 rat sarcoma cells

    Czech Academy of Sciences Publication Activity Database

    Veselý, Pavel; Blase, C.; Matoušková, Eva; Sukhorukov, V.; Bereiter-Hahn, J.

    2005-01-01

    Roč. 40, č. 1 (2005), s. 36 ISSN 0035-9017. [Cytokinematics 2004. International Symposium on Microscopy of Live Cells in the Post Genomics Era /8./. 05.09.2004-07.09.2004, Hradec Králové] Institutional research plan: CEZ:AV0Z5052915 Keywords : RSK4 rat sarcoma cells * podosomes Subject RIV: EB - Genetics ; Molecular Biology

  8. Propranolol inhibits the in vitro conversion of thyroxine into triiodothyronine by isolated rat liver parenchymal cells

    NARCIS (Netherlands)

    van Noorden, C. J.; Wiersinga, W. M.; Touber, J. L.

    1979-01-01

    A model for the in vitro study of the conversion of thyroxine into triiodothyronine using isolated rat liver parenchymal cells is described. Isolated liver cells (mean protein content 18 mg/ml) convert approximately 0.8% of 1.3 microM exogenously added T4 into T3 during thirty minutes incubation.

  9. Effect of Gsk3 inhibitor CHIR99021 on aneuploidy levels in rat embryonic stem cells.

    Science.gov (United States)

    Bock, Anagha S; Leigh, Nathan D; Bryda, Elizabeth C

    2014-06-01

    Germline competent embryonic stem (ES) cells can serve as a tool to create genetically engineered rat strains used to elucidate gene function or provide disease models. In optimum culture conditions, ES cells are able to retain their pluripotent state. The type of components present and their concentration in ES cell culture media greatly influences characteristics of ES cells including the ability to maintain the cells in a pluripotent state. We routinely use 2i media containing inhibitors CHIR99021 and PD0325901 to culture rat ES cells. CHIR99021 specifically inhibits the Gsk3β pathway. We have found that the vendor source of CHIR99021 has a measurable influence on the level of aneuploidy seen over time as rat ES cells are passaged. Karyotyping of three different rat ES cell lines passaged multiple times showed increased aneuploidy when CHIR99021 from source B was used. Mass spectrometry analysis of this inhibitor showed the presence of unexpected synthetic small molecules, which might directly or indirectly cause increases in chromosome instability. Identifying these molecules could further understanding of their influence on chromosome stability and indicate how to improve synthesis of this media component to prevent deleterious effects in culture.

  10. Estimation of the rate of energy production of rat mast cells in vitro

    DEFF Research Database (Denmark)

    Johansen, Torben

    1983-01-01

    Rat mast cells were treated with glycolytic and respiratory inhibitors. The rate of adenosine triphosphate depletion of cells incubated with both types of inhibitors and the rate of lactate produced in presence of antimycin A and glucose were used to estimate the rate of oxidative and glycolytic...

  11. Role of developmental factors in hypothalamic function

    Directory of Open Access Journals (Sweden)

    Jakob eBiran

    2015-04-01

    Full Text Available The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism’s development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors, secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.

  12. Sexual behavior reduces hypothalamic androgen receptor immunoreactivity

    NARCIS (Netherlands)

    Fernandez-Guasti, Alonso; Swaab, Dick; Rodríguez-Manzo, Gabriela

    2003-01-01

    Male sexual behavior is regulated by limbic areas like the medial preoptic nucleus (MPN), the bed nucleus of the stria terminalis (BST), the nucleus accumbens (nAcc) and the ventromedial hypothalamic nucleus (VMN). Neurons in these brain areas are rich in androgen receptors (AR) and express

  13. Hypothalamic functions in patients with pituitary insufficiency

    NARCIS (Netherlands)

    Borgers, A.J.F.

    2013-01-01

    The main objective of this thesis is to increase our understanding of hypothalamic (dys)function in patients with pituitary insufficiency. This goal is driven by the clinical experience of persisting symptoms in patients adequately treated for pituitary insufficiency. We focus primarily on patients

  14. Evolution of Gelastic Epilepsy with Hypothalamic Hamartoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-11-01

    Full Text Available The patterns of clinical presentation, evolution of the epilepsy, and electoclinical diagnostic features of hypothalamic hamartoma (HH in 19 patients (8 children and 11 adults, seen between 1991 and 2001, were evaluated at Kings College Hospital and the Institute of Epileptology, London, UK.

  15. Dietary sugars, not lipids, drive hypothalamic inflammation

    NARCIS (Netherlands)

    Gao, Yuanqing; Bielohuby, Maximilian; Fleming, Thomas; Grabner, Gernot F; Foppen, Ewout; Bernhard, Wagner; Guzmán-Ruiz, Mara; Layritz, Clarita; Legutko, Beata; Zinser, Erwin; García-Cáceres, Cristina; Buijs, Ruud M; Woods, Stephen C; Kalsbeek, A.; Seeley, Randy J; Nawroth, Peter P; Bidlingmaier, Martin; Tschöp, Matthias H; Yi, Chun-Xia

    OBJECTIVE: The hypothalamus of hypercaloric diet-induced obese animals is featured by a significant increase of microglial reactivity and its associated cytokine production. However, the role of dietary components, in particular fat and carbohydrate, with respect to the hypothalamic inflammatory

  16. Dietary sugars, not lipids, drive hypothalamic inflammation

    NARCIS (Netherlands)

    Gao, Yuanqing; Bielohuby, Maximilian; Fleming, Thomas; Grabner, Gernot F.; Foppen, Ewout; Bernhard, Wagner; Guzmán-Ruiz, Mara; Layritz, Clarita; Legutko, Beata; Zinser, Erwin; García-Cáceres, Cristina; Buijs, Ruud M.; Woods, Stephen C.; Kalsbeek, Andries; Seeley, Randy J.; Nawroth, Peter P.; Bidlingmaier, Martin; Tschöp, Matthias H.; Yi, Chun-Xia

    2017-01-01

    Objective: The hypothalamus of hypercaloric diet-induced obese animals is featured by a significant increase of microglial reactivity and its associated cytokine production. However, the role of dietary components, in particular fat and carbohydrate, with respect to the hypothalamic inflammatory

  17. Flatfish metamorphosis: a hypothalamic independent process?

    Science.gov (United States)

    Campinho, Marco A; Silva, Nadia; Roman-Padilla, Javier; Ponce, Marian; Manchado, Manuel; Power, Deborah M

    2015-03-15

    Anuran and flatfish metamorphosis are tightly regulated by thyroid hormones t