WorldWideScience

Sample records for rat hindlimb influence

  1. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    Science.gov (United States)

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  2. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    OpenAIRE

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor pr...

  3. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    NARCIS (Netherlands)

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral

  4. Reliability in the Location of Hindlimb Motor Representations in Fischer-344 Rats

    Science.gov (United States)

    Frost, Shawn B.; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J.

    2014-01-01

    Object The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for locating cortical motor representations of the hindlimb reliably. Methods Intracortical Microstimulation (ICMS) techniques were used to derive detailed maps of the hindlimb motor representations in six adult Fischer-344 rats. Results The organization of the hindlimb movement representation, while variable across individuals in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and postero-lateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 +/− 0.50 mm2. Superimposing individual maps revealed an overlapping area measuring 0.35 mm2, indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25–3.75 mm posterior to Bregma, with an average center location ~ 2.6 mm posterior to Bregma. Likewise, the hindlimb representation was found 1–3.25 mm lateral to the midline, with an average center location ~ 2 mm lateral to midline. Conclusions The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to Bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being used increasingly in the development of brain-computer interfaces for restoration of function after spinal cord injury. PMID:23725395

  5. Reliability in the location of hindlimb motor representations in Fischer-344 rats: laboratory investigation.

    Science.gov (United States)

    Frost, Shawn B; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J

    2013-08-01

    The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for reliably locating cortical motor representations of the hindlimb. Intracortical microstimulation techniques were used to derive detailed maps of the hindlimb motor representations in 6 adult Fischer-344 rats. The organization of the hindlimb movement representation, while variable across individual rats in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and posterolateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 ± 0.50 mm(2). Superimposing individual maps revealed an overlapping area measuring 0.35 mm(2), indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25-3.75 mm posterior to the bregma, with an average center location approximately 2.6 mm posterior to the bregma. Likewise, the hindlimb representation was found 1-3.25 mm lateral to the midline, with an average center location approximately 2 mm lateral to the midline. The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to the bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being increasingly used in the development of brain-computer interfaces for restoration of function after spinal cord injury.

  6. Contribution of social isolation, restraint, and hindlimb unloading to changes in hemodynamic parameters and motion activity in rats.

    Directory of Open Access Journals (Sweden)

    Darya Tsvirkun

    Full Text Available The most accepted animal model for simulation of the physiological and morphological consequences of microgravity on the cardiovascular system is one of head-down hindlimb unloading. Experimental conditions surrounding this model include not only head-down tilting of rats, but also social and restraint stresses that have their own influences on cardiovascular system function. Here, we studied levels of spontaneous locomotor activity, blood pressure, and heart rate during 14 days under the following experimental conditions: cage control, social isolation in standard rat housing, social isolation in special cages for hindlimb unloading, horizontal attachment (restraint, and head-down hindlimb unloading. General activity and hemodynamic parameters were continuously monitored in conscious rats by telemetry. Heart rate and blood pressure were both evaluated during treadmill running to reveal cardiovascular deconditioning development as a result of unloading. The main findings of our work are that: social isolation and restraint induced persistent physical inactivity, while unloading in rats resulted in initial inactivity followed by normalization and increased locomotion after one week. Moreover, 14 days of hindlimb unloading showed significant elevation of blood pressure and slight elevation of heart rate. Hemodynamic changes in isolated and restrained rats largely reproduced the trends observed during unloading. Finally, we detected no augmentation of tachycardia during moderate exercise in rats after 14 days of unloading. Thus, we concluded that both social isolation and restraint, as an integral part of the model conditions, contribute essentially to cardiovascular reactions during head-down hindlimb unloading, compared to the little changes in the hydrostatic gradient.

  7. Hindlimb spasticity after unilateral motor cortex lesion in rats is reduced by contralateral nerve root transfer.

    Science.gov (United States)

    Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin

    2016-12-01

    Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (Pmotor cortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential therapeutic candidate to improve the function of lower extremity in patients with spastic hemiplegia. © 2016 The Author(s).

  8. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.

    Science.gov (United States)

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-04-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.

  9. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    Science.gov (United States)

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  10. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    Science.gov (United States)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  11. Transplantation of Rat Mesenchymal Stem Cells Overexpressing Hypoxia-Inducible Factor 2α Improves Blood Perfusion and Arteriogenesis in a Rat Hindlimb Ischemia Model

    Directory of Open Access Journals (Sweden)

    Weifeng Lu

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been increasingly tested in cell-based therapy to treat numerous diseases. Genetic modification to improve MSC behavior may enhance posttransplantation outcome. This study aims to test the potential therapeutic benefits of rat bone marrow MSCs overexpressing hypoxia-inducible factor 2α (rMSCsHIF-2α in a rat hindlimb ischemia model. PBS, rMSCs, or rMSCsHIF-2α were injected into rat ischemic hindlimb. Compared with the injection of PBS or rMSCs, transplantation of rMSCsHIF-2α significantly improved blood perfusion, increased the number of vessel branches in the muscle of the ischemic hindlimb, and improved the foot mobility of the ischemic hindlimb (all P<0.05. rMSCHIF-2α transplantation also markedly increased the expression of proangiogenic factors VEGF, bFGF, and SDF1 and Notch signaling proteins including DII4, NICD, Hey1, and Hes1, whereas it reduced the expression of proapoptotic factor Bax in the muscle of the ischemic hindlimb. Overexpression of HIF-2α did not affect rMSC stemness and proliferation under normoxia but significantly increased rMSC migration and tube formation in matrigel under hypoxia (all P<0.05. RMSCsHIF-2α stimulated endothelial cell invasion under hypoxia significantly (P<0.05. Genetic modification of rMSCs via overexpression of HIF-2α improves posttransplantation outcomes in a rat hindlimb ischemia model possibly by stimulating proangiogenic growth factors and cytokines.

  12. Encoding of temporal intervals in the rat hindlimb sensorimotor cortex

    Directory of Open Access Journals (Sweden)

    Eric Bean Knudsen

    2012-09-01

    Full Text Available The gradual buildup of neural activity over experimentally imposed delay periods, termed climbing activity, is well documented and is a potential mechanism by which interval time is encoded by distributed cortico-thalamico-striatal networks in the brain. Additionally, when multiple delay periods are incorporated, this activity has been shown to scale its rate of climbing proportional to the delay period. However, it remains unclear whether these patterns of activity occur within areas of motor cortex dedicated to hindlimb movement. Moreover, the effects of behavioral training (e.g. motor tasks under different reward conditions but with similar behavioral output are not well addressed. To address this, we recorded activity from the hindlimb sensorimotor cortex (HLSMC of two groups of rats performing a skilled hindlimb press task. In one group, rats were trained only to a make a valid press within a finite window after cue presentation for reward (non-interval trained, nIT; n=5, while rats in the second group were given duration-specific cues in which they had to make presses of either short or long duration to receive reward (interval trained, IT; n=6. Using PETH analyses, we show that cells recorded from both groups showed climbing activity during the task in similar proportions (35% IT and 47% nIT, however only climbing activity from IT rats was temporally scaled to press duration. Furthermore, using single trial decoding techniques (Wiener filter, we show that press duration can be inferred using climbing activity from IT animals (R=0.61 significantly better than nIT animals (R=0.507, p<0.01, suggesting IT animals encode press duration through temporally scaled climbing activity. Thus, if temporal intervals are behaviorally relevant then the activity of climbing neurons is temporally scaled to encode the passage of time.

  13. Proximo-distal organization and fibre type regionalization in rat hindlimb muscles

    NARCIS (Netherlands)

    Wang, LC; Kernell, D

    Five muscles of the rat's lower hindlimb were compared with regard to their histochemical fibre type distribution at seven different proximo-distal levels. The muscles were: extensor digitorum longus (ED), flexor digitorum and hallucis longus (FD), gastrocnemius medialis (GM), peroneus longus (PE)

  14. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    Science.gov (United States)

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  15. Optical study of interactions among propagation waves of neural excitation in the rat somatosensory cortex evoked by forelimb and hindlimb stimuli.

    Science.gov (United States)

    Hama, Noriyuki; Kawai, Minako; Ito, Shin-Ichi; Hirota, Akihiko

    2018-02-14

    Multisite optical recording has revealed that the neural excitation wave induced by a sensory stimulation begins at a focus and propagates on the cortex. This wave is considered to be important for computation in the sensory cortex, particularly the integration of sensory information; however, the nature of this wave remains largely unknown. In the present study, we examined the interaction between two waves in the rat sensory cortex induced by hindlimb and forelimb stimuli with different inter-stimulus intervals. We classified the resultant patterns as follows: 1) the collision of two waves; 2) the hindlimb response being evoked while the forelimb-induced wave is passing the hindlimb focus; and 3) the hindlimb response being evoked after the forelimb-induced wave has passed the hindlimb focus. In pattern 1, the two waves fused into a single wave, but the propagation pattern differed from that predicted by the superimposition of two solely induced propagation courses. In pattern 2, the state of the interaction between the two waves varied depending on the phase of optical signals constituting the forelimb-induced wave around the hindlimb focus. Although no hindlimb-induced wave was observed in the rising phase, the propagating velocity of the forelimb-induced wave increased. At the peak, neither the hindlimb-induced response nor a modulatory effect on the forelimb-induced wave was detected. In pattern 3, the hindlimb-induced wave showed a reduced amplitude and spatial extent. These results indicate that the state of the interaction between waves was strongly influenced by the relative timing of sensory inputs.

  16. Rat model hindlimb ischemia induced via embolization with polyvinyl alcohol and N butyl cyanoacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheong Il; Kim, Hyo Cheol; Song, Yong Sub; Cho, Hye Rim; Lee, Kyoung Bun; Jae, Hwan June; Chung, Jin Wook [Seoul National University Hospital, Seoul (Korea, Republic of)

    2013-12-15

    To investigate the feasibility of a rat model on hindlimb ischemia induced by embolization from the administration of polyvinyl alcohol (PVA) particles or N-butyl cyanoacrylate (NBCA). Unilateral hindlimb ischemia was induced by embolization with NBCA (n = 4), PVA (n = 4) or surgical excision (n = 4) in a total of 12 Sprague-Dawley rats. On days 0, 7 and 14, the time-of-flight magnetic resonance angiography (TOF-MRA) and enhanced MRI were obtained as scheduled by using a 3T-MR scanner. The clinical ischemic index, volume change and degree of muscle necrosis observed on the enhanced MRI in the ischemic hindlimb were being compared among three groups using the analysis of variance. Vascular patency on TOF-MRA was evaluated and correlated with angiographic findings when using an inter-rater agreement test. There was a technical success rate of 100% for both the embolization and surgery groups. The clinical ischemic index did not significantly differ. On day 7, the ratios of the muscular infarctions were 0.436, 0.173 and 0 at thigh levels and 0.503, 0.337 and 0 at calf levels for the NBCA, PVA and surgery groups, respectively. In addition, the embolization group presented increased volume and then decreased volume on days 7 and 14, respectively. The surgery group presented a gradual volume decrease. Good correlation was shown between the TOF-MRA and angiographic findings (kappa value of 0.795). The examined hindlimb ischemia model using embolization with NBCA and PVA particles in rats is a feasible model for further research, and muscle necrosis was evident as compared with the surgical model.

  17. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    Directory of Open Access Journals (Sweden)

    Monzurul Alam

    Full Text Available A brain-machine interface (BMI is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  18. Vasopressin and angiotensin II stimulate oxygen uptake in the perfused rat hindlimb

    DEFF Research Database (Denmark)

    Colquhoun, E Q; Hettiarachchi, M; Ye, J M

    1988-01-01

    Vasopressin and angiotensin II markedly stimulated oxygen uptake in the perfused rat hindlimb. The increase due to each agent approached 70% of the basal rate, and was greater than that produced by a maximal concentration of norepinephrine. Half-maximal stimulation occurred at 60 pM vasopressin, 0...

  19. Hyperbaric oxygen in skeletal muscle of rats submitted to total acute left hindlimb ischemia: A research report.

    Science.gov (United States)

    da Silva, Luis Gustavo Campos; Dalio, Marcelo Bellini; Joviliano, Edwaldo Edner; Feres, Omar; Piccinato, Carlos Eli

    2015-01-01

    Determine the effect of hyperbaric oxygen treatment in skeletal muscle of rats submitted to total acute left hindlimb ischemia. An experimental study was designed using 48 Wistar rats divided into four groups (n = 12): Control; Ischemia (I)--total hindlimb ischemia for 270 minutes; Hyperbaric oxygen treatment during ischemia (HBO2)--total hindlimb ischemia for 270 minutes and hyperbaric oxygen during the first 90 minutes; Pre-treatment with hyperbaric oxygen (PHBO2)--90 minutes of hyperbaric oxygen treatment before total hindlimb ischemia for 270 minutes. Skeletal muscle injury was evaluated by measuring levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total creatine phosphokinase (CPK); muscular malondialdehyde (MDA), muscular glycogen, and serum ischemia-modified albumin (IMA). AST was significantly higher in I, HBO2 and PHBO2 compared with control (P = .001). There was no difference in LDH. CPK was significantly higher in I, HBO2 and PHBO2, compared with control (p = .014). MDA was significantly higher in PHBO2, compared with other groups (p = .042). Glycogen was significantly decreased in I, HBO2 and PHBO2, compared with control (p < .001). Hyperbaric oxygen treatment in acute total hindlimb ischemia exerted no protective effect on muscle injury, regardless of time of application. When applied prior to installation of total ischemia, hyperbaric oxygen treatment aggravated muscle injury.

  20. Treatment of Radix Dipsaci extract prevents long bone loss induced by modeled microgravity in hindlimb unloading rats.

    Science.gov (United States)

    Niu, Yinbo; Li, Chenrui; Pan, Yalei; Li, Yuhua; Kong, Xianghe; Wang, Shuo; Zhai, YuanKun; Wu, Xianglong; Fan, Wutu; Mei, Qibing

    2015-01-01

    Radix Dipsaci is a kidney tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. Previous studies have shown that Radix Dipsaci extract (RDE) could prevent bone loss in ovariectomized rats. This study investigates the effect of RDE against bone loss induced by simulated microgravity. A hindlimb unloading rat model was established to determine the effect of RDE on bone mineral density and bone microarchitecture. Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6 per group): control (CON), hindlimb unloading with vehicle (HLU), hindlimb unloading treated with alendronate (HLU-ALN, 2.0 mg/kg/d), and hindlimb unloading treated with RDE (HLU-RDE, 500 mg/kg/d). RDE or ALN was administrated orally for 4 weeks. Treatment with RDE had a positive effect on mechanical strength, BMD, BMC, bone turnover markers, and the changes in urinary calcium and phosphorus excretion. MicroCT analysis showed that RDE significantly prevented the reduction of the bone volume fraction, connectivity density, trabecular number, thickness, tissue mineral density, and tissue mineral content as well as improved the trabecular separation and structure model index. RDE was demonstrated to prevent the loss of bone mass induced by HLU treatment, which suggests the potential application of RDE in the treatment of microgravity-induced bone loss.

  1. Ladder beam and camera video recording system for evaluating forelimb and hindlimb deficits after sensorimotor cortex injury in rats.

    Science.gov (United States)

    Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E

    1997-12-30

    Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.

  2. Effects of FTY720 on Lung Injury Induced by Hindlimb Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Liangrong Wang

    2017-01-01

    Full Text Available Background. Sphingosine-1-phosphate (S1P is a biologically active lysophospholipid mediator involved in modulating inflammatory process. We investigated the effects of FTY720, a structural analogue of S1P after phosphorylation, on lung injury induced by hindlimb ischemia reperfusion (IR in rats. Methods. Fifty Sprague-Dawley rats were divided into groups SM, IR, F3, F5, and F10. Group SM received sham operation, and bilateral hindlimb IR was established in group IR. The rats in groups F3, F5, and F10 were pretreated with 3, 5, and 10 mg/kg/d FTY720 for 7 days before IR. S1P lyase (S1PL, sphingosine kinase (SphK 1, and SphK2 mRNA expressions, wet/dry weight (W/D, and polymorphonuclear/alveolus (P/A in lung tissues were detected, and the lung injury score was evaluated. Results. W/D, P/A, and mRNA expressions of S1PL, SphK1, and SphK2 were higher in group IR than in group SM, while these were decreased in both groups F5 and F10 as compared to IR (p<0.05. The lung tissue presented severe lesions in group IR, which were attenuated in groups F5 and F10 with lower lung injury scores than in group IR (p<0.05. Conclusions. FTY720 pretreatment could attenuate lung injury induced by hindlimb IR by modulating S1P metabolism and decreasing pulmonary neutrophil infiltration.

  3. Quantification of fibre type regionalisation : an analysis of lower hindlimb muscles in the rat

    NARCIS (Netherlands)

    Wang, LC; Kernell, D

    Newly developed concepts and methods for the quantification of fibre type regionalisation were used for comparison between all muscles traversing the ankle of the rat lower hindlimb (n = 13). For each muscle, cross-sections from the proximodistal midlevel were stained for myofibrillar ATPase and

  4. A Chinese 2-herb formula (NF3) promotes hindlimb ischemia-induced neovascularization and wound healing of diabetic rats.

    Science.gov (United States)

    Tam, Jacqueline Chor-Wing; Ko, Chun-Hay; Lau, Kit-Man; To, Ming-Ho; Kwok, Hin-Fai; Chan, Yuet-Wa; Siu, Wing-Sum; Etienne-Selloum, Nelly; Lau, Ching-Po; Chan, Wai-Yee; Leung, Ping-Chung; Fung, Kwok-Pui; Schini-Kerth, Valérie B; Lau, Clara Bik-San

    2014-01-01

    Diabetic foot ulcer is closely associated with peripheral vascular disease. Enhancement of tissue oxidative stress, reduction of nitric oxide (NO) and angiogenic growth factors, and abnormal matrix metalloproteinase (MMP) activity are pathophysiological factors in post-ischemic neovascularization and diabetic wound healing. Our previous study demonstrated that the Chinese 2-herb formula, NF3, showed significant wound healing effects on diabetic foot ulcer rats. A novel rat diabetic foot ulcer with hindlimb ischemia model was established in order to strengthen our claims on the diabetic wound healing and post-ischemic neovascularization effects of NF3. Our results demonstrate that NF3 can significantly reduce the wound area of the diabetic foot ulcer rat with hindlimb ischemia by 21.6% (phealing and post-ischemic neovascularization in diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Analysis on Bilateral Hindlimb Mapping in Motor Cortex of the Rat by an Intracortical Microstimulation Method

    OpenAIRE

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-01-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the righ...

  6. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse

    Directory of Open Access Journals (Sweden)

    Yunfei Huang

    2018-05-01

    Full Text Available The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each: hindlimb unloading (HU, HU + vibration (HUV, and cage-control (CON. The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density, immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  7. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse.

    Science.gov (United States)

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups ( n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  8. Contralateral peripheral neurotization for a hemiplegic hindlimb after central neurological injury.

    Science.gov (United States)

    Zheng, Mou-Xiong; Hua, Xu-Yun; Jiang, Su; Qiu, Yan-Qun; Shen, Yun-Dong; Xu, Wen-Dong

    2018-01-01

    OBJECTIVE Contralateral peripheral neurotization surgery has been successfully applied to rescue motor function of the hemiplegic upper extremity in patients with central neurological injury (CNI). It may contribute to strengthened neural pathways between the contralesional cortex and paretic limbs. However, the effect of this surgery in the lower extremities remains unknown. In the present study the authors explored the effectiveness and safety of contralateral peripheral neurotization in treating a hemiplegic lower extremity following CNI in adult rats. METHODS Controlled cortical impact (CCI) was performed on the hindlimb motor cortex of 36 adult Sprague-Dawley rats to create severe unilateral traumatic brain injury models. These CCI rats were randomly divided into 3 groups. At 1 month post-CCI, the experimental group (Group 1, 12 rats) underwent contralateral L-6 to L-6 transfer, 1 control group (Group 2, 12 rats) underwent bilateral L-6 nerve transection, and another control group (Group 3, 12 rats) underwent an L-6 laminectomy without injuring the L-6 nerves. Bilateral L-6 nerve transection rats without CCI (Group 4, 12 rats) and naïve rats (Group 5, 12 rats) were used as 2 additional control groups. Beam and ladder rung walking tests and CatWalk gait analysis were performed in each rat at baseline and at 0.5, 1, 2, 4, 6, 8, and 10 months to detect the skilled walking functions and gait parameters of both hindlimbs. Histological and electromyography studies were used at the final followup to verify establishment of the traumatic brain injury model and regeneration of the L6-L6 neural pathway. RESULTS In behavioral tests, comparable motor injury in the paretic hindlimbs was observed after CCI in Groups 1-3. Group 1 started to show significantly lower slip and error rates in the beam and ladder rung walking tests than Groups 2 and 3 at 6 months post-CCI (p walking impairment in the intact hindlimbs in Groups 1 and 2 (compared with Group 3) and in the bilateral

  9. Effects of Spaceflight and Hindlimb Suspension on the Posture and Gait of Rats

    Science.gov (United States)

    Fox, R. A.; Corcoran, M.; Daunton, N. G.; Morey-Holton, E.

    1994-01-01

    Instability of posture and gait in astronauts following spaceflight (SF) is thought to result from muscle atrophy and from changes in sensory-motor integration in the CNS (central nervous system) that occur during adaptation to microgravity (micro-G). Individuals are thought to have developed, during SF, adaptive changes for the processing of proprioceptive, vestibular and visual sensory inputs with reduced weighting of gravity-based signals and increased weighting of visual and tactile cues. This sensory-motor rearrangement in the CNS apparently occurs to optimize neuromuscular system function for effective movement and postural control in micro-G. However, these adaptive changes are inappropriate for the 1 g environment and lead to disruptions in posture and gait on return to Earth. Few reports are available on the effects of SF on the motor behavior of animals. Rats studied following 18.5 - 19.5 days of SF in the COSMOS program were described as being ..'inert, apathetic, slow'.. and generally unstable. The hindlimbs of these rats were ..'thrust out from the body with fingers pulled apart and the shin unnaturally pronated'. On the 6th postflight day motor behavior was described as similar to that observed in preflight observations. Improved understanding of the mechanisms leading to these changes can be obtained in animal models through detailed analysis of neural and molecular mechanisms related to gait. To begin this process the posture and gait of rats were examined following exposure to either SF or hindlimb suspension (HLS), and during recovery from these conditions.

  10. Dietary fish oil delays hypoxic skeletal muscle fatigue and enhances caffeine-stimulated contractile recovery in the rat in vivo hindlimb.

    Science.gov (United States)

    Peoples, Gregory E; McLennan, Peter L

    2017-06-01

    Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O 2 (SaO 2 -98%) and hypoxia 14% O 2 (SaO 2 -89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g -1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.

  11. The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yu

    2010-11-01

    Full Text Available Abstract Background The ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. It has been shown that chronic hindlimb unloading downregulates the satellite cell activity. This study investigated the role of low-frequency electrical stimulation on satellite cell activity during a 28 d hindlimb suspension in rats. Results Mechanical unloading resulted in a 44% reduction in the myofiber cross-sectional area as well as a 29% and 34% reduction in the number of myonuclei and myonuclear domains, respectively, in the soleus muscles (P vs the weight-bearing control. The number of quiescent (M-cadherin+, proliferating (BrdU+ and myoD+, and differentiated (myogenin+ satellite cells was also reduced by 48-57% compared to the weight-bearing animals (P P Conclusion This study shows that electrical stimulation partially attenuated the decrease in muscle size and satellite cells during hindlimb unloading. The causal relationship between satellite cell activation and electrical stimulation remain to be established.

  12. An experimental study and mathematical simulation of adrenergic control of hindlimb vessels in rats after 3-week tail suspension

    DEFF Research Database (Denmark)

    Rodionov, Ivan M; Timin, Eugeny N; Matchkov, Vladimir

    1999-01-01

    Adrenoreactivity of rat hindlimb vessels was studied in experiments with constant-pressure saline perfusion. An original mathematical model was applied to evaluate the mechanism of changes in vascular tone regulation. A 3-week suspension resulted in decreased responses to sympathetic nerve stimul...

  13. No effect of NOS inhibition on skeletal muscle glucose uptake during in situ hindlimb contraction in healthy and diabetic Sprague-Dawley rats.

    Science.gov (United States)

    Hong, Yet Hoi; Betik, Andrew C; Premilovac, Dino; Dwyer, Renee M; Keske, Michelle A; Rattigan, Stephen; McConell, Glenn K

    2015-05-15

    Nitric oxide (NO) has been shown to be involved in skeletal muscle glucose uptake during contraction/exercise, especially in individuals with Type 2 diabetes (T2D). To examine the potential mechanisms, we examined the effect of local NO synthase (NOS) inhibition on muscle glucose uptake and muscle capillary blood flow during contraction in healthy and T2D rats. T2D was induced in Sprague-Dawley rats using a combined high-fat diet (23% fat wt/wt for 4 wk) and low-dose streptozotocin injections (35 mg/kg). Anesthetized animals had one hindlimb stimulated to contract in situ for 30 min (2 Hz, 0.1 ms, 35 V) with the contralateral hindlimb rested. After 10 min, the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME; 5 μM) or saline was continuously infused into the femoral artery of the contracting hindlimb until the end of contraction. Surprisingly, there was no increase in skeletal muscle NOS activity during contraction in either group. Local NOS inhibition had no effect on systemic blood pressure or muscle contraction force, but it did cause a significant attenuation of the increase in femoral artery blood flow in control and T2D rats. However, NOS inhibition did not attenuate the increase in muscle capillary recruitment during contraction in these rats. Muscle glucose uptake during contraction was significantly higher in T2D rats compared with controls but, unlike our previous findings in hooded Wistar rats, NOS inhibition had no effect on glucose uptake during contraction. In conclusion, NOS inhibition did not affect muscle glucose uptake during contraction in control or T2D Sprague-Dawley rats, and this may have been because there was no increase in NOS activity during contraction. Copyright © 2015 the American Physiological Society.

  14. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    Science.gov (United States)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  15. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    Directory of Open Access Journals (Sweden)

    Yue-xin Wang

    2015-01-01

    Full Text Available The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  16. The Effect of Hindlimb Suspension on the Reproductive System of Young Male Rats

    Science.gov (United States)

    Tou, Janet; Grindeland, R.; Baer, L.; Guran, G.; Fung, C.; Wade, C.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Colonization of space requires the ability to reproduce in reduced gravity. Following spaceflight, astronauts and male rats exhibit decreased testosterone (T). This has important implications as T effects the testes and accessory sex glands. To our knowledge no studies have examined the effects of spaceflight on accessory sex glands. Due to the rarity of spaceflight opportunities, ground models have been used to simulate weightlessness. The objective of this study was to determine the effect of long-term (21 d) weightlessness on the reproductive system of male rats. Weightlessness was simulated using the Morey-Holton hindlimb suspension (HLS) model. Age 10 week old, male Sprague-Dawley rats weighing (209.0 +9.7g) were randomly assigned (n=10/group) to either HLS or ambulatory control. In HLS rats, testes mass was 33% lower (pmale rats. This discrepancy may have been due to the age of animal and timing of sampling. T levels vary dramatically during testes development as well as within normal diurnal cycles. In young HLS rats, testes weight was reduced but not plasma T. Subsequently there was no effect on accessory sex glands. However, this may not be the case in older rats. More studies using standardized methods are needed to gain a better understanding of male reproduction function and capability in weightlessness. Funding provided by NASA.

  17. Rat rotator cuff muscle responds differently from hindlimb muscle to a combined tendon-nerve injury.

    Science.gov (United States)

    Davies, Michael R; Ravishankar, Bharat; Laron, Dominique; Kim, Hubert T; Liu, Xuhui; Feeley, Brian T

    2015-07-01

    Rotator cuff tears (RCTs) are among the most common musculoskeletal injuries seen by orthopaedic surgeons. Clinically, massive cuff tears lead to unique pathophysiological changes in rotator cuff muscle, including atrophy, and massive fatty infiltration, which are rarely seen in other skeletal muscles. Studies in a rodent model for RCT have demonstrated that these histologic findings are accompanied by activation of the Akt/mammalian target of rapamycin (mTOR) and transforming growth factor-β (TGF-β) pathways following combined tendon-nerve injury. The purpose of this study was to compare the histologic and molecular features of rotator cuff muscle and gastrocnemius muscle--a major hindlimb muscle, following combined tendon-nerve injury. Six weeks after injury, the rat gastrocnemius did not exhibit notable fatty infiltration compared to the rotator cuff. Likewise, the adipogenic markers SREBP-1 and PPARγ as well as the TGF-β canonical pathway were upregulated in the rotator cuff, but not the gastrocnemius. Our study suggests that the rat rotator cuff and hindlimb muscles differ significantly in their response to a combined tendon-nerve injury. Clinically, these findings highlight the unique response of the rotator cuff to injury, and may begin to explain the poor outcomes of massive RCTs compared to other muscle-tendon injuries. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Effects of protein-deficient nutrition during rat pregnancy and development on developmental hindlimb crossing due to methylmercury intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, S.K.; Bai, Chengjiang [Montreal Univ., Quebec (Canada). Dept. de Medecine du Travail et Hygiene du Milieu

    2000-07-01

    Pregnant rats were fed either a control (20% protein) or low (3.5%) protein diet during gestation and lactation. The pups were separated from their mothers on postnatal day 21, and were given the same dient as their corresponding mothers. The groups of pups from each diet group were treated on either postnatal day 21 or postnatal day 60 with 7.5 mg methylmercury chloride (MeHgCl) per kg b.w. once daily by gavage for 10 consecutive days, and the development of ataxia (hind-limb corossing) was monitored. The offspring from mothers on the protein-deficient diet were found to be more sensitive to MeHg-induced ataxia than those on the protein-sufficient diet. The former accumulated more mercury in different brain regions than the latter. The rates of protein synthesis in different brain regions of the offspring fed the protein-deficient diet were significantly reduced compared with the rates in those fed the protein-sufficient diet. However, MeHg treatment did not significantly modify the rates of such protein synthesis further in protein-deficient rats. Thus, a significantly much higher inhibition of the intrinsic rates of protein synthesis in different brain regions due to severe protein deficiency, as observed in this study, may be partly responsible for the increased susceptibility of developing rats fed a protein-deficient diet to MeHg-induced ataxia, or hindlimb crossing, although other factor(s) might also be involved. (orig.)

  19. Expression of IGF-I and Protein Degradation Markers During Hindlimb Unloading and Growth Hormone Administration in Rats

    Science.gov (United States)

    Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.

    2013-02-01

    It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.

  20. Models of disuse - A comparison of hindlimb suspension and immobilization

    Science.gov (United States)

    Fitts, R. H.; Metzger, J. M.; Riley, D. A.; Unsworth, B. R.

    1986-01-01

    The effects of 1 and 2 weeks of hindlimb suspension (HS) on the contractile properties of fast- and slow-twitch skeletal muscles of male Sprague Dawley rats are studied and compared with hindlimb immobilization (HI) data. The optimal length and contractile properties of the slow-twitch soleus, fast-twitch extensor digitorum longus, and the vastus lateralis are measured. It is observed that HS and HI affect slow-twitch muscles; isometric twitch duration in the slow-twitch soleus is decreased. Soleus muscle mass and peak tetanic tension declines with disuse. A major difference in the influence of HS and HI on the maximal speed of soleus muscle shortening, V(max) is detected; HS produced a twofold increase in V(max) compared to control data and HI had no significant effect on V(max). The relation between V(max) and myosin concentration is analyzed. The data reveal that HS modifies slow-twitch muscle yielding hybrid fibers with elevated shortening velocities and this change may be dependent on the elimination of load-bearing contractions.

  1. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats

    Science.gov (United States)

    Borrell, Jordan A.; Frost, Shawn B.; Peterson, Jeremy; Nudo, Randolph J.

    2017-02-01

    Objective. Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282 000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach. Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a 3D (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and electromyographic (EMG) activity. Via fine wire EMG electrodes, stimulus-triggered averaging (StTA) was used on rectified EMG data to determine response latency. Main results. Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance. The derived motor map provides insight into the parameters needed for future neuromodulatory devices.

  2. A THREE-DIMENSIONAL MAP OF THE HINDLIMB MOTOR REPRESENTATION IN THE LUMBAR SPINAL CORD IN SPRAGUE DAWLEY RATS

    Science.gov (United States)

    Borrell, Jordan A.; Frost, Shawn; Peterson, Jeremy; Nudo, Randolph J.

    2016-01-01

    Objective Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282,000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a three-dimensional (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and EMG activity. Via fine wire electromyographic (EMG) electrodes, Stimulus-Triggered Averaging (StTA) was used on rectified EMG data to determine response latency. Main results Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance The derived motor map provides insight into the parameters needed for future neuromodulatory devices. PMID:27934789

  3. THE EFFECT OF INSULIN AND CARBOHYDRATE SUPPLEMENTATION ON GLYCOGEN REPLENISHMENT AMONG DIFFERENT HINDLIMB MUSCLES IN RATS FOLLOWING PROLONGED SWIMMING

    Directory of Open Access Journals (Sweden)

    Mei-Chich Hsu

    2012-04-01

    Full Text Available In the present study we investigated the interactive effects of insulin and carbohydrate on glycogen replenishment in different rat hindlimb muscles. Forty male Sprague Dawley rats were assigned to 5 groups, including 1 sedentary control with carbohydrate supplement (2 g glucose · kg body wt-1, 2 sedentary rats with 16 hours recovery, carbohydrate and insulin (0.5 U · kg body wt-1, 3 swimming without recovery, 4 swimming with 16 hours recovery and carbohydrate supplement, and 5 swimming with 16 hours recovery, carbohydrate and insulin. The swimming protocol consisted of two 3 h swimming sections, which were separated by a 45 min rest. The insulin and carbohydrate were administered to the rats immediately after exercise. At the end of the experiment, the soleus (S, plantaris (P, quadriceps (Q and gastrocnemius (G were surgically excised to evaluate glycogen utilization and replenishment. We observed that glycogen utilization was significantly lower in G and Q than S and P during swimming (p <0.05, and S showed the greatest capacity of glycogen resynthesis after post-exercise recovery (p <0.05. In the sedentary state, the glycogen synthesis did not differ among hindlimb muscles during insulin and carbohydrate treatments. Interestingly, with insulin and carbohydrate, the glycogen resynthesis in S and P were significantly greater than in Q and G following post-exercise recovery (p <0.05. We therefore concluded that the soleus and plantaris are the primary working muscles during swimming, and the greatest glycogen replenishment capacity of the soleus during post-exercise recovery is likely due to its highest insulin sensitivity.

  4. Kallikrein gene-modified EPCs induce angiogenesis in rats with ischemic hindlimb and correlate with integrin αvβ3 expression.

    Directory of Open Access Journals (Sweden)

    Shen Shen Fu

    Full Text Available BACKGROUND: Human tissue kallikrein (hTK plays an essential role in the physiological and pathological mechanisms of blood vessels. This study aimed to determine whether angiogenesis induced by endothelial progenitor cells (EPCs transduced with the adenovirus-mediated hTK gene could improve blood flow in rat hindlimb ischemia in vivo and to establish a promising mechanism in vitro. METHODS: EPCs transduced with adenovirus encoding hTK-162 (i.e., Ad/hTK-transduced EPCs or Ad/GFP-transduced EPCs were administered to Wister rats with hindlimb ischemia through therapeutic neovascularization. Muscular capillary density (MCD, blood flow (BF, and the number of myofibers were measured at days 7, 14, and 21 after treatment. Expressions of integrin αvβ3 and endothelial nitric oxide synthase (eNOS were detected on the surface of EPCs. RESULTS: MCD, BF, and the number of myofibers in rats with Ad/hTK-transduced EPCs remarkably increased at day 21 after treatment compared with rats with Ad/GFP-transduced EPCs or the control group (P<0.01. Expressions of integrin αvβ3 and eNOS protein on the surface of EPCs also increased in rats with Ad/hTK-transduced EPCs. The levels of integrin αvβ3 expression were reduced by PI3K and eNOS blockade, and the inhibitor of integrin αvβ3 abrogated the migration and adhesion of hTK-transduced EPCs (P<0.05. CONCLUSION: hTK gene delivery in vivo improves the natural angiogenic response to ischemia. The ability of hTK gene-transduced EPCs can be enhanced in vitro, in which integrin αvβ3 plays a role in the process.

  5. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    Science.gov (United States)

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  6. Application of a rat hindlimb model: a prediction of force spaces reachable through stimulation of nerve fascicles.

    Science.gov (United States)

    Johnson, Will L; Jindrich, Devin L; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie

    2011-12-01

    A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb, which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model, we investigated the suitability of a lumped-parameter model for the prediction of muscle activation during dynamic tasks. Using the validated model, we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury.

  7. Tramadol Alleviates Myocardial Injury Induced by Acute Hindlimb Ischemia Reperfusion in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Takhtfooladi, Hamed Ashrafzadeh; Asl, Adel Haghighi Khiabanian [Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shahzamani, Mehran [Department of Cardiovascular Surgery, Isfahan University of Medical Sciences, Tehran (Iran, Islamic Republic of); Takhtfooladi, Mohammad Ashrafzadeh, E-mail: dr-ashrafzadeh@yahoo.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Allahverdi, Amin [Department of Surgery, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khansari, Mohammadreza [Department of Physiology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries. This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR. Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination. The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II. From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model.

  8. Mechanical Stress and Antioxidant Protection in the Retina of Hindlimb Suspended Rats

    Science.gov (United States)

    Glass, Aziza; Theriot, Corey A.; Alway, Stephen E.; Zanello, Susana B.

    2012-01-01

    It has been postulated that hindlimb suspension (HS) causes a cephalad fluid shift in quadrupeds similar to that occurring to humans in microgravity. Therefore, HS may provide a suitable animal model in which to recapitulate the ocular changes observed in the human Visual Impairment and Intracranial Pressure (VIIP) syndrome. This work reports preliminary results from a tissue sharing project using 34 week-old Brown Norway rats. Two different experiments compared normal posture controls and HS rats for 2 weeks and rats exposed to HS for 2 weeks but allowed to recover in normal posture for 2 additional weeks. The effects of two nutritional countermeasures, green tea extract (GT) and plant polyphenol resveratrol (Rv), were also evaluated. Green tea contains the antioxidant epigallocatechin gallate (EGCG). qPCR gene expression analysis of selected targets was performed on RNA from isolated retinas, and histologic analysis was done on one fixed eye per rat. The transcription factor early growth response protein 1 (Egr1) was upregulated almost 2-fold in HS retinas relative to controls (P = 0.059), and its expression returned to control levels after 2 weeks of recovery in normal posture (P = 0.023). HS-induced upregulation of Egr1 was attenuated (but not significantly) in retinas from rats fed an antioxidant rich (GT extract) diet. In rats fed the GT-enriched diet, antioxidant enzymes were induced, evidenced by the upregulation of the gene heme oxygenase 1 (Hmox1) (P = 0.042) and the gene superoxide dismutase 2 (Sod2) (P = 0.0001). Egr1 is a stretch-activated transcription factor, and the Egr1 mechanosensitive response to HS may have been caused by a change in the translaminal pressure and/or mechanical deformation of the eye globe. The observed histologic measurements of the various retinal layers in the HS rats were lower in value than those of the control animal (n = 1), however insufficient data were available for statistical analysis. Aquaporin 4, a water

  9. Influence of Androgen Receptor in Vascular Cells on Reperfusion following Hindlimb Ischaemia.

    Directory of Open Access Journals (Sweden)

    Junxi Wu

    Full Text Available Studies in global androgen receptor knockout (G-ARKO and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall.Mice with selective deletion of AR (ARKO from vascular smooth muscle cells (SM-ARKO, endothelial cells (VE-ARKO, or both (SM/VE-ARKO were compared with wild type (WT controls. Hindlimb ischaemia was induced in these mice by ligation and removal of the femoral artery. Post-operative reperfusion was reduced in SM-ARKO and SM/VE-ARKO mice. Immunohistochemistry indicated that this was accompanied by a reduced density of smooth muscle actin-positive vessels but no change in the density of isolectin B4-positive vessels in the gastrocnemius muscle. Deletion of AR from the endothelium (VE-ARKO did not alter post-operative reperfusion or vessel density. In an ex vivo (aortic ring culture model of angiogenesis, AR was not detected in vascular outgrowths and angiogenesis was not altered by vascular ARKO or by exposure to dihydrotestosterone (DHT 10-10-10-7M; 6 days.These results suggest that loss of AR from vascular smooth muscle, but not from the endothelium, contributes to impaired reperfusion in the ischaemic hindlimb of G-ARKO. Impaired reperfusion was associated with reduced collateral formation rather than reduced angiogenesis.

  10. Roles for C-X-C chemokines and C5a in lung injury after hindlimb ischemia-reperfusion

    DEFF Research Database (Denmark)

    Bless, N M; Warner, R L; Padgaonkar, V A

    1999-01-01

    We evaluated the roles of the C-X-C chemokines cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) as well as the complement activation product C5a in development of lung injury after hindlimb ischemia-reperfusion in rats. During reperfusion, CD11b...... and CD18, but not CD11a, were upregulated on neutrophils [bronchoalveolar lavage (BAL) and blood] and lung macrophages. BAL levels of CINC and MIP-2 were increased during the ischemic and reperfusion periods. Treatment with either anti-CINC or anti-MIP-2 IgG significantly reduced lung vascular......, 58, and 23%, respectively (P MIP-2 as well as the complement activation product C5a are required for lung neutrophil recruitment and full induction of lung injury after hindlimb ischemia-reperfusion in rats....

  11. Effect of anabolic steroids on skeletal muscle mass during hindlimb suspension

    Science.gov (United States)

    Tsika, R. W.; Herrick, R. E.; Baldwin, K. M.

    1987-01-01

    The effect of treatment with an anabolic steroid (nandrolone decanoate) on the muscle mass of plantaris and soleus of a rats in hindlimb suspension, and on the isomyosin expression in these muscles, was investigated in young female rats divided into four groups: normal control (NC), normal steroid (NS), normal suspension (N-sus), and suspension steroid (sus-S). Steroid treatment of suspended animals (sus-S vs N-sus) was found to partially spare body weight and muscle weight, as well as myofibril content of plantaris (but not soleus), but did not modify the isomyosin pattern induced by suspension. In normal rats (NS vs NC), steroid treatment did enhance body weight and plantaris muscle weight; the treatment did not alter isomyosin expression in either muscle type.

  12. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles.

    Science.gov (United States)

    Stone, Audrey J; Copp, Steven W; Kim, Joyce S; Kaufman, Marc P

    2015-12-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles combined receptor blockade is required to attenuate the exercise pressor reflex. We first compared the reflex before and after injecting either PPADS (10 mg/kg), a P2X receptor antagonist, APETx2 (100 μg/kg), an activating acid-sensing ion channel 3 (ASIC) channel antagonist, or L161982 (2 μg/kg), an EP4 receptor antagonist, into the arterial supply of the hindlimb of decerebrated rats. We then examined the effects of combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the exercise pressor reflex using the same doses, intra-arterial route, and time course of antagonist injections as those used for individual blockade. We found that neither PPADS (n = 5), APETx2 (n = 6), nor L161982 (n = 6) attenuated the reflex. In contrast, combined blockade of these receptors (n = 7) attenuated the peak (↓27%, P reflex. Combined blockade injected intravenously had no effect on the reflex. We conclude that combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the endings of thin fiber muscle afferents is required to attenuate the exercise pressor reflex in rats with freely perfused hindlimbs. Copyright © 2015 the American Physiological Society.

  13. Pre-diabetes augments neuropeptide Y1- and α1-receptor control of basal hindlimb vascular tone in young ZDF rats.

    Directory of Open Access Journals (Sweden)

    Nicole M Novielli

    Full Text Available Peripheral vascular disease in pre-diabetes may involve altered sympathetically-mediated vascular control. Thus, we investigated if pre-diabetes modifies baseline sympathetic Y(1-receptor (Y(1R and α(1-receptor (α(1R control of hindlimb blood flow (Q(fem and vascular conductance (VC.Q(fem and VC were measured in pre-diabetic ZDF rats (PD and lean controls (CTRL under infusion of BIBP3226 (Y(1R antagonist, prazosin (α(1R antagonist and BIBP3226+prazosin. Neuropeptide Y (NPY concentration and Y(1R and α(1R expression were determined from hindlimb skeletal muscle samples.Baseline Q(fem and VC were similar between groups. Independent infusions of BIBP3226 and prazosin led to increases in Q(fem and VC in CTRL and PD, where responses were greater in PD (p<0.05. The percent change in VC following both drugs was also greater in PD compared to CTRL (p<0.05. As well, Q(fem and VC responses to combined blockade (BIBP3226+prazosin were greater in PD compared to CTRL (p<0.05. Interestingly, an absence of synergistic effects was observed within groups, as the sum of the VC responses to independent drug infusions was similar to responses following combined blockade. Finally, white and red vastus skeletal muscle NPY concentration, Y(1R expression and α(1R expression were greater in PD compared to CTRL.For the first time, we report heightened baseline Y(1R and α(1R sympathetic control of Q(fem and VC in pre-diabetic ZDF rats. In support, our data suggest that augmented sympathetic ligand and receptor expression in pre-diabetes may contribute to vascular dysregulation.

  14. Decoding bipedal locomotion from the rat sensorimotor cortex

    Science.gov (United States)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  15. Intermittent fasting in mice does not improve hindlimb motor performance after spinal cord injury.

    Science.gov (United States)

    Streijger, Femke; Plunet, Ward T; Plemel, Jason Ryan; Lam, Clarrie K; Liu, Jie; Tetzlaff, Wolfram

    2011-06-01

    Previously, we reported that every-other-day-fasting (EODF) in Sprague-Dawley rats initiated after cervical spinal cord injury (SCI) effectively promoted functional recovery, reduced lesion size, and enhanced sprouting of the corticospinal tract. More recently, we also showed improved behavioral recovery with EODF after a moderate thoracic contusion injury in rats. In order to make use of transgenic mouse models to study molecular mechanisms of EODF, we tested here whether this intermittent fasting regimen was also beneficial in mice after SCI. Starting after SCI, C57BL/6 mice were fed a standard rodent chow diet either with unrestricted access or feeding every other day. Over a 14-week post-injury period, we assessed hindlimb locomotor function with the Basso Mouse Scale (BMS) open-field test and horizontal ladder, and the spinal cords were evaluated histologically to measure white and grey matter sparing. EODF resulted in an overall caloric restriction of 20% compared to animals fed ad libitum (AL). The EODF-treated animals exhibited a ∼ 14% reduction in body weight compared to AL mice, and never recovered to their pre-operative body weight. In contrast to rats on an intermittent fasting regimen, mice exhibited no increase in blood ketone bodies by the end of the second, third, and fourth day of fasting. EODF had no beneficial effect on tissue sparing and failed to improve behavioral recovery of hindlimb function. Hence this observation stands in stark contrast to our earlier observations in Sprague-Dawley rats. This is likely due to the difference in the metabolic response to intermittent fasting as evidenced by different ketone levels during the first week of the EODF regimen.

  16. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    Science.gov (United States)

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.

  17. Misexpression experiment of Tbx5 in axolotl (Ambystoma mexicanum) hindlimb blastema.

    Science.gov (United States)

    Shimokawa, Takashi; Kominami, Rieko; Yasutaka, Satoru; Shinohara, Harumichi

    2013-01-01

    Axolotls (Ambystoma mexicanum) have the ability to regenerate amputated limbs throughout their life span. In the present study, we attempted to elucidate how axolotls can specify limb type correctly during the regeneration process. We misexpressed Tbx5 in regenerating hindlimb blastema, and consequently a forelimb-like hindlimb regenerated from the hindlimb blastema. On the other hand, no change was observed in Tbx5-overexpressing forelimb blastema, and thus we considered that Tbx5 plays a key role in the specification of forelimb during the regeneration process of axolotl limbs. However, axolotls' fore- and hindlimbs have very similar structures except for the number of fingers, and it was very difficult to judge whether the forelimb-like regenerate was a true forelimb or merely a forelimb-like hindlimb. Therefore, in order to confirm our conclusion, we have to investigate other genes that are expressed differentially between fore- and hindlimbs in future experiments.

  18. Forelimb-hindlimb developmental timing changes across tetrapod phylogeny

    Directory of Open Access Journals (Sweden)

    Selwood Lynne

    2007-10-01

    Full Text Available Abstract Background Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb. Results An overall pattern of change across tetrapods can be discerned and appears to be relatively clade-specific. In the primitive condition, as seen in Chondrichthyes and Osteichthyes, the forelimb/pectoral fin develops earlier than the hindlimb/pelvic fin. This pattern is either retained or re-evolved in eulipotyphlan insectivores (= shrews, moles, hedgehogs, and solenodons and taken to its extreme in marsupials. Although exceptions are known, the two anurans we examined reversed the pattern and displayed a significant advance in hindlimb development. All other species examined, including a bat with its greatly enlarged forelimbs modified as wings in the adult, showed near synchrony in the development of the fore and hindlimbs. Conclusion Major heterochronic changes in early limb development and chondrogenesis were absent within major clades except Lissamphibia, and their presence across vertebrate phylogeny are not easily correlated with adaptive phenomena related to morphological differences in the adult fore- and hindlimbs. The apparently conservative nature of this

  19. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds.

    Science.gov (United States)

    Kilbourne, Brandon M

    2014-01-01

    In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses - thigh, shank, pes, tarsometatarsal segment, and digits - from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel's λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel's λ) and increasing or decreasing rates of trait change over time (i.e., Pagel's δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may

  20. Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat.

    Science.gov (United States)

    Korim, Willian Seiji; Ferreira-Neto, Marcos L; Pedrino, Gustavo R; Pilowsky, Paul M; Cravo, Sergio L

    2012-12-01

    In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.

  1. Musculus gastrocnemius tetanus kinetics in alcohol-intoxicated rats with experimentally-induced hindlimb vascular ischemia under conditions of low-frequence muscle fatigue

    Directory of Open Access Journals (Sweden)

    O. A. Melnychuk

    2014-04-01

    Full Text Available Alcohol intoxication and ischemic injury of skeletal muscles often accompany each other. It is shown that patients hospitalized with chronic alcoholism develop muscle fatigue. Skeletal muscle dysfunction in alcohol-dependent patients is caused by ethanol-associated myofibrillar atrophy and metabolic disbalance, while compression-ischemic lesions result from unconsciousness of the patient, in case of taking the critical alcohol dose. Therefore, the aim of this study is to discover typical m. gastrocnemius (cap. med. tetanic kinetics changes in alcohol intoxicated rats with experimentally induced vascular ischemia of hindlimb muscles under conditions of low-frequency progressive muscle fatigue. Experiments were carried out on 10 young male Wistar rats (149.5 ± 5.8 g kept under standard vivarium conditions and diet. The investigation was conducted in two phases: chronic (30 days and acute (3 hours experiment. All surgical procedures were carried out aseptically under general anesthesia. Ishemic m. gastrocnemius (cap. med. tetanic kinetic changes and force productivity in alcohol intoxicated rats were investigated in the isometric mode, with direct electrical stimulation. The fatigue of m. gastrocnemius (cap. med. was evaluated by three characteristic criteria: the first sag effect, the secondary force rise, the second sag effect. There have been 10 similar experiments: 5 series in each study group with 10 tetanic runs in each series. The highest amplitude of the native m. gastrocnemius (cap. med. tetanus relative to isoline was taken as 100% force response. The same pattern of m. gastrocnemius (cap. med. low-frequency fatigue development was found in both rat groups under study. It is evidenced by the absence of substantial m. gastrocnemius (cap. med. tetanus kinetics differences in alcohol intoxicated rats, compared with non-alcohol intoxicated rats during fatigue test. However, the appreciable m. gastrocnemius (cap. med. tetanic force reduction

  2. Genetic basis of hindlimb loss in a naturally occurring vertebrate model

    Directory of Open Access Journals (Sweden)

    Emily K. Don

    2016-03-01

    Full Text Available Here we genetically characterise pelvic finless, a naturally occurring model of hindlimb loss in zebrafish that lacks pelvic fin structures, which are homologous to tetrapod hindlimbs, but displays no other abnormalities. Using a hybrid positional cloning and next generation sequencing approach, we identified mutations in the nuclear localisation signal (NLS of T-box transcription factor 4 (Tbx4 that impair nuclear localisation of the protein, resulting in altered gene expression patterns during pelvic fin development and the failure of pelvic fin development. Using a TALEN-induced tbx4 knockout allele we confirm that mutations within the Tbx4 NLS (A78V; G79A are sufficient to disrupt pelvic fin development. By combining histological, genetic, and cellular approaches we show that the hindlimb initiation gene tbx4 has an evolutionarily conserved, essential role in pelvic fin development. In addition, our novel viable model of hindlimb deficiency is likely to facilitate the elucidation of the detailed molecular mechanisms through which Tbx4 functions during pelvic fin and hindlimb development.

  3. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    Science.gov (United States)

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.

    Science.gov (United States)

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-06-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.

  5. Influence of experimental hyperthyroidism on skeletal muscle metabolism in the rat.

    Science.gov (United States)

    van Hardeveld, C; Kassenaar, A A

    1977-05-01

    In this study hind-limb perfusion was used to investigate the influence of thyroid hormones on some metabolic parameters in the skeletal muscle of the rat. Daily injection of 20 microng L-thyroxine (T4) per 100 g b. w. for a week caused a 25% increase in oxygen consumption. Further enlargement of the T4 dose had little additive effect. In the dose range 20--80 microng T4/100g b.w., no important changes occurred in lactate production or glucose consumption. Only at the highest T4 dose did the glucose consumption increase significantly. The most profound effect of T4 was on lipolysis. A daily dose of 20 microng T4/100 g b. w. gave a doubling of glycerol production rate, the maximum occuring at a dose of 40 microng T4/100 g b. w. Inactivation of the nervous system was without influence on the T4-induced increase in oxygen consumption. However, the T4-induced elevation of lipolysis disappeared after abolition of the nervous activity. This raises the possibility that the T4 effect on lipolysis in skeletal muscle is a potentiation of catecholamine effects. The T4-induced oxygen consumption increase might be dependent not on the lipolytic process but rather on other energy-consuming cell processes.

  6. Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle.

    Science.gov (United States)

    Kaneguchi, Akinori; Ozawa, Junya; Kawamata, Seiichi; Kurose, Tomoyuki; Yamaoka, Kaoru

    2014-09-26

    Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles. Sixty male Wistar rats were randomly divided into four groups: control (CONT), hindlimb suspension (HS), HS + weight bearing (WB), and HS + whole-body vibration (VIB) (n = 15 each). Hindlimb suspension was applied for 2 weeks in HS, HS + WB, and HS + VIB groups. During suspension, rats in HS + VIB group were placed daily on a vibrating whole-body vibration platform for 20 min. In HS + WB group, suspension was interrupted for 20 min/day, allowing weight bearing. Untreated rats were used as controls. Soleus muscle wet weights and muscle fiber cross-sectional areas (CSA) significantly decreased in HS, HS + WB, and HS + VIB groups compared with CONT group. Both muscle weights and CSA were significantly greater in HS + WB and HS + VIB groups compared with HS group. Capillary numbers (represented by capillary-to-muscle fiber ratio) were significantly smaller in all hindlimb suspension-treated groups compared with CONT group. However, a reduction in capillary number by unloading hindlimbs was partially prevented by whole-body vibration. These findings were supported by examining mRNA for angiogenic-related factors. Expression levels of a pro-angiogenic factor, vascular endothelial growth factor-A mRNA, were significantly lower in all hindlimb suspension-treated groups compared with CONT group. There were no differences among hindlimb suspension-treated groups. Expression levels of an anti-angiogenic factor, CD36 (receptor for thrombospondin-1) mRNA, were significantly higher in all hindlimb suspension-treated groups compared with CONT group. Among the hindlimb suspension-treated groups, expression of CD

  7. Key Markers of mTORC1-Dependent and mTORC1-Independent Signaling Pathways Regulating Protein Synthesis in Rat Soleus Muscle During Early Stages of Hindlimb Unloading.

    Science.gov (United States)

    Mirzoev, Timur; Tyganov, Sergey; Vilchinskaya, Natalia; Lomonosova, Yulia; Shenkman, Boris

    2016-01-01

    The purpose of the study was to assess the amount of rRNA and phosphorylation status of the key markers of mTORC1-dependent (70s6k, 4E-BP1) and mTORC1-independent (GSK-3β, AMPK) signaling pathways controlling protein synthesis in rat soleus during early stages of mechanical unloading (hindlimb suspension (HS) for 1-, 3- and 7 days). The content of the key signaling molecules of various anabolic signaling pathways was determined by Western-blotting. The amount of 28S rRNA was evaluated by RT-PCR. The rate of protein synthesis was assessed using in-vivo SUnSET technique. HS for 3 and 7 days induced a significant (pprotein synthesis in soleus muscle in comparison with control. HS within 24 hours resulted in a significant (pprotein synthesis in rat soleus during early stages of simulated microgravity is associated with impaired ribosome biogenesis as well as reduced activity of mTORC1-independent signaling pathways. © 2016 The Author(s) Published by S. Karger AG, Basel.

  8. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    Science.gov (United States)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  9. Two chronic motor training paradigms differentially influe nce acute instrume ntal learning in spinally transected rats

    Science.gov (United States)

    Bigbee, Allison J.; Crown, Eric D.; Ferguson, Adam R.; Roy, Roland R.; Tillakaratne, Niranjala J.K.; Grau, James W.; Edgerton, V. Reggie

    2008-01-01

    The effect of two chronic motor training paradigms on the ability of the lumbar spinal cord to perform an acute instrumental learning task was examined in neonatally (postnatal day 5; P5) spinal cord transected (i.e., spinal) rats. At ∼P30, rats began either unipedal hindlimb stand training (Stand-Tr; 20-25 min/day, 5 days/wk), or bipedal hindlimb step training (Step-Tr; 20 min/day; 5 days/wk) for 7 wks. Non-trained spinal rats (Non-Tr) served as controls. After 7 wks all groups were tested on the flexor-biased instrumental learning paradigm. We hypothesized that 1) Step-Tr rats would exhibit an increased capacity to learn the flexor-biased task relative to Non-Tr subjects, as locomotion involves repetitive training of the tibialis anterior (TA), the ankle flexor whose activation is important for successful instrumental learning, and 2) Stand-Tr rats would exhibit a deficit in acute motor learning, as unipedal training activates the ipsilateral ankle extensors, but not flexors. Results showed no differences in acute learning potential between Non-Tr and Step-Tr rats, while the Stand-Tr group showed a reduced capacity to learn the acute task. Further investigation of the Stand-Tr group showed that, while both the ipsilateral and contralateral hindlimbs were significantly impaired in their acute learning potential, the contralateral, untrained hindlimbs exhibited significantly greater learning deficits. These results suggest that different types of chronic peripheral input may have a significant impact on the ability to learn a novel motor task, and demonstrate the potential for experience-dependent plasticity in the spinal cord in the absence of supraspinal connectivity. PMID:17434606

  10. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats.

    Science.gov (United States)

    Hamlin, Marvin; Traughber, Terence; Reinkensmeyer, David J; de Leon, Ray D

    2015-05-15

    Providing weight support facilitates locomotion in spinal cord injured animals. To control weight support, robotic systems have been developed for treadmill stepping and more recently for overground walking. We developed a novel device, the body weight supported ambulatory rodent trainer (i.e. BART). It has a small pneumatic cylinder that moves along a linear track above the rat. When air is supplied to the cylinder, the rats are lifted as they perform overground walking. We tested the BART device in rats that received a moderate spinal cord contusion injury and in normal rats. Locomotor training with the BART device was not performed. All of the rats learned to walk in the BART device. In the contused rats, significantly greater paw dragging and dorsal stepping occurred in the hindlimbs compared to normal. Providing weight support significantly raised hip position and significantly reduced locomotor deficits. Hindlimb stepping was tightly coupled to forelimb stepping but only when the contused rats stepped without weight support. Three weeks after the contused rats received a complete spinal cord transection, significantly fewer hindlimb steps were performed. Relative to rodent robotic systems, the BART device is a simpler system for studying overground locomotion. The BART device lacks sophisticated control and sensing capability, but it can be assembled relatively easily and cheaply. These findings suggest that the BART device is a useful tool for assessing quadrupedal, overground locomotion which is a more natural form of locomotion relative to treadmill locomotion. Published by Elsevier B.V.

  11. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model

    Directory of Open Access Journals (Sweden)

    JA DeQuach

    2012-06-01

    Full Text Available Peripheral artery disease (PAD currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI, which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold’s degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.

  12. Imaging studies of the hindlimbs of pacas (Cuniculus paca) bred in captivity.

    Science.gov (United States)

    Araújo, F A P; Rahal, S C; Doiche, D P; Machado, M R F; Vulcano, L C; Teixeira, C R; El-Warrak, A O

    2010-01-01

    To evaluate the hindlimbs of pacas bred in captivity using radiographic and computed tomography (CT) studies. Nine mature pacas (Cuniculus paca) 5.9-8.2 kg in body weight. Radiographical aspects of the bones of the hindlimbs were evaluated, and the Norberg angle and inclination angle were measured for each hindlimb. Anteversion angle were measured in CT examination. The bone anatomy of the hindlimb of the paca was similar to that of the guinea pig, apart from two lunulae and a single fabella (lateral) which were observed. The Norberg angle had mean value of 130.56º ± 3.81 without any significant difference between testers. Inclination angles ranged from 142.44º ± 4.82 to 145.44º ± 4.09 by Hauptman's method, and from 144.94º ± 3.13 to 148.22º ± 3.25 by Montavon's method, for right and left hindlimbs respectively. Average values for the anteversion angles measured with CT ranged from 28.56º ± 5.56 to 32.91º ± 2.62. The data may be used in future studies comparing the paca to other rodent species. In addition, the paca could be used as an animal model in orthopaedic research.

  13. Distal hindlimb kinematics of galloping Thoroughbred racehorses on dirt and synthetic racetrack surfaces.

    Science.gov (United States)

    Symons, J E; Garcia, T C; Stover, S M

    2014-03-01

    The effect of racetrack surface (dirt or synthetic) on distal hindlimb kinematics of racehorses running at competition speeds is not known. To compare distal hindlimb and hoof kinematics during stance of breezing (unrestrained gallop) racehorses between dirt and synthetic surfaces. Two-dimensional kinematic video analysis of 5 Thoroughbred racehorses galloping at high speeds (12-17 m/s) on a dirt racetrack and a synthetic racetrack. The positions of kinematic markers applied to the left hindlimb were recorded at 500 Hz. Position, velocity and acceleration of joint angles and hoof translation during stance were calculated in the sagittal plane. Peak translational and angular kinematic values were compared between the dirt and synthetic race surfaces using mixed model analyses of covariance. Maximum and heel-strike metatarsophalangeal (fetlock) angles were greater (Pdirt surface than on the synthetic surface. Maximum fetlock angle occurred earlier during stance on the dirt surface (Pdirt surface (Pdirt surface than on a synthetic surface. Synthetic race surfaces may mitigate risk of injury to hindlimb fetlock structures by reducing fetlock hyperextension and associated strains in fetlock support structures. Differences in hoof slide may contribute to different distal hindlimb kinematics between surfaces. © 2013 EVJ Ltd.

  14. Effect of Hind-Limb Suspension and X-Ray Irradiation on the Mechanical and Chemical Properties of Rat Femur and Tibia Bones

    Science.gov (United States)

    Heacox, Hayley; Hill, Brent; Mehta, Rahul; Barajas, Jordan; Freyaldenhoven, Sidney; Dobretsov, Max; Chowdhury, Parimal

    It is known that space conditions such as microgravity and cosmic radiation have detrimental effects on the skeletal system of humans, such as decreased bone mineral density. This research studies the changes in mechanical properties, elasticity, and chemical properties, calcium and phosphorus content, of rat femur and tibia bones when exposed to hind-limb suspension and x-ray irradiation, simulated microgravity and cosmic radiation. It is hypothesized that if microgravity and cosmic radiation lead to decreased bone mineral density, then these conditions will produce weakened bones, lower elastic moduli and abnormal concentrations of calcium and phosphorus, as compared to bones not subject to these conditions. A technique known as three-point bending was employed to estimate the Young's (elastic) modulus for the leg bones. To investigate the chemical nature of the bones, a Scanning Electron Microscope (SEM) was utilized to take cross-sectional images and to perform energy dispersive x-ray spectroscopy. Ultimately, the results produced by this research will aid in quantifying the effects of spaceflight and may be used in developing a treatment to counteract such effects. This work supported by a RID and CRP Grant from Arkansas Space Grant Consortium.

  15. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb.

    Directory of Open Access Journals (Sweden)

    James P Charles

    Full Text Available Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion.

  16. Extracellular Matrix Hydrogel Promotes Tissue Remodeling, Arteriogenesis, and Perfusion in a Rat Hindlimb Ischemia Model

    Directory of Open Access Journals (Sweden)

    Jessica L. Ungerleider, BS

    2016-01-01

    Full Text Available Although surgical and endovascular revascularization can be performed in peripheral arterial disease (PAD, 40% of patients with critical limb ischemia do not have a revascularization option. This study examines the efficacy and mechanisms of action of acellular extracellular matrix-based hydrogels as a potential novel therapy for treating PAD. We tested the efficacy of using a tissue-specific injectable hydrogel derived from decellularized porcine skeletal muscle (SKM and compared this to a new human umbilical cord-derived matrix (hUC hydrogel, which could have greater potential for tissue regeneration because of the younger age of the tissue source. In a rodent hindlimb ischemia model, both hydrogels were injected 1-week post-surgery and perfusion was regularly monitored with laser speckle contrast analysis to 35 days post-injection. There were significant improvements in hindlimb tissue perfusion and perfusion kinetics with both biomaterials. Histologic analysis indicated that the injected hydrogels were biocompatible, and resulted in arteriogenesis, rather than angiogenesis, as well as improved recruitment of skeletal muscle progenitors. Skeletal muscle fiber morphology analysis indicated that the muscle treated with the tissue-specific SKM hydrogel more closely matched healthy tissue morphology. Whole transcriptome analysis indicated that the SKM hydrogel caused a shift in the inflammatory response, decreased cell death, and increased blood vessel and muscle development. These results show the efficacy of an injectable ECM hydrogel alone as a potential therapy for treating patients with PAD. Our results indicate that the SKM hydrogel improved functional outcomes through stimulation of arteriogenesis and muscle progenitor cell recruitment.

  17. Changes in the cholinergic system of rat sciatic nerve and skeletal muscle following suspension induced disuse

    Science.gov (United States)

    Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.

    1984-01-01

    Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.

  18. The mechano-gated channel inhibitor GsMTx4 reduces the exercise pressor reflex in rats with ligated femoral arteries.

    Science.gov (United States)

    Copp, Steven W; Kim, Joyce S; Ruiz-Velasco, Victor; Kaufman, Marc P

    2016-05-01

    Mechanical and metabolic stimuli arising from contracting muscles evoke the exercise pressor reflex. This reflex is greater in a rat model of simulated peripheral arterial disease in which a femoral artery is chronically ligated than it is in rats with freely perfused femoral arteries. The role played by the mechanically sensitive component of the exaggerated exercise pressor reflex in ligated rats is unknown. We tested the hypothesis that the mechano-gated channel inhibitor GsMTx4, a relatively selective inhibitor of mechano-gated Piezo channels, reduces the exercise pressor reflex in decerebrate rats with ligated femoral arteries. Injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced the pressor response to Achilles tendon stretch (a purely mechanical stimulus) but had no effect on the pressor responses to intra-arterial injection of α,β-methylene ATP or lactic acid (purely metabolic stimuli). Moreover, injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced both the integrated pressor area (control 535 ± 21, GsMTx4 218 ± 24 mmHg·s; P reflex contributes to the exaggerated exercise pressor reflex during intermittent hindlimb muscle contractions in rats with ligated femoral arteries. Copyright © 2016 the American Physiological Society.

  19. Identification of genes associated with regenerative success of Xenopus laevis hindlimbs

    Directory of Open Access Journals (Sweden)

    Barker Donna

    2008-06-01

    Full Text Available Abstract Background Epimorphic regeneration is the process by which complete regeneration of a complex structure such as a limb occurs through production of a proliferating blastema. This type of regeneration is rare among vertebrates but does occur in the African clawed frog Xenopus laevis, traditionally a model organism for the study of early development. Xenopus tadpoles can regenerate their tails, limb buds and the lens of the eye, although the ability of the latter two organs to regenerate diminishes with advancing developmental stage. Using a heat shock inducible transgene that remains silent unless activated, we have established a stable line of transgenic Xenopus (strain N1 in which the BMP inhibitor Noggin can be over-expressed at any time during development. Activation of this transgene blocks regeneration of the tail and limb of Xenopus tadpoles. Results In the current study, we have taken advantage of the N1 transgenic line to directly compare morphology and gene expression in same stage regenerating vs. BMP signalling deficient non-regenerating hindlimb buds. The wound epithelium of N1 transgenic hindlimb buds, which forms over the cut surface of the limb bud after amputation, does not transition normally into the distal thickened apical epithelial cap. Instead, a basement membrane and dermis form, indicative of mature skin. Furthermore, the underlying mesenchyme remains rounded and does not expand to form a cone shaped blastema, a normal feature of successful regeneration. Using Affymetrix Gene Chip analysis, we have identified genes linked to regenerative success downstream of BMP signalling, including the BMP inhibitor Gremlin and the stress protein Hsp60 (no blastema in zebrafish. Gene Ontology analysis showed that genes involved in embryonic development and growth are significantly over-represented in regenerating early hindlimb buds and that successful regeneration in the Xenopus hindlimb correlates with the induction of

  20. Comparative anatomy, evolution, and homologies of tetrapod hindlimb muscles, comparison with forelimb muscles, and deconstruction of the forelimb-hindlimb serial homology hypothesis.

    Science.gov (United States)

    Diogo, Rui; Molnar, Julia

    2014-06-01

    For more than two centuries, the idea that the forelimb and hindlimb are serially homologous structures has been accepted without serious question. This study presents the first detailed analysis of the evolution and homologies of all hindlimb muscles in representatives of each major tetrapod group and proposes a unifying nomenclature for these muscles. These data are compared with information obtained previously about the forelimb muscles of tetrapods and the muscles of other gnathostomes in order to address one of the most central and enigmatic questions in evolutionary and comparative anatomy: why are the pelvic and pectoral appendages of gnathostomes generally so similar to each other? An integrative analysis of the new myological data, combined with a review of recent paleontological, developmental, and genetic works and of older studies, does not support serial homology between the structures of these appendages. For instance, many of the strikingly similar forelimb and hindlimb muscles found in each major extant tetrapod taxon were acquired at different geological times and/or have different embryonic origins. These similar muscles are not serial homologues, but the result of evolutionary parallelism/convergence due to a complex interplay of ontogenetic, functional, topological, and phylogenetic constraints/factors. Copyright © 2014 Wiley Periodicals, Inc.

  1. Non-decoupled morphological evolution of the fore- and hindlimb of sabretooth predators.

    Science.gov (United States)

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2017-10-01

    Specialized organisms are useful for exploring the combined effects of selection of functional traits and developmental constraints on patterns of phenotypic integration. Sabretooth predators are one of the most interesting examples of specialization among mammals. Their hypertrophied, sabre-shaped upper canines and their powerfully built forelimbs have been interpreted as adaptations to a highly specialized predatory behaviour. Given that the elongated and laterally compressed canines of sabretooths were more vulnerable to fracture than the shorter canines of conical-tooth cats, it has been long hypothesized that the heavily muscled forelimbs of sabretooths were used for immobilizing prey before developing a quick and precise killing bite. However, the effect of this unique adaptation on the covariation between the fore- and the hindlimb has not been explored in a quantitative fashion. In this paper, we investigate if the specialization of sabretooth predators decoupled the morphological variation of their forelimb with respect to their hindlimb or, in contrast, both limbs vary in the same fashion as in conical-tooth cats, which do not show such extreme adaptations in their forelimb. We use 3D geometric morphometrics and different morphological indices to compare the fore- and hindlimb of conical- and sabretooth predators. Our results indicate that the limb bones of sabretooth predators covary following the same trend of conical-tooth cats. Therefore, we show that the predatory specialization of sabretooth predators did not result in a decoupling of the morphological evolution of their fore- and hindlimbs. The role of developmental constraints and natural selection on this coordinate variation between the fore- and the hindlimb is discussed in the light of this new evidence. © 2017 Anatomical Society.

  2. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture

    OpenAIRE

    Payne, RC; Crompton, RH; Isler, K; Savage, R; Vereecke, Evie; Gunther, MM; Thorpe, SKS; D'Aout, K

    2006-01-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mas...

  3. Blockade of acid sensing ion channels attenuates the augmented exercise pressor reflex in rats with chronic femoral artery occlusion.

    Science.gov (United States)

    Tsuchimochi, Hirotsugu; Yamauchi, Katsuya; McCord, Jennifer L; Kaufman, Marc P

    2011-12-15

    We found previously that static contraction of the hindlimb muscles of rats whose femoral artery was ligated evoked a larger reflex pressor response (i.e. exercise pressor reflex) than did static contraction of the contralateral hindlimb muscles which were freely perfused. Ligating a femoral artery in rats results in blood flow patterns to the muscles that are remarkably similar to those displayed by humans with peripheral artery disease. Using decerebrated rats, we tested the hypothesis that the augmented exercise pressor reflex in rats with a ligated femoral artery is attenuated by blockade of the acid sensing ion channel (ASIC) 3. We found that femoral arterial injection of either amiloride (5 and 50 μg kg(-1)) or APETx2 (100 μg kg(-1)) markedly attenuated the reflex in rats with a ligated femoral artery. In contrast, these ASIC antagonists had only modest effects on the reflex in rats with freely perfused hindlimbs. Tests of specificity of the two antagonists revealed that the low dose of amiloride and APETx2 greatly attenuated the pressor response to lactic acid, an ASIC agonist, but did not attenuate the pressor response to capsaicin, a TRPV1 agonist. In contrast, the high dose of amiloride attenuated the pressor responses to lactic acid, but also attenuated the pressor response to capsaicin. We conclude that ASIC3 on thin fibre muscle afferents plays an important role in evoking the exercise pressor reflex in rats with a compromised arterial blood supply to the working muscles.

  4. The Hindlimb Arterial Vessels in Lowland paca (Cuniculus paca, Linnaeus 1766).

    Science.gov (United States)

    Leal, L M; de Freitas, H M G; Sasahara, T H C; Machado, M R F

    2016-04-01

    This study aims to describe the origin and distribution of the hindlimb arterial vessels. Five adult lowland pacas (Cuniculus paca) were used. Stained and diluted latex was injected, caudally to the aorta. After fixation in 10% paraformaldehyde for 72 h, we dissected to visualize and identify the vessels. It was found out that the vascularization of the hindlimb in lowland paca derives from the terminal branch of the abdominal aorta. The common iliac artery divides into external iliac and internal iliac. The external iliac artery emits the deep iliac circumflex artery, the pudendal epigastric trunk, the deep femoral artery; the femoral artery originates the saphenous artery, it bifurcates into cranial and caudal saphenous arteries. Immediately after the knee joint, the femoral artery is called popliteal artery, which divides into tibial cranial and tibial caudal arteries at the level of the crural inter-osseous space. The origin and distribution of arteries in the hindlimb of lowland paca resembles that in other wild rodents, as well as in the domestic mammals. © 2014 Blackwell Verlag GmbH.

  5. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep.

    Science.gov (United States)

    Rozance, Paul J; Zastoupil, Laura; Wesolowski, Stephanie R; Goldstrohm, David A; Strahan, Brittany; Cree-Green, Melanie; Sheffield-Moore, Melinda; Meschia, Giacomo; Hay, William W; Wilkening, Randall B; Brown, Laura D

    2018-01-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O 2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P fetal norepinephrine and reduced IGF-1 and insulin. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  6. Right vs. left sensorimotor cortex suction-ablation in the rat: no difference in beam-walking recovery.

    Science.gov (United States)

    Goldstein, L B

    1995-03-13

    The ability of rats to traverse a narrow elevated beam has been used to quantitate recovery of hindlimb motor function after unilateral injury to the sensorimotor cortex. We tested the hypothesis that the rate of spontaneous beam-walking recovery varies with the side of the cortex lesion. Groups of rats that were trained at the beam-walking task underwent suction-ablation of either the right or left hindlimb sensorimotor cortex. There was no difference in hindlimb motor function between the groups on the first post-operative beam-waking trial carried out the day after cortex ablation and no difference between the groups in overall recovery rates over the next two weeks. Subsequent analyses of lesion surface parameters showed no differences in lesion size or extent. Regardless of the side of the lesion, there were also no differences between the right and left hemispheres in norepinephrine content of the lesioned or contralateral cortex. We conclude that the side of sensorimotor cortex ablation injury does not differentially affect the rate of spontaneous motor recovery as measured with the beam-walking task.

  7. Factors modulating social influence on spatial choice in rats.

    Science.gov (United States)

    Bisbing, Teagan A; Saxon, Marie; Sayde, Justin M; Brown, Michael F

    2015-07-01

    Three experiments examined the conditions under which the spatial choices of rats searching for food are influenced by the choices made by other rats. Model rats learned a consistent set of baited locations in a 5 × 5 matrix of locations, some of which contained food. In Experiment 1, subject rats could determine the baited locations after choosing 1 location because all of the baited locations were on the same side of the matrix during each trial (the baited side varied over trials). Under these conditions, the social cues provided by the model rats had little or no effect on the choices made by the subject rats. The lack of social influence on choices occurred despite a simultaneous social influence on rats' location in the testing arena (Experiment 2). When the outcome of the subject rats' own choices provided no information about the positions of other baited locations, on the other hand, social cues strongly controlled spatial choices (Experiment 3). These results indicate that social information about the location of food influences spatial choices only when those cues provide valid information that is not redundant with the information provided by other cues. This suggests that social information is learned about, processed, and controls behavior via the same mechanisms as other kinds of stimuli. (c) 2015 APA, all rights reserved).

  8. Evidence for a role of nitric oxide in hindlimb vasodilation induced by hypothalamic stimulation in anesthetized rats

    Directory of Open Access Journals (Sweden)

    Marcos L. Ferreira-Neto

    2005-06-01

    Full Text Available Electrical stimulation of the hypothalamus produces cardiovascular adjustments consisting of hypertension, tachycardia, visceral vasoconstriction and hindlimb vasodilation. Previous studies have demonstrated that hindlimb vasodilation is due a reduction of sympathetic vasoconstrictor tone and to activation of beta2-adrenergic receptors by catecholamine release. However, the existence of a yet unidentified vasodilator mechanism has also been proposed. Recent studies have suggested that nitric oxide (NO may be involved. The aim of the present study was to investigate the role of NO in the hindquarter vasodilation in response to hypothalamic stimulation. In pentobarbital-anesthetized rats hypothalamic stimulation (100 Hz, 150µA, 6 s produced hypertension, tachycardia, hindquarter vasodilation and mesenteric vasoconstriction. Alpha-adrenoceptor blockade with phentolamine (1.5 mg/kg, iv plus bilateral adrenalectomy did not modify hypertension, tachycardia or mesenteric vasoconstriction induced by hypothalamic stimulation. Hindquarter vasodilation was strongly reduced but not abolished. The remaining vasodilation was completely abolished after iv injection of the NOS inhibitor L-NAME (20 mg/kg, iv. To properly evaluate the role of the mechanism of NO in hindquarter vasodilation, in a second group of animals L-NAME was administered before alpha-adrenoceptor blockade plus adrenalectomy. L-NAME treatment strongly reduced hindquarter vasodilation in magnitude and duration. These results suggest that NO is involved in the hindquarter vasodilation produced by hypothalamic stimulation.Em animais anestesiados a EE do hipotálamo produz um padrão de ajustes cardiovasculares caracterizado por hipertensão arterial, taquicardia, vasodilatação muscular e vasoconstrição mesentérica, entretanto, os mecanismos periféricos envolvidos nestes ajustes cardiovasculares ainda não foram completamente esclarecidos. O presente estudo teve como objetivo caracterizar

  9. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  10. Contributions of Severe Burn and Disuse to Bone Structure and Strength in Rats

    Science.gov (United States)

    Baer, L.A.; Wu, X.; Tou, J. C.; Johnson, E.; Wolf, S.E.; Wade, C.E.

    2012-01-01

    Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14 days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by microcomputed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse. PMID:23142361

  11. Delayed Recovery of Skeletal Muscle Mass following Hindlimb Immobilization in mTOR Heterozygous Mice

    OpenAIRE

    Lang, Susan M.; Kazi, Abid A.; Hong-Brown, Ly; Lang, Charles H.

    2012-01-01

    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/-) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated ...

  12. Effect of hindlimb unweighting on single soleus fiber maximal shortening velocity and ATPase activity

    Science.gov (United States)

    Mcdonald, K. S.; Fitts, R. H.

    1993-01-01

    The effect of hindlimb unweighting (HU) for 1 to 3 wks on the shortening velocity of a soleus fiber, its ATPase content, and the relative contents of the slow and fast myosin was investigated by measuring fiber force, V(0), ATPase activity, and myosin content in SDS protein profiles of a single rat soleus fiber suspended between a motor arm and a transducer. It was found that HU induces a progressive increase in fiber V(0) that is likely caused, at least in part, by an increase in the fiber's myofibrillar ATPase activity. The HU-induced increases in V(0) and ATPase were associated with the presence of a greater percentage of fast type IIa fibers. However, a large population of fibers after 1, 2, and 3 wks of HU showed increases in V(0) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers.

  13. Dense distributed processing in a hindlimb scratch motor network

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jørn Dybkjær

    2014-01-01

    In reduced preparations, hindlimb movements can be generated by a minimal network of neurons in the limb innervating spinal segments. The network of neurons that generates real movements is less well delineated. In an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta...

  14. Temporary hindlimb paresis following dystocia due to foetal macrosomia in a Celebes crested macaque (Macaca nigra).

    Science.gov (United States)

    Debenham, John James; Bettembourg, Vanessa; Østevik, Liv; Modig, Michaela; Jâderlund, Karin Hultin; Lervik, Andreas

    2017-04-01

    A multiparous Celebes crested macaque presented with dystocia due to foetal macrosomia, causing foetal mortality and hindlimb paresis. After emergency caesarean section, recovery of motor function took 1 month before hindlimbs were weight bearing and 2 months before re-integration with the troop. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Near-infrared II fluorescence for imaging hindlimb vessel regeneration with dynamic tissue perfusion measurement.

    Science.gov (United States)

    Hong, Guosong; Lee, Jerry C; Jha, Arshi; Diao, Shuo; Nakayama, Karina H; Hou, Luqia; Doyle, Timothy C; Robinson, Joshua T; Antaris, Alexander L; Dai, Hongjie; Cooke, John P; Huang, Ngan F

    2014-05-01

    Real-time vascular imaging that provides both anatomic and hemodynamic information could greatly facilitate the diagnosis of vascular diseases and provide accurate assessment of therapeutic effects. Here, we have developed a novel fluorescence-based all-optical method, named near-infrared II (NIR-II) fluorescence imaging, to image murine hindlimb vasculature and blood flow in an experimental model of peripheral arterial disease, by exploiting fluorescence in the NIR-II region (1000-1400 nm) of photon wavelengths. Because of the reduced photon scattering of NIR-II fluorescence compared with traditional NIR fluorescence imaging and thus much deeper penetration depth into the body, we demonstrated that the mouse hindlimb vasculature could be imaged with higher spatial resolution than in vivo microscopic computed tomography. Furthermore, imaging during 26 days revealed a significant increase in hindlimb microvascular density in response to experimentally induced ischemia within the first 8 days of the surgery (Pimaging make it a useful imaging tool for murine models of vascular disease. © 2014 American Heart Association, Inc.

  16. Behavioral and Physiological Effects of Hindlimb Unloading in Rats

    Science.gov (United States)

    Fox, Robert A.

    1998-01-01

    The overarching objective of this project was to identify changes in neural and biochemical systems of the central and peripheral nervous systems (the CNS and PNS) that are related to disruptions of functional motor responses, or motor control. The identification of neural and biochemical changes that are related to sensory-motor adaptation elicited as animals react to changes in the gravitational field was of particular interest. Thus, the major objective of this work was to study disruptions of motor responses that arise after (sic. due to) chronic exposure to altered gravity (G). To do this, parallel studies investigating changes in neural, sensory, and neuromuscular systems were conducted after animals (rats) experienced chronic exposure to conditions of altered-G. Conditions of altered-G included hyper-G produced by centrifugation, micro-G produced by orbital flight, and simulated micro-G produced by hind limb suspension. A second major interest was to examine the contribution of putative changes in sensory systems to disruptions of motor responses. To do this, motor responses and reflexes of rats were studied following chronic treatment with streptomycin sulfate (STP, an ototoxic chemical) to damage the vestibular hair cells.

  17. [Attenuation of the efficacy of vasoconstrictive effects in rats after a 3-week suspension

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Tarasova, Olga S; Timin, Eugeny N

    1997-01-01

    Male Wistar rats were maintained suspended by the skin of posterior third of the back for three weeks. Constrictive reactions to norepinephrine and irritation of sympathetic nerves were studied with hindlimb vessels perfused with physiological solution at constant pressure. Perfusion pressure was...

  18. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats.

    Science.gov (United States)

    Ferguson, Scott K; Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Allen, Jason D; Jones, Andrew M; Musch, Timothy I; Poole, David C

    2013-01-15

    Dietary nitrate (NO(3)(-)) supplementation, via its reduction to nitrite (NO(2)(-)) and subsequent conversion to nitric oxide (NO) and other reactive nitrogen intermediates, reduces blood pressure and the O(2) cost of submaximal exercise in humans. Despite these observations, the effects of dietary NO(3)(-) supplementation on skeletal muscle vascular control during locomotory exercise remain unknown. We tested the hypotheses that dietary NO(3)(-) supplementation via beetroot juice (BR) would reduce mean arterial pressure (MAP) and increase hindlimb muscle blood flow in the exercising rat. Male Sprague-Dawley rats (3-6 months) were administered either NO(3)(-) (via beetroot juice; 1 mmol kg(-1) day(-1), BR n = 8) or untreated (control, n = 11) tap water for 5 days. MAP and hindlimb skeletal muscle blood flow and vascular conductance (radiolabelled microsphere infusions) were measured during submaximal treadmill running (20 m min(-1), 5% grade). BR resulted in significantly lower exercising MAP (control: 137 ± 3, BR: 127 ± 4 mmHg, P exercising hindlimb skeletal muscle blood flow (control: 108 ± 8, BR: 150 ± 11 ml min(-1) (100 g)(-1), P exercise predominantly in fast-twitch type II muscles, and provide a potential mechanism by which NO(3)(-) supplementation improves metabolic control.

  19. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats

    Directory of Open Access Journals (Sweden)

    Hsin-Shih Lin, Ho-Seng Wang, Hung-Ta Chiu, Kuang-You B. Cheng, Ar-Tyan Hsu, Tsang-Hai Huang

    2018-06-01

    Full Text Available The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old were randomly assigned to four landing (L groups and four age-matched control (C groups (n = 12 per group: L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC than those in the C8 group (p < 0.05. Except for the higher bone mineralization over bone surface ratio (MS/BS, % shown in the tibiae of the L1 group (p < 0.05, dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar and cortical thickness (Ct.Th (p < 0.05; however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05. In the tibiae, the moment of inertia about the antero-posterior axis (Iap, Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05. In biomechanical testing, fracture load (FL of femora was lower in the L1 group than in the C1 group (p < 0.05. Conversely, yield load (YL, FL and yield load energy (YE of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05. Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  20. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats.

    Science.gov (United States)

    Lin, Hsin-Shih; Wang, Ho-Seng; Chiu, Hung-Ta; Cheng, Kuang-You B; Hsu, Ar-Tyan; Huang, Tsang-Hai

    2018-06-01

    The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old) were randomly assigned to four landing (L) groups and four age-matched control (C) groups (n = 12 per group): L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week) while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC) than those in the C8 group (p < 0.05). Except for the higher bone mineralization over bone surface ratio (MS/BS, %) shown in the tibiae of the L1 group (p < 0.05), dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar) and cortical thickness (Ct.Th) (p < 0.05); however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05). In the tibiae, the moment of inertia about the antero-posterior axis ( I ap ), Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05). In biomechanical testing, fracture load (FL) of femora was lower in the L1 group than in the C1 group (p < 0.05). Conversely, yield load (YL), FL and yield load energy (YE) of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05). Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  1. Stimulation of 5-HT2A receptors recovers sensory responsiveness in acute spinal neonatal rats.

    Science.gov (United States)

    Swann, Hillary E; Kauer, Sierra D; Allmond, Jacob T; Brumley, Michele R

    2017-02-01

    Quipazine is a 5-HT 2A -receptor agonist that has been used to induce motor activity and promote recovery of function after spinal cord injury in neonatal and adult rodents. Sensory stimulation also activates sensory and motor circuits and promotes recovery after spinal cord injury. In rats, tail pinching is an effective and robust method of sacrocaudal sensory afferent stimulation that induces motor activity, including alternating stepping. In this study, responsiveness to a tail pinch following treatment with quipazine (or saline vehicle control) was examined in spinal cord transected (at midthoracic level) and intact neonatal rats. Rat pups were secured in the supine posture with limbs unrestricted. Quipazine or saline was administered intraperitoneally and after a 10-min period, a tail pinch was administered. A 1-min baseline period prior to tail-pinch administration and a 1-min response period postpinch was observed and hind-limb motor activity, including locomotor-like stepping behavior, was recorded and analyzed. Neonatal rats showed an immediate and robust response to sensory stimulation induced by the tail pinch. Quipazine recovered hind-limb movement and step frequency in spinal rats back to intact levels, suggesting a synergistic, additive effect of 5-HT-receptor and sensory stimulation in spinal rats. Although levels of activity in spinal rats were restored with quipazine, movement quality (high vs. low amplitude) was only partially restored. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with 64Cu-labeled TRC105.

    Science.gov (United States)

    Orbay, Hakan; Zhang, Yin; Hong, Hao; Hacker, Timothy A; Valdovinos, Hector F; Zagzebski, James A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

    2013-07-01

    The goal of this study was to assess ischemia-induced angiogenesis with (64)Cu-NOTA-TRC105 positron emission tomography (PET) in a murine hindlimb ischemia model of peripheral artery disease (PAD). CD105 binding affinity/specificity of NOTA-conjugated TRC105 (an anti-CD105 antibody) was evaluated by flow cytometry, which exhibited no difference from unconjugated TRC105. BALB/c mice were anesthetized, and the right femoral artery was ligated to induce hindlimb ischemia, with the left hindlimb serving as an internal control. Laser Doppler imaging showed that perfusion in the ischemic hindlimb plummeted to ∼ 20% of the normal level after surgery and gradually recovered to near normal level on day 24. Ischemia-induced angiogenesis was noninvasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 1, 3, 10, 17, and 24. (64)Cu-NOTA-TRC105 uptake in the ischemic hindlimb increased significantly from the control level of 1.6 ± 0.2 %ID/g to 14.1 ± 1.9 %ID/g at day 3 (n = 3) and gradually decreased with time (3.4 ± 1.9 %ID/g at day 24), which correlated well with biodistribution studies performed on days 3 and 24. Blocking studies confirmed the CD105 specificity of tracer uptake in the ischemic hindlimb. Increased CD105 expression on days 3 and 10 following ischemia was confirmed by histology and reverse transcription polymerase chain reaction (RT-PCR). This is the first report of PET imaging of CD105 expression during ischemia-induced angiogenesis. (64)Cu-NOTA-TRC105 PET may play multiple roles in future PAD-related research and improve PAD patient management by identifying the optimal timing of treatment and monitoring the efficacy of therapy.

  3. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb

    Science.gov (United States)

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-01-01

    The cheetah is capable of a top speed of 29 ms−1 compared to the maximum speed of 17 ms−1 achieved by the racing greyhound. In this study of the hindlimb and in the accompanying paper on the forelimb we have quantified the musculoskeletal anatomy of the cheetah and greyhound and compared them to identify any differences that may account for this variation in their locomotor abilities. Specifically, bone length, mass and mid-shaft diameter were measured, along with muscle mass, fascicle lengths, pennation angles and moment arms to enable estimates of maximal isometric force, joint torques and joint rotational velocities to be calculated. Surprisingly the cheetahs had a smaller volume of hip extensor musculature than the greyhounds, and we therefore propose that the cheetah powers acceleration using its extensive back musculature. The cheetahs also had an extremely powerful psoas muscle which could help to resist the pitching moments around the hip associated with fast accelerations. The hindlimb bones were proportionally longer and heavier, enabling the cheetah to take longer strides and potentially resist higher peak limb forces. The cheetah therefore possesses several unique adaptations for high-speed locomotion and fast accelerations, when compared to the racing greyhound. PMID:21062282

  4. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb.

    Science.gov (United States)

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-04-01

    The cheetah is capable of a top speed of 29 ms(-1) compared to the maximum speed of 17 ms(-1) achieved by the racing greyhound. In this study of the hindlimb and in the accompanying paper on the forelimb we have quantified the musculoskeletal anatomy of the cheetah and greyhound and compared them to identify any differences that may account for this variation in their locomotor abilities. Specifically, bone length, mass and mid-shaft diameter were measured, along with muscle mass, fascicle lengths, pennation angles and moment arms to enable estimates of maximal isometric force, joint torques and joint rotational velocities to be calculated. Surprisingly the cheetahs had a smaller volume of hip extensor musculature than the greyhounds, and we therefore propose that the cheetah powers acceleration using its extensive back musculature. The cheetahs also had an extremely powerful psoas muscle which could help to resist the pitching moments around the hip associated with fast accelerations. The hindlimb bones were proportionally longer and heavier, enabling the cheetah to take longer strides and potentially resist higher peak limb forces. The cheetah therefore possesses several unique adaptations for high-speed locomotion and fast accelerations, when compared to the racing greyhound. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  5. Opioid modulation of facial itch- and pain-related responses and grooming behavior in rats.

    Science.gov (United States)

    Spradley, Jessica M; Davoodi, Auva; Carstens, Mirela Iodi; Carstens, Earl

    2012-09-01

    Intradermal facial injections of pruritogens or algogens elicit distinct behavioral hindlimb scratch or forelimb wiping responses in rodents. We systematically investigated the parameters and opioid modulation of these evoked behaviors and spontaneous facial grooming in rats. Serotonin (5-HT) elicited hindlimb scratch bouts with few wipes. Scratching was attenuated by the µ-opiate antagonist naltrexone but not morphine. In contrast, cheek injection of mustard oil (allyl-isothiocyanate (AITC)) elicited ipsilateral forelimb wipes but little hindlimb scratching. AITC-evoked wiping was significantly attenuated by morphine but not naltrexone. Spontaneous facial grooming by the forepaws was attenuated by naltrexone, whereas morphine did not affect grooming behavior before or after cheek injections of 5-HT or AITC. These data validate that the rodent "cheek" model discriminates between itch- and pain-related behaviors. Naltrexone sensitivity of facial grooming and 5-HT-evoked scratch-ing suggests a common functionality. Forelimb wipes may represent a nocifensive response akin to rubbing an injury to relieve pain.

  6. MicroRNA-93 controls perfusion recovery after hindlimb ischemia by modulating expression of multiple genes in the cell cycle pathway.

    Science.gov (United States)

    Hazarika, Surovi; Farber, Charles R; Dokun, Ayotunde O; Pitsillides, Achillieas N; Wang, Tao; Lye, R John; Annex, Brian H

    2013-04-30

    MicroRNAs are key regulators of gene expression in response to injury, but there is limited knowledge of their role in ischemia-induced angiogenesis, such as in peripheral arterial disease. Here, we used an unbiased strategy and took advantage of different phenotypic outcomes that follow surgically induced hindlimb ischemia between inbred mouse strains to identify key microRNAs involved in perfusion recovery from hindlimb ischemia. From comparative microRNA profiling between inbred mouse strains that display profound differences in their extent of perfusion recovery after hindlimb ischemia, we found that the mouse strain with higher levels of microRNA-93 (miR-93) in hindlimb muscle before ischemia and the greater ability to upregulate miR-93 in response to ischemia had better perfusion recovery. In vitro, overexpression of miR-93 attenuated hypoxia-induced apoptosis in both endothelial and skeletal muscle cells and enhanced proliferation in both cell types. In addition, miR-93 overexpression enhanced endothelial cell tube formation. In vivo, miR-93 overexpression enhanced capillary density and perfusion recovery from hindlimb ischemia, and antagomirs to miR-93 attenuated perfusion recovery. Both in vitro and in vivo modulation of miR-93 resulted in alterations in the expression of >1 cell cycle pathway gene in 2 different cell types. Our data indicate that miR-93 enhances perfusion recovery from hindlimb ischemia by modulation of multiple genes that coordinate the functional pathways of cell proliferation and apoptosis. Thus, miR-93 is a strong potential target for pharmacological modulation to promote angiogenesis in ischemic tissue.

  7. Planar Covariation of Hindlimb and Forelimb Elevation Angles during Terrestrial and Aquatic Locomotion of Dogs.

    Directory of Open Access Journals (Sweden)

    Giovanna Catavitello

    Full Text Available The rich repertoire of locomotor behaviors in quadrupedal animals requires flexible inter-limb and inter-segmental coordination. Here we studied the kinematic coordination of different gaits (walk, trot, gallop, and swim of six dogs (Canis lupus familiaris and, in particular, the planar covariation of limb segment elevation angles. The results showed significant variations in the relative duration of rearward limb movement, amplitude of angular motion, and inter-limb coordination, with gait patterns ranging from a lateral sequence of footfalls during walking to a diagonal sequence in swimming. Despite these differences, the planar law of inter-segmental coordination was maintained across different gaits in both forelimbs and hindlimbs. Notably, phase relationships and orientation of the covariation plane were highly limb specific, consistent with the functional differences in their neural control. Factor analysis of published muscle activity data also demonstrated differences in the characteristic timing of basic activation patterns of the forelimbs and hindlimbs. Overall, the results demonstrate that the planar covariation of inter-segmental coordination has emerged for both fore- and hindlimbs and all gaits, although in a limb-specific manner.

  8. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.

    Science.gov (United States)

    Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim

    2002-07-01

    This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.

  9. Regional organization of fibre types in normal and reinnervated hindlimb muscles

    NARCIS (Netherlands)

    Wang, Liangchun

    2001-01-01

    The present thesis concerns the spatial distribution of the "slow" type I fibres within muscles of the hindlimb. It is known since long ago that some muscles may have strikingly heterogeneous distributions of type I and II fibres, but this phenomenon of "fibre type regionalization" has still not

  10. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...

  11. Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats.

    Science.gov (United States)

    Muramatsu, Ken; Ikutomo, Masako; Tamaki, Toru; Shimo, Satoshi; Niwa, Masatoshi

    2018-02-01

    Motor disorders in patients with diabetes are associated with diabetic peripheral neuropathy, which can lead to symptoms such as lower extremity weakness. However, it is unclear whether central motor system disorders can disrupt motor function in patients with diabetes. In a streptozotocin-induced rat model of type 1 diabetes, we used intracortical microstimulation to evaluate motor representations in the motor cortex, recorded antidromic motor cortex responses to spinal cord stimulation to evaluate the function of corticospinal tract (CST) axons, and used retrograde labeling to evaluate morphological alterations of CST neurons. The diabetic rats exhibited size reductions in the hindlimb area at 4 weeks and in trunk and forelimb areas after 13 weeks, with the hindlimb and trunk area reductions being the most severe. Other areas were unaffected. Additionally, we observed reduced antidromic responses in CST neurons with axons projecting to lumbar spinal segments (CST-L) but not in those with axons projecting to cervical segments (CST-C). This was consistent with the observation that retrograde-labeled CST-L neurons were decreased in number following tracer injection into the spinal cord in diabetic animals but that CST-C neurons were preserved. These results show that diabetes disrupts the CST system components controlling hindlimb and trunk movement. This disruption may contribute to lower extremity weakness in patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tonic immobility and factors influencing its duration in rats.

    Science.gov (United States)

    Tikal, K

    1991-01-01

    The author developed a method for inducing tonic immobility (paroxysmal inhibition) in rats and mice. By means of a plexiglass plate and plexiglass box the rat is immobilised, rotated at 180 degrees and subjected to constant pressure corresponding to the weight of the plexiglass plate. This way it is possible to prolong substantially tonic immobility in rats without using foregoing time consuming and interfering, so called sensitizing procedures. The duration of TI can be influenced by pharmacologic and nonpharmacological interventions. A longer duration of TI appeared to be typical for rats tending to react in other situations with anxiety, motor inhibition and submission.

  13. Elevated interstitial fluid volume in rat soleus muscles by hindlimb unweighting

    DEFF Research Database (Denmark)

    Kandarian, S C; Boushel, Robert Christopher; Schulte, Lars

    1991-01-01

    ) by tail suspension. Soleus muscles were studied after 28 days and compared with those from five age-matched control (C) rats. Interstitial fluid volume ([3H]inulin space) and maximum tetanic tension (Po) were measured in vitro at 25 degrees C. Soleus muscles atrophied 58% because of unweighting (C = 147...

  14. Deficits in Beam-Walking After Neonatal Motor Cortical Lesions are not Spared by Fetal Cortical Transplants in Rats

    OpenAIRE

    Swenson, R. S.; Danielsen, E. H.; Klausen, B. S.; Erlich, E.; Zimmer, J.; Castro, A. J.

    1989-01-01

    Adult rats that sustained unilateral motor cortical lesions at birth demonstrated deficits in traversing an elevated narrow beam. These deficits, manifested by hindlimb slips off the edge of the beam, were not spared in animals that received fetal cortical transplants into the lesion cavity immediately after lesion placement.

  15. Impaired axonal Na+ current by hindlimb unloading: implication for disuse neuromuscular atrophy

    Directory of Open Access Journals (Sweden)

    Chimeglkham eBanzrai

    2016-02-01

    Full Text Available This study aimed to characterize the excitability changes in peripheral motor axons caused by hindlimb unloading, which is a model of disuse neuromuscular atrophy. Hindlimb unloading was performed in normal 6-week-old male mice by fixing the proximal tail by a clip connected to the top of the animal’s cage for 3 weeks. Axonal excitability studies were performed by stimulating the sciatic nerve at the ankle and recording the compound muscle action potential from the foot. The amplitudes of the motor responses of the unloading group were 51% of the control amplitudes (2.2 ± 1.3 mV [HLU] vs. 4.3 ± 1.2 mV [Control], P = 0.03. Multiple axonal excitability analysis showed that the unloading group had a smaller strength-duration time constant (SDTC and late subexcitability (recovery cycle than the controls (0.075 ± 0.01 [HLU] vs. 0.12 ± 0.01 [Control], P < 0.01; 5.4 ± 1.0 [HLU] vs. 10.0 ± 1.3 % [Control], P = 0.01, respectively. Three weeks after releasing from HLU, the SDTC became comparable to the control range. Using a modeling study, the observed differences in the waveforms could be explained by reduced persistent Na+ currents along with parameters related to current leakage. Quantification of RNA of a SCA1A gene coding a voltage-gated Na+ channel tended to be decreased in the sciatic nerve in HLU. The present study suggested that axonal ion currents are altered in vivo by hindlimb unloading. It is still undetermined whether the dysfunctional axonal ion currents have any pathogenicity on neuromuscular atrophy or are the results of neural plasticity by atrophy.

  16. Hindlimb Suspension as a Model to Study Ophthalmic Complications in Microgravity Status Report: Optimization of Rat Retina Flat Mounts Staining to Study Vascular Remodeling

    Science.gov (United States)

    Theriot, Corey A.; Zanello, Susana B.

    2014-01-01

    Preliminary data from a prior tissue-sharing experiment has suggested that early growth response protein-1 (Egr1), a transcription factor involved in various stress responses in the vasculature, is induced in the rat retina after 14 days of hindlimb suspension (HS) and may be evidence that mechanical stress is occurring secondary to the cephalad fluid shift. This mechanical stress could cause changes in oxygenation of the retina, and the subsequent ischemia- or inflammation-driven hypoxia may lead to microvascular remodeling. This microvascular remodeling process can be studied using image analysis of retinal vessels and can be then be quantified by the VESsel GENeration Analysis (VESGEN) software, a computational tool that quantifies remodeling patterns of branching vascular trees and capillary or vasculogenic networks. Our project investigates whether rodent HS is a valid model to study the effects of simulated-weightlessness on ocular structures and their relationship with intracranial pressure (ICP). One of the hypotheses to be tested is that HS-induced cephalad fluid shift is accompanied by vascular engorgement that produces changes in retinal oxygenation, leading to oxidative stress, hypoxia, microvascular remodeling, and cellular degeneration. We have optimized the procedure to obtain flat mounts of rat retina, staining of the endothelial lining in vasculature and acquisition of high quality images suitable for VESGEN analysis. Briefly, eyes were fixed in 4% paraformaldehyde for 24 hours and retinas were detached and then mounted flat on microscope slides. The microvascular staining was done with endothelial cell-specific isolectin binding, coupled to Alexa-488 fluorophore. Image acquisition at low magnification and high resolution was performed using a new Leica SP8 confocal microscope in a tile pattern across the X,Y plane and multiple sections along the Z-axis. This new confocal microscope has the added capability of dye separation using the Linear

  17. Simulating certain aspects of hypogravity: Effects on the mandibular incisors of suspended rats (PULEH model)

    Science.gov (United States)

    Simmons, D. J.; Winter, F.; Morey-Holton, E. R.

    1984-01-01

    The effect of a hypogravity simulating model on the rate of mandibular incisor formation, dentinogenesis and, amelogenesis in laboratory rats was studied. The model is the partial unloading by elevating the hindquarters. In this system, rat hindquarters are elevated 30 to 40 deg from the cage floors to completely unload the hindlimbs, but the animals are free to move about using their forelimbs. This model replicates the fluid sift changes which occur during the weightlessness of spaceflight and produces an osteopenia in the weight bearing skeletons. The histogenesis and/or mineralization rates of the mandibular incisor during the first 19d of PULEH in young growing rats are recorded.

  18. Cellular location of rat muscle ferritins and their preferential loss during cell isolation.

    Science.gov (United States)

    Linder, M C; Roboz, M; McKown, M J; Pardridge, W M; Zak, R

    1984-04-10

    Heart and other muscles of the rat contain two forms of ferritin separable in polyacrylamide gel electrophoresis. The cellular location of the fast- and slow-migrating ferritins was investigated using primary cultures of hindlimb skeletal muscle, and isolated myocardial cell populations. Muscle and non-muscle cells were isolated in good yield from hearts of adult rats pretreated with large doses of iron to increase their ferritin content. In virtually all cases, the isolated muscle cells contained traces only of the fast-migrating species and the non-muscle cells contained small amounts of the slow-migrating ferritin. During cell isolation, 90-100% of both ferritins was lost and could be recovered in the perfusates and solutions employed, while one third of the total tissue protein, and a larger percentage of creatine phosphokinase, was recovered in the isolated cells. Primary cultures of thigh muscle from adult rats which had differentiated into multi-nucleated myotubes, were incubated for 1-3 days with chelated iron. These cells contained substantial amounts of the electrophoretically fast migrating ferritin, with its characteristic larger Stokes' radius (determined by quantitative polyacrylamide gel electrophoresis). None of the slow-migrating ferritin species was detected, although hindlimb muscle from iron-treated rats contained both forms. It is concluded that the fast-migrating ferritin of muscle, which is much larger and more asymmetric than other ferritins, is confined to the muscle cell population, while the other form is predominantly or exclusively in the non-muscle cells. Both ferritins are lost preferentially over other proteins during procedures which injure muscle tissue.

  19. A Mathematical Model of Oxygen Transport in Skeletal Muscle During Hindlimb Unloading

    Science.gov (United States)

    Causey, Laura; Lewandowski, Beth E.; Weinbaum, Sheldon

    2014-01-01

    During hindlimb unloading (HU) dramatic fluid shifts occur within minutes of the suspension, leading to a less precise matching of blood flow to O2 demands of skeletal muscle. Vascular resistance directs blood away from certain muscles, such as the soleus (SOL). The muscle volume gradually reduces in these muscles so that eventually the relative blood flow returns to normal. It is generally believed that muscle volume change is not due to O2 depletion, but a consequence of disuse. However, the volume of the unloaded rat muscle declines over the course of weeks, whereas the redistribution of blood flow occurs immediately. Using a Krogh Cylinder Model, the distribution of O2 was predicted in two skeletal muscles: SOL and gastrocnemius (GAS). Effects of the muscle blood flow, volume, capillary density, and O2 uptake, are included to calculate the pO2 at rest and after 10 min and 15 days of unloading. The model predicts that 32 percent of the SOL muscle tissue has a pO2 1.25 mm Hg within 10 min, whereas the GAS maintains normal O2 levels, and that equilibrium is reached only as the SOL muscle cells degenerate. The results provide evidence that there is an inadequate O2 supply to the mitochondria in the SOL muscle after 10 min HU.

  20. Estradiol-induced, endothelial progenitor cell-mediated neovascularization in male mice with hind-limb ischemia

    NARCIS (Netherlands)

    Ruifrok, Willem-Peter T.; de Boer, Rudolf A.; Iwakura, Atsushi; Silver, Marcy; Kusano, Kengo; Tio, Rene A.; Losordo, Douglas W.

    We investigated whether administration of estradiol to male mice augments mobilization of bone marrow-derived endothelial progenitor cells (EPC) and incorporation into foci of neovascularization after hind-limb ischemia, thereby contributing to blood flow restoration. Mice were randomized and

  1. [The influence of interfered circadian rhythm on pregnancy and neonatal rats].

    Science.gov (United States)

    Chen, Wen-Jun; Sheng, Wen-Jie; Guo, Yin-Hua; Tan, Yong

    2015-10-25

    The aim of this study was to observe the influence of interfered circadian rhythm on pregnancy of rats and growth of neonatal rats, and to explore the relationship between the interfered circadian rhythm and the changes of melatonin and progesterone. Continuous light was used to inhibit melatonin secretion and therefore the interfered circadian rhythm animal model was obtained. The influence of interfered circadian rhythm on delivery of pregnant rats was observed. Serum was collected from rats during different stages of pregnancy to measure the concentrations of melatonin and progesterone. In order to observe the embryo resorption rate, half of pregnant rats were randomly selected to undergo a laparotomy, and the remainder was used to observe delivery and assess the growth of neonatal rats after delivery. The results showed that the interfered circadian rhythm induced adverse effects on pregnancy outcomes, including an increase of embryo resorption rate and a decrease in the number of live births; inhibited the secretion of melatonin along with decreased serum progesterone level; prolonged the stage of labor, but not the duration of pregnancy; and disturbed the fetal intrauterine growth and the growth of neonatal rats. The results suggest that interfered circadian rhythm condition made by continuous light could make adverse effects on both pregnant rats and neonatal rats. The results of our study may provide a way to modulate pregnant women's circadian rhythm and a possibility of application of melatonin on pregnant women.

  2. Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Liangrong Wang

    2016-06-01

    Full Text Available Objective(s: Neutrophils play an important role in ischemia/reperfusion (IR induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley rats were randomly allocated into three groups: IR group, colchicine treated-IR (CO group and sham operation (SM group. Rats of both the IR and CO groups were subjected to 3 hr of ischemia by clamping the right femoral artery followed by 2 hr of reperfusion. Colchicine (1 mg/kg was administrated intraperitoneally prior to hindlimb ischemia in the CO group. After 2 hr of reperfusion, we measured superoxide dismutase (SOD and myeloperoxidase (MPO activities, and malondialdehyde (MDA, tumor necrosis factor (TNF-α and interleukin (IL-1β levels in the muscle samples. Plasma creatinine kinase (CK and lactate dehydrogenase (LDH levels were measured. We also evaluated the histological damage score and wet/dry weight (W/D ratio. Results: The histological damage score, W/D ratio, MPO activity, MDA, TNF-α and IL-1β levels in muscle tissues were significantly increased, SOD activity was decreased, and plasma CK and LDH levels were remarkably elevated in both the IR and CO groups compared to the SM group (P

  3. Effects of exercise on activity-and blood flow-related neuromuscular degeneration

    OpenAIRE

    Ishihara, Akihiko; 石原 昭彦

    2006-01-01

    Effects of running exercise with increasing loads on hindlimb unloading-induced neuromuscular degeneration in male rats were investigated. Ten-week-old male rats were hindlimb suspended at horizontal position for two weeks and thereafter were rehabilitated by voluntary running exercise with increasing loads for two weeks. A decreased percentage of type 1 fibers and atrophy and decreased oxidative enzyme activity of all types of fibers in the soleus muscle were observed after hindlimb unloadin...

  4. Contractions but not AICAR increase FABPpm content in rat muscle sarcolemma

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Albers, Peter; Luiken, Joost J.

    2009-01-01

    FAT/CD36 and FABPpm protein expression, measured in lysates with western blotting, by either stimulus. AMPK thr172 and ERK1/2 thr202/204 phosphorylation were significantly increased with muscle contractions (P ...In the present study, it was investigated whether acute muscle contractions in rat skeletal muscle increased the protein content of FABPpm in the plasma membrane. Furthermore, the effect of AICAR stimulation on FAT/CD36 and FABPpm protein content in sarcolemma of rat skeletal muscle was evaluated....... METHODS: Male wistar rats (150 g) were anesthetized and either subjected to in situ electrically induced contractions (hindlimb muscles: 20 min, 10-20 V, 200 ms trains, 100 Hz) or stimulated with the pharmacological activator of AMPK, AICAR. To investigate changes in the content of FABPpm and FAT/CD36...

  5. Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells.

    Science.gov (United States)

    You, Jinzhi; Sun, Jiacheng; Ma, Teng; Yang, Ziying; Wang, Xu; Zhang, Zhiwei; Li, Jingjing; Wang, Longgang; Ii, Masaaki; Yang, Junjie; Shen, Zhenya

    2017-08-03

    Neovascularization is impaired in diabetes mellitus, which leads to the development of peripheral arterial disease and is mainly attributed to the dysfunction of endothelial progenitor cells (EPCs). Previous studies proved the promotional effect of curcumin on neovascularization in wound healing of diabetes. Thus, we hypothesize that curcumin could promote neovascularization at sites of hindlimb ischemia in diabetes and might take effect via modulating the function of EPCs. Streptozotocin-induced type 1 diabetic mice and nondiabetic mice both received unilateral hindlimb ischemic surgery. Curcumin was then administrated to the mice by lavage for 14 days consecutively. Laser Doppler perfusion imaging was conducted to demonstrate the blood flow reperfusion. Capillary density was measured in the ischemic gastrocnemius muscle. In addition, angiogenesis, migration, proliferation abilities, and senescence were determined in EPCs isolated from diabetic and nondiabetic mice. Quantitative PCR was then used to determine the mRNA expression of vascular endothelial growth factor (VEGF) and angiopoetin-1 (Ang-1) in EPCs. Curcumin application to type 1 diabetic mice significantly improved blood reperfusion and increased the capillary density in ischemic hindlimbs. The in-vitro study also revealed that the angiogenesis, migration, and proliferation abilities of EPCs and the number of senescent EPCs were reversed by curcumin application. Quantitative PCR confirmed the overexpression of VEGF-A and Ang-1 in EPCs after curcumin treatment. Curcumin could enhance neovascularization via promoting the function of EPCs in a diabetic mouse hindlimb ischemia model.

  6. Effect of early and late rehabilitation onset in a chronic rat model of ischemic stroke- assessment of motor cortex signaling and gait functionality over time.

    Science.gov (United States)

    Nielsen, Rasmus K; Samson, Katrine L; Simonsen, Daniel; Jensen, Winnie

    2013-11-01

    The aim of the present study was to investigate the effects of ischemic stroke and onset of subsequent rehabilitation of gait function in rats. Nine male Sprague-Dawley rats were instrumented with a 16-channel intracortical (IC) electrode array. An ischemic stroke was induced within the hindlimb area of the left motor cortex. The rehabilitation consisted of a repetitive training paradigm over 28 days, initiated on day one ("Early-onset", 5 rats) and on day seven, ("Late-onset", 4 rats). Data were obtained from IC microstimulation tests, treadmill walking tests, and beam walking tests. Results revealed an expansion of the hindlimb representation within the motor cortex area and an increased amount of cortical firing rate modulation for the "Early-onset" group but not for the "Late-onset" group. Kinematic data revealed a significant change for both intervention groups. However, this difference was larger for the "Early-onset" group. Results from the beam walking test showed functional performance deficits following stroke which returned to pre-stroke level after the rehabilitative training. The results from the present study indicate the existence of a critical time period following stroke where onset of rehabilitative training may be more effective and related to a higher degree of true recovery.

  7. Effects of swimming training and free mobilization on bone mineral densities of rats with the immobilization-induced osteopenia

    International Nuclear Information System (INIS)

    Karatosun, H.; Erdogan, A.; Akgun, C.; Cetin, C.; Yeldiz, M.

    2006-01-01

    To investigate the possible effects of regular swimming exercise on bone mineral density (BMD) compared with free activity after cast immobilization of rats. We carried out the study from April 2005 to June 2005 at the Department of Sports Medicine, Medical School of Suleyman Demirel University, Isparta, Turkey. The study included a total of 24 female Wistar rats. The rats were randomized to control (n = 6), swimming training (ST) n = 9, and free mobilization (FM) n = 9 groups. We measured Bone mineral densities of femur and vertebra of all rats with a total body scanner using software specifically designed for small animals, before study started and at weeks 3 and 7. Timepoints corresponded to basal, after cast removal (ACIM), and after 3 weeks of free mobilization (AFM) or swimming training (AST). We immobilized the right hindlimb of each ST and FM animal with a cast while the left hindlimbs were kept free. After 3 weeks, the casts were removed. Then we allowed the rats to move freely in their cage for one week, after which the animals in ST group started to swim for 5 days a week for 3 weeks for 30 minutes per day. The group FM rats moved freely in the cage. Bone mineral density of the femur and vertebra after cast immobilization was significantly decreased compared with both their basal and age-matched control group. After mobilization, significant increases occurred in both groups according to ACIM. Similar but milder changes were observed in free limbs femur BMD of rats. Interestingly, vertebra BMD of swimming group was also higher than its age-matched control group (p<0.05). Our study showed that swimming exercise had a significant rehabilitative effect on BMD loss associated with immobilization. Further studies are needed to investigate the effects of swimming on other bone properties. (author)

  8. AB089. Impaired adenosine signaling influences erectile function in aging rats

    OpenAIRE

    Yang, Xingliang; Yuan, Jiuhong

    2017-01-01

    Background As one of the most common disorders in old adult, erectile dysfunction (ED) remains attracting andrological physicians? attention. The aim of this study is to investigate the alterations of adenosine signaling in the penis of aging rats, and the influence to erectile function. Methods According to apomorphine test, the aging rats (18 months) with ED were selected as age-related erectile dysfunction (A-ED) group, and the young rats (2 months) were selected as normal control (NC) gro...

  9. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?

    Science.gov (United States)

    Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro

    2006-01-01

    To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.

  10. Dexamethasone Protects Against Tourniquet-Induced Acute Ischemia-Reperfusion Injury in Mouse Hindlimb

    Directory of Open Access Journals (Sweden)

    Ryan M. Corrick

    2018-03-01

    Full Text Available Extremity injuries with hemorrhage have been a significant cause of death in civilian medicine and on the battlefield. The use of a tourniquet as an intervention is necessary for treatment to an injured limb; however, the tourniquet and subsequent release results in serious acute ischemia-reperfusion (IR injury in the skeletal muscle and neuromuscular junction (NMJ. Much evidence demonstrates that inflammation is an important factor to cause acute IR injury. To find effective therapeutic interventions for tourniquet-induced acute IR injuries, our current study investigated effect of dexamethasone, an anti-inflammatory drug, on tourniquet-induced acute IR injury in mouse hindlimb. In C57/BL6 mice, a tourniquet was placed on unilateral hindlimb (left hindlimb at the hip joint for 3 h, and then released for 24 h to induce IR. Three hours of tourniquet and 24 h of release (24-h IR caused gastrocnemius muscle injuries including rupture of the muscle sarcolemma and necrosis (42.8 ± 2.3% for infarct size of the gastrocnemius muscle. In the NMJ, motor nerve terminals disappeared, and endplate potentials were undetectable in 24-h IR mice. There was no gastrocnemius muscle contraction in 24-h IR mice. Western blot data showed that inflammatory cytokines (TNFα and IL-1β were increased in the gastrocnemius muscle after 24-h IR. Treatment with dexamethasone at the beginning of reperfusion (1 mg/kg, i.p. significantly inhibited expression of TNFα and IL-1β, reduced rupture of the muscle sarcolemma and infarct size (24.8 ± 2.0%, and improved direct muscle stimulation-induced gastrocnemius muscle contraction in 24-h IR mice. However, this anti-inflammatory drug did not improve NMJ morphology and function, and sciatic nerve-stimulated skeletal muscle contraction in 24-h IR mice. The data suggest that one-time treatment with dexamethasone at the beginning of reperfusion only reduced structural and functional impairments of the skeletal muscle but not the

  11. Assessment of the Hindlimb Membrane Musculature of Bats: Implications for Active Control of the Calcar.

    Science.gov (United States)

    Stanchak, Kathryn E; Santana, Sharlene E

    2018-03-01

    The striking postcranial anatomy of bats reflects their specialized ecology; they are the only mammals capable of powered flight. Bat postcranial adaptations include a series of membranes that connect highly-modified, or even novel, skeletal elements. While most studies of bat postcranial anatomy have focused on their wings, bat hindlimbs also contain many derived and functionally important, yet less studied, features. In this study, we investigate variation in the membrane and limb musculature associated with the calcar, a neomorphic skeletal structure found in the hindlimbs of most bats. We use diffusible iodine-based contrast-enhanced computed tomography and standard histological techniques to examine the calcars and hindlimb membranes of three bat species that vary ecologically (Myotis californicus, a slow-flying insectivore; Molossus molossus, a fast-flying insectivore; and Artibeus jamaicensis, a slow-flying frugivore). We also assess the level of mineralization of the calcar at muscle attachment sites to better understand how muscle contraction may enable calcar function. We found that the arrangement of the calcar musculature varies among the three bat species, as does the pattern of mineral content within the calcar. M. molossus and M. californicus exhibit more complex calcar and calcar musculature morphologies than A. jamaicensis, and the degree of calcar mineralization decreases toward the tip of the calcar in all species. These results are consistent with the idea that the calcar may have a functional role in flight maneuverability. Anat Rec, 301:441-448, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  12. Hindlimb musculature of the largest living rodent Hydrochoerus hydrochaeris (Caviomorpha): Adaptations to semiaquatic and terrestrial styles of life.

    Science.gov (United States)

    García-Esponda, César M; Candela, Adriana M

    2016-03-01

    The caviomorph species Hydrochoerus hydrochaeris (Cavioidea), or capybara, is the largest living rodent. This species is widely distributed, from northern South America to Uruguay and eastern Argentina, inhabiting in a wide variety of densely vegetated lowlands habitats in the proximity of water. Hydrochoerus hydrochaeris not only runs with agility, like other members of the Cavioidea, but it can also swim and dive easily. For these reasons, it has been classified as a cursorial as well as semiaquatic species. However, comprehensive anatomical descriptions of the osteology and myology of the capybara are not available in the literature and analyses on its swimming abilities are still required. We hypothesize that some of the characters of the hindlimb of H. hydrochaeris could reveal a unique morphological arrangement associated with swimming abilities. In this study, an anatomical description of the hindlimb musculature of H. hydrochaeris, and a discussion of the possible functional significance of the main muscles is provided. In addition, we explore the evolution of some myological and osteological characters of the capybara in the context of the cavioids. We concluded that most of the muscular and osteological features of the hindlimb of H. hydrochaeris are neither adaptations to a specialized cursoriality, nor major modifications for an aquatic mode of life. Hydrochoerus hydrochaeris share several features with other cavioids, being a generalized cursorial species in the context of this clade. However, it shows some adaptations of the hindlimb for enhancing propulsion through water, of which the most notable seems to be the shortening of the leg, short tendons of most muscles of the leg, and a well-developed soleus muscle. These adaptations to a semiaquatic mode of life could have been acquired during the most recent evolutionary history of the hydrochoerids. © 2015 Wiley Periodicals, Inc.

  13. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats.

    Science.gov (United States)

    Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M

    2012-04-01

    Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture.We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury.

  14. Biochemical changes in rats under the influence of cesium chloride

    Directory of Open Access Journals (Sweden)

    N. M. Melnikova

    2013-04-01

    Full Text Available Cesium is lately accumulated actively in the environment, but its influence on human and ani­mal organism is the least studied among heavy metals. It is shown that the action of cesium chloride in rats caused significant changes in blood chemistry, which are characterized by a decrease of total protein content, pH, an increase in the level of urea, creatinine, glucose and total hemoglobin. The results showed that potassium content in all the studied organs and tissues of poisoned rats decreases under the action of cesium chloride. Histological examination of the heart tissue in rats poisoned with cesium chloride indicates the onset of pathology of cardiovascular system. It was found out that use of the drug “Asparkam” reduces the negative effect of cesium chloride on the body of rats.

  15. The effects of dietary fish oil on exercising skeletal muscle vascular and metabolic control in chronic heart failure rats.

    Science.gov (United States)

    Holdsworth, Clark T; Copp, Steven W; Hirai, Daniel M; Ferguson, Scott K; Sims, Gabrielle E; Hageman, Karen S; Stebbins, Charles L; Poole, David C; Musch, Timothy I

    2014-03-01

    Impaired vasomotor control in chronic heart failure (CHF) is due partly to decrements in nitric oxide synthase (NOS) mediated vasodilation. Exercising muscle blood flow (BF) is augmented with polyunsaturated fatty acid (PUFA) supplementation via fish oil (FO) in healthy rats. We hypothesized that FO would augment exercising muscle BF in CHF rats via increased NO-bioavailability. Myocardial infarction (coronary artery ligation) induced CHF in Sprague-Dawley rats which were subsequently randomized to dietary FO (20% docosahexaenoic acid, 30% eicosapentaenoic acid, n = 15) or safflower oil (SO, 5%, n = 10) for 6-8 weeks. Mean arterial pressure (MAP), blood [lactate], and hindlimb muscles BF (radiolabeled microspheres) were determined at rest, during treadmill exercise (20 m·min(-1), 5% incline) and exercise + N(G)-nitro-l-arginine-methyl-ester (l-NAME) (a nonspecific NOS inhibitor). FO did not change left ventricular end-diastolic pressure (SO: 14 ± 2; FO: 11 ± 1 mm Hg, p > 0.05). During exercise, MAP (SO: 128 ± 3; FO: 132 ± 3 mm Hg) and blood [lactate] (SO: 3.8 ± 0.4; FO: 4.6 ± 0.5 mmol·L(-1)) were not different (p > 0.05). Exercising hindlimb muscle BF was lower in FO than SO (SO: 120 ± 11; FO: 93 ± 4 mL·min(-1)·100 g(-1), p exercise but may lower metabolic cost.

  16. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Cunping Yin

    2016-01-01

    Full Text Available Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis.

  17. DEET potentiates the development and persistence of anticholinesterase dependent chronic pain signs in a rat model of Gulf War Illness pain

    International Nuclear Information System (INIS)

    Flunker, L.K.; Nutter, T.J.; Johnson, R.D.; Cooper, B.Y.

    2017-01-01

    Exposure to DEET (N,N-diethyl-meta-toluamide) may have influenced the pattern of symptoms observed in soldiers with GWI (Gulf War Illness; Haley and Kurt, 1997). We examined how the addition of DEET (400 mg/kg; 50% topical) to an exposure protocol of permethrin (2.6 mg/kg; topical), chlorpyrifos (CP; 120 mg/kg), and pyridostigmine bromide (PB;13 mg/kg) altered the emergence and pattern of pain signs in an animal model of GWI pain (). Rats underwent behavioral testing before, during and after a 4 week exposure: 1) hindlimb pressure withdrawal threshold; 2) ambulation (movement distance and rate); and 3) resting duration. Additional studies were conducted to assess the influence of acute DEET (10–100 μM) on muscle and vascular nociceptor K v 7, K DR , Na v 1.8 and Na v 1.9. We report that a 50% concentration of DEET enhanced the development and persistence of pain-signs. Rats exposed to all 4 compounds exhibited ambulation deficits that appeared 5–12 weeks post-exposure and persisted through weeks 21–24. Rats exposed to only three agents (CP or PB excluded), did not fully develop ambulation deficits. When PB was excluded, rats also developed rest duration pain signs, in addition to ambulation deficits. There was no evidence that physiological doses of DEET acutely modified nociceptor K v 7, K DR , Na v 1.8 or Na v 1.9 activities. Nevertheless, DEET augmented protocols decreased the conductance of K v 7 expressed in vascular nociceptors harvested from chronically exposed rats. We concluded that DEET enhanced the development and persistence of pain behaviors, but the anticholinesterases CP and PB played a determinant role. - Highlights: • DEET accelerated and prolonged pain-like behaviors in a rat model of Gulf War Illness. • The development of pain behaviors were dependent upon chlorpyrifos and pyridostigmine. • Conductance of vascular nociceptor Kv7 was diminished 12 weeks following exposures. • DEET did not have any acute influence on nociceptor Kv7

  18. Effects of Simulated Hypogravity and Diet on Estrous Cycling in Rats

    Science.gov (United States)

    Tou, Janet C.; Grindeland, Richard E.; Baer, Lisa A.; Wade, Charles E.

    2003-01-01

    Environmental factors can disrupt ovulatory cycles. The study objective was to determine the effect of diet and simulated hypogravity on rat estrous cycles. Age 50 d Sprague-Dawley rats were randomly assigned to he fed either a purified or chow diet. Only normal cycling rats were used. Experimental rats (n=9-10/group) were kept as ambulatory controls (AC) or subjected to 40 d simulated hypogravity using a disuse atrophy hindlimb suspension (HLS) model. There was no effect on estrous cycles of AC fed either diet. At day 18, HLS rats fed either diet, had lengthened estrous cycles due to prolonged diestrus. HLS rats fed purified diet also had reduced time in estrus. Plasma estradiol was reduced in HLS rats fed purified diet but there was no effect on progesterone. This may have occurred because blood was collected from rats in estrus. Urinary progesterone collected during initial HLS was elevated in rats fed purified diet. In AC, corticosterone was elevated in chow vs purified diet fed rats. Differences were particularly striking following the application of a stressor with HLS/chow-fed rats displaying an enhanced stress response. Results emphasize the importance of diet selection when measuring endocrine-sensitive endpoints. HLS is a useful model for investigating the effects of environment on reproduction and providing insight about the impact extreme environment such as spaceflight on female reproductive health.

  19. Genetic background of nonmutant Piebald-Virol-Glaxo rats does not influence nephronophthisis phenotypes

    Directory of Open Access Journals (Sweden)

    Yengkopiong JP

    2013-02-01

    Full Text Available Jada Pasquale Yengkopiong, Joseph Daniel Wani LakoJohn Garang Memorial University of Science and Technology, Faculty of Science and Technology, Bor, Jonglei State, Republic of South SudanBackground: Nephronophthisis (NPHP, which affects multiple organs, is a hereditary cystic kidney disease (CKD, characterized by interstitial fibrosis and numerous fluid-filled cysts in the kidneys. It is caused by mutations in NPHP genes, which encode for ciliary proteins known as nephrocystins. The disorder affects many people across the world and leads to end-stage renal disease. The aim of this study was to determine if the genetic background of the nonmutant female Piebald-Virol-Glaxo (PVG/Seac-/- rat influences phenotypic inheritance of NPHP from mutant male Lewis polycystic kidney rats.Methods: Mating experiments were performed between mutant Lewis polycystic kidney male rats with CKD and nonmutant PVG and Wistar Kyoto female rats without cystic kidney disease to raise second filial and backcross 1 progeny, respectively. Rats that developed cystic kidneys were identified. Systolic blood pressure was determined in each rat at 12 weeks of age using the tail and cuff method. After euthanasia, blood samples were collected and chemistry was determined. Histological examination of the kidneys, pancreas, and liver of rats with and without cystic kidney disease was performed.Results: It was established that the genetic background of nonmutant female PVG rats did not influence the phenotypic inheritance of the CKD from mutant male Lewis polycystic kidney rats. The disease arose as a result of a recessive mutation in a single gene (second filial generation, CKD = 13, non-CKD = 39, Χ2 = 0.00, P ≥ 0.97; backcross 1 generation, CKD = 67, non-CKD = 72, Χ2 = 0.18, P > 0.05 and inherited as NPHP. The rats with CKD developed larger fluid-filled cystic kidneys, higher systolic blood pressure, and anemia, but there were no extrarenal cysts and disease did not lead to

  20. Reduced BMP signaling results in hindlimb fusion with lethal pelvic/urogenital organ aplasia: a new mouse model of sirenomelia.

    Science.gov (United States)

    Suzuki, Kentaro; Adachi, Yasuha; Numata, Tomokazu; Nakada, Shoko; Yanagita, Motoko; Nakagata, Naomi; Evans, Sylvia M; Graf, Daniel; Economides, Aris; Haraguchi, Ryuma; Moon, Anne M; Yamada, Gen

    2012-01-01

    Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein) signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4(flox/flox)) and the Isl1 (Islet1)-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4(flox/flox) conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme) and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.

  1. Reduced BMP signaling results in hindlimb fusion with lethal pelvic/urogenital organ aplasia: a new mouse model of sirenomelia.

    Directory of Open Access Journals (Sweden)

    Kentaro Suzuki

    Full Text Available Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4(flox/flox and the Isl1 (Islet1-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4(flox/flox conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.

  2. Multiple Factors Influence Glomerular Albumin Permeability in Rats

    Science.gov (United States)

    Sandoval, Ruben M.; Wagner, Mark C.; Patel, Monica; Campos-Bilderback, Silvia B.; Rhodes, George J.; Wang, Exing; Wean, Sarah E.; Clendenon, Sherry S.

    2012-01-01

    Different laboratories recently reported incongruous results describing the quantification of albumin filtration using two-photon microscopy. We investigated the factors that influence the glomerular sieving coefficient for albumin (GSCA) in an effort to explain these discordant reports and to develop standard operating procedures for determining GSCA. Multiple factors influenced GSCA, including the kidney depth of image acquisition (10–20 μm was appropriate), the selection of fluorophore (probes emitting longer wavelengths were superior), the selection of plasma regions for fluorescence measurements, the size and molecular dispersion characteristics of dextran polymers if used, dietary status, and the genetic strain of rat. Fasting reduced the GSCA in Simonsen Munich Wistar rats from 0.035±0.005 to 0.016±0.004 (Palbumin transcytosis with vesicular and tubular delivery to and fusion with the basolateral membrane in S1 proximal tubule cells. In summary, these results help explain the previously conflicting microscopy and micropuncture data describing albumin filtration and highlight the dynamic nature of glomerular albumin permeability. PMID:22223875

  3. Retention of 241Am and 239Pu in the rat as influenced by Triton WR 1339

    International Nuclear Information System (INIS)

    Gruner, R.; Siedel, A.

    1976-01-01

    A lysosomotropic agent, the non-ionic detergent Triton WR 1339 (a poly-oxyethylene ether of formaldehyde polymers of octylphenol) is known to be stored in rat liver lysosomes. The results of a study made to determine whether Triton WR 1339 exerts an influence on the metabolic fate of monomeric 239 Pu and 241 Am in the rat as well as on the removal of these nuclides by DTPA, since Triton WR 1339 and transuranic elements share the same deposition site, are reported. The influence of Triton WR 1339 on the 241 Am content (per cent of 241 Am dose) of rat organs (skeleton, liver, kidneys) at different times after Triton WR 1339 injection, the influence of the time of Triton WR 1339 injection on the 241 Am content (per cent of 241 Am dose) of the same rat organs, and the influence of Triton WR 1339 Zn-DTPA and the combination of them on the retention of monomeric 239 Pu in the same rat organs (per cent of 239 Pu dose), are shown in tabular form. The mechanism whereby Triton WR 1339 appears to shorten the biological half-life of 239 Pu and 241 Am in rat liver is discussed. (U.K.)

  4. Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord

    Directory of Open Access Journals (Sweden)

    Jarvis Michael F

    2011-05-01

    Full Text Available Abstract Background Intra-articular injection of monosodium iodoacetate (MIA in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal dorsal horn MAPK activation, specifically ERK and p38 phosphorylation, was assessed in the MIA-OA model. Results Behaviorally, MIA-injected rats displayed reduced hind limb grip force 1, 2, and 3 weeks post-MIA treatment. In the same animals, activation of phospho ERK1/2 was gradually increased, reaching a significant level at post injection week 3. Conversely, phosphorylation of p38 MAPK was enhanced maximally at post injection week 1 and decreased, but remained elevated, thereafter. Double labeling from 3-wk MIA rats demonstrated spinal pERK1/2 expression in neurons, but not glia. In contrast, p-p38 was expressed by microglia and a subpopulation of neurons, but not astrocytes. Additionally, there was increased ipsilateral expression of microglia, but not astrocytes, in 3-wk MIA-OA rats. Consistent with increased MAPK immunoreactivity in the contralateral dorsal horn, mechanical allodynia to the contralateral hind-limb was observed 3-wk following MIA. Finally, intrathecal injection of the MEK1 inhibitor PD98059 blocked both reduced hind-limb grip force and pERK1/2 induction in MIA-OA rats. Conclusion Results of these studies support the role of MAPK activation in the progression and maintenance of central sensitization in the MIA-OA experimental pain model.

  5. Peer influences on drug self-administration: an econometric analysis in socially housed rats.

    Science.gov (United States)

    Peitz, Geoffrey W; Strickland, Justin C; Pitts, Elizabeth G; Foley, Mark; Tonidandel, Scott; Smith, Mark A

    2013-04-01

    Social-learning theories of substance use propose that members of peer groups influence the drug use of other members by selectively modeling, reinforcing, and punishing either abstinence-related or drug-related behaviors. The objective of the present study was to examine the social influences on cocaine self-administration in isolated and socially housed rats, under conditions where the socially housed rats were tested simultaneously with their partner in the same chamber. To this end, male rats were obtained at weaning and housed in isolated or pair-housed conditions for 6 weeks. Rats were then implanted with intravenous catheters and cocaine self-administration was examined in custom-built operant conditioning chambers that allowed two rats to be tested simultaneously. For some socially housed subjects, both rats had simultaneous access to cocaine; for others, only one rat of the pair had access to cocaine. An econometric analysis was applied to the data, and the reinforcing strength of cocaine was measured by examining consumption (i.e. quantity demanded) and elasticity of demand as a function of price, which was manipulated by varying the dose and ratio requirements on a fixed ratio schedule of reinforcement. Cocaine consumption decreased as a function of price in all groups. Elasticity of demand did not vary across groups, but consumption was significantly lower in socially housed rats paired with a rat without access to cocaine. These data suggest that the presence of an abstaining peer decreases the reinforcing strength of cocaine, thus supporting the development of social interventions in drug abuse prevention and treatment programs.

  6. Influence of chronic stress and oclusal interference on masseter muscle pain in rat.

    Science.gov (United States)

    Simonić-Kocijan, Suncana; Uhac, Ivone; Braut, Vedrana; Kovac, Zoran; Pavicić, Daniela Kovacević; Fugosić, Vesna; Urek, Miranda Muhvić

    2009-09-01

    This study aimed to investigate the individual effects of chronic stress and occlusal interference, as well as their combined influence on masseter muscle pain. Experiments were performed on 28 male Wistar rats. Animals were submitted to chronic stress procedure, exposed to occlusal interference, or exposed to both mantioned procedures. At the end of the procedure animals were submitted to orofacial formalin test, and nociceptive behavioral response was evaluated. Statisticaly significant difference of nociceptive behavioral response in chronicaly stressed rats and in the animals with occlusal interference in comparation to the control group were not obtained (p > 0.05). In contrast, nociceptive behavioral response was significantly increased in rats submitted to both of experimental procedures (p occlusal interference and chronic stress influence masseter muscle pain.

  7. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

    Science.gov (United States)

    Udoekwere, Ubong I; Oza, Chintan S; Giszter, Simon F

    2016-08-10

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes

  8. Potential of neurotoxicity after a single oral dose of 4-bromo-, 4-chloro-, 4-fluoro- or 4-iodoaniline in rats.

    Science.gov (United States)

    Okazaki, Yoshimasa; Yamashita, Kotaro; Ishii, Hiroyuki; Sudo, Masato; Tsuchitani, Minoru

    2003-01-01

    The potential for neurotoxicity after a single oral dose of four halogenated aniline derivatives--4-bromoaniline (4-BA), 4-chloroaniline (4-CA), 4- fluoroaniline (4-FA) and 4-iodoaniline (4-IA)--was given to rats was investigated at or near the lethal dosage level. Hindlimb paralysis was found in the 4-BA, 4-CA and 4-FA groups on clinical observation, with the maximum incidence of 100% in the 4-BA and 4-FA groups and 66.7% in the 4-CA group. Detailed clinical observations with functional tests identified the following effects: reduced response of hindlimb extensor thrust, gait abnormality in the open field and decreased grip strength in the fore- or hindlimbs in the 4-BA, 4-CA and 4-FA groups; decreased number of supported rearing episodes in the open field in the 4-BA and 4-CA groups; abnormal landing in the aerial righting reflex in the 4-BA and 4-FA groups; and prolonged surface righting reflex in the 4-BA group. Spongy change in the white matter of the spinal cord and brainstem and nerve fibre degeneration in the peripheral nerves were found in all haloaniline-treated groups. The central and peripheral nervous systems were most severely affected in the 4-BA group and the lesions in the 4-IA group were limited in grade. This study demonstrates that a bolus dose of 4-haloanilines to rats induces a neurotoxicity similar in character to that evoked by the parent aniline. The decreasing order of neurotoxic potential appears to be 4-BA > 4-FA > or = 4-CA > 4-IA when comparing at or near the lethal dosage level. Copyright 2003 John Wiley & Sons, Ltd.

  9. A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion

    Directory of Open Access Journals (Sweden)

    James P. Charles

    2018-05-01

    Full Text Available Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations.

  10. Testosterone influences spatial strategy preferences among adult male rats.

    Science.gov (United States)

    Spritzer, Mark D; Fox, Elliott C; Larsen, Gregory D; Batson, Christopher G; Wagner, Benjamin A; Maher, Jack

    2013-05-01

    Males outperform females on some spatial tasks, and this may be partially due to the effects of sex steroids on spatial strategy preferences. Previous work with rodents indicates that low estradiol levels bias females toward a striatum-dependent response strategy, whereas high estradiol levels bias them toward a hippocampus-dependent place strategy. We tested whether testosterone influenced the strategy preferences in male rats. All subjects were castrated and assigned to one of three daily injection doses of testosterone (0.125, 0.250, or 0.500 mg/rat) or a control group that received daily injections of the drug vehicle. Three different maze protocols were used to determine rats' strategy preferences. A low dose of testosterone (0.125 mg) biased males toward a motor-response strategy on a T-maze task. In a water maze task in which the platform itself could be used intermittently as a visual cue, a low testosterone dose (0.125 mg) caused a significant increase in the use of a cued-response strategy relative to control males. Results from this second experiment also indicated that males receiving a high dose of testosterone (0.500 mg) were biased toward a place strategy. A third experiment indicated that testosterone dose did not have a strong influence on the ability of rats to use a nearby visual cue (floating ball) in the water maze. For this experiment, all groups seemed to use a combination of place and cued-response strategies. Overall, the results indicate that the effects of testosterone on spatial strategy preference are dose dependent and task dependent. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Influence of head X-irradiation on neuroendocrine functions in thymectomized male rats

    International Nuclear Information System (INIS)

    Gong Shouliang

    1991-01-01

    The present study showed that the functions of the hypothalamic-pituitary-gonadal and hypothalamic-adrenocortical systems changed in adult male rats thymectomized within 48 h after their birth. Two days later, head irradiation with 10 Gy x-rays was performed in the thymectomized male rats, serum LH and FSH, serum and urine testosterone and corticosterone, pituitary and testicular cAMP and hypothalamic β-EP and L-Enk contents were all reduced in different degrees, except the hypothalamic M-Enk content was increased, indicating that the changes were not in the same direction as those in intact male rats after head irradiation. These results suggest that the changes in head irradiated thymectomized male rats may differ from the changes seen in head irradiated intact male rats because of the influence of thymectomy on the neuroendocrine functions

  12. Sirolimus influence on hepatectomy-induced liver regeneration in rats

    Directory of Open Access Journals (Sweden)

    Edimar Leandro Toderke

    Full Text Available OBJECTIVE: To evaluate the influence of sirolimus on liver regeneration triggered by resection of 70% of the liver of adult rats. METHODS: we used 40 Wistar rats randomly divided into two groups (study and control, each group was divided into two equal subgroups according to the day of death (24 hours and seven days. Sirolimus was administered at a dose of 1mg/kg in the study group and the control group was given 1 ml of saline. The solutions were administered daily since three days before hepatectomy till the rats death to removal of the regenerated liver, conducted in 24 hours or 7 days after hepatectomy. Liver regeneration was measured by the KWON formula, by thenumber of mitotic figures (hematoxylin-eosin staining and by the immunohistochemical markers PCNA and Ki-67. RESULTS: there was a statistically significant difference between the 24h and the 7d groups. When comparing the study and control groups in the same period, there was a statistically significant variation only for Ki-67, in which there were increased numbers of hepatocytes in cell multiplication in the 7d study group compared with the 7d control group (p = 0.04. CONCLUSION: there was no negative influence of sirolimus in liver regeneration and there was a positive partial effect at immunohistochemistry with Ki-67.

  13. Decrease of Na, K-ATPase Electrogenic Contribution and Resting Membrane Potential of Rat Soleus after 3 Days of Hindlimb Unloading

    Science.gov (United States)

    Krivoi, I. I.; Kravtsova, V. V.; Drabkina, T. M.; Prokofiev, A. V.; Nikolsky, E. E.; Shenkman, B. S.

    2008-06-01

    The Na,K-ATPase activity is critically important for excitability, electrogenesis and contractility of skeletal muscle expressing ? and ? isoforms of the enzyme [6, 9]. It is well known that disuse induced by hindlimb unloading (HU) leads to progressive atrophy of skeletal muscle; the muscle undergoes a number of dramatic remodeling events. In particular, changes in ion channel expression in response to muscle unweighting were observed [1, 8]. Decrease of resting membrane potential (RMP), electrogenic contribution of Na,K-ATPase and membrane resistance during 7-28 days of HU was shown [8, 10]. The intrinsic mechanisms involved in the process have not been revealed until present. At the same time, the understanding of these mechanisms could be crucial for the disclosing the mechanisms underlying the resting Ca2+ accumulation in the cytoplasm of the unloaded muscle [3, 7]. In the present study, the effect of early (3 days) HU-induced disuse of slow-twitch soleus muscle on membrane electrogenesis as well as on electrogenic contribution of Na,K-ATPase isoforms was investigated.

  14. Estrogen supplementation failed to attenuate biochemical indices of neutrophil infiltration or damage in rat skeletal muscles following ischemia.

    Science.gov (United States)

    Tiidus, Peter M; Deller, Mirada; Bombardier, Eric; Gül, Mustafa; Liu, X Linda

    2005-01-01

    This study examined the effects of estrogen supplementation on markers of neutrophil infiltration and damage in skeletal muscle of rats following ischemia. Male and female gonad-intact rats, with or without 14 days of estrogen supplementation were subjected to two hours of hind-limb ischemia and sacrificed at 24, 48 or 72 hours post-ischemia. Control animals were sacrificed without ischemia. Plantaris and red and white gastrocneimus muscles were removed and assayed for myeloperoxidase (MPO), a marker of neutrophil infiltration, and glucose-6-phosphate dehydrogenase (G6PD) and beta-glucuronidase (betaGLU), as markers of muscle damage. Significant elevations of MPO, G6PD and betaGLU activities were observed at various time points post-ischemia. No systematic differences between genders were noted in any of the measures. Estrogen supplementation in both male and female animals failed to significantly attenuate post-ischemia increases in MPO, G6PD and betaGLU activities in any of the muscles studied and in some cases accentuated activities of some of these measures. Unlike previous findings following exercise in skeletal muscle, this study failed to demonstrate estrogen-induced attenuation of indices of neutrophil infiltration or damage in skeletal muscles of rats up to 72 hours following ischemia. This demonstrates that estrogen may not consistently attenuate neutrophil infiltration and that a number of variables including damage modality, tissue or estrogen level may influence this.

  15. Estrogen supplementation failed to attenuate biochemical indices of neutrophil infiltration or damage in rat skeletal muscles following ischemia

    Directory of Open Access Journals (Sweden)

    PETER M TIIDUS

    2005-01-01

    Full Text Available This study examined the effects of estrogen supplementation on markers of neutrophil infiltration and damage in skeletal muscle of rats following ischemia. Male and female gonad-intact rats, with or without 14 days of estrogen supplementation were subjected to two hours of hind-limb ischemia and sacrificed at 24, 48 or 72 hours post-ischemia. Control animals were sacrificed without ischemia. Plantaris and red and white gastrocneimus muscles were removed and assayed for myeloperoxidase (MPO, a marker of neutrophil infiltration, and glucose-6-phosphate dehydrogenase (G6PD and ß-glucuronidase (GLU, as markers of muscle damage. Significant elevations of MPO, G6PD and GLU activities were observed at various time points post-ischemia. No systematic differences between genders were noted in any of the measures. Estrogen supplementation in both male and female animals failed to significantly attenuate post-ischemia increases in MPO, G6PD and GLU activities in any of the muscles studied and in some cases accentuated activities of some of these measures. Unlike previous findings following exercise in skeletal muscle, this study failed to demonstrate estrogen-induced attenuation of indices of neutrophil infiltration or damage in skeletal muscles of rats up to 72 hours following ischemia. This demonstrates that estrogen may not consistently attenuate neutrophil infiltration and that a number of variables including damage modality, tissue or estrogen level may influence this.

  16. Thrombin effectuates therapeutic arteriogenesis in the rabbit hindlimb ischemia model: A quantitative analysis by computerized in vivo imaging

    International Nuclear Information System (INIS)

    Kagadis, George C.; Karnabatidis, Dimitrios; Katsanos, Konstantinos; Diamantopoulos, Athanassios; Samaras, Nikolaos; Maroulis, John; Siablis, Dimitrios; Nikiforidis, George C.

    2006-01-01

    We report on an experimental mammalian controlled study that documents arteriogenic capacity of thrombin and utilizes computerized algorithms to quantify the newly formed vessels. Hindlimb ischemia was surgically invoked in 10 New Zealand white rabbits. After quiescence of endogenous angiogenesis heterologous bovine thrombin was intramuscularly injected (1500 units) in one hindlimb per rabbit (Group T). Contralateral limbs were infused with normal saline (Group C). Digital subtraction angiography (DSA) of both limbs was performed after thrombin infusion by selective cannulation of the abdominal aorta and digital images were post-processed with computerized algorithms in order to enhance newly formed vessels. Total vessel area and total vessel length were quantified. In vivo functional evaluation included measurements of blood flow volume at the level of the external iliac artery by Doppler ultrasonography both at baseline and at 20 days after thrombin infusion. Total vessel area and length (in pixels) were 14,713+/-1023 and 5466+/-1327 in group T versus 12,015+/-2557 and 4598+/-1269 in group C (p=0.0062 and 0.1526, respectively). Blood flow volumes (ml/min) at baseline and at 20 days after thrombin infusion were 25.87+/-11.09 and 38.06+/-11.72 in group T versus 26.57+/-11.19 and 20.35+/-7.20 in group C (p=0.8898 and 0.0007, respectively). Intramuscular thrombin effectuates an arteriogenic response in the rabbit hindlimb ischemia model. Computerized algorithms may enable accurate quantification of the neovascularization outcome

  17. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb

    Science.gov (United States)

    Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.

    2016-01-01

    Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469

  18. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in res...

  19. A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot.

    Science.gov (United States)

    Oosterlinck, M; Pille, F; Back, W; Dewulf, J; Gasthuys, F

    2011-10-01

    The aim of this study was to evaluate the association between fore- and hind-hoof contact area and limb loading. Data from a previous study on forelimb loading and symmetry were compared with data on hindlimb kinetics, and the fore- and hind-hoof contact area at the walk and trot was evaluated. Five sound ponies, selected for symmetrical feet, were walked and trotted over a pressure plate embedded in a custom-made runway. The hindlimb peak vertical force (PVF) and vertical impulse (VI) were found to be significantly lower than in the forelimb, whereas their high symmetry ratios (>95%) did not show a significant difference from forelimb data. Hindlimb PVF in ponies was found to be slightly higher when compared to data reported for horses even though the ponies moved at a similar or lower relative velocity. The contact area had low intra-individual variability and was significantly smaller in the hind- than in the fore-hooves. A larger contact area was significantly associated with lower peak vertical pressure (PVP) but higher PVF and VI. No significant differences between left and right sides were found for contact area or loading variables. Pressure plate measurements demonstrated a significant association between hoof contact area and limb loading, in addition to intrinsic differences between fore and hindlimb locomotor function. The pressure plate provides the clinician with a tool to quantify simultaneously contralateral differences in hoof contact area and limb loading. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Effect of endogenous androgens on 17beta-estradiol-mediated protection after spinal cord injury in male rats.

    Science.gov (United States)

    Kachadroka, Supatra; Hall, Alicia M; Niedzielko, Tracy L; Chongthammakun, Sukumal; Floyd, Candace L

    2010-03-01

    Several groups have recently shown that 17beta-estradiol is protective in spinal cord injury (SCI). Testosterone can be aromatized to 17beta-estradiol and may increase estrogen-mediated protection. Alternatively, testosterone has been shown to increase excitotoxicity in models of central nervous system (CNS) injury. These experiments test the hypothesis that endogenous testosterone in male rats alters 17beta-estradiol-mediated protection by evaluating a delayed administration over a clinically relevant dose range and manipulating testicular-derived testosterone. Adult male Sprague Dawley rats were either gonadectomized or left gonad-intact prior to SCI. SCI was produced by a midthoracic crush injury. At 30 min post SCI, animals received a subcutaneous pellet of 0.0, 0.05, 0.5, or 5.0 mg of 17beta-estradiol, released over 21 days. Hindlimb locomotion was analyzed weekly in the open field. Spinal cords were collected and analyzed for cell death, expression of Bcl-family proteins, and white-matter sparing. Post-SCI administration of the 0.5- or 5.0-mg pellet improved hindlimb locomotion, reduced urinary bladder size, increased neuronal survival, reduced apoptosis, improved the Bax/Bcl-xL protein ratio, and increased white-matter sparing. In the absence of endogenous testicular-derived androgens, SCI induced greater apoptosis, yet 17beta-estradiol administration reduced apoptosis to the same extent in gonadectomized and gonad-intact male rats. These data suggest that delayed post-SCI administration of a clinically relevant dose of 17beta-estradiol is protective in male rats, and endogenous androgens do not alter estrogen-mediated protection. These data suggest that 17beta-estradiol is an effective therapeutic intervention for reducing secondary damage after SCI in males, which could be readily translated to clinical trials.

  1. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage.

    Science.gov (United States)

    Quek, Hazel; Luff, John; Cheung, KaGeen; Kozlov, Sergei; Gatei, Magtouf; Lee, C Soon; Bellingham, Mark C; Noakes, Peter G; Lim, Yi Chieh; Barnett, Nigel L; Dingwall, Steven; Wolvetang, Ernst; Mashimo, Tomoji; Roberts, Tara L; Lavin, Martin F

    2017-04-01

    Mutations in the ataxia-telangiectasia (A-T)-mutated ( ATM ) gene give rise to the human genetic disorder A-T, characterized by immunodeficiency, cancer predisposition, and neurodegeneration. Whereas a series of animal models recapitulate much of the A-T phenotype, they fail to present with ataxia or neurodegeneration. We describe here the generation of an Atm missense mutant [amino acid change of leucine (L) to proline (P) at position 2262 (L2262P)] rat by intracytoplasmic injection (ICSI) of mutant sperm into oocytes. Atm -mutant rats ( Atm L2262P/L2262P ) expressed low levels of ATM protein, suggesting a destabilizing effect of the mutation, and had a significantly reduced lifespan compared with Atm +/+ Whereas these rats did not show cerebellar atrophy, they succumbed to hind-limb paralysis (45%), and the remainder developed tumors. Closer examination revealed the presence of both dsDNA and ssDNA in the cytoplasm of cells in the hippocampus, cerebellum, and spinal cord of Atm L2262P/L2262P rats. Significantly increased levels of IFN-β and IL-1β in all 3 tissues were indicative of DNA damage induction of the type 1 IFN response. This was further supported by NF-κB activation, as evidenced by p65 phosphorylation (P65) and translocation to the nucleus in the spinal cord and parahippocampus. Other evidence of neuroinflammation in the brain and spinal cord was the loss of motor neurons and the presence of increased activation of microglia. These data provide support for a proinflammatory phenotype that is manifested in the Atm mutant rat as hind-limb paralysis. This mutant represents a useful model to investigate the importance of neuroinflammation in A-T. © Society for Leukocyte Biology.

  2. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury

    Directory of Open Access Journals (Sweden)

    Song Hongsun

    2012-10-01

    Full Text Available Abstract Background Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC-induced injury in the rat hindlimb. Methods We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24. Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%. The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°. Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. Results The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. Conclusion We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.

  3. Secondary damage in the spinal cord after motor cortex injury in rats.

    Science.gov (United States)

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  4. Hindlimb unloading in rat decreases preosteoblast proliferation assessed in vivo with BrdU incorporation.

    Science.gov (United States)

    Barou, O; Palle, S; Vico, L; Alexandre, C; Lafage-Proust, M H

    1998-01-01

    Immobilization affects bone formation. However, the mechanisms regulating the decrease in osteoblast recruitment remain unclear. The aim of our study was to determine in vivo osteoblastic proliferation after short-term immobilization among the different bone compartments. Twelve Wistar 5-wk-old rats were assigned to two groups: six tail-suspended animals for 6 days and their six age-related controls. Osmotic minipumps, each containing 40 mg of bromodeoxyuridine (BrdU), were implanted intraperitoneally at day 4 until euthanasia. Histomorphometric measurements found a significantly lower bone volume in primary (ISP, -22%) and secondary spongiosa (IISP, -37%) in unloaded rats compared with their age-related controls. BrdU immunohistochemistry showed that the proliferation capacity of osteogenic precursors in ISP (-29%) and preosteoblasts in IISP (-80%) and in periosteum as well as bone marrow cells (-40%) was lowered by unloading. We demonstrated in vivo for the first time that 6-day tail suspension induced a significant decrease in proliferation of periosteal and trabecular preosteoblasts in ISP and IISP as well as in bone marrow cells.

  5. [Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading].

    Science.gov (United States)

    Mirzoev, T M; Biriukov, N S; Veselova, O M; Larina, I M; Shenkman, B S; Ogneva, I V

    2012-01-01

    The aim of the work was to study the parameters of fibers cell respiration and desmin content in Wistar rat soleus muscle after 1, 3, 7 and 14 days of gravitational unloading. Gravitational unloading was simulated by antiorthostatic hindlimb suspension. The parameters of cell respiration were determined using the polarography, and desmin content was assessed by means of Western blotting. The results showed that the intensity of cell respiration is reduced after three days of gravitational unloading, reaches a minimum level after seven days and slightly increases by the fourteenth day of hindlimb unloading, as well as the content of desmin, which, however, to the fourteenth day returns to the control level. Taking into account that mitochondrial function depends on the state of cytoskeleton the data allow us to assume that early reduction of the intensity of cell respiration under unloading could be caused by degradation of the protein desmin that determines intracellular localization of mitochondria.

  6. DEET potentiates the development and persistence of anticholinesterase dependent chronic pain signs in a rat model of Gulf War Illness pain

    Energy Technology Data Exchange (ETDEWEB)

    Flunker, L.K., E-mail: lflunker@dental.ufl.edu [Division of Neuroscience, Dept. of Oral and Maxillofacial Surgery, Box 100416, JHMHC, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Nutter, T.J., E-mail: tnutter@dental.ufl.edu [Division of Neuroscience, Dept. of Oral and Maxillofacial Surgery, Box 100416, JHMHC, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Johnson, R.D., E-mail: rdjohnso@ufl.edu [Dept. of Physiological Sciences, University of Florida College of Veterinary Science, Gainesville, FL 32610 (United States); Cooper, B.Y., E-mail: bcooper@dental.ufl.edu [Division of Neuroscience, Dept. of Oral and Maxillofacial Surgery, Box 100416, JHMHC, University of Florida College of Dentistry, Gainesville, FL 32610 (United States)

    2017-02-01

    Exposure to DEET (N,N-diethyl-meta-toluamide) may have influenced the pattern of symptoms observed in soldiers with GWI (Gulf War Illness; Haley and Kurt, 1997). We examined how the addition of DEET (400 mg/kg; 50% topical) to an exposure protocol of permethrin (2.6 mg/kg; topical), chlorpyrifos (CP; 120 mg/kg), and pyridostigmine bromide (PB;13 mg/kg) altered the emergence and pattern of pain signs in an animal model of GWI pain (). Rats underwent behavioral testing before, during and after a 4 week exposure: 1) hindlimb pressure withdrawal threshold; 2) ambulation (movement distance and rate); and 3) resting duration. Additional studies were conducted to assess the influence of acute DEET (10–100 μM) on muscle and vascular nociceptor K{sub v}7, K{sub DR}, Na{sub v}1.8 and Na{sub v}1.9. We report that a 50% concentration of DEET enhanced the development and persistence of pain-signs. Rats exposed to all 4 compounds exhibited ambulation deficits that appeared 5–12 weeks post-exposure and persisted through weeks 21–24. Rats exposed to only three agents (CP or PB excluded), did not fully develop ambulation deficits. When PB was excluded, rats also developed rest duration pain signs, in addition to ambulation deficits. There was no evidence that physiological doses of DEET acutely modified nociceptor K{sub v}7, K{sub DR}, Na{sub v}1.8 or Na{sub v}1.9 activities. Nevertheless, DEET augmented protocols decreased the conductance of K{sub v}7 expressed in vascular nociceptors harvested from chronically exposed rats. We concluded that DEET enhanced the development and persistence of pain behaviors, but the anticholinesterases CP and PB played a determinant role. - Highlights: • DEET accelerated and prolonged pain-like behaviors in a rat model of Gulf War Illness. • The development of pain behaviors were dependent upon chlorpyrifos and pyridostigmine. • Conductance of vascular nociceptor Kv7 was diminished 12 weeks following exposures. • DEET did not have any

  7. Metabolic adaptations of skeletal muscle to voluntary wheel running exercise in hypertensive heart failure rats

    DEFF Research Database (Denmark)

    Schultz, R L; Kullman, E L; Waters, Ryan

    2013-01-01

    SHHF and Wistar-Furth (WF) rats were randomized to sedentary (SHHFsed and WFsed) and exercise groups (SHHFex and WFex). The exercise groups had access to running wheels from 6-22 months of age. Hindlimb muscles were obtained for metabolic measures that included mitochondrial enzyme function...... robust amounts of aerobic activity, voluntary wheel running exercise was not sufficiently intense to improve the oxidative capacity of skeletal muscle in adult SHHF animals, indicating an inability to compensate for declining heart function by improving peripheral oxidative adaptations in the skeletal...

  8. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections.

    Science.gov (United States)

    Mohammed, Hisham; Jain, Neeraj

    2014-02-15

    In primates, the motor cortex consists of at least seven different areas, which are involved in movement planning, coordination, initiation, and execution. However, for rats, only the primary motor cortex has been well described. A rostrally located second motor area has been proposed, but its extent, organization, and even definitive existence remain uncertain. Only a rostral forelimb area (RFA) has been definitively described, besides few reports of a rostral hindlimb area. We have previously proposed existence of a second whisker area, which we termed the rostral whisker area (RWA), based on its differential response to intracortical microstimulation compared with the caudal whisker area (CWA) in animals under deep anesthesia (Tandon et al. [2008] Eur J Neurosci 27:228). To establish that RWA is distinct from the caudally contiguous CWA, we determined sources of thalamic inputs to the two proposed whisker areas. Sources of inputs to RFA, caudal forelimb area (CFA), and caudal hindlimb region were determined for comparison. The results show that RWA and CWA can be distinguished based on differences in their thalamic inputs. RWA receives major projections from mediodorsal and ventromedial nuclei, whereas the major projections to CWA are from the ventral anterior, ventrolateral, and posterior nuclei. Moreover, the thalamic nuclei that provide major inputs to RWA are the same as for RFA, and the nuclei projecting to CWA are same as for CFA. The results suggest that rats have a second rostrally located motor area with RWA and RFA as its constituents. Copyright © 2013 Wiley Periodicals, Inc.

  9. Development of contractile and energetic capacity in anuran hindlimb muscle during metamorphosis.

    Science.gov (United States)

    Park, Jin Cheol; Kim, Han Suk; Yamashita, Masamichi; Choi, Inho

    2003-01-01

    Anuran larvae undergo water-to-land transition during late metamorphosis. We investigated the development of the iliofibularis muscle in bullfrog tadpoles (Rana catesbeiana) between Gosner's stage 37 and stage 46 (the last stage). The tadpoles began staying in shallow water at least as early as stage 37, kicking from stage 39, active hindlimb swimming from stage 41, and emerging onto shore from stage 42. For control tadpoles kept in water throughout metamorphosis, muscle mass and length increased two- to threefold between stages 37 and 46, with rapid increases at stage 40. Large, steady increases were found in femur mass, tetanic tension, contraction rate, and power between stages 37 and 46. Concentrations of ATP and creatine phosphate and rates of the phosphagen depletion and the activity of creatine kinase increased significantly, mainly after stage 43. Shortening velocity, tetanic rise time, and half-relaxation time varied little. Energy charge (the amount of metabolically available energy stored in the adenine nucleotide pool) remained unchanged until stage 43 but decreased at stage 46. Compared with the control, experimental tadpoles that were allowed access to both water and land exhibited 1.2- to 1.8-fold greater increases in femur mass, tetanic tension, power, phosphagen depletion rates, and creatine kinase activities at late metamorphic stages but no significant differences for other parameters measured. In sum, most hindlimb development proceeds on the basis of the increasingly active use of limbs for locomotion in water. The further increases in tension, mechanical power, and "chemical power" on emergence would be advantageous for terrestrial antigravity performance.

  10. The mechano-gated channel inhibitor GsMTx4 reduces the exercise pressor reflex in decerebrate rats.

    Science.gov (United States)

    Copp, Steven W; Kim, Joyce S; Ruiz-Velasco, Victor; Kaufman, Marc P

    2016-02-01

    Mechanical and metabolic stimuli from contracting muscles evoke reflex increases in blood pressure, heart rate and sympathetic nerve activity. Little is known, however, about the nature of the mechano-gated channels on the thin fibre muscle afferents that contribute to evoke this reflex, termed the exercise pressor reflex. We determined the effect of GsMTx4, an inhibitor of mechano-gated Piezo channels, on the exercise pressor reflex evoked by intermittent contraction of the triceps surae muscles in decerebrated, unanaesthetized rats. GsMTx4 reduced the pressor, cardioaccelerator and renal sympathetic nerve responses to intermittent contraction but did not reduce the pressor responses to femoral arterial injection of compounds that stimulate the metabolically-sensitive thin fibre muscle afferents. Expression levels of Piezo2 channels were greater than Piezo1 channels in rat dorsal root ganglia. Our findings suggest that mechanically-sensitive Piezo proteins contribute to the generation of the mechanical component of the exercise pressor reflex in rats. Mechanical and metabolic stimuli within contracting skeletal muscles evoke reflex autonomic and cardiovascular adjustments. In cats and rats, gadolinium has been used to investigate the role played by the mechanical component of this reflex, termed the exercise pressor reflex. Gadolinium, however, has poor selectivity for mechano-gated channels and exerts multiple off-target effects. We tested the hypothesis that GsMTX4, a more selective mechano-gated channel inhibitor than gadolinium and a particularly potent inhibitor of mechano-gated Piezo channels, reduced the exercise pressor reflex in decerebrate rats. Injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced the peak pressor (control: 24 ± 5, GsMTx4: 12 ± 5 mmHg, P acid. Moreover, injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced the peak pressor (control: 24 ± 2, GsMTx4: 14 ± 3 mmHg, P reflex in

  11. Validation of transport measurements in skeletal muscle with N-13 amino acids using a rabbit isolated hindlimb model

    International Nuclear Information System (INIS)

    Conlon, K.C.; Bading, J.R.; DiResta, G.R.; Corbally, M.T.; Gelbard, A.S.; Brennan, M.F.

    1989-01-01

    The authors are studying the transport of C-11 and N-13 labeled amino acids in tumor-bearing rabbits to determine the role of amino acid transport in the pathogenesis of muscle wasting in cancer. To validate a new, in vivo, method for measuring transport in skeletal muscle with these compounds, an isolated hindlimb model was developed in rabbits. The limb was perfused with a non-recirculating, normothermic, constant pressure system and a cell-free perfusate. Hemodynamic and metabolic parameters were measured during the first 75 min. of perfusion and found to remain normal and stable. Flow varied directly with perfusion pressure over the normal range of resting flows in the intact rabbit hindlimb. Time-activity curves (TAC's) were recorded from the medial thigh following bolus co-injection of L-[amide N-13] glutamine or N-13 L-glutamate with Tc-99m human serum albumin (HSA) into the femoral artery. Regional plasma flow was determined from the Tc-99m data

  12. Development of a universal measure of quadrupedal forelimb-hindlimb coordination using digital motion capture and computerised analysis

    Directory of Open Access Journals (Sweden)

    Jeffery Nick D

    2007-09-01

    Full Text Available Abstract Background Clinical spinal cord injury in domestic dogs provides a model population in which to test the efficacy of putative therapeutic interventions for human spinal cord injury. To achieve this potential a robust method of functional analysis is required so that statistical comparison of numerical data derived from treated and control animals can be achieved. Results In this study we describe the use of digital motion capture equipment combined with mathematical analysis to derive a simple quantitative parameter – 'the mean diagonal coupling interval' – to describe coordination between forelimb and hindlimb movement. In normal dogs this parameter is independent of size, conformation, speed of walking or gait pattern. We show here that mean diagonal coupling interval is highly sensitive to alterations in forelimb-hindlimb coordination in dogs that have suffered spinal cord injury, and can be accurately quantified, but is unaffected by orthopaedic perturbations of gait. Conclusion Mean diagonal coupling interval is an easily derived, highly robust measurement that provides an ideal method to compare the functional effect of therapeutic interventions after spinal cord injury in quadrupeds.

  13. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  14. Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility

    OpenAIRE

    Alam, Imranul; Koller, Daniel L.; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla

    2011-01-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which ...

  15. Myosin heavy chain composition of tiger (Panthera tigris) and cheetah (Acinonyx jubatus) hindlimb muscles.

    Science.gov (United States)

    Hyatt, Jon-Philippe K; Roy, Roland R; Rugg, Stuart; Talmadge, Robert J

    2010-01-01

    Felids have a wide range of locomotor activity patterns and maximal running speeds, including the very fast cheetah (Acinonyx jubatas), the roaming tiger (Panthera tigris), and the relatively sedentary domestic cat (Felis catus). As previous studies have suggested a relationship between the amount and type of activity and the myosin heavy chain (MHC) isoform composition of a muscle, we assessed the MHC isoform composition of selected hindlimb muscles from these three felid species with differing activity regimens. Using gel electrophoresis, western blotting, histochemistry, and immunohistochemistry with MHC isoform-specific antibodies, we compared the MHC composition in the tibialis anterior, medial gastrocnemius (MG), plantaris (Plt), and soleus muscles of the tiger, cheetah, and domestic cat. The soleus muscle was absent in the cheetah. At least one slow (type I) and three fast (types IIa, IIx, and IIb) MHC isoforms were present in the muscles of each felid. The tiger had a high combined percentage of the characteristically slower isoforms (MHCs I and IIa) in the MG (62%) and the Plt (86%), whereas these percentages were relatively low in the MG (44%) and Plt (55%) of the cheetah. In general, the MHC isoform characteristics of the hindlimb muscles matched the daily activity patterns of these felids: the tiger has daily demands for covering long distances, whereas the cheetah has requirements for speed and power. (c) 2009 Wiley-Liss, Inc.

  16. Pravastatin stimulates angiogenesis in a murine hindlimb ischemia model: a positron emission tomography imaging study with (64)Cu-NOTA-TRC105.

    Science.gov (United States)

    Orbay, Hakan; Hong, Hao; Koch, Jill M; Valdovinos, Hector F; Hacker, Timothy A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

    2013-01-01

    In this study, (64)Cu-NOTA-TRC105 (TRC105 is an anti-CD105 monoclonal antibody that binds to both human and murine CD105) positron emission tomography (PET) was used to assess the response to pravastatin treatment in a murine model of peripheral artery disease (PAD). Hindlimb ischemia was induced by ligation of the right femoral arteries in BALB/c mice under anesthesia, and the left hindlimb served as an internal control. Mice in the treatment group were given intraperitoneal pravastatin daily until the end of the study, whereas the animals in the control group were injected with 0.9% sodium chloride solution. Laser Doppler imaging showed that blood flow in the ischemic hindlimb plummeted to ~20% of the normal level after surgery, and gradually recovered to near normal level on day 10 in the treatment group and on day 20 in the control group. Angiogenesis was non-invasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 3, 10, 17, and 24. Tracer uptake at 48 h post-injection in the ischemic hindlimb in the treatment group was significantly higher than that of the control group on day 10 (20.5 ± 1.9 %ID/g vs 11.4 ± 1.5 %ID/g), suggesting increased CD105 expression and higher level of angiogenesis upon pravastatin treatment, and gradually decreased to background levels in both groups (4.9 ± 0.8 %ID/g vs 3.4 ± 1.9 %ID/g on day 24). The in vivo PET data correlated well with ex vivo biodistribution studies performed on day 24. Increased CD105 expression on days 3 and 10 following ischemia was further confirmed by immunofluorescence staining. Taken together, our results indicated that (64)Cu-NOTA-TRC105 PET is a suitable and non-invasive method to monitor the angiogenesis and therapeutic response in PAD, which can also be utilized for non-invasive evaluation of other pro-angiogenic/anti-angiogenic drugs in other cardiovascular diseases and cancer.

  17. Effects of clenbuterol on insulin resistance in conscious obese Zucker rats.

    Science.gov (United States)

    Pan, S J; Hancock, J; Ding, Z; Fogt, D; Lee, M; Ivy, J L

    2001-04-01

    The present study was conducted to determine the effect of chronic administration of the long-acting beta(2)-adrenergic agonist clenbuterol on rats that are genetically prone to insulin resistance and impaired glucose tolerance. Obese Zucker rats (fa/fa) were given 1 mg/kg of clenbuterol by oral intubation daily for 5 wk. Controls received an equivalent volume of water according to the same schedule. At the end of the treatment, rats were catheterized for euglycemic-hyperinsulinemic (15 mU insulin. kg(-1). min(-1)) clamping. Clenbuterol did not change body weight compared with the control group but caused a redistribution of body weight: leg muscle weights increased, and abdominal fat weight decreased. The glucose infusion rate needed to maintain euglycemia and the rate of glucose disappearance were greater in the clenbuterol-treated rats. Furthermore, plasma insulin levels were decreased, and the rate of glucose uptake into hindlimb muscles and abdominal fat was increased in the clenbuterol-treated rats. This increased rate of glucose uptake was accompanied by a parallel increase in the rate of glycogen synthesis. The increase in muscle glucose uptake could not be ascribed to an increase in the glucose transport protein GLUT-4 in clenbuterol-treated rats. We conclude that chronic clenbuterol treatment reduces the insulin resistance of the obese Zucker rat by increasing insulin-stimulated muscle and adipose tissue glucose uptake. The improvements noted may be related to the repartitioning of body weight between tissues.

  18. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Science.gov (United States)

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  19. Electroacupuncture and Acupuncture Promote the Rat’s Transected Median Nerve Regeneration

    OpenAIRE

    Ho, C. Y.; Yao, C. H.; Chen, W. C.; Shen, W. C.; Bau, D. T.

    2013-01-01

    Background. Acupuncture and electroacupuncture treatments of damaged nerves may aid nerve regeneration related to hindlimb function, but the effects on the forelimb-related median nerve were not known. Methods. A gap was made in the median nerve of each rat by suturing the stumps into silicone rubber tubes. The influences of acupuncture and electroacupuncture treatments on transected median nerve regeneration were evaluated from morphological, electrophysiological, and functional angles. Resu...

  20. Factors influencing radiation-induced impairment of rat liver mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Alexander, K.C.; Aiyar, A.S.; Sreenivasan, A.

    1975-01-01

    The influence of some experimental conditions on the radiation-induced impairment of oxidative phosphorylation in rat liver mitochondria has been studied. Shielding of the liver during whole body irradiation of the animal does not significantly alter the decreased efficiency of phosphorylation. There exists a great disparity in the in vivo and in vitro radiation doses required for the manifestation of damage to liver mitochondria. While these observations point to the abscopal nature of the radiation effects, direct involvement of the adrenals has been ruled out by studies with adrenalectomised rats. Prior administration of the well known radio-protective agents, serotonin or 2-aminoethyl isothiouronium bromide hydrobromide, is effective in preventing the derangement of mitochondrial function following radioexposure. The hypocholesterolemic drug ethyl-α-p-chlorophenoxy isobutyrate, which is known to influence hepatic mitochondrial turnover, does not afford any significant protection against either mitochondrial damage or the mortality of the animals due to whole body irradiation. (author)

  1. Bisphosphonate effects in rat unloaded hindlimb bone loss model: three-dimensional microcomputed tomographic, histomorphometric, and densitometric analyses.

    Science.gov (United States)

    Barou, O; Lafage-Proust, M H; Martel, C; Thomas, T; Tirode, F; Laroche, N; Barbier, A; Alexandre, C; Vico, L

    1999-10-01

    The effects of antiresorptive drugs on bone loss remain unclear. Using three-dimensional microtomography, dual X-ray/densitometry, and histomorphometry, we evaluated tiludronate effects in the bone loss model of immobilization in tail-suspended rats after 7, 13, and 23 days. Seventy-eight 12-week-old Wistar male rats were assigned to 13 groups: 1 baseline group, and for each time point, 1 control group treated with vehicle and three tail-suspended groups treated with either tiludronate (0.5 or 5 mg/kg) or vehicle, administered s. c. every other day, during the last week before sacrifice. In primary spongiosa (ISP), immobilization-induced bone loss plateaued after day 7 and was prevented by tiludronate. In secondary spongiosa (IISP), bone loss appeared at day 13 with a decrease in trabecular thickness and trabecular number (Tb.N) as assessed by three-dimensional microtomography. Osteoclastic parameters did not differ in tail-suspended rats versus control rats, whereas bone formation showed a biphasic pattern: after a marked decrease at day 7, osteoblastic activity and recruitment normalized at days 13 and 23, respectively. At day 23, the 80% decrease in bone mass was fully prevented by high-dose tiludronate with an increase in Tb.N without preventing trabecular thinning. In summary, at day 7, tiludronate prevented bone loss in ISP. After day 13, tiludronate prevented bone loss in ISP and IISP despite a further decrease in bone formation. Thus, the preventive effects of tiludronate in this model may be related to the alteration in bone modeling with an increase in Tb.N in ISP and subsequently in IISP.

  2. Cyclic estrogenic fluctuation influences synaptic transmission of the medial vestibular nuclei in female rats.

    Science.gov (United States)

    Pettorossi, Vito E; Frondaroli, Adele; Grassi, Silvarosa

    2011-04-01

    The estrous cycle in female rats influences the basal synaptic responsiveness and plasticity of the medial vestibular nucleus (MVN) neurons through different levels of circulating 17β-estradiol (cE(2)). The aim of this study was to verify, in the female rat, whether cyclic fluctuations of cE(2) influence long-term synaptic effects induced by high frequency afferent stimulation (HFS) in the MVN, since we found that HFS in the male rat induces fast long-term potentiation (fLTP), which depends on the neural synthesis of E(2) (nE(2)) from testosterone (T). We analyzed the field potential (FP) evoked in the MVN by vestibular afferent stimulation, under basal conditions, and after HFS, in brainstem slices of female rats during high levels (proestrus, PE) and low levels (diestrus, DE) of cE(2). Selective blocking agents of converting T enzymes were used. Unlike in the male rat, HFS induced three effects: fLTP through T conversion into E(2), and slow LTP (sLTP) and long-term depression (LTD), through T conversion into DHT. The occurrence of these effects depended on the estrous cycle phase: the frequency of fLTP was higher in DE, and those of sLTP and LTD were higher in PE. Conversely, the basal FP was also higher in PE than in DE.

  3. Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Ensey, James; Baker, Brent A

    2017-02-02

    The vast majority of dynamometer-based animal models for investigation of the response to chronic muscle contraction exposure has been limited to analysis of isometric, lengthening, or shortening contractions in isolation. An exception to this has been the utilization of a rat model to study stretch-shortening contractions (SSCs), a sequence of consecutive isometric, lengthening, and shortening contractions common during daily activity and resistance-type exercise. However, the availability of diverse genetic strains of rats is limited. Therefore, the purpose of the present study was to develop a dynamometer-based SSC training protocol to induce increased muscle mass and performance in plantarflexor muscles of mice. Young (3 months old) C57BL/6 mice were subjected to 1 month of plantarflexion SSC training. Hindlimb muscles were analyzed for muscle mass, quantitative morphology, myogenesis/myopathy relevant gene expression, and fiber type distribution. The main aim of the research was achieved when training induced a 2-fold increase in plantarflexion peak torque output and a 19% increase in muscle mass for the agonist plantaris (PLT) muscle. In establishing this model, several outcomes emerged which raised the value of the model past that of being a mere recapitulation of the rat model. An increase in the number of muscle fibers per transverse muscle section accounted for the PLT muscle mass gain while the antagonist tibialis anterior (TA) muscle atrophied by 30% with preferential atrophy of type IIb and IIx fibers. These alterations were accompanied by distinct gene expression profiles. The findings confirm the development of a stretch-shortening contraction training model for the PLT muscle of mice and demonstrate that increased cross-sectional fiber number can occur following high-intensity SSC training. Furthermore, the TA muscle atrophy provides direct evidence for the concept of muscle imbalance in phasic non-weight bearing muscles, a concept largely

  4. Proximal Neuropathy and Associated Skeletal Muscle Changes Resembling Denervation Atrophy in Hindlimbs of Chronic Hypoglycaemic Rats

    DEFF Research Database (Denmark)

    Jensen, Vivi F.H.; Molck, Anne Marie; Soeborg, Henrik

    2017-01-01

    Peripheral neuropathy is one of the most common complications of diabetic hyperglycaemia. Insulin-induced hypoglycaemia (IIH) might potentially exacerbate or contribute to neuropathy as hypoglycaemia also causes peripheral neuropathy. In rats, IIH induces neuropathy associated with skeletal muscle......, and severity of the myofibre atrophy correlated with severity of axonal degeneration in sciatic nerve. Both neuropathy and myopathy were still present after four weeks of recovery, although the neuropathy was less severe. In conclusion, the results suggest that peripheral neuropathy induced by IIH progresses...... changes. Aims of this study were to investigate the progression and sequence of histopathologic changes caused by chronic IIH in rat peripheral nerves and skeletal muscle, and whether such changes were reversible. Chronic IIH was induced by infusion of human insulin, followed by an infusion-free recovery...

  5. Proximal Neuropathy and Associated Skeletal Muscle Changes Resembling Denervation Atrophy in Hindlimbs of Chronic Hypoglycaemic Rats

    DEFF Research Database (Denmark)

    Jensen, Vivi F.H.; Molck, Anne Marie; Soeborg, Henrik

    2018-01-01

    Peripheral neuropathy is one of the most common complications of diabetic hyperglycaemia. Insulin-induced hypoglycaemia (IIH) might potentially exacerbate or contribute to neuropathy as hypoglycaemia also causes peripheral neuropathy. In rats, IIH induces neuropathy associated with skeletal muscle......, and severity of the myofibre atrophy correlated with severity of axonal degeneration in sciatic nerve. Both neuropathy and myopathy were still present after four weeks of recovery, although the neuropathy was less severe. In conclusion, the results suggest that peripheral neuropathy induced by IIH progresses...... changes. Aims of this study were to investigate the progression and sequence of histopathologic changes caused by chronic IIH in rat peripheral nerves and skeletal muscle, and whether such changes were reversible. Chronic IIH was induced by infusion of human insulin, followed by an infusion-free recovery...

  6. Intestinal immune system of young rats influenced by cocoa-enriched diet.

    Science.gov (United States)

    Ramiro-Puig, Emma; Pérez-Cano, Francisco J; Ramos-Romero, Sara; Pérez-Berezo, Teresa; Castellote, Cristina; Permanyer, Joan; Franch, Angels; Izquierdo-Pulido, Maria; Castell, Margarida

    2008-08-01

    Gut-associated lymphoid tissue (GALT) maintains mucosal homeostasis by counteracting pathogens and inducing a state of nonresponsiveness when it receives signals from food antigens and commensal bacteria. We report for the first time the influence of continuous cocoa consumption on GALT function in rats postweaning. Weaned Wistar rats were fed cocoa-enriched diets (4% or 10% food intake) for 3 weeks. The function of the primary inductive sites of GALT, such as Peyer's patches (PP) and mesenteric lymph nodes (MLN), was evaluated through an analysis of IgA-secretory ability and lymphocyte composition (T, B and natural killer cells), activation (IL-2 secretion and IL-2 receptor alpha expression) and proliferation. T-helper effector cell balance was also established based on cytokine profile (interferon gamma, IL-4 and IL-10) after mitogen activation. A 10% cocoa intake induced significant changes in PP and MLN lymphocyte composition and function, whereas a 4% cocoa diet did not cause significant modifications in either tissues. Cocoa diet strongly reduced secretory IgA (S-IgA) in the intestinal lumen, although IgA's secretory ability was only slightly decreased in PP. In addition, the 10% cocoa diet increased T-cell-antigen receptor gammadelta cell proportion in both lymphoid tissues. Thus, cocoa intake modulates intestinal immune responses in young rats, influencing gammadelta T-cells and S-IgA production.

  7. Influence of Hesperidin on the Systemic and Intestinal Rat Immune Response

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2017-06-01

    Full Text Available Polyphenols, widely found in edible plants, influence the immune system. Nevertheless, the immunomodulatory properties of hesperidin, the predominant flavanone in oranges, have not been deeply studied. To establish the effect of hesperidin on in vivo immune response, two different conditions of immune system stimulations in Lewis rats were applied. In the first experimental design, rats were intraperitoneally immunized with ovalbumin (OVA plus Bordetella pertussis toxin and alum as the adjuvants, and orally given 100 or 200 mg/kg hesperidin. In the second experimental design, rats were orally sensitized with OVA together with cholera toxin and fed a diet containing 0.5% hesperidin. In the first approach, hesperidin administration changed mesenteric lymph node lymphocyte (MLNL composition, increasing the TCRαβ+ cell percentage and decreasing that of B lymphocytes. Furthermore, hesperidin enhanced the interferon (IFN-γ production in stimulated MLNL. In the second approach, hesperidin intake modified the lymphocyte composition in the intestinal epithelium (TCRγδ+ cells and the lamina propria (TCRγδ+, CD45RA+, natural killer, natural killer T, TCRαβ+CD4+, and TCRαβ+CD8+ cells. Nevertheless, hesperidin did not modify the level of serum anti-OVA antibodies in either study. In conclusion, hesperidin does possess immunoregulatory properties in the intestinal immune response, but this effect is not able to influence the synthesis of specific antibodies.

  8. Ept7 influences estrogen action in the pituitary gland and body weight of rats.

    Science.gov (United States)

    Kurz, Scott G; Dennison, Kirsten L; Samanas, Nyssa Becker; Hickman, Maureen Peters; Eckert, Quincy A; Walker, Tiffany L; Cupp, Andrea S; Shull, James D

    2014-06-01

    Estrogens control many aspects of pituitary gland biology, including regulation of lactotroph homeostasis and synthesis and secretion of prolactin. In rat models, these actions are strain specific and heritable, and multiple quantitative trait loci (QTL) have been mapped that impact the responsiveness of the lactotroph to estrogens. One such QTL, Ept7, was mapped to RNO7 in female progeny generated in an intercross between BN rats, in which the lactotroph population is insensitive to estrogens, and ACI rats, which develop lactotroph hyperplasia/adenoma and associated hyperprolactinemia in response to estrogen treatment. The primary objective of this study was to confirm the existence of Ept7 and to quantify the impact of this QTL on responsiveness of the pituitary gland of female and male rats to 17β-estradiol (E2) and diethylstilbestrol (DES), respectively. Secondary objectives were to determine if Ept7 influences the responsiveness of the male reproductive tract to DES and to identify other discernible phenotypes influenced by Ept7. To achieve these objectives, a congenic rat strain that harbors BN alleles across the Ept7 interval on the genetic background of the ACI strain was generated and characterized to define the effect of administered estrogens on the anterior pituitary gland and male reproductive tissues. Data presented herein indicate Ept7 exerts a marked effect on development of lactotroph hyperplasia in response to estrogen treatment, but does not affect atrophy of the male reproductive tissues in response to hormone treatment. Ept7 was also observed to exert gender specific effects on body weight in young adult rats.

  9. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats.

    Science.gov (United States)

    Batacan, R B; Fenning, A S; Dalbo, V J; Scanlan, A T; Duncan, M J; Moore, R J; Stanley, D

    2017-06-01

    Intestinal microbiota modulates the development of clinical conditions, including metabolic syndrome and obesity. Many of these conditions are influenced by nutritional and exercise behaviours. This study aimed to investigate the ability of exercise to re-shape the intestinal microbiota and the influence of the diet on the process. A rat model was used to examine the intestinal microbiota responses to four activity conditions, including: high-intensity interval training (HIIT), light-intensity training (LIT), sedentary and normal control, each containing two nutritional conditions: high-fat high-fructose diet (HF) and standard chow (SC) diet. No significant differences in microbiota were apparent between activity conditions in rats fed a HF diet but changes in the presence/absence of phylotypes were observed in the LIT and HIIT groups. In rats fed SC, significant differences in intestinal microbiota were evident between exercised and nonexercised rats. Both LIT and HIIT induced significant differences in intestinal microbiota in SC-fed rats compared to their respective SC-fed controls. Characterization of the exercise-induced bacterial phylotypes indicated an increase in bacteria likely capable of degrading resistant polysaccharides and an increase in short chain fatty acid producers. While a significant effect of exercise on microbiota composition occurred in SC-fed rats, the HF-fed rats microbiota showed little response. These data suggest that a HF diet prevented microbiota differentiation in response to exercise. The importance of diet-exercise interaction is extended to the level of intestinal bacteria and gut health. © 2017 The Society for Applied Microbiology.

  10. INFLUENCE OF IODINATED OIL AND MARGARINE ON THE THYROID SYSTEM OF RATS

    Directory of Open Access Journals (Sweden)

    Rodica A. Sturza

    2008-06-01

    Full Text Available Iodine deficiency is the most prevalent micronutrient deficiency in the world today. Food fortification is an important compliment to food-based approaches, and iodine fortification of foods as one of the strategies for the control of iodine deficiency. Manufacturing and consumption of sunflower oil fortified with iodine as well as derivative products on it basis is a perspective direction for elimination of alimentary dependent iodine deficiency disorders. The present work examines morphological changes in the thyroid system of rats at the experimental mercatholile-induced hypothyroidism. As well it determines the influence of iodinated oil and margarine on the thyroid system of rats. It specifies the safe value of iodinated oil and margarine for rats. In-vivo study demonstrated the efficacy of fortification of lipid products with iodine under iodine deficiency status.

  11. Influence of preexisting pulmonary emphysema on susceptibility of rats to inhaled diesel exhaust

    International Nuclear Information System (INIS)

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Griffith, W.C.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K.

    1990-01-01

    The susceptibilities of normal rats and rats with preexisting pulmonary emphysema to chronically inhaled diesel exhaust were compared. Rats were exposed 7 h/day, 5 days/wk for 24 months to diesel exhaust at 3.5 mg soot/m3, or to clean air as controls. Emphysema was induced in one-half of the rats by intratracheal instillation of elastase 6 wk before exhaust exposure. Measurements included lung burdens of diesel soot, respiratory function, bronchoalveolar lavage, clearance of radiolabeled particles, pulmonary immune responses, lung collagen, excised lung weight and volume, histopathology, and mean linear intercept of terminal air spaces. Parameters indicated by analysis of variance to exhibit significant interactions between the influences of emphysema and exhaust were examined to determine if the effects were more than additive (indicating increased susceptibility). Although 14 of 63 parameters demonstrated emphysema-exhaust interactions, none indicated increased susceptibility. Less soot accumulated in lungs of emphysematous rats than in those of nonemphysematous rats, and the reduced accumulation had a sparing effect in the emphysematous rats. The results did not support the hypothesis that emphysematous lungs are more susceptible than are normal lungs to chronic exposure to high levels of diesel exhaust. The superimposition of effects of emphysema and exhaust, however, might still warrant special concern for heavy exposures of emphysematous subjects

  12. The influence of gemfibrozil on malondialdehyde level and paraoxonase 1 activity in wistar and fisher rats.

    Science.gov (United States)

    Macan, Marija; Marija, Macan; Konjevoda, Paško; Paško, Konjevoda; Lovric, Jasna; Jasna, Lovrić; Koprivanac, Marijan; Marijan, Koprivanac; Kelava, Marta; Marta, Kelava; Vrkic, Nada; Nada, Vrkić; Bradamante, Vlasta; Vlasta, Bradamante

    2011-06-01

    There are diverse experimental data about the influence of gemfibrozil (GEM) on the production of hydrogen peroxide (H(2)O(2)) and antioxidant enzymes. We investigated the influence of GEM treatment on the production of malondialdehyde (MDA) level in tissues of normolipidaemic Wistar and Fisher rats which is an index of lipid peroxidation. Because serum paraoxonase 1 (PON1) is an important enzyme with specific protective function on metabolism of lipid peroxides, we examined the influence of GEM on PON1 activity in liver and serum. MDA level and enzyme activities were also determined 10 days after withdrawal of GEM treatment. The significantly increased levels of MDA in liver, kidney and heart of both rat strains were obtained after 3 weeks of GEM treatment. We propose two possibilities for the increase of MDA levels caused by GEM, induction of peroxisome proliferation and activities of enzymes that participated in occurrence of H(2)O(2) and possible reduction of enzyme activities including in H(2)O(2) metabolism. Ten days after withdrawal of GEM treatment, MDA levels in all tissue levels of both rat strains were less in comparison with GEM treatment. GEM caused a significant drop of PON1 activity in serum and liver of Fisher rats, and in liver of Wistar rats. We suggest that GEM, through induction of lipid peroxidation, caused the damage of hepatocytes with consequent reduction of PON1 synthesis. The increase in PON1 activity in serum and tissues of both rat strains 10 days after withdrawal of GEM treatment shows the fast recovery of enzyme synthesis. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  13. Toxoplasma gondii influences aversive behaviors of female rats in an estrus cycle dependent manner.

    Science.gov (United States)

    Golcu, Doruk; Gebre, Rahiwa Z; Sapolsky, Robert M

    2014-08-01

    The protozoan Toxoplasma gondii (T. gondii) manipulates the behavior of its rodent intermediate host to facilitate its passage to its feline definitive host. This is accomplished by a reduction of the aversive response that rodents show towards cat odors, which likely increases the predation risk. Females on average show similar changes as males. However, behaviors that relate to aversion and attraction are usually strongly influenced by the estrus cycle. In this study, we replicated behavioral effects of T. gondii in female rats, as well as expanded it to two novel behavioral paradigms. We also characterized the role of the estrus cycle in the behavioral effects of T. gondii on female rats. Uninfected females preferred to spend more time in proximity to rabbit rather than bobcat urine, and in a dark chamber rather than a lit chamber. Infected females lost both of these preferences, and also spent more time investigating social novelty (foreign bedding in their environment). Taken together, these data suggest that infection makes females less risk averse and more exploratory. Furthermore, this effect was influenced by the estrus cycle. Uninfected rats preferred rabbit urine to bobcat urine throughout the cycle except at estrus and metestrus. In contrast, infected rats lost this preference at every stage of the cycle except estrus. Commensurate with the possibility that this was a hormone-dependent effect, infected rats had elevated levels of circulating progesterone, a known anxiolytic. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A neurorobotic platform for locomotor prosthetic development in rats and mice

    Science.gov (United States)

    von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire

    2016-04-01

    Objectives. We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. Approach. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Main Results. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. Significance. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.

  15. Accurate assessment of in situ isometric contractile properties of hindlimb plantar and dorsal flexor muscle complex of intact mice

    NARCIS (Netherlands)

    Gorselink, M.; Drost, M.R.; Louw, de J.; Willems, P.J.B.; Rosielle, P.C.J.N.; Janssen, J.D.; Vusse, van der G.J.

    2000-01-01

    An isometric torque sensor for measuring in situ contractions of plantar or dorsal flexors of intact mouse hindlimb has been developed and evaluated. With this device, muscle torque can be accurately measured within the range of -14 mN·m to +14 mN·m. Special attention was paid to fixation of the

  16. Influence of spatial environment on maze learning in an African mole-rat

    CSIR Research Space (South Africa)

    Du Toit, L

    2012-05-01

    Full Text Available -1 Anim Cogn DOI 10.1007/s10071-012-0503-0 Influence of spatial environment on maze learning in an African mole-rat Lydia du Toit ? Nigel C. Bennett ? Alecia Nickless ? Martin J. Whiting L. du Toit , A. Nickless , M. J. Whiting (email) School...

  17. Unilateral hindlimb casting induced a delayed generalized muscle atrophy during rehabilitation that is prevented by a whey or a high protein diet but not a free leucine-enriched diet.

    Directory of Open Access Journals (Sweden)

    Hugues Magne

    Full Text Available Sarcopenia is the general muscle mass and strength loss associated with ageing. Muscle atrophy could be made worse by exposure to acute periods of immobilization, because muscle disuse by itself is a stimulus for atrophy. Using a model of unilateral hindlimb casting in old adult rats, we have already demonstrated that the primary effect of immobilization was atrophy in the casted leg, but was also surprisingly associated with a retarded atrophy in the non-casted leg during rehabilitation. In search of mechanisms involved in this generalized atrophy, we demonstrated in the present study that contrary to pair-fed non-immobilized control animals, muscle protein synthesis in the non-immobilized limb was unable to adapt and to respond positively to food intake. Because pair-fed control rats did not lose muscle mass, this defect in muscle protein synthesis may represent one of the explanation for the muscle mass loss observed in the non-immobilized rats. Nevertheless, in order to stimulate protein turn over and generate a positive nitrogen balance required to maintain the whole muscle mass in immobilized rats, we tested a dietary free leucine supplementation (an amino acid known for its stimulatory effect on protein metabolism during the rehabilitation period. Leucine supplementation was able to overcome the anabolic resistance in the non-immobilized limb. A greater muscle protein synthesis up-regulation associated with a stimulation of the mTOR signalling pathway was indeed recorded but it remained inefficient to prevent the loss of muscle in the non-immobilized limb. By contrast, we demonstrated here that whey protein or high protein diets were able to prevent the muscle mass loss of the non-immobilized limb by sustaining muscle protein synthesis during the entire rehabilitation period.

  18. Effect of Local Vibration and Passive Exercise on the Hormones and Neurotransmitters of Hypothalamic-Pituitary-Adrenal Axis in Hindlimb Unloading Rats

    Science.gov (United States)

    Luan, Huiqin; Huang, Yunfei; Li, Jian; Sun, Lianwen; Fan, Yubo

    2018-04-01

    Astronauts are severely affected by spaceflight-induced bone loss. Mechanical stimulation through exercise inhibits bone resorption and improves bone formation. Exercise and vibration can prevent the degeneration of the musculoskeletal system in tail-suspended rats, and long-term exercise stress will affect endocrine and immune systems that are prone to fatigue. However, the mechanisms through which exercise and vibration affect the endocrine system remain unknown. This study mainly aimed to investigate the changes in the contents of endocrine axis-related hormones and the effects of local vibration and passive exercise on hypothalamic-pituitary-adrenal (HPA) axis-related hormones in tail-suspended rats. A total of 32 Sprague-Dawley rats were randomly distributed into four groups (n = 8 per group): tail suspension (TS), TS + 35Hz vibration, TS + passive exercise, and control. The rats were placed on a passive exercise and local vibration regimen for 21 days. On day 22 of the experiment, the contents of corticotrophin-releasing hormone, adrenocorticotropic hormone, cortisol, and 5-hydroxytryptamine in the rats were quantified with kits in accordance with the manufacturer's instructions. Histomorphometry was applied to evaluate histological changes in the hypothalamus. Results showed that 35Hz local vibration cannot cause rats to remain in a stressed state and that it might not inhibit the function of the HPA axis. Therefore, we speculate that this local vibration intensity can protect the function of the HPA axis and helps tail-suspended rats to transition from stressed to adaptive state.

  19. Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.

    Science.gov (United States)

    Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J; Turner, Charles H; Foroud, Tatiana

    2011-05-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from five of the eight progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. Copyright

  20. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    Science.gov (United States)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  1. [Hindlimb antigravity muscles' reaction in male and female rats to the deficit of functional loading].

    Science.gov (United States)

    Il'ina-Kakueva, E I

    2002-01-01

    Histological and histomorphometric comparison of the antigravity muscles of rats of both sexes was performed following 30-d unloading of their hind limbs by head-down suspension. It was shown that growth rate of control males was higher as compared to control females. This is attributed to the synergic effects of somatotropin and testosterone on metabolism and growth of males and only somatotropin in females. Load deprivation of the hind limbs inhibited body mass gain in all animals; however, this inhibition was twice as great in males. Increase of the soleus and gastrocnemius in the control males in this experiment was slightly ahead of the muscle mass gain in the females. The histomorphometric investigation of the cross-section area of myofibers did not reveal differences between males and females either in the control or suspension. No difference was found in percent of various types of fibers in the control males and females. In the soleus of the suspended rats, a part of slow fibers had transformed into fast ones without any sex-related particularities. The conclusion was made that despite the significant difference in the hormonal profile, the reaction of males and females to insufficient weight loading of the antigravity muscles was alike.

  2. Influence of small-scale disturbances by kangaroo rats on Chihuahuan Desert ants

    Science.gov (United States)

    R. L. Schooley; B. T. Bestelmeyer; J. F. Kelly

    2000-01-01

    Banner-tailed kangaroo rats (Dipodomys spectabilis) are prominent ecosystem engineers that build large mounds that influence the spatial structuring of fungi, plants, and some ground-dwelling animals. Ants are diverse and functionally important components of arid ecosystems; some species are also ecosystem engineers. We investigated the effects of...

  3. The influence of thyroxine and propyl thiouracil on Parastrongylus malaysiensis infection in rats.

    Science.gov (United States)

    Kamis, A B; Ahmad, R A; Chang, J S; Ambu, S

    1994-01-01

    Daily intramuscular injection with thyroxine (T4) at a dose of 2.5 micrograms/100 g body weight decreased the larvae and adult worm burden of Parastrongylus malaysiensis in the brain and pulmonary arteries of male Sprague-Dawley albino rats. In contrast, rats treated with propyl thiouracil (PTU), an antithyroid drug, at a dose of 3.75 mg/100 g body weight retained greater numbers of larvae and adult worms. The results may reflect the contrasting immunomodulatory effects of T4 and PTU that influence the susceptibility of the host.

  4. Influence of lead injection on calcium-45 distribution in hard tissues of rats

    International Nuclear Information System (INIS)

    Sato, Makoto

    1978-01-01

    This study determines the relationship between calcium distribution in hard tissues and age. The distribution of calcium was examined by using calcium-45 as tracer. Further, influences of such environmental toxic heavy metals as lead, cadmium and mercury upon calcium metabolism were determined. According to checks performed on 3-week-old rats, calcium-45 distributions in hard tissues from 6 hours to 6 days after injection were greater in the following tissues in the order listed: femurs, incisors, molars. In 2-week-old rats, the calcium distributions throughout the body were about the same. In 3-week-old rats, however, they were graded in descending order from femur to incisors, and then to molars. In rats of 18 weeks or more, the distribution of calcium-45 in the femur decreased. A slow increase was noted in calcium-45 deposits in the incisors of rats of four or more weeks; this increase remained constant at a very low level in rats of more than eight weeks. Calcium-45 distribution in rats of 61 weeks of age was graded in this descending order: incisors, femurs, and molars. In the group injected with calcium-45 and lead acetate, calcium-45 distribution was significantly less in 3-week-old than in 3-month-old rats. The following are percentages of calcium-45 distribution in rats to which 100 mg/kg of lead (equivalent of 1/3 of LD 50 were injected, when 100-percent distribution is assumed for controls; 3-week-old rats: femur 48 percent, incisors 49 percent, and molars 40 percent, 3-month-old rats: femurs 73 percent, incisors 67 percent, and molars 71 percent. No difference was observed in calcium-45 uptake between rats to whom injections of cadmium and mercury equivalent to 1/3 of a dose of LD 50 had been administered and rats who received only a single injection of calcium-45. (auth.)

  5. Role of Growth Hormone, Exercise and Serum Phosphorus in Unloaded Bone of Young Rats

    Science.gov (United States)

    Arnnaud, Sara B.; Harper, J. S.; Gosselink, K. L.; Navidi, M.; Fung, P.; Grindeland, R. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone, known to be stimulated by exercise, is suppressed in rats after space flight and in a ground-based model in which the hind-limbs are unloaded (S). To determine the role of GH in the osteopenia of unloaded bones of S rats, young males were treated with GH combined with insulin-like growth factor-1 (IGF-1), a peptide that mediates the local actions of the hormone. 200 g rats, hypophysectomized (hypox) 17 d earlier, were treated with 1 mg/kg/d GH/IGF-1 (H) or saline (C) in 3 divided daily doses x10 d. Hind-limb bones were unloaded (S), ambulated (A) or exercised (X) by climbing a ladder while carrying a weight. Growth was monitored daily. Tibial growth plate (Tepi) was measured with a micrometer, and femoral (F) area, length, and mineral content (BMC) by DEXA. Parameters of calcium metabolism were measured by autoanalyzer and calciotropic hormones by radioimmunoassay. F bone density, g/square cm, (BMD) or BW were not affected by S in Hypox. However, FBMD was lower in S+H than A+H (p is less than 0.002) and H stimulated whole body growth in S (5.2 g/d) and SX (5.6 g/d) to a lesser extent than in A (6.6 g/d) (p is less than 0.05). Adjusted for BW, Tepi showed the greatest increase in S+H+X (64%), the next highest increase in S+H (50%) and no change in S+X. F area, length and BMC/100 g BW were lower in all H groups than respective C's. By multiple regression analysis, serum phosphorus (Pi) which correlated with Tepi (r = 0.88, p is less than 0.001) and was inversely related to FBMC (r = -0.68, p is less than 0.001) proved to be the most significant determinant of BMC. This illustrates the dependence of osteopenia in S on GH, the maximizing effect of X for epiphyseal growth and the major role of Pi metabolism on BMC in weight bearing bone during growth.

  6. Influence of dietary iodine on drug-induced hypothyrodism in the rat.

    Science.gov (United States)

    Beyssen, M L; Lagorce, J F; Cledat, D; Buxeraud, J

    1999-06-01

    Several compounds of pharmaceutical importance from a variety of chemical families, for example chlorpromazine and clomipramine, have been found to form charge-transfer complexes with iodine. We have investigated the influence of dietary iodine on thyroid-gland dysfunction induced by clomipramine, chlorpromazine or 2-thiazoline-2-thiol. We suggest that iodine is partly diverted from its metabolic pathway by complexation with drugs, and so the urinary concentration of iodide is increased. Both chlorpromazine and clomipramine, at doses which do not inhibit thyroperoxidase, enhanced urinary iodine excretion when dietary iodine was restricted (3.944+/-0.96 microg/day for chlorpromazine-tested rats, 3.43+/-1.33 microg/day for clomipramine-tested rats, compared with 2.34+/-0.11 microg/day in control rats). Concurrently, these pharmaceutical compounds increased the level of free thyroid-stimulating hormone (TSH) in comparison with controls and induced histological modifications in, and enlargement of, the thyroid gland. We have demonstrated that drug-induced loss of iodine in the urine was associated with antithyroid action when iodine intake was limited.

  7. Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats.

    Science.gov (United States)

    Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki

    2018-01-01

    We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.

  8. Influence of various forms of dialyzable leukocyte extracts on rat adjuvant arthritis

    International Nuclear Information System (INIS)

    Stancikova, Maria; Rovensky, Jozef; Blazickova, Stanislava; Pekarek, J.; Cech, Karel

    1994-01-01

    Adjuvant-induced arthritis in rats is a chronic inflammatory disease, widely as an animal model for rheumatoid arthritis. In our study the effect of various fractions of dialyzable leukocyte extract (DLE): DLE I-molecular weight below 10 kDa (commercial preparation), DLE II-molecular weight below 5 kDa (suppressor fraction), DLE III-molecular weight 5-10 kDa on rat adjuvant-induced arthritis was studied. The adjuvant arthritic (AA) rats were treated with DLE fractions i.p. in solutions containing an active substance isolated from 12.5 x 10 6 and 6.25 x 10 6 leukocytes from day 1 (adjuvant injected) through day 18, every second day (total 9 times). Various markers in inflammation, immune function and joint destruction were evaluated: hind paw volume, serum hyaluronic acid, serum albumin and biopterin in urine. All these markers showed a significant improvement after using fraction DLE II in comparison with AA controls. Fractions DLE I and DLE III influenced only some markers of inflammation and immune function. Our results demonstrated a therapeutical effect of fraction DLE II on rat adjuvant-induced arthritis. (author). 22 refs, 2 figs, 2 tabs

  9. Muscle specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat

    DEFF Research Database (Denmark)

    Olesen, Annesofie Thorup; Jensen, Bente Rona; Uhlendorf, Toni L

    2014-01-01

    length, passive stiffness and passive force of spastic GA were decreased whereas those of spastic SO were increased. No mechanical interaction between the calf muscles and TA was found. As GA was lengthened, force from SO and PL declined despite a constant muscle-tendon unit length of SO and PL. However......, the extent of this interaction was not different in the spastic rats. In conclusion, the effects of spasticity on length-force characteristics were muscle specific. The changes seen for GA and PL muscles are consistent with the changes in limb mechanics reported for human patients. Our results indicate......The purpose of the present study was to investigate muscle mechanical properties and mechanical interaction between muscles in the lower hindlimb of the spastic mutant rat. Length-force characteristics of gastrocnemius (GA), soleus (SO) and plantaris (PL) were assessed in anesthetized spastic...

  10. Old age and gender influence the pharmacokinetics of inhaled manganese sulfate and manganese phosphate in rats

    International Nuclear Information System (INIS)

    Dorman, David C.; McManus, Brian E.; Marshall, Marianne W.; James, R. Arden; Struve, Melanie F.

    2004-01-01

    In this study, we examined whether gender or age influences the pharmacokinetics of manganese sulfate (MnSO 4 ) or manganese phosphate (as the mineral form hureaulite). Young male and female rats and aged male rats (16 months old) were exposed 6 h day -1 for 5 days week -1 to air, MnSO 4 (at 0.01, 0.1, or 0.5 mg Mn m -3 ), or hureaulite (0.1 mg Mn m -3 ). Tissue manganese concentrations were determined in all groups at the end of the 90-day exposure and 45 days later. Tissue manganese concentrations were also determined in young male rats following 32 exposure days and 91 days after the 90-day exposure. Intravenous 54 Mn tracer studies were also performed in all groups immediately after the 90-day inhalation to assess whole-body manganese clearance rates. Gender and age did not affect manganese delivery to the striatum, a known target site for neurotoxicity in humans, but did influence manganese concentrations in other tissues. End-of-exposure olfactory bulb, lung, and blood manganese concentrations were higher in young male rats than in female or aged male rats and may reflect a portal-of-entry effect. Old male rats had higher testis but lower pancreas manganese concentrations when compared with young males. Young male and female rats exposed to MnSO 4 at 0.5 mg Mn m -3 had increased 54 Mn clearance rates when compared with air-exposed controls, while senescent males did not develop higher 54 Mn clearance rates. Data from this study should prove useful in developing dosimetry models for manganese that consider age or gender as potential sensitivity factors

  11. Modulation of spontaneous locomotor and respiratory drives to hindlimb motoneurons temporally related to sympathetic drives as revealed by Mayer waves.

    Science.gov (United States)

    Wienecke, Jacob; Enríquez Denton, Manuel; Stecina, Katinka; Kirkwood, Peter A; Hultborn, Hans

    2015-01-01

    In this study we investigated how the networks mediating respiratory and locomotor drives to lumbar motoneurons interact and how this interaction is modulated in relation to periodic variations in blood pressure (Mayer waves). Seven decerebrate cats, under neuromuscular blockade, were used to study central respiratory drive potentials (CRDPs, usually enhanced by added CO2) and spontaneously occurring locomotor drive potentials (LDPs) in hindlimb motoneurons, together with hindlimb and phrenic nerve discharges. In four of the cats both drives and their voltage-dependent amplification were absent or modest, but in the other three, one or other of these drives was common and the voltage-dependent amplification was frequently strong. Moreover, in these three cats the blood pressure showed marked periodic variation (Mayer waves), with a slow rate (periods 9-104 s, mean 39 ± 17 SD). Profound modulation, synchronized with the Mayer waves was seen in the occurrence and/or in the amplification of the CRDPs or LDPs. In one animal, where CRDPs were present in most cells and the amplification was strong, the CRDP consistently triggered sustained plateaux at one phase of the Mayer wave cycle. In the other two animals, LDPs were common, and the occurrence of the locomotor drive was gated by the Mayer wave cycle, sometimes in alternation with the respiratory drive. Other interactions between the two drives involved respiration providing leading events, including co-activation of flexors and extensors during post-inspiration or a locomotor drive gated or sometimes entrained by respiration. We conclude that the respiratory drive in hindlimb motoneurons is transmitted via elements of the locomotor central pattern generator. The rapid modulation related to Mayer waves suggests the existence of a more direct and specific descending modulatory control than has previously been demonstrated.

  12. Modulation of spontaneous locomotor and respiratory drives to hindlimb motoneurons temporally related to sympathetic drives as revealed by Mayer waves

    Directory of Open Access Journals (Sweden)

    Katinka eStecina

    2015-02-01

    Full Text Available In this study we investigated how the networks mediating respiratory and locomotor drives to lumbar motoneurons interact and how this interaction is modulated in relation to periodic variations in blood pressure (Mayer waves. Seven decerebrate cats, under neuromuscular blockade, were used to study central respiratory drive potentials (CRDPs, usually enhanced by added CO2 and spontaneously occurring locomotor drive potentials (LDPs in hindlimb motoneurons, together with hindlimb and phrenic nerve discharges. In four of the cats both drives and their voltage-dependent amplification were absent or modest, but in the other three, one or other of these drives was common and the voltage-dependent amplification was frequently strong. Moreover, in these three cats the blood pressure showed marked periodic variation (Mayer waves, with a slow rate (periods 9 - 104 s, mean 39 ± 17 SD. Profound modulation, synchronized with the Mayer waves was seen in the occurrence and/or in the amplification of the CRDPs or LDPs. In one animal, where CRDPs were present in most cells and the amplification was strong, the CRDP consistently triggered sustained plateaux at one phase of the Mayer wave cycle. In the other two animals, LDPs were common, and the occurrence of the locomotor drive was gated by the Mayer wave cycle, sometimes in alternation with the respiratory drive. Other interactions between the two drives involved respiration providing leading events, including co-activation of flexors and extensors during post-inspiration or a locomotor drive gated or sometimes entrained by respiration. We conclude that the respiratory drive in hindlimb motoneurons is transmitted via elements of the locomotor central pattern generator. The rapid modulation related to Mayer waves suggests the existence of a more direct and specific descending modulatory control than has previously been demonstrated.

  13. Hindlimb suspension and SPE-like radiation impairs clearance of bacterial infections.

    Directory of Open Access Journals (Sweden)

    Minghong Li

    Full Text Available A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice. These data suggest that an astronaut exposed to a strong SPE during extended space travel is at increased risk for the development of infections that could potentially be severe and interfere with mission success and astronaut health.

  14. Updating of the inherent and acquired reactions of rats at influence of electromagnetic field of weak intensity

    International Nuclear Information System (INIS)

    Mamedov, Z.G.; Rustamova, T.V.

    2008-01-01

    Investigated effects of unitary influence of weak electromegnetic (EMF) radiations of a range modulated in area alfa of EEG fluctuations on behavior reaction at rats in the test of an open field and conditional reaction. As a source EMF applied the generator of shaking frequency. The results testify to increase of research activity and infringement of processes learning at rats, subjected to influence of EMF directly ahead of updating. The irradiation of animals after procedure of training reflex doe not cause of infringements in behavior during testing. The received data are analyzed from the point of view of infringement under influence of EMF, of an optimum level of emotional making of learning processes, necessary for a correct estimation of the biological importance of unconditional components of activity

  15. Influence of dietary methionine on the metabolism of selenomethionine in rats

    International Nuclear Information System (INIS)

    Butler, J.A.; Beilstein, M.A.; Whanger, P.D.

    1989-01-01

    To determine the influence of methionine on selenomethionine (SeMet) metabolism, weanling male rats were fed for 8 wk a basal diet marginally deficient in sulfur amino acids, containing 2.0 micrograms selenium (Se)/g as DL-SeMet and supplemented with 0, 0.3, 0.6 or 1.2% DL-methionine. Increased dietary methionine caused decreased selenium deposition in all tissues examined but increased glutathione peroxidase activity in testes, liver and lungs. A positive correlation was found between dietary methionine and the calculated percentage of selenium associated with GSHPx. In a second experiment, 75 SeMet was injected into weanling male rats which had been fed the basal diet containing 2.0 micrograms selenium as DL-SeMet with or without the addition of 1.0% methionine. The selenoamino acid content of tissues and the distribution of 75 Se in erythrocyte proteins were determined. In comparison to the rats fed the basal diet without added methionine, significantly more 75 Se-selenocysteine was found in liver and muscle, more 75 Se was found in erythrocyte GSHPx and less 75 Se was found in erythrocyte hemoglobin of rats fed 1.0% methionine. These data suggest that methionine diverts SeMet from incorporation into general proteins and enhances its conversion to selenocysteine for specific selenium-requiring proteins, such as GSHPx

  16. A Novel Interactive Exoskeletal Robot for Overground Locomotion Studies in Rats.

    Science.gov (United States)

    Song, Yun Seong; Hogan, Neville

    2015-07-01

    This paper introduces a newly developed apparatus, Iron Rat, for locomotion research in rodents. Its main purpose is to allow maximal freedom of voluntary overground movement of the animal while providing forceful interaction to the hindlimbs. Advantages and challenges of the proposed exoskeletal apparatus over other existing designs are discussed. Design and implementation challenges are presented and discussed, emphasizing their implications for free, voluntary movement of the animal. A live-animal experiment was conducted to assess the design. Unconstrained natural movement of the animal was compared with its movement with the exoskeletal module attached. The compact design and back-drivable implementation of this apparatus will allow novel experimental manipulations that may include forceful yet compliant dynamic interaction with the animal's overground locomotion.

  17. Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle.

    Science.gov (United States)

    Marette, A; Dimitrakoudis, D; Shi, Q; Rodgers, C D; Klip, A; Vranic, M

    1999-02-01

    We have previously demonstrated that chronic hyperglycemia per se decreases GLUT4 glucose transporter expression and plasma membrane content in mildly streptozotocin- (STZ) diabetic rats (Biochem. J. 284, 341-348, 1992). In the present study, we investigated the effect of an acute rise in glycemia on muscle GLUT4 and GLUT1 protein contents in the plasma membrane, in the absence of insulin elevation. Four experimental groups of rats were analyzed in the postabsorptive state: 1. Control rats. 2. Hyperglycemic STZ-diabetic rats with moderately reduced fasting insulin levels. 3. STZ-diabetic rats made normoglycemic with phlorizin treatment. 4. Phlorizin-treated (normoglycemic) STZ-diabetic rats infused with glucose for 40 min. The uniqueness of the latter model is that glycemia can be rapidly raised without any concomitant increase in plasma insulin levels. Plasma membranes were isolated from hindlimb muscle and GLUT1 and GLUT4 proteins amounts determined by Western blot analysis. As predicted, STZ-diabetes caused a significant decrease in the abundance of GLUT4 in the isolated plasma membranes. Normalization of glycemia for 3 d with phlorizin treatment restored plasma membrane GLUT4 content in muscle of STZ-diabetic rats. A sudden rise in glycemia over a period of 40 min caused the GLUT4 levels in the plasma membrane fraction to decrease to those of nontreated STZ-diabetic rats. In contrast to the GLUT4 transporter, plasma membrane GLUT1 abundance was not changed by the acute glucose challenge. It is concluded that glucose can have regulatory effect by acutely reducing plasma membrane GLUT4 protein contents in rat skeletal muscle. We hypothesize that this glucose-induced downregulation of plasma membrane GLUT4 could represent a protective mechanism against excessive glucose uptake under hyperglycemic conditions accompanied by insulin resistance.

  18. Influence of adrenaline on the activity of succinate dehydrogenase in peripheral blood lymphocytes of irradiated rats

    International Nuclear Information System (INIS)

    Koroleva, L.V.; Vasin, M.V.

    1988-01-01

    In experiments with albino mongrel female rats, the influence of adrenaline on succinate dehydrogenase (SDG) activity in the peripheral blood lymphocytes of irradiated and intact animals has been investigated. Two minutes after the intraperitoneal administration of adrenaline (1 mg/kg) to intact rats SDG activity sharply rises and 3-4 min it drastically falls. In 6 to 8 min the second peak in the enzyme activity is registered. Twenty minutes after irradiation of rats in the crano-caudal direction with a dose of 75 Gy delivered to head, the reaction to adrenaline, manifested by the rise in SDG activity, is absent

  19. Influence Of Ginger (Zingiber Officinale) Supplementation Against GAMMA Rays Induced Immunosuppression In Male Rats

    International Nuclear Information System (INIS)

    Mangood, S.A.; Kassab, F.M.A.

    2013-01-01

    The influence of ginger (Zingiber officinale) supplementation against gamma rays-induced immunosuppression in male albino rats was investigated in the present study. Twenty four male albino rats were divided into four equal groups; control group (receiving no treatment), ginger group where the rats received ginger orally at a dose of 15 g/rat/day for 120 consecutive days, gamma radiation group which subjected to a single 6 Gy whole body gamma radiation and gamma radiation plus ginger group where each rat after taking daily 15 g of ginger for 120 consecutive days was subjected to 6 Gy whole body irradiation. Complete blood pictures and immunoglobulin G (IgG) and M (IgM) were estimated and spleen tissue was also examined histologically. The data obtained revealed that exposure to 6 Gy of gamma radiation caused significant decrease in the body weight, spleen weight, IgG, IgM, erythroide and leucoid elements and produced histological damage in spleen tissue. On the other hand, ginger as a protective agent, caused significant amelioration in the changes produced by irradiation especially immunoglobulins leading to the conclusion that ginger supplementation for 120 days caused modulation of the humoral immune response in irradiated rats. In conclusion, these findings indicated that ginger has the regulatory effect against gamma rays-induced immunosuppression.

  20. Assessment of intersegmental coordination of rats during walking at different speeds - Application of continuous relative phase

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Nielsen, Louise R; Madsen, Stefan

    2018-01-01

    of the CRP (ACRP) and DP and on the mean ACRP and mean DP was established by statistical parametric mapping (SPM) and a one-way ANOVA for repeated measures. Absolute and relative reliability were assessed by measurement error and intra-class correlation coefficient. The SPM analysis revealed time dependent......The present study investigated the feasibility and reliability of continuous relative phase (CRP) and deviation phase (DP) to assess intersegmental hind limb coordination pattern and coordination variability in rats during walking. Twenty-six adult rats walked at 8 m/min, 12 m/min and 16 m....../min while two-dimensional kinematics were recorded. Segment angles and segment angular velocities of the paw, shank and thigh on the left hind-limb were extracted from 15 strides and CRP was calculated for the paw-shank and shank-thigh coupling. The effect of walking speed on the time point average curve...

  1. Dissociating movement from movement timing in the rat primary motor cortex.

    Science.gov (United States)

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  2. Structural and ultrastructural study of rat testes influenced by electromagnetic radiation.

    Science.gov (United States)

    Almášiová, Viera; Holovská, Katarína; Cigánková, Viera; Račeková, Enikö; Fabianová, Kamila; Martončíková, Marcela

    2014-01-01

    This study was conducted to investigate the influence of whole-body electromagnetic radiation (EMR) on testicular parenchyma of Wistar rats. Sexually mature rats were subjected to pulsed electromagnetic field at frequency of 2.45 GHz and mean power density 2.8 mW/cm(2) by 3-h daily applications for 3 wk. Tissue samples were obtained 3 h after the last irradiation and processed by histological techniques for light and transmission electron microscopy. Testes showed apparent degenerative changes of seminiferous epithelium. The seminiferous tubules were mostly irregular in shape, and seminiferous epithelium contained a number of empty spaces of different size. Subsequently, groups of sloughed epithelial cells were often found inside the lumina of tubules. Except for relatively unchanged Sertoli cells, some locations of basal compartment of seminiferous epithelium contained shriveled Sertoli cells with dark cytoplasm. These areas showed degenerative features including necrotizing and shriveled spermatogonia surrounded by empty irregular spaces, and undulating basement membrane. The intertubular spaces were enlarged but interstitial Leydig cells did not show any marked morphological changes. Evidence demonstrates the adverse effects of EMR on testicular parenchyma in rats.

  3. A comparison of passive hindlimb cycling and active upper-limb exercise provides new insights into systolic dysfunction after spinal cord injury.

    Science.gov (United States)

    DeVeau, Kathryn M; Harman, Kathryn A; Squair, Jordan W; Krassioukov, Andrei V; Magnuson, David S K; West, Christopher R

    2017-11-01

    Active upper-limb and passive lower-limb exercise are two interventions used in the spinal cord injury (SCI) population. Although the global cardiac responses have been previously studied, it is unclear how either exercise influences contractile cardiac function. Here, the cardiac contractile and volumetric responses to upper-limb (swim) and passive lower-limb exercise were investigated in rodents with a severe high-thoracic SCI. Animals were divided into control (CON), SCI no exercise (NO-EX), SCI passive hindlimb cycling (PHLC), or SCI swim (SWIM) groups. Severe contusion SCI was administered at the T2 level. PHLC and SWIM interventions began on day 8 postinjury and lasted 25 days. Echocardiography and dobutamine stress echocardiography were performed before and after injury. Cardiac contractile indexes were assessed in vivo at study termination via a left ventricular pressure-volume conductance catheter. Stroke volume was reduced after SCI (91 µl in the NO-EX group vs. 188 µl in the CON group, P spinal cord injury. Here, we demonstrate that lower-limb exercise positively influences flow-derived cardiac indexes, whereas upper-limb exercise does not. Furthermore, neither intervention corrects the cardiac contractile dysfunction associated with spinal cord injury. Copyright © 2017 the American Physiological Society.

  4. Attenuation of hind-limb ischemia in mice with endothelial-like cells derived from different sources of human stem cells.

    Directory of Open Access Journals (Sweden)

    Wing-Hon Lai

    Full Text Available Functional endothelial-like cells (EC have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however, their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC, human embryonic stem cells (hESC-EC and human induced pluripotent stem cells (hiPSC-EC, and compared their in-vitro tube formation, migration and cytokine expression profiles, and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless, BM-EC, hESC-EC and hiPSC-EC exhibited typical cobblestone morphology, had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein, and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC and BM-EC (P>0.05. While increased expression of major angiogenic factors including epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor, placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (P<0.05, the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (P<0.05. Compared with medium, transplanting BM-EC (n = 6, HUVEC (n = 6, hESC-EC (n = 8 or hiPSC-EC (n = 8 significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion, functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases, and hESC-EC or iPSC-EC are readily available as "off-the-shelf" format for the treatment

  5. Attenuation of Hind-Limb Ischemia in Mice with Endothelial-Like Cells Derived from Different Sources of Human Stem Cells

    Science.gov (United States)

    Chan, Yau-Chi; Ng, Joyce H. L.; Au, Ka-Wing; Wong, Lai-Yung; Siu, Chung-Wah; Tse, Hung-Fat

    2013-01-01

    Functional endothelial-like cells (EC) have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however, their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC), human embryonic stem cells (hESC-EC) and human induced pluripotent stem cells (hiPSC-EC), and compared their in-vitro tube formation, migration and cytokine expression profiles, and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless, BM-EC, hESC-EC and hiPSC-EC exhibited typical cobblestone morphology, had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein, and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC) and BM-EC (P>0.05). While increased expression of major angiogenic factors including epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor, placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (P<0.05), the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (P<0.05). Compared with medium, transplanting BM-EC (n = 6), HUVEC (n = 6), hESC-EC (n = 8) or hiPSC-EC (n = 8) significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion, functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases, and hESC-EC or iPSC-EC are readily available as “off-the-shelf” format for the treatment of

  6. Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter.

    Science.gov (United States)

    Mori, Kent; Suzuki, Satoshi; Koyabu, Daisuke; Kimura, Junpei; Han, Sung-Yong; Endo, Hideki

    2015-05-01

    Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.

  7. The influence of electromagnetic radiation generated by a mobile phone on the skeletal system of rats.

    Science.gov (United States)

    Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Kucharzewski, Marek; Sieroń, Aleksander

    2015-01-01

    The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones.

  8. Factors influencing zinc bioavailability in rats

    International Nuclear Information System (INIS)

    Mahalko, J.R.; Johnson, P.E.; Swan, P.B.

    1986-01-01

    The amount of Zn fed, its source, and the Zn status of experimental animals may affect Zn bioavailability. To test this, rats were fed doses of Zn from ZnCl 2 or from various foods labeled extrinsically. Three weeks before and after the test meal, rats were fed an AIN diet modified in Zn content. Absorption was calculated by monitoring whole body retention and extrapolating to zero time. In rats fed 12 ppm Zn and test doses of 6 to 275 μg, absorption decreased from 80 to 50%, and the amount absorbed increased quadratically (r 2 = 0.998), but turnover was unaffected. Rats fed 38 or 77 ppm Zn absorbed less of test doses of 290, 613, or 1700 μg Zn than did those fed 12 ppm, and their Zn turnover rate was higher. In two 2 x 7 factorial experiments, rats fed 12 or 38 ppm Zn were given 16 or 98 μg Zn from 7 Zn sources. Bioavailability from some foods was higher than from ZnCl 2 except in rats eating only 12 ppm Zn and receiving the small dose. There were greater differences in bioavailability among foods when tested at the higher Zn status or dose. This may explain inconsistencies seen in comparing Zn bioavailability by traditional growth assay with that seen in 65 Zn tracer studies. The authors conclude that Zn status of the experimental animal, as well as the amount of Zn and its source, will affect Zn bioavailability

  9. The number of bleaching sessions influences pulp tissue damage in rat teeth.

    Science.gov (United States)

    Cintra, Luciano Tavares Angelo; Benetti, Francine; da Silva Facundo, Aguinaldo Cândido; Ferreira, Luciana Louzada; Gomes-Filho, João Eduardo; Ervolino, Edilson; Rahal, Vanessa; Briso, André Luiz Fraga

    2013-12-01

    Hydrogen peroxide tooth bleaching is claimed to cause alterations in dental tissue structures. This study investigated the influence of the number of bleaching sessions on pulp tissue in rats. Male Wistar rats were studied in 5 groups (groups 1S-5S) of 10 each, which differed by the number (1-5) of bleaching sessions. In each session, the animals were anesthetized, and 35% hydrogen peroxide gel was applied to 3 upper right molars. Two days after the experimental period, the animals were killed, and their jaws were processed for light microscope evaluation. Pulp tissue reactions were scored as follows: 1, no or few inflammatory cells and no reaction; 2, session, necrotic tissue in the pulp horns and underlying inflammatory changes were observed. The extent and intensity of these changes increased with the number of bleaching sessions. After 5 sessions, the changes included necrotic areas in the pulp tissue involving the second third of the radicular pulp and intense inflammation in the apical third. The number of bleaching sessions directly influenced the extent of pulp damage. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Influence of x irradiation and diet on pituitary/thyroid function in the rat

    International Nuclear Information System (INIS)

    Qassar, I.G.

    1979-01-01

    Rats were maintained on low iodine diet or treated with T 4 . A significant increase in thyroid weight was observed in rats on low iodine diet whereas among rats on normal diet with thyroxine injections, the thyroid was lower in weight than thyroids of control animals. Pituitary weight increased significantly in rats on low iodine diet or T 4 treatment. Labelling index was significantly higher in the group on low iodine diet. A significantly lower labelling index was observed after thyroxine treatment. Where PTU was administered to rats pretreated with either normal diet, normal diet plus T 4 , or maintained on low iodine diet and then exposed to radiation (100 to 400R) to the neck, it was not possible to distinguish the effect of such local radiation on body growth. The pre-radiation treatment did not have any effect on thyroid weight during two weeks post-radiation, suggesting that a four week post-radiation period is essential to elicit radiation effects on the thyroid. Contrary to low iodine treatment, administration of PTU did not result in any increase in pituitary weight in rats maintained on normal diet prior to radiation or in rats maintained on low iodine diet prior to radiation. There was, however, a significant increase in pituitary weight in rats injected with thyroxine prior to radiation (250R or 400R). A significant increase in serum TSH was observed two weeks after radiation and PTU treatment. A lower TSH level was observed, however, in the 250R sub-group (normal diet or T 4 injection) and in the 400R sub-group (low iodine diet). There was a significant difference among sham-irradiated and the three x-irradiated sub-groups maintained on low iodine diet. The results of these studies indicate that local x irradiation with 100 to 400R to the neck may influence thyroid/pituitary function in the rat

  11. Influence of mianserin on the activity of some hypotensive drugs in spontaneously hypertensive rats.

    Science.gov (United States)

    Górska, Dorota; Andrzejczak, Dariusz

    2003-01-01

    Mianserin might be an alternative drug in patients with depression accompanied by hypertension because of its effectiveness and lack of side effects in the circulatory system. However, a few studies reported in literature show influence of the drug on blood pressure. We investigate interactions between mianserin and commonly used hypotensive drugs (propranolol, enalapril and prazosin) in spontaneously hypertensive rats (SHR). The experiments were performed in two experimental designs: a single administration of both mianserin and a hypotensive drug, and repeated administration of mianserin with a single administration of a hypotensive drug. Arterial blood pressure was measured by bloodless method with manometer made by LETICA. A single administration of mianserin caused a statistically significant decrease in systolic, diastolic and mean blood pressure in the 60th minute of observation and intensified hypotensive effect of prazosin. However, long-term administration of mianserin in SHR rats had no significant influence on arterial blood pressure. Chronic and single administration of mianserin with propranolol or enalapril did not influence the circulatory system. A long-term administration of mianserin intensified the hypotensive effect of prazosin. This interaction might suggest possibility of dangerous complications in the treatment of humans with this drug combination.

  12. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    Science.gov (United States)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  13. Influence of rearing conditions on voluntary ethanol intake and response to stress in rats.

    Science.gov (United States)

    Rockman, G E; Hall, A M; Markert, L E; Glavin, G B

    1988-03-01

    The effects of exposure to four environmental rearing conditions on subsequent voluntary ethanol intake and response to immobilization stress were examined. Male weanling rats were reared in an enriched environment, with a female partner, with a male partner, or individually, for 90 days. At 111 days of age, voluntary consumption of ethanol in increasing concentrations (3 to 9%, v/v) was assessed. Following the ethanol-exposure period, rats were randomly divided into stressed and nonstressed groups and exposed to 3 h of immobilization. Results indicated that the enriched animals consumed greater amounts of ethanol as compared to all other groups, suggesting that the enriched environment and not handling, housing conditions, or the presence of another male or female is responsible for the observed increase in ethanol drinking behavior. Ulcer data indicated that among environmentally enriched rats, ethanol attenuated stress ulcer development relative to their non-ethanol-exposed but stressed controls. In nonstressed enriched rats, ethanol alone exacerbated stomach damage. We suggest that environmental rearing conditions markedly influence the complex interaction between ethanol intake and the response to stress.

  14. Transversal stiffness of fibers and desmin content in leg muscles of rats under gravitational unloading of various durations.

    Science.gov (United States)

    Ogneva, I V

    2010-12-01

    The aim of this research was the analysis of structural changes in various parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy under gravitational unloading. Soleus, medial gastrocnemius, and tibialis anterior muscles of Wistar rats were the objects of the study. Gravitational unloading was carried out by antiorthostatic suspension of hindlimbs for 1, 3, 7, and 12 days. It was shown that the transversal stiffness of different parts of the contractile apparatus of soleus muscle fibers decreases during gravitational unloading in the relaxed, calcium-activated, and rigor states, the fibers of the medial gastrocnemius show no changes, whereas the transversal stiffness of tibialis anterior muscle increases. Thus the transversal stiffness of the sarcolemma in the relaxed state is reduced in all muscles, which may be due to the direct action of gravity as an external mechanical factor that can influence the tension on a membrane. The change of sarcolemma stiffness in activated fibers, which is due probably to the transfer of tension from the contractile apparatus, correlates with the dynamics of changes in the content of desmin.

  15. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    Science.gov (United States)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  16. Quantitative Ultrasound Assessment of Cartilage Degeneration in Ovariectomized Rats with Low Estrogen Levels.

    Science.gov (United States)

    Wang, Qing; Liu, Zhiwei; Wang, Yinong; Pan, Qingya; Feng, Qianjin; Huang, Qinghua; Chen, Wufan

    2016-01-01

    The aim of this study was to assess quantitatively the site-specific degeneration of articular cartilage in ovariectomized rats with low estrogen levels using a high-frequency ultrasound system. Fourteen female Sprague-Dawley rats were randomly divided into two groups (n = 7 per group): a sham group in which only the peri-ovarian fatty tissue was exteriorized and an ovariectomized group that underwent bilateral ovariectomy to create a menopause model with low estrogen levels. All animals were sacrificed at the end of the third week after ovariectomy. Hindlimbs were harvested. The articular cartilage from five anatomic sites (i.e., femoral caput [FC], medial femoral condyle [MFC], lateral femoral condyle [LFC], medial tibial plateau [MTP] and lateral tibial plateau [LTP]) was examined with ultrasound. Four parameters were extracted from the ultrasound radiofrequency data: reflection coefficient of the cartilage surface (RC1), reflection coefficient of the cartilage-bone interface (RC2), ultrasound roughness index (URI) and thickness of the cartilage tissue. The results indicated significant (p reduction induces morphologic and acoustic alterations in the articular cartilage of the hip and knee joints in ovariectomized rats. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Influence of glutamine on the effect of resistance exercise on cardiac ANP in rats

    Directory of Open Access Journals (Sweden)

    Romeu Rodrigues de Souza

    2015-03-01

    Full Text Available Various nutritional supplements (herbs, vitamins, and micronutrients improve responses and adaptations to resistance exercise. ANP is a heart hormone that contributes to fluid, electrolyte and blood pressure homeostasis through its natriuretic and vasodilative actions. In the present study, the adaptation of ANP in response to resistance exercise was investigated in rats supplemented with glutamine for five weeks. The results showed that supplementation with glutamine did not influence the number of ANP granules per atrial cardiocyte in sedentary animals. In exercised-trained rats, the number and diameter of the granules was significantly higher in comparison with the control group and in exercised animals supplemented with glutamine there was significant increase in the number and diameter of ANP granules compared with controls. Altogether, these data indicated that in resistance exercise rats, glutamine significantly enhances cardiac ANP thus implicating the beneficial effects of glutamine supplementation to the ANP system.

  18. Influence of spironolactone on the excretion of 203Hg2+ in rats

    International Nuclear Information System (INIS)

    Cikrt, M.; Tichy, M.

    1975-01-01

    The effect of spironolactone (SPL) on 203 Hg 2+ excretion was studied in rats with a special emphasis in biliary excretion. No correlation was found between the number of doses of SPL pretreatment (1-5 doses of 5 mg/100 g body weight) and the biliary excretion of 203 Hg 2+ within 6 hours after intravenous administration of 120 μg Hg 2+ per rat. After the SPL pretreatment there was a significantly increased mercury stool excretion 24 hours after intravenous administration. Concurrent oral administration of SH-groups containing sorbent had no effect on mercury stool excretion. Repeated administration of 203 Hg 2+ (5 hours after the first dose) induced significantly increased biliary excretion of mercury in rats pretreated with SPL. On the other hand, repeated administration of SPL (4 hours after intravenous administration of mercury) did not influence the biliary excretion of mercury. The results indicate that the effect of SPL on biliary excretion of mercury could be limited by the level of ''mercury available'' in the organism and might be determined by a direct interaction of mercury molecule with the molecule of SPL

  19. Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Science.gov (United States)

    Provenzano, Paolo P; Alejandro-Osorio, Adriana L; Grorud, Kelley W; Martinez, Daniel A; Vailas, Arthur C; Grindeland, Richard E; Vanderby, Ray

    2007-01-01

    Background Insulin-like growth factor-I (IGF-I) plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH), or both (GH+IGF-I) would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs), while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. Results Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to) values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF-I. Conclusion These results

  20. Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Directory of Open Access Journals (Sweden)

    Martinez Daniel A

    2007-03-01

    Full Text Available Abstract Background Insulin-like growth factor-I (IGF-I plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH, or both (GH+IGF-I would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs, while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. Results Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF

  1. Peripheral δ-opioid receptors attenuate the exercise pressor reflex.

    Science.gov (United States)

    Leal, Anna K; Yamauchi, Katsuya; Kim, Joyce; Ruiz-Velasco, Victor; Kaufman, Marc P

    2013-10-15

    In rats with ligated femoral arteries, the exercise pressor reflex is exaggerated, an effect that is attenuated by stimulation of peripheral μ-opioid receptors on group IV metabosensitive afferents. In contrast, δ-opioid receptors are expressed mostly on group III mechanosensitive afferents, a finding that prompted us to determine whether stimulation of these opioid receptors could also attenuate the exaggerated exercise pressor reflex in "ligated" rats. We found femoral arterial injection of [D-Pen2,D-Pen5]enkephalin (DPDPE; 1.0 μg), a δ-opioid agonist, significantly attenuated the pressor and cardioaccelerator components of the exercise pressor reflex evoked by hindlimb muscle contraction in both rats with ligated and patent femoral arteries. DPDPE significantly decreased the pressor responses to muscle mechanoreflex activation, evoked by tendon stretch, in ligated rats only. DPDPE (1.0 μg) had no effect in either group on the pressor and cardioaccelerator responses to capsaicin (0.2 μg), which primarily stimulates group IV afferents. DPDPE (1.0 μg) had no effect on the pressor and cardioaccelerator responses to lactic acid (24 mM), which stimulates group III and IV afferents, in rats with patent femoral arteries but significantly decreased the pressor response in ligated rats. Western blots revealed the amount of protein comprising the δ-opioid receptor was greater in dorsal root ganglia innervating hindlimbs with ligated femoral arteries than in dorsal root ganglia innervating hindlimbs with patent femoral arteries. Our findings support the hypothesis that stimulation of δ-opioid receptors on group III afferents attenuated the exercise pressor reflex.

  2. Osteoporosis influences the middle and late periods of fracture healing in a rat osteoporotic model

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-wei; LI Wei; XU Shao-wen; YANG Di-sheng; WANG Yun; LIN Min; ZHAO Guang-feng

    2005-01-01

    Objective: To evaluate the influence of osteoporosis on the middle and late periods of fracture healing process through observing the histomorphological changes, bone mineral density and biomechanical properties in ovariectomized rats. Methods: Eighty-four female SD rats of 4 months old were randomly divided into osteoporosis group and sham operation group, 42 in each. Rats in osteoporosis group were performed ovariectomy operation while those in sham operation group were given sham operation. A midshaft tibia fracture model was established 10 weeks after ovariectomy. Tibias were harvested 2, 4, 6, 12, 18 weeks after fracture for bone mineral density, histomorphological and biomechanical evaluation. Results: Compared with the sham operation group, callus bone mineral density was 12.8%, 18.0%, 17.0% lower in osteoporosis group 6, 12, 18 weeks after fracture, respectively (P<0.05); callus failure load was 24.3%, 31.5%, 26.6%, 28.8% lower in osteoporosis group, and callus failure stress was 23.9%, 33.6%, 19.1%, 24.9% lower in osteoporosis group 4, 6, 12, 18 weeks after fracture, respectively (P<0.05). In osteoporosis group, endochondral bone formation was delayed, more osteoclast cells could be seen around the trabecula, and the new bone trabecula arranged loosely and irregularly. Conclusions: Osteoporosis influences the middle and late periods of fracture healing in the rat osteoporotic model. The impairment is considered to be the result of combined effects of prolonged endochondral calcification, high activated osteoclast cell and the deceleration of the increase in bone mineral density.

  3. Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats

    Directory of Open Access Journals (Sweden)

    You-jiang Min

    2017-01-01

    Full Text Available Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3, Dazhui (GV14, Zusanli (ST36 and Ciliao (BL32 and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.

  4. ß-N-Methylamino-L-alanine (BMAA Toxicity Is Gender and Exposure-Age Dependent in Rats

    Directory of Open Access Journals (Sweden)

    Laura Louise Scott

    2017-12-01

    Full Text Available Cyanobacterial β-N-methylamino-L-alanine (BMAA has been suggested as a causative or contributory factor in the development of several neurodegenerative diseases. However, no BMAA animal model has adequately shown clinical or behavioral symptoms that correspond to those seen in either Alzheimer’s Disease (AD, Amyotrophic Lateral Sclerosis (ALS or Parkinson’s Disease (PD. We present here the first data that show that when neonatal rats were exposed to BMAA on postnatal days 3, 4 and 5, but not on gestational day 14 or postnatally on days 7 or 10, several AD and/or PD-related behavioral, locomotor and cognitive deficits developed. Male rats exhibited severe unilateral hindlimb splay while whole body tremors could be observed in exposed female rats. BMAA-exposed rats failed to identify and discriminate a learned odor, an early non-motor symptom of PD, and exhibited decreased locomotor activity, decreased exploration and increased anxiety in the open field test. Alterations were also observed in the rats’ natural passive defense mechanism, and potential memory deficits and changes to the rat’s natural height avoidance behavior could be observed as early as PND 30. Spatial learning, short-term working, reference and long-term memory were also impaired in 90-day-old rats that had been exposed to a single dose of BMAA on PND 3–7. These data suggest that BMAA is a developmental neurotoxin, with specific target areas in the brain and spinal cord.

  5. Influence of antioxidant rich fresh vegetable juices on starch induced postprandial hyperglycemia in rats.

    Science.gov (United States)

    Tiwari, Ashok K; Reddy, K Srikanth; Radhakrishnan, Janani; Kumar, D Anand; Zehra, Amtul; Agawane, Sachin B; Madhusudana, K

    2011-09-01

    This research analyzed the major chemical components and multiple antioxidant activities present in the fresh juice of eight vegetables, and studied their influence on starch induced postprandial glycemia in rats. A SDS-PAGE based protein fingerprint of each vegetable juice was also prepared. The yields of juice, chemical components like total proteins, total polyphenols, total flavonoids, total anthocyanins and free radicals like the ABTS˙(+) cation, DPPH, H(2)O(2), scavenging activities and reducing properties for NBT and FeCl(3) showed wide variations. Vegetable juice from brinjal ranked first in displaying total antioxidant capacity. Pretreatment of rats with vegetable juices moderated starch induced postprandial glycemia. The fresh juice from the vegetables ridge gourd, bottle gourd, ash gourd and chayote significantly mitigated postprandial hyperglycemic excursion. Total polyphenol concentrations present in vegetable juices positively influenced ABTS˙(+) scavenging activity and total antioxidant capacity. However, NBT reducing activity of juices was positively affected by total protein concentration. Contrarily, however, high polyphenol content in vegetable juice was observed to adversely affect the postprandial antihyperglycemic activity of vegetable juices. This is the first report exploring antihyperglycemic activity in these vegetable juices and highlights the possible adverse influence of high polyphenol content on the antihyperglycemic activity of the vegetable juices. This journal is © The Royal Society of Chemistry 2011

  6. Different functional reorganization of motor cortex after transfer of the contralateral C7 to different recipient nerves in young rats with total brachial plexus root avulsion.

    Science.gov (United States)

    Pan, Feng; Wei, Hai-feng; Chen, Liang; Gu, Yu-dong

    2012-12-07

    Clinically, contralateral C7 transfer is used for nerve reconstruction in brachial plexus injuries. Postoperatively, synchronous motions at the donor limb are noteworthy. This study studied if different recipient nerves influenced transhemispheric functional reorganization of motor cortex after this procedure. 90 young rats with total root avulsion of the brachial plexus were divided into groups 1-3 of contralateral C7 transfer to anterior division of the upper trunk, to both the musculocutaneous and median nerves, and to the median nerve, respectively. After reinnervation of target muscles, number of sites for forelimb representations in bilateral motor cortices was determined by intracortical microstimulation at 1.5, 3, 6, 9, and 12 months postoperatively. At nine months, transhemispheric reorganization of nerves neurotized by contralateral C7 was fulfilled in four of six rats in group 1, one of six in group 2 and none in group 3, respectively; at 12 months, that was fulfilled in five of six in group 1, four of six in groups 2 and 3, respectively. Logistic regression analysis showed that rate of fulfilled transhemispheric reorganization in group 1 was 12.19 times that in group 3 (95% CI 0.006-0.651, p=0.032). At 12 months, number of sites for hindlimb representations which had encroached upon original forelimb representations on the uninjured side was statistically more in group 3 than in group 2 (t=9.5, pmotor cortex than that to median nerve alone in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Acute running stimulates hippocampal dopaminergic neurotransmission in rats, but has no influence on brain-derived neurotrophic factor

    OpenAIRE

    Goekint, Maaike; Bos, Inge; Heyman, Elsa; Meeusen, Romain; Michotte, Yvette; Sarre, Sophie

    2011-01-01

    Hippocampal brain-derived neurotrophic factor (BDNF) protein is increased with exercise in rats. Monoamines seem to play a role in the regulation of BDNF, and monoamine neurotransmission is known to increase with exercise. The purpose of this study was to examine the influence of acute exercise on monoaminergic neurotransmission and BDNF protein concentrations. Hippocampal microdialysis was performed in rats that were subjected to 60 min of treadmill running at 20 m/min or rest. Two hours pos...

  8. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    Science.gov (United States)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  9. Forelimb and hindlimb ground reaction forces of walking cats: assessment and comparison with walking dogs.

    Science.gov (United States)

    Corbee, R J; Maas, H; Doornenbal, A; Hazewinkel, H A W

    2014-10-01

    The primary aim of this study was to assess the potential of force plate analysis for describing the stride cycle of the cat. The secondary aim was to define differences in feline and canine locomotion based on force plate characteristics. Ground reaction forces of 24 healthy cats were measured and compared with ground reaction forces of 24 healthy dogs. Force-time waveforms in cats generated by force plate analysis were consistent, as reflected by intra-class correlation coefficients for peak vertical force, peak propulsive force and peak braking force (0.94-0.95, 0.85-0.89 and 0.89-0.90, respectively). Compared with dogs, cats had a higher peak vertical force during the propulsion phase (cat, 3.89 ± 0.19 N/kg; dog, 3.03 ± 0.16 N/kg), and a higher hindlimb propulsive force (cat, -1.08 ± 0.13 N/kg; dog, (-0.87 ± 0.13 N/kg) and hindlimb impulse (cat, -0.18 ± 0.03 N/kg; dog, -0.14 ± 0.02 N/kg). Force plate analysis is a valuable tool for the assessment of locomotion in cats, because it can be applied in the clinical setting and provides a non-invasive and objective measurement of locomotion characteristics with high repeatability in cats, as well as information about kinetic characteristics. Differences in force-time waveforms between cats and dogs can be explained by the more crouched position of cats during stance and their more compliant gait compared with dogs. Feline waveforms of the medio-lateral ground reaction forces also differ between cats and dogs and this can be explained by differences in paw supination-pronation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Motor tics evoked by striatal disinhibition in the rat

    Science.gov (United States)

    Bronfeld, Maya; Yael, Dorin; Belelovsky, Katya; Bar-Gad, Izhar

    2013-01-01

    Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS). Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure—the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons' collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration, and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1–4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders. PMID:24065893

  11. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    Science.gov (United States)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  12. Induction of mammary tumors in rat by intraperitoneal injection of NMU: histopathology and estral cycle influence.

    Science.gov (United States)

    Rivera, E S; Andrade, N; Martin, G; Melito, G; Cricco, G; Mohamad, N; Davio, C; Caro, R; Bergoc, R M

    1994-11-11

    In order to obtain an experimental model we induced mammary tumors in female Sprague-Dawley rats. The carcinogen N-nitroso-N-methylurea (NMU) was injected intraperitoneally (i.p.) at doses of 50 mg/kg body weight when animals were 50, 80 and 110 days old. Tumor sizes were measured with a caliper and their growth parameters and histopathological properties were tested. For 100 rats, 88.4% of developed lesions were ductal carcinomas, histologically classified as 52.8% cribiform variety, 30.6% solid carcinoma. Metastases in liver, spleen and lung were present. Other primary tumors were detected with low incidence. The influence of the rat estrous cycle during the first exposure to intraperitoneal NMU injection was studied. The latency period in estrus, proestrus and diestrus was 82 +/- 15, 77 +/- 18 and 79 +/- 18 days, respectively. Tumor incidence was significantly higher in estrus (95.2%) than proestrus (71.4%) or diestrus (77.4), (P rats.

  13. Influence of exposure of pregnant rats to tritiated water (HTO) on swimming function and brain weight of their litters

    International Nuclear Information System (INIS)

    Yang Zhiyuan; Guo Yuefeng

    1986-01-01

    In order to understand the effects of HTO exposure on the development of central nervous system in rats, the influence of exposure of pregnant rat to HTO on the swimming ability of their litters was studies. Experiment was completed in 21 rats and their 237 litters. It was found that exposure of rats to HTO at activity of 0.185 MBq/ml of body water (5 μCi/ml) or 0.740 MBq/ml (20 μCi/ml), begining on the 8th day of gestation, may retard the development of swimming ability in young litters (up to 18 day of life). These findings indicate that exposure to HTO at lower doses (0.20-1.85 Gy) may resut in a retardation of the function of the development of central nervous system in rats

  14. Angiopoietin-2 impairs collateral artery growth associated with the suppression of the infiltration of macrophages in mouse hindlimb ischaemia

    Directory of Open Access Journals (Sweden)

    Xiaoyong Tan

    2016-10-01

    Full Text Available Abstract Background Angiopoietin-2 (Ang-2, a ligand of the Tie-2 receptor, plays an important role in maintaining endothelial cells and in destabilizing blood vessels. Collateral artery growth (arteriogenesis is a key adaptive response to arterial occlusion. It is unknown whether the destabilization of blood vessels by Ang-2 can affect arteriogenesis and modulate mononuclear cell function. This study aimed to investigate the effects of Ang-2 on collateral artery growth. Methods Hindlimb ischaemia model was produced in C57BL/6 mice by femoral artery ligation. Blood flow perfusion was measured using a laser Doppler perfusion imager quantitative RT-PCR analysis was applied to identify the level of angiogenic factors. Results After the induction of hindlimb ischaemia, blood flow recovery was impaired in mice treated with recombinant Ang-2 protein; this was accompanied by a reduction of peri-collateral macrophage infiltration. In addition, quantitative RT-PCR analysis revealed that Ang-2 treatment decreased monocyte chemotactic protein-1 (MCP-1, platelet-derived growth factor-BB (PDGF-BB mRNA levels in ischaemic adductor muscles. Ang-2 can lead to macrophage M1/M2 polarization shift inhibition in the ischaemic muscles. Furthermore, Ang-2 reduced the in vitro inflammatory response in macrophages and vascular cells involved in arteriogenesis. Conclusions Our results demonstrate that Ang-2 is essential for efficient arteriogenesis, which controls macrophage infiltration.

  15. The influence of selenium and deiodinases blockers on juvenile rats body weight

    Directory of Open Access Journals (Sweden)

    Milanović Svetlana

    2014-01-01

    Full Text Available In this work there was investigated the influence of selenium and deodinases blockers on juvenile rats body weight during three months. The experiment was carried out on 64 rats divided into eight groups with eight individual animals per group. Following groups were formed: 1. Se+PTU-IA- (control group, 2. Se+PTU+IA+, 3. Se+PTU+IA-, 4. Se+PTU- IA+, 5. Se-PTU-IA-, 6. Se-PTU+IA+, 7. Se-PTU+IA- and 8. Se-PTU-IA+. The groups labeled (Se+ were selenium adequate and they were fed with food that contained 0.334 mg Se/kg. The groups labeled (Se- were selenium deficient and obtained food with 0.031 mg Se/kg. As deiodinases blockers there were used propylthiouracil (PTU+ in a dose of 150 mg/L of drinking water and iopanoic acid (IA+ in a dose of 6 mg/100 g TM intraperitoneally. Body weight of experimental rats was measured every seven days. After three weeks of treatment there were taken blood samples of animals from all experimental groups and following parameters were determined: selenium concentration in blood, thyroxine (T4, triiodothyronine (T3 and thyroidstimulating hormone (TSH in blood plasma. Analysis of the samples showed that the animals from the groups treated with PTU had lower body weight in regard to the control group, as well as lower concentration of T3 and T4 in plasma. Selenium deficient rats had lower average body weight compared to the selenium adequate ones after three weeks, but there were no differences in thyroid hormones concentration. The lowest average body weight was noticed in selenium deficient rats groups treated with PTU. [Projekat Ministartsva nauke Republike Srbije, br. TR31050 i br. TR31003

  16. Study on the influence of Sempervivum tectorum and Melatonin on Glutathion protective effects in rats blood exposed to Aluminum sulphate

    OpenAIRE

    Corina Gravila; Florin Muselin; Camelia Tulcan; Mirela Ahmadi – Khoie; Ariana- Bianca Velciov; Georgeta- Sofia Pintilie

    2014-01-01

    The present study was carried out to investigate the influence of Sempervivum tectorum aqueous extract and melatonin on reduced glutathione (GSH) protective effect in Wistar albino rat blood exposed to aluminium sulphate- Al2(SO4)3. The rats were divided in one control group (C) and 7 experimental groups (E). The control group received tap water. The experimental rats were feed the following way: E1 group – aluminum sulphate, daily, for 3 months; : E2 group – Sempervivum tectorum, daily, for ...

  17. The role of biological activity of hydrohumate, produced from peat, in formation of adaptive response of rats under influence of chronic stress

    Science.gov (United States)

    Lyanna, O. L.; Chorna, V. I.; Stepchenko, L. M.

    2009-04-01

    It is well known that humic compounds are the most distributed in nature among the organic matter. It is believed that humic polyphenol preparations, produced from the peat, represent adaptogenes and immunomodulators. But the total mechanism of their adaptogenic action is still completely unclear. In response to extraordinary irritant action, one of the most sensitive to stress and highly reactive systems of organism, endosomal-lysosomal cellular apparatus takes part. It is believed that humic compounds are able to penetrate through plasmatic membrane and by this way to affect on lysosomal proteases function. Among the wide range of lysosomal proteases, cysteine cathepsin L (EC 3.4.22.15) was in interest due to its powerful endopeptidase activity and widespread localization. Purpose. The aim of the work was to investigate the influence of humic acids on intracellular proteolysis in blood plasma and heart muscle of rats in adaptive-restorative processes developing in rat organisms as a result of chronic stress action. The experiment was held on Wistar's rats (160-200 g weight) which were divided into 4 groups: 1 - the control group; 2 - the animals which were received the hydrohumate with water (10 mg hydrohumate (0,1% solution) per 1 kg of weight) during 3 weeks; 3 - the group of stressed rats (test "forced swimming" for 2 hours); 4 - the stressed rats which received the hydrohumate. The activity of lysosomal cysteine cathepsin L was determined spectrophotometrically by usage 1% azocasein, denaturated by 3 M urea, as substrate. It was obtained that under hydrohumate influence the activity of lysosomal cysteine cathepsin L in rat blood plasma changed on 20% in comparison with control group that is suggested to be caused by leakage of tissue cathepsins from organs and tissues and kidneys' filtration of these cysteine enzymes in urine. In rat heart tissues it was obtained that cathepsin L activity level was on 26,8% higher in rats which were under stress influence in

  18. Influence of integral and decaffeinated coffee brews on metabolic parameters of rats fed with hiperlipidemic diets

    Directory of Open Access Journals (Sweden)

    Júlia Ariana de Souza Gomes

    2013-10-01

    Full Text Available The objective of this study was to evaluate the influence of integral and decaffeinated coffee brews (Coffea arabica L and C. canephora Pierre on the metabolic parameters of rats fed with hyperlipidemic diet. Thirty male Wistar rats (initial weight of 270 g ± 20 g were used in the study, which were divided into six groups five each. The treatments were normal diet, hyperlipidemic diet, hyperlipidemic diet associated with integral coffee arabica or canephora brews (7.2 mL/kg/day and hyperlipidemic diet associated to decaffeinated arabica, or canephora brews, using the same dosage. After 41 days, performance analyses were conducted.The rats were then euthanized and the carcasses were used for the analysis of dried ether extract and crude protein. Fractions of adipose tissue were processed for histological analysis. There was a reduction in weight gain and accumulation of lipids in the carcasses, lower diameter of adipocytes and a lower relative weight of the liver and kidneys of rats fed with hyperlipidemic diet associated with integral coffee brew. Integral coffee brew reduced the obesity in the rats receiving hyperlipidemic diet, but the same effect did not occur with the decaffeinated types.

  19. Electroacupuncture improves microcirculation and neuronal morphology in the spinal cord of a rat model of intervertebral disc extrusion

    Directory of Open Access Journals (Sweden)

    Dai-xun Jiang

    2015-01-01

    Full Text Available Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral surface of T 13 . Electroacupuncture was used to stimulate the bilateral Zusanli point (ST36 and Neiting point (ST44 for 14 days. Compared with control animals, blood flow in the first lumbar vertebra (L 1 was noticeably increased in rats given electroacupuncture. Microvessel density in the T 13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved significantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.

  20. Influence of the protective cream and synthetic zeolites on the transfer of the 60Co across the skin of rat

    International Nuclear Information System (INIS)

    Kassai, Z.; Koprda, V.; Harangozo, M.; Palinkasova, A.; Bauerova, K.

    2000-01-01

    In this paper the influence of protection cream and synthetic zeolite on the transfer of the cobalt-60 across the skin of rat was examined. Influence of different methods of cream application on kinetics of cobalt-60 permeation is described

  1. Urethane influence in the urine formation in swiss rats and syrian hamster

    International Nuclear Information System (INIS)

    Lima, Marina F.; Silva, Natanael G.; Mesquita, Carlos Henrique de

    2011-01-01

    Urethane is an anaesthetic agent with minimal cardiovascular and respiratory system depression with long-lasting (6-10h) effects. Its carcinogenic potential avoids it from veterinary use. Either, the knowledge of its effects over the circulating catecholamines (cortisone and corticosterone), with reflects in the muscles physiology, it is widely used in pharmacological studies in laboratory species. At the first minutes, Urethane induces a hyperglycaemia condition due the insulin concentration decrease, later than, the insulin concentration and the condition becomes in hypoglycaemia, but the Urethane interfering in the urine production mechanisms has not been described. It is accepted that the glycolic level would not interferes in the kidney function, except in chronic states, notably associated with insulin related diseases. The relative high biological half-life of 177 Lu-Dotatate allows its use in biodistribution studies among small animals whose metabolic rates are so fast that would be impossible observe them with the most part of the labeled molecules. During the performance of a cross-species extrapolation study using Urethane as anaesthesia and 177 Lu-Dotatate as metabolic tracer, was observed the Urethane influence over urine formation in Swiss rats and Syrian hamster (Mesocricetus auratus). The objective of this work is only describes the Urethane action over the urine production. Firstly, four male inbread Wistar Swiss rats (±250 g), are anesthetized, with around 1200 mg/kg, i.p., in groups of two. One rat from each group get ahead to the injection of 177 Lu-Dotatate and Gamma camera in vivo study, the second ones, anesthetized, waited under warming lights until more than one hour to initiate the biodistribution study. The scintillographical images shown the radiopeptide stopped at the kidneys and the urinary empty in the animals who attempt more than one hour before enter to radiopharmaceutical injection and Gamma camera imaging procedures. The rates

  2. Urethane influence in the urine formation in swiss rats and syrian hamster

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marina F.; Silva, Natanael G.; Mesquita, Carlos Henrique de, E-mail: mflima@ipen.br, E-mail: ngsilva@ipen.br, E-mail: chmesqui@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Urethane is an anaesthetic agent with minimal cardiovascular and respiratory system depression with long-lasting (6-10h) effects. Its carcinogenic potential avoids it from veterinary use. Either, the knowledge of its effects over the circulating catecholamines (cortisone and corticosterone), with reflects in the muscles physiology, it is widely used in pharmacological studies in laboratory species. At the first minutes, Urethane induces a hyperglycaemia condition due the insulin concentration decrease, later than, the insulin concentration and the condition becomes in hypoglycaemia, but the Urethane interfering in the urine production mechanisms has not been described. It is accepted that the glycolic level would not interferes in the kidney function, except in chronic states, notably associated with insulin related diseases. The relative high biological half-life of {sup 177}Lu-Dotatate allows its use in biodistribution studies among small animals whose metabolic rates are so fast that would be impossible observe them with the most part of the labeled molecules. During the performance of a cross-species extrapolation study using Urethane as anaesthesia and {sup 177}Lu-Dotatate as metabolic tracer, was observed the Urethane influence over urine formation in Swiss rats and Syrian hamster (Mesocricetus auratus). The objective of this work is only describes the Urethane action over the urine production. Firstly, four male inbread Wistar Swiss rats ({+-}250 g), are anesthetized, with around 1200 mg/kg, i.p., in groups of two. One rat from each group get ahead to the injection of {sup 177}Lu-Dotatate and Gamma camera in vivo study, the second ones, anesthetized, waited under warming lights until more than one hour to initiate the biodistribution study. The scintillographical images shown the radiopeptide stopped at the kidneys and the urinary empty in the animals who attempt more than one hour before enter to radiopharmaceutical injection and Gamma camera imaging

  3. Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice.

    Directory of Open Access Journals (Sweden)

    Susan M Lang

    Full Text Available The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/- mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR(+/- mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR(+/- mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR(+/- mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.

  4. Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice.

    Science.gov (United States)

    Lang, Susan M; Kazi, Abid A; Hong-Brown, Ly; Lang, Charles H

    2012-01-01

    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/-) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR(+/-) mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR(+/-) mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR(+/-) mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.

  5. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats

    Science.gov (United States)

    Li, Hao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.

  6. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Wataru Mizunoya

    Full Text Available Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA-rich, fish oil (n-3 PUFA-rich, or lard (low in PUFAs were administered to the rats for 4 weeks. Myosin heavy chain (MyHC isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.

  7. [11C]befloxatone brain kinetics is not influenced by Bcrp function at the blood-brain barrier: A PET study using Bcrp TGEM knockout rats

    International Nuclear Information System (INIS)

    Hosten, Benoit; Jacob, Aude; Saubamea, Bruno; Scherrmann, Jean-Michel; Boisgard, Raphael; Goutal, Sebastien; Dolle, Frederic; Tournier, Nicolas; Cisternino, Salvatore

    2013-01-01

    Knockout (KO) animals are useful tools with which to assess the interplay between P-glycoprotein (P-gp; Abcb1) and the breast cancer resistance protein (Bcrp, Abcg2), two major ABC-transporters expressed at the blood-brain barrier (BBB). However, one major drawback of such deficient models is the possible involvement of compensation between transporters. In the present study, P-gp and Bcrp distribution in the brain as well as P-gp expression levels at the BBB were compared between the Bcrp TGEM KO rat model and the wild-type (WT) strain. Therefore, we used confocal microscopy of brain slices and western blot analysis of the isolated brain microvessels forming the BBB. This deficient rat model was used to assess the influence of Bcrp on the brain and peripheral kinetics of its substrate [ 11 C]befloxatone using positron emission tomography (PET). The influence of additional P-gp inhibition was tested using elacridar (GF120918) 2 mg/kg in Bcrp KO rats. The distribution pattern of P-gp in the brain as well as P-gp expression levels at the BBB was similar in Bcrp-deficient and WT rats. Brain and peripheral kinetics of [ 11 C]befloxatone were not influenced by the lack of Bcrp. Neither was the brain uptake of [ 11 C]befloxatone in Bcrp-deficient rats influenced by the inhibition of P-gp. In conclusion, the Bcrp-deficient rat strain, in which we detected no compensatory mechanism or modification of P-gp expression as compared to WT rats, is a suitable model to study Bcrp function separately from that of P-gp at the BBB. However, although selectively transported by BCRP in vitro, our results suggest that [ 11 C]befloxatone PET imaging might not be biased by impaired function of this transporter in vivo. (authors)

  8. Does melatonin influence the apoptosis in rat uterus of animals exposed to continuous light?

    Science.gov (United States)

    Ferreira, Cecília S; Carvalho, Kátia C; Maganhin, Carla C; Paiotti, Ana P R; Oshima, Celina T F; Simões, Manuel J; Baracat, Edmund C; Soares, José M

    2016-02-01

    Melatonin has been described as a protective agent against cell death and oxidative stress in different tissues, including in the reproductive system. However, the information on the action of this hormone in rat uterine apoptosis is low. Our objective was to evaluate the effects of melatonin on mechanisms of cell death in uterus of rats exposed to continuous light stress. Twenty adult Wistar rats were divided into two groups: GContr (vehicle control) and GExp which were treated with melatonin (0.4 mg/mL), both were exposed to continuous light for 90 days. The uterus was removed and processed for quantitative real time PCR (qRT-PCR), using PCR-array plates of the apoptosis pathway; for immunohistochemistry and TUNEL. The results of qRT-PCR of GEXP group showed up-regulation of 13 and 7, pro-apoptotic and anti-apoptotic genes, respectively, compared to GContr group. No difference in pro-apoptotic proteins (Bax, Fas and Faslg) expression was observed by immunohistochemistry, although the number of TUNEL-positive cells was lower in the group treated with melatonin compared to the group not treated with this hormone. Our data suggest that melatonin influences the mechanism and decreases the apoptosis in uterus of rats exposed to continuous light.

  9. Influence of Chronic Stress and Oclusal Interference on Masseter Muscle Pain in Rat

    OpenAIRE

    Simonić-Kocijan, Sunčana; Uhač, Ivone; Braut, Vedrana; Kovač, Zoran; Kovačević Pavičić, Daniela; Fugošić, Vesna; Muhvić Urek, Miranda

    2009-01-01

    This study aimed to investigate the individual effects of chronic stress and occlusal interference, as well as their combined influence on masseter muscle pain. Experiments were performed on 28 male Wistar rats. Animals were submitted to chronic stress procedure, exposed to occlusal interference, or exposed to both mantioned procedures. At the end of the procedure animals were submitted to orofacial formalin test, and nociceptive behavioral response was evaluated. Statisticaly significant dif...

  10. Comparison of Trazodone, Diazepame and Dibenzepine Influences on Rat Brain Beta-Endorphins Content

    Directory of Open Access Journals (Sweden)

    Radivoj Jadrić

    2007-08-01

    Full Text Available The aim of our study was to establish the extent of influence of different psychotropic drugs to brain β-endorphins in experimental animals. The study was performed on albino Wistar rats (weight 250 g, treated with different psychoactive drugs. RIA technique was employed for quantification of brain β-endorphins. Brain β-endorphins were higher in experiment group treated with trazodone (929 pg/g ± 44,43; X±SD, and dibenzepine (906,63 pg/g ± 74,06, yet with lower brain content in rats treated with diazepame (841,55 pg/g ± 68,47, compared to brain β-endorphins content of control group treated with saline solution (0,95% NaCl (873,5 pg/g ± 44,89. Significant differences were obtained comparing brain β-endorphins of trazodone vs. diaze-pame treated animals, with diazepame group having lower values (p<0,02. This study showed differences in changes of rat brain β-endorphins contents when different psy-choactive drugs are used. Therefore, we consider that β-endorphins could be used for evaluation of effects of psychoactive drugs, as a useful parameter in therapy with these psycho pharmaceuticals.

  11. 18F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    International Nuclear Information System (INIS)

    Skovgaard, Dorthe; Kjaer, Michael; El-Ali, Henrik; Kjaer, Andreas

    2009-01-01

    To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause unilateral isometric contractions of the calf muscle. 18 F-Fluorodeoxyglucose was administered and a PET/CT scan of the hindlimbs was performed. SUVs were calculated in both Achilles tendons and the triceps surae muscles. To exclude a spill-over effect the tendons and muscles from an ex vivo group of eight rats were cut out and scanned separately (distance≥1 cm). Muscle contractions increased glucose uptake approximately sevenfold in muscles (p<0.001) and 36% in tendons (p<0.01). The ex vivo group confirmed the increase in glucose uptake in intact animals. GLUT1 and GLUT4 were expressed in both skeletal muscle and tendon, but no changes in mRNA levels could be detected. PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1 and GLUT4. (orig.)

  12. Influence of X-radiation on the renal function as studied in the unilaterally nephrectomized rat

    International Nuclear Information System (INIS)

    Sittner, A.

    1976-01-01

    The effects of X-ray radiation on the renal function was studied in 83 Wistar rats. The rats received either only whole-body irradiation or were exposed to whole-body irradiation at certain intervals after unilateral nephrectomy. When the interval between operation and irradiation was shortened from 10 to 2 days, early lethality increased, although it has not yet been established whether the operation or the lack of a kidney plays a greater role here. The weight behaviour of non-nephrectomized or unilaterally nephrectomized rats is a function of the radiation dose; inappetence, dehydration and decreased intestinal absorption are influencing factors. Animals that died had exhibited another loss of weight after the 10th day p.r. The non-nephrectomized rats having undergone whole-body irradiation exhibited a decrease in serum urea on the 2nd and 10th day p.r. Animals unilaterally nephrectomized and then exposed to whole-body irradiation exhibited an increase in serum urea which was the more pronounced the earlier irradiation had taken place after unilateral nephrectomy. This raised urea level in the nephrectomized animals may be attributed to the compensatory hypertrophy not yet existing and to the reduced filtrate. (orig.) [de

  13. Rabbit hindlimb glucose uptake assessed with positron-emitting fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Mossberg, K.A.; Rowe, R.W.; Tewson, T.J.; Taegtmeyer, H.

    1989-01-01

    The feasibility of estimating skeletal muscle glucose uptake in vivo was examined by using the glucose analogue 2-[ 18 F]deoxy-2-fluoro-D-glucose (2-[ 18 F]FDG) in the rabbit hindlimb. A pair of collimated coincidence gamma photon detectors was used to monitor the accumulation of tracer in the tissue after 2-[ 18 F]FDG injection. Time-activity curves were generated on a second-by-second basis under control conditions, during increased contractile activity, or hyperinsulinemia. The arterial input of 2-[ 18 F]FDG, plasma glucose, lactate, free fatty acids, and insulin were determined. A graphical (Patlak plot) procedure was used to determine the fractional rate of tracer phosphorylation and therefore trapping in the muscle. From the graphical analysis, the estimated rate of glucose phosphorylation (R) in the unperturbed state was calculated to be 0.037 mumol.min-1.ml-1 of tissue. During perturbation by electrical stimulation, an increase in the rate of tracer phosphorylation (K) was observed. No change in the rate of tracer phosphorylation was observed during hyperinsulinemia. The results support the use of 2-[ 18 F]FDG and the graphical procedure for the noninvasive assessment of glucose uptake by skeletal muscle in vivo. The method described is sensitive to changes in the rate of tracer uptake with respect to time and physiological interventions

  14. Influence of age on cognition and scopolamine induced memory impairment in rats measured in the radial maze paradigm.

    Science.gov (United States)

    Appenroth, Dorothea; Fleck, Christian

    2010-01-01

    The influence of age on (1) cognition and (2) scopolamine (CAS 51-34-3) induced memory impairment in female rats was measured in the radial maze paradigm (RAM). (1) First training trials were done with 3 and 12 months old rats. Rats were trained to find all eight food baits in the RAM without errors and within 1 min. Both 3- and 12-month old rats need about 15 trials for the first-time learning of the RAM task. After intervals of 3 6 months, respectively, initially young rats were re-trained with an age of 6 and 12 months. Surprisingly, re-trained rats successfully completed the maze runs already after one re-training trial. Thus the phenomenon of preserved spatial memory was approved for female rats. (2) Memory impairment by scopolamine in the RAM was tested for the time in rats with an age of 3 months. first rats with thesame After a control run,the rats received an i.p. injection of either scopolamine hydrochloride (0.05 mg/100 g b. wt.) or saline vehicle. The effect of scopolamine on working memory was measured 20 min after administration. Training procedure and scopolamine administration were repeated at an age of 6, 12, 18, and 24 months in the same manner. The cognition impairment after scopolamine (number of errors: control: <1; scopolamine: 5-6) remains constant between 3 and 24 months of age. The only significant difference was the increase in run time in rats older than 18 months caused by degenerative changes developing with age.

  15. Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function

    NARCIS (Netherlands)

    Blits, B; Oudega, M.; Boer, G J; Bartlett Bunge, M; Verhaagen, J

    2003-01-01

    To foster axonal growth from a Schwann cell bridge into the caudal spinal cord, spinal cells caudal to the implant were transduced with adeno-associated viral (AAV) vectors encoding for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (AAV-NT-3). Control rats received AAV vectors encoding

  16. Influence of age and magnesium on calcium metabolism in rats

    International Nuclear Information System (INIS)

    McElroy, S.T.; Link, J.E.; Dowdy, R.P.; Zinn, K.R.; Ellersieck, M.R.

    1991-01-01

    This study evaluates the effect of dietary magnesium concentration on calcium metabolism in rats of differing ages. Young (3 wk) and old (18 mo) Fischer 344 rats were fed the AIN-76A diet modified to contain either low (218 mg/kg) or adequate (419 mg/kg) Mg for 4 wk. Some rats subsequently underwent a metabolic balance study (12 d duration). Other rats were gavaged with approximately 220 KBq (6 microCi) of 47 Ca; daily fecal and urine collections were made and periodic whole body radioactivity determined. Femurs were removed and analyzed. Calcium retention and balance were not affected by Mg in young rats. In old rats low Mg intake increased apparent Ca balance. Young rats retained about 3.25 times more of the original dose of 47 Ca than did old rats. Young rats retained more 47 Ca in the femur than did old rats; Mg intake had little effect. Aging accelerated Ca turnover rate, and whole body retention data suggest that adequate Mg does not significantly reduce Ca turnover

  17. Influence of Dietary Avocado on Gut Health in Rats.

    Science.gov (United States)

    Paturi, Gunaranjan; Butts, Christine A; Bentley-Hewitt, Kerry L

    2017-09-01

    This study investigated the impact of diets containing various levels of avocado (5, 10 and 15%) on gut health in rats fed for six weeks. Avocado-fed rats had significantly higher food intakes while their body weights remained similar to the control diet-fed rats. No significant changes in intestinal bacterial populations (ileum, cecum and colon) were found in rats fed avocado diets compared to the control diet. Ileum and colon tissues of rats fed avocado diets showed significantly higher expression of genes (β-defensin 1, mucin 3 or mucin 4) and a greater number of mucin-producing goblet cells in the colon. The percentage of avocado in the diet had varying effects in altering the biomarkers, whereby diet containing 15% avocado was the more effective diet. This study delivers new knowledge on the role of avocado on gut health in rats.

  18. Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats

    Science.gov (United States)

    Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo

    2017-08-01

    Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the

  19. Physiological study on the influence of some plant oils in rats exposed to a sublethal concentration of diazinon

    Directory of Open Access Journals (Sweden)

    Atef M. Al-Attar

    2018-05-01

    Full Text Available The present study was aimed to evaluate the influence of olive, sesame and black seed oils on levels of some physiological parameters in male rats exposed to diazinon (DZN. Body weight changes, and levels of serum total protein, albumin, glucose, triglycerides, cholesterol, high density lipoprotein cholesterol (HDL-C, low density lipoprotein cholesterol (LDL-C, very low density lipoprotein cholesterol (VLDL-C, atherogenic index (AI, atherogenic coefficient (AC, cardiac risk ratio (CRR, glutathione (GSH, superoxide dismutase (SOD and malondialdehyde (MAD were selected as physiological parameters. The experimental animals were distributed into nine groups. Rats group exposed to DZN and fed with normal diet resulted in pronounced severe changes including reduced body weight gain rate, significantly increase in levels of serum albumin, glucose, cholesterol, LDL-C, AI, AC, CRR and MDA while levels of HDL-C, GSH and SOD were decreased. In rats treated with DZN, the supplementation of the olive, sesame and black seed oils showed remarkable lowering influences of physiological alterations. Moreover, the present results confirmed that these oils possess antioxidative effects against DZN toxicity. Finally, the present findings suggest that these oils are safe and promising agents for the treatment of physiological disturbances induced by DZN and may be also by other pollutants, and toxic and pathogenic factors. Keywords: Diazinon, Olive oil, Sesame oil, Black seed oil, Blood, Rats

  20. Influence of X-ray irradiation on the mandible of ovariectomized rats

    International Nuclear Information System (INIS)

    Ikoma, Kazuyuki; Iwata, Hiroshi; Yosue, Takashi

    2004-01-01

    The aim of the present study was to investigate the influence of irradiation on the mandible of ovariectomized (OVX) rats. Female rats were subject to OVX or a sham operation (SHAM) at the age of 14 weeks. Ten Gy doses of X-ray were applied to the mandibles twelve weeks after the operation. The experimental animals were divided into four groups: the OVX non-irradiation group, the OVX irradiation group, SHAM non-irradiation group and SHAM irradiation group. Four, eight and twelve weeks after irradiation, the animals were sacrificed and the mandibles removed. The mandibles were investigated using μCT and pQCT, and from the images obtained, the rate of mineralized tissue in the bone as well as the bone mineral content (BMC) were evaluated. The rate of mineralized tissue in the bone as determined from the images of μCT was significantly (P<0.05) lower in the OVX non-irradiation group than in the SHAM non-irradiation group at four weeks after irradiation. Similarly, the rate in the OVX irradiation group was lower than that in the SHAM irradiation group at twelve weeks after irradiation. In both the SHAM and OVX groups, there was no difference between the non-irradiation and irradiation groups. From the pQCT images, the change in the BMC in the cortical bone was negligible when the BMC was measured in the mandibles. In the OVX non-irradiation group, the trabecular BMC of the mandibles was significantly lower than that in the SHAM non-irradiation group at four and twelve weeks after irradiation. The trabecular BMC of the mandibles in the SHAM and OVX irradiation groups were significantly lower than that of the SHAM and OVX non-irradiation groups respectively throughout the experimental period. In the rate of mineralized tissue in the mandibles, the influence of OVX was recognized, but the influence of irradiation was not. On the other hand, the BMC in the cortical bone was not significant through out the experiment. The influence of irradiation on the OVX group was

  1. Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Poungrat Pakdeechote

    2014-01-01

    Full Text Available Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS induced by a high-carbohydrate, high-fat (HCHF diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α levels (p < 0.05. Plasma nitrate and nitrite (NOx were markedly high with upregulation of inducible nitric oxide synthase (iNOS expression, but dowregulation of endothelial nitric oxide synthase (eNOS expression (p < 0.05. Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05. In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  2. Influence of hesperidin and vitamin C on glycemic parameters, lipid profile, and DNA damage in rats treated with sucrose overload

    Directory of Open Access Journals (Sweden)

    SILVIA I.R. FRANKE

    2018-04-01

    Full Text Available ABSTRACT We evaluated the influence of hesperidin and vitamin C (VitC on glycemic parameters, lipid profile, and DNA damage in male Wistar rats treated with sucrose overload. Rats were divided into six experimental groups: I-water control; II-sucrose control; III-hesperidin control; IV-VitC control; V-co-treatment of sucrose plus hesperidin; VI-co-treatment of sucrose plus VitC. We measured the levels of triglycerides, total cholesterol, HDL-c, LDL-c, fasting glucose, and glycated hemoglobin (A1C. DNA damage was evaluated in blood and brain cells using the comet assay and the micronucleus test was used to evaluate chromosomal damages in the rat bone marrow. Co-treatment with VitC, but not with hesperidin, normalized the serum glucose. No effect of co-treatments was observed on A1C. The co-treatment with VitC or hesperidin did not influence the lipid profile (p>0.05. Rats co-treated with hesperidin had a significantly lower DNA damage level in blood (p0.05. Hesperidin and VitC showed different effects on sucrose and DNA damage levels. While VitC lowered the serum glucose, hesperidin reduced the DNA damage.

  3. [INFLUENCE OF IONIZING RADIATION ON THE LOCOMOTOR ACTIVITY AND BODY WEIGHT OF RATS].

    Science.gov (United States)

    Saimova, A; Chaizhunusоva, N; Kairkhanova, Y; Uzbеkоv, D; Hоshi, М

    2017-02-01

    The aim of our study was to study influence of ionizing radiation on the locomotor activity and body weight of rats, for this animals was irradiated by via inhalation. Beta- emitter 56Mn was obtained by neutron activation of powdered MnО2 by using nuclear reactor IVG.1M (experimental facility «Baikal-1», Kurchatov, Kazakhstan). Exposure of rats to radioactive powder had two way, the first experiment was contained only air filter for animal's breathing and the second with the system of forced ventilation. Also we developed the method for observation of the locomotor activity of rats, based on quantitative data. The experiment was conducted on 8 «Wistar» breed white laboratory rats. Statistical analysis was performed using descriptive statistics and non-parametric test. Based on our data, we can say that our method has the advantage over the others is that there is no need to move about the animal out of the box in the test field. So we reduce animal stress factor, as the transfer of an animal from one to second place creates additional stress for him. The initial activity of the pulverized powder in both experiments were 2,74х108Bq, but in the second experiment when we used the system of forced ventilation, internal radiation doses were 0.041±0.0075 Gy, this didn't have effect on locomotor activity of rats (Z= -0,841, р=0,4). In the first experiment where we used only air filter for animal's breathing internal radiation doses were 0.15±0.025 Gr, that showed a decrease in locomotor activity in rats (Z=-6,653, р=0,001). After exposure to ionizing radiation changes in the mammals' weight were not found. Thus, based on our data we have made conclusion, that even after a single irradiation at low dose 0.15±0.025 Gr changes occur in the nervous system.

  4. The influence of hydrocortisone on postirradiation disturbances of potassium homeostasis in exposed rat hepatocytes

    International Nuclear Information System (INIS)

    Mashkova, N.Yu.; Borovikova, G.V.; Dokshina, G.A.

    1988-01-01

    The influence of hydrocortisone and radiation on potassium homeostasis in isolated hepatocytes (in vivo experiments) and perfusing liver of mongrel rats has been investigated. The effects of hydrocortisone and radiation (7 Gy) on redistribution of intracellular potassium are shown to be similar with respect to their depth and direction. However with the hormone and ionizing radiation delivered simultaneously no additivity of the effects is registered

  5. Effects of model traumatic injury on hepatic drug metabolism in the rat. IV. Glucuronidation.

    Science.gov (United States)

    Griffeth, L K; Rosen, G M; Rauckman, E J

    1985-01-01

    A previously validated small mammal trauma model, hind-limb ischemia secondary to infrarenal aortic ligation in the rat, was utilized to investigate the effects of traumatic injury on hepatic glucuronidation activity. As was previously observed with hepatic oxidative drug metabolism, model trauma resulted in a significant decrease in the in vivo glucuronidation of chloramphenicol, with a 23% drop in clearance of this drug. The effect on in vivo pharmacokinetics appeared to result from a complex interaction between trauma's differential influences on conjugating enzyme(s), deconjugating enzyme(s), and hepatic UDP-glucuronic acid levels, as well as the relative physiological importance of these variables. Hepatic UDP-glucuronyltransferase activities towards both p-nitrophenol and chloramphenicol were elevated (44-54%) after model injury when measured in native hepatic microsomes. However, microsomes which had been "activated" by treatment with Triton X-100 showed no significant difference between control and traumatized animals. Serum beta-glucuronidase activities were elevated by 58%, while hepatic beta-glucuronidase rose by about 16%. Nevertheless, in vivo deconjugation showed no significant change. Model trauma also resulted in a 46% decrease in hepatic UDP-glucuronic acid content. Thus, the observed post-traumatic depression of in vivo chloramphenicol glucuronidation could be due either to a diminished availability of a necessary cofactor (UDP-glucuronic acid) or to an alteration in enzyme kinetics or function in vivo.

  6. Influence of Samarium on Learning and Memory Function of Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Sixty-four Spraque-Dawley(SD)big rats with weaning weight of (195±15) g were randomly divided into 4 groups with 8 males and 8 females each group. One group drunk with de-ionized water served as control and was also used for analysis of the background. The other three groups rats were raised by de-ionized water containing low, middle and high concentrations of Sm for four months, then learning and memory tests were carried out in Y-electric maze. Compared with the control rats, the learning and memory of rats in low and middle groups shows a deterioration trend, exhibiting the function degradation of rats' brain. It may results from the rare earth elements through blood-brain barrier affecting the normal physiological functions of rats' brain. In addition, the activity of superoxide dismutase (SOD) in rats' brain decreases, while the content of malondialdehyde (MDA) concentration increases. The decreased SOD activity and the increased MDA mean the degeneration the ability of anti-oxidation in rats' brain, which are accordance with the degradation of learning and memory function of rats in low and middle Sm groups.

  7. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression.

    Directory of Open Access Journals (Sweden)

    Tetsuya Takahashi

    Full Text Available Clinical manifestations of methylmercury (MeHg intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF, a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity.

  8. Sildenafil citrate protects skeletal muscle of ischemia-reperfusion injury: immunohistochemical study in rat model

    Directory of Open Access Journals (Sweden)

    Dinani Matoso Fialho de Oliveira Armstrong

    2013-04-01

    Full Text Available PURPOSE: To investigate the effect of sildenafil citrate (SC on skeletal muscle ischemia-reperfusion (IR injury in rats. METHODS: Adult male Wistar rats were randomized into three groups: vehicle-treated control (CTG, sildenafil citrate-treated (SCG, and sham group (SG. CTG and SCG had femoral artery occluded for 6 hours. Saline or 1 mg/kg of SC was given 5.5 hours after occlusion. SG had a similar procedure without artery occlusion. Soleus muscle samples were acquired 4 or 24h after the reperfusion. Immunohistochemistry caspase-3 analysis was used to estimate apoptosis using the apoptotic ratio (computed as positive/negative cells. Wilcoxon rank-sum or Kruskal-Wallis tests were used to assess differences among groups. RESULTS: Eighteen animals were included in the 4h reperfusion groups and 21 animals in the 24h reperfusion groups. The mean apoptotic ratio was 0.18±0.1 for the total cohort; 0.14±0.06 for the 4h reperfusion groups and 0.19±0.08 for the 24h groups (p<0.05. The SCG had lower caspase-3 ratio compared to the control groups at the 24h reperfusion time point (p<0.05. CONCLUSION: Sildenafil citrate administration after the onset of the ischemic injury reduces IR-induced cellular damage in skeletal muscle in this rat hindlimb ischemia model.

  9. [On the influence of D-penicillamine on collage metabolism - investigations of the rupture of strength in tailfibre in rats of several ages (author's transl)].

    Science.gov (United States)

    Trzenschik, K; Lindenhayn, K; Mühlbach, R; Napieralski, P; Noack, K

    1980-01-01

    The tensile strength of rat tail tendons of animals wtih a different age is more influenced by D-Penicillamine (DPA) in younger rats than in elderly rats. DPA has the best effect in the regions with the highest collagen turnover. After the use of DPA the collagen of tails of the elderly rats resembles the collagen of the younger animals. The reason of this alteration is probably a lower degree of cross-links of the collagen after the use of DPA.

  10. Protein-Energy Malnutrition Causes Deficits in Motor Function in Adult Male Rats.

    Science.gov (United States)

    Alaverdashvili, Mariam; Li, Xue; Paterson, Phyllis G

    2015-11-01

    Adult protein-energy malnutrition (PEM) often occurs in combination with neurological disorders affecting hand use and walking ability. The independent effects of PEM on motor function are not well characterized and may be obscured by these comorbidities. Our goal was to undertake a comprehensive evaluation of sensorimotor function with the onset and progression of PEM in an adult male rat model. In Expt. 1 and Expt. 2, male Sprague-Dawley rats (14-15 wk old) were assigned ad libitum access for 4 wk to normal-protein (NP) or low-protein (LP) diets containing 12.5% and 0.5% protein, respectively. Expt. 1 assessed muscle strength, balance, and skilled walking ability on days 2, 8, and 27 by bar-holding, cylinder, and horizontal ladder walking tasks, respectively. In addition to food intake and body weight, nutritional status was determined on days 3, 9, and 28 by serum acute-phase reactant and corticosterone concentrations and liver lipids. Expt. 2 addressed the effect of an LP diet on hindlimb muscle size. PEM evolved over time in rats consuming the LP diet. Total food intake decreased by 24% compared with the NP group. On day 28, body weight and serum albumin decreased by 31% and 26%, respectively, and serum α2-macroglobulin increased by 445% (P malnutrition. This model can be used in combination with disease models of sensorimotor deficits to examine the interactions between nutritional status, other treatments, and disease progression. © 2015 American Society for Nutrition.

  11. [Change of character of intersystemic interactions in newborn rat pups under conditions of a decrease of central influences (urethane anesthesia)].

    Science.gov (United States)

    Kuznetsov, S V; Sizonov, V A; Dmitrieva, L E

    2014-01-01

    On newborn rat pups, for the first day after birth, there was studied the character of mutual influences between the slow-wave rhythmical components of the cardiac, respiratory, and motor activities reflecting interactions between the main functional systems of the developing organism. The study was carried out in norm and after pharmacological depression of the spontaneous periodical motor activity (SPMA) performed by narcotization of rat pups with urethane at low (0.5 g/kg, i/p) and maximal (1 g/kg, i/p) doses. Based on the complex of our obtained data, it is possible to conclude that after birth in rat pups the intersystemic interactions are realized mainly by the slow-wave oscillations of the near- and manyminute diapason. The correlational interactions mediated by rhythms of the decasecond diapason do not play essential role in integrative processes. Injection to the animals of urethane producing selective suppression of reaction of consciousness, but not affecting activating influences of reticular formation on cerebral cortex does not cause marked changes of autonomous parameters, but modulates structure and expression of spontaneous periodical motor activity. There occurs an essential decrease of mutual influences between motor and cardiovascular systems. In the case of preservation of motor activity bursts, a tendency for enhancement of correlational relations between the modulating rhythms of motor and somatomotor systems is observed. The cardiorespiratory interactions, more pronounced in intact rat pups in the near- and many-minute modulation diapason, under conditions of urethane, somewhat decrease, whereas the rhythmical components of the decasecond diapason--are weakly enhanced.

  12. The influence of a steroid hormone and of physical exercise on protein metabolism in rats

    International Nuclear Information System (INIS)

    Menschikowski, M.; Jung, K.; Junghans, P.; Petzke, K.J.; Albrecht, V.; Akademie der Wissenschaften der DDR, Potsdam

    1989-01-01

    The influence of an anabolic steroid hormone preparation and of a physical exercise training program was studied on the nitrogen and protein metabolism in rats with the help of the 15 N tracer technique and the emission spectrometric 15 N isotope analysis. For the determination of the dynamic parameters of the protein metabolism graphic (stochastic) and computer-aided compartmental methods wer compared. Using the area method as a stochastic approach the animals showed significant differences in the protein turnover parameters under the influence of hormone treatment and (or) physical stress by swimming exercise in comparison to the controls. (author)

  13. Influence of prenatal application of angiotensin II and postnatal salt diet on GABAergic and oxytocin system in rat brain steam and cerebellum

    International Nuclear Information System (INIS)

    Jackova, L.; Olexova, L.; Svitok, P.; Senko, T.; Stefanik, P.

    2015-01-01

    Our goal was to determinate how gene expression of GABA transporter 1 (GAT1), glutamate decarboxylase 67 (GAD67) and oxytocin receptor (OTR) is influenced with prenatal exposition to angiotensin II (Ang II) and postnatal salt diet in nucleus tractus solitarii (NTS) and cerebellum in rats. In NTS we observed strong tendency in different reaction of OTR gene expression between Ang II prenatal treatment and control rats after high salt diet. We observed significant influence of sex on GAD67 gene expression in cerebellum. Also, sex in combination with salt diet is significant factor in expression of GAT1 gene in cerebellum. (authors)

  14. [The influence of corvitin on secretory processes and blood flow in the rat gastric mucosa].

    Science.gov (United States)

    Vovkun, T V; Ianchuk, P I; Shtanova, L Ia; Vesel'skyĭ, S P; Baranovs'kyĭ, V A

    2013-01-01

    We studied parameters of gastric secretion in pylorus-ligated rat and blood flow in the rat gastric mucosa under the influence of drug corvitin used intragastrically in doses of 2.5 and 5 mg/kg. Biochemical analysis of gastric juice was based on the determination of pH, total hydrochloric acid production and total protein, hexosamine and cysteine concentration. Gastric juice analysis in control rats found the presence of hexosamines-- a gastric mucus indicators and cysteine--free amino acid whith properties of a strong antioxidant. Concentration of these compounds in the gastric juice increased as a consequence of corvitin action. However, corvitin did not affect at these parameters of gastric secretion as the volume of gastric juice, pH, hydrochloric acid output rate, protein concentration. Additionally it was shown that corvitin in dose-dependent manner increased blood flow in the gastric mucosa. This results give reason to believe that corvitin can be considered as a tool that amplifies gastric mucosal defense mechanisms without affecting the secretion of gastric hydrochloric acid and total protein.

  15. Rat parathyroid hormone (rPTH) ELISAs specific for regions (2-7), (22-34) and (40-60) of the rat PTH structure: influence of sex and age.

    Science.gov (United States)

    D'Amour, Pierre; Rousseau, Louise; Hornyak, Stephen; Yang, Zan; Cantor, Tom

    2010-09-15

    Rat (r) PTH ELISAs were used to study the influence of age and sex on rPTH levels and circulating PTH molecular forms separated by HPLC. Standard curves and saturation analysis were undertaken to define epitopes. Rats were sacrificed at approximately 27, 47 and 75days. Relevant biochemical parameters and 25(OH) vitamin D were measured. Differences between sexes were analyzed by Kruskal-Wallis ANOVA, followed by Dunn's test. Epitopes were localized in regions 2-7, 22-34 and 40-60 of rPTH structure for whole (W), total (T) and carboxyl (C) rPTH ELISAs. The W-rPTH assay only detected rPTH(1-84) and N-PTH in circulation while the T-PTH assay further detected large C-rPTH fragments. The C-rPTH assay detected all circulating rPTH molecular forms including smaller C-rPTH fragments. In both sexes, weight (p<0.001), ionized calcium, creatinine, albumin and 25(OH)D values (p<0.001) increased with age, while phosphate and alkaline phosphatase decreased (p<0.001). In male rats, W-rPTH remained unchanged, while T-rPTH rose slightly (p<0.05) and C-rPTH declined by half with time (p<0.001). In female rats, W-rPTH (p<0.05), T-rPTH (p<0.001) and C-rPTH (p<0.01) all increased in older animals. In both sexes, C-rPTH/W-rPTH and C-rPTH/T-rPTH ratios decreased between 25 and 47 days, to rise again between 47 and 75 days. The initial decrease may represent an adaptation to weaning and a change of diet between 25 and 47 days while the rise corresponds to higher calcium and 25(OH)D levels between 47 and 75 days. These changes were more pronounced in female rats, indicating an influence of sex on PTH molecular form secretion or metabolism. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Exposure to Music and Noise During Pregnancy Influences Neurogenesis and Thickness in Motor and Somatosensory Cortex of Rat Pups

    Directory of Open Access Journals (Sweden)

    Chang-Hee Kim

    2013-09-01

    Full Text Available Purpose Prenatal environmental conditions affect the development of the fetus. In the present study, we investigated the effects of exposure to music and noise during pregnancy on neurogenesis and thickness in the motor and somatosensory cortex of rat pups. Methods The pregnant rats in the music-applied group were exposed to 65 dB of comfortable music for 1 hour, once per day, from the 15th day of pregnancy until delivery. The pregnant rats in the noise-applied group were exposed to 95 dB of sound from a supersonic sound machine for 1 hour, once per day, from the 15th day of pregnancy until delivery. After birth, the offspring were left undisturbed together with their mother. The rat pups were sacrificed at 21 days after birth. Results Exposure to music during pregnancy increased neurogenesis in the motor and somatosensory cortex of rat pups. In contrast, rat pups exposed to noise during pregnancy showed decreased neurogenesis and thickness in the motor and somatosensory cortex. Conclusions Our study suggests that music and noise during the developmental period are important factors influencing brain development and urogenital disorders.

  17. Increased Autolysis of μ-Calpain in Skeletal Muscles of Chronic Alcohol-Fed Rats.

    Science.gov (United States)

    Gritsyna, Yulia V; Salmov, Nikolay N; Bobylev, Alexander G; Ulanova, Anna D; Kukushkin, Nikolay I; Podlubnaya, Zoya A; Vikhlyantsev, Ivan M

    2017-10-01

    Proteolysis can proceed via several distinct pathways such as the lysosomal, calcium-dependent, and ubiquitin-proteasome-dependent pathways. Calpains are the main proteases that cleave a large variety of proteins, including the giant sarcomeric proteins, titin and nebulin. Chronic ethanol feeding for 6 weeks did not affect the activities of μ-calpain and m-calpain in the m. gastrocnemius. In our research, changes in μ-calpain activity were studied in the m. gastrocnemius and m. soleus of chronically alcohol-fed rats after 6 months of alcohol intake. SDS-PAGE analysis was applied to detect changes in titin and nebulin contents. Titin phosphorylation analysis was performed using the fluorescent dye Pro-Q Diamond. Western blotting was used to determine μ-calpain autolysis as well as μ-calpain and calpastatin contents. The titin and nebulin mRNA levels were assessed by real-time PCR. The amounts of the autolysed isoform (78 kDa) of full-length μ-calpain (80 kDa) increased in the m. gastrocnemius and m. soleus of alcohol-fed rats. The calpastatin content increased in m. gastrocnemius. Decreased intact titin-1 (T1) and increased T2-proteolytic fragment contents were found in the m. gastrocnemius and m. soleus of the alcohol-fed rats. The nebulin content decreased in the rat gastrocnemius muscle of the alcohol-fed group. The phosphorylation levels of T1 and T2 were increased in the m. gastrocnemius and m. soleus, and decreased titin and nebulin mRNA levels were observed in the m. gastrocnemius. The nebulin mRNA level was increased in the soleus muscle of the alcohol-fed rats. In summary, our data suggest that prolonged chronic alcohol consumption for 6 months resulted in increased autolysis of μ-calpain in rat skeletal muscles. These changes were accompanied by reduced titin and nebulin contents, titin hyperphosphorylation, and development of hindlimb muscle atrophy in the alcohol-fed rats. Copyright © 2017 by the Research Society on Alcoholism.

  18. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  19. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  20. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats

    Science.gov (United States)

    Riley, D. A.

    We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.

  1. Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent

    Science.gov (United States)

    Jeppesen, J.; Albers, P. H.; Rose, A. J.; Birk, J. B.; Schjerling, P.; Dzamko, N.; Steinberg, G. R.; Kiens, B.

    2011-01-01

    The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, 5-aminoimidazole-4-carboxamide ribonucleoside only induced an increase in cell surface FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions was associated with increased FA uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and FA uptake in skeletal muscle during contractions. However, AMPK could be important in regulation of FAT/CD36 distribution in other physiological situations. PMID:21297178

  2. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia.

    Science.gov (United States)

    Pannérec, Alice; Springer, Margherita; Migliavacca, Eugenia; Ireland, Alex; Piasecki, Mathew; Karaz, Sonia; Jacot, Guillaume; Métairon, Sylviane; Danenberg, Esther; Raymond, Frédéric; Descombes, Patrick; McPhee, Jamie S; Feige, Jerome N

    2016-04-01

    Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process.

  3. Influence of Chloramphenicol and Amoxicillin on Rat Liver ...

    African Journals Online (AJOL)

    This study examined the effect of chloramphenicol and amoxicillin on liver microsomal enzymes Ca2+-ATPase and Glucose-6-Phosphatase (G-6-P) and lipid peroxidation in rats. Male Wistar strain rats weighing 120 – 195 g were divided into four groups. Group one, the control group, received physiological saline, group ...

  4. Influence of superior cervical ganglionectomy on hippocampal neurogenesis and learning and memory in adult rats

    Institute of Scientific and Technical Information of China (English)

    Yanping Ding; Baoping Shao; Shiyuan Yu; Shanting Zhao; Jianlin Wang

    2009-01-01

    BACKGROUND: Studies have shown that neurogenesis in the dentate gyrus plays an important role in learning and memory. However, studies have not determined whether the superior cervical ganglion or the sympathetic nerve system influences hippocampal neurogenesis or learning and memory in adult rats. OBJECTIVE: To observe differences in dentate gyrus neurogenesis, as well as learning and memory, in adult rats following superior cervical ganglionectomy. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Immunohistochemistry Laboratory of the School of Life Sciences in Lanzhou University from July 2006 to July 2007.MATERIALS: Doublecortin polyclonal antibody was provided by Santa Cruz Biotechnology, USA;avidin-biotin-peroxidase complex was purchased from Zhongshan Goldenbride Biotechnology, China;Morris water maze was bought from Taimeng Technology, China. METHODS: A total of 20 adult, male, Wistar rats were randomly divided into surgery and control groups, with 10 rats in each group. In the surgery group, the bilateral superior cervical ganglions were transected. In the control group, the superior cervical ganglions were only exposed, but no ganglionectomy was performed. MAIN OUTCOME MEASURES: To examine distribution, morphology, and number of newborn neurons in the dentate gyrus using doublecortin immunohistochemistry at 36 days following surgical procedures. To examine ability of learning and memory in adult rats using the Morris water maze at 30 days following surgical procedures. RESULTS: Doublecortin immunohistochemical results showed that a reduction in the number of doublecortin-positive neurons in the surgery group compared to the control group (P<0.05), while the distribution of doublecortin-positive neurons was identical in the two groups. The surgery group exhibited significantly worse performance in learning and spatial memory tasks compared to the control group (P<0.05). CONCLUSION: Superior cervical ganglionectomy

  5. Consistent relationships between sensory properties of savory snack foods and calories influence food intake in rats.

    Science.gov (United States)

    Swithers, S E; Doerflinger, A; Davidson, T L

    2006-11-01

    Determine the influence of experience with consistent or inconsistent relationships between the sensory properties of snack foods and their caloric consequences on the control of food intake or body weight in rats. Rats received plain and BBQ flavored potato chips as a dietary supplement, along with ad lib rat chow. For some rats the potato chips were a consistent source of high fat and high calories (regular potato chips). For other rats, the chips provided high fat and high calories on some occasions (regular potato chips) and provided no digestible fat and fewer calories at other times (light potato chips manufactured with a fat substitute). Thus, animals in the first group were given experiences that the sensory properties of potato chips were strong predictors of high calories, while animals in the second group were given experiences that the sensory properties of potato chips were not predictors of high calories. Juvenile and adult male Sprague-Dawley rats. Following exposure to varying potato chip-calorie contingencies, intake of a novel, high-fat snack food and subsequent chow intake were assessed. Body weight gain and body composition as measured by DEXA were also measured. In juvenile animals, exposure to a consistent relationship between potato chips and calories resulted in reduced chow intake, both when no chips were provided and following consumption of a novel high-fat, high-calorie snack chip. Long-term experience with these contingencies did not affect body weight gain or body composition in juveniles. In adult rats, exposure to an inconsistent relationship between potato chips and calories resulted in increased consumption of a novel high-fat, high-calorie snack chip premeal along with impaired compensation for the calories contained in the premeal. Consumption of foods in which the sensory properties are poor predictors of caloric consequences may alter subsequent food intake.

  6. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain.

    Science.gov (United States)

    Schuelert, N; Zhang, C; Mogg, A J; Broad, L M; Hepburn, D L; Nisenbaum, E S; Johnson, M P; McDougall, J J

    2010-11-01

    The present study examined whether local administration of the cannabinoid-2 (CB(2)) receptor agonist GW405833 could modulate joint nociception in control rat knee joints and in an animal model of osteoarthritis (OA). OA was induced in male Wistar rats by intra-articular injection of sodium monoiodo-acetate with a recovery period of 14 days. Immunohistochemistry was used to evaluate the expression of CB(2) and transient receptor potential vanilloid channel-1 (TRPV1) receptors in the dorsal root ganglion (DRG) and synovial membrane of sham- and sodium mono-iodoacetate (MIA)-treated animals. Electrophysiological recordings were made from knee joint primary afferents in response to rotation of the joint both before and following close intra-arterial injection of different doses of GW405833. The effect of intra-articular GW405833 on joint pain perception was determined by hindlimb incapacitance. An in vitro neuronal release assay was used to see if GW405833 caused release of an inflammatory neuropeptide (calcitonin gene-related peptide - CGRP). CB(2) and TRPV1 receptors were co-localized in DRG neurons and synoviocytes in both sham- and MIA-treated animals. Local application of the GW405833 significantly reduced joint afferent firing rate by up to 31% in control knees. In OA knee joints, however, GW405833 had a pronounced sensitising effect on joint mechanoreceptors. Co-administration of GW405833 with the CB(2) receptor antagonist AM630 or pre-administration of the TRPV1 ion channel antagonist SB366791 attenuated the sensitising effect of GW405833. In the pain studies, intra-articular injection of GW405833 into OA knees augmented hindlimb incapacitance, but had no effect on pain behaviour in saline-injected control joints. GW405833 evoked increased CGRP release via a TRPV1 channel-dependent mechanism. These data indicate that GW405833 reduces the mechanosensitivity of afferent nerve fibres in control joints but causes nociceptive responses in OA joints. The observed

  7. Influence of gastric pH modifiers on development of intestinal metaplasia induced by X-irradiation in rats

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu; Okamoto, Taro; Fudaba, Yasuhiro; Ogundigie, P.S.; Ito, Akihiro

    1993-01-01

    The influence of gastric pH on intestinal metaplasia was examined in male Crj:CD(SD) rats. At the age of 5 weeks, animals were irradiated with two 10 Gy doses of X-rays to the gastric region at a 3-day interval (total 20 Gy), and 6 months after irradiation, received either secretin or histamine in silicon tubes for 2 months or had their bilateral submandibular salivary glands removed. The incidences of intestinal metaplasia in the fundus of animals after administration of secretin or histamine, or removal of the salivary glands were reduced, along with the pH values, as compared with values for rats given X-rays alone. In both the pyloric and the fundic gland mucosae, the numbers of alkaline phosphatase (ALP)-positive foci and type B metaplasias (intestinal crypts without Paneth cells) were also significantly decreased (P<0.01). In a second experiment, started six months after irradiation, rats were kept on 1% sodium chloride (NaCl) diet for 6 months. Subsequent removal of salivary glands along with histamine treatment brought about a marked drop in pH and in numbers of ALP-positive foci after three and five days. The present results thus indicated that development and maintenance of intestinal metaplasia can be influenced by a decrease of pH value. (author)

  8. Estradiol does not influence strategy choice but place strategy choice is associated with increased cell proliferation in the hippocampus of female rats.

    Science.gov (United States)

    Rummel, Julia; Epp, Jonathan R; Galea, Liisa A M

    2010-09-01

    Adult neurogenesis occurs in the hippocampus of most mammals. While the function of adult hippocampal neurogenesis is not known, there is a relationship between neurogenesis and hippocampus-dependent learning and memory. Ovarian hormones can influence learning and memory and strategy choice. In competitive memory tasks, higher levels of estradiol shift female rats towards the use of the place strategy. Previous studies using a cue-competition paradigm find that 36% of male rats will use a hippocampus-dependent place strategy and place strategy users had lower levels of cell proliferation in the hippocampus. Here, we used the same paradigm to test whether endogenous or exogenous ovarian hormones influence strategy choice in the cue-competition paradigm and whether cell proliferation was related to strategy choice. We tested ovariectomized estradiol-treated (10 microg of estradiol benzoate) or sham-operated female rats on alternating blocks of hippocampus-dependent and hippocampus-independent versions of the Morris water task. Rats were then given a probe session with the platform visible and in a novel location. Preferred strategy was classified as place strategy (hippocampus-dependent) if they swam to the old platform location or cue strategy (hippocampus-independent) if they swam to the visible platform. All groups showed a preference for the cue strategy. However, proestrous rats were more likely to be place strategy users than rats not in proestrus. Female place strategy users had increased cell proliferation in the dentate gyrus compared to cue strategy users. Our study suggests that 78% of female rats chose the cue strategy instead of the place strategy. In summary the present results suggest that estradiol does not shift strategy use in this paradigm and that cell proliferation is related to strategy use with greater cell proliferation seen in place strategy users in female rats. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Influence of omega-3 fatty acids from the flaxseed (Linum usitatissimum) on the brain development of newborn rats.

    Science.gov (United States)

    Lenzi Almeida, K C; Teles Boaventura, G; Guzmán Silva, M A

    2011-01-01

    The importance of essential fatty acids, in particular the omega-3 family, in the central nervous system development of newborns is well documented. The flaxseed (Linum usitatissimum) is considered one of the best vegetable sources of omega-3 fatty acids. The influence of omega-3 fatty acids from flaxseed on the brain development of newborn rats was evaluated. Pups of the F1 generation were obtained from 18 female Wistar rats divided in 3 groups (n=6), FG: fed with diet based on Flaxseed added with casein, CG: Casein, and MCG: Modified Casein supplemented with fibers and soybean oil. Newborn pups were weighted and submitted to euthanasia; brains were collected for evaluation of weight and lipid profile through gaseous chromatography. Significant increase in brain weight (39%) and relative brain weight (37%) was verified in pups from mothers fed with flaxseed diet. The omega-3 (n-3) fatty acids from the flaxseed were found in abundance in the diet made with this oleaginous and also significant increase in docosahexaenoic acid (DHA) (38%), as well as in total of omega-3 (n-3) fatty acids (62%). Maternal diet of flaxseed during pregnancy influences the incorporation of omega-3 fatty acid in the composition of brain tissue, assuring a good development of this organ in newborn rats.

  10. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    Science.gov (United States)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  11. Influence of multi-walled carbon nanotubes on the cognitive abilities of Wistar rats

    Science.gov (United States)

    Sayapina, Nina V.; Sergievich, Alexander A.; Kuznetsov, Vladimir L.; Chaika, Vladimir V.; Lisitskaya, Irina G.; Khoroshikh, Pavel P.; Batalova, Tatyana A.; Tsarouhas, Kostas; Spandidos, Demetrios; Tsatsakis, Aristidis M.; Fenga, Concettina; Golokhvast, Kirill S.

    2016-01-01

    Studies of the neurobehavioral effects of carbon nanomaterials, particularly those of multi-walled carbon nanotubes (MWCNTs), have concentrated on cognitive effects, but data are scarce. The aim of this study was to assess the influence of MWCNTs on a number of higher nervous system functions of Wistar rats. For a period of 10 days, two experimental groups were fed with MWCNTs of different diameters (MWCNT-1 group, 8–10 nm; MWCNT-2 group, 18–20 nm) once a day at a dosage of 500 mg/kg. In the open-field test, reductions of integral indications of researching activity were observed for the two MWCNT-treated groups, with a parallel significant (Ptest, integral indices of researching activity in the MWCNT-1 and MWCNT-2 groups reduced by day 10 by 51 and 62%, respectively, while rat stress levels remained relatively unchanged. In the universal problem solving box test, reductions in motivation and energy indices of researching activity were observed in the two experimental groups. Searching activity in the MWCNT-1 group by day 3 was reduced by 50% (Ptests demonstrated that MWCNT-treated rats experienced a significant reduction of some of their cognitive abilities, a disturbing and worrying finding, taking into consideration the continuing and accelerating use of carbon nanotubes in medicine and science. PMID:27588053

  12. Extracellular matrix components influence DNA synthesis of rat hepatocytes in primary culture

    International Nuclear Information System (INIS)

    Sawada, N.; Tomomura, A.; Sattler, C.A.; Sattler, G.L.; Kleinman, H.K.; Pitot, H.C.

    1986-01-01

    The effects of several extracellular matrix components (EMCs) - fibronectin (Fn), laminin (Ln), type I (C-I) and type IV (C-IV) collagen - on DNA synthesis in rat hepatocytes in primary culture were examined by both quantitative scintillation spectrometry and autoradiography of [ 3 H]thymidine incorporation. Hepatocytes cultured on Fn showed the most active DNA synthesis initiated by epidermal growth factor (EGF) with decreasing levels of [ 3 H]thymidine uptake exhibited in the cell cultured on C-IV, C-I, and Ln, respectively. The decreasing level of DNA synthesis in hepatocytes cultured on Fn, C-IV, C-I, and Ln respectively was not influenced by cell density. The number of EGF receptors of hepatocytes was also not influenced by EMCs. These data suggest that EMCs modify hepatocyte DNA synthesis by means of post-EGF-receptor mechanisms which are regulated by both growth factors and cell density

  13. Effect of Voluntary Ethanol Consumption Combined with Testosterone Treatment on Cardiovascular Function in Rats: Influence of Exercise Training.

    Directory of Open Access Journals (Sweden)

    Sheila A Engi

    Full Text Available This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6, animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances.

  14. Tailless-like (TLX) protein promotes neuronal differentiation of dermal multipotent stem cells and benefits spinal cord injury in rats.

    Science.gov (United States)

    Wang, Tao; Ren, Xiaobao; Xiong, Jianqiong; Zhang, Lei; Qu, Jifu; Xu, Wenyue

    2011-04-01

    Spinal cord injury (SCI) remains a formidable challenge in the clinic. In the current study, we examined the effects of the TLX gene on the proliferation and neuronal differentiation of dermal multipotent stem cells (DMSCs) in vitro and the potential of these cells to improve SCI in rats in vivo. DMSCs were stably transfected with TLX-expressing plasmid (TLX/DMSCs). Cell proliferation was examined using the MTT assay, and neuronal differentiation was characterized by morphological observation combined with immunocytochemical/immunofluorescent staining. The in vivo functions of these cells were evaluated by transplantation into rats with SCI, followed by analysis of hindlimb locomotion and post-mortem histology. Compared to parental DMSCs, TLX/DMSCs showed enhanced proliferation and preferential differentiation into NF200-positive neurons in contrast to GFAP-positive astrocytes. When the undifferentiated cells were transplanted into rats with SCI injury, TLX/DMSCs led to significant improvement in locomotor recovery and healing of SCI, as evidenced by reduction in scar tissues and cavities, increase in continuous nerve fibers/axons and enrichment of NF200-positive neurons on the histological level. In conclusion, TLX promotes the proliferation and neuronal differentiation of DMSCs and thus, may serve as a promising therapy for SCI in the clinic.

  15. Changes in skeletal muscle gene expression consequent to altered weight bearing

    Science.gov (United States)

    Booth, F. W.; Kirby, C. R.

    1992-01-01

    Skeletal muscle is a dynamic organ that adapts to alterations in weight bearing. This brief review examines changes in muscle gene expression resulting from the removal of weight bearing by hindlimb suspension and from increased weight bearing due to eccentric exercise. Acute (less than or equal to 2 days) non-weight bearing of adult rat soleus muscle alters only the translational control of muscle gene expression, while chronic (greater than or equal to 7 days) removal of weight bearing appears to influence pretranslational, translational, and posttranslational mechanisms of control. Acute and chronic eccentric exercise are associated with alterations of translational and posttranslational control, while chronic eccentric training also alters the pretranslational control of muscle gene expression. Thus alterations in weight bearing influence multiple sites of gene regulation.

  16. Influences of Oldenlandia diffusa on the CYP450 Activities in Rats Using a Cocktail Method by UHPLC-MS/MS

    Directory of Open Access Journals (Sweden)

    Yiping Lin

    2018-01-01

    Full Text Available Oldenlandia diffusa has been used to treat various cancers. Cytochrome P450, a drug metabolic enzyme, might be influenced by herbal medicine. Currently, the problem that remains is the effective treatment in drug-drug interaction situation. Potential influences of Oldenlandia diffusa were elucidated on the CYP450 activities in rats using a cocktail method. Blood samples were precipitated by acetonitrile. Quantitative determination of target test object was done by ultra-performance liquid chromatography tandem mass spectrometry detection. Influences of oldenlandia diffusa on the activities of five CYP450 subtypes in rats were evaluated by five specific probe drugs (phenacetin for CYP1A2, omeprazole for CYP2C19, tolbutamide for CYP2C9, metoprolol for CYP2D6, and midazolam for CYP3A4 according to the pharmacokinetic parameters changes. No statistically significant difference (P>0.05 in pharmacokinetic behaviors can be observed in the five probe drugs. There is a potential guidance on clinical drug combination with Oldenlandia diffusa. Oldenlandia diffusa in compound preparation showed well security.

  17. Influence of classical and rock music on red blood cell rheological properties in rats.

    Science.gov (United States)

    Erken, Gulten; Bor Kucukatay, Melek; Erken, Haydar Ali; Kursunluoglu, Raziye; Genc, Osman

    2008-01-01

    A number of studies have reported physiological effects of music. Different types of music have been found to induce different alterations. Although some physiological and psychological parameters have been demonstrated to be influenced by music, the effect of music on hemorheological parameters such as red blood cell (RBC) deformability and aggregation are unknown. This study aimed at investigating the effects of classical and rock music on hemorheological parameters in rats. Twenty-eight rats were divided into four groups: the control, noise-applied, and the classical music- and rock music-applied groups. Taped classical or rock music were played repeatedly for 1 hour a day for 2 weeks and 95-dB machine sound was applied to the noise-applied rats during the same period. RBC deformability and aggregation were measured using an ektacytometer. RBC deformability was found to be increased in the classical music group. Exposure to both classical and rock music resulted in a decrement in erythrocyte aggregation, but the decline in RBC aggregation was of a higher degree of significance in the classical music group. Exposure to noise did not have any effect on the parameters studied. The results of this study indicate that the alterations in hemorheological parameters were more pronounced in the classical music group compared with the rock music group.

  18. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury.

    Science.gov (United States)

    Russell, K L; Berman, N E J; Gregg, P R A; Levant, B

    2014-01-01

    The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. © 2013 Elsevier Ltd. All rights reserved.

  19. Modulation of rat behaviour by using a rat-like robot

    International Nuclear Information System (INIS)

    Shi, Qing; Ishii, Hiroyuki; Kinoshita, Shinichi; Takanishi, Atsuo; Okabayashi, Satoshi; Iida, Naritoshi; Kimura, Hiroshi; Shibata, Shigenobu

    2013-01-01

    In this paper, we study the response of a rat to a rat-like robot capable of generating different types of behaviour (stressful, friendly, neutral). Experiments are conducted in an open-field where a rat-like robot called WR-4 is put together with live rats. The activity level of each rat subject is evaluated by scoring its locomotor activity and frequencies of performing rearing (rising up on its hind limbs) and body grooming (body cuddling and head curling) actions, whereas the degree of preference of that is indicated by the robot–rat distance and the frequency of contacting WR-4. The moving speed and behaviour of WR-4 are controlled in real-time based on the feedback from rat motion. The activity level and degree of preference of rats for each experimental condition are analysed and compared to understand the influence of robot behaviour. The results of this study show that the activity level and degree of preference of the rat decrease when exposed to a stressful robot, and increase when the robot exhibit friendly behaviour, suggesting that a rat-like robot can modulate rat behaviour in a controllable, predictable way. (paper)

  20. Evaluation of the novel avocado/soybean unsaponifiable Arthrocen to alter joint pain and inflammation in a rat model of osteoarthritis.

    Science.gov (United States)

    Goudarzi, Ramin; Reid, Allison; McDougall, Jason J

    2018-01-01

    Avocado/soybean unsaponifiables such as Arthrocen have been reported to reduce cartilage catabolism and chondrocytic synthesis of inflammatory mediators associated with osteoarthritis (OA). While there is some clinical evidence that avocado/soybean unsaponifiables can reduce OA pain, no preclinical studies have corroborated this observation. The present study determined whether addition of an avocado/soybean unsaponifiable (Arthrocen) to the drinking water of OA rats reduced direct and referred joint pain. OA was induced in male Wistar rats by intra-articular injection of sodium monoiodoacetate (MIA: 0.3mg) and animals were allowed to recover for 14 days. Arthrocen was added to the drinking water which was available to animals ad libitum. On day 30, joint pain was assessed by dynamic incapacitance while referred pain was determined by von Frey hair algesiometry. The joint damage induced by MIA injection was severe and was consistent with end-stage OA. Arthrocen consumption (approximately 35 mg/day) attenuated the joint oedema associated with MIA injection. Hindlimb weight bearing also significantly improved in Arthrocen-treated rats (P<0.05); however, von Frey hair mechanosensitivity was unaffected by this treatment. These data indicate that Arthrocen has the potential to reduce joint inflammation and pain associated with end-stage OA.

  1. Purinergic 2X receptors play a role in evoking the exercise pressor reflex in rats with peripheral artery insufficiency.

    Science.gov (United States)

    Stone, Audrey J; Yamauchi, Katsuya; Kaufman, Marc P

    2014-02-01

    Purinergic 2X (P2X) receptors on the endings of thin fiber afferents have been shown to play a role in evoking the exercise pressor reflex in cats. In this study, we attempted to extend this finding to decerebrated, unanesthetized rats whose femoral arteries were either freely perfused or were ligated 72 h before the start of the experiment. We first established that our dose of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 10 mg/kg), a P2X receptor antagonist, attenuated the pressor response to α,β-methylene ATP (10 μg/kg), a P2X receptor agonist. We then compared the exercise pressor reflex before and after infusing PPADS into the arterial supply of the hindlimb muscles that were statically contracted. In rats with freely perfused femoral arteries, the peak pressor responses to contraction were not significantly attenuated by PPADS (before PPADS: 19 ± 2 mmHg, 13 min after PPADS: 17 ± 2 mmHg, and 25 min after PPADS: 17 ± 3 mmHg). Likewise, the cardioaccelerator and renal sympathetic nerve responses were not significantly attenuated. In contrast, we found that in rats whose femoral arteries were ligated PPADS significantly attenuated the peak pressor responses to contraction (before PPADS: 37 ± 5 mmHg, 13 min after PPADS: 27 ± 6 mmHg, and 25 min after PPADS: 25 ± 5 mmHg; P reflex in rats whose femoral arteries were ligated but play only a minimal role in evoking the reflex in rats whose femoral arteries were freely perfused.

  2. Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals

    DEFF Research Database (Denmark)

    Butt, Simon J.B.; Kiehn, Ole

    2003-01-01

    Local neuronal networks that are responsible for walking are poorly characterized in mammals. Using an innovative approach to identify interneuron inputs onto motorneuron populations in a neonatal rodent spinal cord preparation, we have investigated the network responsible for left-right coordina......Local neuronal networks that are responsible for walking are poorly characterized in mammals. Using an innovative approach to identify interneuron inputs onto motorneuron populations in a neonatal rodent spinal cord preparation, we have investigated the network responsible for left......-right coordination of the hindlimbs. We demonstrate how commissural interneurons (CINs), whose axons traverse the midline to innervate contralateral neurons, are organized such that distinct flexor and extensor centers in the rostral lumbar spinal cord define activity in both flexor and extensor caudal motor pools....... In addition, the nature of some connections are reconfigured on switching from rest to locomotion via a mechanism that might be associated with synaptic plasticity in the spinal cord. These results from identified pattern-generating interneurons demonstrate how interneuron populations create an effective...

  3. Influence of dosing times on cisplatin-induced peripheral neuropathy in rats

    International Nuclear Information System (INIS)

    Seto, Yoshihiro; Okazaki, Fumiyasu; Horikawa, Keiji; Zhang, Jing; Sasaki, Hitoshi; To, Hideto

    2016-01-01

    Although cis-diamminedichloro-platinum (CDDP) exhibits strong therapeutic effects in cancer chemotherapy, its adverse effects such as peripheral neuropathy, nephropathy, and vomiting are dose-limiting factors. Previous studies reported that chronotherapy decreased CDDP-induced nephropathy and vomiting. In the present study, we investigated the influence of dosing times on CDDP-induced peripheral neuropathy in rats. CDDP (4 mg/kg) was administered intravenously at 5:00 or 17:00 every 7 days for 4 weeks to male Sprague–Dawley rats, and saline was given to the control group. To assess the dosing time dependency of peripheral neuropathy, von-Frey test and hot-plate test were performed. In order to estimate hypoalgesia, the hot-plate test was performed in rats administered CDDP weekly for 4 weeks. On day 28, the withdrawal latency to thermal stimulation was significantly prolonged in the 17:00-treated group than in the control and 5:00-treated groups. When the von-Frey test was performed to assess mechanical allodynia, the withdrawal threshold was significantly lower in the 5:00 and 17:00-treated groups than in the control group on day 6 after the first CDDP dose. The 5:00-treated group maintained allodynia throughout the experiment with the repeated administration of CDDP, whereas the 17:00-treated group deteriorated from allodynia to hypoalgesia. It was revealed that the severe of CDDP-induced peripheral neuropathy was inhibited in the 5:00-treated group, whereas CDDP-treated groups exhibited mechanical allodynia. These results suggested that the selection of an optimal dosing time ameliorated CDDP-induced peripheral neuropathy. The online version of this article (doi:10.1186/s12885-016-2777-0) contains supplementary material, which is available to authorized users

  4. Fenbendazole treatment may influence lipopolysaccharide effects in rat brain.

    Science.gov (United States)

    Hunter, Randy L; Choi, Dong-Young; Kincer, Jeanie F; Cass, Wayne A; Bing, Guoying; Gash, Don M

    2007-10-01

    In evaluating discrepant results between experiments in our laboratory, we collected data that challenge the notion that anthelminthic drugs like FBZ do not alter inflammatory responses. We found that FBZ significantly modulates inflammation in F344 rats intrastriatally injected with LPS. FBZ treatment of LPS-injected rats significantly increased weight loss, microglial activation, and dopamine loss; in addition, FBZ attenuated the LPS-induced loss of astrocytes. Therefore, FBZ treatment altered the effects of LPS injection. Caution should be used in interpreting data collected from rats treated with LPS and FBZ.

  5. [Influence of ademol on NO metabolism indices in rats with modeling myocardial infarction].

    Science.gov (United States)

    Khodakivs'kyĭ, O A; Pavlov, S V; Bukhtiiarova, N V

    2013-01-01

    It was established in experiments on the rats in the acute period of modeling pituitrin-isadrin myocardial infarction the formation of nitrogen monoxide decreases along with its accelerated transformation into peroxynitrite. It was evidenced by more than double inhibition of NO synthase activity in the myocardium and by decreasing the amount of nitrates on the background of the increasing level of peroxynitrites' marker--nitrotyrosine by 246.6% at an average. Experimental therapy of rats by ademol which is a derivate of adamantan (1-adamantiloxy-3-morpholino-2 propanol hydrochloride) better than by corvitin normalizes the processes of synthesis of nitric oxide. At the same time ademol probably exceeded the reference drug in ability to increase NO synthase activity and amount of nitrate, and promoted a decrease of the level of nitrotyrosine in the myocardium on the average by 36.3; 50.6 and 12.7%, respectively. Corrective influence of ademol on indicators of metabolism in NO system under the conditions of acute cardiac ischemia indicates to promicing development of domestic cardioprotector on its base.

  6. Characterization of chemically induced ovarian carcinomas in an ethanol-preferring rat model: influence of long-term melatonin treatment.

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo A Chuffa

    Full Text Available Ovarian cancer is the fourth most common cause of cancer deaths among women, and chronic alcoholism may exert co-carcinogenic effects. Because melatonin (mel has oncostatic properties, we aimed to investigate and characterize the chemical induction of ovarian tumors in a model of ethanol-preferring rats and to verify the influence of mel treatment on the overall features of these tumors. After rats were selected to receive ethanol (EtOH, they were surgically injected with 100 µg of 7,12-dimethyl-benz[a]anthracene (DMBA plus sesame oil directly under the left ovarian bursa. At 260 days old, half of the animals received i.p. injections of 200 µg mel/100 g b.w. for 60 days. Four experimental groups were established: Group C, rats bearing ovarian carcinomas (OC; Group C+EtOH, rats voluntarily consuming 10% (v/v EtOH and bearing OC; Group C+M, rats bearing OC and receiving mel; and Group C+EtOH+M, rats with OC consuming EtOH and receiving mel. Estrous cycle and nutritional parameters were evaluated, and anatomopathological analyses of the ovarian tumors were conducted. The incidence of ovarian tumors was higher in EtOH drinking animals 120 days post-DMBA administration, and mel efficiently reduced the prevalence of some aggressive tumors. Although mel promoted high EtOH consumption, it was effective in synchronizing the estrous cycle and reducing ovarian tumor mass by 20%. While rats in the C group displayed cysts containing serous fluid, C+EtOH rats showed solid tumor masses. After mel treatment, the ovaries of these rats presented as soft and mobile tissues. EtOH consumption increased the incidence of serous papillary carcinomas and sarcomas but not clear cell carcinomas. In contrast, mel reduced the incidence of sarcomas, endometrioid carcinomas and cystic teratomas. Combination of DMBA with EtOH intake potentiated the incidence of OC with malignant histologic subtypes. We concluded that mel reduces ovarian masses and the incidence of

  7. Thoracic Hemisection in Rats Results in Initial Recovery Followed by a Late Decrement in Locomotor Movements, with Changes in Coordination Correlated with Serotonergic Innervation of the Ventral Horn

    Science.gov (United States)

    Leszczyńska, Anna N.; Majczyński, Henryk; Wilczyński, Grzegorz M.; Sławińska, Urszula; Cabaj, Anna M.

    2015-01-01

    Lateral thoracic hemisection of the rodent spinal cord is a popular model of spinal cord injury, in which the effects of various treatments, designed to encourage locomotor recovery, are tested. Nevertheless, there are still inconsistencies in the literature concerning the details of spontaneous locomotor recovery after such lesions, and there is a lack of data concerning the quality of locomotion over a long time span after the lesion. In this study, we aimed to address some of these issues. In our experiments, locomotor recovery was assessed using EMG and CatWalk recordings and analysis. Our results showed that after hemisection there was paralysis in both hindlimbs, followed by a substantial recovery of locomotor movements, but even at the peak of recovery, which occurred about 4 weeks after the lesion, some deficits of locomotion remained present. The parameters that were abnormal included abduction, interlimb coordination and speed of locomotion. Locomotor performance was stable for several weeks, but about 3–4 months after hemisection secondary locomotor impairment was observed with changes in parameters, such as speed of locomotion, interlimb coordination, base of hindlimb support, hindlimb abduction and relative foot print distance. Histological analysis of serotonergic innervation at the lumbar ventral horn below hemisection revealed a limited restoration of serotonergic fibers on the ipsilateral side of the spinal cord, while on the contralateral side of the spinal cord it returned to normal. In addition, the length of these fibers on both sides of the spinal cord correlated with inter- and intralimb coordination. In contrast to data reported in the literature, our results show there is not full locomotor recovery after spinal cord hemisection. Secondary deterioration of certain locomotor functions occurs with time in hemisected rats, and locomotor recovery appears partly associated with reinnervation of spinal circuitry by serotonergic fibers. PMID

  8. Haemato-protective influence of dietary fenugreek (Trigonella foenum-graecum L.) seeds is potentiated by onion (Allium cepa L.) in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Pradeep, Seetur R; Srinivasan, Krishnapura

    2018-02-01

    We have recently reported the beneficial modulation of metabolic abnormalities and oxidative stress in diabetic rats by dietary fenugreek seeds and onion. This investigation evaluated the protective influence of dietary fenugreek seeds (100 g kg -1 ) and onion (30 g kg -1 ) on erythrocytes of streptozotocin-induced diabetic rats, through modulation of reduced haematological indices and antisickling potency. This study also evaluated the altered erythrocyte membrane lipid profile and beneficial countering of increased lipid peroxidation, osmotic fragility, along with reduced membrane fluidity and deformability, nitric oxide production and echinocyte formation. Dietary fenugreek seeds and onion appeared to counter the deformity and fragility of erythrocytes partially in diabetic rats by their antioxidant potential and hypocholesterolemic property. The antisickling potency of these spices was accomplished by a substantial decrease in echinocyte population and AGEs in diabetic rats. Further insight into the factors that might have reduced the fluidity of erythrocytes in diabetic rats revealed changes in the cholesterol: phospholipid ratio, fatty acid profile, and activities of membrane-bound enzymes. Dietary fenugreek seeds and onion offered a beneficial protective effect to the red blood cells, the effect being higher with fenugreek + onion. This is the first report on the hemato-protective influence of a nutraceutical food component in diabetic situation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Influence of Aluminium Chloride on Antioxidant System in the Testis and Epididymis of Rats

    Directory of Open Access Journals (Sweden)

    Arumugam Kalaiselvi

    2014-03-01

    Full Text Available Background: In recent years, the use of chemicals in agriculture, industry, and public health has become so common that the environment is continuously contaminated by the toxic substance-like metals. Aluminum released due to anthropogenic activities such as mining and industrial uses. Aluminium has several industrial uses. The present study was designed to investigate the effect of aluminium chloride (AlCl3 on enzymatic and non-enzymatic antioxidants in the testis and epididymis of rats. Methods: Adult male rats were administered with aluminium chloride at two different doses, 50 mg and 100 mg/kg body weight, orally, daily for 45 days. At the end of the experimental period, the animals were sacrificed and their testis and the epididymis were removed. Antioxidant enzymes like catalase (CAT, superoxide dismutase (SOD, glutathione peroxidase (GPx, glutathione reductase (GR, and glutathione-s-transferase (GST were assayed. Lipid peroxidation (LPO, vitamin C, and vitamin E levels were also determined. Results: Aluminium chloride administration had no effect on the bodyweight of the animals but the weight of the testis and epididymis was decreased. Almost all the antioxidant enzymes studied markedly diminished in the testis and epididymis of aluminium chloride treated animals. The non-enzymatic antioxidants, vitamin C and vitamin E, also declined. Lipid peroxidation, on the other hand, significantly increased. The influence was found to be more in 100 mg treated rats when compared to 50 mg treated rats. Conclusions: The present study suggests the reproductive toxicity of aluminium by inducing the oxidative stress in the testis and epididymis and possible interference in sperm production and further maturational processes.

  10. Repetitive Neonatal Erythropoietin and Melatonin Combinatorial Treatment Provides Sustained Repair of Functional Deficits in a Rat Model of Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Lauren L. Jantzie

    2018-04-01

    Full Text Available Cerebral palsy (CP is the leading cause of motor impairment for children worldwide and results from perinatal brain injury (PBI. To test novel therapeutics to mitigate deficits from PBI, we developed a rat model of extreme preterm birth (<28 weeks of gestation that mimics dual intrauterine injury from placental underperfusion and chorioamnionitis. We hypothesized that a sustained postnatal treatment regimen that combines the endogenous neuroreparative agents erythropoietin (EPO and melatonin (MLT would mitigate molecular, sensorimotor, and cognitive abnormalities in adults rats following prenatal injury. On embryonic day 18 (E18, a laparotomy was performed in pregnant Sprague–Dawley rats. Uterine artery occlusion was performed for 60 min to induce placental insufficiency via transient systemic hypoxia-ischemia, followed by intra-amniotic injections of lipopolysaccharide, and laparotomy closure. On postnatal day 1 (P1, approximately equivalent to 30 weeks of gestation, injured rats were randomized to an extended EPO + MLT treatment regimen, or vehicle (sterile saline from P1 to P10. Behavioral assays were performed along an extended developmental time course (n = 6–29. Open field testing shows injured rats exhibit hypermobility and disinhibition and that combined neonatal EPO + MLT treatment repairs disinhibition in injured rats, while EPO alone does not. Furthermore, EPO + MLT normalizes hindlimb deficits, including reduced paw area and paw pressure at peak stance, and elevated percent shared stance after prenatal injury. Injured rats had fewer social interactions than shams, and EPO + MLT normalized social drive. Touchscreen operant chamber testing of visual discrimination and reversal shows that EPO + MLT at least partially normalizes theses complex cognitive tasks. Together, these data indicate EPO + MLT can potentially repair multiple sensorimotor, cognitive, and behavioral realms following PBI, using

  11. Influence of whole-body irradiation on calcium and phosphate homeostasis in the rat

    International Nuclear Information System (INIS)

    Pento, J.T.; Kenny, A.D.

    1975-01-01

    Previous irradiation studies have revealed marked alterations in calcium metabolism. Moreover, the maintenance of calcium homeostasis with parathyroid hormone or calcium salts has been reported to reduce radiation lethality. Therefore, the present study was designed to evaluate the influence of irradiation on calcium homeostasis in the rat. Nine hundred rad of whole-body irradiation produced a significant depression of both plasma calcium and phosphate at 4 days postirradiation. This effect of irradiation was observed to be dose-dependent over a range of 600 to 1200 rad, and possibly related to irradiation-induced anorexia. The physiological significance of these observations is discussed

  12. Dietary choline levels modify the effects of prenatal alcohol exposure in rats.

    Science.gov (United States)

    Idrus, Nirelia M; Breit, Kristen R; Thomas, Jennifer D

    Prenatal alcohol exposure can cause a range of physical and behavioral alterations; however, the outcome among children exposed to alcohol during pregnancy varies widely. Some of this variation may be due to nutritional factors. Indeed, higher rates of fetal alcohol spectrum disorders (FASD) are observed in countries where malnutrition is prevalent. Epidemiological studies have shown that many pregnant women throughout the world may not be consuming adequate levels of choline, an essential nutrient critical for brain development, and a methyl donor. In this study, we examined the influence of dietary choline deficiency on the severity of fetal alcohol effects. Pregnant Sprague-Dawley rats were randomly assigned to receive diets containing 40, 70, or 100% recommended choline levels. A group from each diet condition was exposed to ethanol (6.0g/kg/day) from gestational day 5 to 20 via intubation. Pair-fed and ad lib lab chow control groups were also included. Physical and behavioral development was measured in the offspring. Prenatal alcohol exposure delayed motor development, and 40% choline altered performance on the cliff avoidance task, independent of one another. However, the combination of low choline and prenatal alcohol produced the most severe impairments in development. Subjects exposed to ethanol and fed the 40% choline diet exhibited delayed eye openings, significantly fewer successes in hindlimb coordination, and were significantly overactive compared to all other groups. These data suggest that suboptimal intake of a single nutrient can exacerbate some of ethanol's teratogenic effects, a finding with important implications for the prevention of FASD. Copyright © 2016. Published by Elsevier Inc.

  13. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles

    OpenAIRE

    Stone, Audrey J.; Copp, Steven W.; Kim, Joyce S.; Kaufman, Marc P.

    2015-01-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles ...

  14. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Song

    Full Text Available During hypovolemic shock, skeletal muscle blood flow could be redistributed to vital organs via vasoconstriction in part evoked by activation of the innervating sympathetic nerve activity. However, it is not well known whether this mechanism operates during anaphylactic shock. We determined the femoral artery blood flow (FBF and lumbar sympathetic nerve activity (LSNA mainly regulating the hindquater muscle blood flow during anaphylactic hypotension in anesthetized rats. Anesthetized Sprague-Dawley rats were randomly allocated to the following groups (n = 7/group: (1 non-sensitized, (2 anaphylaxis, (3 anaphylaxis-lumbar sympathectomy (LS and (4 anaphylaxis-sinoaortic denervation (SAD groups. Anaphylaxis was induced by an intravenous injection of the ovalbumin antigen to the sensitized rats. The systemic arterial pressure (SAP, heart rate (HR, central venous pressure (CVP, FBF and LSNA were continuously measured. In the anaphylaxis group, LSNA and HR increased, while SAP and FBF decreased after antigen injection. In the anaphylaxis-SAD group, LSNA did not significantly change during the early phase, but the responses of SAP and FBF were similar to those in the anaphylaxis group. In the anaphylaxis-LS group, both FBF and SAP decreased similarly to the anaphylaxis group during anaphylactic hypotension. These results indicated that LSNA increased via baroreceptor reflex, but this sympathoexcitation or LS did not affect antigen-induced decreases in FBF or SAP. Lumbar sympathetic nerves are not involved in regulation of the blood flow to the hindlimb or systemic blood pressure during anaphylactic hypotension in anesthetized rats.

  15. Expected for acquisition movement exercise is more effective for functional recovery than simple exercise in a rat model of hemiplegia.

    Science.gov (United States)

    Ikeda, Satoshi; Ohwatashi, Akihiko; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira

    2013-01-01

    The use of novel rehabilitative approaches for effecting functional recovery following stroke is controversial. Effects of different but effective rehabilitative interventions in the hemiplegic patient are not clear. We studied the effects of different rehabilitative approaches on functional recovery in the rat photochecmical cerebral infarction model. Twenty-four male Wistar rats aged 8 weeks were used. The cranial bone was exposed under deep anesthesia. Rose bengal (20 mg/kg) was injected intravenously, and the sensorimotor area of the cerebral cortex was irradiated transcranially for 20 min with a light beam of 533-nm wavelength. Animals were divided into 3 groups. In the simple-exercise group, treadmill exercise was performed for 20 min every day. In the expected for acquisition movement-training group, beam-walking exercise was done for 20 min daily. The control group was left to recover without additional intervention. Hindlimb function was evaluated with the beam-walking test. Following cerebral infarction, dysfunction of the contralateral extremities was observed. Functional recovery was observed earlier in the expected for acquisition training group than in the other groups. Although rats in the treadmill group recovered more quickly than controls, the beam-walking group had the shortest overall recovery time. Exercise facilitated functional recovery in the rat hemiplegic model, and expected for acquisition exercise was more effective than simple exercise. These findings are considered to have important implications for the future development of clinical rehabilitation programs.

  16. Neurotoxicity of carbonyl sulfide in F344 rats following inhalation exposure for up to 12 weeks

    International Nuclear Information System (INIS)

    Morgan, Daniel L.; Little, Peter B.; Herr, David W.; Moser, Virginia C.; Collins, Bradley; Herbert, Ronald; Johnson, G. Allan; Maronpot, Robert R.; Harry, G. Jean; Sills, Robert C.

    2004-01-01

    Carbonyl sulfide (COS), a high-priority Clean Air Act chemical, was evaluated for neurotoxicity in short-term studies. F344 rats were exposed to 75-600 ppm COS 6 h per day, 5 days per week for up to 12 weeks. In rats exposed to 500 or 600 ppm for up to 4 days, malacia and microgliosis were detected in numerous neuroanatomical regions of the brain by conventional optical microscopy and magnetic resonance microscopy (MRM). After a 2-week exposure to 400 ppm, rats were evaluated using a functional observational battery. Slight gait abnormality was detected in 50% of the rats and hypotonia was present in all rats exposed to COS. Decreases in motor activity, and forelimb and hindlimb grip strength were also detected. In rats exposed to 400 ppm for 12 weeks, predominant lesions were in the parietal cortex area 1 (necrosis) and posterior colliculus (neuronal loss, microgliosis, hemorrhage), and occasional necrosis was present in the putamen, thalamus, and anterior olivary nucleus. Carbonyl sulfide specifically targeted the auditory system including the olivary nucleus, nucleus of the lateral lemniscus, and posterior colliculus. Consistent with these findings were alterations in the amplitude of the brainstem auditory evoked responses (BAER) for peaks N 3 , P 4 , N 4 , and N 5 that represented changes in auditory transmission between the anterior olivary nucleus to the medial geniculate nucleus in animals after exposure for 2 weeks to 400 ppm COS. A concentration-related decrease in cytochrome oxidase activity was detected in the posterior colliculus and parietal cortex of exposed rats as early as 3 weeks. Cytochrome oxidase activity was significantly decreased at COS concentrations that did not cause detectable lesions, suggesting that disruption of the mitochondrial respiratory chain may precede these brain lesions. Our studies demonstrate that this environmental air contaminant has the potential to cause a wide spectrum of brain lesions that are dependent on the degree

  17. Influence of hypoandrogenism in skin wound healing resistance in rats

    Directory of Open Access Journals (Sweden)

    Denny Fabrício Magalhães Veloso

    2009-03-01

    Full Text Available Objective: The objective of the present study is to verify the effect of testosterone depletion on healing of surgical skin wounds at different ages and postoperative times. Methods: Forty-four Wistar male rats were divided into four groups: Group 1y (n = 11 – young control, sham-operated rats (30 days-old; Group 1A (n = 10 – adult control, sham-operated rats (three to four months old; Group 2Y (n = 10 – young rats after bilateral orchiectomy; and Group 2A (n = 11 – adult rats after bilateral orchiectomy. After six months, a linear incision was performed on the dorsal region of the animals. The resistance of the wound healing was measured in a skin fragment with a tensiometer, on the 7th and 21st postoperative days. Rresults: The wound healing resistance was higher in Group 1Y than in Group 2Y after seven days (p < 0.05. Wound healing resistance at 21 days was higher than at seven days in all groups (p < 0.05. Late wound healing resistance was not different between young and adult rats. Cconclusions: Bilateral orchiectomy decreased the wound healing resistance only in young animals at the seventh postoperative day.

  18. Social status and sex independently influence androgen receptor expression in the eusocial naked mole-rat brain.

    Science.gov (United States)

    Holmes, Melissa M; Goldman, Bruce D; Forger, Nancy G

    2008-08-01

    Naked mole-rats (Heterocephalus glaber) are eusocial rodents that live in large subterranean colonies including a single breeding female and 1-3 breeding males; all other members of the colony, known as subordinates, are reproductively suppressed. We recently found that naked mole-rats lack many of the sex differences in the brain and spinal cord commonly found in other rodents. Instead, neural morphology is influenced by breeding status, such that breeders, regardless of sex, have more neurons than subordinates in the ventromedial nucleus of the hypothalamus (VMH), and larger overall volumes of the bed nucleus of the stria terminalis (BST), paraventricular nucleus (PVN) and medial amygdala (MeA). To begin to understand how breeding status influences brain morphology, we examined the distribution of androgen receptor (AR) immunoreactivity in gonadally intact breeders and subordinates of both sexes. All animals had AR+ nuclei in many of the same regions positive for AR in other mammals, including the VMH, BST, PVN, MeA, and the ventral portion of the premammillary nucleus (PMv). We also observed diffuse labeling throughout the preoptic area, demonstrating that distribution of the AR protein in presumptive reproductive brain nuclei is well-conserved, even in a species that exhibits remarkably little sexual dimorphism. In contrast to other rodents, however, naked mole-rats lacked AR+ nuclei in the suprachiasmatic nucleus and hippocampus. Males had more AR+ nuclei in the MeA, VMH, and PMv than did females. Surprisingly, breeders had significantly fewer AR+ nuclei than subordinates in all brain regions examined (VMH, BST, PVN, MeA, and PMv). Thus, social status is strongly correlated with AR immunoreactivity in this eusocial species.

  19. Complexity of the influence of gangliosides on histamine release from human basophils and rat mast cells

    DEFF Research Database (Denmark)

    Jensen, C; Svendsen, U G; Thastrup, Ole

    1987-01-01

    The influence of exogenous addition of gangliosides on histamine release from human basophils and rat mast cells was examined in vitro. Gangliosides dose-dependently inhibited histamine release, and this inhibition was dependent on the ganglioside sialic acid content, since GT1b, having 3 sialic...... was reflected in the sensitivity of the cells to extracellular calcium, since inhibition of the release could be counteracted by increasing the extracellular concentration of calcium....

  20. The influence of aging and estradiol to progesterone ratio on rat macrophage phenotypic profile and NO and TNF-α production.

    Science.gov (United States)

    Dimitrijević, Mirjana; Stanojević, Stanislava; Kuštrimović, Nataša; Mitić, Katarina; Vujić, Vesna; Aleksić, Iva; Radojević, Katarina; Leposavić, Gordana

    2013-11-01

    The phenotype and function of tissue macrophages substantially depend on the cellular milieu and biological effector molecules, such as steroid hormones, to which they are exposed. Furthermore, in female rats, aging is associated with the altered macrophage functioning and the increased estrogen level is followed by a decrease in that of progesterone. Therefore, the present study aimed to investigate the influence of estradiol/progesterone balance on rat macrophage function and phenotype throughout whole adult lifespan. We ovariectomized rats at the late prepubertal age or at the very end of reproductive lifespan, and examined the expression of ED2 (CD163, a marker of mature resident macrophages related to secretion of inflammatory mediators) on peritoneal macrophages and their ability to produce TNF-α and NO upon LPS-stimulation at different age points. In addition, to delineate direct and indirect effects of estrogen, we assessed the in vitro influence of different concentrations of 17β-estradiol on LPS-induced macrophage TNF-α and NO production. Results showed that: (a) the low frequency of ED2(high) cells amongst peritoneal macrophages of aged rats was accompanied with the reduced TNF-α, but not NO production; (b) estradiol level gradually increased following ovariectomy; (c) macrophage ED2 expression and TNF-α production were dependent on estradiol/progesterone balance and they changed in the same direction; (d) changes in estradiol/progesterone balance differentially affected macrophages TNF-α and NO production; and (e) estradiol exerted pro-inflammatory and anti-inflammatory effects on macrophages in vivo and in vitro, respectively. Overall, our study discloses that estradiol/progesterone balance contributes to the fine-tuning of rat macrophage secretory capacity, and adds to a better understanding of the ovarian steroid hormone role in the regulation of macrophage function, and its significance for the age-associated changes in innate immunity.

  1. Limb regeneration from X-irradiated tails of Ambystoma mexicanum following transplantation of flank skin from region adjacent to hindlimb

    International Nuclear Information System (INIS)

    Hofmann, D.K.; Kleinebeckel, D.; Luther, W.

    1978-01-01

    In the experiments performed by W. Luther on young Ambystoma mexicanum, tails of host animals were irradiated with 2000 r. Afterwards a skin cuff was removed from the mid-tail region. From non-irradiated donor animals, square pieces of skin dorsally adjacent to both hindlimbs were grafted (either 90 0 -rotated or unrotated) to both sides of the denuded area of the irradiated host tail. After 3 weeks the tails were amputated across the skin transplants, and the structures which had regenerated from the distal portions of the tails were fixed 6-16 weeks later. Morhological and histological investigation revealed that 4 out of 12 regenerates from rotated grafts showed clear limb characteristics. (orig./AJ) [de

  2. Involvement of Cholinergic Dysfunction and Oxidative Damage in the Effects of Simulated Weightlessness on Learning and Memory in Rats

    Science.gov (United States)

    Wang, Qiong; Lv, Ke; Wang, Tingmei; Wang, Yanli; Ji, Guohua; Cao, Hongqing; Kan, Guanghan

    2018-01-01

    The present study aimed to determine how the learning and memory gradually change with the prolonged hindlimb unloading (HU) treatment in rats. Different HU durations (7 d, 14 d, 21 d, and 28 d) in Sprague-Dawley (SD) rats were implemented. Cognitive function was assessed using the Morris water maze (MWM) and the shuttle box test. Additionally, parameters about cholinergic activity and oxidative stress were tested. Results showed that longer-than-14 d HU led to the inferior performances in the behavioral tasks. Besides, acetylcholine esterase (AChE) activity, malondialdehyde (MDA) level in brain, reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG) concentrations of HU rats were significantly increased. Furthermore, choline acetyltransferase (ChAT), superoxide dismutase (SOD), and catalase (CAT) activity in brain were notably attenuated. Most of these effects were more pronounced after longer exposure (21 d and 28 d) to HU, although some indicators had their own characteristics of change. These results indicate that cholinergic dysfunction and oxidative damage were involved in the learning and memory impairments induced by longer-than-14 d HU. Moreover, the negative effects of HU tend to be augmented as the HU duration becomes longer. The results may be helpful to present possible biochemical targets for countermeasures development regarding the memory deficits under extreme environmental conditions. PMID:29581965

  3. Involvement of Cholinergic Dysfunction and Oxidative Damage in the Effects of Simulated Weightlessness on Learning and Memory in Rats

    Directory of Open Access Journals (Sweden)

    Yongliang Zhang

    2018-01-01

    Full Text Available The present study aimed to determine how the learning and memory gradually change with the prolonged hindlimb unloading (HU treatment in rats. Different HU durations (7 d, 14 d, 21 d, and 28 d in Sprague-Dawley (SD rats were implemented. Cognitive function was assessed using the Morris water maze (MWM and the shuttle box test. Additionally, parameters about cholinergic activity and oxidative stress were tested. Results showed that longer-than-14 d HU led to the inferior performances in the behavioral tasks. Besides, acetylcholine esterase (AChE activity, malondialdehyde (MDA level in brain, reactive oxygen species (ROS, and 8-hydroxy-2-deoxyguanosine (8-OHdG concentrations of HU rats were significantly increased. Furthermore, choline acetyltransferase (ChAT, superoxide dismutase (SOD, and catalase (CAT activity in brain were notably attenuated. Most of these effects were more pronounced after longer exposure (21 d and 28 d to HU, although some indicators had their own characteristics of change. These results indicate that cholinergic dysfunction and oxidative damage were involved in the learning and memory impairments induced by longer-than-14 d HU. Moreover, the negative effects of HU tend to be augmented as the HU duration becomes longer. The results may be helpful to present possible biochemical targets for countermeasures development regarding the memory deficits under extreme environmental conditions.

  4. Morphological analysis of the hindlimb in apes and humans. II. Moment arms

    Science.gov (United States)

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-01-01

    Flexion/extension moment arms were obtained for the major muscles crossing the hip, knee and ankle joints in the orang-utan, gibbon, gorilla (Eastern and Western lowland) and bonobo. Moment arms varied with joint motion and were generally longer in proximal limb muscles than distal limb muscles. The shape of the moment arm curves (i.e. the plots of moment arm against joint angle) differed in different hindlimb muscles and in the same muscle in different subjects (both in the same and in different ape species). Most moment arms increased with increasing joint flexion, a finding which may be understood in the context of the employment of flexed postures by most non-human apes (except orang-utans) during both terrestrial and arboreal locomotion. When compared with humans, non-human great apes tended to have muscles better designed for moving the joints through large ranges. This was particularly true of the pedal digital flexors in orang-utans. In gibbons, the only lesser ape studied here, many of the moment arms measured were relatively short compared with those of great apes. This study was performed on a small sample of apes and thus differences noted here warrant further investigation in larger populations. PMID:16761974

  5. Influence of maternal diet during early pregnancy on the fatty acid profile in the fetus at late pregnancy in rats.

    Science.gov (United States)

    Fernandes, Flavia Spreafico; Tavares do Carmo, Maria das Graças; Herrera, Emilio

    2012-05-01

    The aim of the study was to determine the effects of different dietary fatty acids during the first half of pregnancy on the fatty acid composition of maternal adipose tissue and of maternal and fetal plasma at mid- and late-pregnancy. Pregnant rats received soybean-, olive-, fish-, linseed- or palm-oil diets from conception to day 12 of gestation. Virgin rats receiving the same treatments were studied in parallel. At day 12, some rats were sacrificed and others were returned to the standard diet and studied at day 20. At day 12, the concentrations of most fatty acids in plasma reflected the dietary composition and individual fatty acids in lumbar adipose tissue of pregnant rats correlated with those in the diet. At day 20, the plasma concentration of each fatty acid was higher in pregnant than in both virgin rats and day-12 pregnant rats. The composition in 20-day pregnant (but not in virgin) rats resembled the diet consumed during the first 12 days. Fatty acid concentration in fetal plasma was also influenced by the maternal diet during the first 12 days of pregnancy, and long-chain polyunsaturated fatty acid (LC-PUFA) concentrations correlated with those in the mothers. In conclusion, during the first half of pregnancy maternal adipose tissue stores dietary-derived fatty acids, which are released into blood during late pregnancy enabling LC-PUFA to become available to the fetus.

  6. Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose

    International Nuclear Information System (INIS)

    Serduc, Raphael; Fonta, Caroline; Renaud, Luc; Bouchet, Audrey; Braeuer-Krisch, Elke; Sarun, Sukhena; Bravin, Alberto; Le Duc, Geraldine; Laissue, Jean A; Spiga, Jenny; Boutonnat, Jean; Siegbahn, Erik Albert; Esteve, Francois

    2009-01-01

    To analyze the effects of the microbeam width (25, 50 and 75 μm) on the survival of 9L gliosarcoma tumor-bearing rats and on toxicity in normal tissues in normal rats after microbeam radiation therapy (MRT), 9L gliosarcomas implanted in rat brains, as well as in normal rat brains, were irradiated in the MRT mode. Three configurations (MRT25, MRT50, MRT75), each using two orthogonally intersecting arrays of either 25, 50 or 75 μm wide microbeams, all spaced 211 μm on center, were tested. For each configuration, peak entrance doses of 860, 480 and 320 Gy, respectively, were calculated to produce an identical valley dose of 18 Gy per individual array at the center of the tumor. Two, 7 and 14 days after radiation treatment, 42 rats were killed to evaluate histopathologically the extent of tumor necrosis, and the presence of proliferating tumors cells and tumor vessels. The median survival times of the normal rats were 4.5, 68 and 48 days for MRT25, 50 and 75, respectively. The combination of the highest entrance doses (860 Gy per array) with 25 μm wide beams (MRT25) resulted in a cumulative valley dose of 36 Gy and was excessively toxic, as it led to early death of all normal rats and of ∼50% of tumor-bearing rats. The short survival times, particularly of rats in the MRT25 group, restricted adequate observance of the therapeutic effect of the method on tumor-bearing rats. However, microbeams of 50 μm width led to the best median survival time after 9L gliosarcoma MRT treatment and appeared as the better compromise between tumor control and normal brain toxicity compared with 75 μm or 25 μm widths when used with a 211 μm on-center distance. Despite very high radiation doses, the tumors were not sterilized; viable proliferating tumor cells remained present at the tumor margin. This study shows that microbeam width and peak entrance doses strongly influence tumor responses and normal brain toxicity, even if valley doses are kept constant in all groups. The use

  7. Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose

    Energy Technology Data Exchange (ETDEWEB)

    Serduc, Raphael; Fonta, Caroline; Renaud, Luc [Universite de Toulouse, UPS, Centre de Recherche Cerveau et Cognition (France); Bouchet, Audrey; Braeuer-Krisch, Elke; Sarun, Sukhena; Bravin, Alberto; Le Duc, Geraldine [European Synchrotron Radiation Facility, F38043 Grenoble (France); Laissue, Jean A [Institute of Pathology, University of Bern (Switzerland); Spiga, Jenny [Department of Physics, University of Cagliari, s.p. Monserrato-Sestu, Monserrato (Canada) 09042 (Italy); Boutonnat, Jean [TIMC lab, UMR CNRS 5525, Univ Joseph Fourier, CHU, Grenoble (France); Siegbahn, Erik Albert [Department of Medical Physics, Karolinska Universitetssjukhuset, 17176 Stockholm (Sweden); Esteve, Francois [INSERM U836, Equipe 6, Institut des Neurosciences de Grenoble, 38043 Grenoble Cedex (France)], E-mail: raph.serduc@gmail.com

    2009-11-07

    To analyze the effects of the microbeam width (25, 50 and 75 {mu}m) on the survival of 9L gliosarcoma tumor-bearing rats and on toxicity in normal tissues in normal rats after microbeam radiation therapy (MRT), 9L gliosarcomas implanted in rat brains, as well as in normal rat brains, were irradiated in the MRT mode. Three configurations (MRT25, MRT50, MRT75), each using two orthogonally intersecting arrays of either 25, 50 or 75 {mu}m wide microbeams, all spaced 211 {mu}m on center, were tested. For each configuration, peak entrance doses of 860, 480 and 320 Gy, respectively, were calculated to produce an identical valley dose of 18 Gy per individual array at the center of the tumor. Two, 7 and 14 days after radiation treatment, 42 rats were killed to evaluate histopathologically the extent of tumor necrosis, and the presence of proliferating tumors cells and tumor vessels. The median survival times of the normal rats were 4.5, 68 and 48 days for MRT25, 50 and 75, respectively. The combination of the highest entrance doses (860 Gy per array) with 25 {mu}m wide beams (MRT25) resulted in a cumulative valley dose of 36 Gy and was excessively toxic, as it led to early death of all normal rats and of {approx}50% of tumor-bearing rats. The short survival times, particularly of rats in the MRT25 group, restricted adequate observance of the therapeutic effect of the method on tumor-bearing rats. However, microbeams of 50 {mu}m width led to the best median survival time after 9L gliosarcoma MRT treatment and appeared as the better compromise between tumor control and normal brain toxicity compared with 75 {mu}m or 25 {mu}m widths when used with a 211 {mu}m on-center distance. Despite very high radiation doses, the tumors were not sterilized; viable proliferating tumor cells remained present at the tumor margin. This study shows that microbeam width and peak entrance doses strongly influence tumor responses and normal brain toxicity, even if valley doses are kept constant in

  8. Serum-thyroxine levels in microwave-exposed rats

    International Nuclear Information System (INIS)

    Lu, S.T.; Lebda, N.; Michaelson, S.M.; Pettit, S.

    1985-01-01

    The nature of the response of the thyroid gland in animals exposed to microwave irradiation is controversial. Animal experimentation has contributed to the controversy because both increased and decreased thyroid functions have been reported. The thyroxine concentration in rats as representative of thyroid function in animals exposed to 2.45-GHz, 120-Hz amplitude-modulated microwaves has been studied. These studies covered a long time span; rats from two commercial sources (BS and CR) were used and subjected to different numbers of exposures, and therefore these data were evaluated for their stability. Two factors could influence in the result significantly, i.e., source of animal and number of sham exposures. Rats used in the 2-hr exposures were from two different commercial sources; rats from CR had a higher (but normal) thyroxine concentration than did rats from BS. Therefore the data of these animals were separated by commercial source for reevaluation. Instead of increased thyroxine concentration in rats exposed at 25, 30, and 40 mW/cm 2 , changes were not noted in any microwave-exposed rats. The influence of sham exposure revealed that appropriate concurrent control and specification of animal source are needed in longitudinal studies. Furthermore, statistical procedures used can greatly influence the conclusions. Thus the specificity of changes in thyroxine concentration in rats exposed to microwaves because of its sporadic occurrence and because of inconsistencies among experiments was doubted

  9. The features of bile acids exchange in rats under the influence of corvitin

    Directory of Open Access Journals (Sweden)

    T. V. Vovkun

    2017-10-01

    Full Text Available Corvitin is a soluble form of quercetin (QUE and its effects are based on the ability to inhibit the activity of 5-lipoxygenase and to block the formation of leukotrienes. Corvitin increases bloodflow in the stomach­, pancreas and liver, but its influence on the excretory liver function has not been studied. We investigated the effect of corvitin (2.5, 5, 10 mg/kg intraportally on bile formation, determined the biliary content of total, free and conjugated bile acids (BAs. Free and conjugated BAs were separated by thin layer chromatography method. It was shown that corvitin increased the content of total BAs in the bile of rats in all tested groups. At a dose of 2.5 mg/kg flavonoid did not сhange free BAs secretion, but while elevated the content of conjugated BAs. Both free and conjugated BAs secretion was increased in rats treated with corvitin at a dose of 5 mg/kg. Increasing of corvitin dose to 10 mg/kg resulted in enhanced secretion of free BAs. Consequently, inhibition of leukotrienes synthesis by corvitin is followed by modulation of total, free and conjugated BAs formation and secretion into the bile.

  10. The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord.

    Science.gov (United States)

    Saruhashi, Yasuo; Matsusue, Yoshitaka; Fujimiya, Mineko

    2009-09-01

    Experimental spinal cord injury. To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury. We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0-14 point scale open field test. Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 +/- 2.0 (mean +/- standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1-3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level. We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.

  11. Influence of X-rays, vitamin A and protease inhibitor on the hydroproteolytic activity and serotonin content in pancreas and intestine of rats

    Energy Technology Data Exchange (ETDEWEB)

    Kocmierska-Grodzka, D [Akademia Medyczna, Bialystok (Poland). Zaklad Farmakologii

    1976-06-01

    Activity of MAO, hydroproteolytic enzymes including some lysosomal markers as well as serotonin content were examined in pancreas and intestinal tissue of rats 24 hours after irradiation with the dose of 800 R. It was stated that postirradiation disturbances of enzymatic activity in intestinal tract were accompanied by changes of serotonin content. Administration of vitamin A into rats caused in some parts of the intestine slight increase of acid phosphatase activity - and evident changes in serotonin content. Inhibitor of proteases (Trasylol) evidently prevented the disturbances of serotonin content both in rats exposed to X-rays or vitamin A administration - when simultaneously its influence on changes in hydroproteolytic activity (except of pancreas and colon) was of smaller degree.

  12. Influence of histidine on zinc transport into rat brain

    International Nuclear Information System (INIS)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto

    2000-01-01

    The brain of rats injected intravenously with 65 Zn-His or 65 ZnCl 2 was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from 65 Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from 65 Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of 65 Zn-His in the brain was similar to that of 65 ZnCl 2 group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the 65 Zn-His group from the blood was higher than that of the 65 ZnCl 2 group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  13. Effects of a standardized Panax ginseng extract on the skeletal muscle of the rat: a comparative study in animals at rest and under exercise.

    Science.gov (United States)

    Ferrando, A; Vila, L; Voces, J A; Cabral, A C; Alvarez, A I; Prieto, J G

    1999-04-01

    The effect of standardized Panax ginseng extract G115 on enzymatic activities, myotypological composition, capillaries and mitochondrial content was studied in the skeletal muscle of male rats Wistar. Simultaneously to the G115 administration the rats performed exercise. The animals were divided into 4 groups. The dose of the ginseng extract G115 was 50 mg/kg. The length of the experimental period was 12 weeks. After 24 hours of inactivity the muscles of the hindlimb were extracted. With regard to the enzymatic activities of the citrate synthase (CS) and lactate dehydrogenase (LDH), CS increases with exercise, while the LDH undergoes no major variations, either due to the exercise or the treatment. Treatment with G115 increases the capillary density and the mitochondrial content of the red gastrocnemius muscle. The results suggest that prolonged treatment with G115 increases the capillary density and the oxidative capacity of the muscles with greater aerobic potential in a manner similar to the performance of physical exercise. When exercise and treatment are combined, the effects that are obtained separately are not potentiated.

  14. Influence of Annona muricata (soursop) on biodistribution of radiopharmaceuticals in rats

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, Cecilia Maria de Carvalho Xavier [Universidade Federal do Rio Grande do Norte (UFGN), Natal, RN (Brazil). Lab. de Radiobiologia Experimental e Ensaios Antiparasitarios; Barbosa, Delianne Azevedo; Demeda, Vanessa Favero; Bandeira, Flora Tamires Moura [Universidade Federal do Rio Grande do Norte (UFGN), Natal, RN (Brazil). Escola de Medicina; Medeiros, Hilkea Carla Souza de; Pereira, Kercia Regina Santos Gomes [Universidade Federal do Rio Grande do Norte (UFGN), Natal, RN (Brazil). Programa de Pos-Graduacao em Bioquimica; Barbosa, Vanessa Santos de Arruda [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Medeiros, Aldo Cunha [Universidade Federal do Rio Grande do Norte (UFGN), Natal, RN (Brazil). Nucleo de Cirurgia Experimental

    2014-03-01

    Purpose: to evaluate the effect of hydroalcoholic extract of A. muricata on biodistribution of two radiopharmaceuticals: sodium phytate and dimercaptosuccinic acid (DMSA), both labeled with {sup 99m}technetium. Methods: twenty four Wistar rats were divided into two treated groups and two controls groups. The controls received water and the treated received 25mg/kg/day of A. muricata by gavage for ten days. One hour after the last dose, the first treated group received {sup 99m}Tc-DMSA and the second sodium {sup 99m}Tc-phytate (0.66MBq each group), both via orbital plexus. Controls followed the same protocol. Forty min later, all groups were sacrificed and the blood, kidney and bladder were isolated from the first treated group and the blood, spleen and liver isolated from the second treated group. The percentage of radioactivity per gram of tissue (%ATI/g) was calculated using a gamma counter. Results: the statistical analysis showed that there was a statistically significant decrease (p<0.05) in the uptake of %ATI/g in bladder (0.11±0.01and1.60±0.08), kidney (3.52±0.51and11.84±1.57) and blood (0.15±0.01and 0.54±0.05) between the treated group and control group, respectively. Conclusion: the A. muricata hydroalcoholic extract negatively influenced the uptake of {sup 99m}Tc-DMSA in bladder, kidney and blood of rats (author)

  15. Beneficial influence of topical extra virgin olive oil application on an experimental model of penile fracture in rats.

    Science.gov (United States)

    Gunes, Mustafa; Ozkol, Halil; Pirincci, Necip; Gecit, Ilhan; Bilici, Salim; Yildirim, Serkan

    2015-08-01

    Penile fracture (PF) is known as a traumatic rupture of the tunica albuginea of corpus cavernosum. In this study, we aimed to investigate the healing influence of topical extra virgin olive oil (EVOO) on PF through evaluating levels of some oxidative stress biomarkers for the first time. Histopathological evaluation was also realized. A total of 18 male Sprague-Dawley albino rats were divided into three groups of six rats each as control group, in PF (alone) group, and PF + EVOO group. Experimental PF was formed via incising from the proximal dorsal side of the penis in the rats of all groups except control. While in PF (alone) group, fracture was formed and the incision was primarily closed, in PF + EVOO group in addition to foregoing processes, EVOO was also administrated topically twice a day for 3 weeks. At the end of the experiment, all rats were killed and penectomy was carried out. While malondialdehyde, myeloperoxidase, lipid hyroperoxide, and total oxidant status significantly (p groups markedly (p group when compared with PF + EVOO group. Levels of these parameters were reversed to nearly normal values by topical EVOO application. Protection by EVOO is further substantiated via the improved histological findings in PF + EVOO group as against degenerative changes in the rats of PF (alone) group. Our data revealed that EVOO has protective effect in penile cavernosal tissue through probably its antioxidant, free radical defusing, anti-inflammatory, and antimicrobial effects. © The Author(s) 2013.

  16. 78 FR 70864 - Metaldehyde; Pesticide Tolerances

    Science.gov (United States)

    2013-11-27

    ... Business Information (CBI)) for inclusion in the public docket. Information not marked confidential..., hepatocellular hypertrophy and inflammation), and an increased incidence of hepatocellular adenomas in female..., bilateral hindlimb paralysis was observed in one female rat at the highest dose tested. Chronic feeding...

  17. Conjugated linoleic acid influences the metabolism of tocopherol in lactating rats but has little effect on tissue tocopherol concentrations in pups.

    Science.gov (United States)

    Zeitz, Johanna O; Most, Erika; Eder, Klaus

    2016-05-31

    Conjugated linoleic acid (CLA) is known to affect the lipid metabolism in growing and lactating animals. However, potential effects on the metabolism of fat-soluble vitamins in lactating animals and co-occurring effects on their offspring are unknown. We aimed to investigate the effects of dietary CLA on concentrations of tocopherol in various tissues of lactating rats and their offspring and expression of genes involved in tocopherol metabolism. Twenty-eight Wistar Han rats were allocated to 2 groups and fed either a control diet (control group) or a diet containing 0.9 % of cis-9, trans-11 and trans-10, cis-12 (1:1) CLA (CLA group) during pregnancy and lactation. Feed intake of dams and body weight of dams and their pups were recorded weekly. Tocopherol concentrations in various body tissues were determined at day 14 of lactation in dams and 1, 7 and 14 days after birth in pups. Expression of selected genes involved in metabolism of tocopherol was determined in dams and pups. The data were statistically analysed by analysis of variance. Feed intake and body weight development of nursing rats and their pups was similar in both groups. In livers of CLA-fed dams, tocopherol concentrations decreased by 24 % but expression of TTPA and CYP3A1, involved in tocopherol transport and metabolism, were not influenced. In the dams' adipose tissue, gene expression of receptors involved in tissue tocopherol uptake, LDLR and SCARB1, but not of LPL, increased by 30 to 50 % and tocopherol concentrations increased by 47 % in CLA-fed compared to control dams. Expression of LPL, LDLR and SCARB1 in mammary gland was not influenced by CLA-feeding. Tocopherol concentrations in the pup's livers and lungs were similar in both groups, but at 14 days of age, adipose tissue tocopherol concentrations, and LDLR and SCARB1 expression, were higher in the CLA-exposed pups. We show that dietary CLA affects tissue concentrations of tocopherol in lactating rats and tocopherol metabolism in

  18. Hydrogen sulfide reduces neutrophil recruitment in hind-limb ischemia-reperfusion injury in an L-selectin and ADAM-17 dependent manner

    Science.gov (United States)

    Ball, Carissa J.; Reiffel, Alyssa J.; Chintalapani, Sathvika; Kim, Minsoo; Spector, Jason A.; King, Michael R.

    2012-01-01

    Background Reperfusion following ischemia leads to neutrophil recruitment injured tissue. Selectins and β2 integrins regulate neutrophil interaction with the endothelium during neutrophil rolling and firm adhesion. Excessive neutrophil infiltration into tissue is thought to contribute to IRI damage. NaHS mitigates the damage caused by ischemia-reperfusion injury (IRI). This study's objective was to determine the effect of hydrogen sulfide (NaHS) on neutrophil adhesion receptor expression. Methods Human neutrophils were either left untreated or incubated in 20 μM NaHS, and/or 50 μg/mL pharmacological ADAM-17 inhibitor TAPI-0; activated by IL-8, fMLP, or TNF-α; and labeled against PSGL-1, LFA-1, Mac-1 α, L-selectin and β2 integrin epitopes CBRM1/5 or KIM127 for flow cytometry. Cohorts of 3 C57BL/6 mice received an intravenous dose of saline vehicle, or 20 μM NaHS with or without 50 μg/mL TAPI-0 before unilateral tourniquet induced hind-limb ischemia for 3 hours followed by 3 hours of reperfusion. Bilateral gastrocnemius muscles were processed for histology before neutrophil infiltration quantification. Results NaHS treatment significantly increased L-selectin shedding from human neutrophils following activation by fMLP and IL-8 in an ADAM-17 dependent manner. Mice treated with NaHS to raise bloodstream concentration by 20 μM prior to ischemia or reperfusion showed a significant reduction in neutrophil recruitment into skeletal muscle tissue following tourniquet-induced hindlimb IRI. Conclusions NaHS administration results in the downregulation of L-selectin expression in activated human neutrophils. This leads to a reduction in neutrophil extravasation and tissue infiltration and may partially account for the protective effects of NaHS seen in the setting of IRI. PMID:23446563

  19. Hindlimb Skeletal Muscle Function and Skeletal Quality and Strength in +/G610C Mice With and Without Weight-Bearing Exercise.

    Science.gov (United States)

    Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L

    2015-10-01

    Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone

  20. Influence of beryllium chloride and oxide on the sexual function in female rats and development of offspring

    International Nuclear Information System (INIS)

    Selivanova, L.N.; Savinova, T.B.

    1989-11-01

    A translation is given of a Russian article on the influence of beryllium chloride and oxide on the sexual cycle in female rats and on their capacity to conceive; another aim was to identify any embryotoxic and teratogenic effect of these compounds and to identify the exposure period values for pregnant females and the capacity of beryllium to penetrate the placenta and to accumulate in the foetus. (UK)

  1. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats.

    Science.gov (United States)

    Kim, Hong; Lee, Myoung-Hwa; Chang, Hyun-Kyung; Lee, Taeck-Hyun; Lee, Hee-Hyuk; Shin, Min-Chul; Shin, Mal-Soon; Won, Ran; Shin, Hye-Sook; Kim, Chang-Ju

    2006-03-01

    During the prenatal period, the development of individual is influenced by the environmental factors. In the present study, the influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats was investigated. The exposure to the noise during pregnancy caused growth retardation, decreased neurogenesis in the hippocampus, and impaired spatial learning ability in pups. The exposure to music during pregnancy, on the other hand, caused increased neurogenesis in the hippocampus and enhanced spatial learning ability in pups. The present study has shown the importance of the prenatal environmental conditions for the cognition and brain development.

  2. Myocyte specific overexpression of myoglobin impairs angiogenesis after hind-limb ischemia.

    Science.gov (United States)

    Hazarika, Surovi; Angelo, Michael; Li, Yongjun; Aldrich, Amy J; Odronic, Shelley I; Yan, Zhen; Stamler, Jonathan S; Annex, Brian H

    2008-12-01

    In preclinical models of peripheral arterial disease the angiogenic response is typically robust, though it can be impaired in conditions such as hypercholesterolemia and diabetes where the endothelium is dysfunctional. Myoglobin (Mb) is expressed exclusively in striated muscle cells. We hypothesized that myocyte specific overexpression of myoglobin attenuates ischemia-induced angiogenesis even in the presence of normal endothelium. Mb overexpressing transgenic (MbTg, n=59) and wild-type (WT, n=56) C57Bl/6 mice underwent unilateral femoral artery ligation/excision. Perfusion recovery was monitored using Laser Doppler. Ischemia-induced changes in muscle were assessed by protein and immunohistochemistry assays. Nitrite/nitrate and protein-bound NO, and vasoreactivity was measured. Vasoreactivity was similar between MbTg and WT. In ischemic muscle, at d14 postligation, MbTg increased VEGF-A, and activated eNOS the same as WT mice but nitrate/nitrite were reduced whereas protein-bound NO was higher. MbTg had attenuated perfusion recovery at d21 (0.37+/-0.03 versus 0.47+/-0.02, P<0.05), d28 (0.40+/-0.03 versus 0.50+/-0.04, P<0.05), greater limb necrosis (65.2% versus 15%, P<0.001), a lower capillary density, and greater apoptosis versus WT. Increased Mb expression in myocytes attenuates angiogenesis after hind-limb ischemia by binding NO and reducing its bioavailability. Myoglobin can modulate the angiogenic response to ischemia even in the setting of normal endothelium.

  3. Constitutively reduced sensory capacity promotes better recovery after spinal cord-injury (SCI) in blind rats of the dystrophic RCS strain.

    Science.gov (United States)

    Rink, Svenja; Bendella, Habib; Alsolivany, Kurdin; Meyer, Carolin; Woehler, Aliona; Jansen, Ramona; Isik, Zeynep; Stein, Gregor; Wennmachers, Sina; Nakamura, Makoto; Angelov, Doychin N

    2018-01-01

    We compared functional, electrophysiological and morphological parameters after SCI in two groups of rats Sprague Dawley (SD) rats with normal vision and blind rats from a SD-substrain "Royal College of Surgeons" (SD/RCS) who lose their photoreceptor cells after birth due to a genetic defect in the retinal pigment epithelium. For these animals skin-, intramuscular-, and tendon receptors are major available means to resolve spatial information. The purpose of this study was to check whether increased sensitivity in SD/RCS rats would promote an improved recovery after SCI. All rats were subjected to severe compression of the spinal cord at vertebra Th8, spinal cord segment Th10. Recovery of locomotion was analyzed at 1, 3, 6, 9, and 12 weeks after SCI using video recordings of beam walking and inclined ladder climbing. Five functional parameters were studied: foot-stepping angle (FSA), rump-height index (RHI) estimating paw placement and body weight support, respectively, number of correct ladder steps (CLS) assessing skilled hindlimb movements, the BBB-locomotor score and an established urinary bladder score (BS). Sensitivity tests were followed by electrophysiological measurement of M- and H-wave amplitudes from contractions of the plantar musculature after stimulation of the tibial nerve. The closing morphological measurements included lesion volume and expression of astro- and microglia below the lesion. Numerical assessments of BBB, FSA, BS, lesion volume and GFAP-expression revealed no significant differences between both strains. However, compared to SD-rats, the blind SD/RCS animals significantly improved RHI and CLS by 6 - 12 weeks after SCI. To our surprise the withdrawal latencies in the blind SD/RCS rats were longer and the amplitudes of M- and H-waves lower. The expression of IBA1-immunoreactivity in the lumbar enlargement was lower than in the SD-animals. The longer withdrawal latencies suggest a decreased sensitivity in the blind SD/RCS rats, which

  4. Influence of dietary spices on the in vivo absorption of ingested β-carotene in experimental rats.

    Science.gov (United States)

    Veda, Supriya; Srinivasan, Krishnapura

    2011-05-01

    Animal studies were conducted to evaluate the influence of dietary spice compounds, piperine, capsaicin and ginger, on the absorption of orally administered β-carotene and its conversion to vitamin A. In rats maintained on these spice-containing diets for 8 weeks, concentrations of β-carotene and retinol were determined in the serum, liver and intestine 4 h after a single oral administration of β-carotene. β-Carotene concentration was significantly increased in the serum, liver and intestine of piperine- and ginger-fed rats, suggesting improved absorption of β-carotene. However, retinol concentration was not significantly changed in these animals, suggesting that the bioconversion of β-carotene to vitamin A was not similarly influenced. Between the two enzymes involved in the bioconversion of β-carotene to vitamin A, the activity of intestinal and hepatic β-carotene 15,15'-dioxygenase was either unaffected or lowered by these spice treatments. The activity of intestinal and hepatic retinal reductase was unaffected by the dietary spices. Activities of these two enzymes involved in the bioconversion of β-carotene to retinal were inhibited by the test spices in vitro, thus corroborating with the in vivo observation. Although the bioconversion of β-carotene was not promoted, increased absorption and tissue levels of β-carotene by the dietary spices may contribute to a higher antioxidant protection.

  5. The influence of X-rays, vitamin A and protease inhibitor on the hydroproteolytic activity and serotonin content in pancreas and intestine of rats

    International Nuclear Information System (INIS)

    Kocmierska-Grodzka, D.

    1976-01-01

    Activity of MAO, hydroproteolytic enzymes including some lysosomal markers as well as serotonin content were examined in pancreas and intestinal tissue of rats 24 hours after irradiation with the dose of 800 R. It was stated that postirradiation disturbances of enzymatic activity in intestinal tract were accompanied by changes of serotonin content. Administration of vitamin A into rats caused in some parts of the intestine slight increase of acid phosphatase activity - and evident changes in serotonin content. Inhibitor of proteases (Trasylol) evidently prevented the disturbances of serotonin content both in rats exposed to X-rays or vitamin A administration - when simultaneously its influence on changes in hydroproteolytic activity (except of pancreas and colon) was of smaller degree. (orig.) [de

  6. Do Anesthetic Techniques Influence the Threshold for Glomerular Capillary Hemorrhage Induced in Rats by Contrast-Enhanced Diagnostic Ultrasound?

    Science.gov (United States)

    Miller, Douglas L; Lu, Xiaofang; Fabiilli, Mario; Dou, Chunyan

    2016-02-01

    Glomerular capillary hemorrhage can be induced by ultrasonic cavitation during contrast-enhanced diagnostic ultrasound (US) exposure, an important nonthermal US bioeffect. Recent studies of pulmonary US exposure have shown that thresholds for another nonthermal bioeffect of US, pulmonary capillary hemorrhage, is strongly influenced by whether xylazine is included in the specific anesthetic technique. The objective of this study was to determine the influence of xylazine on contrast-enhanced diagnostic US-induced glomerular capillary hemorrhage. In this study, anesthesia with ketamine only was compared to ketamine plus xylazine for induction of glomerular capillary hemorrhage in rats by 1.6-MHz intermittent diagnostic US with a microsphere contrast agent (similar to Definity; Lantheus Medical Imaging, Inc, North Billerica, MA). Glomerular capillary hemorrhage was measured as a percentage of glomeruli with hemorrhage found in histologic sections for groups of rats scanned at different peak rarefactional pressure amplitudes. There was a significant difference between the magnitude of the glomerular capillary hemorrhage between the anesthetics at 2.3 MPa, with 45.6% hemorrhage for ketamine only, increasing to 63.2% hemorrhage for ketamine plus xylazine (P Ultrasound in Medicine.

  7. Comparison of the influence of two models of mild stress on hippocampal brain-derived neurotrophin factor (BDNF) immunoreactivity in old age rats.

    Science.gov (United States)

    Badowska-Szalewska, Ewa; Ludkiewicz, Beata; Krawczyk, Rafał; Melka, Natalia; Moryś, Janusz

    2017-01-01

    The way hippocampal neurons function during stress in old age (critical times of life) is dependent on brain derived neurotrophin factor (BDNF). This study examined the influence of acute and chronic forced swim (FS) or high-light open field (HL‑OF) stimulation on the density of BDNF immunoreactive (ir) neurons in the hippocampal pyramidal layers of CA1, CA2, CA3 regions and the granular layer of dentate gyrus (DG) in old (postnatal day 720; P720) Wistar Han rats. Our data showed that in comparison with non-stressed rats, acute FS caused a significant increase in the density of BDNF-ir neurons in CA2 and CA3, while acute HL-OF led to an increase in this factor in all hippocampal subfields with the exception of DG. However, the density of BDNF-ir cells remained unchanged after exposure to chronic FS or HL‑OF in the hippocampal regions in relation to the control rats. These results indicate that acute FS or HL-OF proved to be a stressor that induces an increase in the density of BDNF-ir pyramidal neurons, which was probably connected with up-regulation of HPA axis activity and short‑time memory processing of the stressful situation. Moreover, as far as the influence on BDNF-ir cells in hippocampus is concerned, chronic FS or HL-OF was not an aggravating factor for rats in the ontogenetic periods studied.

  8. Influence of age, strain and season on circadian periodicity of pituitary, gonadal and adrenal hormones in the serum of male laboratory rats.

    Science.gov (United States)

    Wong, C C; Döhler, K D; Geerlings, H; von zur Mühlen, A

    1983-01-01

    The influence of age, strain and season on the circadian pattern of serum levels of LH, FSH, prolactin androgens and corticosterone was studied in five groups of male laboratory rats. Significant 24-hour periodicity was observed for serum levels of corticosterone in all five groups, for androgen levels in four, for prolactin levels in three, for LH levels in two and for FSH levels in one group of rats. There were significant influences of age, strain and season on the temporal patterns and/or on 24-hour mean serum hormone levels. The results indicate that some of the disagreements on existence or nonexistence of circadian rhythms and on rhythm patterns in serum hormone levels may be explained by the fact that animals of different ages or strains had been used or that experiments were performed at different times of the year.

  9. Influence of enrichment on behavioral and neurogenic effects of antidepressants in Wistar rats submitted to repeated forced swim test.

    Science.gov (United States)

    Possamai, Fernanda; dos Santos, Juliano; Walber, Thais; Marcon, Juliana C; dos Santos, Tiago Souza; Lino de Oliveira, Cilene

    2015-04-03

    Repeated forced swimming test (rFST) may detect gradual effects of antidepressants in adult rats. Antidepressants, as enrichment, affected behavior and neurogenesis in rats. However, the influence of enrichment on behavioral and neurogenic effects of antidepressants is unknown. Here, effects of antidepressants on rFST and hippocampal neurogenesis were investigated in rats under enriched conditions. Behaviors of male Wistar rats, housed from weaning in standard (SE) or enriched environment (EE), were registered during rFST. The rFST consisted of 15min of swimming (pretest) followed by 5min of swimming in the first (test), seventh (retest 1) and fourteenth (retest 2) days after pretest. One hour before the test, rats received an intraperitoneal injection of saline (1ml/kg), fluoxetine (2.5mg/kg) or imipramine (2.5 or 5mg/kg). These treatments were performed daily until the day of the retest 2. After retest 2, rats were euthanized for the identification of markers for neurogenesis in the hippocampus. Fluoxetine or imipramine decreased immobility in retests 1 and 2, as compared to saline. EE abolished these differences. In EE, fluoxetine or imipramine (5mg/kg) reduced immobility time in retest 2, as compared to the test. Independent of the housing conditions, fluoxetine and imipramine (5mg/kg) increased the ratio of immature neurons per progenitor cell in the hippocampus. In summary, antidepressants or enrichment counteracted the high immobility in rFST. Enrichment changed the effects of antidepressants in rFST depending on the type, and the dose of a substance but failed to change neurogenesis in control or antidepressant treated-rats. Effects of antidepressants and enrichment on rFST seemed neurogenesis-independent. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy.

    Science.gov (United States)

    Alway, Stephen E; Pereira, Suzette L; Edens, Neile K; Hao, Yanlei; Bennett, Brian T

    2013-09-01

    Loss of myonuclei by apoptosis is thought to contribute to sarcopenia. We have previously shown, that the leucine metabolite, β-hydroxy-β-methylbutyrate (HMB) suppresses apoptotic signaling and the apoptotic index (the ratio of apoptotic positive to apoptotic negative myonuclei) during muscle disuse and during reloading periods after disuse in aged rats. However, it was not clear if the apoptotic signaling indexes were due only to preservation of myonuclei or if perhaps the total myogenic pool increased as a result of HMB-mediated satellite cell proliferation as this would have also reduced the apoptotic index. In this study, we tested the hypothesis that HMB would augment myogenic cells (satellite cells) proliferation during muscle recovery (growth) after a period of disuse in senescent animals. The hindlimb muscles of 34 month old Fisher 344 × Brown Norway rats were unloaded for 14 days by hindlimb suspension (HLS), and then reloaded for 14 days. The rats received either Ca-HMB (340 mg/kg body weight; n = 16), or the vehicle (n = 10) by gavage throughout the experimental period. HMB prevented the functional decline in maximal plantar flexion isometric force production during the reloading period, but not during HLS. HMB-treatment enhanced the proliferation of muscle stem cells as shown by a greater percentage of satellite cells that had proliferated (more BrdU positive, Pax-7 positive, and more Pax7/Ki67 positive nuclei) and as a result, more differentiated stem cells were present (more MyoD/myogenin positive myonuclei), relative to total myonuclei, in reloaded plantaris muscles as compared to reloaded muscles from vehicle-treated animals. Furthermore HMB increased the nuclear protein abundance of proliferation markers, inhibitor of differentiation-2 and cyclin A, as compared to vehicle treatment in reloaded muscles. Although HMB increased phosphorylated Akt during reloading, other mTOR related proteins were not altered by HMB treatment. These data show that

  11. Acoustic noise improves motor learning in spontaneously hypertensive rats, a rat model of attention deficit hyperactivity disorder.

    Science.gov (United States)

    Söderlund, Göran B W; Eckernäs, Daniel; Holmblad, Olof; Bergquist, Filip

    2015-03-01

    The spontaneously hypertensive (SH) rat model of ADHD displays impaired motor learning. We used this characteristic to study if the recently described acoustic noise benefit in learning in children with ADHD is also observed in the SH rat model. SH rats and a Wistar control strain were trained in skilled reach and rotarod running under either ambient noise or in 75 dBA white noise. In other animals the effect of methylphenidate (MPH) on motor learning was assessed with the same paradigms. To determine if acoustic noise influenced spontaneous motor activity, the effect of acoustic noise was also determined in the open field activity paradigm. We confirm impaired motor learning in the SH rat compared to Wistar SCA controls. Acoustic noise restored motor learning in SH rats learning the Montoya reach test and the rotarod test, but had no influence on learning in Wistar rats. Noise had no effect on open field activity in SH rats, but increased corner time in Wistar. MPH completely restored rotarod learning and performance but did not improve skilled reach in the SH rat. It is suggested that the acoustic noise benefit previously reported in children with ADHD is shared by the SH rat model of ADHD, and the effect is in the same range as that of stimulant treatment. Acoustic noise may be useful as a non-pharmacological alternative to stimulant medication in the treatment of ADHD. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Servo-controlled hind-limb electrical stimulation for short-term arterial pressure control.

    Science.gov (United States)

    Kawada, Toru; Shimizu, Shuji; Yamamoto, Hiromi; Shishido, Toshiaki; Kamiya, Atsunori; Miyamoto, Tadayoshi; Sunagawa, Kenji; Sugimachi, Masaru

    2009-05-01

    Autonomic neural intervention is a promising tool for modulating the circulatory system thereby treating some cardiovascular diseases. In 8 pentobarbital-anesthetized cats, it was examined whether the arterial pressure (AP) could be controlled by acupuncture-like hind-limb electrical stimulation (HES). With a 0.5-ms pulse width, HES monotonically reduced AP as the stimulus current increased from 1 to 5 mA, suggesting that the stimulus current could be a primary control variable. In contrast, the depressor effect of HES showed a nadir approximately 10 Hz in the frequency range between 1 and 100 Hz. Dynamic characteristics of the AP response to HES approximated a second-order low-pass filter with dead time (gain: -10.2 +/- 1.6 mmHg/mA, natural frequency: 0.040 +/- 0.004 Hz, damping ratio 1.80 +/- 0.24, dead time: 1.38 +/- 0.13 s, mean +/- SE). Based on these dynamic characteristics, a servo-controlled HES system was developed. When a target AP value was set at 20 mmHg below the baseline AP, the time required for the AP response to reach 90% of the target level was 38 +/- 10 s. The steady-state error between the measured and target AP values was 1.3 +/- 0.1 mmHg. Autonomic neural intervention by acupuncture-like HES might provide an additional modality to quantitatively control the circulatory system.

  13. Individually reared rats

    International Nuclear Information System (INIS)

    Kraeuchi, K.; Gentsch, C.; Feer, H.

    1981-01-01

    The influence of social isolation in rats on postsynaptic alpha 1 - and beta-adrenergic receptors, on the cAMP generating system and on the presynaptic uptake mechanism in the central noradrenergic system was examined in different brain regions. Rearing rats in isolation from the 19th day of life for 12 weeks leads in all regions to a general tendency for a reduction in 3 H-DHA binding, to an enhanced 3 H-WB4101 binding and to a decreased responsiveness of the noradrenaline sensitive cAMP generating system. These changes reach significance only in the pons-medulla-thallamusregion. Isolated rats showed an increased synaptosomal uptake of noradrenaline, most pronounced and significant in the hypothalamus. Our data provide further support for a disturbance in central noradrenergic function in isolated rats. (author)

  14. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    Science.gov (United States)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  15. Early development influences ontogeny of personality types in young laboratory rats.

    Science.gov (United States)

    Rödel, Heiko G; Meyer, Susann

    2011-09-01

    Features of an individual's early development are frequently reported to alter the postnatal ontogeny in litter-bearing mammals with respect to various physiological parameters. We hypothesized that such effects might also apply to the ontogeny of personality types. On the one hand, litter size effects by means of more contacts with littermates, might lead to the development of more offensive types. On the other hand, smaller and less developed young from larger litters might be less offensive due to their lower physical capabilities to deal with challenging situations. We studied these contrasting hypotheses in young rats, which we tested in a battery of emotionality tests. There were clear indications for the existence of distinct behavioral types by means of consistencies in behavioral responses within and across contexts. Based on these responses, we calculated three new variables by PCA, which we interpreted to mainly reflect boldness, exploration, and anxiety. Overall, our results strongly suggest that the early development alters the ontogeny of personality types, with heavier individuals being bolder and more explorative. Furthermore, body mass and litter size influenced the changes in the behavioral responses in successive tests, further supporting the importance of the litter size-dependent body mass for the ontogeny of personalities. Anxiety also depended on litter size, however, in a nonlinear way. Animals born to litters of small or large sizes had higher scores, whereas individuals from medium-sized litters were less anxious. This optimum curve indicates that opposing effects of litter size are involved in shaping personalities in young rats. Copyright © 2011 Wiley Periodicals, Inc.

  16. Influence of initial lung deposit on pulmonary clearance after plutonium oxide inhalation in rat

    International Nuclear Information System (INIS)

    Van der Meeren, A.; Grillon, G.; Tourdes, F.; Rateau, S.; Le Gall, B.; Griffiths, N.

    2007-01-01

    Alveolar macrophages are a key element in the clearance of inhaled particles after phagocytosis, and thus participate actively in lung dose distribution and in the risk of tumour formation. We studied the influence of initial lung deposit (ILD) on lung clearance and distribution of activity from 3 d to 3 months after inhalation of two forms of PuO 2 (97% 239 Pu and 70% 239 Pu) in rats. ILDs ranging from 2.1 to 17 kBq were used. The total activity measured using X-ray spectrometry 3 months post-inhalation, relative to the ILD, showed a similar decrease in all groups, with the remaining activity representing ∼30% of the ILD. The total activity recovered in bronchoalveolar lavages represented ∼60% of the total lung activity. This ratio remained stable over time for the lowest ILD tested but decreased for higher ILD. In addition, the percentage of macrophages associated with particles decreased faster with time in rats with the highest ILD. Under our experimental conditions, there were no marked differences in lung clearance between groups. However, the distribution of the activity seems to vary with the time post-exposure between low and high ILD. (authors)

  17. A theoretical description of arterial pressure-flow relationships with verification in the isolated hindlimb of the dog.

    Science.gov (United States)

    Jackman, A P; Green, J F

    1990-01-01

    We developed and tested a new two-compartment serial model of the arterial vasculature which unifies the capacitance (downstream arterial compliance) and waterfall (constant downstream pressure load) theories of blood flow through the arteries. In this model, blood drains from an upstream compliance through a resistance into a downstream compliance which empties into the veins through a downstream resistance which terminates in a constant pressure load. Using transient arterial pressure data obtained from an isolated canine hindlimb preparation, we tested this model, using a stop-flow technique. Numerical parameter estimation techniques were used to estimate the physiologic parameters of the model. The downstream compliance was found to be more than ten times larger than the upstream compliance and the constant pressure load was significantly above venous pressures but decreased in response to vasodilation. Our results support the applicability of both the capacitance and waterfall theories.

  18. Influence of dietary fat and selenium fed during initiation or promotion on the development of preneoplastic lesions in rat liver

    International Nuclear Information System (INIS)

    Baldwin, S.; Parker, R.S.

    1986-01-01

    Aflatoxin B 1 (AFB1)-induced γ-glutamyl transpeptidase (GGT)-positive foci in rat liver were assessed in animals fed different levels of fat and selenium (Se) during either initiation (IN) or promotion (PR). Male Sprague Dawley rats (50g) were divided into 12 groups. One of six modified AIN-76 experimental diets were fed to groups 1-6 during weeks 1-4.5 (IN) and to groups 7-12 during weeks 4.5-15 (PR). During weeks 3-4, 13 rats/group received 10 daily doses of AFB1 (.4 mg/kg bwt/dose, i.g.). Two levels of corn oil (2% and 20%) were fed, each containing 3 levels of Se: < 0.02; 0.15; 2.5 (IN) or 1.9 (PR) ppm. When not fed the experimental diets rats were fed a standard AIN-76 diet. In groups 1-6, 0.03% phenobarbital was added to the standard diet. At week 15 rats were sacrificed. Compared to all low-fat groups, the high-fat diets with either < 0.02 or 0.15 ppm Se fed during IN resulted in a marked increase in mean diameter of GGT-positive foci and % liver section occupied by foci. In rats fed high-fat 2.5 ppm Se, preneoplastic development was decreased below all low-fat groups. During PR, Se status but not dietary fat level influenced foci formation. Rats fed < 0.02 ppm Se had greater mean diameter of foci and % section occupied by foci than either 0.15 or 1.9 ppm Se. Thus, an interaction was observed between dietary fat and selenium during IN, but not during PR

  19. Influence of histidine on zinc transport into rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto [Shizuoka Univ. (Japan). School of Pharmaceutical Sciences

    2000-06-01

    The brain of rats injected intravenously with {sup 65}Zn-His or {sup 65}ZnCl{sub 2} was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from {sup 65}Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from {sup 65}Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of {sup 65}Zn-His in the brain was similar to that of {sup 65}ZnCl{sub 2} group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the {sup 65}Zn-His group from the blood was higher than that of the {sup 65}ZnCl{sub 2} group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  20. Biological sex influences learning strategy preference and muscarinic receptor binding in specific brain regions of prepubertal rats.

    Science.gov (United States)

    Grissom, Elin M; Hawley, Wayne R; Hodges, Kelly S; Fawcett-Patel, Jessica M; Dohanich, Gary P

    2013-04-01

    According to the theory of multiple memory systems, specific brain regions interact to determine how the locations of goals are learned when rodents navigate a spatial environment. A number of factors influence the type of strategy used by rodents to remember the location of a given goal in space, including the biological sex of the learner. We recently found that prior to puberty male rats preferred a striatum-dependent stimulus-response strategy over a hippocampus-dependent place strategy when solving a dual-solution task, while age-matched females showed no strategy preference. Because the cholinergic system has been implicated in learning strategy and is known to be sexually dimorphic prior to puberty, we explored the relationship between learning strategy and muscarinic receptor binding in specific brain regions of prepubertal males and female rats. We confirmed our previous finding that at 28 days of age a significantly higher proportion of prepubertal males preferred a stimulus-response learning strategy than a place strategy to solve a dual-solution visible platform water maze task. Equal proportions of prepubertal females preferred stimulus-response or place strategies. Profiles of muscarinic receptor binding as assessed by autoradiography varied according to strategy preference. Regardless of biological sex, prepubertal rats that preferred stimulus-response strategy exhibited lower ratios of muscarinic receptor binding in the hippocampus relative to the dorsolateral striatum compared to rats that preferred place strategy. Importantly, much of the variance in this ratio was related to differences in the ventral hippocampus to a greater extent than the dorsal hippocampus. The ratios of muscarinic receptors in the hippocampus relative to the basolateral amygdala also were lower in rats that preferred stimulus-response strategy over place strategy. Results confirm that learning strategy preference varies with biological sex in prepubertal rats with males

  1. Influence of zinc on the biokinetics of Zn-65 and hepatic trace elements of ethanol treated rats

    International Nuclear Information System (INIS)

    Dhawan, D.K.; Pathak, A.; Pathak, R.; Mahmood, A.

    2002-01-01

    Influence of zinc on the biokinetics of 65 Zn and hepatic trace elements of ethanol treated rats. The effect of zinc on the biokinetics of 65 Zn in liver and whole body and its relation to the hepatic levels of different elements was evaluated in male wistar rats under alcoholic conditions. The rats were segregated into four treatment groups viz., normal control, ethanol treated, zinc treated and combined zinc+ethanol treated. Animals were fed 3ml of 30% ethanol orally daily and zinc in the form of zinc sulfate (ZnSo 4 7H 2 O) was administrated to rats at a dose level of 227mg/L mixed in their drinking water for a total duration of 2 months. Whole body counting studies indicated that the Tb 1 i.e., the faster elimination of the radiotracer. On the contrary, Tb 2 i.e., the slower component was increased significantly following ethanol treatment. Percent uptake values of 65 Zn were found to be increased in liver, intestine, muscle and kidney and decreased in bone under alcoholic conditions. A significant elevation was noticed in in vitro uptake 65 Zn in ethanol treated animals. In the above said conditions, the values were reverted back to within normal limits upon zinc supplementation to these ethanol intoxicated animals, except in the case of in vitro 65 Zn uptake in liver where the uptake was further increased upon combined treatment. A significant decrease in zinc contents was noticed in ethanol treated rats, which however were raised to normal levels upon zinc supplementation. Copper levels, on the other hand, were found to be significantly enhanced in both ethanol fed and combined ethanol+zinc supplemented animals. Calcium levels were found to e significantly decreased in both ethanol and zinc treated rats, which however were further reduced upon zinc supplementation to ethanol fed rats. However, no significant change was observed in the concentrations of sodium and potassium in any of the treatment groups. Therefore, zinc appears to play a protective role by

  2. Early deprivation increases high-leaning behavior, a novel anxiety-like behavior, in the open field test in rats.

    Science.gov (United States)

    Kuniishi, Hiroshi; Ichisaka, Satoshi; Yamamoto, Miki; Ikubo, Natsuko; Matsuda, Sae; Futora, Eri; Harada, Riho; Ishihara, Kohei; Hata, Yoshio

    2017-10-01

    The open field test is one of the most popular ethological tests to assess anxiety-like behavior in rodents. In the present study, we examined the effect of early deprivation (ED), a model of early life stress, on anxiety-like behavior in rats. In ED animals, we failed to find significant changes in the time spent in the center or thigmotaxis area of the open field, the common indexes of anxiety-like behavior. However, we found a significant increase in high-leaning behavior in which animals lean against the wall standing on their hindlimbs while touching the wall with their forepaws at a high position. The high-leaning behavior was decreased by treatment with an anxiolytic, diazepam, and it was increased under intense illumination as observed in the center activity. In addition, we compared the high-leaning behavior and center activity under various illumination intensities and found that the high-leaning behavior is more sensitive to illumination intensity than the center activity in the particular illumination range. These results suggest that the high-leaning behavior is a novel anxiety-like behavior in the open field test that can complement the center activity to assess the anxiety state of rats. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  3. Spatial heterogeneity of metabolism in skeletal muscle in vivo studied by 31P-NMR spectroscopy

    International Nuclear Information System (INIS)

    Challiss, R.A.J.; Blackledge, M.J.; Radda, G.K.

    1988-01-01

    Phase modulated rotating-frame imaging, a localization technique for phosphorus nuclear magnetic resonance spectroscopy, has been applied to obtain information on heterogeneity of phosphorus-containing metabolites in skeletal muscle of the rat in vivo. The distal muscles of the rat hindlimb have been studied at rest and during steady-state isometric twitch contraction; the use of a transmitter surface coil and an electrically isolated, orthogonal receiver Helmholtz coil ensure accurate spatial assignment (1 mm resolution). At rest, intracellular pH was higher and PCr/(PCr + P i ) was lower in deeper muscle compared with superficial muscle of the distal hindlimb. Upon steady-state stimulation, the relatively more alkaline pH of deep muscle was maintained, whereas greater changes in PCr/(PCr + P i ) and P i /ATP occurred in the superficial muscle layer. This method allows rapid (75 min for each spectral image) acquisition of quantitative information on metabolic heterogeneity in vivo

  4. Electropuncture influences on learning, memory, and neuropeptide expression in a rat model of vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Ying Shao; Yanqian Fu; Lihua Qiu; Bing Yan; Xinsheng Lai; Chunzhi Tang

    2008-01-01

    BACKGROUND: Studies in recent years have indicated that several neuropeptide-like substances, such as arginine vasopressin (AVP), somatostatin (SS), and β-endorphine (β-EP), are involved in the process of cerebral ischemic damage to cranial nerves.OBJECTIVE: To observe the effects of electropuncture on back-shu points, as well as the influence on learning and memory, AVP, SS, and β-EP levels in plasma and brain were measured in a rat model of vascular dementia (VD). DESIGN: Randomized controlled trial.SETTING: College of Acupuncture and Massage of Guangzhou University of Chinese Medicine.MATERIALS: This experiment was performed at the Animal Experiment Center of Guangzhou University of TCM from December 2005 to December 2006. A total of 48 healthy adult male Sprague Dawley rats of SPF-grade, 180-220 g, were provided by The Animal Experiment Center of Guangzhou University of Traditional Chinese Medicine. The following instruments were used: SDQ-30 Dipolar Radio-frequency Electrocoagulator (Shanghai Operation Instrument Factory), Morris Water Maze (The Animal Experiment Center of Guangzhou University of Traditional Chinese Medicine), Type G6805-1 Treating Equipment (Huasheng Equipment Factory, Qingdao, China).METHODS: ① Eight rats were randomly selected for the control group; the remaining 40 rats underwent 4-vascular occlusion to establish a cerebral ischemia model. Due to the death of 13 rats and 2 hemiplegies during model establishment, there was a total of 25 model rats available for testing. The model rats were divided randomly into 3 groups according to their body weight: electropuncture group (n = 9), medication group (n = 8), and VD group (n = 8). ② Electropuncture group: 25 mm needles (28 gauge) were used to electropuncture (150 Hz, continuous waves, 1.0-2.0 mA, duration of 20 minutes) the following acupoints: Baihui (GV20), Geshu (BL17), Pishu (BL20), and Shenshu (BL23). The acupoints were located according to Experimental acupuncturology and were

  5. Reduction of intoxication in the rats with transplanted tumors under the influence of Gratiola officinalis L. extract

    Science.gov (United States)

    Navolokin, N. A.; Polukonova, A. V.; Plastun, I. L.; Mudrak, D. A.; Bokarev, A. N.; Afanasyeva, G. A.; Bucharskaya, A. B.; Maslyakova, G. N.; Polukonova, N. V.

    2018-04-01

    This study focuses on the effect of the flavonoid-containing Gratiola officinalis L. extract with antitumor activity on the intensity of peroxidation and the content of vitamin E in the blood serum of animals with transplanted liver cancer PC-1. Intramuscular and oral administrations of the Gratiola officinalis extract in a dose of 110 mg/kg reduce MDA concentration (more than 20 times) and lipid hydroperoxide (more than 1.5 times) in rats with transplanted tumors. This effect leads to decrease in intensity of lipid peroxidation processes in animals. The Gratiola officinalis extract administration increases the vitamin E concentration (more than 1.3 times) in the serum of rats. This result enables to suggest that the extract of Gratiola officinalis contains the tocopherols. Thus, the study of mechanisms of the Gratiola officinalis extract influence on the activity of peroxidation processes and on the activation of the antioxidant system is promising.

  6. Photobiomodulation therapy by NIR laser in persistent pain: an analytical study in the rat.

    Science.gov (United States)

    Micheli, Laura; Di Cesare Mannelli, Lorenzo; Lucarini, Elena; Cialdai, Francesca; Vignali, Leonardo; Ghelardini, Carla; Monici, Monica

    2017-11-01

    Over the past three decades, physicians have used laser sources for the management of different pain conditions obtaining controversial results that call for further investigations. In order to evaluate the pain relieving possibilities of photobiomodulation therapy (PBMT), we tested two near infrared (NIR) laser systems, with different power, against various kinds of persistent hyperalgesia animal models. In rats, articular pain was reproduced by the intra-articular injection of sodium monoiodoacetate (MIA) and complete Freund's adjuvant (CFA), while compressive neuropathy was modelled by the chronic constriction injury of the sciatic nerve (CCI). In MIA and CFA models, (NIR) laser (MLS-Mphi, ASA S.r.l., Vicenza, Italy) application was started 14 days after injury and was performed once a day for a total of 13 applications. In MIA-treated animals, the anti-hyperalgesic effect of laser began 5 min after treatment and vanished after 60 min. The subsequent applications evoked similar effects. In CFA-treated rats, laser efficacy started 5 min after treatment and disappeared after 180 min. In rats that underwent CCI, two treatment protocols with similar fluence but different power output were tested using a new experimental device called Multiwave Locked System laser (MLS-HPP). Treatments began 7 days after injury and were performed during 3 weeks for a total of 10 applications. Both protocols reduced mechanical hyperalgesia and hindlimb weight bearing alterations until 60 min after treatment with a higher efficacy recorded for the animals treated using the higher power output. In conclusion, this study supports laser therapy as a potential treatment for immediate relief of chronic articular or neuropathic pain.

  7. miR-434-3p and DNA hypomethylation co-regulate eIF5A1 to increase AChRs and to improve plasticity in SCT rat skeletal muscle.

    Science.gov (United States)

    Shang, Fei-Fei; Xia, Qing-Jie; Liu, Wei; Xia, Lei; Qian, Bao-Jiang; You, Ling; He, Mu; Yang, Jin-Liang; Wang, Ting-Hua

    2016-03-11

    Acetylcholine receptors (AChRs) serve as connections between motor neurons and skeletal muscle and are essential for recovery from spinal cord transection (SCT). Recently, microRNAs have emerged as important potential biotherapeutics for several diseases; however, whether miRNAs operate in the modulation of AChRs remains unknown. We found increased AChRs numbers and function scores in rats with SCT; these increases were reduced following the injection of a eukaryotic translation initiation factor 5A1 (eIF5A1) shRNA lentivirus into the hindlimb muscle. Then, high-throughput screening for microRNAs targeting eIF5A1 was performed, and miR-434-3p was found to be robustly depleted in SCT rat skeletal muscle. Furthermore, a highly conserved miR-434-3p binding site was identified within the mRNA encoding eIF5A1 through bioinformatics analysis and dual-luciferase assay. Overexpression or knockdown of miR-434-3p in vivo demonstrated it was a negative post-transcriptional regulator of eIF5A1 expression and influenced AChRs expression. The microarray-enriched Gene Ontology (GO) terms regulated by miR-434-3p were muscle development terms. Using a lentivirus, one functional gene (map2k6) was confirmed to have a similar function to that of miR-434-3p in GO terms. Finally, HRM and MeDIP-PCR analyses revealed that DNA demethylation also up-regulated eIF5A1 after SCT. Consequently, miR-434-3p/eIF5A1 in muscle is a promising potential biotherapy for SCI repair.

  8. Mother/offspring co-administration of the traditional herbal remedy yokukansan during the nursing period influences grooming and cerebellar serotonin levels in a rat model of neurodevelopmental disorders.

    Science.gov (United States)

    Muneoka, Katsumasa; Kuwagata, Makiko; Ogawa, Tetsuo; Shioda, Seiji

    2015-04-01

    Neurodevelopmental impairment in the serotonergic system may be involved in autism spectrum disorder. Yokukansan is a traditional herbal remedy for restlessness and agitation in children, and mother-infant co-administration (MICA) to both the child and the nursing mother is one of the recommended treatment approaches. Recent studies have revealed the neuropharmacological properties of Yokukansan (YKS), including its 5-HT1A (serotonin) receptor agonistic effects. We investigated the influence of YKS treatment on behavior in a novel environment and on brain monoamine metabolism during the nursing period in an animal model of neurodevelopmental disorders, prenatally BrdU (5-bromo-2'-deoxyuridine)-treated rats (BrdU-rats). YKS treatment did not influence locomotor activity in BrdU-rats but reduced grooming in open-field tests. YKS treatment without MICA disrupted the correlation between locomotor behaviors and rearing and altered levels of serotonin and its metabolite in the cerebellum. These effects were not observed in the group receiving YKS treatment with MICA. These data indicate a direct pharmacological effect of YKS on the development of grooming behavior and profound effects on cerebellar serotonin metabolism, which is thought to be influenced by nursing conditions.

  9. Remote ischemic preconditioning fails to reduce infarct size in the Zucker fatty rat model of type-2 diabetes: role of defective humoral communication.

    Science.gov (United States)

    Wider, Joseph; Undyala, Vishnu V R; Whittaker, Peter; Woods, James; Chen, Xuequn; Przyklenk, Karin

    2018-03-09

    Remote ischemic preconditioning (RIPC), the phenomenon whereby brief ischemic episodes in distant tissues or organs render the heart resistant to infarction, has been exhaustively demonstrated in preclinical models. Moreover, emerging evidence suggests that exosomes play a requisite role in conveying the cardioprotective signal from remote tissue to the myocardium. However, in cohorts displaying clinically common comorbidities-in particular, type-2 diabetes-the infarct-sparing effect of RIPC may be confounded for as-yet unknown reasons. To investigate this issue, we used an integrated in vivo and in vitro approach to establish whether: (1) the efficacy of RIPC is maintained in the Zucker fatty rat model of type-2 diabetes, (2) the humoral transfer of cardioprotective triggers initiated by RIPC are transported via exosomes, and (3) diabetes is associated with alterations in exosome-mediated communication. We report that a standard RIPC stimulus (four 5-min episodes of hindlimb ischemia) reduced infarct size in normoglycemic Zucker lean rats, but failed to confer protection in diabetic Zucker fatty animals. Moreover, we provide novel evidence, via transfer of serum and serum fractions obtained following RIPC and applied to HL-1 cardiomyocytes subjected to hypoxia-reoxygenation, that diabetes was accompanied by impaired humoral communication of cardioprotective signals. Specifically, our data revealed that serum and exosome-rich serum fractions collected from normoglycemic rats attenuated hypoxia-reoxygenation-induced HL-1 cell death, while, in contrast, exosome-rich samples from Zucker fatty rats did not evoke protection in the HL-1 cell model. Finally, and unexpectedly, we found that exosome-depleted serum from Zucker fatty rats was cytotoxic and exacerbated hypoxia-reoxygenation-induced cardiomyocyte death.

  10. Influence of diet and microbial activity in the digestive tract on digestibility, and nitrogen and energy metabolism in rats and pigs

    DEFF Research Database (Denmark)

    Eggum, B O; Thorbek, G; Beames, R M

    1982-01-01

    -55 kg. Measurements were made on the influence of microbial activity in the digestive tract on digestibility and nitrogen and energy metabolism. Dietary inclusion of the antibiotic Nebacitin was the method used to reduce the microbial population. 2. The microbial activity in the hind-gut (mumol ATP....../g air-dry contents) of antibiotic-treated rats was reduced to approximately one-tenth of that of untreated rats. 3. Live-weight gain was not significantly affected in either species by a reduction in the microbial activity, in spite of a reduction in dry matter digestibility in animals with reduced...... microflora. 4. For rats on low-crude-fibre diets, a reduction in microflora reduced digestibility of all nutrients and energy and metabolizability of digestible energy by approximately 5.4%. All differences were highly significant. On high-crude-fibre diets the decrease was approximately 5.9%. In pigs...

  11. The spleen can influence the metastasis of AH130 hepatoma cells in rats.

    Science.gov (United States)

    Toyonaga, M; Hiraoka, T; Tanaka, H; Miyauchi, Y

    1993-06-01

    The effect of pathophysiological conditions due to disturbance of the spleen is still unclear. We studied the effects of splenectomy in normal and methylcellulose-induced hypersplenic rats on the development of pulmonary metastases created by intravenous injection of ascites containing AH130 hepatoma cells from male Hos-Donryu rats. Growth of metastatic lesions in the lung was not affected by splenectomy in normal rats, but was increased by splenectomy in hypersplenic rats. Overall, there were fewer pulmonary metastases in rats with hypersplenism, but after splenectomy rats with hypersplenism had a significantly greater number of metastases than did normal rats. The metastases rate correlated somewhat with changes in the blood coagulation and T lymphocyte profile. There is a relationship between the spleen and formation of metastases in cancer. Formation of metastases in the lung was affected most by splenectomy in hypersplenism. To elucidate the mechanism by which metastases are formed in the lung under these pathologic conditions, further studies on the exact role of the spleen are required.

  12. Chronic repetitive reaching and grasping results in decreased motor performance and widespread tissue responses in a rat model of MSD.

    Science.gov (United States)

    Barbe, Mary F; Barr, Ann E; Gorzelany, Irene; Amin, Mamta; Gaughan, John P; Safadi, Fayez F

    2003-01-01

    This study investigated changes in motor skills and tissues of the upper extremity (UE) with regard to injury and inflammatory reactions resulting from performance of a voluntary forelimb repetitive reaching and grasping task in rats. Rats reached for food at a rate of 4 reaches/min, 2 h/day, and 3 days/week for up to 8 weeks during which reach rate, task duration and movement strategies were observed. UE tissues were collected bilaterally at weekly time points of 3-8 weeks and examined for morphological changes. Serum was tested for levels of interleukin-1alpha (IL-1) protein. The macrophage-specific antibody, ED1, was used to identify infiltrating macrophages and the ED2 antibody was used to identify resident macrophages. Rats were unable to maintain baseline reach rate in weeks 5 and 6 of task performance. Alternative patterns of movement emerged. Fraying of tendon fibrils was observed after 6 weeks in the mid-forelimb. After 4 weeks, a general elevation of ED1-IR macrophages were seen in all tissues examined bilaterally including the contralateral, uninvolved forelimb and hindlimbs. Significantly more resident macrophages were seen at 6 and 8 weeks in the reach limb. At 8 weeks, serum levels of IL-1alpha increased significantly above week 0. Our results demonstrate that performance of repetitive tasks elicits motor decrements, signs of injury and a cellular and tissue responses associated with inflammation.

  13. Use of high-speed cinematography and computer generated gait diagrams for the study of equine hindlimb kinematics.

    Science.gov (United States)

    Kobluk, C N; Schnurr, D; Horney, F D; Sumner-Smith, G; Willoughby, R A; Dekleer, V; Hearn, T C

    1989-01-01

    High-speed cinematography with computer aided analysis was used to study equine hindlimb kinematics. Eight horses were filmed at the trot or the pace. Filming was done from the side (lateral) and the back (caudal). Parameters measured from the lateral filming included the heights of the tuber coxae and tailhead, protraction and retraction of the hoof and angular changes of the tarsus and stifle. Abduction and adduction of the limb and tarsal height changes were measured from the caudal filming. The maximum and minimum values plus the standard deviations and coefficients of variations are presented in tabular form. Three gait diagrams were constructed to represent stifle angle versus tarsal angle, metatarsophalangeal height versus protraction-retraction (fetlock height diagram) and tuber coxae and tailhead height versus stride (pelvic height diagram). Application of the technique to the group of horses revealed good repeatability of the gait diagrams within a limb and the diagrams appeared to be sensitive indicators of left/right asymmetries.

  14. Electroacupuncture alleviates stress-induced visceral hypersensitivity through an opioid system in rats

    Science.gov (United States)

    Zhou, Yuan-Yuan; Wanner, Natalie J; Xiao, Ying; Shi, Xuan-Zheng; Jiang, Xing-Hong; Gu, Jian-Guo; Xu, Guang-Yin

    2012-01-01

    AIM: To investigate whether stress-induced visceral hypersensitivity could be alleviated by electroacupuncture (EA) and whether EA effect was mediated by endogenous opiates. METHODS: Six to nine week-old male Sprague-Dawley rats were used in this study. Visceral hypersensitivity was induced by a 9-d heterotypic intermittent stress (HIS) protocol composed of 3 randomly stressors, which included cold restraint stress at 4 °C for 45 min, water avoidance stress for 60 min, and forced swimming stress for 20 min, in adult male rats. The extent of visceral hypersensitivity was quantified by electromyography or by abdominal withdrawal reflex (AWR) scores of colorectal distension at different distention pressures (20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg). AWR scores either 0, 1, 2, 3 or 4 were obtained by a blinded observer. EA or sham EA was performed at classical acupoint ST-36 (Zu-San-Li) or BL-43 (Gao-Huang) in both hindlimbs of rats for 30 min. Naloxone (NLX) or NLX methiodide (m-NLX) was administered intraperitoneally to HIS rats in some experiments. RESULTS: HIS rats displayed an increased sensitivity to colorectal distention, which started from 6 h (the first measurement), maintained for 24 h, and AWR scores returned to basal levels at 48 h and 7 d after HIS compared to pre-HIS baseline at different distention pressures. The AWR scores before HIS were 0.6 ± 0.2, 1.3 ± 0.2, 1.9 ± 0.2 and 2.3 ± 0.2 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg distention pressures, respectively. Six hours after termination of the last stressor, the AWR scores were 2.0 ± 0.1, 2.5 ± 0.1, 2.8 ± 0.2 and 3.5 ± 0.2 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg distention pressures, respectively. EA given at classical acupoint ST-36 in both hindlimbs for 30 min significantly attenuated the hypersensitive responses to colorectal distention in HIS rats compared with sham EA treatment [AWRs at 20 mmHg: 2.0 ± 0.2 vs 0.7 ± 0.1, P = 4.23 711 E-4; AWRs at 40 mmHg: 2.6 ± 0.2 vs 1.5 ± 0.2, P

  15. Influence of iron on plutonium absorption by the adult and neonatal rat

    International Nuclear Information System (INIS)

    Sullivan, M.F.; Ruemmler, P.S.; Buschbom, R.L.

    1986-01-01

    To determine how iron affects plutonium absorption, adult rats were gavaged with 238 Pu nitrate (pH 2) after they had been fed an iron-deficient diet or treated with iron supplements. Neonatal rats born to dams on an iron-deficient diet were also gavaged with 238 Pu. An iron-deficient diet resulted in enhanced 238 Pu absorption both in the adults and in neonates born to iron-deficient dams. Ferric iron increased 238 Pu absorption 12-fold in adult rats; injected iron-dextran reduced that increase; gavaged ferrous iron reduced 238 Pu absorption to one-third of the control value. Rat neonates absorbed 30 to 40 times as much 238 Pu as adults; absorption was lowered in groups that received iron supplements: Iron-dextran caused a 50% reduction; ferric iron, 95%; and ferrous iron, greater than 95%. The results demonstrate an effect of the oxidation state of iron on plutonium absorption in adult rats different from that observed in suckling rats. The results suggest that the high rate of 238 Pu absorption by neonatal animals is due not only to the permeability of their intestines but also to their high demand for iron

  16. Assessment of the Neuroprotective Effects of Lavandula angustifolia Extract on the Contusive Model of Spinal Cord Injury in Wistar Rats

    Science.gov (United States)

    Kaka, Gholamreza; Yaghoobi, Kayvan; Davoodi, Shaghayegh; Hosseini, Seyed R.; Sadraie, Seyed H.; Mansouri, Korosh

    2016-01-01

    Introduction: Spinal cord injury (SCI) involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP) is a major index. Objective: The aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav) on the repair of spinal cord injuries in Wistar rats. Materials and Methods: Forty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI), Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB) score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results: BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups. Conclusion: Lav at doses of 200 and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of SCI in Wistar rats. PMID:26903793

  17. Animal mdels for the study of the effects of spaceflight on the immune system

    Science.gov (United States)

    Sonnenfeld, G.

    Animal models have been used extensively to study the effects of spaceflight on the immune system. The rat has been the animal used most extensively, but some studies have also been carried out utilizing mice and rhesus monkeys. Hindlimb unloading of rats and mice is a ground-based model that has been utilized to determine the effects of spaceflight-type conditions on the immune systems. The results using this model have shown that hindlimb unloading results in alterations of functional rodent immune responses, including cytokine production, blastogenesis of leukocytes, response of bone marrow cells to colony stimulating factors, neutrophil activity, and resistance to infection. Distribution of leukocyte subtypes was not affected by hindlimb unloading. Studies on rats flown in space have demonstrated that exposure to spaceflight results in alterations in cytokine production, alterations in the ability of bone marrow cells to respond to colony stimulating factors, alterations in leukocyte subset distribution, and alterations in natural killer cell function. When pregnant rats were flown in space, although the immune responses of the pregnant mothers were altered by exposure to spaceflight, no effects of spaceflight on the immune responses of the offspring were observed. In one study, rhesus monkeys were flown in space and their immune status was evaluated upon their return to earth. Results of that study showed alterations in the ability of monkey immune cells to produce cytokines, express cytokine receptors, and respond to colony stimulating factor. Therefore, it is clear that exposure to spaceflight results in alterations in immune responses of the test animals. These changes are similar to those observed for humans that have flown in space, and demonstrate that the animal models are appropriate for studying the effects of spaceflight on the immune system. Although use of the hindlimb unloading model on the ground has indicated that exposure to the model also

  18. Influence of erythropoiesis stimulation on 54Mn distribution in rats

    International Nuclear Information System (INIS)

    Ziecik, A.

    1976-01-01

    The experiments were carried out on animals in which erythropoiesis was stimulated. The rats were anaemized by blood letting or they received subcutaneous injections of erythropoietic filtrate of anaemized sheep plasma. The investigations demonstated that enhanced 54 Mn incorporation into the erytrocytes and bone marrow is induced by stimulation of the erythropoiesis process, whereas the raised 54 Mn level in the plasma of anaemized rats is associated with blood loss and not with erythropoiesis. (author)

  19. The influence of androgens, anti-androgens, and castration on cell proliferation in the jejunal and colonic crypt epithelia, and in dimethylhydrazine-induced adenocarcinoma of rat colon.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1982-01-01

    Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.

  20. Influence of ovarian hormones on cortical spreading depression and its suppression by L-kynurenine in rat.

    Directory of Open Access Journals (Sweden)

    Virginie Chauvel

    Full Text Available Migraine is sexually dimorphic and associated in 20-30% of patients with an aura most likely caused by cortical spreading depression (CSD. We have previously shown that systemic L-kynurenine (L-KYN, the precursor of kynurenic acid, suppresses CSD and that this effect depends on the stage of the estrous cycle in female rats. The objectives here are to determine the influence of ovarian hormones on KCl-induced CSD and its suppression after L-KYN by directly modulating estradiol or progesterone levels in ovariectomized rats. Adult female rats were ovariectomized and subcutaneously implanted with silastic capsules filled with progesterone or 17β-estradiol mixed with cholesterol, with cholesterol only or left empty. Two weeks after the ovariectomy/capsule implantation, the animals received an i.p. injection of L-KYN (300 mg/kg or NaCl as control. Thirty minutes later CSDs were elicited by applying KCl over the occipital cortex and recorded by DC electrocorticogram for 1 hour. The results show that both estradiol and progesterone increase CSD frequency after ovariectomy. The suppressive effect of L-KYN on CSD frequency, previously reported in normal cycling females, is not found anymore after ovariectomy, but reappears after progesterone replacement therapy. Taken together, these results emphasize the complex role of sex hormones on cortical excitability. The CSD increase by estradiol and, more surprisingly, progesterone may explain why clinically migraine with aura appears or worsens during pregnancy or with combined hormonal treatments.

  1. The influence of sexual hormones on lipogenesis and lipolysis in rat fat cells

    DEFF Research Database (Denmark)

    Hansen, Finn Mølgård; Fahmy, N; Nielsen, Jens Høiriis

    1980-01-01

    and prooestrus than in dioestrus. Oestradiol treatment of both female and male rats and testosterone treatment of male rats for three days lowered the fatty acid synthesis and increased the lipolysis. The metabolic oscillation disappeared in ovariectomized rats, and the fat cells from these animals showed...

  2. Influence of tetrahydrocurcumin on tail tendon collagen contents and its properties in rats with streptozotocin-nicotinamide-induced type 2 diabetes.

    Science.gov (United States)

    Pari, Leelavinothan; Murugan, Pidaran

    2007-12-01

    Changes in the structural and functional properties of collagen caused by advanced glycation might be of importance for the etiology of late-stage complications in diabetics. Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, exhibiting many of the same physiological and pharmacological activities of curcumin and in some systems may exert greater antioxidant activity than curcumin. In diabetic rats, hydroxyproline and collagen content as well as its degree of cross-linking were increased, as shown by increased extent of glycation, collagen-linked fluorescence, neutral salt collagen, and decreased acid and pepsin solubility. Administration of THC for 45 days to diabetic rats significantly reduced the accumulation and cross-linking of collagen. The effects of THC were comparable with those of curcumin. In conclusion, administration of THC had a positive influence on the content of collagen and its properties in streptozotocin- and nicotinamide-induced diabetic rats. THC was found to be more effective than curcumin.

  3. Endothelin receptor antagonists influence cardiovascular morphology in uremic rats.

    Science.gov (United States)

    Nabokov, A V; Amann, K; Wessels, S; Münter, K; Wagner, J; Ritz, E

    1999-02-01

    In is generally held that renal failure results in blood pressure (BP)-independent structural changes of the myocardium and the vasculature. The contribution, if any, of endothelin (ET) to these changes has been unknown. We morphometrically studied random samples of the left ventricle myocardium and small intramyocardial arteries in subtotally (5/6) nephrectomized (SNx) male Sprague-Dawley rats treated with either the selective ETA receptor antagonist BMS182874 (30 mg/kg/day) or the nonselective ETA/ETB receptor antagonist Ro46-2005 (30 mg/kg/day) in comparison with either sham-operated rats, untreated SNx, or SNx rats treated with the angiotensin-converting enzyme inhibitor trandolapril (0.1 mg/kg/day). Eight weeks later, systolic BP was lower in trandolapril-treated SNx compared with untreated SNx animals. No decrease in BP was seen following either ET receptor antagonist at the dose used. A significantly increased volume density of the myocardial interstitium was found in untreated SNx rats as compared with sham-operated controls. Such interstitial expansion was prevented by trandolapril and either ET receptor antagonist. SNx caused a substantial increase in the wall thickness of small intramyocardial arteries. The increase was prevented by trandolapril or BMS182874 treatment. The arteriolar wall:lumen ratio was significantly lower in all treated groups when compared with untreated SNx. In contrast, only trandolapril, but not the ET receptor antagonists, attenuated thickening of the aortic media in SNx animals. The ETA-selective and ETA/ETB-nonselective receptor antagonists appear to prevent development of myocardial fibrosis and structural changes of small intramyocardial arteries in experimental chronic renal failure. This effect is independent of systemic BP.

  4. Isoform-Specific Na,K-ATPase Alterations Precede Disuse-Induced Atrophy of Rat Soleus Muscle

    Directory of Open Access Journals (Sweden)

    Violetta V. Kravtsova

    2015-01-01

    Full Text Available This study examines the isoform-specific effects of short-term hindlimb suspension (HS on the Na,K-ATPase in rat soleus muscle. Rats were exposed to 24–72 h of HS and we analyzed the consequences on soleus muscle mass and contractile parameters; excitability and the resting membrane potential (RMP of muscle fibers; the electrogenic activity, protein, and mRNA content of the α1 and α2 Na,K-ATPase; the functional activity and plasma membrane localization of the α2 Na,K-ATPase. Our results indicate that 24–72 h of HS specifically decreases the electrogenic activity of the Na,K-ATPase α2 isozyme and the RMP of soleus muscle fibers. This decrease occurs prior to muscle atrophy or any change in contractile parameters. The α2 mRNA and protein content increased after 24 h of HS and returned to initial levels at 72 h; however, even the increased content was not able to restore α2 enzyme activity in the disused soleus muscle. There was no change in the membrane localization of α2 Na,K-ATPase. The α1 Na,K-ATPase electrogenic activity, protein and mRNA content did not change. Our findings suggest that skeletal muscle use is absolutely required for α2 Na,K-ATPase transport activity and provide the first evidence that Na,K-ATPase alterations precede HS-induced muscle atrophy.

  5. Influence Of Sucralose On Some Biological Aspects In Irradiated Rats

    International Nuclear Information System (INIS)

    Saada, H.N.; Eldawy, H.A.; Abo El Aal, A.F.; Meky, N.H.

    2012-01-01

    Sucralose, an artificial sweetener derived from sucrose by replacing 3 hydroxyl groups with 3 chloride groups, has been approved by the Food and Drug Administration (FDA) in 1998, and made available to the consumer under the trade name splenda. The aim of the present study was to evaluate the outcome of sucralose administration in rats exposed to ionizing radiation. Sucralose was administered by oral gavage to male albino rats at a dose of 11 mg/kg daily during the period of exposure to gamma ray 1 Gy/week up to 6 Gy. Biochemical analysis in testis tissues showed that administration of sucralose has no effect on the increase of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glucose-6-phophate dehydrogenase (G-6-PDH) while significantly decreased the amount of malondialdehyde (MDA) as compared to their respective values in the testis of irradiated rats. Cytogenetic analysis in testis tissues revealed that administration of sucralose has no effect on the radiation-induced increase of sperm head abnormalities. Moreover, the administration of sucralose to male albino rats during the irradiation period depressed glucose, glycated hemoglobin (HbA1c) and triglycerides levels while increased total cholesterol level as compared to their respective values in irradiated rats. On the other hand, sucralose has no effect on the increase of insulin, the decrease of calcium (Ca 2+ ) as well as the decrease of blood cells count; red blood cells (RBC), white blood cells (WBC), lymphocytes and neutrophils. According to these preliminary results, it could be concluded that sucralose didn't induce oxidative stress, has no effect on sperm head abnormality, has no effect on insulin, blood cells count and calcium level, while might interfere with glucose absorption and predispose to hypercholesterolemia. Further studies are needed on a larger scale to give more information about the effect of sucralose.

  6. Influence of diet with kale on lipid peroxides and malondialdehyde levels in blood serum of laboratory rats over intoxication with paraquat.

    Science.gov (United States)

    Sikora, Elżbieta; Bodziarczyk, Izabela

    2013-01-01

    Organism's lipid peroxidation is one of the most often examined and known physiological process evoked by free radicals. It concerns oxidation reaction of unsaturated fatty acid and/or other lipids leading to lipid oxidation products (LOP), which as a result of further changes generate among others the malondialdehyde molecules. The aim of the work was an estimation if raw or cooked kale addition to rat's diet influences antioxidant defense efficiency in their organisms in comparison to rats fed with standard AIN-93G diet. The experiment was conducted with 36 Wistar strain, male rats over 21 days. The rats were divided into 3 groups (each 12 stuck) which were fed with: standard diet AIN-93G (2 groups), AIN-93G diet with 10% addition of raw kale (2 groups), and AIN-93G with 10% addition of cooked lyophilised kale. The total content of polyphenols (FC method) and antioxidant activity (ABTS+•) were previously determined in raw and then in cooked kale. On the 20th day of experiment, half of rats (6 stuck) of each kind of the diet were injected intraperitoneally by the solution of paraquat (PQ) in physiological salt to evoke the oxidative stress. The next day animals were stunned and blood from their hearts was sampled. In the obtained serum, the levels of lipid oxidation products (LOP) and malondialdehyde (MDA) were assessed. It was observed that in blood serum of rats fed with modified diet with raw and cooked lyophilised kale addition the lipid oxides level was lower in comparison to control group fed with standard diet (p kale addition. Diet with kale, both raw and cooked, efficiently inhibited the lipid peroxidation process in rats' organisms, ongoing during natural metabolism and during evoked oxidative stress.

  7. Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats.

    Science.gov (United States)

    Lay, Christophe; Sutren, Malène; Lepercq, Pascale; Juste, Catherine; Rigottier-Gois, Lionel; Lhoste, Evelyne; Lemée, Riwanon; Le Ruyet, Pascale; Doré, Joël; Andrieux, Claude

    2004-09-01

    The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR-temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 10(5)-10(8) bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, alpha and beta-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism.

  8. Ketamine analgesia for inflammatory pain in neonatal rats: a factorial randomized trial examining long-term effects

    Directory of Open Access Journals (Sweden)

    Bhutta Adnan T

    2008-08-01

    Full Text Available Abstract Background Neonatal rats exposed to repetitive inflammatory pain have altered behaviors in young adulthood, partly ameliorated by Ketamine analgesia. We examined the relationships between protein expression, neuronal survival and plasticity in the neonatal rat brain, and correlated these changes with adult cognitive behavior. Methods Using Western immunoblot techniques, homogenates of cortical tissue were analyzed from neonatal rats 18–20 hours following repeated exposure to 4% formalin injections (F, N = 9, Ketamine (K, 2.5 mg/kg × 2, N = 9, Ketamine prior to formalin (KF, N = 9, or undisturbed controls (C, N = 9. Brain tissues from another cohort of rat pups (F = 11, K = 12, KF = 10, C = 15 were used for cellular staining with Fos immunohistochemistry or FluoroJade-B (FJB, followed by cell counting in eleven cortical and three hippocampal areas. Long-term cognitive testing using a delayed non-match to sample (DNMS paradigm in the 8-arm radial maze was performed in adult rats receiving the same treatments (F = 20, K = 24, KF = 21, C = 27 in the neonatal period. Results Greater cell death occurred in F vs. C, K, KF in parietal and retrosplenial areas, vs. K, KF in piriform, temporal, and occipital areas, vs. C, K in frontal and hindlimb areas. In retrosplenial cortex, less Fos expression occurred in F vs. C, KF. Cell death correlated inversely with Fos expression in piriform, retrosplenial, and occipital areas, but only in F. Cortical expression of glial fibrillary acidic protein (GFAP was elevated in F, K and KF vs. C. No significant differences occurred in Caspase-3, Bax, and Bcl-2 expression between groups, but cellular changes in cortical areas were significantly correlated with protein expression patterns. Cluster analysis of the frequencies and durations of behaviors grouped them as exploratory, learning, preparatory, consumptive, and foraging behaviors. Neonatal inflammatory pain exposure reduced exploratory behaviors in adult

  9. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    Science.gov (United States)

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  10. The influence of single application of paracetamol and/or N-acetylcysteine on rats in subchronic exposition to trichloroethylene vapours. II. Effect on hepatic glutathione level

    Directory of Open Access Journals (Sweden)

    Danuta Plewka

    2012-09-01

    Full Text Available Background: Feature of modern existing hazards both environmental and occupational is cumulative exposure often leading to unexpected response of the organism resulting, among other things, in interactions with cytochrome P450 system involved in biotransformation of trichloroethylene and paracetamol. Hepatotoxity of paracetamol is closely connected with hepatic glutathione level. „In therapy of acute paracetamol poisoning application of N-acetylcysteine as a factor, which protects GSH level in cells, is recommended.” Materials and method: Tests were performed on rats which were treated with trichloroethylene, paracetamol and/or N-acetylcysteine. In rat liver total level of glutathione was determined i.e. reduced and oxidized form. Results: Paracetamol just after completion of the exposure affected the glutathione level. Trichloroethylene throughout the period of observation stimulated growth of glutathione level in liver. N-acetylcysteine didn’t have any influence on the level of investigated tripeptyde. Conclusions: N-acetylcysteine removes negative effect of paracetamol especially when it’s applied with 2-hour delay. After exposure for trichloethylene immediate application of N-acetylcysteine caused noticeable lowering of glutathione level. Cumulative exposure for three xenobiotics had positive influence for glutathione level in rat liver.

  11. Influence of usual zinc intake and zinc in a meal on 65Zn retention and turnover in the rat

    International Nuclear Information System (INIS)

    Hunt, J.R.; Johnson, P.E.; Swan, P.B.

    1987-01-01

    The influences of zinc in a meal and usual zinc intake on zinc retention and turnover were investigated in 7-wk-old male rats fed diets containing 12-151 mg Zn/kg for 3 wk before and after consuming a 65 Zn-labeled meal containing ZnCl 2 . Retention corrected to zero time and turnover rate were determined by whole-body counting. Percent zinc retention was inversely proportional to the natural logarithm of the meal zinc, between 0.09 and 26 mumol. In comparison to lower doses, higher doses resulted in lower percent retention but greater amounts of zinc retained. Although the latter relationship was slightly curvilinear, there was no indication of a limited capacity for zinc retention with high doses. However, doses above 4 mumol resulted in higher turnover rates in rats accustomed to lower zinc intakes. Percent retention and the reciprocal of the turnover rate were proportional to the reciprocal of the dietary zinc concentration. The greatest differences in retention and turnover occurred between 12 and 26 mg Zn/kg diet. The zinc dose in a meal and the usual dietary zinc separately influenced percent zinc retention. These factors also interacted, such that greater dose effects were observed at lower zinc intakes and greater dietary zinc effects were observed at lower doses

  12. Influence of local tetracycline on the microbiota of alveolar osteitis in rats

    OpenAIRE

    Bosco, Joseane Maria Dias; Oliveira, Sérgio Ricardo de; Bosco, Álvaro Francisco; Schweitzer, Christiane Marie; Jardim Júnior, Elerson Gaetti

    2008-01-01

    The aim of the present study was to evaluate the effects of local tetracycline on the occurrence of alveolar osteitis in rats, and on the microbiota associated to this infection. Forty Wistar rats were randomly assigned to 4 groups (n=10): I - the rats had the maxillary right incisor extracted and the alveolar wound did not receive any treatment; II - adrenaline and Ringer-PRAS were introduced into the alveolar wound; III - the alveolar wound was irrigated with sterile saline; and IV - the al...

  13. Effects of immobilization and remobilization on the ankle joint in Wistar rats

    International Nuclear Information System (INIS)

    Kunz, R.I.; Coradini, J.G.; Silva, L.I.; Bertolini, G.R.F.; Brancalhão, R.M.C.; Ribeiro, L.F.C.

    2014-01-01

    A sprained ankle is a common musculoskeletal sports injury and it is often treated by immobilization of the joint. Despite the beneficial effects of this therapeutic measure, the high prevalence of residual symptoms affects the quality of life, and remobilization of the joint can reverse this situation. The aim of this study was to analyze the effects of immobilization and remobilization on the ankle joint of Wistar rats. Eighteen male rats had their right hindlimb immobilized for 15 days, and were divided into the following groups: G1, immobilized; G2, remobilized freely for 14 days; and G3, remobilized by swimming and jumping in water for 14 days, performed on alternate days, with progression of time and a series of exercises. The contralateral limb was the control. After the experimental period, the ankle joints were processed for microscopic analysis. Histomorphometry did not show any significant differences between the control and immobilized/remobilized groups and members, in terms of number of chondrocytes and thickness of the articular cartilage of the tibia and talus. Morphological analysis of animals from G1 showed significant degenerative lesions in the talus, such as exposure of the subchondral bone, flocculation, and cracks between the anterior and mid-regions of the articular cartilage and the synovial membrane. Remobilization by therapeutic exercise in water led to recovery in the articular cartilage and synovial membrane of the ankle joint when compared with free remobilization, and it was shown to be an effective therapeutic measure in the recovery of the ankle joint

  14. Effects of immobilization and remobilization on the ankle joint in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, R.I. [Laboratório de Biologia Estrutural e Funcional, Universidade Estadual do Oeste do Paraná, Cascavel, PR (Brazil); Coradini, J.G.; Silva, L.I.; Bertolini, G.R.F. [Laboratório do Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná, Cascavel, PR (Brazil); Brancalhão, R.M.C.; Ribeiro, L.F.C. [Laboratório de Biologia Estrutural e Funcional, Universidade Estadual do Oeste do Paraná, Cascavel, PR (Brazil)

    2014-08-15

    A sprained ankle is a common musculoskeletal sports injury and it is often treated by immobilization of the joint. Despite the beneficial effects of this therapeutic measure, the high prevalence of residual symptoms affects the quality of life, and remobilization of the joint can reverse this situation. The aim of this study was to analyze the effects of immobilization and remobilization on the ankle joint of Wistar rats. Eighteen male rats had their right hindlimb immobilized for 15 days, and were divided into the following groups: G1, immobilized; G2, remobilized freely for 14 days; and G3, remobilized by swimming and jumping in water for 14 days, performed on alternate days, with progression of time and a series of exercises. The contralateral limb was the control. After the experimental period, the ankle joints were processed for microscopic analysis. Histomorphometry did not show any significant differences between the control and immobilized/remobilized groups and members, in terms of number of chondrocytes and thickness of the articular cartilage of the tibia and talus. Morphological analysis of animals from G1 showed significant degenerative lesions in the talus, such as exposure of the subchondral bone, flocculation, and cracks between the anterior and mid-regions of the articular cartilage and the synovial membrane. Remobilization by therapeutic exercise in water led to recovery in the articular cartilage and synovial membrane of the ankle joint when compared with free remobilization, and it was shown to be an effective therapeutic measure in the recovery of the ankle joint.

  15. Influence of low frequency magnetic field used in magnetotherapy on interleukin 6 (IL-6 contents in rat heart and brain

    Directory of Open Access Journals (Sweden)

    Elżbieta Ciejka

    2017-08-01

    Full Text Available Background: The human population is exposed ever more frequently to magnetic fields (MF. This is due to both technological progress and development of the economy as well as to advances made in medical science. That is why the thorough understanding and systematized knowledge about mechanisms by which MF exerts its effects on living organisms play such an important role. In this context the health of MF-exposed people is the subject of particular concern. The aim of the study was to evaluate the effect of extremely low frequency magnetic field (ELFMF used in magnetotherapy on the concentration of interleukin 6 (IL-6 in rat heart and brain. Material and Methods: The male rats were randomly divided into 3 experimental groups: group I – control, without contact with magnetic field; group II − exposed to bipolar, rectangular magnetic field 40 Hz, induction “peak-to-peak” 7 mT 30 min/day for 2 weeks; and group III − exposed to bipolar, rectangular magnetic field 40 Hz, 7 mT 60 min/day for 2 weeks. Concentration of IL-6 in the heart and brain of animals was measured after MF exposure. Results: Exposure to ELFMF: 40 Hz, induction “peak-to-peak” 7 mT 30 min/day for 2 weeks caused a significant IL-6 increase in rat hearts compared to the control group (p < 0.05 and a non-significant IL-6 decrease in rat brain. The magnetic field applied for 60 min resulted in non-significant IL-6 increase in rat hearts compared to the control group and significant IL-6 decrease in rat brain (p < 0.05. Conclusions: The influence of magnetic field on inflammation in the body varies depending on the MF parameters and the affected tissues or cells. Med Pr 2017;68(4:517–523

  16. [Influence of low frequency magnetic field used in magnetotherapy on interleukin 6 (IL-6) contents in rat heart and brain].

    Science.gov (United States)

    Ciejka, Elżbieta; Skibska, Beata; Gorąca, Anna

    2017-06-27

    The human population is exposed ever more frequently to magnetic fields (MF). This is due to both technological progress and development of the economy as well as to advances made in medical science. That is why the thorough understanding and systematized knowledge about mechanisms by which MF exerts its effects on living organisms play such an important role. In this context the health of MF-exposed people is the subject of particular concern. The aim of the study was to evaluate the effect of extremely low frequency magnetic field (ELFMF) used in magnetotherapy on the concentration of interleukin 6 (IL-6) in rat heart and brain. The male rats were randomly divided into 3 experimental groups: group I - control, without contact with magnetic field; group II - exposed to bipolar, rectangular magnetic field 40 Hz, induction "peak-to-peak" 7 mT 30 min/day for 2 weeks; and group III - exposed to bipolar, rectangular magnetic field 40 Hz, 7 mT 60 min/day for 2 weeks. Concentration of IL-6 in the heart and brain of animals was measured after MF exposure. Exposure to ELFMF: 40 Hz, induction "peak-to-peak" 7 mT 30 min/day for 2 weeks caused a significant IL-6 increase in rat hearts compared to the control group (p < 0.05) and a non-significant IL-6 decrease in rat brain. The magnetic field applied for 60 min resulted in non-significant IL-6 increase in rat hearts compared to the control group and significant IL-6 decrease in rat brain (p < 0.05). The influence of magnetic field on inflammation in the body varies depending on the MF parameters and the affected tissues or cells. Med Pr 2017;68(4):517-523. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. Specificity and flexibility of social influence on spatial choice.

    Science.gov (United States)

    Brown, Michael F; Saxon, Marie E; Heslin, Kelsey A

    2018-03-21

    Rats searched for food in a situation that allowed them to determine which locations contained food after searching a small number of them, but not which of the baited locations contained more-preferred food rather than a less-preferred food. During some experimental trials, the latter information was available from the choices of model rats making choices together with the subject rats, because some of the model rats tended to choose the locations baited with more-preferred food. On the surface, the results suggest that social influence specified the locations of more-preferred food to the subject rats. However, more detailed analysis and data from a second experiment indicate that the social influence can be explained by a general tendency to approach another rat making choices, acquired if rats are exposed to a contingency between social approach and increased foraging success.

  18. Influence of N-methyl-N-nitrosourea, testosterone, and N-(4-hydroxyphenyl)-all-trans-retinamide on prostate cancer induction in Wistar-Unilever rats.

    Science.gov (United States)

    McCormick, D L; Rao, K V; Dooley, L; Steele, V E; Lubet, R A; Kelloff, G J; Bosland, M C

    1998-08-01

    The influence of chemical carcinogen, hormonal stimulation, and chronic dietary administration of the synthetic retinoid, N-(4-hydroxyphenyl)-all-trans-retinamide (4-HPR), on the induction of prostate cancer in male Wistar-Unilever rats was determined. Three different tumor induction regimens were used: (a) a single i.v. dose of 50 mg of N-methyl-N-nitrosourea (MNU) per kg body weight, followed by chronic androgen stimulation via s.c. implantation of two silastic capsules containing 40 mg testosterone each; (b) a single i.v. dose of 50 mg of MNU per kg body weight (no testosterone treatment); and (c) chronic androgen stimulation with implanted testosterone capsules (no MNU treatment). In a fourth series of animals, the incidence of spontaneous prostate tumors was determined in groups of rats receiving neither carcinogen nor hormone stimulation. Within each series, parallel groups of animals were fed a control (vehicle-supplemented) diet or control diet supplemented with 4-HPR beginning 1 day after carcinogen administration; retinoid administration was continuous until termination of the study at 450 days. The incidence of accessory sex gland cancer in rats treated sequentially with MNU + testosterone was >60%, in comparison with cancer incidences of Unilever rats.

  19. Ellagic Acid Prevents L-NAME-Induced Hypertension via Restoration of eNOS and p47phox Expression in Rats

    Directory of Open Access Journals (Sweden)

    Thewarid Berkban

    2015-06-01

    Full Text Available The effect of ellagic acid on oxidative stress and hypertension induced by Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME was investigated. Male Sprague-Dawley rats were administrated with L-NAME (40 mg/kg/day for five weeks. L-NAME induced high systolic blood pressure (SBP and increased heart rate (HR, hindlimb vascular resistance (HVR and oxidative stress. Concurrent treatment with ellagic acid (7.5 or 15 mg/kg prevented these alterations. Co-treatment with ellagic acid was associated with up-regulation of endothelial nitric oxide synthase (eNOS protein production and alleviation of oxidative stress as indicated by decreased superoxide production in the vascular tissue, reduced plasma malondialdehyde levels, reduced NADPH oxidase subunit p47phox expression and increased plasma nitrate/nitrite levels. Our results indicate that ellagic acid attenuates hypertension by reducing NADPH oxidase subunit p47phox expression, which prevents oxidative stress and restores NO bioavailability.

  20. Influence of visual experience on developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Dieni, Cristina; Frondaroli, Adele; Pettorossi, Vito Enrico

    2004-11-01

    The influence of visual experience deprivation on changes in synaptic plasticity during postnatal development was studied in the ventral part of the rat medial vestibular nuclei (vMVN). We analysed the differences in the occurrence, expressed as a percentage, of long-term depression (LTD) and long-term potentiation (LTP) induced by high frequency stimulation (HFS) of the primary vestibular afferents in rats reared in the light (LR) and those in the dark (DR). In LR rats, HFS only induced LTD in the early stages of development, but the occurrence of LTD progressively decreased to zero before their eyes opened, while that of LTP enhanced from zero to about 50%. Once the rats' eyes had opened, LTD was no longer inducible while LTP occurrence gradually reached the normal adult value (70%). In DR rats, a similar shift from LTD to LTP was observed before their eyes opened, showing only a slightly slower LTD decay and LTP growth, and the LTD annulment was delayed by 1 day. By contrast, the time courses of LTD and LTP development in DR and LR rats showed remarkable differences following eye opening. In fact, LTD occurrence increased to about 50% in a short period of time and remained high until the adult stage. In addition, the occurrence of LTP slowly decreased to less than 20%. The effect of light-deprivation was reversible, since the exposure of DR rats to light, 5 days after eye opening, caused a sudden disappearance of LTD and a partial recover of LTP occurrence. In addition, we observed that a week of light deprivation in LR adult rats did not affect the normal adult LTP occurrence. These results provide evidence that in a critical period of development visual input plays a crucial role in shaping synaptic plasticity of the vMVN, and suggest that the visual guided shift from LTD to LTP during development may be necessary to refine and consolidate vestibular circuitry.

  1. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    Science.gov (United States)

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The influence of high iron diet on rat lung manganese absorption

    International Nuclear Information System (INIS)

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne

    2006-01-01

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased ∼2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, 54 Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. 54 Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected 54 Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration

  3. Caffeine/nutrition interaction in the rat brain: Influence on latent inhibition and cortical spreading depression.

    Science.gov (United States)

    de Aguiar, Márlison José Lima; de Aguiar, Cilene Rejane Ramos Alves; Guedes, Rubem Carlos Araújo

    2011-01-10

    Caffeine, like malnutrition, can produce behavioral and electrophysiological alterations. However, the interaction of both factors remains unclear. Here this interaction has been studied in male Wistar rats previously malnourished during the lactation period by feeding their dams the "regional basic diet" of Northeast Brazil, containing about 8% protein, predominantly from vegetable sources (RBD(8)). At 70-75days of life, a subset of the pups was treated intraperitoneally with 30mg/kg caffeine for 4days while being tested according to the behavioral model of latent inhibition. Another group was subjected to an electrophysiological recording of the phenomenon known as cortical spreading depression, and the effects of caffeine injected during the recording session were evaluated. Caffeine did not affect cortical spreading depression, but antagonized latent inhibition in both the RBD(8)-malnourished rats and in the well-nourished control group fed a chow diet with 22% protein. This effect of caffeine was not seen in malnourished rats fed a protein-supplemented RBD (protein increased to 22% by increasing the proportion of foodstuffs from vegetable origin; RBD(22) group), suggesting that the amino acid imbalance of this diet may modulate the caffeine effects on latent inhibition. The results indicate a differential effect of caffeine in the latent inhibition behavioral model, as compared to the cortical spreading depression phenomenon, and this effect is influenced by the early nutritional status of the animal. We suggest that caffeine may modulate dopaminergic subcortical receptors participating in attention processes, but does not interact at the cortical level, in a way that would affect cortical spreading depression. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Treating Chronic Pain after Spinal Cord Injury

    Science.gov (United States)

    2016-09-01

    sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995;12(1):1-21. [7] Bedi SS, Yang Q, Crook RJ, Du J, Wu...reveal novel insights to the pathophysiology of chronic SCI pain and whether NPCs can modify pain outcomes. This proposal will test whether neural...extensive loss of hindlimb function that was associated with a score ɛ on the 21 point BBB locomotor scale (Fig. 1A,B). In rats with T3 severe

  5. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection.

    Science.gov (United States)

    Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan

    2015-06-01

    Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright

  6. Cordyceps militaris improves the survival of Dahl salt-sensitive hypertensive rats possibly via influences of mitochondria and autophagy functions

    Directory of Open Access Journals (Sweden)

    Kentaro Takakura

    2017-11-01

    Full Text Available The genus Cordyceps and its specific ingredient, cordycepin, have attracted much attention for multiple health benefits and expectations for lifespan extension. We analyzed whether Cordyceps militaris (CM, which contains large amounts of cordycepin, can extend the survival of Dahl salt-sensitive rats, whose survival was reduced to ∼3 months via a high-salt diet. The survival of these life-shortened rats was extended significantly when supplemented with CM, possibly due to a minimization of the effects of stroke. Next, we analyzed the effect of CM on hypertension-sensitive organs, the central nervous systems (CNS, heart, kidney and liver of these rats. We attempted to ascertain how the organs were improved by CM, and we paid particular attention to mitochondria and autophagy functions. The following results were from CM-treated rats in comparison with control rats. Microscopically, CNS neurons, cardiomyocytes, glomerular podocytes, renal epithelial cells, and hepatocytes all were improved. However, immunoblot and immunohistochemical analysis showed that the expressions of mitochondria-related proteins, ATP synthase β subunit, SIRT3 and SOD2, and autophagy-related proteins, LC3-II/LC3-I ratio and cathepsin D all were reduced significantly in the CNS neurons, but increased significantly in the cells of the other three organs, although p62 was decreased in its expression in all the organs tested. Activity of Akt and mTOR was enhanced but that of AMPK was reduced in the CNS, while such kinase activity was completely the opposite in the other organs. Together, the influence of CM may differ between mitochondria and autophagy functioned between the two organ groups, as mitochondria and autophagy seemed to be repressed and promoted, respectively, in the CNS, while both mitochondria and autophagy were activated in the others. This could possibly be related to the steady or improved cellular activity in both the organs, which might result in the life

  7. Cordyceps militaris improves the survival of Dahl salt-sensitive hypertensive rats possibly via influences of mitochondria and autophagy functions.

    Science.gov (United States)

    Takakura, Kentaro; Ito, Shogo; Sonoda, Junya; Tabata, Koji; Shiozaki, Motoko; Nagai, Kaoru; Shibata, Masahiro; Koike, Masato; Uchiyama, Yasuo; Gotow, Takahiro

    2017-11-01

    The genus Cordyceps and its specific ingredient, cordycepin, have attracted much attention for multiple health benefits and expectations for lifespan extension. We analyzed whether Cordyceps militaris (CM), which contains large amounts of cordycepin, can extend the survival of Dahl salt-sensitive rats, whose survival was reduced to ∼3 months via a high-salt diet. The survival of these life-shortened rats was extended significantly when supplemented with CM, possibly due to a minimization of the effects of stroke. Next, we analyzed the effect of CM on hypertension-sensitive organs, the central nervous systems (CNS), heart, kidney and liver of these rats. We attempted to ascertain how the organs were improved by CM, and we paid particular attention to mitochondria and autophagy functions. The following results were from CM-treated rats in comparison with control rats. Microscopically, CNS neurons, cardiomyocytes, glomerular podocytes, renal epithelial cells, and hepatocytes all were improved. However, immunoblot and immunohistochemical analysis showed that the expressions of mitochondria-related proteins, ATP synthase β subunit, SIRT3 and SOD2, and autophagy-related proteins, LC3-II/LC3-I ratio and cathepsin D all were reduced significantly in the CNS neurons, but increased significantly in the cells of the other three organs, although p62 was decreased in its expression in all the organs tested. Activity of Akt and mTOR was enhanced but that of AMPK was reduced in the CNS, while such kinase activity was completely the opposite in the other organs. Together, the influence of CM may differ between mitochondria and autophagy functioned between the two organ groups, as mitochondria and autophagy seemed to be repressed and promoted, respectively, in the CNS, while both mitochondria and autophagy were activated in the others. This could possibly be related to the steady or improved cellular activity in both the organs, which might result in the life extension of these

  8. Transplanted Peripheral Blood Stem Cells Mobilized by Granulocyte Colony-Stimulating Factor Promoted Hindlimb Functional Recovery After Spinal Cord Injury in Mice.

    Science.gov (United States)

    Takahashi, Hiroshi; Koda, Masao; Hashimoto, Masayuki; Furuya, Takeo; Sakuma, Tsuyoshi; Kato, Kei; Okawa, Akihiko; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Yamazaki, Masashi; Mannoji, Chikato

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) mobilizes peripheral blood stem cells (PBSCs) derived from bone marrow. We hypothesized that intraspinal transplantation of PBSCs mobilized by G-CSF could promote functional recovery after spinal cord injury. Spinal cords of adult nonobese diabetes/severe immunodeficiency mice were injured using an Infinite Horizon impactor (60 kdyn). One week after the injury, 3.0 µl of G-CSF-mobilized human mononuclear cells (MNCs; 0.5 × 10(5)/µl), G-CSF-mobilized human CD34-positive PBSCs (CD34; 0.5 × 10(5)/µl), or normal saline was injected to the lesion epicenter. We performed immunohistochemistry. Locomotor recovery was assessed by Basso Mouse Scale. The number of transplanted human cells decreased according to the time course. The CD31-positive area was significantly larger in the MNC and CD34 groups compared with the vehicle group. The number of serotonin-positive fibers was significantly larger in the MNC and CD34 groups than in the vehicle group. Immunohistochemistry revealed that the number of apoptotic oligodendrocytes was significantly smaller in cell-transplanted groups, and the areas of demyelination in the MNC- and CD34-transplanted mice were smaller than that in the vehicle group, indicating that cell transplantation suppressed oligodendrocyte apoptosis and demyelination. Both the MNC and CD34 groups showed significantly better hindlimb functional recovery compared with the vehicle group. There was no significant difference between the two types of transplanted cells. Intraspinal transplantation of G-CSF-mobilized MNCs or CD34-positive cells promoted angiogenesis, serotonergic fiber regeneration/sparing, and preservation of myelin, resulting in improved hindlimb function after spinal cord injury in comparison with vehicle-treated control mice. Transplantation of G-CSF-mobilized PBSCs has advantages for treatment of spinal cord injury in the ethical and immunological viewpoints, although further exploration

  9. Influence of dietary minerals and fat on the absorption of lead. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Barltrop, D.; Khoo, H.E.

    1976-01-01

    The nutritional factors influencing the absorption of lead from the gut were studied using both intact animals and ligated gut loop preparation. Short-term feeding studies were made in groups of six rats using diets of constant lead content (0.075%) but in which the nutritional components were varied sequentially. Dietary lead was labelled with /sup 203/Pb. Absorption was determined in the carcass and individual organs by means of a small-animal whole-body counter. The results showed that absorption was enhanced to twenty-times control value by diets deficient in minerals and seven-fold by diets of high fat content. Conversely, high mineral diets were shown to result in a two-fold reduction in lead absorption. The interaction of lead with individual dietary components was further studied under controlled conditions using ligated gut loop preparations. Using this technique the relative roles of luminal interaction and tissue response for lead absorption were explored and the kinetics of lead absorption determined.

  10. Hepato- and neuro-protective influences of biopropolis on thioacetamide-induced acute hepatic encephalopathy in rats.

    Science.gov (United States)

    Mostafa, Rasha E; Salama, Abeer A A; Abdel-Rahman, Rehab F; Ogaly, Hanan A

    2017-05-01

    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that ultimately occurs as a complication of acute or chronic liver failure; accompanied by hyperammonemia. This study aimed to evaluate the potential of biopropolis as a hepato- and neuro-protective agent using thioacetamide (TAA)-induced acute HE in rats as a model. Sixty Wistar rats were divided into 5 groups: Group 1 (normal control) received only saline and paraffin oil. Group 2 (hepatotoxic control) received TAA (300 mg/kg, once). Groups 3, 4, and 5 received TAA followed by vitamin E (100 mg/kg) and biopropolis (100 and 200 mg/kg), respectively, daily for 30 days. Evidences of HE were clearly detected in TAA-hepatotoxic group including significant elevation in the serum level of ammonia, liver functions, increased oxidative stress in liver and brain, apoptotic DNA fragmentation and overexpression of iNOS gene in brain tissue. The findings for groups administered biopropolis, highlighted its efficacy as a hepato- and neuro-protectant through improving the liver functions, oxidative status and DNA fragmentation as well as suppressing the brain expression of iNOS gene. In conclusion, biopropolis, at a dose of 200 mg/kg per day protected against TAA-induced HE through its antioxidant and antiapoptotic influence; therefore, it can be used as a protective natural product.

  11. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Heng-Chih Chang

    Full Text Available Brain ischemia leads to muscle inactivity-induced atrophy and may exacerbate motor function deficits. Intramuscular insulin-like growth factor I (IGF-I injection has been shown to alleviate the brain ischemia-induced muscle atrophy and thus improve the motor function. Motor function is normally gauged by the integrity and coordination of the central nervous system and peripheral muscles. Whether brain ischemic regions are adaptively changed by the intramuscular IGF-I injection is not well understood. In this study, the effect of intramuscular IGF-I injection was examined on the central nervous system of brain ischemic rats. Rats were divided into 4 groups: sham control, brain ischemia control, brain ischemia with IGF-I treatment, and brain ischemia with IGF-I plus IGF-I receptor inhibitor treatment. Brain ischemia was induced by right middle cerebral artery occlusion. IGF-I and an IGF-1 receptor inhibitor were injected into the affected calf and anterior tibialis muscles of the treated rats for 4 times. There was an interval of 2 days between each injection. Motor function was examined and measured at the 24 hours and 7 days following a brain ischemia. The affected hind-limb muscles, sciatic nerve, lumbar spinal cord, and motor cortex were collected for examination after euthanizing the rats. IGF-I expression in the central nervous system and affected muscles were significantly decreased after brain ischemia. Intramuscular IGF-I injection increased the IGF-I expression in the affected muscles, sciatic nerve, lumbar spinal cord, and motor cortex. It also increased the p-Akt expression in the affected motor cortex. Furthermore, intramuscular IGF-I injection decreased the neuronal apoptosis and improved the motor function. However, co-administration of the IGF-I receptor inhibitor eliminated these effects. Intramuscular IGF-I injection after brain ischemia attenuated or reversed the decrease of IGF-I in both central and peripheral tissues, and

  12. Influence of dietary fiber from coconut kernel (Cocos nucifera) on the 1,2-dimethylhydrazine-induced lipid peroxidation in rats.

    Science.gov (United States)

    Pillai, M G; Thampi, B S; Menon, V P; Leelamma, S

    1999-09-01

    The influence of dietary fiber from coconut kernel isolated by the neutral detergent fiber method on the antioxidant status in rats treated with the colon specific carcinogen 1,2-dimethylhydrazine (DMH) was studied in rats fed a high-fat diet for 15 weeks. The DMH-treated fiber group showed higher levels of lipid peroxides than the control group treated with DMH at the preneoplastic and neoplastic stages. Free fatty acid levels were found to decrease significantly in the DMH-treated control group, whereas it was near normal in the fiber groups. Superoxide dismutase and catalase activity also were found to be increased in the liver, intestine, proximal colon, and distal colon. Glutathione levels in all the tissues studied showed significant decreases in the fiber group. The results suggest that coconut kernel fiber can protect cells from loss of oxidative capacity with the administration of the procarcinogen DMH.

  13. The role of myostatin and activin receptor IIB in the regulation of unloading-induced myofiber type-specific skeletal muscle atrophy.

    Science.gov (United States)

    Babcock, Lyle W; Knoblauch, Mark; Clarke, Mark S F

    2015-09-15

    Chronic unloading induces decrements in muscle size and strength. This adaptation is governed by a number of molecular factors including myostatin, a potent negative regulator of muscle mass. Myostatin must first be secreted into the circulation and then bind to the membrane-bound activin receptor IIB (actRIIB) to exert its atrophic action. Therefore, we hypothesized that myofiber type-specific atrophy observed after hindlimb suspension (HLS) would be related to myofiber type-specific expression of myostatin and/or actRIIB. Wistar rats underwent HLS for 10 days, after which the tibialis anterior was harvested for frozen cross sectioning. Simultaneous multichannel immunofluorescent staining combined with differential interference contrast imaging was employed to analyze myofiber type-specific expression of myostatin and actRIIB and myofiber type cross-sectional area (CSA) across fiber types, myonuclei, and satellite cells. Hindlimb suspension (HLS) induced significant myofiber type-specific atrophy in myosin heavy chain (MHC) IIx (P Myostatin staining associated with myonuclei was less in HLS rats compared with controls, while satellite cell staining for myostatin remained unchanged. In contrast, the total number myonuclei and satellite cells per myofiber was reduced in HLS compared with ambulatory control rats (P myostatin-induced myofiber type-selective atrophy observed during chronic unloading. Copyright © 2015 the American Physiological Society.

  14. Tendon material properties vary and are interdependent among turkey hindlimb muscles.

    Science.gov (United States)

    Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P; Roberts, Thomas J

    2012-10-15

    The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress-strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r(2)=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity.

  15. [Different strength intermittent treadmill training of growth period rats and related bone metabolism of the hormone influence].

    Science.gov (United States)

    Xie, Shun-cheng; Ma, Xue-jun; Guo, Cheng-ji; Liu, Hong-zhen

    2012-05-01

    To explore the influence of different strength intermittent treadmill training of growth period rats on the bone metabolism, so as to provide the training intensity of teenagers to set theory support. Select 70 male four weeks Wistar rats according to body weight randomly divided into seven groups (n = 10): the control group and the exercise group. According to the VO2max the exercise group was divided into 6 groups: 65%, 70%, 75%, 80%, 85% and 90% group. Nine weeks treadmill training, training six days a week, each group of training three times, each time not less than 10min, the interval was 30 min. The last movement after 24 h, took the femur and blood to measured the bone mineral density (BMD), bone mass (BMC) and alkaline phosphatase (AKP), resist tartaric acid acidic phosphatase (Str-ACP). 1. The femoral BMD (0.1393 +/- 0.0031), BMC (0.4525 +/- 0.0335) of 70% group were significantly higher than those in the control group (BMD: 0.1200 +/- 0.0095, BMC: 0.3238 +/- 0.0485) and the other sports group (65% BMD:0.1339 +/- 0.0062, BMC: 0.4058 +/- 0.0492, 75% BMD: 0.1296 +/- 0.0015, BMC: 0.3869 +/- 0.0254, 80% BMD: 0.1223 +/- 0.0082, BMC: 0.3454 +/- 0.0483, 85% BMD: 0.1250 +/- 0.0044, BMC: 0.3731 +/- 0.0381, 90% BMD: 0.1171 +/- 0.0047, BMC: 0.3051 +/- 0.0286) (P growth period rat bone mass and bone mineral density to increase obviously.

  16. Effects of perinatal asphyxia on the neurobehavioral and retinal development of newborn rats.

    Science.gov (United States)

    Kiss, Peter; Szogyi, Donat; Reglodi, Dora; Horvath, Gabor; Farkas, Jozsef; Lubics, Andrea; Tamas, Andrea; Atlasz, Tamas; Szabadfi, Krisztina; Babai, Norbert; Gabriel, Robert; Koppan, Miklos

    2009-02-19

    Perinatal asphyxia during delivery produces long-term deficits and represents a major problem in both neonatal and pediatric care. Several morphological, biochemical and behavioral changes have been described in rats exposed to perinatal asphyxia. The aim of the present study was to evaluate how perinatal asphyxia affects the complex early neurobehavioral development and retinal structure of newborn rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by cesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily during the first 3 weeks, and motor coordination tests were performed on postnatal weeks 3-5. After completion of the testing procedure, retinas were removed for histological analysis. We found that in spite of the fast catch-up-growth of asphyctic pups, nearly all examined reflexes were delayed by 1-4 days: negative geotaxis, sensory reflexes, righting reflexes, development of fore- and hindlimb grasp and placing, gait and auditory startle reflexes. Time to perform negative geotaxis, surface righting and gait reflexes was significantly longer during the first few weeks in asphyctic pups. Among the motor coordination tests, a markedly weaker performance was observed in the grid walking and footfault test and in the walk initiation test. Retinal structure showed severe degeneration in the layer of the photoreceptor and bipolar cell bodies. In summary, our present study provided a detailed description of reflex and motor development following perinatal asphyxia, showing that asphyxia led to a marked delay in neurobehavioral development and a severe retinal degeneration.

  17. Assessment of the neuroprotective effects of Lavandula angustifolia extract on the contusive model of spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    Gholamreza eKaka

    2016-02-01

    Full Text Available IntroductionSpinal cord injury (SCI involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP is a major index. ObjectiveThe aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav on the repair of spinal cord injuries in Wistar rats.Materials and MethodsForty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI, Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP testing was performed to detect the recovery of neural conduction.Results BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups.ConclusionLav at doses of 200 mg/kg and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of spinal cord injury in Wistar rats.Keywords Spinal cord injury (SCI; Lavandula angustifolia; neuroprotection; Basso, Beattie, and Bresnahan (BBB; glial fibrillary acidic protein (GFAP; somatosensory evoked potential (SEP

  18. The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture.

    Science.gov (United States)

    Favaro, P D N; Gouvêa, T S; de Oliveira, S R; Vautrelle, N; Redgrave, P; Comoli, E

    2011-03-10

    The lateral part of intermediate layer of superior colliculus (SCl) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCl while prey capture in rats with NMDA lesions in SCl is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCl receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCl induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCl, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy.

    Science.gov (United States)

    Marzuca-Nassr, Gabriel Nasri; Murata, Gilson Masahiro; Martins, Amanda Roque; Vitzel, Kaio Fernando; Crisma, Amanda Rabello; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Kang, Jing Xuan; Curi, Rui

    2017-10-06

    The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  20. The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress.

    Science.gov (United States)

    Jiang, Wenbo; Li, Bai; Chen, Yingying; Gao, Shuying

    2017-12-01

    Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects. Results indicated that animals weight gain and food consumption were not significantly affected by DBA. However, morris water maze test showed varying degrees of changes between control and high-dose group. Additionally, the level of malondialdehyde (MDA) and generation of reactive oxygen species (ROS) in the hippocampus and pre-frontal cortex of rats increased significantly. The activities of total superoxide dismutase (SOD) and the glutathione (GSH) content in the hippocampus and pre-frontal cortex of rats decreased significantly after treatment with DBA. Treatment with DBA increased the protein and mRNA expression of Iba-1, NF-κB, TNF-α, IL-6, IL-1β and HO-1 in the hippocampus and pre-frontal cortex of rats. These data suggested that DBA had a toxic influence on the hippocampus and pre-frontal cortex of rats, and that the mechanism of toxicity might be associated with the neuroinflammation response and oxidative stress.

  1. Ca uptake and its influence by growth hormone in osteoblasts of fetal rat calvaria

    International Nuclear Information System (INIS)

    Wang Hongfu; Jin Weifang; Sekimoto Haku

    1994-01-01

    Uptake and release of Ca 2+ are important functions of osteoblasts. In the paper we studied the uptake of calcium and influence by Growth Hormone in osteoblasts of fetal rat calvaria by liquid scintillation spectrometry of 45 Ca 2+ . In short-term cultures of the bone derived cells, the uptake of 45 Ca 2+ increased steadily. The activity of 45 Ca 2+ in the cells of 15 minute cultures was 2∼3 times of that in the 0 minute cultures. It continued to increase in the cells of 30 minute cultures. Exposure of the bone cells to GH at 55.3 ng/ml increased the uptake of 45 Ca 2+ by 2.3 times in the 30 minute cultures and 1.5 times in the 60 minute cultures than those of the control

  2. Influence of demineralized bone matrix's embryonic origin on bone formation: an experimental study in rats.

    Science.gov (United States)

    Stavropoulos, Andreas; Kostopoulos, Lambros; Mardas, Nicolaos; Karring, Thorkild

    2003-01-01

    There are results suggesting that differences regarding bone-inducing potential, in terms of amount and/or rate of bone formation, exist between demineralized bone matrices (DBMs) of different embryonic origins. The aim of the present study was to examine whether the embryonic origin of DBM affects bone formation when used as an adjunct to guided tissue regeneration (GTR). Endomembranous (EM) and endochondral (ECH) DBMs were produced from calvarial and long bones of rats, respectively. Prior to the study the osteoinductive properties of the DBMs were confirmed in six rats following intramuscular implantation. Following surgical exposure of the mandibular ramus, a rigid hemispheric Teflon capsule loosely packed with a standardized quantity of DBM was placed with its open part facing the lateral surface of the ramus in both sides of the jaw in 30 rats. In one side of the jaw, chosen at random, the capsule was filled with EM-DBM, whereas in the other side ECH-DBM was used. Groups of 10 animals were sacrificed after healing periods of 1, 2, and 4 months, and undecalcified sections of the capsules were produced and subjected to histologic analysis and computer-assisted planimetric measurements. During the experiment increasing amounts of newly formed bone were observed inside the capsules in both sides of the animals' jaws. Limited bone formation was observed in the 1- and 2-month specimens, but after 4 months of healing, the newly formed bone in the ECH-DBM grafted sides occupied 59.1% (range 45.6-74.7%) of the area created by the capsule versus 46.9% (range 23.0-64.0%) in the EM-DBM grafted sides (p =.01). It is concluded that the embryonic origin of DBM influences bone formation by GTR and that ECH-DBM is superior to EM-DBM.

  3. β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats

    Science.gov (United States)

    Hao, Yanlei; Jackson, Janna R.; Wang, Yan; Edens, Neile; Pereira, Suzette L.

    2011-01-01

    β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling. PMID:21697520

  4. Influences of Realgar-Indigo naturalis, A Traditional Chinese Medicine Formula, on the Main CYP450 Activities in Rats Using a Cocktail Method

    Directory of Open Access Journals (Sweden)

    Huan-Hua Xu

    2017-01-01

    Full Text Available The purpose of this work was to study the influences of Realgar-Indigo naturalis (RIF and its principal element realgar on 4 main cytochrome P450 enzymes activities in rats. A simple and efficient cocktail method was developed to detect the four probe drugs simultaneously. In this study, Wistar rats were administered intragastric RIF and realgar for 14 days; mixed probe drugs were injected into rats by caudal vein. Through analyzing the pharmacokinetic parameter of mixed probe drugs in rats, we can calculate the CYPs activities. The results showed that RIF could inhibit CYP1A2 enzyme activity and induce CYP2C11 enzyme activity significantly. Interestingly, in realgar high dosage group, CYP3A1/2 enzyme activity was inhibited significantly, and different dosage of realgar manifested a good dose-dependent manner. The RIF results indicated that drug coadministrated with RIF may need to be paid attention in relation to drug-drug interactions (DDIs. Realgar, a toxic traditional Chinese medicine (TCM, does have curative effect on acute promyelocytic leukemia (APL. Its toxicity studies should be focused on. We found that, in realgar high dosage group, CYP3A1/2 enzymes activity was inhibited. This phenomenon may explain its potential toxicity mechanism.

  5. Characterization of a cerebral palsy-like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas.

    Science.gov (United States)

    Dos Santos, Adriana Souza; de Almeida, Wellington; Popik, Bruno; Sbardelotto, Bruno Marques; Torrejais, Márcia Miranda; de Souza, Marcelo Alves; Centenaro, Lígia Aline

    2017-08-01

    In an attempt to propose an animal model that reproduces in rats the phenotype of cerebral palsy, this study evaluated the effects of maternal exposure to bacterial endotoxin associated with perinatal asphyxia and sensorimotor restriction on gait pattern, brain and spinal cord morphology. Two experimental groups were used: Control Group (CTG) - offspring of rats injected with saline during pregnancy and Cerebral Palsy Group (CPG) - offspring of rats injected with lipopolysaccharide during pregnancy, submitted to perinatal asphyxia and sensorimotor restriction for 30days. At 29days of age, the CPG exhibited coordination between limbs, weight-supported dorsal steps or weight-supported plantar steps with paw rotation. At 45days of age, CPG exhibited plantar stepping with the paw rotated in the balance phase. An increase in the number of glial cells in the primary somatosensory cortex and dorsal striatum were observed in the CPG, but the corpus callosum thickness and cross-sectional area of lateral ventricle were similar between studied groups. No changes were found in the number of motoneurons, glial cells and soma area of the motoneurons in the ventral horn of spinal cord. The combination of insults in the pre, peri and postnatal periods produced changes in hindlimbs gait pattern of animals similar to those observed in diplegic patients, but motor impairments were attenuated over time. Besides, the greater number of glial cells observed seems to be related to the formation of a glial scar in important sensorimotor brain areas. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  6. The influence of dietary Cu and diabetes on tissue 67Cu retention kinetics in rats

    International Nuclear Information System (INIS)

    Uriu-Hare, J.Y.; Rucker, R.B.; Keen, C.L.

    1991-01-01

    Compared to controls, diabetes results in higher plasma, liver and kidney Cu concentrations. Since alterations in Cu metabolism may be associated with diabetic pathology, the authors investigated how Cu metabolism is affected by diabetes and dietary Cu intake. Nondiabetic and STZ diabetic rats were fed Cu suppl. or Cu def. diets for 5 wks. Rats were intubated with 28 μCi 67 Cu and killed after 8, 16, 24, 32, 64, or 128 h. There were marked effects of both diet and diabetes on 67 Cu metabolism. Independent of diabetes, deficient rats had a higher % of retained 67 Cu, in liver, plasma, RBC, muscle, spleen, brain, lung, uterus, and intestine than adequate Cu rats. Independent of dietary Cu, diabetic rats had a lower % of retained 67 Cu in liver, plasma, RBC, muscle, spleen, lung, bone, pancreas, skin, uterus and heart than controls. Differential effects were noted for kidney; adequate Cu diabetic rats had a higher % of retained 67 Cu than all other groups. Marked effects of both diet and diabetes were evident when tissue Cu turnover was examined. Compared to Cu suppl. rats, Cu def. rats had a slower turnover of 67 Cu, in liver, plasma, intestine, pancreas, eye, brain, muscle, spleen, lung and heart. Diabetic rats had a slower turnover of 67 Cu than nondiabetic rats in liver, plasma, intestine, pancreas, eye, kidney, RBC and uterus. The data imply that a focus on Cu metabolism with regard to cellular Cu trafficking and pathology may be warranted

  7. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.

    Science.gov (United States)

    Mysoet, Julien; Dupont, Erwan; Bastide, Bruno; Canu, Marie-Hélène

    2015-09-01

    In the adult rat, sensorimotor restriction by hindlimb unloading (HU) is known to induce impairments in motor behavior as well as a disorganization of somatosensory cortex (shrinkage of the cortical representation of the hindpaw, enlargement of the cutaneous receptive fields, decreased cutaneous sensibility threshold). Recently, our team has demonstrated that IGF-1 level was decreased in the somatosensory cortex of rats submitted to a 14-day period of HU. To determine whether IGF-1 is involved in these plastic mechanisms, a chronic cortical infusion of this substance was performed by means of osmotic minipump. When administered in control rats, IGF-1 affects the size of receptive fields and the cutaneous threshold, but has no effect on the somatotopic map. In addition, when injected during the whole HU period, IGF-1 is interestingly implied in cortical changes due to hypoactivity: the shrinkage of somatotopic representation of hindlimb is prevented, whereas the enlargement of receptive fields is reduced. IGF-1 has no effect on the increase in neuronal response to peripheral stimulation. We also explored the functional consequences of IGF-1 level restoration on tactile sensory discrimination. In HU rats, the percentage of paw withdrawal after a light tactile stimulation was decreased, whereas it was similar to control level in HU-IGF-1 rats. Taken together, the data clearly indicate that IGF-1 plays a key-role in cortical plastic mechanisms and in behavioral alterations induced by a decrease in sensorimotor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The influence of whole-body and local irradiation modified by hyperglycemia on metastatic Walker carcinosarcoma 256 in rats

    International Nuclear Information System (INIS)

    Kutlimuratov, A.B.; Ivashkin, A.V.; Zakirkhodzhaev, U.D.

    1990-01-01

    It has been shown that the local radiation therapy, and also radiation therapy modified by the short-term hyperglycemia really increase the life-span of rats with Walker 256 carcinosarcoma. At the same time the metastatic process also increases, especially after the modified radiation therapy. The total irradiation of experimental animals in a dose of 50 sGy before the modified radiation therapy considerably decreases the frequency of metastatic process. A conclusion is drawn that the total irradiation has a prophylactic influence on metastases under conditions of modified radiation therapy

  9. Influence of Physical Exercise and Food Restriction on the Biomechanical Properties of the Femur of Ageing Male Rats

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Skalicky, Monika; Viidik, Andrus

    2008-01-01

    BACKGROUND: Voluntary running in wheels as well as food reduction increase the life spans of rats. Disparate parameters such as the collagen biomarker of ageing and the development of kidney pathologies are decreased by voluntary exercise. There are few reports on the influence of physical exercise...... were used: baseline (BL), voluntarily running in wheels (RW), food restriction to attain pair weight with RW animals (PW), forced running in treadmills (TM), and sedentary controls (SE). The biomechanical properties of femoral neck, diaphysis, and distal metaphysis were measured. RESULTS: While...

  10. Influence of some bacterial and host factors on colonization and invasiveness of Escherichia coli K1 in neonatal rats.

    OpenAIRE

    Wullenweber, M; Beutin, L; Zimmermann, S; Jonas, C

    1993-01-01

    Of 209 healthy infants examined, 44 (21.1%) carried Escherichia coli K1 in their feces. Of these 44 isolates, 36 (81.8%) were attributed to 10 different known clonal groups of E. coli K1 and 4 isolates represented unknown types. The influence of mannose-resistant (MR) adhesins, aerobactin production, and resistance to serum on colonization and invasiveness of E. coli K1 in orally infected inbred LEW baby rats was investigated. Strains expressing MR adhesins had significantly higher colonizati...

  11. Influence of separate and combined impact both of radiation and chemical factors on state of lipid peroxide oxidation system and antioxidant protection at pregnant rats

    International Nuclear Information System (INIS)

    Danil'chik, V.S.; Spivak, L.V.; Kolb, V.G.; Zubovskaya, E.T.; Rogov, Yu.I.

    2000-01-01

    Influence of low dozed ionizing irradiation and chemical toxicant was studied both under separate and combined action in the process of pregnancy. The lipid peroxidation (LPO) indices and antioxidant protection (AOP) parameters of females rats were studied. The result received proved that irradiation during pregnancy induced activation both of lipids free radical oxidation and of antioxidant protection in female rats. Chemical toxicants introduction resulted in shifts on the LPO-AOP system the hydrogen peroxide blood level increasing and the antioxidants ones reducing. Combined action of both factors led to development of a new level of LPO-AOP

  12. The interstitial distribution of macromolecules in rat tumours is influenced by the negatively charged matrix components.

    Science.gov (United States)

    Wiig, Helge; Gyenge, Christina C; Tenstad, Olav

    2005-09-01

    Knowledge of macromolecular distribution volumes is essential in understanding fluid transport within normal and pathological tissues. In this study in vivo we determined the distribution volumes of several macromolecules, including one monoclonal antibody, in tumours and tested whether charges associated with the tumour extracellular matrix influence their available volumes. Steady state levels of the monoclonal antibody trastuzumab (Herceptin) (pI = 9.2), IgG (pI = 7.6) as well as native (pI = 5.0) and cationized albumin (pI = 7.6) were established in rats bearing dimethylbenzanthracene (DMBA)-induced mammary tumours by continuous infusion using osmotic minipumps. After a 5-7 day infusion period, the rats were nephrectomized and the extracellular volume was determined with 51Cr-labelled EDTA. Plasma volumes were measured with 125I-labelled human serum albumin or rat IgM in a separate series. Steady state concentrations of probes were determined in the interstitial fluid that was isolated by centrifugation from tumours or by post mortem wick implantation in the back skin. Calculations were made for interstitial fluid volume (Vi), along with the available (Va/Vi) and excluded (Ve/Vi) relative interstitial volume fractions. The Ve/Vi for the positively charged trastuzumab in tumours averaged 0.29 +/- 0.03 (n = 16), a value which was significantly lower than the corresponding one for IgG of 0.36 +/- 0.02 (n = 16). Native albumin was excluded from 38% of the tumour interstitial fluid, whereas cationization of albumin reduced the excluded volume by approximately 50%. Our experiments suggest that the tumour interstitium acts as a negatively charged matrix and is an important factor in determining the macromolecular distribution volume.

  13. Influence of creatine supplementation on indicators of glucose metabolism in skeletal muscle of exercised rats

    Directory of Open Access Journals (Sweden)

    Michel Barbosa de Araújo

    2013-12-01

    Full Text Available The purpose of this study was to evaluate the effect of creatine supplementation in the diet on indicators of glucose metabolism in skeletal muscle of exercised rats. Forty Wistar adult rats were distributed into four groups for eight weeks: 1 Control: sedentary rats that received balanced diet; 2 Creatine control: sedentary rats that received supplementation of 2% creatine in the balanced diet; 3 Trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received balanced diet; and 4 Supplemented-trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received creatine supplementation (2% in the balanced diet. The hydric intake increased and the body weight gain decreased in the supplemented-trained group. In the soleus muscle, the glucose oxidation increased in both supplemented groups. The production of lactate and glycemia during glucose tolerance test decreased in the supplemented-trained group. Creatine supplementation in conjunction with exercise training improved muscular glycidic metabolism of rats.

  14. Influence of the autonomic nervous system on calcium homeostasis in the rat.

    Science.gov (United States)

    Stern, J E; Cardinali, D P

    1994-01-01

    The local surgical manipulation of sympathetic and parasympathetic nerves innervating the thyroid-parathyroid territory was employed to search for the existence of a peripheral neuroendocrine link controlling parathyroid hormone (PTH) and calcitonin (CT) release. From 8 to 24 h after superior cervical ganglionectomy (SCGx), at the time of wallerian degeneration of thyroid-parathyroid sympathetic nerve terminals, an alpha-adrenergic inhibition, together with a minor beta-adrenergic stimulation, of hypercalcemia-induced CT release, and an alpha-adrenoceptor inhibition of hypocalcemia-induced PTH release were found. In chronically SCGx rats PTH response to EDTA was slower, and after CaCl2 injection, serum calcium attained higher levels in face of normal CT levels. SCGx blocked the PTH increase found in sham-operated rats stressed by a subcutaneous injection of turpentine oil, but did not affect the greater response to EDTA. The higher hypocalcemia seen after turpentine oil was no longer observed in SCGx rats. The effects of turpentine oil stress on calcium and CT responses to a bolus injection of CaCl2 persisted in rats subjected to SCGx 14 days earlier. Interruption of thyroid-parathyroid parasympathetic input conveyed by the thyroid nerves (TN) and the inferior laryngeal nerves (ILN) caused a fall in total serum calcium, an increase of PTH levels and a decrease of CT levels, when measured 10 days after surgery. Greater responses of serum CT and PTH were detected in TN-sectioned, and in TN- or ILN-sectioned rats, respectively. Physiological concentrations of CT decreased, and those of PTH increased, in vitro cholinergic activity in rat SCG, measured as specific choline uptake, and acetylcholine synthesis and release. The results indicate that cervical autonomic nerves constitute a pathway through which the brain modulates calcium homeostasis.

  15. Effects of maternal separation on the neurobehavioral development of newborn Wistar rats.

    Science.gov (United States)

    Farkas, Jozsef; Reglodi, Dora; Gaszner, Balazs; Szogyi, Donat; Horvath, Gabor; Lubics, Andrea; Tamas, Andrea; Frank, Falko; Besirevic, Dario; Kiss, Peter

    2009-05-29

    Animal models of neonatal stress, like maternal separation, may provide important correlation with human stress-related disorders. Early maternal deprivation has been shown to cause several short- and long-term neurochemical and behavioral deficits. Little is known about the early neurobehavioral development after postnatal stress. The aim of the present study was to investigate the development of reflexes and motor coordination in male and female pups subjected to maternal deprivation. Pups were removed from their mothers from postnatal day 1-14, for 3h daily. Somatic development (weight gain, eye opening, ear unfolding, incisor eruption) and reflex development was tested during the first 3 weeks. The appearance of the following reflexes was investigated: crossed extensor, grasping, placing, gait, righting and sensory reflexes, and negative geotaxis. Timely performance of negative geotaxis, righting and gait were also tested daily during the first 3 weeks. Motor coordination and open-field tests were performed on postnatal weeks 3-5 (rotarod, elevated grid-walk, footfault, rope suspension, inclined board and walk initiation tests). The results revealed that a 3-h-long daily maternal separation did not lead to a marked delay or enhancement in reflex development and motor coordination. A subtle enhancement was observed in the appearance of hindlimb grasp and gait reflexes, and a better performance in footfault test in male rats suffering from maternal deprivation. In contrast, female maternally deprived (MD) rats displayed a slight delay in forelimb grasp and air righting reflex appearance, and surface righting performance. Open-field activity was not changed in maternally deprived rats. In summary, our present observations indicate that maternal deprivation does not induce drastic changes in early neurodevelopment, therefore, further research is needed to determine the onset of behavioral alterations in subject with maternal deprivation history. Gender differences

  16. A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats.

    Science.gov (United States)

    Roof, R L; Schielke, G P; Ren, X; Hall, E D

    2001-11-01

    Proven behavioral assessment strategies for testing potential therapeutic agents in rat stroke models are needed. Few studies include tasks that demand higher levels of sensorimotor and cognitive function. Because behavioral outcome and rate of recovery vary among ischemia models, there is a need to characterize and compare performance on specific tasks across models. To this end, sensorimotor and cognitive deficits were assessed during a 5-week period after either permanent proximal middle cerebral artery occlusion (pMCAO) or permanent distal middle cerebral artery occlusion combined with a 90-minute occlusion of both common carotid arteries (dMCAO/tCCAO) in Sprague-Dawley rats. The EBST, hindlimb and forelimb placing, and cylinder tests were given at regular intervals postinjury to assess sensorimotor function. Cognitive function was assessed with a multitrial water navigation task. pMCAO, which caused both striatal and cortical damage, produced persistent sensorimotor and cognitive deficits. Limb placing responses and postural reflexes were impaired throughout the month of testing. A persistent bias for using the ipsilateral forelimb for wall movements in the cylinder test was observed as well as a bias for landing on the opposite forelimb. pMCAO rats were also impaired in the water navigation task. dMCAO/tCCAO, which caused only cortical damage, produced similar sensorimotor deficits, but these were greatly diminished by 2 weeks after injury. No impairment was found for water tank navigation. Correlations between forelimb placing (both models), water navigation performance (pMCAO model), and sensorimotor asymmetry (dMCAOtCCAO model) and infarct volume were observed. Based on the range of functions affected and stability of observed deficits, the pMCAO model appears to be preferable to the dMCAO/tCCAO model for use in assessing therapeutic agents for stroke.

  17. Effect of excess dietary salt on calcium metabolism and bone mineral in a spaceflight rat model

    Science.gov (United States)

    Navidi, Meena; Wolinsky, Ira; Fung, Paul; Arnaud, Sara B.

    1995-01-01

    High levels of salt promote urinary calcium (UCa) loss and have the potential to cause bone mineral deficits if intestinal Ca absorption does not compensate for these losses. To determine the effect of excess dietary salt on the osteopenia that follows skeletal unloading, we used a spaceflight model that unloads the hindlimbs of 200-g rats by tail suspension (S). Rats were studied for 2 wk on diets containing high salt (4 and 8%) and normal calcium (0.45%) and for 4 wk on diets containing 8% salt (HiNa) and 0.2% Ca (LoCa). Final body weights were 9-11% lower in S than in control rats (C) in both experiments, reflecting lower growth rates in S than in C during pair feeding. UCa represented 12% of dietary Ca on HiNA diets and was twofold higher in S than in C transiently during unloading. Net intestinal Ca absorption was consistently 11-18% lower in S than in C. Serum 1,25-dihydroxyvitamin D was unaffected by either LoCa or HiNa diets in S but was increased by LoCa and HiNa diets in C. Despite depressed intestinal Ca absoption in S and a sluggish response of the Ca endocrine system to HiNa diets, UCa loss did not appear to affect the osteopenia induced by unloading. Although any deficit in bone mineral content from HiNa diets may have been too small to detect or the duration of the study too short to manifest, there were clear differences in Ca metabolism from control levels in the response of the spaceflight model to HiNa diets, indicated by depression of intestinal Ca absorption and its regulatory hormone.

  18. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats.

    Science.gov (United States)

    Tenorio, Neuli M; Ribeiro, Daniel A; Alvarenga, Tathiana A; Fracalossi, Ana Carolina C; Carlin, Viviane; Hirotsu, Camila; Tufik, Sergio; Andersen, Monica L

    2013-01-01

    The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group). The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.

  19. Effects of resistance training on fast- and slow-twitch muscles in rats

    Directory of Open Access Journals (Sweden)

    M Umnova

    2010-09-01

    Full Text Available The purpose of this study was to investigate the effect of resistance training (RT on muscle strength, the dependence of that on the fast-twitch (FT and slow-twitch (ST fibers hypertrophy, nuclear domain size, synthesis and degradation rate of contractile proteins and on the expression of myosin isoforms’. 16 weeks old Wistar rats were trained on a vertical treadmill for six days a week during six weeks. The power of exercise increased 4.9% per session. In RT group the mass of studied muscles increased about 10%, hindlimb grip strength increased from 5.20±0.27 N/100g bw to the 6.05±0.29 N/100g bw (p<0.05. Cross-sectional area and number of myonuclei of FT and ST fibers in plantaris (Pla and soleus (Sol muscles increased, myonuclear domain size did not change significantly. RT increased the MyHC IId isoforms relative content and decreased that of IIb and IIa isoforms in Pla muscle, in Sol muscle increased only IIa isoform. In Pla muscle the relative content of myosin light chain (MyLC 1slow and 2slow isoforms decreased and that of MyLC 2fast isoforms increased during RT. MyLC 3 and MyLC 2 ratio did not change significantly in Pla but increased in Sol muscle by 14.3±3.4�0(p<0.01. The rat RT programme caused hypertrophy of FT and ST muscle fibers, increase of myonuclear number via fusion of satellite cells with damaged fibers or formation of new muscle fibers as a result of myoblast fusion and myotubes formation, maintaining myonuclear domain size.

  20. Influence of a chinese crude drug on Ca2+ influx and efflux in rat visceral organs:Investigation and evaluation by 45Ca

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Mo Zhengji; Xie Jianping; Liao Jiali; Mo Shangwu

    2006-01-01

    The influences of a Chinese crude drug, Herba Epimedii (HE), on Ca 2+ influx and efflux in the isolated rat aorta and some visceral organs were evaluated by using 45 Ca as a radioactive tracer. Additionally, its protective effect on myocardial ischemia was investigated in live animals. The results indicated that HE has significant influence on Ca 2+ influx and efflux in the isolated rat aorta, heart, and kidney, in that it can markedly block 45 Ca entering into cell and can facilitate efflux of intracellular Ca 2+ . However, among the three kinds of extracts from HE, the alkali extracts have the most obvious effect on calcium channels in visceral organs. Even if the alkali extracts are diluted by water for 10 times, the material still has a rather strong inhibition effect on calcium channels. Fortunately, the three kinds of extracts have favorable protective effect on myocardial ischemia induced by drugs or by the ligation of the coronary artery. This is consistent with the results about the Ca 2+ influx and efflux obtained by isotope tracer technique, and implies that the Chinese crude drug has attractive potential for the treatment of heart, cerebrovascular and other diseases

  1. Influence of electromagnetic field (1800 MHz on lipid peroxidation in brain, blood, liver and kidney in rats

    Directory of Open Access Journals (Sweden)

    Paweł Bodera

    2015-08-01

    Full Text Available Objectives: The aim of this study is the evaluation of the influence of repeated (5 times for 15 min exposure to electromagnetic field (EMF of 1800 MHz frequency on tissue lipid peroxidation (LPO both in normal and inflammatory state, combined with analgesic treatment. Material and Methods: The concentration of malondialdehyde (MDA as the end-product of the lipid peroxidation (LPO was estimated in blood, liver, kidneys, and brain of Wistar rats, both healthy and those with complete Freund’s adjuvant (CFA-induced persistent paw inflammation. Results: The slightly elevated levels of the MDA in blood, kidney, and brain were observed among healthy rats in electromagnetic field (EMF-exposed groups, treated with tramadol (TRAM/EMF and exposed to the EMF. The malondialdehyde remained at the same level in the liver in all investigated groups: the control group (CON, the exposed group (EMF, treated with tramadol (TRAM as well as exposed to and treated with tramadol (TRAM/EMF. In the group of animals treated with the complete Freund’s adjuvant (CFA we also observed slightly increased values of the MDA in the case of the control group (CON and the exposed groups (EMF and TRAM/EMF. The MDA values concerning kidneys remained at the same levels in the control, exposed, and not-exposed group treated with tramadol. Results for healthy rats and animals with inflammation did not differ significantly. Conclusions: The electromagnetic field exposure (EMF, applied in the repeated manner together with opioid drug tramadol (TRAM, slightly enhanced lipid peroxidation level in brain, blood, and kidneys.

  2. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    International Nuclear Information System (INIS)

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-01-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of [ 3 H]-antagonist as well as of the labeled natural neurotransmitter, [ 3 H]-acetylcholine [( 3 H]-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of [ 3 H]-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity [ 3 H]-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with [ 3 H]-antagonist represent a loss of low-affinity agonist binding sites. In contrast, [ 3 H]-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms

  3. The influence of topic and systemic administration of copaiba oil on the alveolar wound healing after tooth extraction in rats

    OpenAIRE

    Dias-da-Silva, Marco-Antonio; Pereira, Andresa-Costa; Marin, Miguel-Christian-Castillo; Salgado, Miguel-Angel-Castillo [UNESP

    2013-01-01

    The Copaiba oil has been used as an auxiliary treatment of inflammations, skin disorders and stomach ulcers, however, in dentistry, this alternative medicine has not been investigated yet. The purpose of this study was to evaluate the influence of topic and systemic administration of copaiba oil on the alveolar wound healing after tooth extraction. Twenty-eight wistar male rats had their lower first molar teeth extracted. Subsequently, they were divided in four groups, according to the treatm...

  4. Structural and ultrastructural study of rat liver influenced by electromagnetic radiation.

    Science.gov (United States)

    Holovská, K; Almášiová, V; Cigánková, V; Beňová, K; Račeková, E; Martončíková, M

    2015-01-01

    Mobile communication systems are undoubtedly an environmental source of electromagnetic radiation (EMR). There is an increasing concern regarding the interactions of EMR with the humans. The aim of this study was to examine the effects of EMR on Wistar rat liver. Mature rats were exposed to electromagnetic field of frequency 2.45 GHz and mean power density of 2.8 mW/cm2 for 3 h/d for 3 wk. Samples of the liver were obtained 3 h after the last irradiation and processed histologically for light and transmission electron microscopy. Data demonstrated the presence of moderate hyperemia, dilatation of liver sinusoids, and small inflammatory foci in the center of liver lobules. Structure of hepatocytes was not altered and all described changes were classified as moderate. Electron microscopy of hepatocytes revealed vesicles of different sizes and shapes, lipid droplets, and proliferation of smooth endoplasmic reticulum. Occasionally necrotizing hepatocytes were observed. Our observations demonstrate that EMR exposure produced adverse effects on rat liver.

  5. Age influence on retention, distribution and internal doses of 85Sr in rat

    International Nuclear Information System (INIS)

    Tian Wuxun; Wang Decheng; Zhang Hongyuan

    1990-01-01

    After I.V. 85 Sr, the whole body 85 Sr-retentions in rats were fit to two compartment exponential equations. The equation parameters showed a significantly difference between the young group and both the adult and old groups (p 2 ) for 85 Sr in the slow compartment decreased in regular order from the young to the old groups. In the bone 85 Sr-retention equations Tb 2 of the slow compartment for 85 Sr in the young group was significantly lower than the adult and old groups. The doses of the whole body and red-marrow for young rats were 4.2 times as much as those of adult rats, and 6.2 and 5.9 times as much as those old rats. The dose-cumulative speeds was most quick in the young groups and similar in the adult and the old

  6. The influence of autonomic interventions on the sleep-wake-related changes in gastric myoelectrical activity in rats.

    Science.gov (United States)

    Huang, Y M; Yang, C C H; Lai, C J; Kuo, T B J

    2011-06-01

    Significant changes in autonomic activity occur at sleep-wake transitions and constitute an ideal setting for investigating the modulatory role of the autonomic nervous system on gastric myoelectrical activity (GMA). Using continuous power spectral analysis of electroencephalogram, electromyogram, and electrogastromyogram (EGMG) data from freely moving rats that had undergone chemical sympathetomy and/or truncal vagotomy, sleep-wake-related fluctuations in GMA were compared among the intervention groups. The pattern and extent of fluctuations in EGMG power across the sleep-wake states was blunted most significantly in rats undergoing both chemical sympathectomy and truncal vagotomy. The effect of these interventions also varied with respect to the transition between different sleep-wake states. The most prominent influences were observed between active waking and quiet sleep and between paradoxical sleep and quiet sleep. The sleep-wake-related fluctuations in EGMG power are a result of joint contributions from both sympathetic and vagal innervation. Vagotomy mainly resulted in a reduction in EGMG power, while the role of sympathetic innervation was unveiled by vagotomy and this was reflected most obviously in the extent of the fluctuations in EGMG power. © 2011 Blackwell Publishing Ltd.

  7. The influence of age on the effectiveness of DTPA in reducing 141Ce retention in rats

    International Nuclear Information System (INIS)

    Kargacin, B.; Kostial, K.; Landeka, M.

    1983-01-01

    The influence of age on the effectiveness of chelation treatment in reducing retention of radioactive cerium was studied in two- and six-week-old albino rats. 141 Ce was administered intraperitoneally, followed immediately and after 24 and 48 hours by intraperitoneal administration of the tri-sodium calcium salt of diethylenetriaminepentaacetic acid-Na 3 (CaDTPA) at 380 μmol/kg body weight. The whole-body retention was determined 2, 4 and 6 days after radiocerium administration, when the animals were killed and the organ retention was determined. The chelation therapy significantly reduced the whole-body retention of radiocerium. This treatment was however twice as effective in older as in younger animals. (author)

  8. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats

    Directory of Open Access Journals (Sweden)

    Neuli M. Tenorio

    2013-01-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. METHOD: Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group. The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. RESULTS: Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. CONCLUSION: Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.

  9. Functional adaptation in female rats: the role of estrogen signaling.

    Directory of Open Access Journals (Sweden)

    Susannah J Sample

    Full Text Available Sex steroids have direct effects on the skeleton. Estrogen acts on the skeleton via the classical genomic estrogen receptors alpha and beta (ERα and ERβ, a membrane ER, and the non-genomic G-protein coupled estrogen receptor (GPER. GPER is distributed throughout the nervous system, but little is known about its effects on bone. In male rats, adaptation to loading is neuronally regulated, but this has not been studied in females.We used the rat ulna end-loading model to induce an adaptive modeling response in ovariectomized (OVX female Sprague-Dawley rats. Rats were treated with a placebo, estrogen (17β-estradiol, or G-1, a GPER-specific agonist. Fourteen days after OVX, rats underwent unilateral cyclic loading of the right ulna; half of the rats in each group had brachial plexus anesthesia (BPA of the loaded limb before loading. Ten days after loading, serum estrogen concentrations, dorsal root ganglion (DRG gene expression of ERα, ERβ, GPER, CGRPα, TRPV1, TRPV4 and TRPA1, and load-induced skeletal responses were quantified. We hypothesized that estrogen and G-1 treatment would influence skeletal responses to cyclic loading through a neuronal mechanism. We found that estrogen suppresses periosteal bone formation in female rats. This physiological effect is not GPER-mediated. We also found that absolute mechanosensitivity in female rats was decreased, when compared with male rats. Blocking of adaptive bone formation by BPA in Placebo OVX females was reduced.Estrogen acts to decrease periosteal bone formation in female rats in vivo. This effect is not GPER-mediated. Gender differences in absolute bone mechanosensitivity exist in young Sprague-Dawley rats with reduced mechanosensitivity in females, although underlying bone formation rate associated with growth likely influences this observation. In contrast to female and male rats, central neuronal signals had a diminished effect on adaptive bone formation in estrogen-deficient female rats.

  10. Analysis of the influence of low-power HeNe laser on the healing of skin wounds in diabetic and non-diabetic rats

    Directory of Open Access Journals (Sweden)

    Carvalho Paulo de Tarso Camillo de

    2006-01-01

    Full Text Available PURPOSE: To study the influence of HeNe laser irradiation on the collagen percentage in surgically-induced skin wounds in rats with and without alloxan-induced diabetes, by morphometric analysis of collagen fibers. METHODS: 48 male Wistar rats were used, divided into groups: laser-treated diabetic (group 1; untreated diabetic (group 2; treated non-diabetic (group 3; and untreated non-diabetic (group 4. For groups 1 and 2, diabetes was induced by intravenous injection of alloxan (2,4,5,6-tetraoxypyrimidine; 5,6-dioxyuracil; Sigma, into the dorsal vein of the penis, at a rate of 0.1 ml of solution per 100 g of body weight. A wound was made on the back of all the animals. Groups 1 and 3 were treated with HeNe laser (4 J/cm² for 60 s. One animal from each group was sacrificed on the 3rd, 7th and 14th days after wounding. Samples were taken, embedded in paraffin, stained with hematoxylin-eosin and Masson's trichrome, and morphometrically analyzed using the Imagelab software. The percentages of collagen fibers were determined from the samples from the euthanasia animals. The data were treated statistically using analysis of variance (ANOVA and the Student t and Kruskal-Wallis tests. The significance level was set at 0.05 or 5%. RESULTS: The results obtained from the samples taken on the third, seventh and fourteenth days after wounding demonstrated that the laser-treated group presented a statistically significant (p<0.05 greater mean quantity of collagen fibers than in the non-treated group, both for diabetic rats (p = 0.0104 and for non-diabetic rats (p = 0.039. CONCLUSION: The low-power laser (632.8 nm was shown to be capable of influencing the collagen percentage in skin wounds by increasing the mean quantity of collagen fibers, both for the diabetic and for the non-diabetic group.

  11. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    International Nuclear Information System (INIS)

    Liu, Jing; Parsons, Loren; Pope, Carey

    2013-01-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  12. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (United States); Parsons, Loren [Committee on Neurobiology of Affective Disorders, The Scripps Research Institute, La Jolla, CA (United States); Pope, Carey, E-mail: carey.pope@okstate.edu [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (United States)

    2013-11-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  13. Conditions and limits of serum LH radioimmunoassay in normal, hypophysectomised or castred rats

    International Nuclear Information System (INIS)

    Andre, M.; Boucher, D.; Thieblot, L.

    1976-01-01

    Serum LH was measured by radioimmunoassay (NIAMD Kits) free and linked hormones were separated by double antibodies method. Influence of concentration on antibody-hormone complex is studied. Hypophysectomised rats serum does not modify results. The standard (rat LH-RPl) has the same action as serum LH. Rat serum LH contents are measured in normal or castred rats [fr

  14. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.

    Science.gov (United States)

    You, Si-Wei; Chen, Bing-Yao; Liu, Hui-Ling; Lang, Bing; Xia, Jie-Lai; Jiao, Xi-Ying; Ju, Gong

    2003-01-01

    A major issue in analysis of experimental results after spinal cord injury is spontaneous functional recovery induced by remaining nerve fibers. The authors investigated the relationship between the degree of locomotor recovery and the percentage and location of the fibers that spared spinal cord transection. The spinal cords of 12 adult rats were transected at T9 with a razor blade, which often resulted in sparing of nerve fibers in the ventral spinal cord. The incompletely-transected animals were used to study the degree of spontaneous recovery of hindlimb locomotion, evaluated with the BBB rating scale, in correlation to the extent and location of the remaining fibers. Incomplete transection was found in the ventral spinal cord in 42% of the animals. The degree of locomotor recovery was highly correlated with the percentage of the remaining fibers in the ventral and ventrolateral funiculi. In one of the rats, 4.82% of remaining fibers in unilateral ventrolateral funiculus were able to sustain a certain recovery of locomotion. Less than 5% of remaining ventrolateral white matter is sufficient for an unequivocal motor recovery after incomplete spinal cord injury. Therefore, for studies with spinal cord transection, the completeness of sectioning should be carefully checked before any conclusion can be reached. The fact that the degree of locomotor recovery is correlated with the percentage of remaining fibers in the ventrolateral spinal cord, exclusive of most of the descending motor tracts, may imply an essential role of propriospinal connections in the initiation of spontaneous locomotor recovery.

  15. Adrenergic blockade in diabetic and uninephrectomized rats

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Jørgensen, P E

    1999-01-01

    The present study reports on the effects of adrenergic blocking agents on the renal growth and on the renal content and urinary excretion of epidermal growth factor (EGF) in streptozotocin-induced diabetic or uninephrectomized rats. Diabetic and uninephrectomized rats were allocated to groups...... treated with either saline or adrenergic antagonists and compared to controls and sham-operated controls, respectively. 24-hour urine samples were obtained on days 7, 14, and 21 and renal tissue samples on day 21. The 24-hour urinary excretion of EGF from controls and saline-treated diabetic rats...... was comparable. In adrenergic antagonist treated diabetic rats, it was reduced by at least 40% throughout the study period. Uninephrectomy caused a 50% reduction in the urinary excretion of EGF. This was not influenced by treatment with an adrenergic antagonist. After 3 weeks, saline-treated diabetic rats had...

  16. Microinjection studies of phosphate permeability in rats during mild saline diuresis: influence of acute thyroparathyroidectomy and parathormone administration

    International Nuclear Information System (INIS)

    Poujeol, P.; Rouffignac, C. de.

    1975-01-01

    The tubular permeability to phosphate of the different segments of the rat nephron and the influence of parathyroid hormone on such a permeability were investigated. Tracer microinjections of 32 P and 3 H inulin were performed in control, acutely thyroparathyroidectomized (TPTX) and TPTX + PTH animals undergoing saline diuresis. In order to estimate the 32 P reabsorption capacity of the proximal convoluted tubule (PCT), the loop of Henle and the terminal part of the nephron, microinjections were performed in early proximal, late proximal and early distal tubules respectively. The results reported confirm that the renal phosphate reabsorption is under PTH control [fr

  17. Influence of extraction methods on the hepatotoxicity of Azadirachta ...

    African Journals Online (AJOL)

    The influence of extraction methods: Cold aqueous (CA) hot aqueous (HA) and alcoholic extraction (AE) methods on the hepatotoxic effect of Azadirachta indica bark extract (ABC) was investigated using albino rats. A total of forty eight rats were divided into three groups of sixteen rats equally for the extraction methods.

  18. Influence of zinc on growth, somatomedin, and glycosaminoglycan metabolism in rats

    International Nuclear Information System (INIS)

    Bolze, M.S.; Reeves, R.D.; Lindbeck, F.E.; Elders, M.J.

    1987-01-01

    Weanling male rats were fed control ad libitum, zinc-deficient (ZD, 1 ppm zinc) or pair-fed (PF) control diets for 13 days. Rats subsequently were refed control diets for up to 8 days and serially killed. ZD and PF diets significantly decreased growth rate, feed intake, and feed efficiency compared to controls. Body weight and feed efficiency, but not feed intake, were significantly less in ZD compared to PF. Bone zinc was 315, 286, and 109 μg/g for control, PF, and ZD at the end of depletion. 35 SO 4 uptake by glycosaminoglycans (GAG) was significantly less in ZD compared to either control ad libitum or PF rats. Xylosyltransferase activity was decreased significantly below PF and control by ZD, suggesting depressed enzyme activity and/or decreased GAG acceptor sites. Bioassayable somatomedin (Sm) activity was 0.81, 0.42 and 0.33 +/- 0.09 relative activity for control, PF and ZD at the end of depletion. Sm was statistically less in ZD compared to PF at day 2 and 5 of refeeding, but not at the end of depletion. Sm activity and GAG metabolism returned to normal after refeeding for 2-5 days in PF and for 5-8 days in ZD rats. Serum insulin but not glucose was significantly depressed by ZD and PF diets. Thus, zinc deficiency depressed growth and cartilage metabolism and was associated with decreased Sm activity and insulin levels. Some of these changes could be attributed to decreased feed intake as a result of ZD

  19. Histological evaluation of the influence of magnetic field application in autogenous bone grafts in rats

    Directory of Open Access Journals (Sweden)

    Ponzoni Deise

    2009-01-01

    Full Text Available Abstract Background Bone grafts are widely used in oral and maxillofacial reconstruction. The influence of electromagnetic fields and magnets on the endogenous stimulation of target tissues has been investigated. This work aimed to assess the quality of bone healing in surgical cavities filled with autogenous bone grafts, under the influence of a permanent magnetic field produced by in vivo buried devices. Methods Metal devices consisting of commercially pure martensitic stainless steel washers and titanium screws were employed. Thirty male Wistar rats were divided into 3 experimental and 3 control groups. A surgical bone cavity was produced on the right femur, and a bone graft was collected and placed in each hole. Two metallic washers, magnetized in the experimental group but not in the control group, were attached on the borders of the cavity. Results The animals were sacrificed on postoperative days 15, 45 and 60. The histological analysis of control and experimental samples showed adequate integration of the bone grafts, with intense bone neoformation. On days 45 and 60, a continued influence of the magnetic field on the surgical cavity and on the bone graft was observed in samples from the experimental group. Conclusion The results showed intense bone neoformation in the experimental group as compared to control animals. The intense extra-cortical bone neoformation observed suggests that the osteoconductor condition of the graft may be more susceptible to stimulation, when submitted to a magnetic field.

  20. Influence of manual therapy on functional mobility after joint injury in a rat model.

    Science.gov (United States)

    Ruhlen, Rachel L; Snider, Eric J; Sargentini, Neil J; Worthington, Bart D; Singh, Vineet K; Pazdernik, Vanessa K; Johnson, Jane C; Degenhardt, Brian F

    2013-10-01

    Animal models can be used to investigate manual therapy mechanisms, but testing manipulation in animal models is problematic because animals cannot directly report their pain. To develop a rat model of inflammatory joint injury to test the efficacy of manual therapy in reducing nociception and restoring function. The authors induced acute inflammatory joint injury in rats by injecting carrageenan into the ankle and then measured voluntary running wheel activity in treated and untreated rats. Treatments included manual therapy applied to the ankle and knee of the injured limb and several analgesic medications (eg, morphine, ketorolac, prednisone). Intra-articular injection of carrageenan to the ankle produced significant swelling (diameter of the ankle increased by 64% after injection; P=.004) and a robust reduction in voluntary running wheel activity (running distance reduced by 91% compared with controls; Pmanual therapy nor analgesic medications increased running wheel activity relative to untreated rats. Voluntary running wheel activity appears to be an appropriate functional measure to evaluate the impact of an acute inflammatory joint injury. However, efforts to treat the injury did not restore running relative to untreated rats.

  1. Influence of benzodiazepines on body weight and food intake in obese and lean Zucker rats.

    Science.gov (United States)

    Blasi, C

    2000-05-01

    1. The gamma-aminobutyric acid (GABA)-ergic system, which is functionally altered in obese (fa/fa) Zucker rats, plays an important role in controlling energy balance within the central nervous system. 2. GABA receptors seem to be involved in the dysfunction of the hypothalamic energy homeostasis-controlling mechanisms in these animals due to a genetically-induced defect of the leptin-neuropeptide Y system. 3. To shed further light on the possible role played by the GABA system in the pathogenesis of this rat model, two benzodiazepine (BDZ) receptor agonists (diazepam and clonazepam) and one BDZ antagonist (flumazenil) were administered intraperitoneally in obese and lean Zucker rats. 4. Body weight gain was reduced by the BDZ agonists in both phenotypes, and one receptor-agonist (diazepam) lowered insulin concentration in obese rats. In GABA-antagonist-treated obese rats, the daily amount of body weight gain and food intake acquired an oscillatory rhythm similar to that of normal rodents. 5. By demonstrating the role of BDZ receptors, these findings may help clarify the pathophysiology of obesity and insulin resistance in fatty Zucker rats.

  2. Androgen receptor immunoreactivity in rat occipital cortex after callosotomy

    Directory of Open Access Journals (Sweden)

    G Lepore

    2009-08-01

    Full Text Available Gonadal steroidogenesis can be influenced by direct neural links between the central nervous system and the gonads. It is known that androgen receptor (AR is expressed in many areas of the rat brain involved in neuroendocrine control of reproduction, such as the cerebral cortex. It has been recently shown that the occipital cortex exerts an inhibitory effect on testicular stereoidogenesis by a pituitary-independent neural mechanism. Moreover, the complete transection of the corpus callosum leads to an increase in testosterone (T secretion of hemigonadectomized rats. The present study was undertaken to analyze the possible corticocortical influences regulating male reproductive activities. Adult male Wistar rats were divided into 4 groups: 1 intact animals as control; 2 rats undergoing sham callosotomy; 3 posterior callosotomy; 4 gonadectomy and posterior callosotomy. Western blot analysis showed no remarkable variations in cortical AR expression in any of the groups except in group I where a significant decrease in AR levels was found. Similarly, both immunocytochemical study and cell count estimation showed a lower AR immunoreactivity in occipital cortex of callosotomized rats than in other groups. In addition, there was no difference in serum T and LH concentration between sham-callosotomized and callosotomized rats. In conclusion, our results show that posterior callosotomy led to a reduction in AR in the right occipital cortex suggesting a putative inhibiting effect of the contralateral cortical area.

  3. 18F-fluorodeoxyglucose accumulation in the heart, brain and skeletal muscle of rats; the influence of time after injection, depressed lipid metabolism and glucose-insulin

    International Nuclear Information System (INIS)

    Kasalicky, J.; Konopkova, M.; Melichar, F.

    2001-01-01

    To study the effect of lipid depressing drugs on 18 FDG myocardial concentration. The changes of 18 FDG uptake in myocardium, brain and skeletal muscle of rats were compared as influenced by acipimox, tyloxapol and glucose with insulin. 5.55 MBq of 18 FDG were administered to Wistar rats. Control rats were killed 15, 30, 45 and 60 minutes following intravenous injection and the radioactivity concentration (cpm/g of tissue) in relation to injected cpm was determined in a well crystal adjusted to 511 KeV in order to check the time of maximal 18 FDG tissue uptake. The radioactivity in myocardium, skeletal muscle and brain in intact animals was compared with that of rats treated with tyloxapol (tritton WR 1339, 125 mg intravenously immediately before 18 FDG injection), acipimox (nicotinic acid derivative, 25 mg by stomach cannula 15 minutes before 18 FDG), or glucose with insulin (intravenous injection of 0.04 g and 0.04 UI immediately before 18 FDG). The animals were killed 45 minutes following 18 FDG injection. Tyloxapol and acipimox significantly elevated myocardial 18 FDG concentration (tyloxapol +37% and acipimox +48%), but the increase in 18 FDG concentration after glucose and insulin was slight and insignificant. The changes in skeletal muscle after lipid depressing agents were quite contrasting; the decrease in 18 FDG concentration was -74% after tyloxapol and -44% following acipimox administration. The accumulation of 18 FDG in brain was not influenced markedly by the drugs used or by glucose with insulin. The highest 18 FDG uptake in myocardium could be achieved by depressing the lipid metabolism and not by administration of glucose with insulin only. A marked increase in glucose accumulation in myocardium is not possible without previous shift from the utilisation of fatty acids. This finding is fully in agreement with present knowledge about energetic metabolism of myocardium. (author)

  4. Radiosensitivity of the DS-carcinosarcoma of the rat as influenced by immune reactions

    International Nuclear Information System (INIS)

    Rotte, K.

    1972-01-01

    BDII rats obtained humoral antibodies in a xenogenetic or syngenetic immune serum or specific sensitised isogenetic immune cells for passive immunisation. Other animals were actively immunised with a so-called large dose of DS-carcinosarcoma extract or a so-called small dose of the tumour extract. The mode of irradiation was chosen in such a manner that even slight differences in the radiation sensitivity between immunised and non-immunised animals would as far as possible not be hidden by other factors. Thus when irradiating the tumours, one did without the administration of a dose which would have effected a best possible irradiation effect. A greater fractionation of the uniformly administered total dose of 2,000 R in the tests was also avoided. If the growth of a tumour can be inhibited by an immunologic influence of the tumour host relationship, then the radiation sensitivity of these cells is sumultaneously increased. If the specifically prepared immunity against tumours was not transfered to the test animals, no influence on the radiation sensitivity of the tumours was found. If the growth of the tumour accelerates, then a reduced radiation sensitivity of these tumours was simulated by the fast growth partly compensating the irradiation effect. A transfer of animal experimental investigations to the treatment of human cancer is still faced by great difficulties. The experience gathered in the last decades in the field of experimental tumour immunology are, however, important steps to this target. (orig./LH) [de

  5. Study on the influence of Sempervivum tectorum and Melatonin on Glutathion protective effects in rats blood exposed to Aluminum sulphate

    Directory of Open Access Journals (Sweden)

    Corina Gravila

    2014-05-01

    Full Text Available The present study was carried out to investigate the influence of Sempervivum tectorum aqueous extract and melatonin on reduced glutathione (GSH protective effect in Wistar albino rat blood exposed to aluminium sulphate- Al2(SO43. The rats were divided in one control group (C and 7 experimental groups (E. The control group received tap water. The experimental rats were feed the following way: E1 group – aluminum sulphate, daily, for 3 months; : E2 group – Sempervivum tectorum, daily, for 3 months; : E3 group – melatonin, daily, for 3 months; : E4 group – aluminum sulphate with Sempervivum tectorum, daily, for 3 months; : E5 group – aluminum sulphate with melatonin, daily, for 3 months; E6 group – aluminum sulphate, daily, for 3 months, and thereafter with Sempervivum tectorum for 1 month; E7 group – aluminum sulphate, daily, for 3 month, and thereafter with melatonin for 1 month. This study showed that Aluminum toxicity induced lower GSH. The oxidative stress caused by aluminum, given individual, is more pronounced than in the case in which aluminum is administered simultaneously with Sempervivum tectorum or melatonin. Decreasing GSH value is very small if Sempervivum tectorum or melatonin is given for one month, three months after the administration of aluminum. Effect induced by melatonin is more favorable than that of Sempervivum tectorum.

  6. Localization of 3H-diethylstilbestrol in skeletal muscle

    International Nuclear Information System (INIS)

    Gruber, B.; Cohen, L.

    1981-01-01

    The localization of diethylstilbestrol (DES) in skeletal muscle was studied in CF1 mice and perfused rat hindlimbs. There was a slow accumulation of 3H-DES in mouse muscle from 4 to 24 hours following i.p. injection even though plasma DES was decreasing. Twenty-four hours after injection of 50 microCi 3H-DES (714 pmole) mouse gastrocnemius contained 8.9 x 10(-17) mole unaltered 3H-DES per mg muscle. Extrapolating to the entire skeletal muscle mass of the animal, this represents 0.15% of the radioactivity injected. The radioactivity in muscle was completely extracted with 95% ethanol or ether: ethanol (3:1), and both unaltered DES and DES-metabolites were present in the extracts. The fraction of radioactivity due to unaltered DES 4 hours after injection was 0.51 +/- 0.09 in muscle and 0.30 +/- 0.11 in plasma. Significant extrahepatic metabolism of DES was demonstrated in perfused isolated rat hindlimbs by the presence of DES-metabolites in the perfusate. The radioactivity extracted from the perfused muscle itself was unaltered DES. These results indicate that skeletal muscle is an important site of DES localization in rodents

  7. Type 2 Diabetes and Metformin Influence on Fracture Healing in an Experimental Rat Model.

    Science.gov (United States)

    La Fontaine, Javier; Chen, Chris; Hunt, Nathan; Jude, Edward; Lavery, Lawrence

    2016-01-01

    Persons with diabetes have a greater incidence of fractures compared with persons without diabetes. However, very little published information is available concerning the deleterious effect of late-stage diabetes on osseous structure and bone healing. The purpose of the present study was to evaluate the role of diabetes on fracture healing in a rat femur repair model. Thirty-six lean and diabetic Zucker rats were subdivided into 3 groups: (1) 12 lean rats as the control group; (2) 12 diabetic rats without blood glucose control (DM group); and (3) 12 diabetic rats treated with 300 mg/kg metformin to reduce the blood glucose levels (DM + Met group). Radiographs were taken every week to determine the incidence of bone repair and delayed union. All the rats were killed at 6 weeks after surgery. In both the sham-operated and the fractured and repaired femurs, significant decreases in the fracture-load/weight and marginal decreases in the fracture-load between the lean and DM groups were found. Metformin treatment significantly reduced the blood glucose and body weight 12 days postoperatively. Furthermore, a decrease in the fracture-load and fracture-load/weight in the repaired femurs was found in the DM + Met group. Diabetes impairs bone fracture healing. Metformin treatment reduces the blood glucose and body weight but had an adverse effect on fracture repair in diabetic rats. Further investigations are needed to reveal the mechanisms responsible for the effects of type 2 diabetes mellitus on bone and bone quality and the effect of medications such as metformin might have in diabetic bone in the presence of neuropathy and vascular disease. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Influence of corticoids on healing of the rotator cuff of rats – biomechanical study

    Directory of Open Access Journals (Sweden)

    Leonardo Dau

    2014-08-01

    Full Text Available Objective:To compare healing strength of the infraspinatus tendon of rats with corticoid inoculation, regarding maximum tension, maximum force and rupture force, after injury and experimental repair.Methods:A total of 60 Wistar rats were subjected to tenotomy of the infraspinatus tendon, which was then sutured. Before the surgery, they were divided into a control group (C inoculated with serum and a study group (S inoculated with corticoids over the tendon. After repair, the rats were sacrificed in groups of 10 individuals in the control group and 10 in the study group at the times of one week (C1 and S1, three weeks (C3 and S3 and five weeks (C5 and S5. The rats were dissected, separating out the infraspinatus tendon with the humerus. The study specimens were subjected to a traction test, with evaluation of the maximum tension (kgf/cm2, maximum force (kgf and rupture force (kgf, comparing the study group with the respective control groups.Results:Among the rats sacrificed one week after the procedure, we observed greater maximum tension in group C1 than in group S1. The variables of maximum force (kgf and rupture force did not differ statistically between the groups investigated. In the same way, among the rats sacrificed three weeks after the procedure, group C3 only showed greater maximum tension than group S3 (p = 0.007, and the other variables did not present differences. Among the rats sacrificed five weeks after the procedure (C5 and S5, none of the parameters studied presented statistical differences.Conclusion:We concluded that corticoid diminished the resistance to maximum tension in the groups sacrificed one and three weeks after the procedure, in comparison with the respective control groups. The other parameters did not show differences between the study and control groups.

  9. Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats.

    Science.gov (United States)

    Pérez-Berezo, Teresa; Ramiro-Puig, Emma; Pérez-Cano, Francisco J; Castellote, Cristina; Permanyer, Joan; Franch, Angels; Castell, Margarida

    2009-03-01

    Previous studies in young rats have reported the impact of 3 weeks of high cocoa intake on healthy immune status. The present article describes the effects of a longer-term cocoa-enriched diet (9 weeks) on the specific immune response to ovalbumin (OVA) in adult Wistar rats. At 4 weeks after immunization, control rats produced anti-OVA antibodies, which, according their amount and isotype, were arranged as follows: IgG1 > IgG2a > IgM > IgG2b > IgG2c. Both cocoa diets studied (4% and 10%) down-modulated OVA-specific antibody levels of IgG1 (main subclass associated with the Th2 immune response in rats), IgG2a, IgG2c and IgM isotypes. Conversely, cocoa-fed rats presented equal or higher levels of anti-OVA IgG2b antibodies (subclass linked to the Th1 response). Spleen and lymph node cells from OVA-immunized control and cocoa-fed animals proliferated similarly under OVA stimulation. However, spleen cells from cocoa-fed animals showed decreased interleukin-4 secretion (main Th2 cytokine), and lymph node cells from the same rats displayed higher interferon-gamma secretion (main Th1 cytokine). These changes were accompanied by a reduction in the number of anti-OVA IgG-secreting cells in spleen. In conclusion, cocoa diets induced attenuation of antibody synthesis that may be attributable to specific down-regulation of the Th2 immune response.

  10. The influence of aging on the metabolism of simultaneously administered hexobarbital enantiomers and antipyrine before and after phenobarbital induction in male rats: A longitudinal study

    NARCIS (Netherlands)

    Groen, K.; Breimer, D.D.; Jansen, E.J.; Bezooijen, C.F.A. van

    1994-01-01

    The influence of aging on the metabolism of antipyrine (AP) and hexobarbital enantiomers (R-HB and S-HB) with and without phenobarbital (PB) induction was investigated in a longitudinal study in rats aged 6, 12, 24 and 30 months. The metabolic clearances of AP (Cl(m AP)), R-HB (Cl(m R-HB)) and S-HB

  11. Enhanced post-ischemic neurogenesis in aging rats

    Directory of Open Access Journals (Sweden)

    Yao-Fang Tan

    2010-08-01

    Full Text Available Hippocampal neurogenesis persists in adult mammals, but its rate declines dramatically with age. Evidence indicates that experimentally-reduced levels of neurogenesis (e.g. by irradiation in young rats has profound influence on cognition as determined by learning and memory tests. In the present study we asked whether in middle-aged, 10-13 months old rats, cell production can be restored towards the level present in young rats. To manipulate neurogenesis we induced bilateral carotid occlusion with hypotension. This procedure is known to increase neurogenesis in young rats, presumably in a compensatory manner, but until now, has never been tested in aging rats. Cell production was measured at 10, 35 and 90 days after ischemia. The results indicate that neuronal proliferation and differentiation can be transiently restored in middle-aged rats. Furthermore, the effects are more pronounced in the dorsal as opposed to ventral hippocampus thus restoring the dorso-ventral gradient seen in younger rats. Our results support previous findings showing that some of the essential features of the age-dependent decline in neurogenesis are reversible. Thus, it may be possible to manipulate neurogenesis and improve learning and memory in old age.

  12. Influence of age on radioinduced cognitive disorders: Experimental studies with cerebral irradiation of 30 Gy in 10 sessions and 12 days in the Wistar rat at 1.5, 4 and 18 months; Influence de l'age sur les troubles cognitifs radioinduits : etudes experimentales avec irradiation cerebrale de 30 Gy en 10 seances et 12 jours chez le rat Wistar de 1 1/2, 4 et 18 mois

    Energy Technology Data Exchange (ETDEWEB)

    Lamproglou, I. [Lab. de Chimie et Biophysique des Traceurs, Faculte de Medecine Xavier Bichat, Paris (France); Baillet, F.; Boisserie, G.; Mazeron, J.J. [Service de Radiotherapie, Hopital de la Pitie-Salpetriere, Paris (France); Delattre, J.Y. [Dept. of Neurology and Inst. National de la Sante et de la Recherche Medicale, INSERM, Hopital de la Pitie-Salpetriere, Paris (France)

    2002-07-01

    The objective of this study was to determine the influence of age on the learning and memory dysfunction induced by cranial radiation in the male Wistar rat. Ninety-six 45-day-old, 70 4-month-old, and 78 18-month-old male rats were divided in two equal groups: (i) irradiated and (ii) control. A course of whole-brain radiation therapy (30 Gy in 10 fractions over 12 days) was administered to the irradiated group, while the control group received sham irradiation. Sequential behavioral studies including one and two-way avoidance tests were undertaken before and after the 7 months following radiation. The results suggest that radiation induced progressive and irreversible memory dysfunction in elderly (18-month-old) rats, but this effect was partial or almost reversible in the 4-month-old and 45-day-old rats, respectively. In return, the learning dysfunction was age non-dependent despite the fact that is occurs more rapidly in the young (45 days, 4 months) rats. (author)

  13. Influence of intracellular acidosis on contractile function in the working rat heart

    International Nuclear Information System (INIS)

    Jeffrey, F.M.H.; Malloy, C.R.; Radda, G.K.

    1987-01-01

    The decrease in myocardial contractility during ischemia, hypoxia, and extracellular acidosis has been attributed to intracellular acidosis. Previous studies of the relationship between pH and contractile state have utilized respiratory or metabolic acidosis to alter intracellular pH. The authors developed a model in the working perfused rat heart to study the effects of intracellular acidosis with normal external pH and optimal O 2 delivery. Intracellular pH and high-energy phosphates were monitored by 31 P nuclear magnetic resonance spectroscopy. Hearts were perfused to a steady state with a medium containing 10 mM NH 4 Cl. Acidosis induced a substantial decrease in aortic flow and stroke volume which was associated with little change in peak systolic pressure. It was concluded that (1) for the same intracellular acidosis the influence on tension development was more pronounced with a combined extra- and intracellular acidosis than with an isolated intracellular acidosis, and (2) stroke volume at constant preload was impaired by intracellular acidosis even though changes in developed pressure were minimal. These observations suggest that isolated intracellular acidosis has adverse effects on diastolic compliance and/or relaxation

  14. Mortality of rats under repeated +Gz acceleration in the course of radiation sickness

    International Nuclear Information System (INIS)

    Rudnicki, T.

    1985-01-01

    The influence of repeated +10G z acceleration on the mortality of rats after acute total-body irradiation was studied. No conclusive evidence was found to the effect that daily repeated exposures to 5 or 7.5 min of +10G z inertial forces essentially influence the mortality of rats after acute irradiation in the dose range 0.206-0.309 C/kg. 7 refs. (author)

  15. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Science.gov (United States)

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  16. Borax counteracts genotoxicity of aluminum in rat liver.

    Science.gov (United States)

    Turkez, Hasan; Geyikoğlu, Fatime; Tatar, Abdulgani

    2013-10-01

    This study was carried out to evaluate the protective role of borax (BX) on genotoxicity induced by aluminum (Al) in rat liver, using liver micronucleus assay as an indicator of genotoxicity. Sprague-Dawley rats were randomly separated into six groups and each group had four animals. Aluminum chloride (AlCl₃; 5 mg/kg b.w.) and BX (3.25 and 13 mg/kg b.w.) were injected intraperitoneally to rats. Besides, animals were also treated with Al for 4 consecutive days followed by BX for 10 days. Rats were anesthetized after Al and BX injections and the hepatocytes were isolated for counting the number of micronucleated hepatocytes (MNHEPs). AlCl₃ was found to significantly (p < 0.05) increase the number of MNHEPs. Rats treated with BX, however, showed no increase in MNHEPs. Moreover, simultaneous treatments with BX significantly modulated the genotoxic effects of AlCl₃ in rats. It can be concluded that BX has beneficial influences and has the ability to antagonize Al toxicity.

  17. Intestinal absorption of calcium and magnesium in rats

    International Nuclear Information System (INIS)

    Erhart, J.

    1981-01-01

    Absorption of Ca and Mg was studied in isolated and perfused jejunum segments of rats using radioactive 45 Ca and 28 Mg. At ion concentrations of 1.5 and 10 mmol in the bath solution, the influence of uraemia, 1,25-(OH) 2 D 3 and the complementary ion was investigated. Absorption of Ca ++ was found to be slightly reduced by uraemia and renormalized by 1,25-(OH) 2 D 3 substitution. Transport of Ca ++ was significantly increased in the presence of Mg ++ , both in healthy rats and in animals with chronic uraemia. Mg ++ absorption, in contrast, was significantly reduced in rats with uraemia, and 1,25-(OH) 2 D 3 substitution was found to reduce it even further. In the presence of Ca ++ , transport of Mg ++ was lowered both in healthy rats and in rats with chronic uraemia. (MG) [de

  18. Changes in the concentration of sulfhydryl groups in tissues of rats under the influence of gamma-radiation and adeturon

    International Nuclear Information System (INIS)

    Pantev, T.; Bychvarova, K.

    1984-01-01

    The concentration of SH-groups in the spleen, liver and bone marrow in rats was determined using the method of Sedlak and Lindsey. The changes in thiol level have been traced under the single influence of Adeturon and combined influence of radiation with 7,5 Gy and of Adeturon introduced 15 min before radiation. The animals were killed on 30th, 45th and 90th minute after the exerted influence. The control animals had physiological solution introduced. under the single influence of Adeturon there was increase in SH-groups mainly in the bone marrow in later terms after the exerted influence (the 90th minute), while P-SH in the spleen and liver decrease within the same term. The changes of NP-SH in the spleen and liver are opposite in nature. Under the influence of radiation P-SH in the liver and the spleen slightly decrease, while those in the bone marrow considerably increase on the 60th minute. NP-SH abruptly decrease on the 45th minute in the liver, while those in the spleen and bone marrow slightly differentiate from the control values. In animals protected by Adeturon P-SH in the bone marrow increase on the 30th and 45th minute, while those in the spleen decrease on the 90th minute. NP-SH decrease in the liver. The results obtained show that under the influence of Adeturon some changes occur in the level of thiols in tissues of both nonradiated and radiated animals

  19. Influence of a low calcium and phosphorus diet on the anabolic effect of human parathyroid hormone (1-38) in female rats

    DEFF Research Database (Denmark)

    Steiner, P.D.; Forrer, R.; Kneissel, Michaela

    2001-01-01

    Parathyroid hormone (PTH) or synthetic N-terminal PTH fragments administered intermittently have been established as anabolic agents in animal and human bones. In the present study, the influence of a low calcium diet on the anabolic effect of human PTH(1-38) [hPTH(1-38)] was investigated. Forty......-eight 10-week-old female Sprague-Dawley rats were randomly assigned to a diet with a low calcium content (LCa) or a diet with the recommended amount of calcium (RCa). After an adaptation period of 15 days, the rats were randomly assigned to hPTH(1-38) treatment (+LCa/+RCa) or vehicle only (-LCa....../-RCa) for an additional 14 days. Total bone mineral density (BMD) values of several bones were determined using quantitative computed tomography and from ratios of ash weight to volume. Biomechanical competence of the fourth lumbar vertebrae and of the right femora was assessed. An anabolic effect could be detected...

  20. Influence of low cholesterol eggs enriched with vitamin-E and omega-3 fatty acid on blood lipid profile of Wistar rats.

    Science.gov (United States)

    Taneja, S K; Rakha, Aruna

    2005-07-01

    In the recent past, low cholesterol eggs enriched with vitamin-E and omega-3 fatty acid have been developed and are marketed under different brands claiming them as heart friendly. The influence of these eggs (smart eggs) on lipid profile of rats was evaluated in comparison to that of the standard eggs. Data of 4 week dietary treatment revealed that total plasma cholesterol, low density lipoprotein (LDL) and very low density lipoprotein (VLDL) cholesterol increased only 22% in rats fed on diet containing 4 smart eggs per kg of semi-synthetic diet in contrast to the increase of more than 100 % when fed on diet containing standard eggs. The results suggest that it is not the low cholesterol content alone but also vitamin E and omega-3 fatty acids present in smart eggs that act synergically to prevent a substantial change in blood lipid profile and impose no serious risk to the health of the consumers.