WorldWideScience

Sample records for rat developing forebrain

  1. Mast cells in the sheep, hedgehog and rat forebrain

    Science.gov (United States)

    MICHALOUDI, HELEN C.; PAPADOPOULOS, GEORGIOS C.

    1999-01-01

    The study was designed to reveal the distribution of various mast cell types in the forebrain of the adult sheep, hedgehog and rat. Based on their histochemical and immunocytochemical characteristics, mast cells were categorised as (1) connective tissue-type mast cells, staining metachromatically purple with the toluidine blue method, or pale red with the Alcian blue/safranin method, (2) mucosal-type or immature mast cells staining blue with the Alcian blue/safranin method and (3) serotonin immunopositive mast cells. All 3 types of brain mast cells in all species studied were located in both white and grey matter, often associated with intraparenchymal blood vessels. Their distribution pattern exhibited interspecies differences, while their number varied considerably not only between species but also between individuals of each species. A distributional left-right asymmetry, with more cells present on the left side, was observed in all species studied but it was most prominent in the sheep brain. In the sheep, mast cells were abundantly distributed in forebrain areas, while in the hedgehog and the rat forebrain, mast cells were less widely distributed and were relatively or substantially fewer in number respectively. A limited number of brain mast cells, in all 3 species, but primarily in the rat, were found to react both immunocytochemically to 5-HT antibody and histochemically with Alcian blue/safranin staining. PMID:10634696

  2. Receptors for GRP/bombesin-like peptides in the rat forebrain

    International Nuclear Information System (INIS)

    Wolf, S.S.; Moody, T.W.

    1985-01-01

    Binding sites in the rat forebrain were characterized using ( 125 I-Tyr4)bombesin as a receptor probe. Pharmacology experiments indicate that gastrin releasing peptide (GRP) and the GRP fragments GRP as well as Ac-GRP inhibited radiolabeled (Tyr4)bombesin binding with high affinity. Biochemistry experiments indicated that heat, N-ethyl maleimide or trypsin greatly reduced radiolabeled (Tyr4)bombesin binding. Also, autoradiographic studies indicated that highest grain densities were present in the stria terminalis, periventricular and suprachiasmatic nucleus of the hypothalamus, dorsomedial and rhomboid thalamus, dentate gyrus, hippocampus and medial amygdaloid nucleus. The data suggest that CNS protein receptors, which are discretely distributed in the rat forebrain, may mediate the action of endogenous GRP/bombesin-like peptides

  3. Thyroid hormone modulates the development of cholinergic terminal fields in the rat forebrain: relation to nerve growth factor receptor.

    Science.gov (United States)

    Oh, J D; Butcher, L L; Woolf, N J

    1991-04-24

    Hyperthyroidism, induced in rat pups by the daily intraperitoneal administration of 1 microgram/g body weight triiodothyronine, facilitated the development of ChAT fiber plexuses in brain regions innervated by basal forebrain cholinergic neurons, leading to an earlier and increased expression of cholinergic markers in those fibers in the cortex, hippocampus and amygdala. A similar enhancement was seen in the caudate-putamen complex. This histochemical profile was correlated with an accelerated appearance of ChAT-positive telencephalic puncta, as well as with a larger total number of cholinergic terminals expressed, which persisted throughout the eight postnatal week, the longest time examined in the present study. Hypothyroidism was produced in rat pups by adding 0.5% propylthiouracil to the dams' diet beginning the day after birth. This dietary manipulation resulted in the diminished expression of ChAT in forebrain fibers and terminals. Hypothyroid treatment also reduced the quantity of ChAT puncta present during postnatal weeks 2 and 3, and, from week 4 and continuing through week 6, the number of ChAT-positive terminals in the telencephalic regions examined was actually less than the amount extant during the former developmental epoch. Immunostaining for nerve growth factor receptor (NGF-R), which is associated almost exclusively with ChAT-positive somata and fibers in the basal forebrain, demonstrated a different time course of postnatal development. Forebrain fibers and terminals demonstrating NGF-R were maximally visualized 1 week postnatally, a time at which these same neuronal elements evinced minimal ChAT-like immunopositivity. Thereafter and correlated with increased immunoreactivity for ChAT, fine details of NGF-R stained fibers were observed less frequently. Although propylthiouracil administration decreased NGF-R immunodensity, no alteration in the development of that receptor was observed as a function of triiodothyronine treatment. Cholinergic

  4. Cellular localization of transforming growth factor-alpha mRNA in rat forebrain.

    Science.gov (United States)

    Seroogy, K B; Lundgren, K H; Lee, D C; Guthrie, K M; Gall, C M

    1993-05-01

    The cellular localization of transforming growth factor-alpha (TGF alpha) mRNA in juvenile and adult rat forebrain was examined using in situ hybridization with a 35S-labeled cRNA probe. TGF alpha cRNA-labeled neuronal perikarya were distributed across many forebrain regions including the olfactory bulb, caudate-putamen, nucleus accumbens, olfactory tubercle, ventral pallidum, amygdala, hippocampal stratum granulosum and CA3 stratum pyramidale, and piriform, entorhinal, and retrosplenial cortices. TGF alpha cRNA-hybridizing cells were also localized to several thalamic nuclei and to the suprachiasmatic, dorsomedial, and ventromedial nuclei of the hypothalamus. In addition, labeled cells were present in regions of white matter including the corpus callosum, anterior commissure, internal and external capsules, optic tract, and lateral olfactory tract. Thus, both neurons and glia appear to synthesize TGF alpha in normal brain. Hybridization densities were greater in neuronal fields at 2 weeks of age compared with the adult, suggesting a role for TGF alpha in the development of several forebrain systems. Our results demonstrating the prominent and wide-spread expression of TGF alpha mRNA in forebrain, combined with the extremely low abundance of epidermal growth factor mRNA in brain, support the argument that TGF alpha is the principal endogenous ligand for the epidermal growth factor receptor in normal brain.

  5. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats.

    Science.gov (United States)

    Dejanovic, Bratislav; Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-03-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning.

  6. Selective immunotoxic lesions of basal forebrain cholinergic cells: effects on learning and memory in rats.

    Science.gov (United States)

    Baxter, Mark G; Bucci, David J; Gorman, Linda K; Wiley, Ronald G; Gallagher, Michela

    2013-10-01

    Male Long-Evans rats were given injections of either 192 IgG-saporin, an apparently selective toxin for basal forebrain cholinergic neurons (LES), or vehicle (CON) into either the medial septum and vertical limb of the diagonal band (MS/VDB) or bilaterally into the nucleus basalis magnocellularis and substantia innominata (nBM/SI). Place discrimination in the Morris water maze assessed spatial learning, and a trial-unique matching-to-place task in the water maze assessed memory for place information over varying delays. MS/VDB-LES and nBM/SI-LES rats were not impaired relative to CON rats in acquisition of the place discrimination, but were mildly impaired relative to CON rats in performance of the memory task even at the shortest delay, suggesting a nonmnemonic deficit. These results contrast with effects of less selective lesions, which have been taken to support a role for basal forebrain cholinergic neurons in learning and memory. 2013 APA, all rights reserved

  7. Deficits in Docosahexaenoic Acid Accrual during Adolescence Reduce Rat Forebrain White Matter Microstructural Integrity: An in vivo Diffusion Tensor Imaging Study.

    Science.gov (United States)

    McNamara, Robert K; Schurdak, Jennifer D; Asch, Ruth H; Peters, Bart D; Lindquist, Diana M

    2018-01-01

    Neuropsychiatric disorders that frequently initially emerge during adolescence are associated with deficits in the omega-3 (n-3) fatty acid docosahexaenoic acid (DHA), elevated proinflammatory signaling, and regional reductions in white matter integrity (WMI). This study determined the effects of altering brain DHA accrual during adolescence on WMI in the rat brain by diffusion tensor imaging (DTI), and investigated the potential mediating role of proinflammatory signaling. During periadolescent development, male rats were fed a diet deficient in n-3 fatty acids (DEF, n = 20), a fish oil-fortified diet containing preformed DHA (FO, n = 20), or a control diet (CON, n = 20). In adulthood, DTI scans were performed and brain WMI was determined using voxelwise tract-based spatial statistics (TBSS). Postmortem fatty acid composition, peripheral (plasma IL-1β, IL-6, and C-reactive protein [CRP]) and central (IL-1β and CD11b mRNA) proinflammatory markers, and myelin basic protein (MBP) mRNA expression were determined. Compared with CON rats, forebrain DHA levels were lower in DEF rats and higher in FO rats. Compared with CON rats, DEF rats exhibited greater radial diffusivity (RD) and mean diffusivity in the right external capsule, and greater axial diffusivity in the corpus callosum genu and left external capsule. DEF rats also exhibited greater RD than FO rats in the right external capsule. Forebrain MBP expression did not differ between groups. Compared with CON rats, central (IL-1β and CD11b) and peripheral (IL-1β and IL-6) proinflammatory markers were not different in DEF rats, and DEF rats exhibited lower CRP levels. These findings demonstrate that deficits in adolescent DHA accrual negatively impact forebrain WMI, independently of elevated proinflammatory signaling. © 2017 S. Karger AG, Basel.

  8. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain.

    Science.gov (United States)

    Frankel, Paul S; Cunningham, Kathryn A

    2002-12-27

    The hallucinogen d-lysergic acid diethylamide (d-LSD) evokes dramatic somatic and psychological effects. In order to analyze the neural activation induced by this unique psychoactive drug, we tested the hypothesis that expression of the immediate-early gene product c-Fos is induced in specific regions of the rat forebrain by a relatively low, behaviorally active, dose of d-LSD (0.16 mg/kg, i.p.); c-Fos protein expression was assessed at 30 min, and 1, 2 and 4 h following d-LSD injection. A time- and region-dependent expression of c-Fos was observed with a significant increase (PLSD administration. These data demonstrate a unique pattern of c-Fos expression in the rat forebrain following a relatively low dose of d-LSD and suggest that activation of these forebrain regions contributes to the unique behavioral effects of d-LSD. Copyright 2002 Elsevier Science B.V.

  9. Lack of cross-tolerance between haloperidol and clozapine towards Fos-protein induction in rat forebrain regions

    NARCIS (Netherlands)

    Sebens, JB; Koch, T; Korf, J

    1996-01-01

    We investigated whether the acute effects of haloperidol and clozapine on Fos expression in the rat forebrain are mediated by the same receptors through evaluation of cross-tolerance, particularly in the commonly affected areas. Acutely administered haloperidol (1 mg/kg, i.p.) and clozapine (20

  10. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat.

    Science.gov (United States)

    Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire

    2014-07-01

    The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.

  11. Long-term effects of cholinergic basal forebrain lesions on neuropeptide Y and somatostatin immunoreactivity in rat neocortex

    NARCIS (Netherlands)

    Gaykema, R.P.A.; Compaan, J.C.; Nyakas, C.; Horvath, E.; Luiten, P.G.M.

    1989-01-01

    The effect of cholinergic basal forebrain lesions on immunoreactivity to somatostatin (SOM-i) and neuropeptide-Y (NPY-i) was investigated in the rat parietal cortex, 16-18 months after multiple bilateral ibotenic acid injections in the nucleus basalis complex. As a result of the lesion, the

  12. Effects of short-term hormonal replacement on learning and on basal forebrain ChAT and TrkA content in ovariectomized rats.

    Science.gov (United States)

    Espinosa-Raya, Judith; Plata-Cruz, Noemí; Neri-Gómez, Teresa; Camacho-Arroyo, Ignacio; Picazo, Ofir

    2011-02-23

    It has been proposed that sex steroid hormones improve performance in some cognitive tasks by regulating the basal forebrain cholinergic function. However, the molecular basis of such influence still remains unknown. Current study analyzed the performance of ovariectomized rats in an autoshaping learning task after a short-term treatment with 17β-estradiol (E2: 4 and 40μg/kg) and/or progesterone (P4: 4mg/kg). These results were correlated with basal forebrain choline acetyltransferase (ChAT) and TrkA protein content. The high dose of E2 enhanced both acquisition in the autoshaping task and the content of ChAT and TrkA. P4 treatment increased ChAT and TrkA content without affecting performance of rats in the autoshaping learning task. Interestingly, the continuous and simultaneous administration of E2 plus P4 did not significantly modify behavioral and biochemical evaluated parameters. These results address the influence of both E2 and P4 on cholinergic and TrkA activity and suggest that the effects of ovarian hormones on cognitive performance involve basal forebrain cholinergic neurons. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate.

    Science.gov (United States)

    Lelkes, Zoltán; Abdurakhmanova, Shamsiiat; Porkka-Heiskanen, Tarja

    2017-09-18

    The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate. © 2017 European Sleep Research Society.

  14. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons.

    Directory of Open Access Journals (Sweden)

    Patrick Aldrin-Kirk

    Full Text Available Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable

  15. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    Science.gov (United States)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  16. Topographic Organization of Cholinergic Innervation From the Basal Forebrain to the Visual Cortex in the Rat

    Directory of Open Access Journals (Sweden)

    Frédéric Huppé-Gourgues

    2018-03-01

    Full Text Available Acetylcholine is an important neurotransmitter for the regulation of visual attention, plasticity, and perceptual learning. It is released in the visual cortex predominantly by cholinergic projections from the basal forebrain, where stimulation may produce potentiation of visual processes. However, little is known about the fine organization of these corticopetal projections, such as whether basal forebrain neurons projecting to the primary and secondary visual cortical areas (V1 and V2, respectively are organized retinotopically. The aim of this study was to map these basal forebrain-V1/V2 projections. Microinjections of the fluorescent retrograde tracer cholera toxin b fragment in different sites within V1 and V2 in Long–Evans rats were performed. Retrogradely labeled cell bodies in the horizontal and vertical limbs of the diagonal band of Broca (HDB and VDB, respectively, nucleus basalis magnocellularis, and substantia innominata (SI, were mapped ex vivo with a computer-assisted microscope stage controlled by stereological software. Choline acetyltranferase immunohistochemistry was used to identify cholinergic cells. Our results showed a predominance of cholinergic projections coming from the HDB. These projections were not retinotopically organized but projections to V1 arised from neurons located in the anterior HDB/SI whereas projections to V2 arised from neurons located throughout the whole extent of HDB/SI. The absence of a clear topography of these projections suggests that BF activation can stimulate visual cortices broadly.

  17. Cortical cholinergic hypofunction and behaviorial impairment produced by basal forebrain lesions in the rat

    International Nuclear Information System (INIS)

    Lerer, B.E.; Friedman, E.; Gamzu, E.

    1986-01-01

    The authors confirm the cortical ChAT and passive avoidance deficits resulting from bilateral KA lesions of the magnocellular nuclei of the basal forebrain (MNBF). Because of reported passive avoidance deficits, the authors were interested in whether bilateral MNBF lesions would interfere with learning in an active avoidance paradigm. Samples of rat cortex were stored at -80 C until assayed. ChAT was assayed by a modification method under saturating conditions; 20 mM choline and 2 mM C 14-acetylcoenzyme. The behavioral deficits assumed to be indicative of learning and memory problems were accompanied by a 20% decrease in cortical ChAT

  18. Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology

    International Nuclear Information System (INIS)

    Ginsberg, M.D.; Graham, D.I.; Busto, R.

    1985-01-01

    Regional patterns of cerebral glucose utilization (rCMRglc) and blood flow (rCBF) were examined in the early recovery period following transient forebrain ischemia in order to correlate early postischemic physiological events with regionally selective patterns of ischemic neuropathology. Wistar rats were subjected to 30 or 60 minutes of graded forebrain ischemia by a method combining unilateral occlusion of the common carotid artery with moderate elevation of intracranial pressure and mild hypotension; this procedure results in a high-grade ischemic deficit affecting chiefly the lateral neocortex, striatum, and hippocampus ipsilateral to the carotid occlusion. Simultaneous measurements of rCMRglc and rCBF made in regional tissue samples after 2 and 4 hours of postischemic recirculation using a double-tracer radioisotopic strategy revealed a disproportionately high level of glucose metabolism relative to blood flow in the early postischemic striatum, owing to the resumption of nearly normal rCMRglc in the face of depressed flow. In contrast, the neocortex, which had been equally ischemic, showed parallel depressions of both metabolism and blood flow during early recovery. Light microscopy at 4 and 8 hours after recovery revealed the striatum to be the predominant locus of ischemic neuronal alterations, whereas neocortical lesions were much less prominent in extent and severity at this time. The resumption of normal levels of metabolism in the setting of a disproportionate depression of rCBF in the early postischemic period may accentuate the process of neuronal injury initiated by ischemia and may contribute to the genesis of neuronal necrosis in selectively vulnerable areas of the forebrain

  19. The cerebroprotective effect of dextromethorphan assessed by 1H and 31P NMR spectroscopy during global forebrain ischemia in the rat

    International Nuclear Information System (INIS)

    Tulleken, C.A.F.; Rijen, P.C. van; Berkelbach van der Sprenkel, J.W.; Verheul, H.B.; Echteld, C.J.A. van; Balasz, R.; Lewis, P.

    1991-01-01

    Global forebrain ischemia was induced in the rat model by occlusion of both carotid arteries and subsequent lowering of the blood pressure. After 30 minutes of ischemia reperfusion was established. Using 1H and 31P NMR spectroscopy tissue pH values, lactate production, cellular energy index and N-acetyl-aspartate content were determined. The survival rates and histological damage were counted. (author)

  20. Morphometric Studies Of The Cerebellum And Forebrain Of The ...

    African Journals Online (AJOL)

    Morphometric studies were undertaken using the brains of six African giant rats. The mean of weights and lengths (tip of the olfactory bulb to the caudal border of the cerebellum) were observed tobe 4.88 0.183g and 4.40 0.193g, respectively. Similarly, the mean weight and length of the cerebellum and the forebrain ...

  1. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. (Genentech, San Francisco, CA (USA))

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  2. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    International Nuclear Information System (INIS)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W.

    1990-01-01

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF

  3. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

    Science.gov (United States)

    Vazquez-DeRose, Jacqueline; Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Gulati, Srishti; Mathew, Thomas K; Neylan, Thomas C; Kilduff, Thomas S

    2016-03-01

    Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.

  4. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    International Nuclear Information System (INIS)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B.

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  5. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  6. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  7. Cerebrovascular endothelin-1 hyper-reactivity is associated with transient receptor potential canonical channels 1 and 6 activation and delayed cerebral hypoperfusion after forebrain ischaemia in rats

    DEFF Research Database (Denmark)

    Johansson, S E; Andersen, X E D R; Hansen, R H

    2015-01-01

    . METHODS: Experimental forebrain ischaemia was induced in Wistar male rats by a two-vessel occlusion model, and the cerebral blood flow was measured by magnetic resonance imaging two days after reperfusion. In vitro vasoreactivity studies, immunofluorescence and quantitative PCR were performed on cerebral...... in the vascular smooth muscle cells was enhanced and correlated with decreased cerebral blood flow two days after forebrain ischaemia. Furthermore, under conditions when voltage-dependent calcium channels were inhibited, endothelin-1-induced cerebrovascular contraction was enhanced and this enhancement...... was presumably mediated by Ca(2+) influx via upregulated transient receptor potential canonical channels 1 and 6. CONCLUSIONS: Our data demonstrates that endothelin-1-mediated influx of extracellular Ca(2+) activates transient receptor potential canonical channels 1 and 6 in cerebral vascular smooth muscle cells...

  8. Analeptic activity produced by TRH microinjection into basal forebrain area of the rat

    International Nuclear Information System (INIS)

    Horita, A.; Carino, M.A.; Lai, H.

    1986-01-01

    Earlier, Kalivas and Horita demonstrated that the analeptic effect of TRH was mediated in part by cholinergic neurons in the medial septum-diagonal band of Broca (MS-DBB). Since the MS-DBB constitutes part of the cholinergic basal forebrain system, the present study investigated whether the area designated as the n. basalis of Meynert (NBM) was also sensitive to TRH in producing an antipentobarbital effect. Saline or TRH (0.5 μl) was microinjected via bilateral stainless steel cannulae implanted stereotaxically into the NBM using the coordinates of Wenk et al. Accuracy of cannula placement was confirmed by histological examination. Rats treated with PB (40 mg/kg, i.p.) lost their righting reflex for 130 +/- 28 min. Intrabasalis injection of TRH (but not saline) in doses of 0.1-1.0 μg exerted analeptic activity as follows: 0.1 μg = 81 +/- 21 min; 0.5 μg = 65 +/- 19 min; 1.0 μg = 45 +/- 10 min. All of these doses exerted significant shortening of narcosis duration of pentobarbitalized rats. The analeptic effect of TRH was blocked by atropine pretreatment, indicating that it was mediated via cholinergic mechanisms. High affinity, sodium-dependent 3 H-choline uptake by cortical synaptosomes prepared from these animals was also increased by TRH. These results suggest that the cholinergic neurons of NBM are highly sensitive to TRH and contributes to the analeptic effect of TRH

  9. Forebrain neurogenesis: From embryo to adult.

    Science.gov (United States)

    Dennis, Daniel; Picketts, David; Slack, Ruth S; Schuurmans, Carol

    2016-01-01

    A satellite symposium to the Canadian Developmental Biology Conference 2016 was held on March 16-17, 2016 in Banff, Alberta, Canada, entitled Forebrain Neurogenesis : From embryo to adult . The Forebrain Neurogenesis symposium was a focused, high-intensity meeting, bringing together the top Canadian and international researchers in the field. This symposium reported the latest breaking news, along with 'state of the art' techniques to answer fundamental questions in developmental neurobiology. Topics covered ranged from stem cell regulation to neurocircuitry development, culminating with a session focused on neuropsychiatric disorders. Understanding the underlying causes of neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) is of great interest as diagnoses of these conditions are climbing at alarming rates. For instance, in 2012, the Centers for Disease Control reported that the prevalence rate of ASD in the U.S. was 1 in 88; while more recent data indicate that the number is as high as 1 in 68 (Centers for Disease Control and Prevention MMWR Surveillance Summaries. Vol. 63. No. 2). Similarly, the incidence of ASD is on the rise in Canada, increasing from 1 in 150 in 2000 to 1 in 63 in 2012 in southeastern Ontario (Centers for Disease Control and Prevention). Currently very little is known regarding the deficits underlying these neurodevelopmental conditions. Moreover, the development of effective therapies is further limited by major gaps in our understanding of the fundamental processes that regulate forebrain development and adult neurogenesis. The Forebrain Neurogenesis satellite symposium was thus timely, and it played a key role in advancing research in this important field, while also fostering collaborations between international leaders, and inspiring young researchers.

  10. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27

    International Nuclear Information System (INIS)

    Schmook, Maria T.; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Prayer, Daniela; Brugger, Peter C.; Krampl-Bettelheim, Elisabeth

    2010-01-01

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average ±sd: gw 22 ± 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p=0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p<0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided. (orig.)

  11. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27

    Energy Technology Data Exchange (ETDEWEB)

    Schmook, Maria T.; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Prayer, Daniela [Medical University of Vienna, Department of Radiology/Division of Neuro- and Musculoskeletal Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Integrative Morphology Group, Center for Anatomy and Cell Biology, Vienna (Austria); Krampl-Bettelheim, Elisabeth [Department of Obstetrics and Gynecology / Division of Obstetrics and Feto-maternal Medicine, Vienna (Austria)

    2010-06-15

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average {+-}sd: gw 22 {+-} 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p=0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p<0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided. (orig.)

  12. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    Science.gov (United States)

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  13. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    Science.gov (United States)

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation. © 2014 European Sleep Research Society.

  14. Medial forebrain bundle lesions fail to structurally and functionally disconnect the ventral tegmental area from many ipsilateral forebrain nuclei: implications for the neural substrate of brain stimulation reward.

    Science.gov (United States)

    Simmons, J M; Ackermann, R F; Gallistel, C R

    1998-10-15

    Lesions in the medial forebrain bundle rostral to a stimulating electrode have variable effects on the rewarding efficacy of self-stimulation. We attempted to account for this variability by measuring the anatomical and functional effects of electrolytic lesions at the level of the lateral hypothalamus (LH) and by correlating these effects to postlesion changes in threshold pulse frequency (pps) for self-stimulation in the ventral tegmental area (VTA). We implanted True Blue in the VTA and compared cell labeling patterns in forebrain regions of intact and lesioned animals. We also compared stimulation-induced regional [14C]deoxyglucose (DG) accumulation patterns in the forebrains of intact and lesioned animals. As expected, postlesion threshold shifts varied: threshold pps remained the same or decreased in eight animals, increased by small but significant amounts in three rats, and increased substantially in six subjects. Unexpectedly, LH lesions did not anatomically or functionally disconnect all forebrain nuclei from the VTA. Most septal and preoptic regions contained equivalent levels of True Blue label in intact and lesioned animals. In both intact and lesioned groups, VTA stimulation increased metabolic activity in the fundus of the striatum (FS), the nucleus of the diagonal band, and the medial preoptic area. On the other hand, True Blue labeling demonstrated anatomical disconnection of the accumbens, FS, substantia innominata/magnocellular preoptic nucleus (SI/MA), and bed nucleus of the stria terminalis. [14C]DG autoradiography indicated functional disconnection of the lateral preoptic area and SI/MA. Correlations between patterns of True Blue labeling or [14C]deoxyglucose accumulation and postlesion shifts in threshold pulse frequency were weak and generally negative. These direct measures of connectivity concord with the behavioral measures in suggesting a diffuse net-like connection between forebrain nuclei and the VTA.

  15. Ontogenetic distribution of the transcription factor Nkx2.2 in the developing forebrain of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Laura eDominguez

    2011-03-01

    Full Text Available The expression of the Nkx2.2 gene is involved in the organization of the alar-basal boundary in the forebrain of vertebrates. Its expression in different diencephalic and telencephalic regions, helped to define distinct progenitor domains in mouse and chick. Here we investigated the pattern of Nkx2.2 protein distribution throughout the development of the forebrain of the anuran amphibian, Xenopus laevis. We used immunohistochemical and in situ hybridization techniques for its detection in combination with other essential territorial markers in the forebrain. No expression was observed in the telencephalon. In the alar hypothalamus, Nkx2.2 positive cells were scattered in the suprachiasmatic territory, but also in the supraoptoparaventricular area, as defined by the expression of the transcription factor Otp and the lack of xDll4. In the basal hypothalamus Nkx2.2 expressing cells were localized in the tuberal region, with the exception of the arcuate nucleus, rich in Otp expressing cells. In the diencephalon it was expressed in all three prosomeres (P1-P3 and not in the zona limitans intrathalamica. The presence of Nkx2.2 expressing cells in P3 was restricted to the alar portion, as well as in prosomere P2, whereas in P1 the Nkx2.2 expressing cells were located in the basal plate and identified the alar/basal boundary. These results showed that Nkx2.2 and Sonic hedgehog are expressed in parallel adjacent stripes along the anterior-posterior axis. The results of this study showed a conserved distribution pattern of Nkx2.2 among vertebrates, crucial to recognize subdivisions that are otherwise indistinct, and supported the relevance of this transcription factor in the organization of the forebrain, particularly in the delineation of the alar/basal boundary of the forebrain.

  16. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats

    International Nuclear Information System (INIS)

    Ray, Anamika; Liu Jing; Ayoubi, Patricia; Pope, Carey

    2010-01-01

    Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clustering while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NFΚB, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse

  17. Ionic mechanisms of action of prion protein fragment PrP(106-126) in rat basal forebrain neurons.

    Science.gov (United States)

    Alier, Kwai; Li, Zongming; Mactavish, David; Westaway, David; Jhamandas, Jack H

    2010-08-01

    Prion diseases are neurodegenerative disorders that are characterized by the presence of the misfolded prion protein (PrP). Neurotoxicity in these diseases may result from prion-induced modulation of ion channel function, changes in neuronal excitability, and consequent disruption of cellular homeostasis. We therefore examined PrP effects on a suite of potassium (K(+)) conductances that govern excitability of basal forebrain neurons. Our study examined the effects of a PrP fragment [PrP(106-126), 50 nM] on rat neurons using the patch clamp technique. In this paradigm, PrP(106-126) peptide, but not the "scrambled" sequence of PrP(106-126), evoked a reduction of whole-cell outward currents in a voltage range between -30 and +30 mV. Reduction of whole-cell outward currents was significantly attenuated in Ca(2+)-free external media and also in the presence of iberiotoxin, a blocker of calcium-activated potassium conductance. PrP(106-126) application also evoked a depression of the delayed rectifier (I(K)) and transient outward (I(A)) potassium currents. By using single cell RT-PCR, we identified the presence of two neuronal chemical phenotypes, GABAergic and cholinergic, in cells from which we recorded. Furthermore, cholinergic and GABAergic neurons were shown to express K(v)4.2 channels. Our data establish that the central region of PrP, defined by the PrP(106-126) peptide used at nanomolar concentrations, induces a reduction of specific K(+) channel conductances in basal forebrain neurons. These findings suggest novel links between PrP signalling partners inferred from genetic experiments, K(+) channels, and PrP-mediated neurotoxicity.

  18. Effect of basal forebrain stimulation on extracellular acetylcholine release and blood flow in the olfactory bulb.

    Science.gov (United States)

    Uchida, Sae; Kagitani, Fusako

    2017-05-12

    The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.

  19. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.

    Science.gov (United States)

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2016-01-01

    Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.

  20. Proteomic analysis of protein composition of rat forebrain cortex exposed to morphine for 10 days; comparison with animals exposed to morphine and subsequently nurtured for 20 days in the absence of this drug

    Czech Academy of Sciences Publication Activity Database

    Ujčíková, Hana; Vošahlíková, Miroslava; Roubalová, Lenka; Svoboda, Petr

    2016-01-01

    Roč. 145, Aug 11 (2016), s. 11-23 ISSN 1874-3919 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP207/12/0919 Institutional support: RVO:67985823 Keywords : morphine * long-term exposure * rat forebrain cortex * post-nuclear supernatant * MALDI - TOF MS/MS * MaxLFQ Subject RIV: CE - Biochemistry Impact factor: 3.914, year: 2016

  1. Regulatory interactions of stress and reward on rat forebrain opioidergic and GABAergic circuitry.

    Science.gov (United States)

    Christiansen, A M; Herman, J P; Ulrich-Lai, Y M

    2011-03-01

    Palatable food intake reduces stress responses, suggesting that individuals may consume such ?comfort? food as self-medication for stress relief. The mechanism by which palatable foods provide stress relief is not known, but likely lies at the intersection of forebrain reward and stress regulatory circuits. Forebrain opioidergic and gamma-aminobutyric acid ergic signaling is critical for both reward and stress regulation, suggesting that these systems are prime candidates for mediating stress relief by palatable foods. Thus, the present study (1) determines how palatable ?comfort? food alters stress-induced changes in the mRNA expression of inhibitory neurotransmitters in reward and stress neurocircuitry and (2) identifies candidate brain regions that may underlie comfort food-mediated stress reduction. We used a model of palatable ?snacking? in combination with a model of chronic variable stress followed by in situ hybridization to determine forebrain levels of pro-opioid and glutamic acid decarboxylase (GAD) mRNA. The data identify regions within the extended amygdala, striatum, and hypothalamus as potential regions for mediating hypothalamic-pituitary-adrenal axis buffering following palatable snacking. Specifically, palatable snacking alone decreased pro-enkephalin-A (ENK) mRNA expression in the anterior bed nucleus of the stria terminalis (BST) and the nucleus accumbens, and decreased GAD65 mRNA in the posterior BST. Chronic stress alone increased ENK mRNA in the hypothalamus, nucleus accumbens, amygdala, and hippocampus; increased dynorphin mRNA in the nucleus accumbens; increased GAD65 mRNA in the anterior hypothalamus and BST; and decreased GAD65 mRNA in the dorsal hypothalamus. Importantly, palatable food intake prevented stress-induced gene expression changes in subregions of the hypothalamus, BST, and nucleus accumbens. Overall, these data suggest that complex interactions exist between brain reward and stress pathways and that palatable snacking can

  2. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain.

    Science.gov (United States)

    Judson, Matthew C; Bergman, Mica Y; Campbell, Daniel B; Eagleson, Kathie L; Levitt, Pat

    2009-04-10

    The establishment of appropriate neural circuitry depends on the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival-all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization, and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus, and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits, with particular relevance to the social and emotional dimensions of behavior. (c) 2009 Wiley-Liss, Inc.

  3. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  4. Effects of repetitive audiogenic stimulation on open field activity in audiogenic sensitive and non-sensitive wag/rij rats

    NARCIS (Netherlands)

    Bikbaev, A.F.; Balabanov, D.V.; Sadovnikov, S.V.; Karpova, A.V.; Luijtelaar, E.L.J.M. van; Luijtelaar, E.L.J.M. van; Kuznetsova, G.D.; Coenen, A.M.L.; Chepurnov, S.A.

    2004-01-01

    A certain part of WAG/Rij rats combines genetically predisposed absence epilepsy with susceptibility to the development of audiogenic seizures. Repeated sound stimulation leads in audiogenic susceptible rats to propagation of epileptic discharges from the brainstem to the forebrain and neocortex. In

  5. Adult forebrain NMDA receptors gate social motivation and social memory.

    Science.gov (United States)

    Jacobs, Stephanie; Tsien, Joe Z

    2017-02-01

    Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Forebrain CRF1 Modulates Early-Life Stress-Programmed Cognitive Deficits

    Science.gov (United States)

    Wang, Xiao-Dong; Rammes, Gerhard; Kraev, Igor; Wolf, Miriam; Liebl, Claudia; Scharf, Sebastian H.; Rice, Courtney J.; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M.; Baram, Tallie Z.; Stewart, Michael G.; Müller, Marianne B.; Schmidt, Mathias V.

    2012-01-01

    Childhood traumatic events hamper the development of the hippocampus and impair declarative memory in susceptible individuals. Persistent elevations of hippocampal corticotropin-releasing factor (CRF), acting through CRF receptor 1 (CRF1), in experimental models of early-life stress have suggested a role for this endogenous stress hormone in the resulting structural modifications and cognitive dysfunction. However, direct testing of this possibility has been difficult. In the current study, we subjected conditional forebrain CRF1 knock-out (CRF1-CKO) mice to an impoverished postnatal environment and examined the role of forebrain CRF1 in the long-lasting effects of early-life stress on learning and memory. Early-life stress impaired spatial learning and memory in wild-type mice, and postnatal forebrain CRF overexpression reproduced these deleterious effects. Cognitive deficits in stressed wild-type mice were associated with disrupted long-term potentiation (LTP) and a reduced number of dendritic spines in area CA3 but not in CA1. Forebrain CRF1 deficiency restored cognitive function, LTP and spine density in area CA3, and augmented CA1 LTP and spine density in stressed mice. In addition, early-life stress differentially regulated the amount of hippocampal excitatory and inhibitory synapses in wild-type and CRF1-CKO mice, accompanied by alterations in the neurexin-neuroligin complex. These data suggest that the functional, structural and molecular changes evoked by early-life stress are at least partly dependent on persistent forebrain CRF1 signaling, providing a molecular target for the prevention of cognitive deficits in adults with a history of early-life adversity. PMID:21940453

  7. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water

    International Nuclear Information System (INIS)

    Bowyer, John F.; Latendresse, John R.; Delongchamp, Robert R.; Warbritton, Alan R.; Thomas, Monzy; Divine, Becky; Doerge, Daniel R.

    2009-01-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were ≤ 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  8. A forebrain atlas of the lizard Gekko gecko.

    Science.gov (United States)

    Smeets, W J; Hoogland, P V; Lohman, A H

    1986-12-01

    An atlas of the forebrain of the lizard Gekko gecko has been provided, which will serve as the basis for subsequent experimental tracing and immunohistochemical studies. Apart from a strongly developed medial cortex and septal area, the Tokay gecko shows all the main features of the forebrain of the lacertid-type lizards. When its convenience as an experimental animal is also taken into account, this species seems to be very suitable for studying the limbic system in reptiles. The atlas comprises topographical reconstructions of the telencephalon and diencephalon and a series of transverse sections of which the levels have been indicated in the reconstructions. The results obtained in the Gekko are briefly compared with those found in other lizards studied.

  9. File list: ALL.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377671,SRX377674,SRX669235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Forebrain.bed ...

  10. File list: ALL.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377674,SRX317036,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Forebrain.bed ...

  11. File list: ALL.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377673,SRX377671,SRX317036 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Forebrain.bed ...

  12. File list: ALL.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX002660,SRX093315,SR...SRX377673,SRX669235,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Forebrain.bed ...

  13. File list: His.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Forebrain.bed ...

  14. File list: His.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Forebrain.bed ...

  15. File list: His.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Forebrain.bed ...

  16. File list: His.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377678,SRX3776...72,SRX377670,SRX377676,SRX377674,SRX093314 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Forebrain.bed ...

  17. Ablation of cdk4 and cdk6 affects proliferation of basal progenitor cells in the developing dorsal and ventral forebrain.

    Science.gov (United States)

    Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana

    2018-03-23

    Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  18. Radioprotective role of vitamin E and urea in irradiated albino rats

    International Nuclear Information System (INIS)

    Mahdy, A.M.; Elkashef, H.S.

    1991-01-01

    The present study evaluates the action of vitamin E and urea as chemical radioprotectors for controlling the radiation induced changes in creatine and creatinine levels in the forebrain of female rats subjected to 7 Gy whole body gamma irradiation. The levels of creating and creatinine in the forebrain of normal control rats were±704±22 to±724±23 and 11.053 0.119 to 11.553 0.127 /g fresh tissue; respectively. The applied radiation dose caused a significant increase in the creating level of about 15%, 18%, 13% and 41% on the first,third,seventh and tenth days post irradiation; respectively. At the same post irradiation days, the level of creatinine generally increased, but not to the same extent as creatine. The treatment of rats either with vitamin E or with urea pre radiation exposure caused a remarkable recovery in both creatine and creatinine levels in the forebrain of irradiated rats.The results are discussed in the high of discussed in the high of available literatures. 2 tab

  19. Midbrain and forebrain patterning delivers immunocytochemically and functionally similar populations of neuropeptide Y containing GABAergic neurons.

    Science.gov (United States)

    Khaira, S K; Nefzger, C M; Beh, S J; Pouton, C W; Haynes, J M

    2011-09-01

    Neurons differentiated in vitro from embryonic stem cells (ESCs) have the potential to serve both as models of disease states and in drug discovery programs. In this study, we use sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF-8) to enrich for forebrain and midbrain phenotypes from mouse ESCs. We then investigate, using Ca(2+) imaging and [(3)H]-GABA release studies, whether the GABAergic neurons produced exhibit distinct functional phenotypes. At day 24 of differentiation, reverse transcriptase-PCR showed the presence of both forebrain (Bf-1, Hesx1, Pgc-1α, Six3) and midbrain (GATA2, GATA3) selective mRNA markers in developing forebrain-enriched cultures. All markers were present in midbrain cultures except for Bf-1 and Pgc-1α. Irrespective of culture conditions all GABA immunoreactive neurons were also immunoreactive to neuropeptide Y (NPY) antibodies. Forebrain and midbrain GABAergic neurons responded to ATP (1 mM), L-glutamate (30 μM), noradrenaline (30 μM), acetylcholine (30 μM) and dopamine (30 μM), with similar elevations of intracellular Ca(2+)([Ca(2+)](i)). The presence of GABA(A) and GABA(B) antagonists, bicuculline (30 μM) and CGP55845 (1 μM), increased the elevation of [Ca(2+)](i) in response to dopamine (30 μM) in midbrain, but not forebrain GABAergic neurons. All agonists, except dopamine, elicited similar [(3)H]-GABA release from forebrain and midbrain cultures. Dopamine (30 μM) did not stimulate significant [(3)H]-GABA release in midbrain cultures, although it was effective in forebrain cultures. This study shows that differentiating neurons toward a midbrain fate restricts the expression of forebrain markers. Forebrain differentiation results in the expression of forebrain and midbrain markers. All GABA(+) neurons contain NPY, and show similar agonist-induced elevations of [Ca(2+)](i) and [(3)H]-GABA release. This study indicates that the pharmacological phenotype of these particular neurons may be independent of the addition of

  20. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly

    Directory of Open Access Journals (Sweden)

    David M. McKean

    2012-07-01

    Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse and TDGF1 (human ortholog have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFβ signaling, and we show that TGFβ signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly.

  1. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center

    Directory of Open Access Journals (Sweden)

    Elena Sena

    2016-10-01

    Full Text Available Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli. The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN.

  2. Transcriptional maturation of the mouse auditory forebrain.

    Science.gov (United States)

    Hackett, Troy A; Guo, Yan; Clause, Amanda; Hackett, Nicholas J; Garbett, Krassimira; Zhang, Pan; Polley, Daniel B; Mirnics, Karoly

    2015-08-14

    The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. The main findings were: (1) Global gene expression

  3. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    Science.gov (United States)

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. File list: InP.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377677,SRX377675,S...RX377679,SRX377673,SRX669236,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Forebrain.bed ...

  5. File list: InP.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377679,SRX669236,S...RX377677,SRX377675,SRX377673,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Forebrain.bed ...

  6. File list: InP.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377679,SRX377675,S...RX377677,SRX377673,SRX669236,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Forebrain.bed ...

  7. Effect of leukemia inhibitory factor on long-term propagation of precursor cells derived from rat forebrain subventricular zone and ventral mesencephalon

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Zimmer, Jens; Wahlberg, Lars U

    2008-01-01

    Tissue blocks containing neural precursor cells were isolated from the rat forebrain subventricular zone (SVZ) and ventral mesencephalon (VM) and propagated as neural tissue-spheres (NTS). In the presence of fibroblast growth factor-2 (FGF2) and epidermal growth factor (EGF), SVZ-derived NTS were...... propagated and maintained for more than 6 months with a cell population doubling time of 21.5 days. The replacement of EGF by leukemia inhibitory factor (LIF) resulted in a cell population doubling time of 19.8 days, corresponding to a 10-fold increase in estimated cell numbers over a period of 70 days......, at which point these NTS ceased to grow. In the presence of FGF2 and LIF, VM-derived NTS displayed a cell population doubling time of 24.6 days, which was maintained over a period of more than 200 days. However, when LIF was replaced by EGF, the cell numbers only increased 1.2 fold over 50 days. Using...

  8. Microglia Modulate Wiring of the Embryonic Forebrain

    Directory of Open Access Journals (Sweden)

    Paola Squarzoni

    2014-09-01

    Full Text Available Dysfunction of microglia, the tissue macrophages of the brain, has been associated with the etiology of several neuropsychiatric disorders. Consistently, microglia have been shown to regulate neurogenesis and synaptic maturation at perinatal and postnatal stages. However, microglia invade the brain during mid-embryogenesis and thus could play an earlier prenatal role. Here, we show that embryonic microglia, which display a transiently uneven distribution, regulate the wiring of forebrain circuits. Using multiple mouse models, including cell-depletion approaches and cx3cr1−/−, CR3−/−, and DAP12−/− mutants, we find that perturbing microglial activity affects the outgrowth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons. Since defects in both dopamine innervation and cortical networks have been linked to neuropsychiatric diseases, our study provides insights into how microglial dysfunction can impact forebrain connectivity and reveals roles for immune cells during normal assembly of brain circuits.

  9. Salvinorin A preserves cerebral pial artery autoregulation after forebrain ischemia via the PI3K/AKT/cGMP pathway

    Directory of Open Access Journals (Sweden)

    H.P. Dong

    2018-03-01

    Full Text Available This study aimed to investigate the protective effect of salvinorin A on the cerebral pial artery after forebrain ischemia and explore related mechanisms. Thirty Sprague-Dawley rats received forebrain ischemia for 10 min. The dilation responses of the cerebral pial artery to hypercapnia and hypotension were assessed in rats before and 1 h after ischemia. The ischemia reperfusion (IR control group received DMSO (1 µL/kg immediately after ischemia. Two different doses of salvinorin A (10 and 20 µg/kg were administered following the onset of reperfusion. The 5th, 6th, and 7th groups received salvinorin A (20 µg/kg and LY294002 (10 µM, L-NAME (10 μM, or norbinaltorphimine (norBIN, 1 μM after ischemia. The levels of cGMP in the cerebrospinal fluid (CSF were also measured. The phosphorylation of AKT (p-AKT was measured in the cerebral cortex by western blot at 24 h post-ischemia. Cell necrosis and apoptosis were examined by hematoxylin-eosin staining (HE and TUNEL staining, respectively. The motor function of the rats was evaluated at 1, 2, and 5 days post-ischemia. The dilation responses of the cerebral pial artery were significantly impaired after ischemia and were preserved by salvinorin A treatment. In addition, salvinorin A significantly increased the levels of cGMP and p-AKT, suppressed cell necrosis and apoptosis of the cerebral cortex and improved the motor function of the rats. These effects were abolished by LY294002, L-NAME, and norBIN. Salvinorin A preserved cerebral pial artery autoregulation in response to hypercapnia and hypotension via the PI3K/AKT/cGMP pathway.

  10. Presynaptic M1 muscarinic receptor modulates spontaneous release of acetylcholine from rat basal forearm slices

    International Nuclear Information System (INIS)

    Suzuki, T.; Fujimoto, LK.; Oohata, H.; Kawashima, K.

    1988-01-01

    Spontaneous release of (ACh) from rat basal forebrain slices in the presence of cholinesterase inhibitor was directly determined using a specific radioimmunoassay for ACh. The release was calcium dependent. A consistent amount of ACh release was observed throughout the experiment. Atropine (10- 8 to 10- 5 M) and pirenzepine (10- 7 to 10- 5 M) enhanced spontaneous ACh release. These findings indicate the presence of an M 1 muscarenic autoreceptor that modulates spontaneous release of ACh in the rat forebrain

  11. Stress-induced changes in the expression of the clock protein PERIOD1 in the rat limbic forebrain and hypothalamus: role of stress type, time of day, and predictability.

    Directory of Open Access Journals (Sweden)

    Sherin Al-Safadi

    Full Text Available Stressful events can disrupt circadian rhythms in mammals but mechanisms underlying this disruption remain largely unknown. One hypothesis is that stress alters circadian protein expression in the forebrain, leading to functional dysregulation of the brain circadian network and consequent disruption of circadian physiological and behavioral rhythms. Here we characterized the effects of several different stressors on the expression of the core clock protein, PER1 and the activity marker, FOS in select forebrain and hypothalamic nuclei in rats. We found that acute exposure to processive stressors, restraint and forced swim, elevated PER1 and FOS expression in the paraventricular and dorsomedial hypothalamic nuclei and piriform cortex but suppressed PER1 and FOS levels exclusively in the central nucleus of the amygdala (CEAl and oval nucleus of the bed nucleus of the stria terminalis (BNSTov. Conversely, systemic stressors, interleukin-1β and 2-Deoxy-D-glucose, increased PER1 and FOS levels in all regions studied, including the CEAl and BNSTov. PER1 levels in the suprachiasmatic nucleus (SCN, the master pacemaker, were unaffected by any of the stress manipulations. The effect of stress on PER1 and FOS was modulated by time of day and, in the case of daily restraint, by predictability. These results demonstrate that the expression of PER1 in the forebrain is modulated by stress, consistent with the hypothesis that PER1 serves as a link between stress and the brain circadian network. Furthermore, the results show that the mechanisms that control PER1 and FOS expression in CEAl and BNSTov are uniquely sensitive to differences in the type of stressor. Finally, the finding that the effect of stress on PER1 parallels its effect on FOS supports the idea that Per1 functions as an immediate-early gene. Our observations point to a novel role for PER1 as a key player in the interface between stress and circadian rhythms.

  12. High affinity [3H]glibenclamide binding sites in rat neuronal and cardiac tissue: Localization and developmental characteristics

    International Nuclear Information System (INIS)

    Miller, J.A.; Velayo, N.L.; Dage, R.C.; Rampe, D.

    1991-01-01

    We examined the binding of the antidiabetic sulfonylurea [3H] glibenclamide to rat brain and heart membranes. High affinity binding was observed in adult rat forebrain (Kd = 137.3 pM, maximal binding site density = 91.8 fmol/mg of protein) and ventricle (Kd = 77.1 pM, maximal binding site density = 65.1 fmol/mg of protein). Binding site density increased approximately 250% in forebrain membranes during postnatal development but was constant in ventricular membranes. Quantitative autoradiography was used to examine the regional distribution of [3H] glibenclamide binding sites in sections from rat brain, spinal cord and heart. The greatest density of binding in adult brain was found in the substantia nigra and globus pallidus, whereas the other areas displayed heterogenous binding. In agreement with the membrane binding studies, 1-day-old rat brain had significantly fewer [3H]glibenclamide binding sites than adult brain. Additionally, the pattern of distribution of these sites was qualitatively different from that of the adult. In adult rat spinal cord, moderate binding densities were observed in spinal cord gray and displayed a rostral to caudal gradient. In adult rat heart, moderate binding densities were observed and the sites were distributed homogeneously. In conclusion, significant development of [3H]glibenclamide binding sites was seen in the brain but not the heart during postnatal maturation. Furthermore, a heterogeneous distribution of binding sites was observed in both the brain and spinal cord of adult rats

  13. Apoptosis during sexual differentiation of the bed nucleus of the stria terminalis in the rat brain

    NARCIS (Netherlands)

    Chung, W. C.; Swaab, D. F.; de Vries, G. J. [=Geert J.

    2000-01-01

    The bed nucleus of the stria terminalis (BST) in the rat forebrain differs between males and females. To test whether apoptosis may contribute to the development of sex differences in the BST, the incidence of apoptosis was determined in sham-treated males and sham-treated females sacrificed on

  14. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  15. Early Effects of Lipopolysaccharide-Induced Inflammation on Foetal Brain Development in Rat

    Directory of Open Access Journals (Sweden)

    Cristina A Ghiani

    2011-10-01

    Full Text Available Studies in humans and animal models link maternal infection and imbalanced levels of inflammatory mediators in the foetal brain to the aetiology of neuropsychiatric disorders. In a number of animal models, it was shown that exposure to viral or bacterial agents during a period that corresponds to the second trimester in human gestation triggers brain and behavioural abnormalities in the offspring. However, little is known about the early cellular and molecular events elicited by inflammation in the foetal brain shortly after maternal infection has occurred. In this study, maternal infection was mimicked by two consecutive intraperitoneal injections of 200 μg of LPS (lipopolysaccharide/kg to timed-pregnant rats at GD15 (gestational day 15 and GD16. Increased thickness of the CP (cortical plate and hippocampus together with abnormal distribution of immature neuronal markers and decreased expression of markers for neural progenitors were observed in the LPS-exposed foetal forebrains at GD18. Such effects were accompanied by decreased levels of reelin and the radial glial marker GLAST (glial glutamate transporter, and elevated levels of pro-inflammatory cytokines in maternal serum and foetal forebrains. Foetal inflammation elicited by maternal injections of LPS has discrete detrimental effects on brain development. The early biochemical and morphological changes described in this work begin to explain the sequelae of early events that underlie the neurobehavioural deficits reported in humans and animals exposed to prenatal insults.

  16. NCAM deficiency in the mouse forebrain impairs innate and learned avoidance behaviours.

    Science.gov (United States)

    Brandewiede, J; Stork, O; Schachner, M

    2014-06-01

    The neural cell adhesion molecule (NCAM) has been implicated in the development and plasticity of neural circuits and the control of hippocampus- and amygdala-dependent learning and behaviour. Previous studies in constitutive NCAM null mutants identified emotional behaviour deficits related to disturbances of hippocampal and amygdala functions. Here, we studied these behaviours in mice conditionally deficient in NCAM in the postmigratory forebrain neurons. We report deficits in both innate and learned avoidance behaviours, as observed in elevated plus maze and passive avoidance tasks. In contrast, general locomotor activity, trait anxiety or neophobia were unaffected by the mutation. Altered avoidance behaviour of the conditional NCAM mutants was associated with a deficit in serotonergic signalling, as indicated by their reduced responsiveness to (±)-8-hydroxy-2-(dipropylamino)-tetralin-induced hypothermia. Another serotonin-dependent behaviour, namely intermale aggression that is massively increased in constitutively NCAM-deficient mice, was not affected in the forebrain-specific mutants. Our data suggest that genetically or environmentally induced changes of NCAM expression in the late postnatal and mature forebrain determine avoidance behaviour and serotonin (5-HT)1A receptor signalling. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  17. Conditional Deletion of PDK1 in the Forebrain Causes Neuron Loss and Increased Apoptosis during Cortical Development

    Directory of Open Access Journals (Sweden)

    Congyu Xu

    2017-10-01

    Full Text Available Decreased expression but increased activity of PDK1 has been observed in neurodegenerative disease. To study in vivo function of PDK1 in neuron survival during cortical development, we generate forebrain-specific PDK1 conditional knockout (cKO mice. We demonstrate that PDK1 cKO mice display striking neuron loss and increased apoptosis. We report that PDK1 cKO mice exhibit deficits on several behavioral tasks. Moreover, PDK1 cKO mice show decreased activities for Akt and mTOR. These results highlight an essential role of endogenous PDK1 in the maintenance of neuronal survival during cortical development.

  18. Differential functions of NR2A and NR2B in short-term and long-term memory in rats.

    Science.gov (United States)

    Jung, Ye-Ha; Suh, Yoo-Hun

    2010-08-23

    N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors implicated in synaptic plasticity and memory function. The specific functions of NMDA receptor subunits NR2A and NR2B have not yet been fully determined in the different types of memory. Nine Wistar rats (8-weeks-old) were subjected to the Morris water maze task to evaluate the memory behaviorally. Quantitative analysis of NR1, NR2A, and NR2B levels in the right and left forebrain of rats was performed and subunit associations with different types of memory were investigated using the Morris water maze task. Right forebrain NR2A expression was significantly increased and correlated with faster escape time onto a hidden platform, indicating involvement of short-term memory, because of the training time interval. Right forebrain NR2B expression was positively associated with long-term memory lasting 24-h (h). In the left forebrain, NR2B expression was positively related to 72-h long-term memory. In conclusion, the functions of NR2A and NR2B receptors were differentially specialized in short-term and long-term memory, depending on the right or left forebrain.

  19. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide.

    Science.gov (United States)

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Shirao, Satoshi; Suzuki, Michiyasu

    2011-01-01

    Ebselen is a mimic of glutathione peroxidase that reacts with peroxynitrite and inhibits nitric oxide (NO) synthase. Ebselen has beneficial effects on the neurological outcome of patients with stroke. In this study, the mechanisms by which ebselen can elicit neuroprotective effects against ischemic brain injury were investigated in male Wistar rats. Experimental forebrain ischemia was induced by bilateral common carotid artery occlusion with hemorrhagic hypotension. Ebselen was administered to animals in the treatment group 2 hours prior to the induction of forebrain ischemia, and placebo was administered in the control group. Cerebral blood flow (CBF) was measured by the hydrogen clearance method. Cortical extracellular levels of excitatory amino acids (EAAs) and NO were evaluated using in vivo microdialysis. Neuronal damage in the CA1 subfield of the hippocampus was assessed in brains harvested after a 24-hour period of survival. CBF did not recover to normal physiological levels after ischemic insults in either the control or treatment groups. The differences in the sequential changes in extracellular EAA and NO levels between groups were not statistically significant. There was a significantly larger mean density of intact, undamaged neurons in the CA1 subfield in the treatment group than in the control group. The neuroprotective effects of ebselen were reflected in the histological findings, without significant inhibition of glutamate release or NO synthesis during the acute phase of experimentally induced cerebral ischemia.

  20. Dissociating basal forebrain and medial temporal amnesic syndromes: insights from classical conditioning.

    Science.gov (United States)

    Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A

    2002-01-01

    In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.

  1. Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory.

    Science.gov (United States)

    Jacobs, S A; Tsien, J Z

    2014-04-01

    Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long-term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long-term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long-term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long-term memory function, including the ethologically important memories such as social recognition and olfactory memory.

  2. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas.

    Directory of Open Access Journals (Sweden)

    Sidarta Ribeiro

    2004-01-01

    Full Text Available The discovery of experience-dependent brain reactivation during both slow-wave (SW and rapid eye-movement (REM sleep led to the notion that the consolidation of recently acquired memory traces requires neural replay during sleep. To date, however, several observations continue to undermine this hypothesis. To address some of these objections, we investigated the effects of a transient novel experience on the long-term evolution of ongoing neuronal activity in the rat forebrain. We observed that spatiotemporal patterns of neuronal ensemble activity originally produced by the tactile exploration of novel objects recurred for up to 48 h in the cerebral cortex, hippocampus, putamen, and thalamus. This novelty-induced recurrence was characterized by low but significant correlations values. Nearly identical results were found for neuronal activity sampled when animals were moving between objects without touching them. In contrast, negligible recurrence was observed for neuronal patterns obtained when animals explored a familiar environment. While the reverberation of past patterns of neuronal activity was strongest during SW sleep, waking was correlated with a decrease of neuronal reverberation. REM sleep showed more variable results across animals. In contrast with data from hippocampal place cells, we found no evidence of time compression or expansion of neuronal reverberation in any of the sampled forebrain areas. Our results indicate that persistent experience-dependent neuronal reverberation is a general property of multiple forebrain structures. It does not consist of an exact replay of previous activity, but instead it defines a mild and consistent bias towards salient neural ensemble firing patterns. These results are compatible with a slow and progressive process of memory consolidation, reflecting novelty-related neuronal ensemble relationships that seem to be context- rather than stimulus-specific. Based on our current and previous results

  3. Effects of heavy ions on rabbit tissues: damage to the forebrain

    International Nuclear Information System (INIS)

    Cox, A.B.; Keng, P.C.; Lee, A.C.; Lett, J.T.

    1982-01-01

    As part of a study of progressive radiation effects in normal tissues, the forebrains of New Zealand white rabbits (Oryctolagus cuniculus) (about 6 weeks old) were irradiated locally with single acute doses of 60 Co γ-photons (LETsub(infinity)=0.3 keV/μm), Ne ions (LETsub(infinity)=35+-3 keV/μm) or Ar ions (LETsub(infinity)=90+-5 keV/μm). Other rabbits received fractionated doses of 60 Co γ-photons according to a standard radiotherapeutic protocol. Irradiated rabbits and appropriately aged controls were sacrificed at selected intervals, and whole sagittal sections of their brains were examined for pathological changes. Forebrain damage was scored with subjective indices based on histological differences between the anterior (irradiated) and posterior (unirradiated) regions of the brain. Those indices ranged from zero (no apparent damage) to five (severe infarctions, etc.). At intermediate levels of forebrain damage, the relative biological effectiveness (r.b.e.) of each heavy ion was similar to that found for alopecia and cataractogenesis, and the early expression of the damage was also accelerated as the LETsub(infinity) increased. Late deterioration of the forebrain appeared also to be accelerated by increasing LETsub(infinity), although its accurate quantification was not possible because other priorities in the overall experimental design limited systematic sacrifice of the animals. (author)

  4. Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain.

    Science.gov (United States)

    Campbell, John N; Register, David; Churn, Severn B

    2012-01-20

    Traumatic brain injury (TBI) causes both an acute loss of tissue and a progressive injury through reactive processes such as excitotoxicity and inflammation. These processes may worsen neural dysfunction by altering neuronal circuitry beyond the focally-damaged tissue. One means of circuit alteration may involve dendritic spines, micron-sized protuberances of dendritic membrane that support most of the excitatory synapses in the brain. This study used a modified Golgi-Cox technique to track changes in spine density on the proximal dendrites of principal cells in rat forebrain regions. Spine density was assessed at 1 h, 24 h, and 1 week after a lateral fluid percussion TBI of moderate severity. At 1 h after TBI, no changes in spine density were observed in any of the brain regions examined. By 24 h after TBI, however, spine density had decreased in ipsilateral neocortex in layer II and III and dorsal dentate gyrus (dDG). This apparent loss of spines was prevented by a single, post-injury administration of the calcineurin inhibitor FK506. These results, together with those of a companion study, indicate an FK506-sensitive mechanism of dendritic spine loss in the TBI model. Furthermore, by 1 week after TBI, spine density had increased substantially above control levels, bilaterally in CA1 and CA3 and ipsilaterally in dDG. The apparent overgrowth of spines in CA1 is of particular interest, as it may explain previous reports of abnormal and potentially epileptogenic activity in this brain region.

  5. A frontal cortex event-related potential driven by the basal forebrain

    Science.gov (United States)

    Nguyen, David P; Lin, Shih-Chieh

    2014-01-01

    Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497

  6. The role of serotoninergic neurons in rats agressive behaviour.

    Science.gov (United States)

    Czlonkowski, A; Kostowski, W; Markowska, L; Markiewicz, L; Wiśniewska, I

    1975-10-01

    Lesions of the dorsal and medial raphe nuclei that caused a marked decrease of the 5-HT level in the forebrain induced in groupped rats intraspecies aggressiveness but failed to increase mouse-killing behaviour. In rats isolated for 3 weeks lesions of the raphe nuclei did not change behaviour of "killers" and natural "non-killers". The role of 5-HT in mechanism of the aggressive behaviour is discussed.

  7. Ascending connections to the forebrain in the Tegu lizard.

    Science.gov (United States)

    Lohman, A H; van Woerden-Verkley, I

    1978-12-01

    The ascending connections to the striatum and the cortex of the Tegu lizard, Tupinambis nigropunctatus, were studied by means of anterograde fiber degeneration and retrograde axonal transport. The striatum receives projections by way of the dorsal peduncle of the lateral forebrain bundle from four dorsal thalamic nuclei: nucleus rotundus, nucleus reuniens, the posterior part of the dorsal lateral geniculate nucleus and nucleus dorsomedialis. The former three nuclei project to circumscribed areas of the dorsal striatum, whereas nucleus dorsomedialis has a distribution to the whole dorsal striatum. Other sources of origin to the striatum are the mesencephalic reticular formation, substantia nigra and nucleus cerebelli lateralis. With the exception of the latter afferentation all these projections are ipsilateral. The ascending connections to the pallium originate for the major part from nucleus dorsolateralis anterior of the dorsal thalamus. The fibers course in both the medial forebrain bundle and the dorsal peduncle of the lateral forebrain bundle and terminate ipsilaterally in the middle of the molecular layer of the small-celled part of the mediodorsal cortex and bilaterally above the intermediate region of the dorsal cortex. The latter area is reached also by fibers from the septal area. The large-celled part of the mediodorsal cortex receives projections from nucleus raphes superior and the corpus mammillare.

  8. Effect of MDMA-Induced Axotomy on the Dorsal Raphe Forebrain Tract in Rats: An In Vivo Manganese-Enhanced Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Chuang-Hsin Chiu

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA, also known as "Ecstasy", is a common recreational drug of abuse. Several previous studies have attributed the central serotonergic neurotoxicity of MDMA to distal axotomy, since only fine serotonergic axons ascending from the raphe nucleus are lost without apparent damage to their cell bodies. However, this axotomy has never been visualized directly in vivo. The present study examined the axonal integrity of the efferent projections from the midbrain raphe nucleus after MDMA exposure using in vivo manganese-enhanced magnetic resonance imaging (MEMRI. Rats were injected subcutaneously six times with MDMA (5 mg/kg or saline once daily. Eight days after the last injection, manganese ions (Mn2+ were injected stereotactically into the raphe nucleus, and a series of MEMRI images was acquired over a period of 38 h to monitor the evolution of Mn2+-induced signal enhancement across the ventral tegmental area, the medial forebrain bundle (MFB, and the striatum. The MDMA-induced loss of serotonin transporters was clearly evidenced by immunohistological staining consistent with the Mn2+-induced signal enhancement observed across the MFB and striatum. MEMRI successfully revealed the disruption of the serotonergic raphe-striatal projections and the variable effect of MDMA on the kinetics of Mn2+ accumulation in the MFB and striatum.

  9. The selective alpha7 nicotinic acetylcholine receptor agonist A-582941 activates immediate early genes in limbic regions of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, M S; Mikkelsen, J D; Timmermann, D B

    2008-01-01

    to study whether alpha7 nAChR stimulation activates brain regions involved in cognition in juvenile as well as adult individuals. Here, we compared the effects of the novel and selective alpha7 nAChR agonist 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) in the juvenile...... regions critically involved in working memory and attention. Furthermore, this effect is more pronounced in juvenile than adult rats, indicating that the juvenile forebrain is more responsive to alpha7 nAChR stimulation. This observation may be relevant in the treatment of juvenile-onset schizophrenia....

  10. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer’s Disease in Mouse Models

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-11-01

    Full Text Available Degeneration of basal forebrain cholinergic neurons (BFCNs is associated with cognitive impairments of Alzheimer’s disease (AD, implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD.

  11. Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1980-01-01

    The effects of bilateral transection of the fornix bundle on the high affinity uptake of glutamate and on the amino acid content in several nuclei of rat forebrain and hypothalamus were studied in order to investigate the possible role of glutamate as a transmitter of these fibres. This lesion decreased the high affinity uptake of L-glutamate by 60 to 70% in the mammillary body and lateral septum, and by 40 to 50% in the anterior diagonal band nucleus, the bed nucleus of the stria terminalis, the mediobasal hypothalamus and the nucleus accumbens. The content of endogenous glutamate in samples dissected from freeze-dried tissue also decreased significantly in these regions. Endogenous aspartate was slightly decreased in the anterior diagonal band nucleus and the mammillary body, but unchanged in the other regions. No significant changes were seen in the levels of serine, ..gamma..-aminobutyric acid, glutamine and taurine, except for an increase in glutamine and taurine in the bed nucleus of the stria terminalis. The high affinity uptake of ..gamma..-aminobutyric acid, tested in the bed nucleus of the stria terminalis, the mediobasal hypothalamus and the mammillary body, was unchanged after the lesion. The results indicate that allocortical efferents innervating subcortial nuclei through the fornix might use glutamate as a transmitter. The study further supports the concept that glutamate plays an important role as transmitter of several different corticofugal fibre systems in mammalian brain.

  12. Prenatal cocaine exposure alters alpha2 receptor expression in adolescent rats

    Directory of Open Access Journals (Sweden)

    Silvers Janelle M

    2006-04-01

    Full Text Available Abstract Background Prenatal cocaine exposure produces attentional deficits which to persist through early childhood. Given the role of norepinephrine (NE in attentional processes, we examined the forebrain NE systems from prenatal cocaine exposed rats. Cocaine was administered during pregnancy via the clinically relevant intravenous route of administration. Specifically, we measured α2-adrenergic receptor (α2-AR density in adolescent (35-days-old rats, using [3H]RX821002 (5 nM. Results Sex-specific alterations of α2-AR were found in the hippocampus and amygdala of the cocaine-exposed animals, as well as an upregulation of α2-AR in parietal cortex. Conclusion These data suggest that prenatal cocaine exposure results in a persistent alteration in forebrain NE systems as indicated by alterations in receptor density. These neurochemical changes may underlie behavioral abnormalities observed in offspring attentional processes following prenatal exposure to cocaine.

  13. Determination of μ-, δ- and κ-opioid receptors in forebrain cortex of rats exposed to morphine for 10 days: Comparison with animals after 20 days of morphine withdrawal.

    Science.gov (United States)

    Ujcikova, Hana; Hlouskova, Martina; Cechova, Kristina; Stolarova, Katerina; Roubalova, Lenka; Svoboda, Petr

    2017-01-01

    Chronic exposure of mammalian organism to morphine results in adaption to persistent high opioid tone through homeostatic adjustments. Our previous results indicated that in the frontal brain cortex (FBC) of rats exposed to morphine for 10 days, such a compensatory adjustment was detected as large up-regulation of adenylylcyclases I (8-fold) and II (2.5-fold). The other isoforms of AC (III-IX) were unchanged. Importantly, the increase of ACI and ACII was reversible as it disappeared after 20 days of morphine withdrawal. Changes of down-stream signaling molecules such as G proteins and adenylylcyclases should respond to and be preceded by primary changes proceeding at receptor level. Therefore in our present work, we addressed the problem of reversibility of the long-term morphine effects on μ-, δ- and κ-OR protein levels in FBC. Rats were exposed to increasing doses of morphine (10-40 mg/kg) for 10 days and sacrificed either 24 h (group +M10) or 20 days (group +M10/-M20) after the last dose of morphine in parallel with control animals (groups -M10 and -M10/-M20). Post-nuclear supernatant (PNS) fraction was prepared from forebrain cortex, resolved by 1D-SDS-PAGE under non-dissociated (-DTT) and dissociated (+DTT) conditions, and analyzed for the content of μ-, δ- and κ-OR by immunoblotting with C- and N-terminus oriented antibodies. Significant down-regulation of δ-OR form exhibiting Mw ≈ 60 kDa was detected in PNS prepared from both (+M10) and (+M10/-M20) rats. However, the total immunoblot signals of μ-, δ- and κ-OR, respectively, were unchanged. Plasma membrane marker Na, K-ATPase, actin and GAPDH were unaffected by morphine in both types of PNS. Membrane-domain marker caveolin-1 and cholesterol level increased in (+M10) rats and this increase was reversed back to control level in (+M10/-M20) rats. In FBC, prolonged exposure of rats to morphine results in minor (δ-OR) or no change (μ- and κ-OR) of opioid receptor content. The reversible increases

  14. Determination of μ-, δ- and κ-opioid receptors in forebrain cortex of rats exposed to morphine for 10 days: Comparison with animals after 20 days of morphine withdrawal.

    Directory of Open Access Journals (Sweden)

    Hana Ujcikova

    Full Text Available Chronic exposure of mammalian organism to morphine results in adaption to persistent high opioid tone through homeostatic adjustments. Our previous results indicated that in the frontal brain cortex (FBC of rats exposed to morphine for 10 days, such a compensatory adjustment was detected as large up-regulation of adenylylcyclases I (8-fold and II (2.5-fold. The other isoforms of AC (III-IX were unchanged. Importantly, the increase of ACI and ACII was reversible as it disappeared after 20 days of morphine withdrawal. Changes of down-stream signaling molecules such as G proteins and adenylylcyclases should respond to and be preceded by primary changes proceeding at receptor level. Therefore in our present work, we addressed the problem of reversibility of the long-term morphine effects on μ-, δ- and κ-OR protein levels in FBC.Rats were exposed to increasing doses of morphine (10-40 mg/kg for 10 days and sacrificed either 24 h (group +M10 or 20 days (group +M10/-M20 after the last dose of morphine in parallel with control animals (groups -M10 and -M10/-M20. Post-nuclear supernatant (PNS fraction was prepared from forebrain cortex, resolved by 1D-SDS-PAGE under non-dissociated (-DTT and dissociated (+DTT conditions, and analyzed for the content of μ-, δ- and κ-OR by immunoblotting with C- and N-terminus oriented antibodies.Significant down-regulation of δ-OR form exhibiting Mw ≈ 60 kDa was detected in PNS prepared from both (+M10 and (+M10/-M20 rats. However, the total immunoblot signals of μ-, δ- and κ-OR, respectively, were unchanged. Plasma membrane marker Na, K-ATPase, actin and GAPDH were unaffected by morphine in both types of PNS. Membrane-domain marker caveolin-1 and cholesterol level increased in (+M10 rats and this increase was reversed back to control level in (+M10/-M20 rats.In FBC, prolonged exposure of rats to morphine results in minor (δ-OR or no change (μ- and κ-OR of opioid receptor content. The reversible increases

  15. Cerebellar abnormalities following hypoxia alone compared to hypoxic-ischemic forebrain injury in the developing rat brain

    NARCIS (Netherlands)

    Biran, V.; Heine, V.M.; Verney, C.; Sheldon, R.A.; Spadafora, R.; Vexler, Z.S.; Rowitch, D.H.; Ferriero, D.M.

    2011-01-01

    Two-day-old (P2) rat pups were subjected to either a global hypoxia or to electrocoagulation of the right carotid artery followed by 2.5. h hypoxia. Cellular and regional injury in the cerebellum (CB) was studied at 1, 2 and 19. days using immunohistology. Following hypoxia and hypoxia-ischemia, all

  16. Dcc regulates asymmetric outgrowth of forebrain neurons in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jingxia Gao

    Full Text Available The guidance receptor DCC (deleted in colorectal cancer ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.

  17. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    Science.gov (United States)

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  18. Brain regional differences in social encounter-induced Fos expression in male and female rats after post-weaning social isolation.

    Science.gov (United States)

    Ahern, Megan; Goodell, Dayton J; Adams, Jessica; Bland, Sondra T

    2016-01-01

    Early life adversity has been related to a number of psychological disorders including mood and other disorders that can manifest as inappropriate or aggressive responses to social challenges. The present study used post-weaning social isolation (PSI) in rats, a model of early life adversity, to examine its effects on Fos protein expression produced by exposure to a novel social encounter. We have previously reported that the social encounter-induced increase in Fos expression in the medial prefrontal cortex observed in group-housed controls (GRP) was attenuated in rats that had experienced PSI. Here we assessed Fos expression in other brain regions thought to be involved in emotion regulation and social behavior. Male and female rats were housed in same-sex groups or in isolation (ISO) for 4 weeks beginning on postnatal day (P) 21 and were exposed to a single 15 min social encounter with a novel same-sex conspecific on P49. Fos positive cells were assessed using immunohistochemistry in 16 regions within the forebrain. Exposure to a novel conspecific increased Fos expression in the forebrain of GRP rats in a region- and sex-specific fashion. This increase was blunted or absent in ISO rats within many regions including cortical regions, thalamus, habenula, dentate gyrus, lateral septum, and basolateral amygdala. In several regions, the increase in Fos was greater in male than in female group housed rats. Negative relationships were observed between social interactions and Fos in some regions. Forebrain hypofunction produced by early-life adversity may be involved in socially inappropriate behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine.

    Science.gov (United States)

    Vu, Michael T; Du, Guizhi; Bayliss, Douglas A; Horner, Richard L

    2015-10-07

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K(+) (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K(+) current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASK(f/f) mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30-50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30-50 Hz activity in ChAT-Cre:TASK(f/f) mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain

  20. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    Directory of Open Access Journals (Sweden)

    H Scott Swartzwelder

    Full Text Available The long-term effects of intermittent ethanol exposure during adolescence (AIE are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30 received exposure to AIE (5g/kg, i.g. or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE.

  1. Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers.

    Science.gov (United States)

    Pombal, M A; Puelles, L

    1999-11-22

    The structural organization of the lamprey extratelencephalic forebrain is re-examined from the perspective of the prosomeric segmental paradigm. The question asked was whether the prosomeric forebrain model used for gnathostomes is of material advantage for interpreting subdivisions in the lamprey forebrain. To this aim, the main longitudinal and transverse landmarks recognized by the prosomeric model in other vertebrates were identified in Nissl-stained lamprey material. Lines of cytoarchitectural discontinuity and contours of migrated neuronal groups were mapped in a two-dimensional sagittal representation and were also classified according to their radial position. Immunocytochemical mapping of calretinin expression in adjacent sections served to define particular structural units better, in particular, the dorsal thalamus. These data were complemented by numerous other chemoarchitectonic observations obtained with ancillary markers, which identified additional specific formations, subdivisions, or boundaries. Emphasis was placed on studying whether such chemically defined neuronal groups showed boundaries aligned with the postulated inter- or intraprosomeric boundaries. The course of diverse axonal tracts was studied also with regard to their prosomeric topography. This analysis showed that the full prosomeric model applies straightforwardly to the lamprey forebrain. This finding implies that a common segmental and longitudinal organization of the neural tube may be primitive for all vertebrates. Interesting novel aspects appear in the interpretation of the lamprey pretectum, the dorsal and ventral thalami, and the hypothalamus. The topologic continuity of the prosomeric forebrain regions with evaginated or non-evaginated portions of the telencephalon was also examined. Copyright 1999 Wiley-Liss, Inc.

  2. Transplantation of ES cells to Parkinson model rat irradiated with carbon ion beam

    International Nuclear Information System (INIS)

    Inaji, Motoki; Okauchi, Takashi; Nagai, Yuji; Nojima, Kumie; Suhara, Tetsuya

    2004-01-01

    The present study was designed to make a new Parkinson disease model using carbon ion beam. In this year, we irradiated right middle forebrain bundle of adult rats with charged carbon particles (290 MeV/nucleon, Mono peak, 150 Gy) and damaged right dopaminergic neurons pathway. To irradiate precisely, rats were set in the stereotactic frame with ear bars which was developed in this year. In 4 weeks after the irradiation, we performed methamphetamine induced rotation test and the autoradiography measurement on dopamine transporter using [ 11 C]PE2I to assess degeneration of dopaminergic neurons in caudate putamen (Cpu). As a result, ipsilateral rotation was observed and the distributions of dopamine transporter in the striatum decreased significantly. These results are similar to those of 6-OHDA lesioned rats, and indicate validity of this model. (author)

  3. Effect of thyroid status on the development of the different molecular forms of Na+,K+-ATPase in rat brain.

    Science.gov (United States)

    Atterwill, C K; Reid, J; Athayde, C M

    1985-05-01

    The effect of thyroid status on the postnatal development of the two molecular forms of Na+,K+-ATPase, distinguished kinetically on the basis of their ouabain sensitivity, was examined in rat brain. Hypothyroidism induced by PTU from day 1 postnatally significantly reduced the Na+,K+-ATPase activity in cerebellum (22-30 days) but not forebrain, whereas hyperthyroidism (T4 treatment from day 1) had no effect. The hypothyroidism-induced reduction in cerebellum was reflected by a 20-45% reduction in the activity of the alpha(+) form of Na+,K+-ATPase (high ouabain affinity) against control brains compared to a 60-70% reduction in the activity of the alpha form (low ouabain affinity). These results show that neonatally induced hypothyroidism leads to a selectively greater impairment of the ontogenesis of the activity of cerebellar alpha form of Na+,K+-ATPase. This may possibly reflect a retarded development of a selective cerebellar cell population containing predominantly the alpha form of the enzyme.

  4. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    Science.gov (United States)

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.

    Science.gov (United States)

    Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji

    2013-05-01

    d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus

    Directory of Open Access Journals (Sweden)

    Marina D Jovanovic

    2014-01-01

    Full Text Available Background & objectives: Aluminum (Al toxicity is closely linked to the pathogenesis of Alzheimer′s disease (AD. This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx, hippocampus and basal forebrain (BF. Methods: Seven days after intra-hippocampal (CA1 sector injection of AlCl 3 into adult male Wistar rats they were subjected to two-way active avoidance (AA tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE and glucose-6-phosphate dehydrogenase (G6PDH were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid β and tau protein. Results: The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl 3 treatment. G6PDH administered prior to AlCl 3 resulted in a reversal of the effects of AlCl 3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid β staining was detected bilaterally in all structures in AlCl 3 -treated rats but was moderate in G6PDH/AlCl 3 -treated rats. Strong tau staining was noted bilaterally in AlCl 3 -treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl 3 -treated rats. Interpretation & conclusions: Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl 3 -treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential

  7. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain.

    Science.gov (United States)

    Choe, Katrina Y; Sanchez, Carlos F; Harris, Neil G; Otis, Thomas S; Mathews, Paul J

    2018-06-01

    Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. Here we utilize a paired optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. We demonstrate with ofMRI, that activating this forelimb motor region of the cerebellar cortex results in functional activation of a variety of forebrain and midbrain areas of the brain, including the hippocampus and primary motor, retrosplenial and anterior cingulate cortices. We further validate these findings using optogenetic stimulation paired with multi-electrode array recordings and post-hoc staining for molecular markers of activated neurons (i.e. c-Fos). Together, these findings demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Intermediate stage of sleep and acute cerveau isolé preparation in the rat.

    Science.gov (United States)

    User, P; Gioanni, H; Gottesmann, C

    1980-01-01

    The acute cerveau isole rat shows spindle bursts of large amplitude alternating with low voltage activity in the frontal cortex and continuous theta rhythm in the dorsal hippocampus. These patterns closely resemble an "intermediate" stage of sleep-waking cycle, when the forebrain structures seem to be functionally disconnected from the brainstem.

  9. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    Science.gov (United States)

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  10. Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain.

    Science.gov (United States)

    Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo

    2014-10-01

    We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.

  11. Expression of glutamic acid decarboxylase and identification of GABAergic cells in the ischemic rat dentate gyrus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Dogonowski, Anne-Marie; Finsen, Bente

    2006-01-01

    We have investigated the glutamic acid dexcarboxylase (GAD) mRNA and protein isoforms as markers for ischemic loss of GABAergic neurons in the dentate hilus. Stereological counts of these neurons were performed in rats surviving 8 days after 10 min of transient forebrain ischemia, and in control...

  12. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  13. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  14. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    Science.gov (United States)

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  15. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Robert Edward Sims

    Full Text Available Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  16. MICROVASCULAR CHANGES IN AGED RAT FOREBRAIN - EFFECTS OF CHRONIC NIMODIPINE TREATMENT

    NARCIS (Netherlands)

    de Jong, Giena; Weerd, H. de; Schuurman, T.; Traber, J.; Luiten, P.G.M.

    1990-01-01

    In the present study the effects of long-term treatment with the 1,4-dihydropyridine calcium antagonist nimodipine on ultrastructural alterations of the microvascular morphology were examined in the frontoparietal cortex, entorhinal cortex and CA1 of the hippocampus in the aged rat. Qualitative

  17. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex

    OpenAIRE

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2015-01-01

    Purpose Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused ...

  18. ECoG sleep-waking rhythms and bodily activity in the cerveau isolé rat.

    Science.gov (United States)

    Nakata, K; Kawamura, H

    1986-01-01

    In rats with a high mesencephalic transection, isolating both the locus coeruleus and raphe nuclei from the forebrain, Electrocorticogram (ECoG) and Electromyogram (EMG) of the neck muscles were continuously recorded. Normal sleep-waking ECoG changes with a significant circadian rhythm reappeared in 4 to 9 days after transection. Neck muscle EMG and bodily movements were independent of the ECoG changes and did not show any significant circadian rhythm. In these high mesencephalic rats with sleep-waking ECoG changes, large bilateral hypothalamic lesions were made by passing DC current either in the preoptic area or in the posterior hypothalamus. After the preoptic area lesions the amount of low voltage fast ECoG per day markedly increased, whereas after the posterior hypothalamic lesions, the total amount of low voltate fast wave per day decreased showing long-lasting slow wave sleep pattern. These results support an idea that the forebrain, especially in the hypothalamus including the preoptic area, a mechanism inducing sleep-waking ECoG changes is localized.

  19. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning.

    Science.gov (United States)

    Iglesias, Sandra; Mathys, Christoph; Brodersen, Kay H; Kasper, Lars; Piccirelli, Marco; den Ouden, Hanneke E M; Stephan, Klaas E

    2013-10-16

    In Bayesian brain theories, hierarchically related prediction errors (PEs) play a central role for predicting sensory inputs and inferring their underlying causes, e.g., the probabilistic structure of the environment and its volatility. Notably, PEs at different hierarchical levels may be encoded by different neuromodulatory transmitters. Here, we tested this possibility in computational fMRI studies of audio-visual learning. Using a hierarchical Bayesian model, we found that low-level PEs about visual stimulus outcome were reflected by widespread activity in visual and supramodal areas but also in the midbrain. In contrast, high-level PEs about stimulus probabilities were encoded by the basal forebrain. These findings were replicated in two groups of healthy volunteers. While our fMRI measures do not reveal the exact neuron types activated in midbrain and basal forebrain, they suggest a dichotomy between neuromodulatory systems, linking dopamine to low-level PEs about stimulus outcome and acetylcholine to more abstract PEs about stimulus probabilities. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin.

    Science.gov (United States)

    do Carmo, J M; da Silva, A A; Sessums, P O; Ebaady, S H; Pace, B R; Rushing, J S; Davis, M T; Hall, J E

    2014-06-01

    We examined whether deficiency of Src homology 2 containing phosphatase (Shp2) signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Forebrain Shp2(-/-) mice were generated by crossing Shp2(flox/flox) mice with CamKIIα-cre mice. At 22-24 weeks of age, the mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic and hyperphagic compared to Shp2(flox/flox) control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15 and 30 °C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2(flox/flox) mice (112±2 vs 113±1 mm Hg and 595±34 vs 650±40 b.p.m.), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin.

  1. Efficient in vivo electroporation of the postnatal rodent forebrain.

    Directory of Open Access Journals (Sweden)

    Camille Boutin

    Full Text Available Functional gene analysis in vivo represents still a major challenge in biomedical research. Here we present a new method for the efficient introduction of nucleic acids into the postnatal mouse forebrain. We show that intraventricular injection of DNA followed by electroporation induces strong expression of transgenes in radial glia, neuronal precursors and neurons of the olfactory system. We present two proof-of-principle experiments to validate our approach. First, we show that expression of a human isoform of the neural cell adhesion molecule (hNCAM-140 in radial glia cells induces their differentiation into cells showing a neural precursor phenotype. Second, we demonstrate that p21 acts as a cell cycle inhibitor for postnatal neural stem cells. This approach will represent an important tool for future studies of postnatal neurogenesis and of neural development in general.

  2. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    Science.gov (United States)

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  3. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Jensen, Majbrit M; Overgaard, Agnete

    2013-01-01

    is not clarified. Tesofensine effectively induces appetite suppression in the diet-induced obese (DIO) rat partially being ascribed to an indirect stimulation of central dopamine receptor function subsequent to blocked dopamine transporter activity. This is interesting, as obese patients have reduced central......Tesofensine is a triple monoamine reuptake inhibitor which inhibits noradrenaline, 5-HT and dopamine reuptake. Tesofensine is currently in clinical development for the treatment of obesity, however, the pharmacological basis for its strong and sustained effects in obesity management...... as compared to age-matched chow-fed rats. DIO rats also exhibited a marked reduction in baseline extracellular dopamine levels in the nucleus accumbens (NAcc) and prefrontal cortex (PFC), as compared to chow-fed rats using microdialysis. While acute administration of tesofensine (2.0mg/kg) normalized accumbal...

  4. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Science.gov (United States)

    McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  5. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Directory of Open Access Journals (Sweden)

    Zofeyah L McBrayer

    Full Text Available To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  6. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  7. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration

    Directory of Open Access Journals (Sweden)

    William Sealy Hambright

    2017-08-01

    Full Text Available Synaptic loss and neuron death are the underlying cause of neurodegenerative diseases such as Alzheimer's disease (AD; however, the modalities of cell death in those diseases remain unclear. Ferroptosis, a newly identified oxidative cell death mechanism triggered by massive lipid peroxidation, is implicated in the degeneration of neurons populations such as spinal motor neurons and midbrain neurons. Here, we investigated whether neurons in forebrain regions (cerebral cortex and hippocampus that are severely afflicted in AD patients might be vulnerable to ferroptosis. To this end, we generated Gpx4BIKO mouse, a mouse model with conditional deletion in forebrain neurons of glutathione peroxidase 4 (Gpx4, a key regulator of ferroptosis, and showed that treatment with tamoxifen led to deletion of Gpx4 primarily in forebrain neurons of adult Gpx4BIKO mice. Starting at 12 weeks after tamoxifen treatment, Gpx4BIKO mice exhibited significant deficits in spatial learning and memory function versus Control mice as determined by the Morris water maze task. Further examinations revealed that the cognitively impaired Gpx4BIKO mice exhibited hippocampal neurodegeneration. Notably, markers associated with ferroptosis, such as elevated lipid peroxidation, ERK activation and augmented neuroinflammation, were observed in Gpx4BIKO mice. We also showed that Gpx4BIKO mice fed a diet deficient in vitamin E, a lipid soluble antioxidant with anti-ferroptosis activity, had an expedited rate of hippocampal neurodegeneration and behavior dysfunction, and that treatment with a small-molecule ferroptosis inhibitor ameliorated neurodegeneration in those mice. Taken together, our results indicate that forebrain neurons are susceptible to ferroptosis, suggesting that ferroptosis may be an important neurodegenerative mechanism in diseases such as AD. Keywords: Ferroptosis, Neurodegeneration, Cognitive impairment, Alzheimer's disease, Glutathione peroxidase 4, Transgenic mice

  8. Inhibitory Effects of Edaravone in β-Amyloid-Induced Neurotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Feng He

    2014-01-01

    Full Text Available Amyloid protein can damage nerve cells through a variety of biological mechanisms including oxidative stress, alterations in calcium homeostasis, and proapoptosis. Edaravone, a potent free radical scavenger possessing antioxidant effects, has been proved neuroprotective effect in stroke patients. The current study aimed to investigate the effects of EDA in an Aβ-induced rat model of AD, by studying Aβ1–40-induced voltage-gated calcium channel currents in hippocampal CA1 pyramidal neurons, learning and memory behavioral tests, the number of surviving cholinergic neurons in the basal forebrain, and the acetylcholine level in the hippocampus in this rat model of AD. The results showed that the Aβ1–40-induced increase of ICa can be inhibited by EDA in a dose-dependent manner. Treatment with EDA significantly improved Aβ1–40-induced learning and memory performance. Choline acetyltransferase positive cells in basal forebrain and acetylcholine content in the hippocampus were increased by the administration of EDA as compared with the non-EDA treated Aβ1–40 group. These results demonstrate that EDA can inhibit the neurotoxic effect of Aβ toxicity. Collectively, these findings suggest that EDA may serve as a potential complemental treatment strategy for AD.

  9. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain

    Directory of Open Access Journals (Sweden)

    Kim Jong H

    2011-05-01

    Full Text Available Abstract Background In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. Results In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192 and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p. We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. Conclusions The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.

  10. Locomotor activity and catecholamine receptor binding in adult normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hellstrand, K.; Engel, J.

    1980-01-01

    The binding of 3 H-WB 4101, an α 1 -adrenoceptor antagonist, the membranes of the cerebral cortex, the hypothalamus, and the lower brainstem was examined in adult spontaneously hypertensive (SH) rats and in normotensive Wistar Kyoto (WK) controls. The specific binding of 3 H-WB 4101 (0.33 nM) was significantly higher in homogenates from the cerebral cortex of SH rats as compared to WK rats. No differences were detected between SH and WK rats in the specific binding of 3 H-spiroperidol (0.25 nM), a dopamine receptor antagonist, to membranes from the corpus striatum and the limbic forebrain. The locomotor activity was significantly higher in SH rats as compared to WK controls, in all probability due to a lack of habituation to environmental change. It is suggested that the high reactivity of SH rats is related to a disfunction in the noradrenergic neurons in the central nervous system. (author)

  11. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB 1 receptor antagonist AM251, but not with the selective CB 2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB 1 receptor, but not by the CB 2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB 1 receptor, but not by the CB 2 receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB 1 receptors

  12. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    Science.gov (United States)

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  13. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  14. Magnesium chloride alone or in combination with diazepam fails to prevent hippocampal damage following transient forebrain ischemia

    Directory of Open Access Journals (Sweden)

    H. Milani

    1999-10-01

    Full Text Available In the central nervous system, magnesium ion (Mg2+ acts as an endogenous modulator of N-methyl-D-aspartate (NMDA-coupled calcium channels, and may play a major role in the pathomechanisms of ischemic brain damage. In the present study, we investigated the effects of magnesium chloride (MgCl2, 2.5, 5.0 or 7.5 mmol/kg, either alone or in combination with diazepam (DZ, on ischemia-induced hippocampal cell death. Male Wistar rats (250-300 g were subjected to transient forebrain ischemia for 15 min using the 4-vessel occlusion model. MgCl2 was applied systemically (sc in single (1x, 2 h post-ischemia or multiple doses (4x, 1, 2, 24 and 48 h post-ischemia. DZ was always given twice, at 1 and 2 h post-ischemia. Thus, ischemia-subjected rats were assigned to one of the following treatments: vehicle (0.1 ml/kg, N = 34, DZ (10 mg/kg, N = 24, MgCl2 (2.5 mmol/kg, N = 10, MgCl2 (5.0 mmol/kg, N = 17, MgCl2 (7.5 mmol/kg, N = 9 or MgCl2 (5 mmol/kg + DZ (10 mg/kg, N = 14. Seven days after ischemia the brains were analyzed histologically. Fifteen minutes of ischemia caused massive pyramidal cell loss in the subiculum (90.3% and CA1 (88.4% sectors of the hippocampus (P0.05. Both DZ alone and DZ + MgCl2 reduced rectal temperature significantly (P<0.05. No animal death was observed after drug treatment. These data indicate that exogenous magnesium, when administered systemically post-ischemia even in different multiple dose schedules, alone or with diazepam, is not useful against the histopathological effects of transient global cerebral ischemia in rats.

  15. Destruction of the medial forebrain bundle caudal to the site of stimulation reduces rewarding efficacy but destruction rostrally does not.

    Science.gov (United States)

    Gallistel, C R; Leon, M; Lim, B T; Sim, J C; Waraczynski, M

    1996-08-01

    Rats with an electrode in the medial forebrain bundle (MFB) in or near the ventral tegmental area and another at the level of the rostral hypothalamus sustained large electrolytic lesions at either the rostral or the caudal electrode. The rewarding efficacy of stimulation through the other electrode was determined before and after the lesion. Massive damage to the MFB in the rostral lateral hypothalamus (LH) generally had little effect on the rewarding efficacy of more caudal stimulation, whereas large lesions in the caudal MFB generally reduced the rewarding efficacy of LH stimulation by 35-60%. Similar reductions were produced by knife cuts in the caudal MFB. These results appear to be inconsistent with the hypothesis that the reward fibers consist either of descending or ascending fibers coursing in or near the MFB. It is suggested that the reward fibers are collaterals from neurons with both their somata and their behaviorally significant terminals located primarily in the midbrain.

  16. Receptor macroautoradiography of 3H-spiroperidol binding in rat brain

    International Nuclear Information System (INIS)

    Mori, Hirofumi; Shiba, Kazuhiro; Tsuji, Shiro; Matsuda, Hiroshi; Hisada, Kinichi; Kojima, Kazuhiko

    1985-01-01

    The kinetic and pharmacological characteristics of 3 H-spiroperidol binding sites were studied in slide mounted sections of rat forebrain, and optical binding conditions were defined. Using the receptor macroautoradiographic techniques with tritium-sensitive LKB sheet film, the distribution of dopamine (D 2 ) receptor was determined in slices including striatum of rat brain. The autoradiograms were analyzed using Video Digitizer System combined with video camera and minicomputer, and the subtraction images were obtained. These studies suggest that this quantitative receptor macroautoradiography might be useful in the explanation of etiology in the field of neuro-psychiatric diseases and the fundamental studies of positron emission computed tomography, since this method has several advantages over in vivo autoradiography and in vitro receptor assay. (author)

  17. Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections.

    Directory of Open Access Journals (Sweden)

    Veronica Bianchi

    Full Text Available The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.

  18. Plasticity and constraints on social evolution in African mole-rats: ultimate and proximate factors.

    Science.gov (United States)

    Faulkes, Chris G; Bennett, Nigel C

    2013-05-19

    Here, we review comparative studies of African mole-rats (family Bathyergidae) to explain how constraints acting at the ultimate (environmental) and proximate (organismal) levels have led to convergent gains and losses of sociality within this extensive adaptive radiation of subterranean rodents endemic to sub-Saharan Africa. At the ultimate level, living in environments that range from mesic through to arid has led to both variation and flexibility in social organization among species, culminating in the pinnacle of social evolution in the eusocial naked and Damaraland mole-rats (Heterocephalus glaber and Fukomys damarensis). The common mole-rat (Cryptomys hottentotus) provides a model example of how plasticity in social traits exists within a single species inhabiting areas with different ecological constraint. At the proximate level, reproductive strategies and cooperative breeding may be constrained by the correlated evolution of a suite of traits including physiological suppression of reproduction, the development of physiological and morphological castes, and the mode of ovulatory control and seasonality in breeding. Furthermore, recent neurobiological advances indicate that differential patterns of neurotransmitter expression within the forebrain may underpin (and limit) either a solitary or group living/cooperative lifestyle not only in mole-rats, but also more widely among disparate mammalian taxa.

  19. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    Directory of Open Access Journals (Sweden)

    Rongfeng Hu

    2016-10-01

    Full Text Available The basal forebrain cholinergic system (BFCS robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum (LS, central amygdala (CeA, paraventricular nucleus of hypothalamus (PVH, dorsal raphe (DRN and parabrachial nucleus (PBN. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal-hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function.

  20. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.

    Science.gov (United States)

    Reyes, Beverly A S; Van Bockstaele, Elisabeth J

    2006-10-30

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions.

  1. Effect of time period after boric acid injection on {sup 10}B absorption in different regions of adult male rat's brain

    Energy Technology Data Exchange (ETDEWEB)

    Baghban Khojasteh, Nasrin, E-mail: khojasteh.nasrin@gmail.com [Nuclear Engineering Department, Science and Research Branch, Islamic Azad University, Poonak Sq. PO Box 14515-775, Tehran (Iran, Islamic Republic of); Pazirandeh, Ali [Nuclear Engineering Department, Science and Research Branch, Islamic Azad University, Poonak Sq. PO Box 14515-775, Tehran (Iran, Islamic Republic of); Jameie, Behnam [Nuclear Engineering Department, Science and Research Branch, Islamic Azad University, Poonak Sq. PO Box 14515-775, Tehran (Iran, Islamic Republic of); Laboratory of Basic Science and Neuroscience, Basic Science Dept, Faculty of Allied Medicine, Cellular and Molecular Research Center, Tehran University of Medical Science, Pardis-e-Hemmat,Tehran (Iran, Islamic Republic of); Goodarzi, Samereh [Nuclear Engineering Department, Science and Research Branch, Islamic Azad University, Poonak Sq. PO Box 14515-775, Tehran (Iran, Islamic Republic of)

    2012-06-15

    Distribution of {sup 10}B in different regions of rat normal brain was studied. Two groups were chosen as control and trial. Trial group received 2 ml of neutral boron compound. 2, 4 and 6 h after the injection brain removed, coronal sections of forebrain, midbrain and hindbrain were sandwiched between two pieces of polycarbonate. Autoradiography plots of {sup 10}B distribution showed significant differences in three regions with the highest {sup 10}B concentration in the forebrain during 4 h after injection. - Highlights: Black-Right-Pointing-Pointer Normal tissue tolerance is very important in BNCT. Black-Right-Pointing-Pointer This study has been done to determine {sup 10}B distribution in three anatomical regions of rat normal brain. Black-Right-Pointing-Pointer These specific regions of brain have not been studied in previous BNCT projects. Black-Right-Pointing-Pointer We found significant differences in {sup 10}B distribution between these three regions. Black-Right-Pointing-Pointer In different time periods after neutral boron compound injection, there has been a significant difference in boron absorption.

  2. Videofluorographic assessment of deglutitive behaviors in a rat model of aging and Parkinson disease

    Science.gov (United States)

    Russell, John A.; Ciucci, Michelle R.; Hammer, Michael J.; Connor, Nadine P.

    2012-01-01

    Dysphagia is commonly associated with aging and Parkinson disease and can have a significant impact on a person’s quality of life. In some cases, dysphagia may be life threatening. Animal models may be used to study underlying mechanisms of dysphagia, but paradigms that allow adequate imaging of the swallow in combination with measurement of physiological variables have not been forthcoming. To begin development of methods that allow this, we used videofluorography to record the deglutition behaviors of 22 Fischer 344-Brown Norway rats in young adult (9 months old), old (32 months old), and parkinsonian (unilateral lesion to the medial forebrain bundle) groups. We hypothesized that the old and parkinsonian rats would manifest deficits in deglutition behaviors analogous to those found in human clinical populations. Our results supported our hypotheses in that the old group demonstrated reductions in bolus transport speeds and mastication rate, while the parkinsonian rats showed impairments in oral processing. Interpretation of these results should consider the particular animal model, lesion type and videoflurographic protocol used in this work. Future studies will link swallow imaging data of this kind with physiological and anatomical data in a manner not possible with human participants. PMID:22763806

  3. Videofluorographic assessment of deglutitive behaviors in a rat model of aging and Parkinson disease.

    Science.gov (United States)

    Russell, John A; Ciucci, Michelle R; Hammer, Michael J; Connor, Nadine P

    2013-03-01

    Dysphagia is commonly associated with aging and Parkinson disease and can have a significant impact on a person's quality of life. In some cases, dysphagia may be life-threatening. Animal models may be used to study underlying mechanisms of dysphagia, but paradigms that allow adequate imaging of the swallow in combination with measurement of physiological variables have not been forthcoming. To begin development of methods that allow this, we used videofluorography to record the deglutition behaviors of 22 Fisher 344/Brown Norway rats in young adult (9 months old), old (32 months old), and parkinsonian (unilateral lesion to the medial forebrain bundle) groups. We hypothesized that the old and parkinsonian rats would manifest deficits in deglutition behaviors analogous to those found in human clinical populations. Our results supported our hypothesis in that the old group demonstrated reductions in bolus transport speeds and mastication rate while the parkinsonian rats showed impairments in oral processing. Interpretation of these results should consider the particular animal model, lesion type, and videofluorographic protocol used in this work. Future studies will link swallow imaging data of this kind with physiological and anatomical data in a manner not possible with human participants.

  4. The autism-associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain.

    Science.gov (United States)

    Peng, Y; Lu, Z; Li, G; Piechowicz, M; Anderson, M; Uddin, Y; Wu, J; Qiu, S

    2016-07-01

    The human MET gene imparts a replicated risk for autism spectrum disorder (ASD), and is implicated in the structural and functional integrity of brain. MET encodes a receptor tyrosine kinase, MET, which has a pleiotropic role in embryogenesis and modifies a large number of neurodevelopmental events. Very little is known, however, on how MET signaling engages distinct cellular events to collectively affect brain development in ASD-relevant disease domains. Here, we show that MET protein expression is dynamically regulated and compartmentalized in developing neurons. MET is heavily expressed in neuronal growth cones at early developmental stages and its activation engages small GTPase Cdc42 to promote neuronal growth, dendritic arborization and spine formation. Genetic ablation of MET signaling in mouse dorsal pallium leads to altered neuronal morphology indicative of early functional maturation. In contrast, prolonged activation of MET represses the formation and functional maturation of glutamatergic synapses. Moreover, manipulating MET signaling levels in vivo in the developing prefrontal projection neurons disrupts the local circuit connectivity made onto these neurons. Therefore, normal time-delimited MET signaling is critical in regulating the timing of neuronal growth, glutamatergic synapse maturation and cortical circuit function. Dysregulated MET signaling may lead to pathological changes in forebrain maturation and connectivity, and thus contribute to the emergence of neurological symptoms associated with ASD.

  5. Passive immunization of fetal rats with antiserum to luteinizing hormone-releasing hormone (LHRH) or transection of the central roots of the nervus terminalis does not affect rat pups' preference for home nest.

    Science.gov (United States)

    Schwanzel-Fukuda, M; Pfaff, D W

    1987-01-01

    Luteinizing hormone-releasing hormone (LHRH) is found immunocytochemically in cell bodies and fibers of the nervus terminalis, a cranial nerve which courses from the nasal septum through the cribriform plate of the ethmoid bone (medial to the olfactory and vomeronasal nerves) and enters the forebrain, caudal to the olfactory bulbs. Immunoreactive LHRH is first detected in the nervus terminalis of the fetal rat at 15 days of gestation, preceding its detection by immunocytochemistry in any other area of the brain, including the median eminence, and preceding detection of immunoreactive luteinizing hormone (LH) in the anterior pituitary. During development of the rat fetus, the nervus terminalis is the principal source of LHRH in the nervous system from days 15 through 19 of a 21 day gestation period. We tested the notion that the LHRH system of the nervus terminalis is important for olfactory performance by examining the effects of administration of antisera to LHRH during fetal development (versus saline controls), or medial olfactory peduncle transections, in the neonatal rat, which would sever the central projections of the nervus terminalis (versus lateral peduncle transection, complete transection of the olfactory peduncles and the central nervus terminalis or controls) on preferences of rat pups for home nest. The hypothesis that LHRH is important for this chemosensory response was not confirmed. Neither antisera to LHRH nor medical olfactory peduncle transection disrupted preference for home shavings. Only complete olfactory peduncle transection had a significant effect compared to unoperated and sham-operated controls.

  6. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats.

    Science.gov (United States)

    Maniscalco, James W; Zheng, Huiyuan; Gordon, Patrick J; Rinaman, Linda

    2015-07-29

    Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast "silences" GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress. The results from this study reveal a potential central mechanism for the "metabolic tuning" of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats, reduces or blocks the ability of

  7. Neuropeptide Y in the forebrain of the adult male cichlid fish Oreochromis mossambicus: distribution, effects of castration and testosterone replacement.

    Science.gov (United States)

    Sakharkar, Amul J; Singru, Praful S; Sarkar, Koustav; Subhedar, Nishikant K

    2005-08-22

    We studied the organization of the neuropeptide Y (NPY)-immunoreactive system in the forebrain of adult male cichlid fish Oreochromis mossambicus and its response to castration and testosterone replacement by using morphometric methods. Immunoreactivity for NPY was widely distributed in the forebrain, and the pattern generally resembled that in other teleosts. Whereas immunoreactivity was conspicuous in the ganglia of nervus terminalis (NT; or nucleus olfactoretinalis), a weak reaction was detected in some granule cells in the olfactory bulb and in the cells of area ventralis telencephali pars lateralis (Vl). Moderately to intensely immunoreactive cells were distinctly seen in the nucleus entopeduncularis (NE), nucleus preopticus (NPO), nucleus lateralis tuberis (NLT), paraventricular organ (PVO), and midbrain tegmentum (MT). NPY fibers were widely distributed in the forebrain. Castration for 10/15 days resulted in a drastic loss of immunoreactivity in the cells of NE (P<0.001) and a significant decrease (P<0.01) in their cell nuclear size. However, cell nuclei of the NT neurons showed a significant increase in size. A highly significant reduction in the NPY-immunoreactive fiber density (P<0.001) was observed in several areas of the forebrain. Although testosterone replacement reversed these changes, fibers in some areas showed supranormal responses. Immunoreactive cells in Vl, NPO, NLT, PVO, and MT and fiber density in some other areas did not respond to castration. We suggest that the NPY-immunoreactive elements that respond to castration and testosterone replacement may serve as the substrate for processing the positive feedback action of the steroid hormone. (c) 2005 Wiley-Liss, Inc.

  8. Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation

    NARCIS (Netherlands)

    Zant, J.C.; Leenaars, C.H.; Kostin, A.; van Someren, E.J.W.; Porrka-Heiskanen, T.

    2011-01-01

    The basal forebrain (BF) is an important mediator of cortical arousal, which is innervated by all ascending arousal systems. During sleep deprivation (SD) a site-specific accumulation of sleep factors in the BF results in increased sleep pressure (Kalinchuk et al., 2006; Porkka-Heiskanen et al.,

  9. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Science.gov (United States)

    Yu, Yu-Wen; Hsueh, Shih-Chang; Lai, Jing-Huei; Chen, Yen-Hua; Kang, Shuo-Jhen; Hsieh, Tsung-Hsun; Hoffer, Barry J.; Li, Yazhou; Greig, Nigel H.; Chiang, Yung-Hsiao

    2018-01-01

    In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP) was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA) hemi-parkinsonian (PD) rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c.) using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB). The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA) lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development. PMID:29641447

  10. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Directory of Open Access Journals (Sweden)

    Yu-Wen Yu

    2018-04-01

    Full Text Available In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA hemi-parkinsonian (PD rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c. using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB. The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development.

  11. The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain

    DEFF Research Database (Denmark)

    Leone, Dino P; Srinivasan, Karpagam; Brakebusch, Cord

    2010-01-01

    family member, Cdc42, affects the polarity and proliferation of radial glial cells in the VZ. Here, we show that another family member, Rac1, is required for the normal proliferation and differentiation of SVZ progenitors and for survival of both VZ and SVZ progenitors. A forebrain-specific loss of Rac1...... leads to an SVZ-specific reduction in proliferation, a concomitant increase in cell cycle exit, and premature differentiation. In Rac1 mutants, the SVZ and VZ can no longer be delineated, but rather fuse to become a single compact zone of intermingled cells. Cyclin D2 expression, which is normally...... expressed by both VZ and SVZ progenitors, is reduced in Rac1 mutants, suggesting that the mutant cells differentiate precociously. Rac1-deficient mice can still generate SVZ-derived upper layer neurons, indicating that Rac1 is not required for the acquisition of upper layer neuronal fates, but instead...

  12. Neuroregulatory and neuroendocrine GnRH pathways in the hypothalamus and forebrain of the baboon.

    Science.gov (United States)

    Marshall, P E; Goldsmith, P C

    1980-07-14

    The distribution of neurons containing gonadotropin-releasing hormone (GnRH) in the baboon hypothalamus and forebrain was studied immunocytochemically by light and electron microscopy. GnRH was present in the perikarya, axonal and dendritic processes of immunoreactive neurons. Three populations of GnRH neurons could be distinguished. Most of the GnRH neurons which are assumed to directly influence the anterior pituitary were in the medial basal hypothalamus. Other cells that projected to the median eminence were found scattered throughout the hypothalamus. A second, larger population of neurons apparently was not involved with control of the anterior pituitary. These neurons were generally found within afferent and efferent pathways of the hypothalamus and forebrain, and may receive external information affecting reproduction. A few neurons projecting to the median eminence were also observed sending collaterals to other brain areas. Thus, in addition to their neuroendocrine role, these cells possibly have neuroregulatory functions. The inference is made that these bifunctional neurons, together with the widely observed GnRH-GnRH cellular interactions may help to synchronize ovulation and sexual behavior.

  13. Long-term exposure to xenoestrogens alters some brain monoamines and both serum thyroid hormones and cortisol levels in adult male rats

    Directory of Open Access Journals (Sweden)

    Nashwa M. Saied

    2014-10-01

    Full Text Available The present study was designed to examine the effect of long-term treatment with the phytoestrogen soy isoflavone [(SIF; 43 mg/kg body weight/day] and/or the plastics component bisphenol-A [(BPA; 3 mg/kg body weight/day] on some monoamines in the forebrain and both serum thyroid hormones and cortisol levels of adult rats. Significant increases in serotonin (5-HT and norepinephrine (NE level, and significant decreases in 5-hydroxyindoleacetic acid (5-HIAA level and 5-HIAA/5-HT ratio, were observed after treatment with SIF or BPA. Level of dopamine (DA was increased in SIF-treated group and decreased in BPA-treated group. Activity of monoamine oxidase (MAO was decreased in all treated groups. The level of serum thyroid hormones (fT3 and fT4 was increased after treatment with SIF and decreased after exposure to BPA, while cortisol level was increased in all treated groups. It may be concluded that long-term exposure to SIF or BPA disrupts monoamine levels in the forebrain of adult rats through alteration in the metabolic pathways of amines and disorders of thyroid hormones and cortisol levels.

  14. Development of rat telencephalic neurons after prenatal x-irradiation

    International Nuclear Information System (INIS)

    Norton, S.

    1979-01-01

    Telencephalic neurons of rats, irradiated at day 15 of gestation with 125 R, develop synaptic connections on dendrites during maturation which appear to be normal spines in Golgi-stained light microscope preparations. At six weeks of postnatal age both control and irradiated rats have spiny dendritic processes on cortical pyramidal cells and caudate Golgi type II neurons. However, when the rats are 6 months old the irradiated rats have more neurons with beaded dendritic processes that lack spines or neurons and are likely to be degenerating neurons. The apparently normal development of the neurons followed by degeneration in the irradiated rat has a parallel in previous reports of the delayed hyperactivity which develops in rats irradiated on the fifteenth gestational day

  15. The effect of high mesencephalic transection (cerveau isolé) and pentobarbital on basal forebrain mechanisms of EEG synchronization.

    Science.gov (United States)

    Obál, F; Benedek, G; Szikszay, M; Obál, F

    1979-01-01

    A study was made of the effects of high mesencephalic transection (cerveau isolé) and low doses of pentobarbital on the cortical synchronizations elicited in acute immobilized cats by (a) low frequency stimulation of the lateral hypothalamus (HL) and nucleus ventralis anterior thalami (VA) and (b) by low and high frequency stimulation of the laterobasal preoptic region (RPO) and olfactory tubercle (TbOf). The results obtained were as follows: (1) The synchronizations induced by basal forebrain stimulations were found to survive in acute cerveau isolé cats, moreover, even a facilitation of the synchronizing effect were observed. (2) A gradual facilitation was observed upon TbOf and RPO stimulation, while in the case of VA and HL stimulations, the facilitation appeared immediately after the transection. (3) Low doses of pentobarbital depressed the cortical effects of TbOf stimulation, while an increase of the synchronizing effect of low frequency VA and HL stimulation was found. The observations suggested that (i) the synchronizing mechanism in the ventral part of the basal forebrain (RPO and TbOf) differs from that of the thalamus and HL; (ii) the basal forebrain synchronizing mechanism is effective without the contribution of the brain stem; (iii) the mechanism responsible for the synchronizing effect of low frequency HL stimulation is similar as that described for the thalamus.

  16. Wistar-Kyoto Female Rats Are More Susceptible to Develop Sugar Binging: A Comparison with Wistar Rats

    Directory of Open Access Journals (Sweden)

    Helena Papacostas-Quintanilla

    2017-05-01

    Full Text Available The hedonic component of the feeding behavior involves the mesolimbic reward system and resembles addictions. Nowadays, the excessive consumption of sucrose is considered addictive. The Wistar-Kyoto (WKY rat strain is prone to develop anxiety and addiction-like behavior; nevertheless, a lack of information regarding their vulnerability to develop sugar binging-like behavior (SBLB and how it affects the reward system persist. Therefore, the first aim of the present study was to compare the different predisposition of two rat strains, Wistar (W and WKY to develop the SBLB in female and male rats. Also, we studied if the SBLB-inducing protocol produces changes in anxiety-like behavior using the plus-maze test (PMT and, analyzed serotonin (5-HT and noradrenaline (NA concentrations in brain areas related to anxiety and ingestive behavior (brain stem, hypothalamus, nucleus accumbens, and amygdala. Finally, we evaluated whether fluoxetine, a drug that has been effective in reducing the binge-eating frequency, body weight, and severity of binge eating disorder, could also block this behavior. Briefly, WKY and W female rats were exposed to 30% sucrose solution (2 h, 3 days/week for 4 weeks, and fed up ad libitum. PMT was performed between the last two test periods. Immediately after the last test where sucrose access was available, rats were decapitated and brain areas extracted for high-performance liquid chromatography analysis. The results showed that both W and WKY female and male rats developed the SBLB. WKY rats consumed more calories and ingested a bigger amount of sucrose solution than their W counterpart. This behavior was reversed by using fluoxetine, rats exposed to the SBLB-inducing protocol presented a rebound effect during the washout period. On female rats, the SBLB-inducing protocol induced changes in NA concentrations on WKY, but not on W rats. No changes were found in 5-HT levels. Finally, animals that developed SBLB showed increased

  17. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    Science.gov (United States)

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  18. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration

    OpenAIRE

    McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not ...

  19. Visceral hyperalgesia induced by forebrain-specific suppression of native Kv7/KCNQ/M-current in mice

    Directory of Open Access Journals (Sweden)

    Bian Xiling

    2011-10-01

    Full Text Available Abstract Background Dysfunction of brain-gut interaction is thought to underlie visceral hypersensitivity which causes unexplained abdominal pain syndromes. However, the mechanism by which alteration of brain function in the brain-gut axis influences the perception of visceral pain remains largely elusive. In this study we investigated whether altered brain activity can generate visceral hyperalgesia. Results Using a forebrain specific αCaMKII promoter, we established a line of transgenic (Tg mice expressing a dominant-negative pore mutant of the Kv7.2/KCNQ2 channel which suppresses native KCNQ/M-current and enhances forebrain neuronal excitability. Brain slice recording of hippocampal pyramidal neurons from these Tg mice confirmed the presence of hyperexcitable properties with increased firing. Behavioral evaluation of Tg mice exhibited increased sensitivity to visceral pain induced by intraperitoneal (i.p. injection of either acetic acid or magnesium sulfate, and intracolon capsaicin stimulation, but not cutaneous sensation for thermal or inflammatory pain. Immunohistological staining showed increased c-Fos expression in the somatosensory SII cortex and insular cortex of Tg mice that were injected intraperitoneally with acetic acid. To mimic the effect of cortical hyperexcitability on visceral hyperalgesia, we injected KCNQ/M channel blocker XE991 into the lateral ventricle of wild type (WT mice. Intracerebroventricular injection of XE991 resulted in increased writhes of WT mice induced by acetic acid, and this effect was reversed by co-injection of the channel opener retigabine. Conclusions Our findings provide evidence that forebrain hyperexcitability confers visceral hyperalgesia, and suppression of central hyperexcitability by activation of KCNQ/M-channel function may provide a therapeutic potential for treatment of abdominal pain syndromes.

  20. Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis

    Directory of Open Access Journals (Sweden)

    Cremer Harold

    2011-04-01

    Full Text Available Abstract Background Postnatal olfactory bulb (OB neurogenesis involves the generation of granule and periglomerular cells by neural stem cells (NSCs located in the walls of the lateral ventricle (LV. Recent studies show that NSCs located in different regions of the LV give rise to different types of OB neurons. However, the molecular mechanisms governing neuronal specification remain largely unknown and new methods to approach these questions are needed. Results In this study, we refine electroporation of the postnatal forebrain as a technique to perform precise and accurate delivery of transgenes to NSCs located in distinct walls of the LV in the mouse. Using this method, we confirm and expand previous studies showing that NSCs in distinct walls of the LV produce neurons that invade different layers of the OB. Fate mapping of the progeny of radial glial cells located in these distinct LV walls reveals their specification into defined subtypes of granule and periglomerular neurons. Conclusions Our results provide a baseline with which future studies aiming at investigating the role of factors in postnatal forebrain neuronal specification can be compared. Targeted electroporation of defined LV NSC populations will prove valuable to study the genetic factors involved in forebrain neuronal specification.

  1. Expression and location of α-fetoprotein during rat colon development

    Science.gov (United States)

    Liu, Xiao-Yan; Dong, Dan; Sun, Peng; Du, Jun; Gu, Luo; Ge, Ying-Bin

    2009-01-01

    AIM: To investigate the expression of α-fetoprotein (AFP), a cancer-associated fetal glycoprotein, and its involvement during rat colon development. METHODS: Colons from Sprague-Dawley rat fetuses, young and adult (8 wk old) animals were used in this study. Expression levels of AFP in colons of different development stage were detected by reverse-transcriptase PCR (RT-PCR) and Western blotting. To identify the cell location of AFP in the developing rat colons, double-immunofluorescent staining was performed using antibodies to specific cell markers and AFP, respectively. RESULTS: The highest levels of AFP mRNA were detected in colons of rats at embryonic day 18.5 (e18.5). Compared to e18.5 d, the AFP expression was significantly decreased during rat development [85% for e20.5, P colon from the embryo to the weaning stage by immunofluorescence and presents 72-kDa isoform in the developing rat colons by Western blotting. The dynamic expression of AFP in the various developmental stages of the colon indicates that AFP might be involved in many aspects of colon development. PMID:19360917

  2. Understanding the cognitive impact of the contraceptive estrogen Ethinyl Estradiol: tonic and cyclic administration impairs memory, and performance correlates with basal forebrain cholinergic system integrity.

    Science.gov (United States)

    Mennenga, Sarah E; Gerson, Julia E; Koebele, Stephanie V; Kingston, Melissa L; Tsang, Candy W S; Engler-Chiurazzi, Elizabeth B; Baxter, Leslie C; Bimonte-Nelson, Heather A

    2015-04-01

    Ethinyl Estradiol (EE), a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives, and is found in at least 30 different contraceptive formulations currently prescribed to women as well as hormone therapies prescribed to menopausal women. Thus, EE is prescribed clinically to women at ages ranging from puberty to reproductive senescence. Here, in two separate studies, the cognitive effects of cyclic or tonic EE administration following ovariectomy (Ovx) were evaluated in young female rats. Study I assessed the cognitive effects of low and high doses of EE, delivered tonically via a subcutaneous osmotic pump. Study II evaluated the cognitive effects of low, medium, and high doses of EE administered via a daily subcutaneous injection, modeling the daily rise and fall of serum EE levels with oral regimens. Study II also investigated the impact of low, medium and high doses of EE on the basal forebrain cholinergic system. The low and medium doses utilized here correspond to the range of doses currently used in clinical formulations, and the high dose corresponds to doses prescribed to a generation of women between 1960 and 1970, when oral contraceptives first became available. We evaluate cognition using a battery of maze tasks tapping several domains of spatial learning and memory as well as basal forebrain cholinergic integrity using immunohistochemistry and unbiased stereology to estimate the number of choline acetyltransferase (ChAT)-producing cells in the medial septum and vertical/diagonal bands. At the highest dose, EE treatment impaired multiple domains of spatial memory relative to vehicle treatment, regardless of administration method. When given cyclically at the low and medium doses, EE did not impact working memory, but transiently impaired reference memory during the learning phase of testing. Of the doses and regimens tested here, only EE at the highest dose impaired several domains of memory

  3. Melanin-concentrating hormone: unique peptide neuronal systems in the rat brain and pituitary gland

    International Nuclear Information System (INIS)

    Zamir, N.; Skofitsch, G.; Bannon, M.J.; Jacobowitz, D.M.

    1986-01-01

    A unique neuronal system was detected in the rat central nervous system by immunohistochemistry and radioimmunoassay with antibodies to salmon melanin-concentrating hormone (MCH). MCH-like immunoreactive (MCH-LI) cell bodies were confined to the hypothalamus. MCH-LI fibers were found throughout the brain but were most prevalent in hypothalamus, mesencephalon, and pons-medulla regions. High concentrations of MCH-LI were measured in the hypothalamic medial forebrain bundle (MFB), posterior hypothalamic nucleus, and nucleus of the diagonal band. Reversed-phase high-performance liquid chromatography of MFB extracts from rat brain indicate that MCH-like peptide from the rat has a different retention time than that of the salmon MCH. An osmotic stimuls (2% NaCl as drinking water for 120 hr) caused a marked increase in MCH-LI concentrations in the lateral hypothalamus and neurointermediate lobe. The present studies establish the presence of MCH-like peptide in the rat brain. The MCH-LI neuronal system is well situated to coordinate complex functions such as regulation of water intake

  4. 7-[3-(4-[2,3-dimethylphenyl]piperazinyl)propoxy]-2 (1H)-quinolinone (OPC-4392), a presynaptic dopamine autoreceptor agonist and postsynaptic D2 receptor antagonist

    International Nuclear Information System (INIS)

    Yasuda, Y.; Kikuchi, T.; Suzuki, S.; Tsutsui, M.; Yamada, K.; Hiyama, T.

    1988-01-01

    The assertion that OPC-4392 acts as an agonist at presynaptic dopamine autoreceptors is supported by the following behavioral and biochemical observations: OPC-4392, 3-PPP and apomorphine inhibited the reserpine-induced increase in DOPA accumulation in the forebrain of mice and in the frontal cortex, limbic forebrain and striatum of rats. In addition, the gamma-butyrolactone (GBL)-induced increase in DOPA accumulation in the mouse forebrain was also inhibited by OPC-4392, 3-PPP and apomorphine. The inhibitory effect of OPC-4392 on GBL-induced DOPA accumulation lasted for at least 8 hours after oral administration to mice, while that of 3-PPP and apomorphine disappeared in 4 hours after subcutaneous injection. OPC-4392 failed to increase spontaneous motor activity in reserpinized mice, enhance spontaneous ipsilateral rotation in rats with unilateral striatal kainic acid (KA) lesions, induce contralateral rotation in rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesions and inhibit 14 C-acetylcholine (Ach) release stimulated by 20 mM KCl in rat striatal slices

  5. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    OpenAIRE

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  6. Diverse Roads to Relapse: A Discriminative Cue Signaling Cocaine Availability Is More Effective in Renewing Cocaine Seeking in Goal Trackers Than Sign Trackers and Depends on Basal Forebrain Cholinergic Activity.

    Science.gov (United States)

    Pitchers, Kyle K; Phillips, Kyra B; Jones, Jonte L; Robinson, Terry E; Sarter, Martin

    2017-07-26

    Stimuli associated with taking drugs are notorious instigators of relapse. There is, however, considerable variation in the motivational properties of such stimuli, both as a function of the individual and the nature of the stimulus. The behavior of some individuals (sign trackers, STs) is especially influenced by cues paired with reward delivery, perhaps because they are prone to process information via dopamine-dependent, cue-driven, incentive salience systems. Other individuals (goal trackers, GTs) are better able to incorporate higher-order contextual information, perhaps because of better executive/attentional control over behavior, which requires frontal cortical cholinergic activity. We hypothesized, therefore, that a cue that "sets the occasion" for drug taking (a discriminative stimulus, DS) would reinstate cocaine seeking more readily in GTs than STs and that this would require intact cholinergic neurotransmission. To test this, male STs and GTs were trained to self-administer cocaine using an intermittent access schedule with periods of cocaine availability and unavailability signaled by a DS + and a DS - , respectively. Thereafter, half of the rats received an immunotoxic lesion that destroyed 40-50% of basal forebrain cholinergic neurons and later, after extinction training, were tested for the ability of noncontingent presentations of the DS + to reinstate cocaine seeking behavior. The DS + was much more effective in reinstating cocaine seeking in GTs than STs and this effect was abolished by cholinergic losses despite the fact that all rats continued to orient to the DS + We conclude that vulnerability to relapse involves interactions between individual cognitive-motivational biases and the form of the drug cue encountered. SIGNIFICANCE STATEMENT The most predictable outcome of a diagnosis of addiction is a high chance for relapse. When addicts encounter cues previously associated with drug, their attention may be unduly attracted to such cues and

  7. Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain.

    Science.gov (United States)

    Greco, M A; McCarley, R W; Shiromani, P J

    1999-01-01

    The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.

  8. The central responsiveness of the acute cerveau isolé rat.

    Science.gov (United States)

    User, P; Gottesmann, C

    1982-01-01

    The electrophysiological patterns of the frontal cortex and dorsal hippocampus were studied in the acute cerveau isolé rat. Central and peripheral stimulations were performed in order to modulate these patterns. The results showed that the permanent alternation of high amplitude spindle bursts and low voltage activity in the anterior neocortex of the acute cerveau isolé was influenced neither by olfactory nor by posterior hypothalamic stimulation. In contrast, these two kinds of stimulation easily modulated the continuous low frequency theta rhythm, recorded in the dorsal hippocampus, in terms of amplitude and in overall frequency. This modulation of the theta rhythm in the acute cerveau isolé rat mimics the changes observed when the normal rat comes from the intermediate stage of sleep (as characterized in the the acute intercollicular transected rat by high amplitude spindle bursts at frontal cortex level and low frequency theta activity in the dorsal hippocampus) to rapid sleep. These results further suggest that, during the intermediate stage (as in the cerveau isolé preparation), the hippocampus montonous theta activity appears through a brainstem disinhibitory process releasing the forebrain limbic pacemaker(s). During the following rapid sleep phase, the theta rhythm would be modulated by pontine activity influences acting on the theta generators.

  9. Ablation of CaV2.1 Voltage-Gated Ca2+ Channels in Mouse Forebrain Generates Multiple Cognitive Impairments

    Science.gov (United States)

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels located at the presynaptic membrane are known to control a multitude of Ca2+-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic CaV2.1 mouse models. Global CaV2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of CaV2.1 Ca2+ channels for complex behaviour in adult mice. Consequently we established a forebrain specific CaV2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of CaV2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific CaV2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional CaV2.1 knock-out model that is most suitable for analysing the in vivo functions of CaV2.1 in the adult murine forebrain. PMID:24205277

  10. Differentiation in boron distribution in adult male and female rats' normal brain: A BNCT approach

    International Nuclear Information System (INIS)

    Goodarzi, Samereh; Pazirandeh, Ali; Jameie, Seyed Behnamedin; Baghban Khojasteh, Nasrin

    2012-01-01

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. - Highlights: ► Boron distribution in male and female rats' normal brain was studied in this research. ► Coronal sections of animal tissue samples were irradiated with thermal neutrons. ► Alpha and Lithium tracks were counted using alpha autoradiography. ► Different boron concentration was seen in brain sections of male and female rats. ► The highest boron concentration was seen in 4 h after boron compound injection.

  11. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats.

    Science.gov (United States)

    Maharaj, D S; Saravanan, K S; Maharaj, H; Mohanakumar, K P; Daya, S

    2004-04-01

    We assessed the antioxidant activity of non-narcotic analgesics, acetaminophen and aspirin in rat brain homogenates and neuroprotective effects in vivo in rats intranigrally treated with 1-methyl-4-phenyl pyridinium (MPP+). Both drugs inhibited cyanide-induced superoxide anion generation, as well as lipid peroxidation in rat brain homogenates, the combination of the agents resulting in a potentiation of this effect. Acetaminophen or aspirin when administered alone or in combination, did not alter dopamine (DA) levels in the forebrain or in the striatum. Intranigral infusion of MPP+ in rats caused severe depletion of striatal DA levels in the ipsilateral striatum in rats by the third day. Systemic post-treatment of acetaminophen afforded partial protection, whereas similar treatment of aspirin resulted in complete blockade of MPP+-induced striatal DA depletion. While these findings suggest usefulness of non-narcotic analgesics in neuroprotective therapy in neurodegenerative diseases, aspirin appears to be a potential candidate in prophylactic as well as in adjuvant therapy in Parkinson's disease.

  12. Early-life risperidone enhances locomotor responses to amphetamine during adulthood.

    Science.gov (United States)

    Lee Stubbeman, Bobbie; Brown, Clifford J; Yates, Justin R; Bardgett, Mark E

    2017-10-05

    Antipsychotic drug prescriptions for pediatric populations have increased over the past 20 years, particularly the use of atypical antipsychotic drugs such as risperidone. Most antipsychotic drugs target forebrain dopamine systems, and early-life antipsychotic drug exposure could conceivably reset forebrain neurotransmitter function in a permanent manner that persists into adulthood. This study determined whether chronic risperidone administration during development modified locomotor responses to the dopamine/norepinephrine agonist, D-amphetamine, in adult rats. Thirty-five male Long-Evans rats received an injection of one of four doses of risperidone (vehicle, .3, 1.0, 3.0mg/kg) each day from postnatal day 14 through 42. Locomotor activity was measured for 1h on postnatal days 46 and 47, and then for 24h once a week over the next two weeks. Beginning on postnatal day 75, rats received one of four doses of amphetamine (saline, .3, 1.0, 3.0mg/kg) once a week for four weeks. Locomotor activity was measured for 27h after amphetamine injection. Rats administered risperidone early in life demonstrated increased activity during the 1 and 24h test sessions conducted prior to postnatal day 75. Taking into account baseline group differences, these same rats exhibited significantly more locomotor activity in response to the moderate dose of amphetamine relative to controls. These results suggest that early-life treatment with atypical antipsychotic drugs, like risperidone, permanently alters forebrain catecholamine function and increases sensitivity to drugs that target such function. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Basal forebrain projections to the lateral habenula modulate aggression reward.

    Science.gov (United States)

    Golden, Sam A; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Daniel J; Guise, Kevin; Pfau, Madeline L; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J; Han, Ming-Hu; Shapiro, Matt L; Russo, Scott J

    2016-06-30

    Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.

  14. Differentiation in boron distribution in adult male and female rats' normal brain: A BNCT approach

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Samereh, E-mail: samere.g@gmail.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of); Pazirandeh, Ali, E-mail: paziran@yahoo.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of); Jameie, Seyed Behnamedin, E-mail: behnamjameie@tums.ac.ir [Basic Science Department, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Baghban Khojasteh, Nasrin, E-mail: khojasteh_n@yahoo.com [Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, PO Box 19395-1943, Tehran (Iran, Islamic Republic of)

    2012-06-15

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. - Highlights: Black-Right-Pointing-Pointer Boron distribution in male and female rats' normal brain was studied in this research. Black-Right-Pointing-Pointer Coronal sections of animal tissue samples were irradiated with thermal neutrons. Black-Right-Pointing-Pointer Alpha and Lithium tracks were counted using alpha autoradiography. Black-Right-Pointing-Pointer Different boron concentration was seen in brain sections of male and female rats. Black-Right-Pointing-Pointer The highest boron concentration was seen in 4 h after boron compound injection.

  15. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression

    Directory of Open Access Journals (Sweden)

    Hasegawa Shunsuke

    2009-03-01

    Full Text Available Abstract Background Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII in learning, memory and long-term potentiation (LTP. However, previous studies have also shown that alpha-CaMKII (+/- heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an increase in defensive aggression. These findings indicated that alpha-CaMKII is important not only for learning and memory but also for emotional behaviors. In this study, to understand the roles of alpha-CaMKII in emotional behavior, we generated transgenic mice overexpressing alpha-CaMKII in the forebrain and analyzed their behavioral phenotypes. Results We generated transgenic mice overexpressing alpha-CaMKII in the forebrain under the control of the alpha-CaMKII promoter. In contrast to alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in anxiety-like behaviors in open field, elevated zero maze, light-dark transition and social interaction tests, and a decrease in locomotor activity in their home cages and novel environments; these phenotypes were the opposite to those observed in alpha-CaMKII (+/- heterozygous knockout mice. In addition, similarly with alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in aggression. However, in contrast to the increase in defensive aggression observed in alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in offensive aggression. Conclusion Up-regulation of alpha-CaMKII expression in the forebrain leads to an increase in anxiety-like behaviors and offensive aggression. From the comparisons with previous findings, we suggest that the expression levels of alpha-CaMKII are associated with the state of emotion; the expression level of alpha-CaMKII positively correlates with the anxiety state and strongly affects

  16. The basal forebrain cholinergic system in aging and dementia : Rescuing cholinergic neurons from neurotoxic amyloid-beta 42 with memantine

    NARCIS (Netherlands)

    Nyakas, Csaba; Granic, Ivica; Halmy, Laszlo G.; Banerjee, Pradeep; Luiten, Paul G. M.

    2011-01-01

    The dysfunction and loss of basal forebrain cholinergic neurons and their cortical projections are among the earliest pathological events in the pathogenesis of Alzheimer's disease (AD). The evidence pointing to cholinergic impairments come from studies that report a decline in the activity of

  17. Time dependent effects of haloperidol on glutamine and GABA homeostasis and astrocyte activity in the rat brain

    Science.gov (United States)

    Konopaske, Glenn T.; Bolo, Nicolas R.; Basu, Alo C.; Renshaw, Perry F.; Coyle, Joseph T.

    2013-01-01

    Rationale Schizophrenia is a severe, persistent, and fairly common mental illness. Haloperidol is widely used and is effective against the symptoms of psychosis seen in schizophrenia. Chronic oral haloperidol administration decreased the number of astrocytes in the parietal cortex of macaque monkeys (Konopaske et al. Biol Psych, 2008). Since astrocytes play a key role in glutamate metabolism, chronic haloperidol administration was hypothesized to modulate astrocyte metabolic function and glutamate homeostasis. Objectives This study investigated the effects of chronic haloperidol administration on astrocyte metabolic activity and glutamate, glutamine, and GABA homeostasis. Methods We used ex vivo 13C magnetic resonance spectroscopy along with high performance liquid chromatography after [1-13C]glucose and [1,2-13C]acetate administration to analyze forebrain tissue from rats administered oral haloperidol for 1 or 6 months. Results Administration of haloperidol for 1 month produced no changes in 13C labeling of glutamate, glutamine, or GABA, or in their total levels. However, a 6 month haloperidol administration increased 13C labeling of glutamine by [1,2-13C]acetate. Moreover, total GABA levels were also increased. Haloperidol administration also increased the acetate/glucose utilization ratio for glutamine in the 6 month cohort. Conclusions Chronic haloperidol administration in rats appears to increase forebrain GABA production along with astrocyte metabolic activity. Studies exploring these processes in subjects with schizophrenia should take into account the potential confounding effects of antipsychotic medication treatment. PMID:23660600

  18. CHANGES IN NEUROTRANSMITTER GENE EXPRESSION IN THE AGING RETINA.

    Science.gov (United States)

    To understand mechanisms of neurotoxicity in susceptible populations, we examined age-related changes in constitutive gene expression in the retinas of young (4mos), middle-aged (11 mos) and aged (23 mos) male Long Evans rats. Derived from a pouch of the forebrain during develop...

  19. Microarray Analysis of the Developing Rat Mandible

    Institute of Scientific and Technical Information of China (English)

    Hideo KABURAGI; Naoyuki SUGANO; Maiko OSHIKAWA; Ryosuke KOSHI; Naoki SENDA; Kazuhiro KAWAMOTO; Koichi ITO

    2007-01-01

    To analyze the molecular events that occur in the developing mandible, we examined the expression of 8803 genes from samples taken at different time points during rat postnatal mandible development.Total RNA was extracted from the mandibles of 1-day-old, 1-week-old, and 2-week-old rats. Complementary RNA (cRNA) was synthesized from cDNA and biotinylated. Fragmented cRNA was hybridized to RGU34A GeneChip arrays. Among the 8803 genes tested, 4344 were detectable. We identified 148 genes with significantly increased expression, and 19 genes with significantly decreased expression. A comprehensive analysis appears to be an effective method of studying the complex process of development.

  20. c-Fos expression in the supraoptic nucleus is the most intense during different durations of restraint water-immersion stress in the rat.

    Science.gov (United States)

    Zhang, Yu-Yu; Zhu, Wen-Xing; Cao, Guo-Hong; Cui, Xi-Yun; Ai, Hong-Bin

    2009-09-01

    Restraint water-immersion stress (RWIS) can induce anxiety, hypothermia, and severe vagally-mediated gastric dysfunction. The present work explored the effects of different durations of RWIS on neuronal activities of the forebrain by c-Fos expression in conscious rats exposed to RWIS for 0, 30, 60, 120, or 180 min. The peak of c-Fos induction was distinct for different forebrain regions. The most intense c-Fos induction was always observed in the supraoptic nucleus (SON), and then in the hypothalamic paraventricular nucleus (PVN), posterior cortical amygdaloid nucleus (PCoA), central amygdaloid nucleus (CeA), and medial prefrontal cortex (mPFC). Moreover, body temperature was reduced to the lowest degree after 60 min of RWIS, and the gastric lesions tended to gradually worsen with the prolonging of RWIS duration. These data strongly suggest that these nuclei participate in the organismal response to RWIS to different degrees, and may be involved in the hypothermia and gastric lesions induced by RWIS.

  1. Critical androgen-sensitive periods of rat penis and clitoris development

    OpenAIRE

    Welsh, M.; Macleod, D. J.; Walker, M.; Smith, L. B.; Sharpe, R. M.

    2010-01-01

    Androgen control of penis development/growth is unclear. In rats, androgen action in a foetal 'masculinisation programming window' (MPW; e15.5-e18.5)' predetermines penile length and hypospadias occurrence. This has implications for humans (e.g. micropenis). Our studies aimed to establish in rats when androgen action/administration affects development/growth of the penis and if deficits in MPW androgen action were rescuable postnatally. Thus, pregnant rats were treated with flutamide during t...

  2. Edaravone protects neurons in the rat substantia nigra against 6-hydroxydopamine-induced oxidative stress damage.

    Science.gov (United States)

    Liu, Xiqi; Shao, Rushing; Li, Meng; Yang, Guofeng

    2014-11-01

    To investigate the mechanism of the neuroprotective effect of edaravone in substantia nigra (SN) of the 6-OHDA-induced rat model of Parkinson's disease. Animal model of Parkinson's disease was induced in male Sprague-Dawley rats by injecting 6-OHDA into the left medial forebrain bundle. Subsequently, rats were intraperitoneally injected with 0.3, 1, or 3 mg/kg of edaravone for 14 days or with 3 mg/kg edaravone for 14 days followed by 14 days of no treatment. We evaluated the effect of edaravone on the rotational and normal behavior of the rats, and on the number of tyrosine hydroxylase (TH)-positive cells, the amount of Nissl bodies, and the levels of glutathione (GSH), and malondialdehyde (MDA) in the SN. Edaravone treatment at 3 mg/kg significantly reduced apomorphine-induced rotational behavior (P Edaravone exerted a long-term neuroprotective effects in 6-OHDA-induced PD animal model by attenuating changes in the levels of GSH and MDA in SN, caused by oxidative stress. Edaravone prevented 6-OHDA-induced behavioral changes and de-pigmentation of SN that results from the loss of dopaminergic neurons.

  3. Influence of a combination of two tetrachlorobiphenyl congeners (PCB 47; PCB 77) on thyroid status, choline acetyltransferase (ChAT) activity, and short- and long-term memory in 30-day-old Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Donahue, Douglas A.; Dougherty, Edward J.; Meserve, Lee A.

    2004-01-01

    The important role of thyroid hormones in growth and development, maintenance of body temperature, digestion, cardiac function, and normal brain development can be disrupted by environmental contaminants like polychlorinated biphenyls (PCB). Polychlorinated biphenyls are environmental contaminants that are widespread, persistent, lipophilic, and bioaccumulate through food webs, concentrating in adipose tissue. Placental and lactational PCB exposure of offspring causes metabolic and endocrine disruptions including hypothyroxinemia, spatial learning and memory deficits, neurochemical and neurobehavioral alterations, and reproductive problems. Previous studies in our lab using the individual congeners PCB 47 (2,2',4,4'-tetrachlorobiphenyl, ortho-substituted) and PCB 77 (3,3',4,4'-tetrachlorobiphenyl, non-ortho-substituted) have demonstrated alterations in thyroid hormone levels, alterations in brain choline acetyltransferase (ChAT) activity, and spatial learning deficits. In the present study, pregnant Sprague-Dawley rats were fed a diet with or without a mixture of PCB 47/77 at 1.25 ppm, 12.5 ppm or 25.0 ppm (w/w). Rat pups were swum in the Morris water maze four times a day on days 21-29 in order for the animals to learn the position of a submerged fixed platform. A probe test was run on day 24 (30 min after last swim) for short-term memory, and on day 29 (24 h after the last swim) for long-term memory after removal of the platform. Time spent in the quadrant previously containing the platform was recorded. Rats were decapitated on day 30, serum collected and frozen at -20 deg. ChAT activity was measured radiometrically in basal forebrain and hippocampus. All PCB-treated animals experienced a depression in both triiodothyronine (T 3 ) and thyroxine (T 4 ). The present study found that all doses of PCB depressed ChAT activity in hippocampus with no significant alteration in the basal forebrain. In PCB-treated animals, short-term memory showed a trend toward

  4. The different effects of over-expressing murine NMDA receptor 2B subunit in the forebrain on conditioned taste aversion.

    Science.gov (United States)

    Li, Shijia; Gu, Yiran; Meng, Bo; Mei, Bing; Li, Fei

    2010-09-10

    The glutamate transmission system and the N-methyl-D-aspartate receptor (NMDA-R), in particular its 2B subunit (NR2B), have been reported to be possibly related to taste memory as a result of treatment with NMDA antagonists and agonists. In order to further study the role of the NR2B subunit in gustation memory, we applied four different taste aversive tasks to observe the behavior of a transgenic mice model in which the NR2B subunit was specifically over-expressed in the forebrain. We found that in both short- and long-term conditioned taste aversion (CTA) experiments, mice with forebrain expression of the NR2B transgene (Tg) showed significantly enhanced CTA 2 days after training. However, both the Tg and the wild-type (Wt) mice shared the same level of aversive memory on the 30th day after training. In both fast and slow extinction experiments, Tg mice maintained a higher CTA memory than that of control mice in most extinction trials. The third experiment, which involved testing the memory for familiar taste, demonstrated that NR2B augmentation had no benefit on the latent inhibition (LI) of CTA. In addition, the last experiment (two-taste LI) showed a suppression of enhanced CTA in Tg mice when the mice were exposed to both novel and familiar tastes. These data suggested that forebrain NR2B over-expression had different effects on gustatory learning and memory. The transgenic animals were only sensitive to novel but not familiar tastes, and up-regulation of NR2B resulted in enhanced CTA function for only a short period of time. 2010 Elsevier B.V. All rights reserved.

  5. Development of the rat larynx: a histological study.

    Science.gov (United States)

    Alli, Opeyemi; Berzofsky, Craig; Sharma, Sansar; Pitman, Michael J

    2013-12-01

    To evaluate and describe the cartilaginous and muscular development of the rat larynx. Histologic evaluation. The larynges of Sprague Dawley rats of embryonic day (E) 13, 15, 17, 19, 21, postnatal day 0, 14, and adult of 250 gm were collected. Four larynges of each age were harvested, cut into 15-μm serial sections, stained with hematoxylin and eosin, and evaluated under light microscopy. Representative digital images were recorded and evaluated at the preglottic (supraglottic in humans), glottic, and postglottic (subglottic in humans) levels. Brachial arches were observed at E13. At E17, immature structures of the larynx, including skeletal muscle, cartilage, and the lumen were identifiable. Chondrification and muscle formation were clearly seen by E19. The muscular and cartilagenous components of the larynx were well established by E21. During the span between birth and adult maturation, the size of the larynx increased from a height of 1.10 mm to 2.90 mm, and from a width of 1.80 mm to 5.40 mm, and from a length of 1.38 mm to 4.77 mm in the stained section. Although developed at E21, the laryngeal structures continued to grow by approximately 30%. Rat laryngeal development parallels that in mice and humans. In the rat, at E17 immature structures of the larynx are identifiable, they are well developed at birth and grow by approximately 30% into adulthood. Understanding the chronology and morphology of the embryogenesis of the rat laryngeal musculature is essential and will allow for further evaluation of the embryologic innervation of these muscles. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Ablation of Ca(V)2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    Science.gov (United States)

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated Ca(V)2.1 (P/Q-type) Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V)2.1 mouse models. Global Ca(V)2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V)2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V)2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V)2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V)2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V)2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V)2.1 in the adult murine forebrain.

  7. Is Chronic Curcumin Supplementation Neuroprotective Against Ischemia for Antioxidant Activity, Neurological Deficit, or Neuronal Apoptosis in an Experimental Stroke Model?

    Science.gov (United States)

    Altinay, Serdar; Cabalar, Murat; Isler, Cihan; Yildirim, Funda; Celik, Duygu S; Zengi, Oguzhan; Tas, Abdurrahim; Gulcubuk, Ahmet

    2017-01-01

    To investigate the neuroprotective effect of chronic curcumin supplementation on the rat forebrain prior to ischemia and reperfusion. Forebrain ischemia was induced by bilateral common carotid artery occlusion for 1/2 hour, followed by reperfusion for 72 hours. Older rats were divided into five groups: Group I received 300 mg/kg oral curcumin for 21 days before ischemia and 300 mg/kg intraperitoneal curcumin after ischemia; Group II received 300 mg/kg intraperitoneal curcumin after ischemia; Group III received 300 mg/kg oral curcumin for 21 days before ischemia; Group IV had only ischemia; Group V was the sham-operated group. The forebrain was rapidly dissected for biochemical parameter assessment and histopathological examination. In forebrain tissue, enzyme activities of superoxide dismutase, glutathione peroxidase, and catalase were significantly higher in Group I than Groups II or III (p curcumin-treated groups compared with the ischemic group. We also found a marked reduction in apoptotic index after 72 hours in the groups receiving curcumin. Significantly more TUNEL-positive cells were observed in the ischemic group compared to those treated with curcumin. We demonstrated the neuroprotective effect of chronic curcumin supplement on biochemical parameters, neurological scores and apoptosis following ischemia and reperfusion injury in rats.

  8. The Input-Output Relationship of the Cholinergic Basal Forebrain

    Directory of Open Access Journals (Sweden)

    Matthew R. Gielow

    2017-02-01

    Full Text Available Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.

  9. Quantitative autoradiographic localization of cholecystokinin receptors in rat and guinea pig brain using 125I-Bolton-Hunter-CCK8

    International Nuclear Information System (INIS)

    Niehoff, D.L.

    1989-01-01

    The autoradiographic localization of receptors for the brain-gut peptide cholecystokinin (CCK) has shown differences in receptor distribution between rat and guinea pig brain. However the full anatomical extent of the differences has not been determined quantitatively. In the present study, 125 I-Bolton-Hunter-CCK8 ( 125 I-BH-CCK8) was employed in a comparative quantitative autoradiographic analysis of the distribution of CCK receptors in these two species. The pharmacological profile of 125 I-BH-CCK8 binding in guinea pig forebrain sections was comparable to those previously reported for rat and human. Statistically significant differences in receptor binding between rat and guinea pig occurred in olfactory bulb, caudate-putamen, amygdala, several cortical areas, ventromedial hypothalamus, cerebellum, and a number of midbrain and brainstem nuclei. The results of this study confirm the presence of extensive species-specific variation in the distribution of CCK receptors, suggesting possible differences in the physiological roles of this peptide in different mammalian species

  10. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Hu, Yao; Qu, Zhuang-Yin; Cao, Shi-Ying; Li, Qi; Ma, Lixiang; Krencik, Robert; Xu, Min; Liu, Yan

    2016-06-15

    Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer's disease, Down's syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Quantitative autoradiographic localization of cholecystokinin receptors in rat and guinea pig brain using sup 125 I-Bolton-Hunter-CCK8

    Energy Technology Data Exchange (ETDEWEB)

    Niehoff, D.L. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-03-01

    The autoradiographic localization of receptors for the brain-gut peptide cholecystokinin (CCK) has shown differences in receptor distribution between rat and guinea pig brain. However the full anatomical extent of the differences has not been determined quantitatively. In the present study, {sup 125}I-Bolton-Hunter-CCK8 ({sup 125}I-BH-CCK8) was employed in a comparative quantitative autoradiographic analysis of the distribution of CCK receptors in these two species. The pharmacological profile of {sup 125}I-BH-CCK8 binding in guinea pig forebrain sections was comparable to those previously reported for rat and human. Statistically significant differences in receptor binding between rat and guinea pig occurred in olfactory bulb, caudate-putamen, amygdala, several cortical areas, ventromedial hypothalamus, cerebellum, and a number of midbrain and brainstem nuclei. The results of this study confirm the presence of extensive species-specific variation in the distribution of CCK receptors, suggesting possible differences in the physiological roles of this peptide in different mammalian species.

  12. Ablation of Ca(V2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    Directory of Open Access Journals (Sweden)

    Robert Theodor Mallmann

    Full Text Available Voltage-gated Ca(V2.1 (P/Q-type Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V2.1 mouse models. Global Ca(V2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V2.1 in the adult murine forebrain.

  13. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration

    DEFF Research Database (Denmark)

    Hébert, Sébastien S; Papadopoulou, Aikaterini S; Smith, Pascal

    2010-01-01

    , particularly in the adult brain, remain poorly defined. Here we show that the absence of Dicer in the adult forebrain is accompanied by a mixed neurodegenerative phenotype. Although neuronal loss is observed in the hippocampus, cellular shrinkage is predominant in the cortex. Interestingly, neuronal...... degeneration coincides with the hyperphosphorylation of endogenous tau at several epitopes previously associated with neurofibrillary pathology. Transcriptome analysis of enzymes involved in tau phosphorylation identified ERK1 as one of the candidate kinases responsible for this event in vivo. We further...

  14. Evolution of extra-nigral damage predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Anthony C Vernon

    2011-02-01

    Full Text Available Establishing the neurological basis of behavioural dysfunction is key to provide a better understanding of Parkinson's disease (PD and facilitate development of effective novel therapies. For this, the relationships between longitudinal structural brain changes associated with motor behaviour were determined in a rat model of PD and validated by post-mortem immunohistochemistry. Rats bearing a nigrostriatal lesion induced by infusion of the proteasome inhibitor lactacystin into the left-medial forebrain bundle and saline-injected controls underwent magnetic resonance imaging (MRI at baseline (prior to surgery and 1, 3 and 5 weeks post-surgery with concomitant motor assessments consisting of forelimb grip strength, accelerating rotarod, and apormorphine-induced rotation. Lactacystin-injected rats developed early motor deficits alongside decreased ipsilateral cortical volumes, specifically thinning of the primary motor (M1 and somatosensory cortices and lateral ventricle hypertrophy (as determined by manual segmentation and deformation-based morphometry. Although sustained, motor dysfunction and nigrostriatal damage were maximal by 1 week post-surgery. Additional volume decreases in the ipsilateral ventral midbrain; corpus striatum and thalamus were only evident by week 3 and 5. Whilst cortical MRI volume changes best predicted the degree of motor impairment, post-mortem tyrosine hydroxylase immunoreactivity in the striatum was a better predictor of motor behaviour overall, with the notable exception of performance in the accelerating rotarod, in which, M1 cortical thickness remained the best predictor. These results highlight the importance of identifying extra-nigral regions of damage that impact on behavioural dysfunction from damage to the nigrostriatal system.

  15. Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in Parkinsonian model rats.

    Science.gov (United States)

    Jia, Jun; Li, Bo; Sun, Zuo-Li; Yu, Fen; Wang, Xuan; Wang, Xiao-Min

    2010-04-01

    The role of electro-acupuncture (EA) stimulation on motor symptoms in Parkinson's disease (PD) has not been well studied. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), EA stimulation improved motor impairment in a frequency-dependent manner. Whereas EA stimulation at a low frequency (2 Hz) had no effect, EA stimulation at a high frequency (100 Hz) significantly improved motor coordination. However, neither low nor high EA stimulation could significantly enhance dopamine levels in the striatum. EA stimulation at 100 Hz normalized the MFB lesion-induced increase in midbrain GABA content, but it had no effect on GABA content in the globus pallidus. These results suggest that high-frequency EA stimulation improves motor impairment in MFB-lesioned rats by increasing GABAergic inhibition in the output structure of the basal ganglia.

  16. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    Science.gov (United States)

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  17. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease.

    Science.gov (United States)

    Kwakowsky, Andrea; Milne, Michael R; Waldvogel, Henry J; Faull, Richard L

    2016-12-17

    The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.

  18. [Subcutaneous transplants of juvenile rat testicular tissues continue to develop and secret androgen in adult rats].

    Science.gov (United States)

    Yu, Zhou; Wang, Tong; Cui, Jiangbo; Song, Yajuan; Ma, Xianjie; Su, Yingjun; Peng, Pai

    2017-12-01

    Objective To explore the effects of subcutaneous microenvironment of adult rats on survival, development and androgen secretion of Leydig cells of transplanted juvenile rat testis. Methods Healthy adult SD rats were randomly divided into control group, sham group, castrated group and non-castrated group. Rats in the control group were kept intact, no testis was transplanted subcutaneously after adult recipients were castrated in the sham group; 5-7-day juvenile rat testes were transplanted subcutaneously in the castrated group, with one testis per side; Testes resected from juvenile rats were directly transplanted subcutaneously on both sides of the recipients in the non-castrated group. The grafts were obtained and weighed 4 weeks later. Then the histological features of the grafts were examined by HE staining; the expression and distribution of hydroxysteroid 17-beta dehydrogenase 1 (HSD-17β1) were investigated by immunohistochemistry; and the serum androgen level was determined by ELISA. Results The average mass of grafts obtained from the castrated group was significantly higher than that of the non-castrated group. Immunohistochemistry indicated that Leydig cells were visible in the tissues from both the castrated and non-castrated groups, but the number of HSD-17β1-posotive cells in the castrated group was larger than that in the non-castrated group. ELISA results showed that the serum androgen level was higher in the control group and non-castrated group than in the sham group and castrated group, and compared with the sham group, the serum androgen level in the castrated group was significantly higher. Conclusion The juvenile rat testis subcutaneously transplanted could further develop under the adult recipient rat skin, and the Leydig cells of grafts harbored the ability to produce and secret androgen.

  19. HIV-1 transgenic rats develop T cell abnormalities

    International Nuclear Information System (INIS)

    Reid, William; Abdelwahab, Sayed; Sadowska, Mariola; Huso, David; Neal, Ashley; Ahearn, Aaron; Bryant, Joseph; Gallo, Robert C.; Lewis, George K.; Reitz, Marvin

    2004-01-01

    HIV-1 infection leads to impaired antigen-specific T cell proliferation, increased susceptibility of T cells to apoptosis, progressive impairment of T-helper 1 (Th1) responses, and altered maturation of HIV-1-specific memory cells. We have identified similar impairments in HIV-1 transgenic (Tg) rats. Tg rats developed an absolute reduction in CD4 + and CD8 + T cells able to produce IFN-γ following activation and an increased susceptibility of T cells to activation-induced apoptosis. CD4 + and CD8 + effector/memory (CD45RC - CD62L - ) pools were significantly smaller in Tg rats compared to non-Tg controls, although the converse was true for the naieve (CD45RC + CD62L + ) T cell pool. Our interpretation is that the HIV transgene causes defects in the development of T cell effector function and generation of specific effector/memory T cell subsets, and that activation-induced apoptosis may be an essential factor in this process

  20. Effects of various nitric oxide synthase inhibitors on AlCl3-induced neuronal injury in rats

    Directory of Open Access Journals (Sweden)

    IVANA STEVANOVIĆ

    2009-05-01

    Full Text Available The present study was aimed at determining the effectiveness of nitric oxide synthase (NOS inhibitors: N-nitro-L-arginine methyl ester, 7-nitroindazole and aminoguanidine in modulating the toxicity of AlCl3 on superoxide production and the malondialdehyde concentration of Wistar rats. The animals were sacrificed 10 min and 3 days after the treatment and the forebrain cortex was removed. The results show that AlCl3 exposure promotes oxidative stress in different neural areas. The biochemical changes observed in the neuronal tissues show that aluminum acts as pro-oxidant, while NOS inhibitors exert an anti-oxidant action in AlCl3-treated animals.

  1. Differentiation of Forebrain and Hippocampal Dopamine 1-Class Receptors, D1R and D5R, in Spatial Learning and Memory

    Science.gov (United States)

    Sariñana, Joshua; Tonegawa, Susumu

    2017-01-01

    Activation of prefrontal cortical (PFC), striatal, and hippocampal dopamine 1-class receptors (D1R and D5R) is necessary for normal spatial information processing. Yet the precise role of the D1R versus the D5R in the aforementioned structures, and their specific contribution to the water-maze spatial learning task remains unknown. D1R- and D5R- specific in situ hybridization probes showed that forebrain restricted D1R and D5R KO mice (F-D1R/D5R KO) displayed D1R mRNA deletion in the medial (m)PFC, dorsal and ventral striatum, and the dentate gyrus (DG) of the hippocampus. D5R mRNA deletion was limited to the mPFC, the CA1 and DG hippocampal subregions. F-D1R/D5R KO mice were given water-maze training and displayed subtle spatial latency differences between genotypes and spatial memory deficits during both regular and reversal training. To differentiate forebrain D1R from D5R activation, forebrain restricted D1R KO (F-D1R KO) and D5R KO (F-D5R KO) mice were trained on the water-maze task. F-D1R KO animals exhibited escape latency deficits throughout regular and reversal training as well as spatial memory deficits during reversal training. F-D1R KO mice also showed perseverative behavior during the reversal spatial memory probe test. In contrast, F-D5R KO animals did not present observable deficits on the water-maze task. Because F-D1R KO mice showed water-maze deficits we tested the necessity of hippocampal D1R activation for spatial learning and memory. We trained DG restricted D1R KO (DG-D1R KO) mice on the water-maze task. DG-D1R KO mice did not present detectable spatial memory deficit, but did show subtle deficits during specific days of training. Our data provides evidence that forebrain D5R activation plays a unique role in spatial learning and memory in conjunction with D1R activation. Moreover, these data suggest that mPFC and striatal, but not DG D1R activation are essential for spatial learning and memory. PMID:26174222

  2. Neuropeptide Y in the olfactory system, forebrain and pituitary of the teleost, Clarias batrachus.

    Science.gov (United States)

    Gaikwad, Archana; Biju, K C; Saha, Subhash G; Subhedar, Nishikant

    2004-03-01

    Distribution of neuropeptide Y (NPY)-like immunoreactivity in the forebrain of catfish Clarias batrachus was examined with immunocytochemistry. Conspicuous immunoreactivity was seen in the olfactory receptor neurons (ORNs), their projections in the olfactory nerve, fascicles of the olfactory nerve layer in the periphery of bulb and in the medial olfactory tracts as they extend to the telencephalic lobes. Ablation of the olfactory organ resulted in loss of immunoreactivity in the olfactory nerve layer of the bulb and also in the fascicles of the medial olfactory tracts. This evidence suggests that NPY may serve as a neurotransmitter in the ORNs and convey chemosensory information to the olfactory bulb, and also to the telencephalon over the extrabulbar projections. In addition, network of beaded immunoreactive fibers was noticed throughout the olfactory bulb, which did not respond to ablation experiment. These fibers may represent centrifugal innervation of the bulb. Strong immunoreactivity was encountered in some ganglion cells of nervus terminalis. Immunoreactive fibers and terminal fields were widely distributed in the telencephalon. Several neurons of nucleus entopeduncularis were moderately immunoreactive; and a small population of neurons in nucleus preopticus periventricularis was also labeled. Immunoreactive terminal fields were particularly conspicuous in the preoptic, the tuberal areas, and the periventricular zone around the third ventricle and inferior lobes. NPY immunoreactive cells and fibers were detected in all the lobes of the pituitary gland. Present results describing the localization of NPY in the forebrain of C. batrachus are in concurrence with the pattern of the immunoreactivity encountered in other teleosts. However, NPY in olfactory system of C. batrachus is a novel feature that suggests a role for the peptide in processing of chemosensory information.

  3. Dynamic changes in GABAA receptors on basal forebrain cholinergic neurons following sleep deprivation and recovery

    Directory of Open Access Journals (Sweden)

    Jones Barbara E

    2007-02-01

    Full Text Available Abstract Background The basal forebrain (BF cholinergic neurons play an important role in cortical activation and arousal and are active in association with cortical activation of waking and inactive in association with cortical slow wave activity of sleep. In view of findings that GABAA receptors (Rs and inhibitory transmission undergo dynamic changes as a function of prior activity, we investigated whether the GABAARs on cholinergic cells might undergo such changes as a function of their prior activity during waking vs. sleep. Results In the brains of rats under sleep control (SC, sleep deprivation (SD or sleep recovery (SR conditions in the 3 hours prior to sacrifice, we examined immunofluorescent staining for β2–3 subunit GABAARs on choline acetyltransferase (ChAT immunopositive (+ cells in the magnocellular BF. In sections also stained for c-Fos, β2–3 GABAARs were present on ChAT+ neurons which expressed c-Fos in the SD group alone and were variable or undetectable on other ChAT+ cells across groups. In dual-immunostained sections, the luminance of β2–3 GABAARs over the membrane of ChAT+ cells was found to vary significantly across conditions and to be significantly higher in SD than SC or SR groups. Conclusion We conclude that membrane GABAARs increase on cholinergic cells as a result of activity during sustained waking and reciprocally decrease as a result of inactivity during sleep. These changes in membrane GABAARs would be associated with increased GABA-mediated inhibition of cholinergic cells following prolonged waking and diminished inhibition following sleep and could thus reflect a homeostatic process regulating cholinergic cell activity and thereby indirectly cortical activity across the sleep-waking cycle.

  4. Rapid development of Leydig cell tumors in a Wistar rat substrain

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; de Jong, F. H.; Rommerts, F. F.

    1991-01-01

    In 78% of the Wistar rats (substrain U) studied, spontaneous Leydig cell tumors developed between the ages of 12 and 30 months. The first signs of tumor development, in the form of nodules of Leydig cells, were already apparent in 1-month-old U-rats. These nodules of Leydig cells were found in all

  5. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten

    2007-01-01

    By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue...... content, thus allowing experimental studies of neural precursor cells and their niche...

  6. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer’s Disease

    Science.gov (United States)

    Kwakowsky, Andrea; Milne, Michael R.; Waldvogel, Henry J.; Faull, Richard L.

    2016-01-01

    The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease. PMID:27999310

  7. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Andrea Kwakowsky

    2016-12-01

    Full Text Available The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2 on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease.

  8. Superoxide radical formation, superoxide dismutase and glutathione reductase activity in the brain of irradiated rats

    International Nuclear Information System (INIS)

    Stanimirovic, D.; Ivanovic, L.; Simovic, M.; Cernak, I.; Savic, J.

    1989-01-01

    In the forebrain cortex, basal ganglia and hippocampus of irradiated rats (whole body, X-ray, 9 Gy), nitroblue-tetrazolium (NBT) reduction was measured as a probe of superoxide radical formation 1 hr, 6 hrs, 24 hrs and 72 hrs after irradiation. Increased superoxide radical formation was found in parallel with increase of superoxide dismutase (SOD) activity and marked decrease of glutathione reductase (GR) activity which is the most pronounced in basal ganglia. The results indicate that in the postradiation period disproportion among free radical production and capacity of brain antioxidative system occurs. This disbalance is more expressed in the brain regions known as selective vulnerable (basal ganglia, hippocampus). (author). 10 refs.; 2 tabs

  9. Distribution of metallothionein I + II and vesicular zinc in the developing central nervous system: correlative study in the rat

    DEFF Research Database (Denmark)

    Penkowa, M; Nielsen, H; Hidalgo, J

    1999-01-01

    in hippocampal cortex, basal forebrain, neocortex, cerebellar cortex, and cranial nerve nuclei. MT I + II mRNAs were detected in regions of the brain that also displayed MT I + IIir, indicating transcriptional events. Vesicular Zn was recorded in neonatal brain solely in the dentate hi of the hippocampus...... candidates for chelating unbound Zn released from Zn-containing nerve terminals or transported into the brain. Whether vesicular Zn and MT I + II occur in identical regions of the developing brain is unknown. Accordingly, the developmental distribution of MT I + II and vesicular Zn was mapped. By using...

  10. Neuroprotection by methanol extract of Uncaria rhynchophylla against global cerebral ischemia in rats.

    Science.gov (United States)

    Suk, Kyoungho; Kim, Sun Yeou; Leem, Kanghyun; Kim, Young Ock; Park, Sun Young; Hur, Jinyoung; Baek, Jihwoon; Lee, Kang Jin; Zheng, Hu Zhan; Kim, Hocheol

    2002-04-21

    In traditional Oriental medicine, Uncaria rhynchophylla has been used to lower blood pressure and to relieve various neurological symptoms. However, scientific evidence related to its effectiveness or precise modes of action has not been available. Thus, in the current study, we evaluated neuroprotective effects of U. rhynchophylla after transient global ischemia using 4-vessel occlusion model in rats. Methanol extract of U. rhynchophylla administered intraperitoneally (100-1000 mg/kg at 0 and 90 min after reperfusion) significantly protected hippocampal CA1 neurons against 10 min transient forebrain ischemia. Measurement of neuronal cell density in CA1 region at 7 days after ischemia by Nissl staining revealed more than 70% protection in U. rhynchophylla-treated rats compared to saline-treated animals. In U. rhynchophylla-treated animals, induction of cyclooxygenase-2 in hippocampus at 24 hr after ischemia was significantly inhibited at both mRNA and protein levels. Furthermore, U. rhynchophylla extract inhibited TNF-alpha and nitric oxide production in BV-2 mouse microglial cells in vitro. These anti-inflammatory actions of U. rhynchophylla extract may contribute to its neuroprotective effects.

  11. Physiological and Morphological Characterization of Organotypic Cocultures of the Chick Forebrain Area MNH and its Main Input Area DMA/DMP

    OpenAIRE

    Endepols, Heike; Jungnickel, Julia; Braun, Katharina

    2001-01-01

    Cocultures of the learning-relevant forebrain region mediorostrai neostriatum and hyperstriatum ventrale (MNH) and its main glutamatergic input area nucleus dorsomedialis anterior thalami/posterior thalami were morphologically and physiologically characterized. Synaptic contacts of thalamic fibers were lightand electron-microscopically detected on MNH neurons by applying the fluorescence tracer DiI-C18(3) into the thalamus part of the coculture. Most thalamic syn...

  12. Choline acetyltransferase and TrkA expression, as well as the improvement in cognition produced by E2 and P4 in ovariectomized rats, are blocked by ICI 182 780 and RU486.

    Science.gov (United States)

    Espinosa-Raya, Judith; Cruz-Raya, Ulises; López-Martínez, Margarita; Picazo, Ofir

    2018-01-09

    Treatment with 17-β estradiol and progesterone improves the performance of ovariectomized rats in an autoshaping learning task, representing cognitive improvement. To test whether this is attributable to genomic mechanisms, the antiestrogen ICI 182 780 or antiprogesterone RU486 was injected into ovariectomized animals primed previously with estrogen or progesterone, respectively. Compared with the vehicle control, each hormone administered alone produced an elevated expression of choline acetyltransferase and TrkA, along with an improvement in performance on the behavioral test. E2+ICI reverted the increase in these two proteins. However, RU alone elicited higher ChAT expression. With this exception, there was a clear linear regression between the number of conditioned responses and the level of ChAT and TrkA in the basal forebrain. The results suggest that TrkA may be more important than ChAT for regulating autoshaping learning tasks, and that genomic mechanisms in the basal forebrain could possibly underlie hormonal improvement of cognition.

  13. Effects of enriched uranium on developing brain damage of neonatal rats

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2001-01-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium 235 U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 β (IL- β), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells

  14. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  15. Treadmill Exercise Improves Motor Dysfunction and Hyperactivity of the Corticostriatal Glutamatergic Pathway in Rats with 6-OHDA-Induced Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-01-01

    Full Text Available Hyperactivity in the corticostriatal glutamatergic pathway (CGP induces basal ganglia dysfunction, contributing to parkinsonian syndrome (PS. Physical exercise can improve PS. However, the effect of exercise on the CGP, and whether this pathway is involved in the improvement of PS, remains unclear. Parkinson’s disease (PD was induced in rats by 6-hydroxydopamine injection into the right medial forebrain bundle. Motor function was assessed using the cylinder test. Striatal neuron (SN spontaneous and evoked firing activity was recorded, and the expression levels of Cav1.3 and CaMKII in the striatum were measured after 4 weeks of treadmill exercise. The motor function in PD rats was improved by treadmill exercise. SN showed significantly enhanced excitability, and treadmill exercise reduced SN excitability in PD rats. In addition, firing activity was evoked in SNs by stimulation of the primary motor cortex, and SNs exhibited significantly decreased stimulus threshold, increased firing rates, and reduced latency. The expression of Cav1.3 and p-CaMKII (Thr286 in the striatum were enhanced in PD rats. However, these effects were reversed by treadmill exercise. These findings suggest that treadmill exercise inhibits CGP hyperactivity in PD rats, which may be related to improvement of PS.

  16. Effects of harmane (1-methyl-beta-carboline) on neurons in the nucleus accumbens of the rat.

    Science.gov (United States)

    Ergene, E; Schoener, E P

    1993-04-01

    Harmane, a beta-carboline alkaloid reported to exert locomotor and psychoactive effects, is found in certain plants and also has been shown to exist in the mammalian brain as an endogenous substance. In this study, the effects of locally perfused harmane were examined on spontaneous neuronal activity in the nucleus accumbens of urethane-anesthetized rats. Extracellular single-unit recording, coupled with push-pull perfusion, enabled the discrimination of specific, dose-related effects of harmane across a wide concentration range. At lower concentrations (10(-9)-10(-11) M), excitation prevailed, while at higher concentrations (10(-8)-10(-6) M) depression was most pronounced. These findings suggest a neuromodulatory role for harmane in the forebrain reward system.

  17. Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring.

    Science.gov (United States)

    Gąssowska, Magdalena; Baranowska-Bosiacka, Irena; Moczydłowska, Joanna; Frontczak-Baniewicz, Małgorzata; Gewartowska, Magdalena; Strużyńska, Lidia; Gutowska, Izabela; Chlubek, Dariusz; Adamczyk, Agata

    2016-12-12

    Lead (Pb), environmentally abundant heavy-metal pollutant, is a strong toxicant for the developing central nervous system. Pb intoxication in children, even at low doses, is found to affect learning and memorizing, with devastating effects on cognitive function and intellectual development. However, the precise mechanism by which Pb impairs synaptic plasticity is not fully elucidated. The purpose of this study was to investigate the effect of pre- and neonatal exposure to low dose of Pb (with Pb concentrations in whole blood below 10μg/dL) on the synaptic structure and the pre- and postsynaptic proteins expression in the developing rat brain. Furthermore, the level of brain-derived neurotrophic factor (BDNF) was analyzed. Pregnant female Wistar rats received 0.1% lead acetate (PbAc) in drinking water from the first day of gestation until weaning of the offspring, while the control animals received drinking water. During the feeding of pups, mothers from the Pb-group were continuously receiving PbAc. Pups of both groups were weaned at postnatal day 21 and then until postnatal day 28 received only drinking water. 28-day old pups were sacrificed and the ultrastructural changes as well as expression of presynaptic (VAMP1/2, synaptophysin, synaptotagmin-1, SNAP25, syntaxin-1) and postsynaptic (PSD-95) proteins were analyzed in: forebrain cortex, cerebellum and hippocampus. Our data revealed that pre- and neonatal exposure to low dose of Pb promotes pathological changes in synapses, including nerve endings swelling, blurred and thickened synaptic cleft structure as well as enhanced density of synaptic vesicles in the presynaptic area. Moreover, synaptic mitochondria were elongated, swollen or shrunken in Pb-treated animals. These structural abnormalities were accompanied by decrease in the level of key synaptic proteins: synaptotagmin-1 in cerebellum, SNAP25 in hippocampus and syntaxin-1 in cerebellum and hippocampus. In turn, increased level of synaptophysin was

  18. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P Rats.

    Directory of Open Access Journals (Sweden)

    Jessica Godfrey

    Full Text Available Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total or were given access only to water (control. Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4-desaturase (Degs2, an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels

  19. Calcium imaging of basal forebrain activity during innate and learned behaviors

    Directory of Open Access Journals (Sweden)

    Thomas Clarke Harrison

    2016-05-01

    Full Text Available The basal forebrain (BF plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons. Here, we performed microendoscopic calcium imaging of BF neurons as mice engaged in spontaneous behaviors in their home cages (innate or performed a go/no-go auditory discrimination task (learned. Cholinergic neurons were consistently excited during movement, including running and licking, but GABAergic and glutamatergic neurons exhibited diverse responses. All cell types were activated by overt punishment, either inside or outside of the discrimination task. These findings reveal functional similarities and distinctions between BF cell types during both spontaneous and task-related behaviors.

  20. Distribution of PDE8A in the nervous system of the Sprague-Dawley rat

    DEFF Research Database (Denmark)

    Kruse, Lars Schack; Møller, Morten; Kruuse, Christina

    2011-01-01

    in the brain of adult male Sprague-Dawley rats and in the trigeminal ganglion. PDE8A was confined to neuronal perikaryal cytoplasm and to processes extending from those perikarya. The neurons exhibiting PDE8A-immunoreactivity were widely distributed in the forebrain, brain stem, and cerebellum. Strongly...... immunoreactive neurons were located in the olfactory bulb, the septal area, zona incerta, and reticular nucleus of the thalamus. Less immunoreactivity was seen in the hippocampus and cerebral cortex. Intense staining was detected in both the substantia nigra and the sensory trigeminal nucleus. In cerebellum PDE8....... The localization of the cAMP degrading PDE8A may indicate a role for PDE8A in cAMP signaling related to pain transmission, motor function, cognition and olfaction....

  1. Divergent brain changes in two audiogenic rat strains: A voxel-based morphometry and diffusion tensor imaging comparison of the genetically epilepsy prone rat (GEPR-3) and the Wistar Audiogenic Rat (WAR).

    Science.gov (United States)

    Lee, Yichien; Rodriguez, Olga C; Albanese, Chris; Santos, Victor Rodrigues; Cortes de Oliveira, José Antônio; Donatti, Ana Luiza Ferreira; Fernandes, Artur; Garcia-Cairasco, Norberto; N'Gouemo, Prosper; Forcelli, Patrick A

    2018-03-01

    Acoustically evoked seizures (e.g., audiogenic seizures or AGS) are common in models of inherited epilepsy and occur in a variety of species including rat, mouse, and hamster. Two models that have been particularly well studied are the genetically epilepsy prone rat (GEPR-3) and the Wistar Audiogenic Rat (WAR) strains. Acute and repeated AGS, as well as comorbid conditions, displays a close phenotypic overlap in these models. Whether these similarities arise from convergent or divergent structural changes in the brain remains unknown. Here, we examined the brain structure of Sprague Dawley (SD) and Wistar (WIS) rats, and quantified changes in the GEPR-3 and WAR, respectively. Brains from adult, male rats of each strain (n=8-10 per group) were collected, fixed, and embedded in agar and imaged using a 7 tesla Bruker MRI. Post-acquisition analysis included voxel-based morphometry (VBM), diffusion tensor imaging (DTI), and manual volumetric tracing. In the VBM analysis, GEPR-3 displayed volumetric changes in brainstem structures known to be engaged by AGS (e.g., superior and inferior colliculus, periaqueductal grey) and in forebrain structures (e.g., striatum, septum, nucleus accumbens). WAR displayed volumetric changes in superior colliculus, and a broader set of limbic regions (e.g., hippocampus, amygdala/piriform cortex). The only area of significant overlap in the two strains was the midline cerebellum: both GEPR-3 and WAR showed decreased volume compared to their control strains. In the DTI analysis, GEPR-3 displayed decreased fractional anisotropy (FA) in the corpus callosum, posterior commissure and commissure of the inferior colliculus (IC). WAR displayed increased FA only in the commissure of IC. These data provide a biological basis for further comparative and mechanistic studies in the GEPR-3 and WAR models, as well as provide additional insight into commonalities in the pathways underlying AGS susceptibility and behavioral comorbidity. Copyright © 2017

  2. Motivational salience signal in the basal forebrain is coupled with faster and more precise decision speed.

    Science.gov (United States)

    Avila, Irene; Lin, Shih-Chieh

    2014-03-01

    The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons.

  3. Reduced brain perfusion in basal forebrain associated with cognitive decline in Alzheimer's diseases: a Tc-99m HMPAO SPECT study

    International Nuclear Information System (INIS)

    Lee, M.C.; Kang, H.; Kang, E.; Lee, J.S.; Lee, D.S.; Lee, D.W.; Cho, M.J.

    2002-01-01

    Aim: Reduction of regional cerebral blood flow (rCBF) in various cerebral regions and decline of cognitive function have been reported in Alzheimer's disease (AD) patients. The aim of this study was to identify the brain areas showing correlation between longitudinal changes of rCBFs and decline of general mental function, measured by Mini-Mental State Examination (MMSE) in probable Alzheimer's disease patients. Materials and Methods: Nine probable AD patients according to NINCDS-ADRDA criteria and DSM-IV were studied with Tc-99m HMPAO SPECT at an initial point and at the follow-up after a period of average 1.8 year. MMSE score was obtained in both occasions (average MMSE 16.4 at initial study; average MMSE = 8.1 at follow-up). Single SPECT was performed in 30 age-matched normal controls. Each SPECT image was normalized to the cerebellar activity. Using statistical parametric mapping (SPM99), correlation was analyzed between individual changes in rCBF of two SPECT scans and the MMSE scores at the time of each study in AD patients. In addition, the SPECT images of the initial study and the follow-up study were compared with SPECT images of the age-matched normal group respectively. Results: Significant correlation between longitudinal changes of rCBFs and MMSE scores was found in left basal forebrain region including substantia innominata (x, y, z = -24, 16, -23; P < .05, corrected). Within a short follow-up period of 1.8 years, cerebral hypoperfusion extended to various cortical regions from bilateral temporo-parietal to bilateral frontal regions and cingulate cortex, compared to normal controls. Conclusion: The decline of cognitive function in individual AD patients was correlated with rCBF reduction in left basal forebrain. This finding supports the cholinergic hypothesis of AD since hypoperfusion in basal forebrain region might indicate deterioration of cholinergic neurons in nucleus basalis of Meynert or substantia innominata

  4. Operant conditioning of rat navigation using electrical stimulation for directional cues and rewards.

    Science.gov (United States)

    Lee, Maan-Gee; Jun, Gayoung; Choi, Hyo-Soon; Jang, Hwan Soo; Bae, Yong Chul; Suk, Kyoungho; Jang, Il-Sung; Choi, Byung-Ju

    2010-07-01

    Operant conditioning is often used to train a desired behavior in an animal. The contingency between a specific behavior and a reward is required for successful training. Here, we compared the effectiveness of two different mazes for training turning behaviors in response to directional cues in Sprague-Dawley rats. Forty-three rats were implanted with electrodes into the medial forebrain bundle and the left and right somatosensory cortices for reward and cues. Among them, thirteen rats discriminated between the left and right somatosensory stimulations to obtain rewards. They were trained to learn ipsilateral turning response to the stimulation of the left or right somatosensory cortex in either the T-maze (Group T) or the E| maze (Group W). Performance was measured by the navigation speed in the mazes. Performances of rats in Group T were enhanced faster than those in Group W. A significant correlation between performances during training and performance in final testing was observed in Group T starting with the fifth training session while such a correlation was not observed in Group W until the tenth training session. The training mazes did not however affect the performances in the final test. These results suggest that a simple maze is better than a complicated maze for training animals to learn directions and direct cortical stimulation can be used as a cue for direction training. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    International Nuclear Information System (INIS)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-01-01

    Autoradiography using 125 I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat

  6. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang

    2016-09-01

    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested. Keywords: Biosensor, Microelectrode array, Neurotoxicity, Chick forebrain neuron, AP5, Musimol

  7. Development of obesity in Zucker obese (fafa) rat in absence of hyperphagia.

    Science.gov (United States)

    Cleary, M P; Vasselli, J R; Greenwood, M R

    1980-03-01

    The free-feeding, genetically obese rat is hyperphagic, hyperinsulinemic, and hypertriglyceridemic and has increased fat cell size and number compared to its lean littermate. These experiments demonstrate that, when fafa rats are prevented from expressing hyperphagia throughout life, the complete obese "syndrome" still develops. Furthermore, life-long food restriction does not prevent increased lipoprotein lipase in the fafa rat. The data support the concept that a peripheral metabolic adaptation, probably in lipid metabolism, results in preferential shunting of dietary substrate in the restricted obese rats to adipose tissue with concomitant decreases in other tissues.

  8. Relationship between blood-retinal barrier development and formation of selenite nuclear cataract in rat

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2017-12-01

    Full Text Available AIM: To investigate the relationship between development of blood-retinal barrier and formation of selenite nuclear cataract in rat. METHODS: Activity of GPx, MDA level in lens and selenium content in the eyeballs of different ages rats were determined. Besides, lanthanum hydroxide \\〖La(OH3\\〗 tracer method was used to detect development status of blood-retina barrier at different ages. RESULTS: The result showed that the enzyme activity of GPx was highest in young rats before open eyes, but then decreased gradually with age. Distribution of La(OH3 in retinal pigment epithelial layer of 20-day-old rats was significantly less than 11-day-old rats. Injecting sodium selenite to 9-day-old rats, lanthanum hydroxide increased obviously and extended to the inner layers of the retina after 48h, and the retinal pigment epithelial layer was damaged seriously; while injecting sodium selenite to 18-day-old rats with the same dose, number of lanthanum hydroxide decreased significantly and did not extend to the inner layer after 48h.Before opening eyes, the content of MDA in the lens of rats was the highest, and decreased significantly after opening eyes. The Se group was 5 times as that of the control group. Besides, in these groups of rats, selenium content in the eyeballs and MDA level in the lens were in agreement with the change of La(OH3 distribution. CONCLUSION: These results indicated that antioxidant capacity in the eyelid unopened rats is not the main reason for selenite induced cataract formation. The real reason is that blood-retina barrier development is not mature in the eyelid unopened rats.

  9. Biosynthesis of the D2-cell adhesion molecule: post-translational modifications, intracellular transport, and developmental changes

    DEFF Research Database (Denmark)

    Lyles, J M; Linnemann, D; Bock, E

    1984-01-01

    Posttranslational modifications and intracellular transport of the D2-cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A...

  10. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  11. Localization of pre- and postsynaptic cholinergic markers in rodent forebrain : A brief history and comparison of rat and mouse

    NARCIS (Netherlands)

    Van der Zee, E. A.; Keijser, J.N.

    2011-01-01

    Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline

  12. Development and aging of the Kisspeptin-GPR54 system in the mammalian brain: what are the impacts on female reproductive function?

    Directory of Open Access Journals (Sweden)

    Isabelle eFranceschini

    2013-03-01

    Full Text Available The prominent role of the G protein coupled receptor GPR54 and its peptide ligand kisspeptin in the progression of puberty has been extensively documented in many mammalian species including humans. Kisspeptins are very potent GnRH secretagogues produced by two main populations of neurons located in two ventral forebrain regions, the preoptic area and the arcuate nucleus (ARC. Within the last two years a substantial amount of data has accumulated concerning the development of these neuronal populations and their timely regulation by central and peripheral factors during fetal, neonatal and peripubertal stages of development. This review focuses on the development of the Kisspeptin-GPR54 system in the brain of female mouse, rat, sheep, monkey and humans. The notion that this system represents a major target through which signals from the environment early in life can re-program reproductive function will also be discussed.

  13. Optimization of reagent concentration for radioiodination of rat C-peptide II in development of radioimmunoassay procedure for rats

    Directory of Open Access Journals (Sweden)

    B R Manupriya

    2018-01-01

    Full Text Available Rat C-peptide is a polypeptide molecule made up of 31 amino acids and secreted from pancreas into circulation in two isoforms I and II. Quantification of rat C-peptide II in rat serum is important as it is directly related to the diagnosis of carbohydrate metabolism abnormalities, pancreatic performance analysis, monitoring of hypoglycemia, and diabetes-related illness in rat model. The aim of the present work is to develop a tracer by chloramine-T method for radioimmunoassay (RIA procedure and to determine the optimum amount of chloramine-T required for the preparation of stable radioiodinated product with a specific activity of around 24.97 MBq/μg, corresponding to 1 125I atom per molecule of the peptide. Tyrosylated rat C-peptide II was selected for the radioiodination procedure as rat C-peptide II does not contain either tyrosine or histidine which is mandatory for the incorporation of 125I atom to the rat C-peptide II. Tyrosylated rat C-peptide II was subjected to radioiodination by chloramine-T method with different concentrations of chloramine-T and sodium metabisulfite (MBS to obtain a stable radiolabeled compound. Optimized reaction conditions relating to the concentration of chloramine-T (10 μg and MBS (20 μg yielded a stable 125I-rat C-peptide II with specific activity of 21.01 MBq/μg corresponding to 0.84 125I atoms per molecule of the peptide. Preparation of high integrity tracer of rat C-peptide II was achieved by combining one molecule of oxidant (chloramine-T and two molecule of reductant (MBS.

  14. Regulation of GABA and benzodiazepine receptors following neurotoxin-induced striatal and medial forebrain bundle lesions

    International Nuclear Information System (INIS)

    Pan, H.S.I.

    1985-01-01

    GABA, a major inhibitory transmitter, is used by many projection neurons of the striatum. To investigate the role of GABA in striatal function, the GABA receptor complex was studied after lesions of the striatum or the nigrostriatal neurons. Quantitative receptor autoradiography using thaw-mounted tissue slices was developed for the study of GABA and benzodiazepine (BDZ) receptors. With the technique established, binding to GABA and BDZ receptors after unilateral striatal kainate lesions was examined. Subsequently, changes in GABA and BDZ receptors were studied following the destruction of dopaminergic nigrostriatal cells by unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. In summary, quantitative receptor autoradiography allowed the detection of GABA and BDZ receptor changes in multiple small areas in each lesioned brain. This technique made it feasible to carry out kinetic saturation, and competition studies using less than 1 mg of tissue. The data suggest that dopamine is functionally inhibitory on striatopallidal neurons but is functionally excitatory on striatoentopeduncular and striatonigral cells which in turn inhibit the thalamus. This quantitative autoradiographic technique can be generalized to study other transmitter receptors and can be combined with 2-deoxyglucose uptake studies

  15. Free radical activity during development of insulin-dependent diabetes mellitus in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, O.M.; Akerblom, H.K.; Sariola, H.; Andersson, S.M. (Univ. of Helsinki (Finland)); Martin, J.M. (Hospital for Sick Children, Toronto, Ontario (Canada)); Hallman, M. (Univ. of California, Irvine (United States))

    1991-01-01

    Free radical-induced lipid peroxidation was quantified by measuring expired pentane from diabetic prone BB Wistar rats of 45-90 d of age. Insulin-dependent diabetes mellitus was manifest at the age of 71 {plus minus} 8 d. Expired pentane increased from 2.1 {plus minus} 0.7 to 5.0 {plus minus}3.0 pmol/100g/min (p <0.01) at manifestation of the disease and remained high throughout the test period. In healthy age-matched control rats it persisted low. In rats made diabetic with streptozotocin, expired pentane remained low. The changes in expired pentane suggest that the development of endogenous insulin-dependent diabetes mellitus in BB rats is associated with increased free radical activity. This is not due to hyperglycemia or ketosis per se, and reflects a fundamental difference in the free radical activity between the spontaneously diabetic BB rats and the disease produced by streptozotocin. Development of spontaneous insulin-dependent diabetes in BB rats is associated with increased free radical activity that persists after the manifestation of the disease.

  16. Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat.

    Science.gov (United States)

    Fernandez, M; Pirondi, S; Manservigi, M; Giardino, L; Calzà, L

    2004-10-01

    Oligodendrocyte development and myelination are under thyroid hormone control. In this study we analysed the effects of chronic manipulation of thyroid status on the expression of a wide spectrum of oligodendrocyte precursor cells (OPCs) markers and myelin basic protein (MBP) in the subventricular zone (SVZ), olfactory bulb and optic nerve, and on neural stem cell (NSC) lineage in adult rats. Hypo- and hyperthyroidism were induced in male rats, by propyl-thio-uracil (PTU) and L-thyroxin (T4) treatment, respectively. Hypothyroidism increased and hyperthyroidism downregulated proliferation in the SVZ and olfactory bulb (Ki67 immunohistochemistry and Western blotting, bromodeoxyuridine uptake). Platelet-derived growth factor receptor alpha (PDGFalpha-R) and MBP mRNA levels decreased in the optic nerve of hypothyroid rats; the same also occurred at the level of MBP protein. Hyperthyroidism slightly upregulates selected markers such as NG2 in the olfactory bulb. The lineage of cells derived from primary cultures of NSC prepared from the forebrain of adult hypo- and hyperthyroid also differs from those derived from control animals. Although no difference of in vitro proliferation of NSCs was observed in the presence of epidermal growth factor, maturation of oligodendrocytes (defined by process number and length) was enhanced in hyperthyroidism, suggesting a more mature state than in control animals. This difference was even greater when compared with the hypothyroid group, the morphology of which suggested a delay in differentiation. These results indicate that thyroid hormone affects NSC and OPC proliferation and maturation also in adulthood.

  17. Glycyl-glutamine in nucleus accumbens reduces ethanol intake in alcohol preferring (P) rats.

    Science.gov (United States)

    Resch, Garth E; Shridharani, Shyam; Millington, William R; Garris, David R; Simpson, C Wayne

    2005-10-05

    Opioid peptides and glycyl-glutamine (Gly-Gln) have been implicated in the control of ethanol consumption. A recognized beta-endorphin cleavage product, Gly-Gln, inhibits voluntary alcohol consumption when microinjected into the nucleus accumbens (AcbSh) of P rats. To evaluate the site-specific efficacy of Gly-Gln on ethanol consumption following AcbSh application, ethanol preferring (P) rats were allowed to establish individual baseline ethanol/water consumption utilizing a voluntary self-administration paradigm. Subsequent to baseline ethanol consumption being established, bilateral guide cannulae were stereotaxically implanted +1 mm dorsal to the AcbSh for subsequent Gly-Gln (100 nmol/microl) or saline vehicle (1 microl) injections. Alcohol intake, body weight, and water intake were measured at 24 h post-injection intervals. Unilateral Gly-Gln injections reduced ethanol consumption 35.6% (P < 0.05) from pre-established baseline consumption (6.24 +/- 0.64 g/kg to 4.06 +/- 0.28 g/kg). Bilateral Gly-Gln injections further reduced consumption to 51.9% (6.4 +/- 1.0 g/kg to 3.08 +/- 0.65 g/kg at 24 h (P < 0.01) below established baseline values within 24 h without significant changes in body weight or water consumption. Also, the amino acid constituents of the dipeptide had no influence on ethanol consumption behavior; however, Gly-Gln efficacy was shown to be comparable to central beta-endorphin-(1-27) or intraperitoneal (i.p.) naltrexone-induced suppression of ethanol intake. These data indicate that the AcbSh exhibits a site-specific sensitivity to the suppressive actions of Gly-Gln or beta-endorphin-(1-27) injections that modulate voluntary ethanol consumption in P rats. These findings support the broader concept that select forebrain opioid-responsive neural sites may influence the development or expression of alcohol abuse syndromes in animal models or humans.

  18. Cocaine enhances resistance to extinction of responding for brain-stimulation reward in adult prenatally stressed rats.

    Science.gov (United States)

    Gao, Shuibo; Suenaga, Toshiko; Oki, Yutaka; Yukie, Masao; Nakahara, Daiichiro

    2011-10-01

    The present experiment assessed whether prenatal stress (PS) can alter the ability of acute and chronic cocaine administration to increase and decrease the rewarding effectiveness of the medial forebrain bundle (MFB) using intracranial self-stimulation (ICSS), and also whether PS can affect the extinction of the MFB stimulation response. Adult male offspring of female rats that received PS or no PS (nPS) were implanted with MFB stimulating electrodes, and were then tested in ICSS paradigms. In both nPS and PS offspring, acute cocaine injection decreased ICSS thresholds dose-dependently. However, the threshold-lowering effects at any dose were not significantly different between groups. There was also no group-difference in the threshold-elevating effects of chronic cocaine administration. Nevertheless, chronically drug-administered PS rats exhibited a resistance to the extinguishing of the response for brain-stimulation reward when acutely treated with cocaine, as compared to extinction without cocaine treatment. The results suggest that PS may weaken the ability for response inhibition under cocaine loading in male adult offspring. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. [The effects of strontium in drinking water on growth and development of rat bone].

    Science.gov (United States)

    Xu, F; Zhang, X; Liu, J; Fan, M

    1997-05-01

    Effects of strontium at a high level in drinking water on growth and development of rat bone were studied. The results showed that Sr2+ concentration from 5 to 500 mg/L in drinking water could increase the contents of strontium in blood serum, urine, femur, mixilla and tooth in Wistar rats exposed to Sr2+ for 12 weeks with an obvious dose-response relationship. In addition, strontium at over 50 mg/L could decrease the contents of calcium in bone, increase the contents of calcium in tooth and bone density, and decrease the levels of calcium in blood serum except female rats at the 12th week. Effects of Sr2+ on body weight, body length, AKP activity of serum, calcium content of urine and breaking load of bended femur for rats were not found. However, there are differences in the effects of strontium on growth and development of bone between male and female rats. At the 12th week the content of calcium in blood serum decreased in male rats but increased in female rats in exposed groups. At the 4th and 8th weeks, urine Hop/Cr in male rats increased but it remained normal level in female rats. Sr2+ increased the bone density of mixilla in male rats but it did not increase that of femur in female rats. It is suggested that such changes may be a result of the differences in endocritic regulation and metabolic process between two sexes.

  20. Enhancement of Spatial Learning-Memory in Developing Rats via Mozart Music

    Institute of Scientific and Technical Information of China (English)

    Jian-Gao Yao; Yang Xia; Sheng-Jun Dai; Guang-Zhan Fang; Hua Guo; De-Zhong Yao

    2009-01-01

    This paper studies the effect of musical stimulations on the capability of the spatial learning-memory in developing rats by behavioral and electro-physiological techniques.Rats,which are exposed to Mozart's Sonata for Two Pianos in D Major,complete learning tasks of the Moriss water maze with significantly shorter latencies,and the power spectrum of alpha band of electrohippocampogram (EHG) significantly increase,compared with the control rats and rats exposed to the horror music.The results indicate that if given the stimulation of Mozart music in the developmental period of the auditory cortex,the capability of the spatial learning-memory can be significantly changed.The enhancement of alpha band of EHG may be related to the change of this function mainly.

  1. Expression of nitric oxide synthase during the development of RCS rat retinas.

    Science.gov (United States)

    Sharma, R K; Warfvinge, K; Ehinger, B

    2001-01-01

    Nitric oxide (NO) has been reported to be both neurodestructive and neuroprotective in the central nervous system and could possibly play an important role in neurodegenerative disorders. On the assumption that NO synthesis may influence degenerative processes in the retina, we have examined the development and distribution of nitric-oxide-synthase(NOS)-immunoreactive cells in developing Royal College of Surgeons (RCS) rat retinas, which is an animal model for retinal degeneration. An antibody against constitutive neuronal NOS was used for immunocytochemistry on RCS rat retinas from postnatal (PN) days 3, 7, 10, 14, 35, 70 and 281 and compared with that in the normal rats of PN days 3, 7, 10, 14, 54 and adults. Immunoreactive cells were not seen in PN 3 retinas but were distinctly seen in the PN 7 retina along with a plexus in the inner plexiform layer. In both groups (normal and RCS rats) a distinct sublayering of the plexus in the inner plexiform layer could be seen at PN 10, which became more distinct at PN 14. The immunoreactive cells were detected also in the oldest retina examined, which was PN 281 in the case of RCS rats. In both groups, certain amacrine cells, certain bipolar cells and certain horizontal cells were found to be immunoreactive. In conclusion, the developmental timetable of the NOS immunoreactivity was identical in the normal and the RCS rat retinas. The NOS-immunoreactive cells persisted in the RCS retinas even when the retina had degenerated extensively. Abnormalities with the inducible isoforms of NOS cannot be ruled out from this study. We conclude that the chronological and qualitative development of the constitutive neuronal NOS immunoreactivity is normal in RCS rat retinas. Copyright 2001 S. Karger AG, Basel

  2. FMRP acts as a key messenger for dopamine modulation in the forebrain.

    Science.gov (United States)

    Wang, Hansen; Wu, Long-Jun; Kim, Susan S; Lee, Frank J S; Gong, Bo; Toyoda, Hiroki; Ren, Ming; Shang, Yu-Ze; Xu, Hui; Liu, Fang; Zhao, Ming-Gao; Zhuo, Min

    2008-08-28

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.

  3. Development of antibodies against the rat brain somatostatin receptor.

    Science.gov (United States)

    Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T

    1992-05-15

    Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

  4. Protein-energy malnutrition developing after global brain ischemia induces an atypical acute-phase response and hinders expression of GAP-43.

    Science.gov (United States)

    Smith, Shari E; Figley, Sarah A; Schreyer, David J; Paterson, Phyllis G

    2014-01-01

    Protein-energy malnutrition (PEM) is a common post-stroke problem. PEM can independently induce a systemic acute-phase response, and pre-existing malnutrition can exacerbate neuroinflammation induced by brain ischemia. In contrast, the effects of PEM developing in the post-ischemic period have not been studied. Since excessive inflammation can impede brain remodeling, we investigated the effects of post-ischemic malnutrition on neuroinflammation, the acute-phase reaction, and neuroplasticity-related proteins. Male, Sprague-Dawley rats were exposed to global forebrain ischemia using the 2-vessel occlusion model or sham surgery. The sham rats were assigned to control diet (18% protein) on day 3 after surgery, whereas the rats exposed to global ischemia were assigned to either control diet or a low protein (PEM, 2% protein) diet. Post-ischemic PEM decreased growth associated protein-43, synaptophysin and synaptosomal-associated protein-25 immunofluorescence within the hippocampal CA3 mossy fiber terminals on day 21, whereas the glial response in the hippocampal CA1 and CA3 subregions was unaltered by PEM. No systemic acute-phase reaction attributable to global ischemia was detected in control diet-fed rats, as reflected by serum concentrations of alpha-2-macroglobulin, alpha-1-acid glycoprotein, haptoglobin, and albumin. Acute exposure to the PEM regimen after global brain ischemia caused an atypical acute-phase response. PEM decreased the serum concentrations of albumin and haptoglobin on day 5, with the decreases sustained to day 21. Serum alpha-2-macroglobulin concentrations were significantly higher in malnourished rats on day 21. This provides the first direct evidence that PEM developing after brain ischemia exerts wide-ranging effects on mechanisms important to stroke recovery.

  5. The effects of manipulation of presynaptic 5-HT nerve terminals of postsynaptic 5-HT1 and 5-HT2 binding sites of the rat brain

    International Nuclear Information System (INIS)

    Hall, H.; Wedel, I.

    1985-01-01

    The effects of long-term treatment of rats with alaproclate and amiflamine on the number and kinetics of 5-HT 1 and 5-HT 2 binding sites were investigated using in vitro receptor binding techniques. Some other studies have reported down-regulatory effects of alaproclate and amiflamine on 5-HT 2 binding sites in certain regions of the rat forebrain, but no such effects could be detected in the present study. Induction of a high-affinity binding site for 3 H-5-HT after long-term antidepressant treatment, as has been reported elsewhere, was not obtained in the present study. The results are compared to the effects obtained by treatment of rats with para-chloroamphetamine (PCA), which depletes the presynaptic neurons of monoamines. These different types of treatment do not cause any change in the binding properties of the specific 5-HT binding sites. It is thus concluded that such manipulations of the presynaptic 5-HT neurons do not affect the postsynaptic 5-HT 1 and 5-HT 2 binding sites. (Author)

  6. Postnatal development and behaviour of Wistar rats after prenatal toluene exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, R. [Fachbereich Humanmedizin, Universitaetsklinikum Benjamin Franklin, Inst. fuer Toxikologie und Embryopharmakologie, Freie Univ. Berlin (Germany); Chahoud, I. [Fachbereich Humanmedizin, Universitaetsklinikum Benjamin Franklin, Inst. fuer Toxikologie und Embryopharmakologie, Freie Univ. Berlin (Germany)

    1997-02-01

    Pregnant Wistar rats were treated with different concentrations of toluene by inhalation (300, 600, 1000 and 1200 ppm) from day 9 to day 21 of pregnancy for 6 h a day in a whole-body inhalation chamber (controls inhaled fresh air only). From day 22, rats were kept single-caged and were allowed to deliver. Besides a detailed evaluation of the physical development of the offspring we performed the following tests: forelimb-grasp reflex, righting reflex, cliff-drop aversion reflex, maintainance of balance on a rotating rod, measurement of locomotor activity and learning ability in a discrimination learning test. A toluene exposure of 1200 ppm resulted in a reduced body weight of rat dams and offspring and a higher mortality until weaning. The physical development (incisor eruption, eye opening and vaginal opening) was retarded in this group. There were no clear-cut and concentration-dependent differences in the development of reflexes, rota rod performance and locomotor activity between the offspring of animals exposed to toluene and the controls. Likewise, no effects were found on learning ability in the operant conditioning task. Compared to the controls there were no differences in mating, fertility and pregnancy indexes in the F{sub 1}-generation. The tests performed have provided no evidence that toluene exposures {<=} 1200 ppm induce adverse effects on the behaviour of rat offspring exposed during late embryonic and fetal development. (orig.). With 8 figs., 7 tabs.

  7. Development of ELISA kit for rat albumin

    International Nuclear Information System (INIS)

    Yuan Zhigang; Han Shiquan; Liu Yibing; Xu Wenge; Jia Juanjuan

    2009-01-01

    The Anti-rat albumin serum was prepared by immunized the sheep with rat albumin. A ELISA method was established for rat albumin. The measurement range of the assay was 1-50 mg/L, sensitivity of the assay was 0.42 mg/L, recovery rate was 85.0%-106.0%. Intra-and inter-assay variation coefficients were <8.9% and <12.8% respectively. The correlation coefficients between measured and expected values were 0.999 after serial dilution of the urine samples with high concentrations of rat albumin. A good correlation was observed between the ELISA and RIA methods, and the kit for rat albumin might provide a convenience in exploitation of renal drugs and experimental injury of the kidney. (authors)

  8. Postnatal development of plasma amino acids in hyperphagic rats.

    Science.gov (United States)

    Salvadó, M J; Segués, T; Arola, L

    1991-01-01

    The effect of feeding a highly palatable high-energy cafeteria diet on individual amino acid levels in plasma during postnatal development of the rat has been evaluated and compared to chow-fed controls. The cafeteria diet selected by the rats was hypercaloric and hyperlipidic, with practically the same amount of carbohydrate as the control diet, and slightly hyperproteic. In response to cafeteria feeding, significant decreases were observed in plasma serine and cysteine along the period studied. Significant changes with age during the growth period were shown by cafeteria-fed animals, which were not observed in control rats. Citrulline levels were lower on days 10 and 14 in cafeteria pups than in chow pups. Methionine was highest on day 30. Threonine was also higher at days 20 and 30, as was valine but with a nadir at day 10. Lysine showed maximal values on days 14 and 30.

  9. Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres

    International Nuclear Information System (INIS)

    Yamakami, I.; McIntosh, T.K.

    1989-01-01

    To clarify the effect of experimental brain injury on regional CBF (rCBF), repeated rCBF measurements were performed using radiolabeled microspheres in rats subjected to fluid-percussion traumatic brain injury. Three consecutive microsphere injections in six uninjured control rats substantiated that the procedure induces no significant changes in hemodynamic variables or rCBF. Animals were subjected to left parietal fluid-percussion brain injury of moderate severity (2.1-2.4 atm) and rCBF values were determined (a) prior to injury and 15 min and 1 h following injury (n = 7); and (b) prior to injury and 30 min and 2 h following injury (n = 7). At 15 min post injury, there was a profound reduction of rCBF in all brain regions studied (p less than 0.01). Although rCBF in the hindbrain had recovered to near-normal by 30 min post injury, rCBF in both injured and contralateral (uninjured) forebrain areas remained significantly suppressed up to 1 h post injury. At 2 h post injury, recovery of rCBF to near-normal values was observed in all brain regions except the focal area of injury (left parietal cortex) where rCBF remained significantly depressed (p less than 0.01). This prolonged focal oligemia at the injury site was associated with the development of reproducible cystic necrosis in the left parietotemporal cortex at 4 weeks post injury. Our results demonstrate that acute changes in rCBF occur following experimental traumatic brain injury in rats and that rCBF remains significantly depressed up to 2 h post injury in the area circumscribing the trauma site

  10. Cytoskeletal Regulation Dominates Temperature-Sensitive Proteomic Changes of Hibernation in Forebrain of 13-Lined Ground Squirrels

    Science.gov (United States)

    Hindle, Allyson G.; Martin, Sandra L.

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy – wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  11. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    Directory of Open Access Journals (Sweden)

    Allyson G Hindle

    Full Text Available 13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins

  12. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study.

    Science.gov (United States)

    Zant, Janneke C; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V; McCarley, Robert W; Brown, Ritchie E; Basheer, Radhika

    2016-02-10

    Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral

  13. The medial prefrontal cortex and nucleus accumbens mediate the motivation for voluntary wheel running in the rat.

    Science.gov (United States)

    Basso, Julia C; Morrell, Joan I

    2015-08-01

    Voluntary wheel running in rats provides a preclinical model of exercise motivation in humans. We hypothesized that rats run because this activity has positive incentive salience in both the acquisition and habitual stages of wheel running and that gender differences might be present. Additionally, we sought to determine which forebrain regions are essential for the motivational processes underlying wheel running in rats. The motivation for voluntary wheel running in male and female Sprague-Dawley rats was investigated during the acquisition (Days 1-7) and habitual phases (after Day 21) of running using conditioned place preference (CPP) and the reinstatement (rebound) response after forced abstinence, respectively. Both genders displayed a strong CPP for the acquisition phase and a strong rebound response to wheel deprivation during the habitual phase, suggesting that both phases of wheel running are rewarding for both sexes. Female rats showed a 1.5 times greater rebound response than males to wheel deprivation in the habitual phase of running, while during the acquisition phase, no gender differences in CPP were found. We transiently inactivated the medial prefrontal cortex (mPFC) or the nucleus accumbens (NA), hypothesizing that because these regions are involved in the acquisition and reinstatement of self-administration of both natural and pharmacological stimuli, they might also serve a role in the motivation to wheel run. Inactivation of either structure decreased the rebound response in the habitual phase of running, demonstrating that these structures are involved in the motivation for this behavior. (c) 2015 APA, all rights reserved).

  14. Evidence for a role of corticopetal, noradrenergic systems in the development of executive function.

    Science.gov (United States)

    Mokler, David J; Miller, Christine E; McGaughy, Jill A

    2017-09-01

    Adolescence is a period during which many aspects of executive function are maturing. Much of the literature has focused on discrepancies between sub-cortical and cortical development that is hypothesized to lead to over-processing of reinforcement related stimuli unchecked by fully matured response inhibition. Specifically, maturation of sub-cortical dopaminergic systems that terminate in the nucleus accumbens has been suggested to occur prior to the full maturation of corticopetal dopaminergic systems. However, converging evidence supports the hypothesis that many aspects of cognitive control are critically linked to cortical noradrenergic systems, that the effectiveness of drugs used to treat disorders of executive function, e.g. ADHD, may result primarily from increases in cortical norepinephrine (NE) and that cortical noradrenergic systems mature across adolescence. However, little attention has been given to the development of this system during adolescence or to its influence in executive function. In the present paper, we discuss the developmental trajectory of the noradrenergic system of the forebrain, highlight the interactions between noradrenergic and dopaminergic systems, and highlight the contribution of the immature corticopetal noradrenergic systems in the ontogeny of several aspects of executive function. Finally we compare data from adolescent rats to those gathered after selective depletion of NE in sub-regions of the prefrontal cortex with an emphasis on the similarities in performance of NE lesioned rats and adolescents. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Diet composition determines course of hyperphagia in developing Zucker obese rats.

    Science.gov (United States)

    Vasselli, J R; Maggio, C A

    1990-12-01

    Previous observations from this laboratory indicate that, during growth, the hyperphagia of the male genetically obese Zucker rat reaches a peak or "breakpoint" and then declines. To examine the effect of dietary macronutrient content on the course of hyperphagia, groups of male lean and obese rats were maintained from 5-28 weeks of age on powdered chow, or isocaloric diets (3.6 kcal/g) containing 72% of calories as corn oil, dextrose, or soy isolate protein (n = 5 lean and obese rats/diet). On chow, hyperphagia was maintained at a level of 7-8 g above lean control intake until a "breakpoint" was reached at 17 weeks, and obese intake declined to lean control level. On the fat diet, hyperphagia was increased to 10 g/day when a breakpoint was reached at 8 weeks. On the dextrose and protein diets, hyperphagia at a level of 3-4 g/day reached breakpoints at weeks 18 and 16, respectively. On all diets, the intakes of obese rats were precisely equal to the intakes of lean control rats by weeks 19-20. These data show that the magnitude and duration of hyperphagia in the developing obese rat are influenced by diet composition. Previously, we have proposed that the obese rat's hyperphagia arises from rapid adipocyte filling. Since high-fat diets facilitate adipocyte enlargement, the early "breakpoint" of hyperphagia seen with the high-fat diet may indicate that this feeding stimulation decreases as the fat cells of the obese rat approach maximal size.

  16. Development of neuropeptide Y-mediated heart innervation in rats.

    Science.gov (United States)

    Masliukov, Petr M; Moiseev, Konstantin; Emanuilov, Andrey I; Anikina, Tatyana A; Zverev, Alexey A; Nozdrachev, Alexandr D

    2016-02-01

    Neuropeptide Y (NPY) plays a trophic role in the nervous and vascular systems and in cardiac hypertrophy. However, there is no report concerning the expression of NPY and its receptors in the heart during postnatal development. In the current study, immunohistochemistry and Western blot analysis was used to label NPY, and Y1R, Y2R, and Y5R receptors in the heart tissue and intramural cardiac ganglia from rats of different ages (newborn, 10 days old, 20 days old, 30 days old, 60 days old, 1 year old, and 2 years old).The obtained data suggest age-dependent changes of NPY-mediated heart innervation. The density of NPY-immunoreactive (IR) fibers was the least in newborn animals and increased in the first 20 days of life. In the atria of newborn and 10-day-old rats, NPY-IR fibers were more abundant compared with the ventricles. The vast majority of NPY-IR fibers also contained tyrosine hydroxylase, a key enzyme in catecholamine synthesis.The expression of Y1R increased between 10 and 20 days of life. Faint Y2R immunoreactivity was observed in the atria and ventricles of 20-day-old and older rats. In contrast, the highest level of the expression of Y5R was found in newborn pups comparing with more adult rats. All intramural ganglionic neurons were also Y1R-IR and Y5R-IR and Y2R-negative in all studied animals.Thus, the increasing of density of NPY-containing nerve fibers accompanies changes in relation of different subtypes of NPY receptors in the heart during development.

  17. NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain

    Directory of Open Access Journals (Sweden)

    Murray Kerren

    2011-02-01

    Full Text Available Abstract From an early postnatal period and throughout life there is a continuous production of olfactory bulb (OB interneurons originating from neuronal precursors in the subventricular zone. To reach the OB circuits, immature neuroblasts migrate along the rostral migratory stream (RMS. In the present study, we employed cultured postnatal mouse forebrain slices and used lentiviral vectors to label neuronal precursors with GFP and to manipulate the expression levels of the Na-K-2Cl cotransporter NKCC1. We investigated the role of this Cl- transporter in different stages of postnatal neurogenesis, including neuroblast migration and integration in the OB networks once they have reached the granule cell layer (GCL. We report that NKCC1 activity is necessary for maintaining normal migratory speed. Both pharmacological and genetic manipulations revealed that NKCC1 maintains high [Cl-]i and regulates the resting membrane potential of migratory neuroblasts whilst its functional expression is strongly reduced at the time cells reach the GCL. As in other developing systems, NKCC1 shapes GABAA-dependent signaling in the RMS neuroblasts. Also, we show that NKCC1 controls the migration of neuroblasts in the RMS. The present study indeed indicates that the latter effect results from a novel action of NKCC1 on the resting membrane potential, which is independent of GABAA-dependent signaling. All in all, our findings show that early stages of the postnatal recruitment of OB interneurons rely on precise, orchestrated mechanisms that depend on multiple actions of NKCC1.

  18. Motor System Development Depends on Experience: A Microgravity Study of Rats

    Science.gov (United States)

    Walton, Kerry D.; Llinas, Rodolfo R.; Kalb, Robert; Hillman, Dean; DeFelipe, Javier; Garcia-Segura, Luis Miguel

    2003-01-01

    Animals move about their environment by sensing their surroundings and making adjustments according to need. All animals take the force of gravity into account when the brain and spinal cord undertake the planning and execution of movements. To what extent must animals learn to factor in the force of gravity when making neural calculations about movement? Are animals born knowing how to respond to gravity, or must the young nervous system learn to enter gravity into the equation? To study this issue, young rats were reared in two different gravitational environments (the one-G of Earth and the microgravity of low Earth orbit) that necessitated two different types of motor operations (movements) for optimal behavior. We inquired whether those portions of the young nervous system involved in movement, the motor system, can adapt to different gravitational levels and, if so, the cellular basis for this phenomenon. We studied two groups of rats that had been raised for 16 days in microgravity (eight or 14 days old at launch) and compared their walking and righting (ability to go from upside down to upright) and brain structure to those of control rats that developed on Earth. Flight rats were easily distinguished from the age-matched ground control rats in terms of both motor function and central nervous system structure. Mature surface righting predominated in control rats on the day of landing (R+O), while immature righting predominated in the flight rats on landing day and 30 days after landing. Some of these changes appear to be permanent. Several conclusions can be drawn from these studies: (1) Many aspects of motor behavior are preprogrammed into the young nervous system. In addition, several aspects of motor behavior are acquired as a function of the interaction of the developing organism and the rearing environment; (2) Widespread neuroanatomical differences between one-G- and microgravity-reared rats indicate that there is a structural basis for the adaptation

  19. Epidermal growth factor and lung development in the offspring of the diabetic rat

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Nexø, Ebba

    2000-01-01

    Fetuses of diabetic mothers who were exposed to excessive glucose show delayed maturation. Under these conditions, altered growth factor expression or signaling may have important regulatory influences. We examined the role of epidermal growth factor (EGF) in lung development and maternal diabetes...... in the rat. In order to evaluate the possible role of glucose for the expression of EGF and the growth of lung tissue, we performed in vitro studies with organotypic cultures of fetal alveolar cells obtained from control rats. Compared to pups of normal rats, the newborn rats of untreated diabetic rats had...... and was associated with a reduced intensity of surfactant protein A-IR. The only difference observed between pups of treated diabetic rats and controls was a decrease in the lung weight:body weight ratio. In organotypic cultures, the presence of 13 mmol/L glucose in the cell media increased immunoreactive staining...

  20. Phenomenon of hormesis on γ-irradiated developing rat pups

    International Nuclear Information System (INIS)

    Ruda, V.P.; Kuzin, A.M.

    1991-01-01

    Development of rat pups was shown to accelerate body mass up 121% of control) afetr γ-irradiation on day 21 of the postnatal development (2.88 cGy, dose-rate of 0.12 cGy/h). Higher cumulative doses (14.4 and 144 cGy) did not influence the body mass growth, and inhibition was only caused by doses exceeding 150 cGy

  1. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    Science.gov (United States)

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. MiR-200a is involved in rat epididymal development by targeting β-catenin mRNA

    Institute of Scientific and Technical Information of China (English)

    Xiaojiang Wu; Botao Zhao; Wei Li; Yue Chen; Ruqiang Liang; Lin Li; Youxin Jin; Kangcheng Ruan

    2012-01-01

    The expression of 350 microRNAs (miRNAs) in epididymis of rat from postnatal development to adult (from postnatal days 7-70) was profiled with home-made miRNA microarray.Among them,48 miRNAs changed significantly, in which the expression of miR-200a increased obviously with time,in a good agreement with that obtained from northern blot analysis.The real-time quantitative-polymerase chain reaction result indicated that temporal expression of rat β-catenin was exactly inversed to that of miR-200a during rat epididymal development,implying that miR-200a might also target β-catenin mRNA in rat epididymis as reported by Saydam et al.in humans.The bioinformatic analysis indicated that 3' untranslated region of rat β-catenin mRNA did contain a putative binding site for miR-200a.Meanwhile,it was found that the sequence of this binding site was different from that of human β-catenin mRNA with a deletion of two adjacent nucleotides (U and C).But the results of luciferase targeting assay in HEK 293T cells and the overexpression of miR-200a in rat NRK cells demonstrated that miR-200a did target rat β-catenin mRNA and cause the suppression of its expression.All these results show that miR-200a should be involved in rat epididymal development by targeting β-catenin mRNA of rat and suppressing its expression.

  3. Dual odontogenic origins develop at the early stage of rat maxillary incisor development.

    Science.gov (United States)

    Kriangkrai, Rungarun; Iseki, Sachiko; Eto, Kazuhiro; Chareonvit, Suconta

    2006-03-01

    Developmental process of rat maxillary incisor has been studied through histological analysis and investigation of tooth-related gene expression patterns at initial tooth development. The tooth-related genes studied here are fibroblast growth factor-8 (Fgf-8), pituitary homeobox gene-2 (Pitx-2), sonic hedgehog (Shh), muscle segment homeobox-1 (Msx-1), paired box-9 (Pax-9) and bone morphogenetic protein-4 (Bmp-4). The genes are expressed in oral epithelium and/or ectomesenchyme at the stage of epithelial thickening to the early bud stage of tooth development. Both the histological observation and tooth-related gene expression patterns during early stage of maxillary incisor development demonstrate that dual odontogenic origins aligned medio-laterally in the medial nasal process develop, subsequently only single functional maxillary incisor dental placode forms. The cascade of tooth-related gene expression patterns in rat maxillary incisor studied here is quite similar to those of the previous studies in mouse mandibular molar, even though the origins of oral epithelium and ectomesenchyme involved in development of maxillary incisor and mandibular molar are different. Thus, we conclude that maxillary incisor and mandibular molar share a similar signaling control of Fgf-8, Pitx-2, Shh, Msx-1, Pax-9 and Bmp-4 genes at the stage of oral epithelial thickening to the early bud stage of tooth development.

  4. Effect of lead acetate on neurobehavioral development of rats

    Directory of Open Access Journals (Sweden)

    Mello C.F.

    1998-01-01

    Full Text Available We investigated the effects of lead exposure during the pre- and postnatal period on the neurobehavioral development of female Wistar rats (70-75 days of age, 120-150 g using a protocol of lead intoxication that does not affect weight gain. Wistar rats were submitted to lead acetate intoxication by giving their dams 1.0 mM lead acetate. Control dams received deionized water. Growth and neuromotor development were assessed by monitoring daily the following parameters in 20 litters: body weight, ear unfolding, incisor eruption, eye opening, righting, palmar grasp, negative geotaxis, cliff avoidance and startle reflex. Spontaneous alternation was assessed on postnatal day 17 using a T maze. The animals' ability to equilibrate on a beaker rim was measured on postnatal day 19. Lead intoxication was confirmed by measuring renal, hepatic and cerebral lead concentration in dams and litters. Lead treatment hastened the day of appearance of the following parameters: eye opening (control: 13.5 ± 0.6, N = 88; lead: 12.9 ± 0.6, N = 72; P<0.05, startle reflex (control: 13.0 ± 0.8, N = 88; lead: 12.0 ± 0.7, N = 72; P<0.05 and negative geotaxis. On the other hand, spontaneous alternation performance was hindered in lead-exposed animals (control: 37.6 ± 19.7; lead: 57.5 ± 28.3% of alternating animals; P<0.05. These results suggest that lead exposure without concomitant undernutrition alters rat development, affecting specific subsets of motor skills.

  5. Sleep: a physiological "cerveau isolé" stage?

    Science.gov (United States)

    Gottesmann, C; User, P; Gioanni, H

    1980-01-01

    Rapid or paradoxical sleep in the rat is usually preceded and often followed by a stage of short duration characterized by large spindles in the frontal cortex and theta rhythm in the hippocampus. The midbrain transection induces for hours the same electrophysiological patterns suggesting the existence in the rat of a short physiologically isolated, forebrain stage during sleep.

  6. Perinatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain.

    Science.gov (United States)

    Baud, Olivier; Fayol, Laurence; Gressens, Pierre; Pellerin, Luc; Magistretti, Pierre; Evrard, Philippe; Verney, Catherine

    2003-10-20

    In addition to glucose, monocarboxylates including lactate represent a major source of energy for the brain, especially during development. We studied the immunocytochemical expression of the monocarboxylate transporters MCT1 and MCT2 in the rat brain between embryonic day (E) 16 and postnatal day (P) 14. At E16-18, MCT1-like immunoreactivity was found throughout the cortical anlage, being particularly marked medially in the hippocampal anlage next to the ventricle. In a complementary pattern, MCT2-like immunoreactivity was expressed along the medial and ventral border of the ventricle in the medial septum and habenula before birth. The hypothalamic area exhibited MCT2 and MCT1 positive areas from E18 on. These transient labelings revealed four main sites of monocarboxylate and/or glucose exchange: the brain parenchyma, the epithelial cells, the ependymocytes, and the glia limitans. During the first postnatal week, MCT1 immunoreactivity extended massively to the vessel walls and moderately to the developing astrocytes in the cortex. In contrast, MCT2 immunoreactivity was faint in blood vessels but massive in developing astrocytes from P3 to P7. Neither MCT2 nor MCT1 colocalized with neuronal, microglial, or oligodendrocytic markers during the first postnatal week. At P14, a part of the scattered punctate MCT2 staining could be associated with astrocytes and postsynaptic dendritic labeling. The transient pattern of expression of MCTs throughout the perinatal period suggests a potential relationship with the maturation of the blood-brain barrier. Copyright 2003 Wiley-Liss, Inc.

  7. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats

    DEFF Research Database (Denmark)

    Mortensen, B T; Jensen, P O; Helledie, N

    1998-01-01

    The Brown Norwegian rat transplanted with promyelocytic leukaemic cells (BNML) has been used as a model for human acute myeloid leukaemia. We have previously shown that both the blood supply to the bone marrow and the metabolic rate decrease in relation to the leukaemic development in these rats....

  8. Different subcellular localization of neurotensin-receptor and neurotensin-acceptor sites in the rat brain dopaminergic system.

    Science.gov (United States)

    Schotte, A; Rostène, W; Laduron, P M

    1988-04-01

    The subcellular localization of neurotensin-receptor sites (NT2 sites) and neurotensin-acceptor sites (NT1 sites) was studied in rat caudate-putamen by isopycnic centrifugation in sucrose density gradients. [3H]Neurotensin binding to NT2 sites occurred as a major peak at higher sucrose densities, colocalized with [3H]dopamine uptake, and as a small peak at a lower density; whereas binding to NT1 sites occurred as a single large peak at an intermediate density. 6-Hydroxydopamine lesions of the median forebrain bundle resulted in a total loss of NT2 sites in the caudate-putamen but did not affect NT2 sites in the nucleus accumbens and the olfactory tubercle. NT1 sites were not affected. Kainic acid injections into the rat caudate-putamen led to a partial decrease of NT1 sites in this region 5 days later. After a few weeks they returned to normal. Therefore NT2 sites are probably associated with presynaptic nigrostriatal dopaminergic terminals in the caudate-putamen but not in the nucleus accumbens and the olfactory tubercle. A possible association of NT1 sites with glial cells is suggested.

  9. Autoradiographic localization and characterization of atrial natriuretic peptide binding sites in the rat central nervous system and adrenal gland

    International Nuclear Information System (INIS)

    Gibson, T.R.; Wildey, G.M.; Manaker, S.; Glembotski, C.C.

    1986-01-01

    Atrial natriuretic peptides (ANP) have recently been identified in both heart and CNS. These peptides possess potent natriuretic, diuretic, and vasorelaxant activities, and are all apparently derived from a single prohormone. Specific ANP binding sites have been characterized in the adrenal zona glomerulosa and kidney cortex, and one study reported ANP binding sites in the CNS. However, a detailed examination of the localization of ANP binding sites throughout the brain has not been reported. In this study, quantitative autoradiography was employed to examine the distribution of ANP receptors in the rat CNS. The binding of (3- 125 I-iodotyrosyl28) rat ANP-28 to binding sites in the rat CNS was saturable, specific for ANP-related peptides, and displayed high affinity (Kd = 600 pM). When the relative concentrations of ANP binding sites were determined throughout the rat brain, the highest levels of ANP binding were localized to the circumventricular organs, including the area postrema and subfornical organ, and the olfactory apparatus. Moderate levels of ANP binding sites were present throughout the midbrain and brain stem, while low levels were found in the forebrain, diencephalon, basal ganglia, cortex, and cerebellum. The presence of ANP binding sites in the subfornical organ and the area postrema, regions considered to be outside the blood-brain barrier, suggests that peripheral ANP levels may regulate some aspects of CNS control of salt and water balance. The possible functions of ANP binding sites in other regions of the rat brain are not known, but, like many other peptides, ANP may act as a neurotransmitter or neuromodulator at these loci

  10. (3H)-dihydrotestosterone in catecholamine neurons of rat brain stem: combined localization by autoradiography and formaldehyde-induced fluorescence

    International Nuclear Information System (INIS)

    Heritage, A.S.; Stumpf, W.E.; Sar, M.; Grant, L.D.

    1981-01-01

    A combined formaldehyde-induced fluorescence (FIF)-autoradiography procedure was used to determine how and where the androgen, dihydrotestosterone (DHT), is associated with catecholamine systems in the rat brain. With this dual localization method, ( 3 H)-DHT target sites can be visualized in relation to catecholamine perikarya and terminals. In the hindbrain, catecholamine neurons adjacent to the fourth ventricle (group A4), the nucleus (n.) olivaris superior (group A5), the n. parabranchialis medialis (group A7), and in the locus coeruleus (group A6) and subcoeruleal regions, as well as in the substantia grisea centralis, concentrate ( 3 H)-DHT in their nuclei. ( 3 H)-DHT target neurons appear to be innervated by numerous catecholamine terminals in the following hindbrain regions: n. motorius dorsalis nervi vagi, n. tractus solitarii, n. commissuralis, n. raphe pallidus, n. olivaris inferior, the ventrolateral portion of the substantia grisea centralis, n. cuneiformis, and the ventrolateral reticular formation in the caudal mesencephalon. In the forebrain, ( 3 H)-DHT concentrates in nuclei of catecholamine neurons located in the n. arcuatus and n. periventricularis (group A12). In addition, ( 3 H)-DHT target neurons appear to be innervated by numerous catecholamine terminals in the following forebrain regions: n. periventricularis rotundocellularis, n. paraventricularis, n. dorsomedialis, n. periventricularis, area retrochiasmatica, n. interstititalis striae terminalis (ventral portion), and n. amygdaloideus centralis. The disclosure of a morphologic association between ( 3 H)-DHT target sites and certain brain catecholamine systems suggests a close functional interdependence between androgens and catecholamines

  11. Effect of x irradiation on the biochemical maturation of rat cerebellum: postnatal cell formation

    International Nuclear Information System (INIS)

    Patel, A.J.; Balazs, R.; Altman, J.; Anderson, W.J.

    1975-01-01

    Rat cerebellum was irradiated with 100 R daily doses from birth to 10 days of age, and the animals were studied during the next 13 days. The growth of the body and of the forebrain were little affected, but that of the cerebellum was severely retarded. This was primarily due to a depression in new cell acquisition which during the irradiation period was only about 10 percent of that in the controls. On the other hand, it seems that the development of cells formed prior to irradiation was little affected; at day 10, the average size and the RNA and protein contents of the cells were significantly higher than at birth and they were more than double the values observed in the control. However, cell formation was not irreversibly affected: in the fortnight after the termination of irradiation the rise in cell numbers was more than 80 percent of that occurring in the control rats. A relatively normal development of the cerebellar cortex was indicated by the finding that the molecular and the internal granular layers increased substantially in size during the postirradiation period. Further, by 23 days of age the external granular layer, which is a main germinal site in the cerebellum disappeared, as in controls, and the concentration of DNA (packing density of cells) and the cellular contents of RNA and protein were normal. However, restitution was not complete: at 23 days of age, in comparison with controls, the weight of the cerebellum was 60 percent and the reduction in the total number of cells (-40 percent) was similar to the reduction in size of the internal granular layer, which contains the highest concentration of nerve cells in the cerebellum. (U.S.)

  12. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus.

    Directory of Open Access Journals (Sweden)

    Matías A Goldin

    2017-08-01

    Full Text Available Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the "breaking" of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which

  13. Inducible forebrain-specific ablation of the transcription factor Creb during adulthood induces anxiety but no spatial/contextual learning deficits

    Directory of Open Access Journals (Sweden)

    Miriam Annika Vogt

    2014-11-01

    Full Text Available The cyclic AMP (cAMP-response element binding protein (CREB is an activity-dependent transcription factor playing a role in synaptic plasticity, learning and memory, and emotional behavior. However, the impact of Creb ablation on rodent behavior is vague as e.g. memory performance of different Creb mutant mice depends on the specific type of mutation per se but additionally on the background and learning protocol differences. Here we present the first targeted ablation of CREB induced during adulthood selectively in principal forebrain neurons in a pure background strain of C57BL/6 mice. All hippocampal principal neurons exhibited lack of CREB expression. Mutant mice showed a severe anxiety phenotype in the openfield and novel object exploration test as well as in the Dark-Light Box Test, but unaltered hippocampus-dependent long-term memory in the Morris water maze and in context dependent fear conditioning. On the molecular level, CREB ablation led to CREM up regulation in the hippocampus and frontal cortex which may at least in part compensate for the loss of CREB. BDNF, a postulated CREB target gene, was down regulated in the frontal lobe but not in the hippocampus; neurogenesis remained unaltered. Our data indicate that in the adult mouse forebrain the late onset of CREB ablation can, in case of memory functionality, be compensated for and is not essential for memory consolidation and retrieval during adulthood. In contrast, the presence of CREB protein during adulthood seems to be pivotal for the regulation of emotional behavior.

  14. Genetic Regulation of Development of Thymic Lymphomas Induced by N‐Propyl‐N‐nitrosourea in the Rat

    Science.gov (United States)

    Fukami, Hiroko; Nishimura, Mayumi; Matsuyama, Mutsushi

    1995-01-01

    To clarify the linkage between Hbb and Tls‐1 (thymic lymphoma susceptible‐1) loci and to investigate other loci concerned in thymic lymphomagenesis, the BUF/Mna rat, which is highly sensitive to the lymphomagenic activity of N‐propyl‐N‐nitrosourea (PNU), the WKY/NCrj rat, reported to be resistant, and their cross offspring were subjected to genetic analysis. F1 hybrid and backcross generations were raised from the 2 strains, and 6 genetic markers including Hbb were analyzed in individuals of the backcross generation. However, no linkage between Hbb and Tls‐1 loci could be demonstrated since WKY rats also developed a high incidence of thymic lymphomas in response to PNU. Nevertheless, thymic lymphomas developed more rapidly and reached a larger size in the BUF rats. F1 rats expressed a rather rapid and large tumor growth phenotype, while the [(WKY × BUF) × WKY] backcross generation consisted of rats with either rapidly growing or slowly growing tumors. It was thus concluded that rapid development of thymic lymphomas is determined by a gene, provisionally designated Tls‐3. Analysis of the relationship between 6 genetic markers and development of thymic lymphoma in the backcross generation demonstrated that the Tls‐3 locus is loosely linked to the Gc locus, suggesting a possible location on rat chromosome 14. Tls‐3 may not be identical with Tls‐1 and other genes known to be relevant to thymic tumors, but its relationship with Tls‐2 remains obscure. PMID:7559080

  15. Role of miRNA-9 in Brain Development

    Directory of Open Access Journals (Sweden)

    Balachandar Radhakrishnan

    2016-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9 is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon, midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2 , and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2 , and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain-hindbrain boundary (MHB. It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain-hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern.

  16. Quantitative analysis of development and aging of genital corpuscles in glans penis of the rat.

    Science.gov (United States)

    Shiino, Mizuho; Hoshi, Hideo; Kawashima, Tomokazu; Ishikawa, Youichi; Takayanagi, Masaaki; Murakami, Kunio; Kishi, Kiyoshi; Sato, Fumi

    2015-02-01

    The aim of the present postnatal developmental study was to determine densities of unique genital corpuscles (GCs) in glans penis of developing and aged rats. GCs were identified as corpuscular endings consisting of highly branched and coiled axons with many varicosities, which were immunoreactive for protein gene product 9.5. In addition, GCs were immunoreactive for calcitonin gene-related peptide and substance P, but not for vasoactive intestinal polypeptide and neuropeptide Y. GCs were not found in the glans penis of 1 week old rats. Densities of GCs were low at 3 weeks, significantly increased at 5 and 10 weeks, reached the peak of density at 40 weeks, and tended to decrease at 70 and 100 weeks. Sizes of GCs were small in 3 weeks old rats, increased at 5 and 10 weeks, reached the peak-size at 40 weeks and reduced in size at 70 and 100 weeks. Considering sexual maturation of the rat, the results reveal that GCs of the rat begins to develop postnatal and reaches to the peak of their development after puberty and continues to exist until old age, in contrast to prenatal and early postnatal development of other sensory receptors of glabrous skin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The development of radioimmunoassay kit for rat albumin

    International Nuclear Information System (INIS)

    Yuan Zhigang; Han Shiquan; Liu Yibing; Xu Wenge

    2006-01-01

    The Anti-rat albumin serum is prepared by immunized the sheep with rat albumin. A radioimmunoassay method is established for rat albumin. The measurement range of the assay is 1-50 mg/L, sensitivity of the assay is 0.12 mg/L, recovery rate is 97.8%- 108.4%. Intra- and inter-assay variation coefficients are <4.0% and <8.2% respectively. The correlation coefficients between measured and expected values are more than 0.990 after serial dilution of the urine samples with high concentrations of rat albumin. The kit for rat albumin might provide a convenience in exploitation of renal drugs and experimental in- jury of the kidney. (authors)

  18. Development of the adrenal axis in the neonatal rat

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, Ronnie [Univ. of Rochester, NY (United States)

    1977-01-01

    Plasma corticosterone and ACTH concentrations were determined in neonatal rats 1, 7, 14, and 21 days old, under a variety of experimental conditions, to obtain more information on the postnatal development of the rat hypothalamo-adrenal (HHA) axis. The results indicate that: (1) there is a diminution followed by an increase in responsiveness of the adrenal gland, but the pituitary response to direct hormonal stimulation is unchanged during the first three postnatal weeks; (2) continued stimulation of the adrenal by ACTH or of the central nervous system (CNS) or hypothalamus by corticosterone is necessary during early postnatal development to allow normal maturation of the HHA axis; and (3) feedback inhibition is operative by birth, at least to a moderate degree. Taken together, the studies suggest that both the adrenal and pituitary glands are potentially functional at birth, but that the hypothalamic and CNS mediators of the stress response are not mature until at least the second or third postnatal week. (ERB)

  19. Effects of prenatal exposure to xylene on postnatal development and behavior in rats

    DEFF Research Database (Denmark)

    Hass, Ulla; Lund, S. P.; Simonsen, L.

    1995-01-01

    The effects of prenatal exposure to the organic solvent xylene (dimethylbenzene, GAS-no 1330-20-7) on postnatal development and behavior in rats were studied. Pregnant rats (Mol:WIST) were exposed to 500 ppm technical xylene 6 h per day on gestation days 7-20. The dose level was selected so as no...

  20. Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions

    Directory of Open Access Journals (Sweden)

    Agnete Kirkeby

    2012-06-01

    Full Text Available To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.

  1. The effect of food hardness on the development of dental caries in alloxan-induced diabetic rats.

    Science.gov (United States)

    Nakahara, Yutaka; Sano, Tomoya; Kodama, Yasushi; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2013-01-01

    We have previously shown that dental caries may be produced in diabetic rodent models fed with noncariogenic standard diets; however, many studies usually add large amounts of sugar to the diet to induce dental caries. Moreover, the physical properties of cariogenic diets have been reported as an important factor in the formation of caries. The aim of this study was to clarify the effect of the hardness of non-cariogenic diets on the development of dental caries in diabetic rodents. Seven-week-old female F344 rats were divided into 4 groups: intact rats fed with a standard pelletized or powdered diet and alloxan-induced diabetic rats fed with a standard pelletized or powdered diet. All of the rats were sacrificed at 52 weeks of age for morphological examinations on their dental tissue. Dental caries had developed and extended to all the molars in the diabetic rats that were fed with both the pelletized and powdered diets. Moreover, the lesion was significantly enhanced in the powdered diet group compared to that in the pelletized diet group. In conclusion, food hardness is an important factor influencing the development of dental caries in diabetic rats.

  2. The Effect of Food Hardness on the Development of Dental Caries in Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Yutaka Nakahara

    2013-01-01

    Full Text Available We have previously shown that dental caries may be produced in diabetic rodent models fed with noncariogenic standard diets; however, many studies usually add large amounts of sugar to the diet to induce dental caries. Moreover, the physical properties of cariogenic diets have been reported as an important factor in the formation of caries. The aim of this study was to clarify the effect of the hardness of non-cariogenic diets on the development of dental caries in diabetic rodents. Seven-week-old female F344 rats were divided into 4 groups: intact rats fed with a standard pelletized or powdered diet and alloxan-induced diabetic rats fed with a standard pelletized or powdered diet. All of the rats were sacrificed at 52 weeks of age for morphological examinations on their dental tissue. Dental caries had developed and extended to all the molars in the diabetic rats that were fed with both the pelletized and powdered diets. Moreover, the lesion was significantly enhanced in the powdered diet group compared to that in the pelletized diet group. In conclusion, food hardness is an important factor influencing the development of dental caries in diabetic rats.

  3. Fibronectin distribution during the development of fetal rat skin

    DEFF Research Database (Denmark)

    Gibson, W T; Couchman, J R; Weaver, A C

    1983-01-01

    Fibronectin distribution during fetal rat skin development has been studied immunocytochemically at the light and electron microscope level from 16 days of gestation to birth. The dermal-epidermal junction, the dermis, and connective tissue around developing muscle were shown by light microscopy......, and there was also staining associated with the underlying fine collagen fibrils. These observations are further evidence for the proposed role of fibronectin as a mediator of the cell-matrix interactions which are of importance for tissue development and maintenance....

  4. Spaceflight Affects Postnatal Development of the Aortic Wall in Rats

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Katsuda

    2014-01-01

    Full Text Available We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam. The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta.

  5. Impact of environmental noise on growth and neuropsychological development of newborn rats.

    Science.gov (United States)

    Zheng, Yanyan; Meng, Meng; Zhao, Congmin; Liao, Wei; Zhang, Yuping; Wang, Liyan; Wen, Enyi

    2014-05-01

    We aimed to investigate the effects of environmental noise exposure on the growth and neuropsychological development in neonatal rats. Twenty-four postnatal 7-day-old Sprague-Dawley rats were randomly assigned into control, high-noise and reduced noise groups. The rats in the high-noise group were exposed to 90 dB white noise, and those in the control group were grown under standard condition, while those in the reduced noise group were exposed to standard condition with sound-absorbing cotton. Ten, 15, and 20 days post noise exposure, both the body weight and length of the rats in high-noise group were lower than those in the control and reduced noise groups, respectively. The secretion of growth hormone was significantly decreased in the rats exposed to high noise environment, compared to those exposed to standard condition and reduced noise. More interestingly, the swimming distance was apparently increased and the swimming speed was significantly decreased in high-noise group compared with those in control and reduced noise groups. Importantly, the mRNA and protein levels of SYP in the rats hippocampus were significantly decreased in high-noise group compare with those in control and reduced noise groups. Similarly, the positive expression of SYP in the CA1 region of hippocampus was also significantly decreased in the high noise group rats. In conclusion, our results demonstrated that high noise exposure could decrease the production of growth hormone and SYP in neonatal rats, which may retard the growth of weight and length and the capability of learning and memory. Copyright © 2014 Wiley Periodicals, Inc.

  6. Effects of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1979-01-01

    The origin of fibers containing different neurotransmitter candidates in the nucleus accumbens of rat brain has been studied with surgical and chemical lesion techniques. Destruction of the medial forebrain bundle decreased the activity of aromatic amino acid decarboxylase by 80% in the nucleus. Cutting of the fornix or a hemitransection decreased the high affinity uptake of glutamate by 45% and the endogenous level of glutamate by 33%. The high affinity uptake of glutamate was concentrated in the synaptosomal fraction and the decrease after the lesion was most pronounced in this fraction. Restricted lesions indicated that fibers in the fimbria/fornix coming from the subiculum were responsible for this part of the glutamate uptake in the nucleus. Local injection of kainic acid into the nucleus was accompanied by a 75% decrease in choline acetyltransferase and a 35% decrease in acetylcholineserase activities, a 70% decrease in glutamate decarboxylase activity and a 60% decrease in the high affinity uptake of ..gamma..-aminobutyrate, a 45% decrease in high affinity glutamate uptake, and no change in aromatic amino acid decarboxylase activity. Performing a lesion of the fornix after kainic acid injection led to an 85% decrease in high affinity glutamate uptake, without further affecting the other neuronal markers. The results indicate that all aminergic fibers to the nucleus accumbens are ascending in the medial forebrain bundle, that the subiculum-accumbens fibers are glutamergic and the nucleus also contains intrinsic glutamergic or aspartergic cells. Cholinergic and ..gamma..-aminobutyrate-containing cells are wholly intrinsic to the nucleus.

  7. MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats

    DEFF Research Database (Denmark)

    Olsen, Line; Klausen, Mikkel; Helboe, Lone

    2009-01-01

    BACKGROUND: The brain is a major site of microRNA (miRNA) gene expression, but the spatial expression patterns of miRNAs within the brain have not yet been fully covered. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized the regional expression profiles of miRNAs in five distinct regions...... of the adult rat brain: amygdala, cerebellum, hippocampus, hypothalamus and substantia nigra. Microarray profiling uncovered 48 miRNAs displaying more than three-fold enrichment between two or more brain regions. Notably, we found reciprocal expression profiles for a subset of the miRNAs predominantly found...... (> ten times) in either the cerebellum (miR-206 and miR-497) or the forebrain regions (miR-132, miR-212, miR-221 and miR-222). CONCLUSIONS/SIGNIFICANCE: The results indicate that some miRNAs could be important for area-specific functions in the brain. Our data, combined with previous studies in mice...

  8. HMGB1 promotes the development of pulmonary arterial hypertension in rats.

    Directory of Open Access Journals (Sweden)

    Yukari Sadamura-Takenaka

    Full Text Available Pulmonary arterial hypertension (PAH is characterized by increased pulmonary vascular resistance leading to right ventricular failure and death. Recent studies have suggested that chronic inflammatory processes are involved in the pathogenesis of PAH. However, the molecular and cellular mechanisms driving inflammation have not been fully elucidated.To elucidate the roles of high mobility group box 1 protein (HMGB1, a ubiquitous DNA-binding protein with extracellular pro-inflammatory activity, in a rat model of PAH.Male Sprague-Dawley rats were administered monocrotaline (MCT. Concentrations of HMGB1 in bronchoalveolar lavage fluid (BALF and serum, and localization of HMGB1 in the lung were examined over time. The protective effects of anti-HMGB1 neutralizing antibody against MCT-induced PAH were tested.HMGB1 levels in BALF were elevated 1 week after MCT injection, and this elevation preceded increases of other pro-inflammatory cytokines, such as TNF-α, and the development of PAH. In contrast, serum HMGB1 levels were elevated 4 weeks after MCT injection, at which time the rats began to die. Immunohistochemical analyses indicated that HMGB1 was translocated to the extranuclear space in periarterial infiltrating cells, alveolar macrophages, and bronchial epithelial cells of MCT-injected rats. Anti-HMGB1 neutralizing antibody protected rats against MCT-induced lung inflammation, thickening of the pulmonary artery wall, and elevation of right ventricular systolic pressure, and significantly improved the survival of the MCT-induced PAH rats.Our results identify extracellular HMGB1 as a promoting factor for MCT-induced PAH. The blockade of HMGB1 activity improved survival of MCT-induced PAH rats, and thus might be a promising therapy for the treatment of PAH.

  9. Critical androgen-sensitive periods of rat penis and clitoris development.

    Science.gov (United States)

    Welsh, Michelle; MacLeod, David J; Walker, Marion; Smith, Lee B; Sharpe, Richard M

    2010-02-01

    Androgen control of penis development/growth is unclear. In rats, androgen action in a foetal 'masculinisation programming window' (MPW; e15.5-e18.5)' predetermines penile length and hypospadias occurrence. This has implications for humans (e.g. micropenis). Our studies aimed to establish in rats when androgen action/administration affects development/growth of the penis and if deficits in MPW androgen action were rescuable postnatally. Thus, pregnant rats were treated with flutamide during the MPW +/- postnatal testosterone propionate (TP) treatment. To assess penile growth responsiveness, rats were treated with TP in various time windows (late foetal, neonatal through early puberty, puberty onset, or combinations thereof). Phallus length, weight, and morphology, hypospadias and anogenital distance (AGD) were measured in mid-puberty (d25) or adulthood (d90) in males and females, plus serum testosterone in adult males. MPW flutamide exposure reduced adult penile length and induced hypospadias dose-dependently; this was not rescued by postnatal TP treatment. In normal rats, foetal (e14.5-e21.5) TP exposure did not affect male penis size but increased female clitoral size. In males, TP exposure from postnatal d1-24 or at puberty (d15-24), increased penile length at d25, but not ultimately in adulthood. Foetal + postnatal TP (e14-postnatal d24) increased penile size at d25 but reduced it at d90 (due to reduced endogenous testosterone). In females, this treatment caused the biggest increase in adult clitoral size but, unlike in males, phallus size was unaffected by TP during puberty (d15-24). Postnatal TP treatment advanced penile histology at d25 to more resemble adult histology. AGD strongly correlated with final penis length. It is concluded that adult penile size depends critically on androgen action during the MPW but subsequent growth depends on later androgen exposure. Foetal and/or postnatal TP exposure does not increase adult penile size above its

  10. Maternal deprivation decelerates postnatal morphological lung development of F344 rats.

    Science.gov (United States)

    Hupa, Katharina Luise; Schmiedl, Andreas; Pabst, Reinhard; Von Hörsten, Stephan; Stephan, Michael

    2014-02-01

    Intensive medical care at premature born infants is often associated with separation of neonates from their mothers. Here, early artificial prolonged separation of rat pups from their dams (Maternal Deprivation, MD) was used to study potential impact on morphological lung maturation. Furthermore, we investigated the influence of an endogenous deficiency of the neuropeptide-cleaving dipeptidyl peptidase IV (DPP4), since the effects of MD are known to be partly mediated via neuropeptidergic effects, hypothesizing that MD will lead to a retardation of postnatal lung development, DPP4-dependendly. We used wild type and CD26/DPP4 deficient rats. For MD, the dam was placed each day into a separate cage for 2 h, while the pups remained in the nest on their own. Morphological lung maturation and cell proliferation at the postnatal days 7, 10, 14, and 21 were determined morphometrically. Maternally deprived wild types showed a retarded postnatal lung development compared with untreated controls in both substrains. During alveolarization, an increased thickness of alveolar septa and a decreased surface of septa about 50% were found. At the end of the morphological lung maturation, the surface of the alveolar septa was decreased at about 25% and the septal thickness remained increased about 20%. The proliferation rate was also decreased about 50% on day 14. However, the MD induced effects were less pronounced in DPP4-deficient rats, due to a significant deceleration already induced by DPP4-deficiency. Thus, MD as a model for postnatal stress experience influences remarkably postnatal development of rats, which is significantly modulated by the DPP4-system. Copyright © 2013 Wiley Periodicals, Inc.

  11. Neuropeptide Y binding sites in rat brain identified with purified neuropeptide Y-I125

    International Nuclear Information System (INIS)

    Walker, M.W.; Miller, R.J.

    1986-01-01

    Neuropeptide Y (NPY) is a widely distributed neuronally localized peptide with 36 amino acids, 5 of which are tyrosines. The authors wished to investigate the properties of specific receptors for NPY. They therefore labeled the tyrosines with I125 using chloramine T and then purified the peptide using HPLC. A single mono-iodinated species of NPY which yielded > 85% specific binding in rat forebrain synaptosomes was selected as the ligand for all subsequent experiments. A time course of binding showed that equilibrium conditions were reached in 60 minutes at 21 0 C. Scatchard plots revealed a single class of binding sites with a Kd and a Bmax of 3 x 10-10 M and 28 pmol/mg, respectively. Competition binding with unlabeled NPY showed 50% displacement of bound ligand at 1 x 10-10 M NPY. Competition binding with rat pancreatic polypeptide (RPP), a homologous peptide possessing little NPY-like activity, showed 50% displacement of bound ligand at 2 x 10 -7 M RPP. No binding was observed on F-11 or PC12 neuronal cell lines, or on HSWP fibroblast cells. They conclude that NPY-I125 purified to homogeneity with HPLC is a highly selective ligand for NPY receptor sites. They are currently investigating such sites in brain, gut, and other tissues

  12. Perinatal and chronic hypothyroidism impair behavioural development in male and female rats.

    NARCIS (Netherlands)

    Wijk, van N.; Rijntjes, E.; Heijning, van de B.J.

    2008-01-01

    Perinatal and chronic hypothyroidism impair behavioural development in male and female rats. EXP PHYSIOL 00(0) 000-000, 0000. - A lack of thyroid hormone, i.e. hypothyroidism, during early development results in multiple morphological and functional alterations in the developing brain. In the

  13. Detection of expressional changes induced by intrauterine growth restriction in the developing rat pancreas.

    Science.gov (United States)

    Zhang, Lin; Chen, Wei; Dai, Yuee; Zhu, Ziyang; Liu, Qianqi

    2016-07-01

    Intrauterine growth retardation (IUGR) is a disorder that can result in permanent changes in the physiology and metabolism of the newborn, which increased the risk of disease in adulthood. Evidence supports IUGR as a risk factor for the development of diabetes mellitus, which could reflect changes in pancreas developmental pathways. We sought to characterize the IUGR-induced alterations of the complex pathways of pancreas development in a rat model of IUGR. We analyzed the pancreases of Sprague Dawley rats after inducing IUGR by feeding a maternal low calorie diet from gestational day 1 until term. IUGR altered the pancreatic structure, islet areas, and islet quantities and resulted in abnormal morphological changes during pancreatic development, as determined by HE staining and light microscopy. We identified multiple differentially expressed genes in the pancreas by RT-PCR. The genes of the insulin/FoxO1/Pdx1/MafA signaling pathway were first expressed at embryonic day 14 (E14). The expressions of insulin and MafA increased as the fetus grew while the expressions of FoxO1 and Pdx1 decreased. Compared with the control rats, the expressions of FoxO1, Pdx1, and MafA were lower in the IUGR rats, whereas insulin levels showed no change. Microarray profiling, in combination with quantitative real-time PCR, uncovered a subset of microRNAs that changed in their degree of expression throughout pancreatic development. In conclusion, our data support the hypothesis that IUGR influences the development of the rat pancreas. We also identified new pathways that appear to be programmed by IUGR. © 2016 by the Society for Experimental Biology and Medicine.

  14. [Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].

    Science.gov (United States)

    Feng, Er-Cui; Jiang, Li

    2017-12-01

    To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (Pmemory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.

  15. TNF-α receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats.

    Science.gov (United States)

    Yu, Yang; Wei, Shun-Guang; Weiss, Robert M; Felder, Robert B

    2017-10-01

    In systolic heart failure (HF), circulating proinflammatory cytokines upregulate inflammation and renin-angiotensin system (RAS) activity in cardiovascular regions of the brain, contributing to sympathetic excitation and cardiac dysfunction. Important among these is the subfornical organ (SFO), a forebrain circumventricular organ that lacks an effective blood-brain barrier and senses circulating humors. We hypothesized that the tumor necrosis factor-α (TNF-α) receptor 1 (TNFR1) in the SFO contributes to sympathetic excitation and cardiac dysfunction in HF rats. Rats received SFO microinjections of a TNFR1 shRNA or a scrambled shRNA lentiviral vector carrying green fluorescent protein, or vehicle. One week later, some rats were euthanized to confirm the accuracy of the SFO microinjections and the transfection potential of the lentiviral vector. Other rats underwent coronary artery ligation (CL) to induce HF or a sham operation. Four weeks after CL, vehicle- and scrambled shRNA-treated HF rats had significant increases in TNFR1 mRNA and protein, NF-κB activity, and mRNA for inflammatory mediators, RAS components and c-Fos protein in the SFO and downstream in the hypothalamic paraventricular nucleus, along with increased plasma norepinephrine levels and impaired cardiac function, compared with vehicle-treated sham-operated rats. In HF rats treated with TNFR1 shRNA, TNFR1 was reduced in the SFO but not paraventricular nucleus, and the central and peripheral manifestations of HF were ameliorated. In sham-operated rats treated with TNFR1 shRNA, TNFR1 expression was also reduced in the SFO but there were no other effects. These results suggest a key role for TNFR1 in the SFO in the pathophysiology of systolic HF. NEW & NOTEWORTHY Activation of TNF-α receptor 1 in the subfornical organ (SFO) contributes to sympathetic excitation in heart failure rats by increasing inflammation and renin-angiotensin system activity in the SFO and downstream in the hypothalamic

  16. Gross hepatic changes in developing albino rats exposed to valproic acid

    International Nuclear Information System (INIS)

    Khan, M.; Khattak, S.T.; Elahi, M.

    2011-01-01

    Background: Valproid Acid (VPA) is a broad spectrum antiepileptic drug. Its use during pregnancy has been associated with congenital anomalies and hepatotoxicity. This study was designed to assess the effects of VPA on the gross structure of liver in developing albino rats exposed to the drug during various trimesters of pregnancy. Methods: In this experimental study 40 pregnant rats were divided into 4 equal groups A, B, C and D. Group A received VPA in a dose of 500 mg/Kg/day intraperitonealy (I/P) on days 3, 4 and 5 of gestation. Group B received the drug in a dose of 500 mg/Kg/day I/P on days 8, 9 and 10 of gestation. Group C received VPA in a dose of 500 mg/Kg/day I/P on days 16, 17 and 18 of gestation. Group D received no treatment and was kept as a control group. On day 21, the rats were euthanised by cervical dislocation. The liver of the foetuses were dissected out for the assessment of their gross structure. Results: Foetal liver of the experimental groups showed significant decrease in weight as well as relative tissue weight index (RTWI) as compared to the control group, although the gross appearance of the foetal liver was normal in all the groups. Conclusion: The use of VPA during various trimesters of pregnancy produces hepatotoxicity in the developing rats. So, the use of this drug during pregnancy should be carefully decided. (author)

  17. Development of mPMab-1, a Mouse-Rat Chimeric Antibody Against Mouse Podoplanin.

    Science.gov (United States)

    Yamada, Shinji; Kaneko, Mika K; Nakamura, Takuro; Ichii, Osamu; Konnai, Satoru; Kato, Yukinari

    2017-04-01

    Podoplanin (PDPN), the ligand of C-type lectin-like receptor-2, is used as a lymphatic endothelial marker. We previously established clone PMab-1 of rat IgG 2a as a specific monoclonal antibody (mAb) against mouse PDPN. PMab-1 is also very sensitive in immunohistochemical analysis; however, rat mAbs seem to be unfavorable for pathologists because anti-mouse IgG and anti-rabbit IgG are usually used as secondary antibodies in commercially available kits for immunohistochemical analysis. In this study, we develop a mouse-rat chimeric antibody, mPMab-1 of mouse IgG 2a , which was derived from rat PMab-1 mAb. Immunohistochemical analysis shows that mPMab-1 detects podocytes of the kidney, lymphatic endothelial cells of the colon, and type I alveolar cells of the lung. Importantly, mPMab-1 is more sensitive than PMab-1. This conversion strategy from rat mAb to mouse mAb could be applicable to other mAbs.

  18. Neural Crest-Derived Mesenchymal Cells Require Wnt Signaling for Their Development and Drive Invagination of the Telencephalic Midline

    Science.gov (United States)

    Choe, Youngshik; Zarbalis, Konstantinos S.; Pleasure, Samuel J.

    2014-01-01

    Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs) leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis. PMID:24516524

  19. Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline.

    Directory of Open Access Journals (Sweden)

    Youngshik Choe

    Full Text Available Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.

  20. Lack of toxic effect of technical azadirachtin during postnatal development of rats.

    Science.gov (United States)

    Srivastava, M K; Raizada, R B

    2007-03-01

    Azadirachtin, a biopesticide has been evaluated for its possible toxic effects during postnatal development of rats over two generations. Rats were fed 100, 500 and 1000ppm technical azadirachtin through diet which is equivalent to 5, 25 and 50mg/kg body weight of rats. Technical azadirachtin has not produced any adverse effects on reproductive function and data were comparable to control animals over two generations. There were no toxicological effect in parent rats as evidenced by clinical signs of toxicity, enzymatic parameters like AST, ALT, ALP, S. bilirubin, S. cholesterol, total protein and histopathology of liver, brain, kidney and testes/ovary. The litters of F(1B) and F(2B) generations were devoid of any morphological, visceral and teratological changes. The percent cumulative loss and growth index of pups were also comparable to respective controls in successive growth period of 0, 4, 7, 14 and 21 days in two generations. There were no major malformations in fetuses while some insignificant minor skeletal variations like missing 5th sternebrae and bipartite thoracic centre found were not compound or dose related. No significant pathomorphological changes were observed in liver, kidney, brain and gonads of F(2B) pups. In conclusion rats fed technical azadirachtin showed no evidence of cumulative effects on postnatal development and reproductive performance over two generations. Absence of any major adverse reproductive effects in adults as well as in 21 days old pups of F(2B) generation suggest the safe use of technical azadirachtin as a biopesticide.

  1. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake.

    Science.gov (United States)

    Nikonova, Elena V; Gilliland, Jason DA; Tanis, Keith Q; Podtelezhnikov, Alexei A; Rigby, Alison M; Galante, Raymond J; Finney, Eva M; Stone, David J; Renger, John J; Pack, Allan I; Winrow, Christopher J

    2017-06-01

    To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. Passive stiffness of rat skeletal muscle undernourished during fetal development

    Directory of Open Access Journals (Sweden)

    Ana Elisa Toscano

    2010-01-01

    Full Text Available OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet and an isocaloric low-protein group (mothers fed a 7.8% protein diet. At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s enabling us to measure, for each extension stepwise, the dynamic stress (σd and the steady stress (σs. A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress-strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness.

  3. Fucosylated glycans in the periventricular structures and the cerebrospinal fluid of the fetal rat forebrain. An autoradiographic and lectin binding histiotopic study

    Czech Academy of Sciences Publication Activity Database

    Mareš, Vladislav; Brückner, G.

    2001-01-01

    Roč. 19, č. 3 (2001), s. 297-303 ISSN 0736-5748 Institutional research plan: CEZ:AV0Z5011922 Keywords : fetal rat brain * fucosylated glycans * cerebrospinal fluid Subject RIV: FH - Neurology Impact factor: 2.156, year: 2001

  4. Maternal dietary tryptophan deficiency alters cardiorespiratory control in rat pups.

    Science.gov (United States)

    Penatti, Eliana M; Barina, Alexis E; Raju, Sharat; Li, Aihua; Kinney, Hannah C; Commons, Kathryn G; Nattie, Eugene E

    2011-02-01

    Malnutrition during pregnancy adversely affects postnatal forebrain development; its effect upon brain stem development is less certain. To evaluate the role of tryptophan [critical for serotonin (5-HT) synthesis] on brain stem 5-HT and the development of cardiorespiratory function, we fed dams a diet ∼45% deficient in tryptophan during gestation and early postnatal life and studied cardiorespiratory variables in the developing pups. Deficient pups were of normal weight at postnatal day (P)5 but weighed less than control pups at P15 and P25 (P interactions between nutrition, brain stem physiology, and age that are potentially relevant to understanding 5-HT deficiency in the sudden infant death syndrome.

  5. ERP-based detection of brain pathology in rat models for preclinical Alzheimer's disease

    Science.gov (United States)

    Nouriziabari, Seyed Berdia

    Early pathological features of Alzheimer's disease (AD) include the accumulation of hyperphosphorylated tau protein (HP-tau) in the entorhinal cortex and progressive loss of basal forebrain (BF) cholinergic neurons. These pathologies are known to remain asymptomatic for many years before AD is clinically diagnosed; however, they may induce aberrant brain processing which can be captured as an abnormality in event-related potentials (ERPs). Here, we examined cortical ERPs while a differential associative learning paradigm was applied to adult male rats with entorhinal HP-tau, pharmacological blockade of muscarinic acetylcholine receptors, or both conditions. Despite no impairment in differential associative and reversal learning, each pathological feature induced distinct abnormality in cortical ERPs to an extent that was sufficient for machine classifiers to accurately detect a specific type of pathology based on these ERP features. These results highlight a potential use of ERPs during differential associative learning as a biomarker for asymptomatic AD pathology.

  6. Studies on the postnatal development of the rat liver plasma membrane following maternal ethanol ingestion

    Energy Technology Data Exchange (ETDEWEB)

    Rovinski, B

    1984-01-01

    Studies on the developing rat liver and on the structure and function of the postnatal rat liver plasma membrane were carried out following maternal consumption of alcohol during pregnancy and lactation. A developmental study of alcohol dehydrogenase (ADH) indicated that both the activity and certain kinetic properties of the enzyme from the progeny of alcohol-fed and pair-fed mothers were similar. Fatty liver, however, developed in the alcoholic progeny only after ADH appeared on a day 19 of gestation. Further studies on structural and functional changes were then undertaken on the postnatal development of the rat liver plasma membrane. Radioligand binding studies performed using the hapatic alpha{sub 1}-adrenergic receptor as a plasma membrane probe demonstrated a significant decrease in receptor density in the alcoholic progeny, but no changes in binding affinity. Finally, the fatty acid composition of constituent phospholipids and the cholesterol content of rat liver plasma membranes were determined. All these observations suggest that membrane alterations in the newborn may be partially responsible for the deleterious action(s) of maternal alcoholism at the molecular level.

  7. Chronic intermittent hyperoxia alters the development of the hypoxic ventilatory response in neonatal rats.

    Science.gov (United States)

    Logan, Sarah; Tobin, Kristina E; Fallon, Sarah C; Deng, Kevin S; McDonough, Amy B; Bavis, Ryan W

    2016-01-01

    Chronic exposure to sustained hyperoxia alters the development of the respiratory control system, but the respiratory effects of chronic intermittent hyperoxia have rarely been investigated. We exposed newborn rats to short, repeated bouts of 30% O2 or 60% O2 (5 bouts h(-1)) for 4-15 days and then assessed their hypoxic ventilatory response (HVR; 10 min at 12% O2) by plethysmography. The HVR tended to be enhanced by intermittent hyperoxia at P4 (early phase of the HVR), but it was significantly reduced at P14-15 (primarily late phase of the HVR) compared to age-matched controls; the HVR recovered when individuals were returned to room air and re-studied as adults. To investigate the role of carotid body function in this plasticity, single-unit carotid chemoafferent activity was recorded in vitro. Intermittent hyperoxia tended to decrease spontaneous action potential frequency under normoxic conditions but, contrary to expectations, hypoxic responses were only reduced at P4 (not at P14) and only in rats exposed to higher O2 levels (i.e., intermittent 60% O2). Rats exposed to intermittent hyperoxia had smaller carotid bodies, and this morphological change may contribute to the blunted HVR. In contrast to rats exposed to intermittent hyperoxia beginning at birth, two weeks of intermittent 60% O2 had no effect on the HVR or carotid body size of rats exposed beginning at P28; therefore, intermittent hyperoxia-induced respiratory plasticity appears to be unique to development. Although both intermittent and sustained hyperoxia alter carotid body development and the HVR of rats, the specific effects and time course of this plasticity differs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Locomotion and physical development in rats treated with ionizing radiation in utero

    International Nuclear Information System (INIS)

    Zaman, M.S.; Hupp, E.W.; Lancaster, F.E.

    1993-01-01

    Effects of ionizing radiation on the emergence of locomotor skill, and physical development were studied in laboratory rats (Fisher F-344 inbred strain). Rats were treated with 3 different doses of radiation (150 rad, 15 rad, and 6.8 rad) delivered on the 20th day of prenatal life. Results indicated that relatively moderate (15 rad) to high (150 rad) doses of radiation had effects on certain locomotion and physical development parameters. Exposure to 150 rad delayed pivoting, cliff-avoidance, upper jaw tooth eruption, and decreased body weights. Other parameters, such as negative geotaxis, eye opening, and lower jaw tooth eruption were marginally delayed in the 150 rad treated animals. Exposure to 15 rad delayed pivoting and cliff-avoidance

  9. Sexual dimorphism in development of kidney damage in aging Fischer-344 rats.

    Science.gov (United States)

    Sasser, Jennifer M; Akinsiku, Oladele; Moningka, Natasha C; Jerzewski, Katie; Baylis, Chris; LeBlanc, Amanda J; Kang, Lori S; Sindler, Amy L; Muller-Delp, Judy M

    2012-08-01

    Aging kidneys exhibit slowly developing injury and women are usually protected compared with men, in association with maintained renal nitric oxide. Our purpose was to test 2 hypotheses: (1) that aging intact Fischer-344 (F344) female rats exhibit less glomerular damage than similarly aged males, and (2) that loss of female ovarian hormones would lead to greater structural injury and dysregulation of the nitric oxide synthase (NOS) system in aging F344 rat kidneys. We compared renal injury in F344 rats in intact, ovariectomized, and ovariectomized with estrogen replaced young (6 month) and old (24 month) female rats with young and old intact male rats and measured renal protein abundance of NOS isoforms and oxidative stress. There was no difference in age-dependent glomerular damage between young or old intact male and female F344 rats, and neither ovariectomy nor estrogen replacement affected renal injury; however, tubulointerstitial injury was greater in old males than in old females. These data suggest that ovarian hormones do not influence these aspects of kidney aging in F344 rats and that the greater tubulointerstitial injury is caused by male sex. Old males had greater kidney cortex NOS3 abundance than females, and NOS1 abundance (alpha and beta isoforms) was increased in old males compared with both young males and old females. NOS abundance was preserved with age in intact females, ovariectomy did not reduce NOS1 or NOS3 protein abundance, and estrogen replacement did not uniformly elevate NOS proteins, suggesting that estrogens are not primary regulators of renal NOS abundance in this strain. Nicotinamide adenine dinucleotide phosphate oxidase-dependent superoxide production and nitrotyrosine immunoreactivity were increased in aging male rat kidneys compared with females, which could compromise renal nitric oxide production and/or bioavailability. The kidney damage expressed in aging F344 rats is fairly mild and is not related to loss of renal cortex NOS3

  10. Mapping the co-localization of the circadian proteins PER2 and BMAL1 with enkephalin and substance P throughout the rodent forebrain.

    Directory of Open Access Journals (Sweden)

    Ariana Frederick

    Full Text Available Despite rhythmic expression of clock genes being found throughout the central nervous system, very little is known about their function outside of the suprachiasmatic nucleus. Determining the pattern of clock gene expression across neuronal subpopulations is a key step in understanding their regulation and how they may influence the functions of various brain structures. Using immunofluorescence and confocal microscopy, we quantified the co-expression of the clock proteins BMAL1 and PER2 with two neuropeptides, Substance P (SubP and Enkephalin (Enk, expressed in distinct neuronal populations throughout the forebrain. Regions examined included the limbic forebrain (dorsal striatum, nucleus accumbens, amygdala, stria terminalis, thalamus medial habenula of the thalamus, paraventricular nucleus and arcuate nucleus of the hypothalamus and the olfactory bulb. In most regions examined, BMAL1 was homogeneously expressed in nearly all neurons (~90%, and PER2 was expressed in a slightly lower proportion of cells. There was no specific correlation to SubP- or Enk- expressing subpopulations. The olfactory bulb was unique in that PER2 and BMAL1 were expressed in a much smaller percentage of cells, and Enk was rarely found in the same cells that expressed the clock proteins (SubP was undetectable. These results indicate that clock genes are not unique to specific cell types, and further studies will be required to determine the factors that contribute to the regulation of clock gene expression throughout the brain.

  11. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats.

    Science.gov (United States)

    Valladares, Ricardo; Sankar, Dhyana; Li, Nan; Williams, Emily; Lai, Kin-Kwan; Abdelgeliel, Asmaa Sayed; Gonzalez, Claudio F; Wasserfall, Clive H; Larkin, Joseph; Schatz, Desmond; Atkinson, Mark A; Triplett, Eric W; Neu, Josef; Lorca, Graciela L

    2010-05-06

    The intestinal epithelium is a barrier that composes one of the most immunologically active surfaces of the body due to constant exposure to microorganisms as well as an infinite diversity of food antigens. Disruption of intestinal barrier function and aberrant mucosal immune activation have been implicated in a variety of diseases within and outside of the gastrointestinal tract. With this model in mind, recent studies have shown a link between diet, composition of intestinal microbiota, and type 1 diabetes pathogenesis. In the BioBreeding rat model of type 1 diabetes, comparison of the intestinal microbial composition of diabetes prone and diabetes resistant animals found Lactobacillus species were negatively correlated with type 1 diabetes development. Two species, Lactobacillus johnsonii and L. reuteri, were isolated from diabetes resistant rats. In this study diabetes prone rats were administered pure cultures of L. johnsonii or L. reuteri isolated from diabetes resistant rats to determine the effect on type 1 diabetes development. Findings Results Rats administered L. johnsonii, but not L. reuteri, post-weaning developed type 1 diabetes at a protracted rate. Analysis of the intestinal ileum showed administration of L. johnsonii induced changes in the native microbiota, host mucosal proteins, and host oxidative stress response. A decreased oxidative intestinal environment was evidenced by decreased expression of several oxidative response proteins in the intestinal mucosa (Gpx1, GR, Cat). In L. johnsonii fed animals low levels of the pro-inflammatory cytokine IFNgamma were correlated with low levels of iNOS and high levels of Cox2. The administration of L. johnsonii also resulted in higher levels of the tight junction protein claudin. It was determined that the administration of L. johnsonii isolated from BioBreeding diabetes resistant rats delays or inhibits the onset of type 1 diabetes in BioBreeding diabetes prone rats. Taken collectively, these data

  12. Dexamethasone enhances necrosis-like neuronal death in ischemic rat hippocampus involving μ-calpain activation

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Hasseldam, Henrik; Rasmussen, Rune Skovgaard

    2014-01-01

    - and necrosis-like cell death morphologies in CA1 of rats treated with dexamethasone prior to TFI (DPTI). In addition, apoptosis- (casp-9, casp-3, casp-3-cleaved PARP and cleaved α-spectrin 145/150 and 120kDa) and necrosis-related (calpain-specific casp-9 cleavage, μ-calpain upregulation and cleaved α......Transient forebrain ischemia (TFI) leads to hippocampal CA1 pyramidal cell death which is aggravated by glucocorticoids (GC). It is unknown how GC affect apoptosis and necrosis in cerebral ischemia. We therefore investigated the co-localization of activated caspase-3 (casp-3) with apoptosis......-spectrin 145/150kDa) cell death mechanisms were investigated by Western blot analysis. DPTI expedited CA1 neuronal death from day 4 to day 1 and increased the magnitude of CA1 neuronal death from 66.2% to 91.3% at day 7. Furthermore, DPTI decreased the overall (days 1-7) percentage of dying neurons displaying...

  13. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    Science.gov (United States)

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    Science.gov (United States)

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  15. Basal forebrain motivational salience signal enhances cortical processing and decision speed

    Directory of Open Access Journals (Sweden)

    Sylvina M Raver

    2015-10-01

    Full Text Available The basal forebrain (BF contains major projections to the cerebral cortex, and plays a well-documented role in arousal, attention, decision-making, and in modulating cortical activity. BF neuronal degeneration is an early event in Alzheimer’s disease and dementias, and occurs in normal cognitive aging. While the BF is best known for its population of cortically projecting cholinergic neurons, the region is anatomically and neurochemically diverse, and also contains prominent populations of non-cholinergic projection neurons. In recent years, increasing attention has been dedicated to these non-cholinergic BF neurons in order to better understand how non-cholinergic BF circuits control cortical processing and behavioral performance. In this review, we focus on a unique population of putative non-cholinergic BF neurons that encodes the motivational salience of stimuli with a robust ensemble bursting response. We review recent studies that describe the specific physiological and functional characteristics of these BF salience-encoding neurons in behaving animals. These studies support the unifying hypothesis whereby BF salience-encoding neurons act as a gain modulation mechanism of the decision-making process to enhance cortical processing of behaviorally relevant stimuli, and thereby facilitate faster and more precise behavioral responses. This function of BF salience-encoding neurons represents a critical component in determining which incoming stimuli warrant an animal’s attention, and is therefore a fundamental and early requirement of behavioral flexibility.

  16. Repercussions of mild diabetes on pregnancy in Wistar rats and on the fetal development

    Directory of Open Access Journals (Sweden)

    Saito Felipe H

    2010-04-01

    Full Text Available Abstract Background Experimental models are necessary to elucidate diabetes pathophysiological mechanisms not yet understood in humans. Objective: To evaluate the repercussions of the mild diabetes, considering two methodologies, on the pregnancy of Wistar rats and on the development of their offspring. Methods In the 1st induction, female offspring were distributed into two experimental groups: Group streptozotocin (STZ, n = 67: received the β-cytotoxic agent (100 mg STZ/kg body weight - sc on the 1st day of the life; and Non-diabetic Group (ND, n = 14: received the vehicle in a similar time period. In the adult life, the animals were mated. After a positive diagnosis of pregnancy (0, female rats from group STZ presenting with lower glycemia than 120 mg/dL received more 20 mg STZ/kg (ip at day 7 of pregnancy (2nd induction. The female rats with glycemia higher than 120 mg/dL were discarded because they reproduced results already found in the literature. In the mornings of days 0, 7, 14 and 21 of the pregnancy glycemia was determined. At day 21 of pregnancy (at term, the female rats were anesthetized and killed for maternal reproductive performance and fetal development analysis. The data were analyzed using Student-Newman-Keuls, Chi-square and Zero-inflated Poisson (ZIP Tests (p Results STZ rats presented increased rates of pre (STZ = 22.0%; ND = 5.1% and post-implantation losses (STZ = 26.1%; ND = 5.7%, reduced rates of fetuses with appropriate weight for gestational age (STZ = 66%; ND = 93% and reduced degree of development (ossification sites. Conclusion Mild diabetes led a negative impact on maternal reproductive performance and caused intrauterine growth restriction and impaired fetal development.

  17. Preclinical Abuse Potential Assessment of Flibanserin: Effects on Intracranial Self-Stimulation in Female and Male Rats.

    Science.gov (United States)

    Lazenka, Matthew F; Blough, Bruce E; Negus, S Stevens

    2016-03-01

    Flibanserin is a serotonin receptor subtype 1A agonist and 2A antagonist that has been approved by the Food and Drug Administration for treating female sexual interest and arousal disorder. Little is known about the abuse potential of flibanserin. To examine abuse-related effects of flibanserin in rats using an intracranial self-stimulation (ICSS) procedure previously used to evaluate the abuse potential of other drugs. Adult female and male Sprague-Dawley rats with electrodes implanted in the medial forebrain bundle were trained to press a lever for electrical brain stimulation under a "frequency-rate" ICSS procedure. In this procedure, increasing frequencies of brain stimulation maintain increasing rates of responding. Drugs of abuse typically increase (or "facilitate") ICSS rates and produce leftward and upward shifts in ICSS frequency-rate curves, whereas drugs that lack abuse potential typically do not alter or only decrease ICSS rates. Initial studies determined the potency and time course of effects on ICSS produced by acute flibanserin administration (1.0, 3.2 and 10.0 mg/kg). Subsequent studies determined the effects of flibanserin (3.2-18 mg/kg) before and after a regimen of repeated flibanserin administration (5.6 mg/kg/d for 5 days). Effects of the abused stimulant amphetamine (1.0 mg/kg) were examined as a positive control. Flibanserin effects on ICSS frequency-rate curves in female and male rats were examined and compared with the effects of amphetamine. Baseline ICSS frequency-rate curves were similar in female and male rats. Acute and repeated administrations of flibanserin produced only decreases in ICSS rates, and rate-decreasing effects of the highest flibanserin dose (10 mg/kg) were greater in female than in male rats. In contrast to flibanserin, amphetamine produced an abuse-related increase in ICSS rates that did not differ between female and male rats. These results suggest that flibanserin has low abuse potential. In addition, this study

  18. The effect of prenatal exposure to diazepam on aspects of postnatal development and behavior in rats.

    Science.gov (United States)

    Gai, N; Grimm, V E

    1982-01-01

    In the present study the effects of chronic treatment of pregnant rats with diazepam on the physical and behavioral development of their offspring were investigated. Rats that were diazepam-exposed prenatally were compared to age-matched controls in terms of the following: number of littermates; birth weight and weight gain until weaning: motor development and coordination; simple motor learning; open field activity; performance on learning tasks of varying complexity; retention of these tasks. Nulliparous Wistar rats were injected s.c. for 16 days of their pregnancy was either 2.5, 5, of 10 mg/kg diazepam or an equal volume of vehicle. Prenatal diazepam treatment did not alter litter size, birth weight, or the righting reflex, but seemed to retard early motor development transiently. Diazepam pups showed longer latencies and less rearing in the open field. There were no differences between animals exposed to drug and vehicle in simple motor learning or in acquiring a simple successive discrimination task. However, there were significant dose-dependent differences on a complex six-choice simultaneous discrimination learning task, the diazepam-exposed rats making more errors and taking more time to reach the goal. A significant difference was seen again between diazepam- and vehicle-exposed rats on the retention test 10 days later. The results indicate that diazepam administered to pregnant rats has long-range effects on the behavior of the offspring, some becoming manifest even in maturity.

  19. Auditory stimulation by exposure to melodic music increases dopamine and serotonin activities in rat forebrain areas linked to reward and motor control.

    Science.gov (United States)

    Moraes, Michele M; Rabelo, Patrícia C R; Pinto, Valéria A; Pires, Washington; Wanner, Samuel P; Szawka, Raphael E; Soares, Danusa D

    2018-04-23

    Listening to melodic music is regarded as a non-pharmacological intervention that ameliorates various disease symptoms, likely by changing the activity of brain monoaminergic systems. Here, we investigated the effects of exposure to melodic music on the concentrations of dopamine (DA), serotonin (5-HT) and their respective metabolites in the caudate-putamen (CPu) and nucleus accumbens (NAcc), areas linked to reward and motor control. Male adult Wistar rats were randomly assigned to a control group or a group exposed to music. The music group was submitted to 8 music sessions [Mozart's sonata for two pianos (K. 488) at an average sound pressure of 65 dB]. The control rats were handled in the same way but were not exposed to music. Immediately after the last exposure or control session, the rats were euthanized, and their brains were quickly removed to analyze the concentrations of 5-HT, DA, 5-hydroxyindoleacetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the CPu and NAcc. Auditory stimuli affected the monoaminergic system in these two brain structures. In the CPu, auditory stimuli increased the concentrations of DA and 5-HIAA but did not change the DOPAC or 5-HT levels. In the NAcc, music markedly increased the DOPAC/DA ratio, suggesting an increase in DA turnover. Our data indicate that auditory stimuli, such as exposure to melodic music, increase DA levels and the release of 5-HT in the CPu as well as DA turnover in the NAcc, suggesting that the music had a direct impact on monoamine activity in these brain areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A New Rat Model of Epileptic Spasms Based on Methylazoxymethanol-Induced Malformations of Cortical Development

    Directory of Open Access Journals (Sweden)

    Eun-Hee Kim

    2017-06-01

    Full Text Available Malformations of cortical development (MCDs can cause medically intractable epilepsies and cognitive disabilities in children. We developed a new model of MCD-associated epileptic spasms by treating rats prenatally with methylazoxymethanol acetate (MAM to induce cortical malformations and postnatally with N-methyl-d-aspartate (NMDA to induce spasms. To produce cortical malformations to infant rats, two dosages of MAM (15 mg/kg, intraperitoneally were injected to pregnant rats at gestational day 15. In prenatally MAM-exposed rats and the controls, spasms were triggered by single (6 mg/kg on postnatal day 12 (P12 or 10 mg/kg on P13 or 15 mg/kg on P15 or multiple doses (P12, P13, and P15 of NMDA. In prenatally MAM-exposed rats with single NMDA-provoked spasms at P15, we obtain the intracranial electroencephalography and examine the pretreatment response to adrenocorticotropic hormone (ACTH or vigabatrin. Rat pups prenatally exposed to MAM exhibited a significantly greater number of spasms in response to single and multiple postnatal NMDA doses than vehicle-exposed controls. Vigabatrin treatment prior to a single NMDA dose on P15 significantly suppressed spasms in MAM group rats (p < 0.05, while ACTH did not. The MAM group also showed significantly higher fast oscillation (25–100 Hz power during NMDA-induced spasms than controls (p = 0.047. This new model of MCD-based epileptic spasms with corresponding features of human spasms will be valuable for future research of the developmental epilepsy.

  1. Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Mense, Sarah M.; Bhat, Nimee K.; Putty, Sandeep; Guthiel, William A.; Remotti, Fabrizio; Bhat, Hari K.

    2010-01-01

    Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17β-estradiol (E 2 ). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E 2 -induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E 2 pellets, co-exposure to quercetin did not protect rats from E 2 -induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin + E 2 -treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin + E 2 group relative to those in the E 2 group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F 2α (8-iso-PGF 2α ) levels as a marker of oxidant stress showed that quercetin did not decrease E 2 -induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E 2 -induced oxidant stress and may exacerbate breast carcinogenesis in E 2 -treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E 2 and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E 2 and chronic exposure to oxidant stress as a result of metabolic redox cycling to estrogen metabolites, and thus quercetin may exacerbate E 2 -induced

  2. Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.

    Science.gov (United States)

    Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia

    2018-05-14

    EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.

  3. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.

  4. Hippocampal P3-like auditory event-related potentials are disrupted in a rat model of cholinergic degeneration in Alzheimer's disease: reversal by donepezil treatment.

    Science.gov (United States)

    Laursen, Bettina; Mørk, Arne; Kristiansen, Uffe; Bastlund, Jesper Frank

    2014-01-01

    P300 (P3) event-related potentials (ERPs) have been suggested to be an endogenous marker of cognitive function and auditory oddball paradigms are frequently used to evaluate P3 ERPs in clinical settings. Deficits in P3 amplitude and latency reflect some of the neurological dysfunctions related to several psychiatric and neurological diseases, e.g., Alzheimer's disease (AD). However, only a very limited number of rodent studies have addressed the back-translational validity of the P3-like ERPs as suitable markers of cognition. Thus, the potential of rodent P3-like ERPs to predict pro-cognitive effects in humans remains to be fully validated. The current study characterizes P3-like ERPs in the 192-IgG-SAP (SAP) rat model of the cholinergic degeneration associated with AD. Following training in a combined auditory oddball and lever-press setup, rats were subjected to bilateral intracerebroventricular infusion of 1.25 μg SAP or PBS (sham lesion) and recording electrodes were implanted in hippocampal CA1. Relative to sham-lesioned rats, SAP-lesioned rats had significantly reduced amplitude of P3-like ERPs. P3 amplitude was significantly increased in SAP-treated rats following pre-treatment with 1 mg/kg donepezil. Infusion of SAP reduced the hippocampal choline acetyltransferase activity by 75%. Behaviorally defined cognitive performance was comparable between treatment groups. The present study suggests that AD-like deficits in P3-like ERPs may be mimicked by the basal forebrain cholinergic degeneration induced by SAP. SAP-lesioned rats may constitute a suitable model to test the efficacy of pro-cognitive substances in an applied experimental setup.

  5. Chemosensory responsiveness to ethanol and its individual sensory components in alcohol-preferring, -nonpreferring and genetically heterogeneous rats

    Science.gov (United States)

    Brasser, Susan M.; Silbaugh, Bryant C.; Ketchum, Myles J.; Olney, Jeffrey J.; Lemon, Christian H.

    2011-01-01

    Alcohol activates orosensory circuits that project to motivationally relevant limbic forebrain areas that control appetite, feeding and drinking. To date, limited data exists regarding the contribution of chemosensory-derived ethanol reinforcement to ethanol preference and consumption. Measures of taste reactivity to intra-orally infused ethanol have not found differences in initial orofacial responses to alcohol between alcohol-preferring (P) and – nonpreferring (NP) genetically selected rat lines. Yet, in voluntary intake tests P rats prefer highly-concentrated ethanol upon initial exposure, suggesting an early sensory-mediated attraction. Here, we directly compared self-initiated chemosensory responding for alcohol and prototypic sweet, bitter, and oral trigeminal stimuli among selectively bred P, NP, and non-selected Wistar (WI) outbred lines to determine whether differential sensory responsiveness to ethanol and its putative sensory components are phenotypically associated with genetically-influenced alcohol preference. Rats were tested for immediate short-term lick responses to alcohol (3–40%), sucrose (0.01–1 M), quinine (0.01–3 mM) and capsaicin (0.003–1 mM) in a brief-access assay designed to index orosensory-guided behavior. P rats exhibited elevated short-term lick responses to both alcohol and sucrose relative to NP and WI lines across a broad range of concentrations of each stimulus and in the absence of blood alcohol levels that would produce significant postabsorptive effects. There was no consistent relationship between genetically-mediated alcohol preference and orosensory avoidance of quinine or capsaicin. These data indicate that enhanced initial chemosensory attraction to ethanol and sweet stimuli are phenotypes associated with genetic alcohol preference and are considered within the framework of downstream activation of oral appetitive reward circuits. PMID:22129513

  6. Postdependent state in rats as a model for medication development in alcoholism.

    Science.gov (United States)

    Meinhardt, Marcus W; Sommer, Wolfgang H

    2015-01-01

    Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a 'Diagnostic and Statistical Manual of Mental Disorders IV/V-like' diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review. © 2014 Society for the Study of Addiction.

  7. Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain.

    Science.gov (United States)

    Lu, Kai; Vicario, David S

    2014-10-07

    Auditory neurophysiology has demonstrated how basic acoustic features are mapped in the brain, but it is still not clear how multiple sound components are integrated over time and recognized as an object. We investigated the role of statistical learning in encoding the sequential features of complex sounds by recording neuronal responses bilaterally in the auditory forebrain of awake songbirds that were passively exposed to long sound streams. These streams contained sequential regularities, and were similar to streams used in human infants to demonstrate statistical learning for speech sounds. For stimulus patterns with contiguous transitions and with nonadjacent elements, single and multiunit responses reflected neuronal discrimination of the familiar patterns from novel patterns. In addition, discrimination of nonadjacent patterns was stronger in the right hemisphere than in the left, and may reflect an effect of top-down modulation that is lateralized. Responses to recurring patterns showed stimulus-specific adaptation, a sparsening of neural activity that may contribute to encoding invariants in the sound stream and that appears to increase coding efficiency for the familiar stimuli across the population of neurons recorded. As auditory information about the world must be received serially over time, recognition of complex auditory objects may depend on this type of mnemonic process to create and differentiate representations of recently heard sounds.

  8. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    Science.gov (United States)

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The amygdala and basal forebrain as a pathway for motivationally guided attention.

    Science.gov (United States)

    Peck, Christopher J; Salzman, C Daniel

    2014-10-08

    Visual stimuli associated with rewards attract spatial attention. Neurophysiological mechanisms that mediate this process must register both the motivational significance and location of visual stimuli. Recent neurophysiological evidence indicates that the amygdala encodes information about both of these parameters. Furthermore, the firing rate of amygdala neurons predicts the allocation of spatial attention. One neural pathway through which the amygdala might influence attention involves the intimate and bidirectional connections between the amygdala and basal forebrain (BF), a brain area long implicated in attention. Neurons in the rhesus monkey amygdala and BF were therefore recorded simultaneously while subjects performed a detection task in which the stimulus-reward associations of visual stimuli modulated spatial attention. Neurons in BF were spatially selective for reward-predictive stimuli, much like the amygdala. The onset of reward-predictive signals in each brain area suggested different routes of processing for reward-predictive stimuli appearing in the ipsilateral and contralateral fields. Moreover, neurons in the amygdala, but not BF, tracked trial-to-trial fluctuations in spatial attention. These results suggest that the amygdala and BF could play distinct yet inter-related roles in influencing attention elicited by reward-predictive stimuli. Copyright © 2014 the authors 0270-6474/14/3413757-11$15.00/0.

  10. Brain inflammation enhances 1-methyl-4-phenylpyridinium-evoked neurotoxicity in rats

    International Nuclear Information System (INIS)

    Goralski, Kerry B.; Renton, Kenneth W.

    2004-01-01

    Experimental Parkinson's disease and Parkinson's disease in humans include a CNS inflammatory component that may contribute to the pathogenesis of the disease. CNS inflammation produces a loss in cytochrome P450 metabolism and may impair the brain's protection against neurotoxins. We have examined if preexisting inflammation in the brain could increase the toxicity of the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP + ). Lipopolysaccharide (LPS, 25 μg) or saline (control) was injected into the left lateral cerebral ventricle. A single injection of MPP + into the median forebrain bundle followed 48 h later and produced a reduction in striatal dopamine content that was dose and time dependant. Two-days after 5 μg of MPP + was administered, a 90% decrease in striatal dopamine content was observed in saline- and LPS-pretreated rats. However, 4 and 7 days after 5 μg MPP + treatment, striatal dopamine recovered up to 70-80% of control values in saline-pretreated rats but remained depressed (80-90%) in rats treated with LPS. These results suggested that CNS inflammation might create an increased risk factor for drug-induced CNS toxicity or chemically mediated Parkinson's disease. The prolonged toxicity of MPP + may be due to a decrease in brain cytochrome P450 metabolism that occurs during inflammation. As a second objective for the study, we examined if the CNS lesion produced by MPP + altered cytochrome P450 metabolic activity in the liver, kidney, and lung. We have demonstrated a novel mechanism whereby the brain pathology produced by MPP + treatment contributes to a reduction in cytochrome P450 metabolism in the kidney but not the liver or lung. Therefore, a chemically evoked CNS disorder with a chronic inflammatory component might have major effects on the renal metabolism of drugs or endogenous substrates

  11. Study on developing brain damage of neonatal rats induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Yang Shuqin

    2000-01-01

    Objective: The injurious effects of enriched uranium 235 U on developing brain of neonatal Wistar pure bred rats were studied. Methods: The model of irradiation induced brain damage in vivo was settled. The effects of cerebrum exposure by 235 U on somatic growth and neuro-behavior development of neonatal rats were examined by thirteen index determination of multiple parameters. The dynamic retention of autoradiographic tracks of 235 U in cells of developing brain was observed. The changes of NSE, IL-1β, SOD, and ET in cerebral cortex, hippocampus, diencephalon, cerebellum after expose to 235 U were examined with radioimmunoassay. Results: The somatic growth such as increase of body weight and brain weight was lower significantly. The retardation of development was found such as eye opening, sensuous function as auditory startle, movement and coordination function and activity as swimming, physiological reflexes as negative geotaxis, surface righting, grasping reflex suspension and the tendency behavior. The data showed delayed growth and abnormal neuro-behavior. The micro-autoradiographic tracing showed that the tracks of 235 U were mainly accumulated in the nucleus of developing brain. At the same time only few tracks appeared in the cytoplasm and interval between cells. Experimental study showed that when the dose of 235 U irradiation was increased, the level of NSE was decreased and the IL-1β was increased. However, the results indicated that SOD and ET can be elevated by the low dose irradiation of 235 U, and can be inhibited by the high dose. Conclusion: The behavior of internal irradiation from 235 U on the developing brain damage of neonatal rats were of sensibility and compensation in nervous cells

  12. Autoradiographic localization of 3H-paroxetine-labeled serotonin uptake sites in rat brain

    International Nuclear Information System (INIS)

    De Souza, E.B.; Kuyatt, B.L.

    1987-01-01

    Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of the thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin

  13. Influence of age and immunization on development of gingivitis in rats

    DEFF Research Database (Denmark)

    Lekic, P; Klausen, B; Friis-Hasché, E

    1989-01-01

    To study the effect of age and antigenic priming on the development of gingivitis, 33 healthy rats were placed in contact with Streptococcus mutans, Actinomyces viscosus, Fusobacterium nucleatum, and Bacteroides gingivalis. On days 0, 3, 7, and 14 after inoculation, the gingival condition...

  14. Selenium prevents tumor development in a rat model for chemical carcinogenesis

    DEFF Research Database (Denmark)

    Bjorkhem-Bergman, L.; Torndal, U. B.; Eken, S.

    2005-01-01

    Previous studies in animals and humans have shown that selenium compounds can prevent cancer development. In this work we studied the tumor preventive effect of selenium supplementation, administrated as selenite, in the initiation, promotion and progression phases in a synchronized rat model for...

  15. Periodontitis promotes the diabetic development of obese rat via miR-147 induced classical macrophage activation.

    Science.gov (United States)

    Xu, Ran; Zeng, Guang; Wang, Shuyong; Tao, Hong; Ren, Le; Zhang, Zhe; Zhang, Qingna; Zhao, Jinxiu; Gao, Jing; Li, Daxu

    2016-10-01

    Emerging evidence has indicated the bad effect of periodontal inflammation on diabetes control. However, the exact regulatory mechanisms within the association between periodontitis and diabetic development remain unclear. This study aims to investigate the function of microRNAs in regulating periodontitis-induced inflammation in an obese rat model. Experimental periodontitis was introduced into OLETF and LETO rat. Intraperitoneal glucose tolerance test was performed to detect diabetic development. Serum cytokines levels and microRNAs expression were detected by ELISA and RT-PCR analysis respectively. And, macrophages were isolated for gain- and loss-of-function studies, to investigate the regulatory mechanism of miR-147 in periodontitis-induced inflammation. Periodontitis induced proinflammatory response with classical activated macrophages in both rats, but distinctively aggravated the impaired glucose tolerance of OLETF rat with spontaneous type 2 diabetes. Analysis for serum microRNAs expression showed the distinctive and synergistic upregulation of miR-147 with periodontitis-induced effects in rats, while further experiments demonstrated the positive regulatory mechanism of miR-147 on classical activated macrophages with overexpressed proinflammatory markers, showing M1 phenotype. This study provided new evidence for the positive effect of periodontal inflammation on diabetic development, while the regulatory mechanism of miR-147 on classical macrophage activation, was verified, and presumed to contribute to the impaired glucose tolerance aggravated by periodontitis in obese rats. Besides, this study indicated the application of miR-147 for therapeutic approach in the treatment of diabetes with periodontitis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. In vitro autoradiography of ionotropic glutamate receptors in hippocampus and striatum of aged Long-Evans rats: relationship to spatial learning

    International Nuclear Information System (INIS)

    Gallagher, M.; Bizon, J.L.; Nicolle, M.M.

    1996-01-01

    Using in vitro autoradiography, we investigated [ 3 H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, [ 3 H]kainate and [ 3 H]N-methyl-d-aspartate binding in two forebrain regions, the hippocampus and striatum, of young (four months of age) and aged (24-25 months of age) Long-Evans rats that had previously been tested for spatial learning ability in the Morris water maze. Although there was substantial preservation of binding in the aged rats, reductions in binding were present in the aged rats that were specific to ligand and anatomical region. In the hippocampus of aged rats, [ 3 H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate binding in CA1 and [ 3 H]kainate binding in CA3 were reduced. In contrast, N-methyl-d-aspartate binding was not significantly different between age groups. There was evidence of sprouting in the dentate gyrus molecular layer of aged rats, indicated by changes in the topography of [ 3 H]kainate binding. Binding density was analysed with respect to patch/matrix compartmentalization in the striatum. The most striking result was a large decrease in N-methyl-d-aspartate binding in aged rats that was not limited to any dorsal/ventral or patch/matrix area of the striatum. Additionally, [ 3 H]kainate binding in striatal matrix was modestly reduced in aged rats. Of these age effects, only N-methyl-d-aspartate binding in the striatum and [ 3 H]kainate binding in the CA3 region of the hippocampus were correlated with spatial learning, with lower binding in the aged rats associated with better spatial learning ability.Age-related alterations in ionotropic glutamate receptors differ with respect to the receptor subtype and anatomical region examined. The age effects were not neccessarily indicative of cognitive decline, as only two age-related binding changes were correlated with spatial learning. Interestingly, in these instances, lower binding in the aged rats was associated with preserved spatial learning, suggesting a compensatory reduction

  17. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats.

    Directory of Open Access Journals (Sweden)

    Ricardo Valladares

    Full Text Available BACKGROUND: The intestinal epithelium is a barrier that composes one of the most immunologically active surfaces of the body due to constant exposure to microorganisms as well as an infinite diversity of food antigens. Disruption of intestinal barrier function and aberrant mucosal immune activation have been implicated in a variety of diseases within and outside of the gastrointestinal tract. With this model in mind, recent studies have shown a link between diet, composition of intestinal microbiota, and type 1 diabetes pathogenesis. In the BioBreeding rat model of type 1 diabetes, comparison of the intestinal microbial composition of diabetes prone and diabetes resistant animals found Lactobacillus species were negatively correlated with type 1 diabetes development. Two species, Lactobacillus johnsonii and L. reuteri, were isolated from diabetes resistant rats. In this study diabetes prone rats were administered pure cultures of L. johnsonii or L. reuteri isolated from diabetes resistant rats to determine the effect on type 1 diabetes development. METHODOLOGY/PRINCIPAL: Findings Results Rats administered L. johnsonii, but not L. reuteri, post-weaning developed type 1 diabetes at a protracted rate. Analysis of the intestinal ileum showed administration of L. johnsonii induced changes in the native microbiota, host mucosal proteins, and host oxidative stress response. A decreased oxidative intestinal environment was evidenced by decreased expression of several oxidative response proteins in the intestinal mucosa (Gpx1, GR, Cat. In L. johnsonii fed animals low levels of the pro-inflammatory cytokine IFNgamma were correlated with low levels of iNOS and high levels of Cox2. The administration of L. johnsonii also resulted in higher levels of the tight junction protein claudin. CONCLUSIONS: It was determined that the administration of L. johnsonii isolated from BioBreeding diabetes resistant rats delays or inhibits the onset of type 1 diabetes in Bio

  18. Pancreatic morphogenesis and extracellular matrix organization during rat development.

    Science.gov (United States)

    Hisaoka, M; Haratake, J; Hashimoto, H

    1993-07-01

    We investigated the rat pancreatic morphology at various developmental stages ranging from 12 days of gestation to the neonatal stage, with special emphasis on alterations in extracellular matrix organization in vivo. The rat pancreatic development in utero could be divided into four representative stages as follows: (1) initial epithelial buds (12 days of gestation), (2) elongated and branching epithelium (13-14 days), (3) tubular structure (15-16 days), and (4) acinar structure (17 days or more). Ultrastructurally, the fetal and neonatal pancreata were almost constantly encompassed by continuous basal lamina, except for the earliest stage, in which minute disruptions of basal lamina were observed. Through the disruption, the direct epithelial-mesenchymal contact was formed between an endocrine cell and an adjacent mesenchymal cell, which implied epithelial-mesenchymal interactions in processes of endocrine cell differentiation. Collagen fibrils were frequently accumulated at the cleft (branchpoint) of the branching epithelium during the second and third stages mentioned above. Immunohistochemically, fibronectin and collagen type-I were localized particularly beside the neck (narrow part) or cleft of the pancreatic epithelium at these stages, although continuous linear localization of these matrices was noted around the initial pancreatic bud. This was in contrast to invariable linear localization of laminin and collagen type-IV at the epithelial/mesenchymal interface throughout the pancreatic development. Diffuse fibrillar localization of fibronectin and collagen type-I in the mesenchyme was pronounced at the later stages and after birth. Collagen type-III was only focally detectable around the pancreatic epithelium from the second stage, and its distinct localization was noted in the interlobular connective tissue after birth. Thus, chronological changes in extracellular matrix organization seemed to be closely related to morphogenetic processes of the rat

  19. Evaluation of Neonatal Streptozotocin Induced Diabetic Rat Model for the Development of Cataract

    Directory of Open Access Journals (Sweden)

    Madhoosudan A. Patil

    2014-01-01

    Full Text Available Type 2 diabetes (T2D generally follows prediabetes (PD conditions such as impaired fasting glucose (IFG and/or impaired glucose tolerance (IGT. Although studies reported an association of IGT or IFG with cataract, the experimental basis for PD associated cataract is not known. Hence, we evaluated neonatal streptozotocin (nSTZ induced rat model to study PD associated cataractogenesis by injecting STZ to two-day old rats. While majority (70% of nSTZ injected pups developed IGT (nSTZ-PD by two months but not cataract even after seven months, remaining (30% nSTZ rats developed hyperglycemia (nSTZ-D by two months and mature cataract by seven months. Lens biochemical analysis indicated increased oxidative stress as indicated by increased SOD activity, lipid peroxidation, and protein carbonyl levels in nSTZ-D cataractous lens. There was also increased polyol pathway as assessed by aldose reductase activity and sorbitol levels. Though nSTZ-PD animals have not shown any signs of lenticular opacity, insolubilization of proteins along with enhanced polyol pathway was observed in the lens. Further there was increased oxidative stress in lens of IGT animals. These results suggest that oxidative stress along with increased polyol pathway might play a role in IGT-associated lens abnormalities. In conclusion, nSTZ-PD rat model could aid to investigate IGT-associated lens abnormalities.

  20. Effects of iron supplementation on growth, gut microbiota, metabolomics and cognitive development of rat pups.

    Directory of Open Access Journals (Sweden)

    Erica E Alexeev

    Full Text Available Iron deficiency is common during infancy and therefore iron supplementation is recommended. Recent reports suggest that iron supplementation in already iron replete infants may adversely affect growth, cognitive development, and morbidity.Normal and growth restricted rat pups were given iron daily (30 or 150 μg/d from birth to postnatal day (PD 20, and followed to PD56. At PD20, hematology, tissue iron, and the hepatic metabolome were measured. The plasma metabolome and colonic microbial ecology were assessed at PD20 and PD56. T-maze (PD35 and passive avoidance (PD40 tests were used to evaluate cognitive development.Iron supplementation increased iron status in a dose-dependent manner in both groups, but no significant effect of iron on growth was observed. Passive avoidance was significantly lower only in normal rats given high iron compared with controls. In plasma and liver of normal and growth-restricted rats, excess iron increased 3-hydroxybutyrate and decreased several amino acids, urea and myo-inositol. While a profound difference in gut microbiota of normal and growth-restricted rats was observed, with iron supplementation differences in the abundance of strict anaerobes were observed.Excess iron adversely affects cognitive development, which may be a consequence of altered metabolism and/or shifts in gut microbiota.

  1. Low-dose effects of bisphenol A on early sexual development in male and female rats

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Petersen, Marta Axelstad; Boberg, Julie

    2014-01-01

    the influence of BPA on early sexual development in male and female rats at dose levels covering both regulatory no observed adverse effect levels (NOAELs) (5 and 50 mg/kg bw per day) as well as doses in the microgram per kilogram dose range (0.025 and 0.25 mg/kg bw per day). Time-mated Wistar rats (n=22) were...... in both sexes indicates effects on prenatal sexual development and provides new evidence of low-dose adverse effects of BPA in rats in the microgram per kilogram dose range. The NOAEL in this study is clearly below 5 mg/kg for BPA, which is used as the basis for establishment of the current tolerable......Bisphenol A (BPA) is widely detected in human urine and blood. BPA has been reported to impair many endpoints for reproductive and neurological development; however, it is controversial whether BPA has effects in the microgram per kilogram dose range. The aim of the current study was to examine...

  2. Intrauterine Growth Restriction Alters the Postnatal Development of the Rat Cerebellum.

    Science.gov (United States)

    McDougall, Annie R A; Wiradjaja, Vanny; Azhan, Aminath; Li, Anqi; Hale, Nadia; Wlodek, Mary E; Hooper, Stuart B; Wallace, Megan J; Tolcos, Mary

    2017-01-01

    Intrauterine growth restriction (IUGR) is a major cause of antenatal brain injury. We aimed to characterize cerebellar deficits following IUGR and to investigate the potential underlying cellular and molecular mechanisms. At embryonic day 18, pregnant rats underwent either sham surgery (controls; n = 23) or bilateral uterine vessel ligation to restrict blood flow to fetuses (IUGR; n = 20). Offspring were collected at postnatal day 2 (P2), P7, and P35. Body weights were reduced at P2, P7, and P35 in IUGR offspring (p < 0.05) compared with controls. At P7, the width of the external granule layer (EGL) was 30% greater in IUGR than control rats (p < 0.05); there was no difference in the width of the proliferative zone or in the density of Ki67-positive cells in the EGL. Bergmann glia were disorganized at P7 and P35 in IUGR pups, and by P35, there was a 10% decrease in Bergmann glial fiber density (p < 0.05) compared with controls. At P7, trophoblast antigen-2 (Trop2) mRNA and protein levels in the cerebellum were decreased by 88 and 40%, respectively, and astrotactin 1 mRNA levels were increased by 20% in the IUGR rats (p < 0.05) compared with controls; there was no difference in ASTN1 protein. The expressions of other factors known to regulate cerebellar development (astrotactin 2, brain-derived neurotrophic factor, erb-b2 receptor tyrosine kinase 4, neuregulin 1, sonic hedgehog and somatostatin) were not different between IUGR and control rats at P7 or P35. These data suggest that damage to the migratory scaffold (Bergmann glial fibers) and alterations in the genes that influence migration (Trop2 and Astn1) may underlie the deficits in postnatal cerebellar development following IUGR. © 2017 S. Karger AG, Basel.

  3. Expression patterns and role of PTEN in rat peripheral nerve development and injury.

    Science.gov (United States)

    Chen, Hui; Xiang, Jianping; Wu, Junxia; He, Bo; Lin, Tao; Zhu, Qingtang; Liu, Xiaolin; Zheng, Canbin

    2018-05-29

    Studies have suggested that phosphatase and tensin homolog (PTEN) plays an important role in neuroprotection and neuronal regeneration. To better understand the potential role of PTEN with respect to peripheral nerve development and injury, we investigated the expression pattern of PTEN at different stages of rat peripheral nerve development and injury and subsequently assessed the effect of pharmacological inhibition of PTEN using bpV(pic) on axonal regeneration in a rat sciatic nerve crush injury model. During the early stages of development, PTEN exhibits low expression in neuronal cell bodies and axons. From embryonic day (E) 18.5 and postnatal day (P)5 to adult, PTEN protein becomes more detectable, with high expression in the dorsal root ganglia (DRG) and axons. PTEN expression is inhibited in peripheral nerves, preceding myelination during neuronal development and remyelination after acute nerve injury. Low PTEN expression after nerve injury promotes Akt/mammalian target of rapamycin (mTOR) signaling pathway activity. In vivo pharmacological inhibition of PTEN using bpV(pic) promoted axonal regrowth, increased the number of myelinated nerve fibers, improved locomotive recovery and enhanced the amplitude response and nerve conduction velocity following stimulation in a rat sciatic nerve crush injury model. Thus, we suggest that PTEN may play potential roles in peripheral nerve development and regeneration and that inhibition of PTEN expression is beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effects of ionizing-radiation to the expressions of bFGF and BDNF and the protective and repaired functions of melatonin in the forebrain of rat

    International Nuclear Information System (INIS)

    Di Rongke; Xu Jin; Zhou Zhiqiang; Liu Yiren

    2006-01-01

    Objective: To investigate the expressions of bFGF and BDNF induced with ionizing-radiation and the effects of melatonin to the expressions of bFGF and BDNF in the rate cerebral cortex and subependymal ventrical zone (SVZ) and discuss the protective function and repaired mechanism of melatonin to brain during radiation nervous damage. Methods: 60 SD rats were used in this experiment, which were divided into three groups: blank control group, radiation control group, and treatment groups. Injections of melatonin were given into the abdomen of the rats in the treatment group in three doses of 1, 5 and 10 mg·kg -1 one time each day, in total of 10 days. Then, the radiation control and treatment groups were X-rayed a dose of 600 cGy. All of rat brains were cut up in coronal sections continuously, which were stained with bFGF and BDNF in immunohistochemical ABC method. The positive cells stained with bFGF and BDNF were observed and counted under the light microscope with computed program. Results: bFGF and BDNF are expressed weakly in cerebral cortex and subependymal ventrical zone of the normal rats. One day after radiation, the expressions of bFGF and BDNF are increasing, but weaking 5 days after radiation in cerebral cortex; then, one day after radiation, the expressions of bFGF and BDNF are less increasing, but more increasing 5 days after radiation in the subependymal ventrical zone cells. When the rats were treated by the melatonin in advance, the expressions of bFGF and BDNF are increasing continuously (more than 50%) and accompanying with the dose of melatonin. The cells of proliferation, differentiation, and migration can be observed in the subependymal ventrical zone (from 1-2 layers to 3-5 layers). Conclution: Radiation nervous damage can induce the expressions of bFGF and BDNF in the cerebral cortex and subependymal ventrical zone, which are more increasing when stimulated with melatonin. It is shown that melatonin has the functions to protect the cerebral

  5. Regulation of glutamate dehydrogenase expression in the developing rat liver: control at different levels in the prenatal period

    NARCIS (Netherlands)

    Das, A. T.; Salvadó, J.; Boon, L.; Biharie, G.; Moorman, A. F.; Lamers, W. H.

    1996-01-01

    To study the regulation of the expression of glutamate dehydrogenase (Glu-DH) in rat liver during development, the Glu-DH mRNA concentration in the liver of rats ranging in age from 14 days prenatal development to 3 months after birth was determined. This concentration increased up to two days

  6. Sex differences in abuse-related neurochemical and behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats.

    Science.gov (United States)

    Lazenka, M F; Suyama, J A; Bauer, C T; Banks, M L; Negus, S S

    2017-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a substrate for dopamine (DA), norepinephrine and serotonin (5HT) transporters that produces greater pharmacological effects on certain endpoints in females than males in both clinical and rodent preclinical studies. To evaluate potential for sex differences in abuse-related MDMA effects, the present study compared MDMA effects on intracranial self-stimulation (ICSS) and on in vivo microdialysis measurements of DA or 5HT in the nucleus accumbens (NAc) in female and male Sprague-Dawley rats. For ICSS studies, electrodes were implanted in the medial forebrain bundle and rats trained to press for electrical stimulation over a range of frequencies (56-158Hz, 0.05 log increments) under a fixed-ratio 1 schedule, and the potency (0.32-3.2mg/kg, 10min pretreatment) and time course (3.2. mg/kg, 10-180min pretreatment) of MDMA effects were determined. For in vivo microdialysis, rats were implanted with bilateral guide cannulae targeting the NAc, and the time course of MDMA effects (1.0-3.2mg/kg, 0-180min) on DA and 5HT was determined. MDMA produced qualitatively similar effects in both sexes on ICSS (both increases in low ICSS rates maintained by low brain-stimulation frequencies and decreases in high ICSS rates maintained by high brain-stimulation frequencies) and microdialysis (increases in both DA and 5HT). The duration and peak levels of both abuse-related ICSS facilitation and increases in NAc DA were longer in females. MDMA was also more potent to increase 5HT in females. These results provide evidence for heightened sensitivity of females to abuse-related behavioral and neurochemical effects of MDMA in rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Extinction, Reacquisition, and Rapid Forgetting of Eyeblink Conditioning in Developing Rats

    Science.gov (United States)

    Brown, Kevin L.; Freeman, John H.

    2014-01-01

    Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In…

  8. Pituitary and brain D2 receptor density measured in vitro and in vivo in EEDQ treated male rats

    International Nuclear Information System (INIS)

    Ekman, A.; Eriksson, E.

    1991-01-01

    The effect of the alkylating compound N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) on dopamine D2 receptor density in rat pituitary and brain was measured using in vitro and in vivo radioligand binding techniques. In the in vitro radioligand binding experiments EEDQ was found to reduce the density (B max ) of [ 3 H]-spiperone binding sites in the striatum by 86% while in the pituitary the corresponding decrease was only 37%. The affinity (K D ) of the remaining striatal and pituitary D2 receptors was not different in EEDQ treated animals as compared to controls. When D2 receptor density was measured in vivo the effect of EEDQ was less pronounced. Thus, in rats given EEDQ the specific binding of either of the two D2 ligands [ 3 H]-raclopride or [ 3 H]-spiperone in striatum and in the limbic forebrain was reduced by 45-62%; moreover, no significant decrease in pituitary D2 receptor density was observed. The data are discussed in relation to the finding that the same dose of EEDQ that failed to influence pituitary D2 receptor density as measured in vivo effectively antagonizes the prolactin decreasing effect of the partial D2 agonist (-)-3-(3-hydroxyphenyl)-N-n-propyl-piperidine [(-)-3-PPP

  9. Development of rat female genital cortex and control of female puberty by sexual touch.

    Directory of Open Access Journals (Sweden)

    Constanze Lenschow

    2017-09-01

    Full Text Available Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  10. Development of rat female genital cortex and control of female puberty by sexual touch.

    Science.gov (United States)

    Lenschow, Constanze; Sigl-Glöckner, Johanna; Brecht, Michael

    2017-09-01

    Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  11. Myenteric denervation differentially reduces enteroendocrine serotonin cell population in rats during postnatal development.

    Science.gov (United States)

    Hernandes, Luzmarina; Fernandes, Marilda da Cruz; Pereira, Lucieni Cristina Marques da Silva; Freitas, Priscila de; Gama, Patrícia; Alvares, Eliana Parisi

    2006-05-01

    The enteric nervous and enteroendocrine systems regulate different processes in the small intestine. Ablation of myenteric plexus with benzalkonium chloride (BAC) stimulates epithelial cell proliferation, whereas endocrine serotonin cells may inhibit the process. To evaluate the connection between the systems and the influence of myenteric plexus on serotoninergic cells in rats during postnatal development, the ileal plexus was partially removed with BAC. Rats were treated at 13 or 21 days and sacrificed after 15 days. The cell bodies of myenteric neurons were stained by beta NADH-diaphorase to detect the extension of denervation. The number of enteroendocrine cells in the ileum was estimated in crypts and villi in paraffin sections immunostained for serotonin. The number of neurons was reduced by 27.6 and 45% in rats treated on the 13th and 21st days, respectively. We tried to establish a correlation of denervation and the serotonin population according to the age of treatment. We observed a reduction of immunolabelled cells in the crypts of rats treated at 13 days, whereas this effect was seen in the villi of rats denervated at 21 days. These results suggest that the enteric nervous system might control the enteroendocrine cell population and this complex mechanism could be correlated to changes in cell proliferation.

  12. Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Powers, Brian E; Velazquez, Ramon; Kelley, Christy M; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2016-12-01

    Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer's disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs.

  13. Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy.

    Science.gov (United States)

    Savard, Alexandre; Lavoie, Karine; Brochu, Marie-Elsa; Grbic, Djordje; Lepage, Martin; Gris, Denis; Sebire, Guillaume

    2013-09-05

    Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes. An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns. LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology. In rat pups at a neurodevelopmental age

  14. Metabolic and hemodynamic activation of postischemic rat brain by cortical spreading depression.

    Science.gov (United States)

    Kocher, M

    1990-07-01

    Following transient ischemia of the brain, the coupling between somatosensory activation and the hemodynamic-metabolic response is abolished for a certain period despite the partial recovery of somatosensory evoked responses. To determine whether this disturbance is due to alterations of the stimulus-induced neuronal excitation or to a breakdown of the coupling mechanisms, cortical spreading depression was used as a metabolic stimulus in rats before and after ischemia. Adult rats were subjected to 30 min of global forebrain ischemia and 3-6 h of recirculation. EEG, cortical direct current (DC) potential, and laser-Doppler flow were continuously recorded. Local CBF (LCBF), local CMRglc (LCMRglc), regional tissue contents of ATP, glucose, and lactate, and regional pH were determined by quantitative autoradiography, substrate-induced bioluminescence, and fluorometry. Amplitude and frequency of the DC shifts did not differ between groups. In control animals, spreading depression induced a 77% rise in cortical glucose consumption, a 66% rise in lactate content, and a drop in tissue pH of 0.3 unit. ATP and glucose contents were not depleted. During the passage of DC shifts, transient increases (less than 2 min) in laser-Doppler flow were observed, followed by a post-spreading depression hypoperfusion. A comparable although less expressed pattern of hemodynamic and metabolic changes was observed in the postischemic rats. Although baseline LCMRglc was depressed after ischemia, it was activated 47% during spreading depression. Lactate increased by 26%, pH decreased by 0.3 unit, and ATP and glucose remained unchanged. The extent of the transient increase in laser-Doppler flow did not differ from that of the control group, and a post-spreading depression hypoperfusion was also found.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Nitric oxide and thyroid hormone receptor alpha 1 contribute to ovarian follicular development in immature hyper- and hypo-thyroid rats.

    Science.gov (United States)

    Zheng, Kaizhi; Sulieman, Fedail Jaafar; Li, Junrong; Wei, Quanwei; Xu, Mulin; Shi, Fangxiong

    2015-03-01

    Thyroid dysfunction can cause ovarian cycle and ovulatory disturbances, however, the molecular link(s) between these two disorders remains largely unknown. In the current study, we examined the roles of nitric oxide synthase (NOS) and thyroid hormone receptor alpha 1 (TRα1) in these disorders using immature hyper-thyroid (hyper-T) and hypo-thyroid (hypo-T) rats. In comparison to controls, hyper-T rats had higher serum concentrations of triiodothyronine (T3) and thyroxine (T4), whereas hypo-T rats had lower serum T3 and T4. Serum estradiol (E2) level was decreased in both hyper-T and hypo-T animals and serum E2 in hyper-T rats were lower than in hypo-T rats. We found that neuronal NOS (nNOS) and TRα1 were present in oocytes, granulosa cells and theca cells of all examined rat groups. Ovarian nitric oxide (NO) content and the constitutive NOS (cNOS) activity in hyper-T rats were significantly decreased compared with control or hypo-T rats. Moreover, the number of large antral follicles was reduced in hyper-T rats, and number of primordial follicles was decreased in hypo-T rats compared with control rats. In conclusion, we observed an association between thyroid hormone and NO signaling pathways during the process of ovarian follicular development in immature rats. In hyperthyroidism, thyroid hormones induced an estrogen deficiency that inhibited the function of nNOS, resulting in the inhibition of NO synthesis and suppressed development of large antral follicles, while in hypothyroidism only development of primordial follicles was inhibited. Copyright © 2014 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Segmental neuropathic pain does not develop in male rats with complete spinal transections.

    Science.gov (United States)

    Hubscher, Charles H; Kaddumi, Ezidin G; Johnson, Richard D

    2008-10-01

    In a previous study using male rats, a correlation was found between the development of "at-level" allodynia in T6-7 dermatomes following severe T8 spinal contusion injury and the sparing of some myelinated axons within the core of the lesion epicenter. To further test our hypothesis that this sparing is important for the expression of allodynia and the supraspinal plasticity that ensues, an injury that severs all axons (i.e., a complete spinal cord transection) was made in 15 male rats. Behavioral assessments were done at level throughout the 30-day recovery period followed by terminal electrophysiological recordings (urethane anesthesia) from single medullary reticular formation (MRF) neurons receiving convergent nociceptive inputs from receptive fields above, at, and below the lesion level. None of the rats developed signs of at-level allodynia (versus 18 of 26 male rats following severe contusion). However, the terminal recording (206 MRF neurons) data resembled those obtained previously post-contusion. That is, there was evidence of neuronal hyper-excitability (relative to previous data from intact controls) to high- and low-threshold mechanical stimulation for "at-level" (dorsal trunk) and "above-level" (eyelids and face) cutaneous territories. These results, when combined with prior data on intact controls and severe/moderate contusions, indicate that (1) an anatomically incomplete injury (some lesion epicenter axonal sparing) following severe contusion is likely important for the development of allodynia and (2) the neuronal hyper-excitability at the level of the medulla is likely involved in nociceptive processes that are not directly related to the conscious expression of pain-like avoidance behaviors that are being used as evidence of allodynia.

  17. Cyclin A2 promotes DNA repair in the brain during both development and aging.

    Science.gov (United States)

    Gygli, Patrick E; Chang, Joshua C; Gokozan, Hamza N; Catacutan, Fay P; Schmidt, Theresa A; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J; Czeisler, Catherine; Otero, José J

    2016-07-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.

  18. The effect of a hyperdynamic environment on the development of the rat retina

    Science.gov (United States)

    Murakami, D. M.; Fuller, C. A.

    1985-01-01

    The effects of a 2 G field on the retinal development of the layers in the rat and central visual system nuclei are investigated. The thickness of the retinal layers, ganglion cells, and brains of male and female Wistar rats suspended from an 18 foot diameter centrifuge creating a 2 G field are evaluated and compared with a control group. A decrease in the thickness of the outer nuclear layer (ONL) of 37.1 percent, of 58.5 percent in the inner nuclear layer (INL), and of 28.8 percent in the inner plexiform layer (IPL), and a reduction in body weight are observed in the 2-G rats. The data reveal that the ganglion cells and visual system nuclei activity correspond well with the control data; however, the medial terminal nucleus (MTN) activity is inhibited in the 2-G rats. It is concluded that the differences in ONL and IPL are attributed to body weight reduction, but the INL and MTN are affected by the 2-G conditions.

  19. Development of T Lymphocytes in the Nasal-associated Lymphoid Tissue (NALT from Growing Wistar Rats

    Directory of Open Access Journals (Sweden)

    Gustavo A. Sosa

    2004-01-01

    Full Text Available The aim of the present report was to study the development of several T-lymphocyte subsets in the nasal-associated lymphoid tissue (NALT of growing Wistar rats. CD5+ and CD4+ lymphocytes gradually increased with age. A predominance of CD8α+ over CD4+ T cells was found from 7 to 45 days but from 45 to 60 days of age T helper cells outnumbered the cytotoxic subpopulation. The majority of CD8+ T lymphocytes expressed the heterodimeric isoform. The most relevant findings by immunohistochemistry are: (1 the predominance of TCRγδ+ and CD8α+ cells at 7 days postpartum over all the other T-cell subpopulations; and (2 that TCRγβ+ outnumbered TCRαβ+ T cells from 7 to 45 days postpartum whereas αβ T cells predominated in 45- and 60-day-old rats. Besides, cytometric studies have shown that the percentages of TCRγ+, CD8+, as well as the population coexpressing both phenotypes (TCRγδ+CD8α+, were significantly higher in rats at 7 days postpartum when compared to 60 day-old rats. In the present study, the finding of a high number of γδ+ and CD8+ T cells early in NALT development may indicate the importance of these subpopulations in the protection of the nasal mucosa in suckling and weaning Wistar rats.

  20. Resistant starch but not enzymatic treated waxy maize delays development of diabetes in Zucker Diabetic Fatty rats

    DEFF Research Database (Denmark)

    Hedemann, Mette Skou; Hermansen, Kjeld; Pedersen, Sven

    2017-01-01

    excretion during week 8 in rats fed the GLU and EMS diets than that of rats fed S and RS showed that they were diabetic. Urinary nontargeted metabolomics revealed that the diabetic state of rats fed S, GLU, and EMS diets influenced microbial metabolism, as well as amino acid, lipid, and vitamin metabolism......Background: The incidence of type 2 diabetes (T2D) is increasing worldwide, and nutritional management of circulating glucose may be a strategic tool in the prevention of T2D. Objective: We studied whether enzymatically modified waxy maize with an increased degree of branching delayed the onset...... glucose concentrations in feed-deprived rats, none of the groups developed diabetes. However, in week 9, plasma glucose after feed deprivation was significantly lower in rats fed the S and RS diets (13.5 mmol/L) than in rats fed the GLU and EMS diets (17.0–18.9 mmol/L), and rats fed RS had lower HbA1c (4...

  1. Studies of Mechanisms of Pharmacological Enhancement of Functional Recovery After Cortical Contusion

    Science.gov (United States)

    1993-01-29

    ablation, as described in detail elsewhere (4,8,9). In other projects, SMCx injury was induced via contusion of the cortex through a craniotomy site...in vivo microdialysis study in the awake rat. J. Neurochem. 76. Steindler D.A. (1981) Locus coeruleus neurons have axons that branch to the forebrain...microdialysis study in the awake rat. J. Neurochem. Weisend, M.P. and Feeney, D.M. (Submitted) Brain temperature before and after traumatic brain injury is

  2. Propagated but Topologically Distributed Forebrain Neurons Expressing Alpha-Synuclein in Aged Macaques.

    Directory of Open Access Journals (Sweden)

    Katsuo Kimura

    Full Text Available In neurodegenerative disorders, such as Parkinson's disease (PD, alpha-synuclein (α-syn accumulates to induce cell death and/or form a cytoplasmic inclusion called Lewy body (LB. This α-syn-related pathology is termed synucleinopathy. It remains unclear how α-syn accumulation expands during the progress of synucleinopathy in the human brain. In our study, we investigated the patterns of distribution and propagation of forebrain neurons expressing α-syn in aged macaques. It was found that the occurrence of α-syn-positive neurons proceeded topologically based on the midbrain dopamine pathways arising from the substantia nigra and the ventral tegmental area where they were primarily observed. In the nigrostriatal or mesolimbic dopamine pathway, the age-dependent increase in α-syn-positive neurons was evident in the striatum or the nucleus accumbens, respectively. Concerning the nigrostriatal pathway, a mediolateral or rostrocaudal gradient was seen in the substantia nigra or the striatum, respectively, and a compensatory increase in dopamine transporter occurred in the striatum regardless of the decreased dopamine level. In the mesocortical dopamine pathway, α-syn-positive neurons appeared in the prefrontal and then motor areas of the frontal lobe. Given that neither LB formation nor clinical phenotype manifestation was detected in any of the monkeys examined in the present study, aged macaques may be useful as a potential presymptomatic model for PD and LB-related neuropsychiatric disorders.

  3. Impact of in utero exposure to EtOH on corpus callosum development and paw preference in rats: protective effects of silymarin

    Directory of Open Access Journals (Sweden)

    Montoya Rebecca

    2002-11-01

    Full Text Available Abstract Background Using a rat model we have found that the bioflavonoid silymarin (SY ameliorates some of the negative consequences of in utero exposure to ethanol (EtOH. In the current study our aim was to determine if laterality preference and corpus callosum development were altered in rat offspring whose mothers were provided with a concomitant administration of SY with EtOH throughout gestation. Methods We provided pregnant Fisher/344 rats with liquid diets containing 35% ethanol derived calories (EDC throughout the gestational period. A silymarin/phospholipid compound containing 29.8% silybin was co administered with EtOH to a separate experimental group. We tested the offspring for laterality preference at age 12 weeks. After testing the rats were sacrificed and their brains perfused for later corpus callosum extraction. Results We observed incomplete development of the splenium in the EtOH-only offspring. Callosal development was complete in all other treatment groups. Rats from the EtOH-only group displayed a left paw preference; whereas control rats were evenly divided between right and left paw preference. Inexplicably both SY groups were largely right paw preferring. Conclusions The addition of SY to the EtOH liquid diet did confer some ameliorative effects upon the developing fetal rat brain.

  4. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia.

    Science.gov (United States)

    Nakashima, Masato; Imada, Haruka; Shiraishi, Eri; Ito, Yuki; Suzuki, Noriko; Miyamoto, Maki; Taniguchi, Takahiko; Iwashita, Hiroki

    2018-04-01

    The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N -methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, ( N -{(1 S )-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3- b ]pyrazine-4(1 H )-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α -amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  5. The Role of Endothelin System in Renal Structure and Function during the Postnatal Development of the Rat Kidney.

    Science.gov (United States)

    Albertoni Borghese, María F; Ortiz, María C; Balonga, Sabrina; Moreira Szokalo, Rocío; Majowicz, Mónica P

    2016-01-01

    Renal development in rodents, unlike in humans, continues during early postnatal period. We aimed to evaluate whether the pharmacological inhibition of Endothelin system during this period affects renal development, both at structural and functional level in male and female rats. Newborn rats were treated orally from postnatal day 1 to 20 with vehicle or bosentan (Actelion, 20 mg/kg/day), a dual endothelin receptor antagonist (ERA). The animals were divided in 4 groups: control males, control females, ERA males and ERA females. At day 21, we evaluated renal function, determined the glomerular number by a maceration method and by morphometric analysis and evaluated possible structural renal alterations by three methods: 〈alpha〉-Smooth muscle actin (α-SMA) immunohistochemistry, Masson's trichrome and Sirius red staining. The pharmacological inhibition of Endothelin system with a dual ERA during the early postnatal period of the rat did not leads to renal damage in the kidneys of male and female rats. However, ERA administration decreased the number of glomeruli, the juxtamedullary filtration surface area and the glomerular filtration rate and increased the proteinuria. These effects could predispose to hypertension or renal diseases in the adulthood. On the other hand, these effects were more pronounced in male rats, suggesting that there are sex differences that could be greater later in life. These results provide evidence that Endothelin has an important role in rat renal postnatal development. However these results do not imply that the same could happen in humans, since human renal development is complete at birth.

  6. Effects of thioperamide on seizure development and memory impairment induced by pentylenetetrazole-kindling epilepsy in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-san; CHEN Jie-fang; CHEN Guan-feng; HU Xing-yue; DING Mei-ping

    2013-01-01

    Background Histamine H3 receptor antagonists have been considered as potential drugs to treat central nervous system diseases.However,whether these drugs can inhibit epileptogenesis remains unclear.This study aimed to investigate the effects of thioperamide,a selective and potent histamine H3 receptor antagonist,on the seizure development and memory impairment induced by pentylenetetrazole (PTZ)-kindling epilepsy in rats.Methods Chemical kindling was elicited by repeated intraperitoneal (ip) injections of a subconvulsant dose of PTZ (35 mg/kg) once every 48 hours for 12 times,and seizure activity of kindling was recorded for 30 minutes.Control rats were ip injected with saline instead of PTZ.Morris water maze was used to evaluate the spatial memory.Phosphorylated cyclic adenosine monophosphate response element binding protein (p-CREB) was tested by Western blotting in hippocampus.Results Intracerebroventricular (icv) injections with thioperamide (10 μg,20 μg) 30 minutes before every PTZ injections,significantly prolonged the onset of PTZ-kindling and inhibited the seizure stages.PTZ-kindling seizures led to the impairment of spatial memory in rats,and thioperamide ameliorated the impairment of spatial learning and memory.Compared to non-kindling rats,there was a significant decrease in p-CREB level in hippocampus of the PTZ-kindling rats,which was reversed by thioperamide.Conclusions Thioperamide plays a protective role in seizure development and cognitive impairment of PTZ-induced kindling in rats.The protection of thioperamide in cognitive impairment is possibly associated with the enhancement of CREB-dependent transcription.

  7. What the laboratory rat has taught us about social play behavior: role in behavioral development and neural mechanisms.

    Science.gov (United States)

    Vanderschuren, Louk J M J; Trezza, Viviana

    2014-01-01

    Social play behavior is the most vigorous and characteristic form of social interaction displayed by developing mammals. The laboratory rat is an ideal species to study this behavior, since it shows ample social play that can be easily recognized and quantified. In this chapter, we will first briefly describe the structure of social play behavior in rats. Next, we will discuss studies that used social isolation rearing during the period in life when social play is most abundant to investigate the developmental functions of social play behavior in rats, focusing on the consequences of play deprivation on social, cognitive, emotional, and sensorimotor development. Last, we will discuss the neural substrates of social play behavior in rats, with emphasis on the limbic corticostriatal circuits that underlie emotions and their influence on behavior.

  8. Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain.

    Science.gov (United States)

    Nakamuta, Shinichi; Yang, Yu-Ting; Wang, Chia-Lin; Gallo, Nicholas B; Yu, Jia-Ray; Tai, Yilin; Van Aelst, Linda

    2017-12-04

    Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. © 2017 Nakamuta et al.

  9. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development. PMID:26848844

  11. Asthma pregnancy alters postnatal development of chromaffin cells in the rat adrenal medulla.

    Directory of Open Access Journals (Sweden)

    Xiu-Ming Wu

    Full Text Available Adrenal neuroendocrine plays an important role in asthma. The activity of the sympathoadrenal system could be altered by early life events. The effects of maternal asthma during pregnancy on the adrenal medulla of offspring remain unknown.This study aims to explore the influence of maternal asthma during pregnancy on the development and function of adrenal medulla in offspring from postnatal day 3 (P3 to postnatal day 60 (P60. Asthmatic pregnant rats (AP, nerve growth factor (NGF-treated pregnant rats (NP and NGF antibody-treated pregnant rats (ANP were sensitized and challenged with ovalbumin (OVA; NP and ANP were treated with NGF and NGF antibody respectively. Offspring rats from the maternal group were divided into four groups: offspring from control pregnant rats (OCP, offspring from AP (OAP, offspring from NP (ONP, and offspring from ANP (OANP. The expressions of phenylethanolamine N-methyltransferase (PNMT protein in adrenal medulla were analyzed. The concentrations of epinephrine (EPI, corticosterone and NGF in serum were measured. Adrenal medulla chromaffin cells (AMCC were prone to differentiate into sympathetic nerve cells in OAP and ONP. Both EPI and PNMT were decreased in OAP from P3 to P14, and then reached normal level gradually from P30 to P60, which were lower from birth to adulthood in ONP. Corticosterone concentration increased significantly in OAP and ONP.Asthma pregnancy may promote AMCC to differentiate into sympathetic neurons in offspring rats and inhibit the synthesis of EPI, resulting in dysfunction of bronchial relaxation.

  12. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Bruno, J P; Byrnes, E M; Johnson, B J

    1995-11-01

    The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.

  13. In utero exposure to chloroquine alters sexual development in the male fetal rat

    International Nuclear Information System (INIS)

    Clewell, Rebecca A.; Pluta, Linda; Thomas, Russell S.; Andersen, Melvin E.

    2009-01-01

    Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenance doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.

  14. A neurorobotic platform for locomotor prosthetic development in rats and mice

    Science.gov (United States)

    von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire

    2016-04-01

    Objectives. We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. Approach. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Main Results. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. Significance. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.

  15. Cytomegalovirus-enhanced development of transplant arteriosclerosis in the rat; effect of timing of infection and recipient responsiveness

    NARCIS (Netherlands)

    Hillebrands, JL; van Dam, JG; Onuta, G; Klatter, FA; Grauls, G; Bruggeman, CA; Rozing, J

    Cytomegalovirus (CMV) is put forward as a risk factor for transplant arteriosclerosis (TA). In this article, we studied CMV-enhanced development of TA in rats in different donor/recipient combinations in relation to the timing of infection. Recipient rats transplanted with an aortic allograft (BN to

  16. Changes in brain development of rat fetus exposed to 137Cs γ rays in different pregnant periods of the female rats

    International Nuclear Information System (INIS)

    Guo Yuefeng; Wang Mingming

    2004-01-01

    Pregnant rats in 11d and 16d of their pregnancy were given one-off whole body exposure by 137 Cs γ rays to 0.2, 0.4, 0.9 and 2.0 Gy, respectively. Changes were observed in conditioned drinking response and cerebrum hippocampi cone cell number of the baby rats exposed to the γ rays in different periods of their embryo development. As a result, that pregnant rats exposed to 137 Cs γ rays in different pregnant periods may induce significant decrease in cerebrum hippocampi cone cell number and achieving rate of conditioned drinking response of the babies. The dose-response relationship can be described by Y=a-b log 10 D. The achieving rate of conditioned drinking response were significantly correlated to cerebrum hippocampi cone cell number in the babies, and the achieving rate of conditioned drinking response of the babies exposed at pregnant 11d was lower than others exposed at pregnant 16d

  17. Effect of agmatine on the development of morphine dependence in rats: potential role of cAMP system

    Science.gov (United States)

    Aricioglu, Feyza; Means, Andrea; Regunathan, Soundar

    2010-01-01

    Agmatine is an endogenous amine derived from arginine that potentiates morphine analgesia and blocks symptoms of naloxone-precipitated morphine withdrawal in rats. In this study, we sought to determine whether treatment with agmatine during the development of morphine dependence inhibits the withdrawal symptoms and that the effect is mediated by cAMP system. Exposure of rats to morphine for 7 days resulted in marked naloxone-induced withdrawal symptoms and agmatine treatment along with morphine significantly decreasing the withdrawal symptoms. The levels of cAMP were markedly increased in morphine-treated rat brain slices when incubated with naloxone and this increase was significantly reduced in rats treated with morphine and agmatine. The induction of tyrosine hydroxylase after morphine exposure was also reduced in locus coeruleus when agmatine was administered along with morphine. We conclude that agmatine reduces the development of dependence to morphine and that this effect is probably mediated by the inhibition of cAMP signaling pathway during chronic morphine exposure. PMID:15541421

  18. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring.

    Science.gov (United States)

    Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R

    2016-01-15

    Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Exercise-induced rescue of tongue function without striatal dopamine sparing in a rat neurotoxin model of Parkinson disease.

    Science.gov (United States)

    Ciucci, Michelle R; Schaser, Allison J; Russell, John A

    2013-09-01

    Unilateral lesions to the medial forebrain bundle with 6-hydroxydopamine (6-OHDA) lead to force and timing deficits during a complex licking task. We hypothesized that training targeting tongue force generation during licking would improve timing and force measures and also lead to striatal dopamine sparing. Nine month-old male Fisher344/Brown Norway rats were used in this experiment. Sixteen rats were in the control condition and received tongue exercise (n=8) or no exercise (n=8). Fourteen rats were in the 6-OHDA lesion condition and underwent tongue exercise (n=7) and or no exercise (n=7). Following 4 weeks of training and post-training measures, all animals underwent bilateral stimulation of the hypoglossal nerves to measure muscle contractile properties and were then transcardially perfused and brain tissues collected for immunohistochemistry to examine striatal dopamine content. Results demonstrated that exercise animals performed better for maximal force, average force, and press rate than their no-exercise counterparts, and the 6-OHDA animals that underwent exercise performed as well as the Control No Exercise group. Interestingly, there were no group differences for tetanic muscle force, despite behavioral recovery of forces. Additionally, behavioral and neurochemical analyses indicate that there were no differences in striatal dopamine. Thus, targeted exercise can improve tongue force and timing deficits related to 6-OHDA lesions and this exercise likely has a central, versus peripheral (muscle strength) mechanism. However, this mechanism is not related to sparing of striatal dopamine content. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Chemosensory responsiveness to ethanol and its individual sensory components in alcohol-preferring, alcohol-nonpreferring and genetically heterogeneous rats.

    Science.gov (United States)

    Brasser, Susan M; Silbaugh, Bryant C; Ketchum, Myles J; Olney, Jeffrey J; Lemon, Christian H

    2012-03-01

    Alcohol activates orosensory circuits that project to motivationally relevant limbic forebrain areas that control appetite, feeding and drinking. To date, limited data exists regarding the contribution of chemosensory-derived ethanol reinforcement to ethanol preference and consumption. Measures of taste reactivity to intra-orally infused ethanol have not found differences in initial orofacial responses to alcohol between alcohol-preferring (P) and alcohol-non-preferring (NP) genetically selected rat lines. Yet, in voluntary intake tests, P rats prefer highly concentrated ethanol upon initial exposure, suggesting an early sensory-mediated attraction. Here, we directly compared self-initiated chemosensory responding for alcohol and prototypic sweet, bitter and oral trigeminal stimuli among selectively bred P, NP and non-selected Wistar (WI) outbred lines to determine whether differential sensory responsiveness to ethanol and its putative sensory components are phenotypically associated with genetically influenced alcohol preference. Rats were tested for immediate short-term lick responses to alcohol (3-40%), sucrose (0.01-1 M), quinine (0.01-3 mM) and capsaicin (0.003-1 mM) in a brief-access assay designed to index orosensory-guided behavior. P rats exhibited elevated short-term lick responses to both alcohol and sucrose relative to NP and WI lines across a broad range of concentrations of each stimulus and in the absence of blood alcohol levels that would produce significant post-absorptive effects. There was no consistent relationship between genetically mediated alcohol preference and orosensory avoidance of quinine or capsaicin. These data indicate that enhanced initial chemosensory attraction to ethanol and sweet stimuli are phenotypes associated with genetic alcohol preference and are considered within the framework of downstream activation of oral appetitive reward circuits. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of

  1. Quantitative autoradiography of the binding sites for [125I] iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    International Nuclear Information System (INIS)

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.; Robertson, D.W.

    1991-01-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with [ 125 I]iodoglyburide (N-[2-[[[(cyclohexylamino)carbonyl]amino]sulfonyl]ethyl]-5- 125 I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific [ 125 I]iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of [ 125 I]iodoglyburide binding indicated a broad distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels

  2. Olfactory granule cell development in normal and hyperthyroid rats.

    Science.gov (United States)

    Brunjes, P C; Schwark, H D; Greenough, W T

    1982-10-01

    Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.

  3. Development of glia and blood vessels in the internal capsule of rats.

    Science.gov (United States)

    Earle, K L; Mitrofanis, J

    1998-02-01

    microglia are seen in the thalamus. In summary, our results indicate that all three types of glia in the internal capsule are associated closely with the vasculature, suggesting they may play a role in the development of the blood-brain barrier among the vessels in this white matter region of the forebrain.

  4. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  5. History of chronic stress modifies acute stress-evoked fear memory and acoustic startle in male rats.

    Science.gov (United States)

    Schmeltzer, Sarah N; Vollmer, Lauren L; Rush, Jennifer E; Weinert, Mychal; Dolgas, Charles M; Sah, Renu

    2015-01-01

    Chronicity of trauma exposure plays an important role in the pathophysiology of posttraumatic stress disorder (PTSD). Thus, exposure to multiple traumas on a chronic scale leads to worse outcomes than acute events. The rationale for the current study was to investigate the effects of a single adverse event versus the same event on a background of chronic stress. We hypothesized that a history of chronic stress would lead to worse behavioral outcomes than a single event alone. Male rats (n = 14/group) were exposed to either a single traumatic event in the form of electric foot shocks (acute shock, AS), or to footshocks on a background of chronic stress (chronic variable stress-shock, CVS-S). PTSD-relevant behaviors (fear memory and acoustic startle responses) were measured following 7 d recovery. In line with our hypothesis, CVS-S elicited significant increases in fear acquisition and conditioning versus the AS group. Unexpectedly, CVS-S elicited reduced startle reactivity to an acoustic stimulus in comparison with the AS group. Significant increase in FosB/ΔFosB-like immunostaining was observed in the dentate gyrus, basolateral amygdala and medial prefrontal cortex of CVS-S rats. Assessments of neuropeptide Y (NPY), a stress-regulatory transmitter associated with chronic PTSD, revealed selective reduction in the hippocampus of CVS-S rats. Collectively, our data show that cumulative stress potentiates delayed fear memory and impacts defensive responding. Altered neuronal activation in forebrain limbic regions and reduced NPY may contribute to these phenomena. Our preclinical studies support clinical findings reporting worse PTSD outcomes stemming from cumulative traumatization in contrast to acute trauma.

  6. Early-life exposure to fibroblast growth factor-2 facilitates context-dependent long-term memory in developing rats.

    Science.gov (United States)

    Graham, Bronwyn M; Richardson, Rick

    2010-06-01

    Fibroblast growth factor-2 (FGF2) is a potent neurotrophic factor that is involved in brain development and the formation of long-term memory. It has recently been shown that acute FGF2, administered at the time of learning, enhances long-term memory for contextual fear conditioning as well as extinction of conditioned fear in developing rats. As other research has shown that administering FGF2 on the first day of life leads to long-term morphological changes in the hippocampus, in the present study we investigated whether early life exposure to FGF2 affects contextual fear conditioning, and renewal following extinction, later in life. Experiment 1 demonstrated that a single injection of FGF2 on Postnatal Day (PND) 1 did not lead to any detectable changes in contextual fear conditioning in PND 16 or PND 23 rats. Experiments 2 and 3 demonstrated that 5 days of injections of FGF2 (from PND 1-5) facilitated contextual fear conditioning in PND 16 and PND 23 rats. Experiment 4 demonstrated that the observed facilitation of memory was not due to FGF2 increasing rats' sensitivity to foot shock. Experiment 5 showed that early life exposure to FGF2 did not affect learning about a discrete conditioned stimulus, but did allow PND 16 rats to use contextual information in more complex ways, leading to context-dependent extinction of conditioned fear. These results further implicate FGF2 as a critical signal involved in the development of learning and memory.

  7. Genetic Regulation of Pituitary Gland Development in Human and Mouse

    OpenAIRE

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C. A. F.; Dattani, Mehul T.

    2009-01-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndr...

  8. Looking for answers to L-type calcium channels in the ageing brain (Commentary on Zanos et al.)

    Czech Academy of Sciences Publication Activity Database

    Proft, Juliane; Weiss, Norbert

    2015-01-01

    Roč. 42, č. 8 (2015), s. 2496-2498 ISSN 0953-816X R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : rat basal forebrain * age * neurons Subject RIV: CE - Biochemistry Impact factor: 2.975, year: 2015

  9. {sup 26}Al incorporation into the brain of rat fetuses through the placental barrier and subsequent metabolism in postnatal development

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, Sakae, E-mail: yumoto-s@viola.ocn.ne.j [Yumoto Institute of Neurology, Kawadacho 6-11, Shinjuku-ku, Tokyo 162-0054 (Japan); Nagai, Hisao [College of Humanities and Sciences, Nihon University, Tokyo (Japan); Kakimi, Shigeo [Faculty of Medicine, Nihon University, Tokyo (Japan); Matsuzaki, Hiroyuki [School of Engineering, The University of Tokyo, Tokyo (Japan)

    2010-04-15

    Aluminium (Al) inhibits prenatal and postnatal development of the brain. We used {sup 26}Al as a tracer, and measured {sup 26}Al incorporation into rat fetuses through the placental barrier by accelerator mass spectrometry (AMS). From day 15 to day 18 of gestation, {sup 26}AlCl{sub 3} was subcutaneously injected into pregnant rats. Considerable amounts of {sup 26}Al were measured in the tissues of newborn rats immediately after birth. The amounts of {sup 26}Al in the liver and kidneys decreased rapidly during postnatal development. However, approximately 15% of {sup 26}Al incorporated into the brain of fetuses remained in the brain of adult rats 730 days after birth.

  10. The importance of dietary control in the development of a peanut allergy model in Brown Norway rats

    NARCIS (Netherlands)

    Jonge, J.D. de; Knippels, L.M.J.; Ezendam, J.; Odink, J.; Penninks, A.H.; Loveren, H. van

    2007-01-01

    This report describes the further development of a peanut allergy model in Brown Norway (BN) rats and in particular the importance of allergen-free breeding of the laboratory animals for the allergen to be used. For this purpose BN rats were bred for 3 generations on soy- and peanut-free feed since

  11. Spontaneous motor activity during the development and maintenance of diet-induced obesity in the rat.

    Science.gov (United States)

    Levin, B E

    1991-09-01

    More than 80% of most daily spontaneous activities (assessed in an Omnitech activity monitor) occurred during the last hour of light and 12 h of the dark phase in 8 chow-fed male Sprague-Dawley rats. Thirty additional rats were, therefore, monitored over this 13-h period to assess the relationship of activity to the development and maintenance of diet-induced obesity (DIO) on a diet high in energy, fat and sucrose (CM diet). Nine of 20 rats became obese after 3 months on the CM diet, with 71% greater weight gain than 10 chow-fed controls. Eleven of 20 rats were diet resistant (DR), gaining the same amount of weight as chow-fed rats. Neither initial activity levels nor initial body weights on chow (Period I) differed significantly across retrospectively identified groups. After 3 months on CM diet or chow (Period II), as well as after an additional 3 months after CM diet-fed rats returned to chow (Period III), there were significant inverse correlations (r = -.606 to -.370) between body weight at the time of testing and various measures of movement in the horizontal plane. There was no relationship to dietary content nor consistent correlations of body weight or diet group to vertical movements, an indirect measure of ingestive behavior. Patterns of time spent in the vertical position were significantly different for DIO vs. DR rats in Period III, however. Thus, differences in food intake and metabolic efficiency, rather than differences in nocturnal activity, are probably responsible for the greater weight gain in DIO-prone rats placed on CM diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Effect of Marine Collagen Peptides on Physiological and Neurobehavioral Development of Male Rats with Perinatal Asphyxia

    Directory of Open Access Journals (Sweden)

    Linlin Xu

    2015-06-01

    Full Text Available Asphyxia during delivery produces long-term deficits in brain development. We investigated the neuroprotective effects of marine collagen peptides (MCPs, isolated from Chum Salmon skin by enzymatic hydrolysis, on male rats with perinatal asphyxia (PA. PA was performed by immersing rat fetuses with uterine horns removed from ready-to-deliver rats into a water bath for 15 min. Caesarean-delivered pups were used as controls. PA rats were intragastrically administered with 0.33 g/kg, 1.0 g/kg and 3.0 g/kg body weight MCPs from postnatal day 0 (PND 0 till the age of 90-days. Behavioral tests were carried out at PND21, PND 28 and PND 90. The results indicated that MCPs facilitated early body weight gain of the PA pups, however had little effects on early physiological development. Behavioral tests revealed that MCPs facilitated long-term learning and memory of the pups with PA through reducing oxidative damage and acetylcholinesterase (AChE activity in the brain, and increasing hippocampus phosphorylated cAMP-response element binding protein (p-CREB and brain derived neurotrophic factor (BDNF expression.

  13. Long-Term Effects of Chronic Oral Ritalin Administration on Cognitive and Neural Development in Adolescent Wistar Kyoto Rats

    Directory of Open Access Journals (Sweden)

    Jennifer L. Cornish

    2012-09-01

    Full Text Available The diagnosis of Attention Deficit Hyperactivity Disorder (ADHD often results in chronic treatment with psychostimulants such as methylphenidate (MPH, Ritalin®. With increases in misdiagnosis of ADHD, children may be inappropriately exposed to chronic psychostimulant treatment during development. The aim of this study was to assess the effect of chronic Ritalin treatment on cognitive and neural development in misdiagnosed “normal” (Wistar Kyoto, WKY rats and in Spontaneously Hypertensive Rats (SHR, a model of ADHD. Adolescent male animals were treated for four weeks with oral Ritalin® (2 × 2 mg/kg/day or distilled water (dH2O. The effect of chronic treatment on delayed reinforcement tasks (DRT and tyrosine hydroxylase immunoreactivity (TH-ir in the prefrontal cortex was assessed. Two weeks following chronic treatment, WKY rats previously exposed to MPH chose the delayed reinforcer significantly less than the dH2O treated controls in both the DRT and extinction task. MPH treatment did not significantly alter cognitive performance in the SHR. TH-ir in the infralimbic cortex was significantly altered by age and behavioural experience in WKY and SHR, however this effect was not evident in WKY rats treated with MPH. These results suggest that chronic treatment with MPH throughout adolescence in “normal” WKY rats increased impulsive choice and altered catecholamine development when compared to vehicle controls.

  14. Anticonvulsant action of two antagonists of NMDA receptors in developing rats

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel; Lojková, Denisa; Mikulecká, Anna

    2006-01-01

    Roč. 47, č. S4 (2006), s. 314-314 ISSN 0013-9580. [Annual Meeting of the American Epilepsy Society and Canadian League against Epilepsy. 01.12.2006-05.12.2006, San Diego, CA] R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : memantine * ifenprodil * developing rats Subject RIV: ED - Physiology

  15. [Approach to the relationship between the changes of the content of free zinc in hippocampus and ischemic neuronal damage].

    Science.gov (United States)

    Zhou, Zhu-Juan; Zheng, Jian; He, Ying

    2002-08-01

    To make approach to the relationship between the changes of free zinc and ischemic neuronal damage in hippocampus after forebrain ischemia/reperfusion. The models of forebrain ischemia/reperfusion were established in rats. The contents of free Zn2+ were measured by TSQ fluorescence method. The Zn2+ chelator (CaEDTA) was injected into lateral ventricles in order to evaluate the effect of free Zn2+ on ischemic neuronal damage. (1) Zn2+ fluorescence in the hilus of dentate gyrus, CA3 region and the stratum radiatum and stratum oriens of CA1 decreased slightly at forty-eight hours after reperfusion. From seventy-two hours to ninety-six hour after reperfusion, the decreased fluorescence gradually returned to the normal level, but some fluorescence dots were found in pyramidal neurons of CA1 and the hilus of dentate gyrus. Seven days after reperfusion, all the changes of the fluorescence almost recovered. (2) The cell membrane-impermeable Zn2+ chelator CaEDTA could reduce the intracellular concentration of free Zn2+ and reduced neuronal damage after forebrain ischemia/reperfusion. (1) The synaptic vesicle Zn2+ released and then translocated into postsynaptic neurons after forebrain ischemia/reperfusion and played a role in ischemic neuronal damage. (2) The cell membrane-impermeable chelator CaEDTA could provide neuroprotection.

  16. Effects of maternal separation on the neurobehavioral development of newborn Wistar rats.

    Science.gov (United States)

    Farkas, Jozsef; Reglodi, Dora; Gaszner, Balazs; Szogyi, Donat; Horvath, Gabor; Lubics, Andrea; Tamas, Andrea; Frank, Falko; Besirevic, Dario; Kiss, Peter

    2009-05-29

    Animal models of neonatal stress, like maternal separation, may provide important correlation with human stress-related disorders. Early maternal deprivation has been shown to cause several short- and long-term neurochemical and behavioral deficits. Little is known about the early neurobehavioral development after postnatal stress. The aim of the present study was to investigate the development of reflexes and motor coordination in male and female pups subjected to maternal deprivation. Pups were removed from their mothers from postnatal day 1-14, for 3h daily. Somatic development (weight gain, eye opening, ear unfolding, incisor eruption) and reflex development was tested during the first 3 weeks. The appearance of the following reflexes was investigated: crossed extensor, grasping, placing, gait, righting and sensory reflexes, and negative geotaxis. Timely performance of negative geotaxis, righting and gait were also tested daily during the first 3 weeks. Motor coordination and open-field tests were performed on postnatal weeks 3-5 (rotarod, elevated grid-walk, footfault, rope suspension, inclined board and walk initiation tests). The results revealed that a 3-h-long daily maternal separation did not lead to a marked delay or enhancement in reflex development and motor coordination. A subtle enhancement was observed in the appearance of hindlimb grasp and gait reflexes, and a better performance in footfault test in male rats suffering from maternal deprivation. In contrast, female maternally deprived (MD) rats displayed a slight delay in forelimb grasp and air righting reflex appearance, and surface righting performance. Open-field activity was not changed in maternally deprived rats. In summary, our present observations indicate that maternal deprivation does not induce drastic changes in early neurodevelopment, therefore, further research is needed to determine the onset of behavioral alterations in subject with maternal deprivation history. Gender differences

  17. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Saswati ePaul

    2015-04-01

    Full Text Available A substantial number of studies on basal forebrain cholinergic neurons (BFCN have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD, and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine, glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, which could help decipher disease states and propose leads for pharmacological intervention.

  18. Chronic Oral Capsaicin Exposure During Development Leads to Adult Rats with Reduced Taste Bud Volumes.

    Science.gov (United States)

    Omelian, Jacquelyn M; Samson, Kaeli K; Sollars, Suzanne I

    2016-09-01

    Cross-sensory interaction between gustatory and trigeminal nerves occurs in the anterior tongue. Surgical manipulations have demonstrated that the strength of this relationship varies across development. Capsaicin is a neurotoxin that affects fibers of the somatosensory lingual nerve surrounding taste buds, but not fibers of the gustatory chorda tympani nerve which synapse with taste receptor cells. Since capsaicin is commonly consumed by many species, including humans, experimental use of this neurotoxin provides a naturalistic perturbation of the lingual trigeminal system. Neonatal or adults rats consumed oral capsaicin for 40 days and we examined the cross-sensory effect on the morphology of taste buds across development. Rats received moderate doses of oral capsaicin, with chronic treatments occurring either before or after taste system maturation. Tongue morphology was examined either 2 or 50 days after treatment cessation. Edema, which has been previously suggested as a cause of changes in capsaicin-related gustatory function, was also assessed. Reductions in taste bud volume occurred 50 days, but not 2 days post-treatment for rats treated as neonates. Adult rats at either time post-treatment were unaffected. Edema was not found to occur with the 5 ppm concentration of capsaicin we used. Results further elucidate the cooperative relationship between these discrete sensory systems and highlight the developmentally mediated aspect of this interaction. Chronic exposure to even moderate levels of noxious stimuli during development has the ability to impact the orosensory environment, and these changes may not be evident until long after exposure has ceased.

  19. Effects of microinjection of scopolamine into the neostriatum of rats on performance of a food conditioned reflex at different levels of fixation.

    Science.gov (United States)

    Tikhonravov, D L; Shapovalova, K B; Dyubkacheva, T A

    1997-01-01

    Chronic experiments performed on 32 Sprague-Dawley rats using a movement-feeding operant reflex (Skinner box) model showed that microinjection of scopolamine into the neostriatum had effects on this reflex which depended on the stage of learning. In animals with weakly fixed reflexes (prior to reaching the stage of memory consolidation), bilateral microinjection of 0.3 microgram of scopolamine into the caudate nucleus completely inhibited the reflex for a prolonged period of time. When the operant habit was well fixed, bilateral microinjection of the same doses of scopolamine into the neostriatum had no effect on the reflex. These results suggest that the neostriatum cholinergic system is critically involved in forming the motor engram. The cholinergic system of the caudate nucleus either takes no part in realizing the well-fixed conditioned reflex movement response and/or other forebrain structures are involved in the reflex, compensating for the disturbance in neostriatal cholinergic function.

  20. Vascular and neuronal protection induced by the ocular administration of nerve growth factor in diabetic-induced rat encephalopathy.

    Science.gov (United States)

    Tirassa, Paola; Maccarone, Mattia; Florenzano, Fulvio; Cartolano, Sara; De Nicolò, Sara

    2013-05-01

    Based on our previous findings on the efficacy of ocular applied nerve growth factor as eye drops (oNGF) to act in brain and counteract neuronal damage, we hypothesized that oNGF treatment might revert neuronal atrophy occurring in diabetic brain also by controlling neurotrophin system changes. The major NGF brain target areas, such as the septum and the hippocampus, were used as an experimental paradigma to test this hypothesis. Bilateral oNGF treatment was performed twice a day for 2 weeks in full-blown streptozotocin-treated adult male rats. The forebrain distribution of cholinergic and endothelial cell markers and NGF receptors were studied by confocal microscopy. The septo-hippocampal content of NGF mature and precursor form and NGF receptors expression were also analyzed by Elisa and Western blot. oNGF treatment recovers the morphological alterations and the neuronal atrophy in septum and normalized the expression of mature and pro-NGF, as well as NGF receptors in the septum and hippocampus of diabetic rats. In addition, oNGF stimulated brain vascularization and up-regulated the TRKA receptor in vessel endothelium. Our findings confirm that reduced availability of mature NGF and NGF signaling impairment favors vascular and neuronal alterations in diabetic septo-hippocampal areas and corroborate the ability of oNGF to act as a neuroprotective agent in brain. © 2013 Blackwell Publishing Ltd.

  1. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    Science.gov (United States)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  2. Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development.

    Science.gov (United States)

    Bruno, Alessandra Nejar; Da Silva, Rosane Souza; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Barreto-chaves, Maria Luiza M; Sarkis, João José Freitas

    2003-11-01

    Here we investigate the possible effects of the hyperthyroidism on the hydrolysis of the ATP to adenosine in the synaptosomes of hippocampus, cerebral cortex and blood serum of rats in different developmental phases. Manifestations of hyperthyroidism include anxiety, nervousness, tachycardia, physical hyperactivity and weight loss amongst others. The thyroid hormones modulate a number of physiological functions in central nervous system, including development, function, expression of adenosine A(1) receptors and transport of neuromodulator adenosine. Thus, hyperthyroidism was induced in male Wistar rats (5-, 60-, 150- and 330-day old) by daily injections of L-thyroxine (T4) for 14 days. Nucleotide hydrolysis was decreased by about 14-52% in both hippocampus and cerebral cortex in 5 to 60-day-old rats. These changes were also observed in rat blood serum. In addition, in 11-month-old rats, inhibition of ADP and AMP hydrolysis persisted in the hippocampus, whereas, in cerebral cortex, an increase in AMP hydrolysis was detected. Thus, hyperthyroidism affects the extracellular nucleotides balance and adenosine production, interfering in neurotransmitter release, development and others physiological processes in different systems.

  3. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function.

  4. Glucose intolerance develops prior to increased adiposity and accelerated cessation of estrous cyclicity in female growth-restricted rats

    Science.gov (United States)

    Intapad, Suttira; Dasinger, John Henry; Brown, Andrew D.; Fahling, Joel M.; Esters, Joyee; Alexander, Barbara T.

    2015-01-01

    Background The incidence of metabolic disease increases in early menopause. Low birth weight influences the age at menopause. Thus, this study tested the hypothesis that intrauterine growth restriction programs early reproductive aging and impaired glucose homeostasis in female rats. Methods Estrous cyclicity, body composition, and glucose homeostasis were determined in female control and growth-restricted rats at 6 and 12 months of age; sex steroids at 12 months. Results Glucose intolerance was present at 6 months of age prior to cessation of estrous cyclicity and increased adiposity in female growth-restricted rats. However, female growth-restricted rats exhibited persistent estrus and a significant increase in adiposity, fasting glucose and testosterone at 12 months of age (Pgrowth-restricted rats (Pgrowth programmed glucose intolerance that developed prior to early estrous acyclicity; yet, fasting glucose levels were elevated in conjunction with increased adiposity, accelerated cessation of estrous cyclicity and a shift towards testosterone excess at 12 months of age in female growth-restricted rats. PMID:26854801

  5. Olanzapine-induced weight gain: lessons learned from developing rat models

    OpenAIRE

    van der Zwaal, E.M.

    2011-01-01

    Olanzapine is an effective and commonly prescribed antipsychotic drug, used for the treatment of schizophrenia and bipolar disorder. Unfortunately significant weight gain is a common side effect. In order to effectively address this side effect, it is crucial to gain insight into the underlying mechanisms. Therefore, this thesis describes the development of a number of rat models that were designed to determine the effects of olanzapine on different aspects of energy balance. In both short- a...

  6. Corticotropin-releasing Factor in the Rat Dorsal Raphe Nucleus Promotes Different Forms of Behavioral Flexibility Depending on Social Stress History.

    Science.gov (United States)

    Snyder, Kevin P; Hill-Smith, Tiffany E; Lucki, Irwin; Valentino, Rita J

    2015-10-01

    The stress-related neuropeptide, corticotropin-releasing factor (CRF) regulates the dorsal raphe nucleus-serotonin (DRN-5-HT) system during stress and this may underlie affective and cognitive dysfunctions that characterize stress-related psychiatric disorders. CRF acts on both CRF1 and CRF2 receptor subtypes in the DRN that exert opposing inhibitory and excitatory effects on DRN-5-HT neuronal activity and 5-HT forebrain release, respectively. The current study first assessed the cognitive effects of intra-DRN microinfusion of CRF or the selective CRF2 agonist, urocortin II in stress-naive rats on performance of an operant strategy set-shifting task that is mediated by the medial prefrontal cortex (mPFC). CRF (30 ng) facilitated strategy set-shifting performance, whereas higher doses of CRF and urocortin II that would interact with CRF2 were without effect, consistent with a CRF1-mediated action. This dose decreased 5-HT extracellular levels in the mPFC, further supporting a role for CRF1. The effects of CRF were then assessed in rats exposed to repeated social stress using the resident-intruder model. Repeated social stress shifted the CRF effect from facilitation of strategy set shifting to facilitation of reversal learning and this was most prominent in a subpopulation of rats that resist defeat. Notably, in this subpopulation of rats 5-HT neuronal responses to CRF have been demonstrated to shift from CRF1-mediated inhibition to CRF2-mediated excitation. Because 5-HT facilitates reversal learning, the present results suggest that stress-induced changes in the cellular effects of CRF in the DRN translate to changes in cognitive effects of CRF. Together, the results underscore the potential for stress history to shift cognitive processing through changes in CRF neurotransmission in the DRN and the association of this effect with coping strategy.

  7. Tissue-specific splicing pattern of fibronectin messenger RNA precursor during development and aging in rat

    OpenAIRE

    1991-01-01

    Fibronectin isoforms are generated by the alternative splicing of a primary transcript derived from a single gene. In rat at least three regions of the molecule are involved: EIIIA, EIIIB, and V. This study investigated the splicing patterns of these regions during development and aging, by means of ribonuclease protection analysis. Between fetal and adult rat, the extent of inclusion of the EIIIA and/or EIIIB region in fibronectin mRNA varied according to the type of tissue analyzed; but the...

  8. Evaluation of passive avoidance learning and spatial memory in rats exposed to low levels of lead during specific periods of early brain development.

    Science.gov (United States)

    Rao Barkur, Rajashekar; Bairy, Laxminarayana K

    2015-01-01

    Widespread use of heavy metal lead (Pb) for various commercial purposes has resulted in the environmental contamination caused by this metal. The studies have shown a definite relationship between low level lead exposure during early brain development and deficit in children's cognitive functions. This study investigated the passive avoidance learning and spatial learning in male rat pups exposed to lead through their mothers during specific periods of early brain development. Experimental male rats were divided into 5 groups: i) the normal control group (NC) (N = 12) consisted of rat offspring born to mothers who were given normal drinking water throughout gestation and lactation, ii) the pre-gestation lead exposed group (PG) (N = 12) consisted of rat offspring, mothers of these rats had been exposed to 0.2% lead acetate in the drinking water for 1 month before conception, iii) the gestation lead exposed group (G) (N = 12) contained rat offspring born to mothers who had been exposed to 0.2% lead acetate in the drinking water throughout gestation, iv) the lactation lead exposed group (L) (N = 12) had rat offspring, mothers of these rats exposed to 0.2% lead acetate in the drinking water throughout lactation and v) the gestation and lactation lead exposed group (GL) (N = 12) contained rat offspring, mothers of these rats were exposed to 0.2% lead acetate throughout gestation and lactation. The study found deficit in passive avoidance learning in the G, L and GL groups of rats. Impairment in spatial learning was found in the PG, G, L and GL groups of rats. Interestingly, the study found that gestation period only and lactation period only lead exposure was sufficient to cause deficit in learning and memory in rats. The extent of memory impairment in the L group of rats was comparable with the GL group of rats. So it can be said that postnatal period of brain development is more sensitive to neurotoxicity compared to prenatal exposure. This work is available in Open

  9. Role of major histocompatibility complex class II in the development of autoimmune type 1 diabetes and thyroiditis in rats

    Science.gov (United States)

    Yokoi, N; Hidaka, S; Tanabe, S; Ohya, M; Ishima, M; Takagi, Y; Masui, N; Seino, S

    2012-01-01

    Although the MHC class II ‘u' haplotype is strongly associated with type 1 diabetes (T1D) in rats, the role of MHC class II in the development of tissue-specific autoimmune diseases including T1D and autoimmune thyroiditis remains unclear. To clarify this, we produced a congenic strain carrying MHC class II ‘a' and ‘u' haplotypes on the Komeda diabetes-prone (KDP) genetic background. The u/u homozygous animals developed T1D similar to the original KDP rat; a/u heterozygous animals did develop T1D but with delayed onset and low frequency. In contrast, none of the a/a homozygous animals developed T1D; about half of the animals with a/u heterozygous or a/a homozygous genotypes showed autoimmune thyroiditis. To investigate the role of genetic background in the development of thyroiditis, we also produced a congenic strain carrying Cblb mutation of the KDP rat on the PVG.R23 genetic background (MHC class II ‘a' haplotype). The congenic rats with homozygous Cblb mutation showed autoimmune thyroiditis without T1D and slight to severe alopecia, a clinical symptom of hypothyroidism such as Hashimoto's thyroiditis. These data indicate that MHC class II is involved in the tissue-specific development of autoimmune diseases, including T1D and thyroiditis. PMID:21918539

  10. Postnatal development of rat pups is altered by prenatal methamphetamine exposure.

    Science.gov (United States)

    Slamberová, Romana; Pometlová, Marie; Charousová, Petra

    2006-01-01

    There are studies showing that drug abuse during pregnancy may have impairing effect on progeny of drug-abusing mothers. Methamphetamine (MA) is one of the most common illicit drugs throughout the world. The purpose of the present study was to assess the effect of prenatal MA exposure on postnatal development of rat pups before the time of separation from their mothers. Female rats were injected with MA (5 mg/kg daily) for the duration of their pregnancy. Pups were then tested throughout the lactation period. They were weighed daily and the ano-genital distance was measured on postnatal day (PD) 1. Development of postural motor reaction was tested by righting reflex on surface between PD 1 and 12, and righting reflex in mid-air after PD 12 until successfully accomplished. On PD 15 homing test was examined as a test of pup acute learning. On PD 23 sensory-motor coordination was examined using the rotarod and bar-holding tests. Additionally, the markers of physical maturation, such as eye opening, testes descent in males and vaginal opening in females were also recorded. The birth weight in prenatally MA-exposed pups was lower than in controls or saline-exposed pups regardless of sex. There were no changes induced by prenatal MA exposure in weight gain or in sexual maturation. In righting reflexes, we demonstrated that pups exposed prenatally to MA were slower in righting reflex on surface and that they accomplished the test of righting reflex in mid-air later than controls or saline-exposed pups. The performance of homing test was not affected by prenatal drug exposure. The sensory-motor coordination was impaired in prenatally MA-exposed pups when testing in the rotarod test. Also, the number of falls in the bar-holding test was higher in MA-exposed pups than in controls. There were no sex differences in any measures. Thus, the present study demonstrated that prenatal MA exposure impairs development of postural motor movements of rat pups during the first 3 weeks

  11. Vitamin D-dependent rat renal calcium-binding protein: development of a radioimmunoassay, tissue distribution, and immunologic identification

    International Nuclear Information System (INIS)

    Sonnenberg, J.; Pansini, A.R.; Christakos, S.

    1984-01-01

    A sensitive double antibody RIA has been developed for the 28,000 mol wt rat renal vitamin D-dependent calcium-binding protein. Using this assay, concentrations of calcium-binding protein (CaBP) as low as 30 ng can be measured. The assay is precise (intraassay variability, 5.0%) and reproductible (interassay variability, 8.2%). Measurements of renal CaBP by RIA showed a good correlation with measurements of CaBP by the chelex resin assay and by polyacrylamide gel analysis by densitometric tracing using a purified CaBP marker. The concentration of CaBP in the vitamin D-replete rat kidney is 7.3 +/- 1.0 (mean +/- SEM) micrograms/mg protein. In vitamin D-deficient rats the level of renal CaBP is 2.6 +/- 0.3 micrograms/mg protein. Tissue distribution of immunoreactive rat renal CaBP showed the highest concentration of CaBP in the rat cerebellum (38.3 +/- 5.1 micrograms/mg protein). Lower concentrations of immunoreactive CaBP were detected in several other rat tissues. No immunoreactive CaBP was detected in rat or human serum. In necropsy human kidney and cerebellum, high levels of immunoreactive CaBP were also detected (1.5 +/- 0.1 and 27.3 +/- 2.1 micrograms/mg protein, respectively). When extracts of rat kidney and brain and human cerebellum and kidney were assayed at several dilutions, immunodisplacement curves parallel to that of pure renal CaBP were observed, indicating immunochemical similarity. Fractionation of extracts of rat cerebellum, human kidney, and human cerebellum on Sephadex G-100 revealed immunoreactivity and calcium-binding activity in the 28,000 mol wt region similar to rat kidney

  12. Diets containing salmon fillet delay development of high blood pressure and hyperfusion damage in kidneys in obese Zucker fa/fa rats.

    Science.gov (United States)

    Vikøren, Linn A; Drotningsvik, Aslaug; Mwakimonga, Angela; Leh, Sabine; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2018-04-01

    Hypertension is the leading risk factor for cardiovascular and chronic renal diseases, affecting more than 1 billion people. Fish intake is inversely correlated with the prevalence of hypertension in several, but not all, studies, and intake of fish oil and fish proteins has shown promising potential to delay development of high blood pressure in rats. The effects of baked and raw salmon fillet intake on blood pressure and renal function were investigated in obese Zucker fa/fa rats, which spontaneously develop hypertension with proteinuria and renal failure. Rats were fed diets containing baked or raw salmon fillet in an amount corresponding to 25% of total protein from salmon and 75% of protein from casein, or casein as the sole protein source (control group) for 4 weeks. Results show lower blood pressure and lower urine concentrations of albumin and cystatin C (relative to creatinine) in salmon diet groups when compared to control group. Morphological examinations revealed less prominent hyperfusion damage in podocytes from rats fed diets containing baked or raw salmon when compared to control rats. In conclusion, diets containing baked or raw salmon fillet delayed the development of hypertension and protected against podocyte damage in obese Zucker fa/fa rats. Copyright © 2018 American Heart Association. Published by Elsevier Inc. All rights reserved.

  13. Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.

    Science.gov (United States)

    Daicho, Takuya; Yagi, Tatsuya; Abe, Yohei; Ohara, Meiko; Marunouchi, Tetsuro; Takeo, Satoshi; Tanonaka, Kouichi

    2009-09-01

    The present study was undertaken to explore the possible involvement of alterations in the mitochondrial energy-producing ability in the development of the right ventricular failure in monocrotaline-administered rats. The rats at the 6th week after subcutaneous injection of 60 mg/kg monocrotaline revealed marked myocardial hypertrophy and fibrosis, that is, severe cardiac remodeling. The time-course study on the cardiac hemodynamics of the monocrotaline-administered rat by the cannula and echocardiographic methods showed a reduction in cardiac double product, a decrease in cardiac output index, and an increase in the right ventricular Tei index, suggesting that the right ventricular failure was induced at the 6th week after monocrotaline administration in rats. The mitochondrial oxygen consumption rate of the right ventricular muscle isolated from the monocrotaline-administered animal was decreased, which was associated with a reduction in myocardial high-energy phosphates. Furthermore, the decrease in mitochondrial oxygen consumption rate was inversely related to the increase in the right ventricular Tei index of the monocrotaline-administered rats. These results suggest that impairment of the mitochondrial energy-producing ability is involved in the development of the right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.

  14. Analysis of NR3A receptor subunits in human native NMDA receptors

    DEFF Research Database (Denmark)

    Nilsson, Anna; Eriksson, Maria; Muly, E Chris

    2007-01-01

    NR3A, representing the third class of NMDA receptor subunits, was first studied in rats, demonstrating ubiquitous expression in the developing central nervous system (CNS), but in the adult mainly expressed in spinal cord and some forebrain nuclei. Subsequent studies showed that rodent and non-human...... primate NR3A expression differs. We have studied the distribution of NR3A in the human CNS and show a widespread distribution of NR3A protein in adult human brain. NR3A mRNA and protein were found in all regions of the cerebral cortex, and also in the subcortical forebrain, midbrain and hindbrain. Only...... very low levels of NR3A mRNA and protein could be detected in homogenized adult human spinal cord, and in situ hybridization showed that expression was limited to ventral motoneurons. We found that NR3A is associated with NR1, NR2A and NR2B in adult human CNS, suggesting the existence of native NR1-NR2...

  15. Effects of combined exposure to anti-androgens on development and sexual dimorphic behaviour in rats

    DEFF Research Database (Denmark)

    Christiansen, Sofie

    Summary Background: Androgens are key regulators of male sexual differentiation during the in utero and early postnatal development. Exposure to endocrine disrupting chemicals (EDCs) that counteract androgen action at some stage in these periods can permanently demasculinise male foetuses and lead......?  Is sexually dimorphic behaviour in rats affected at lower dose levels of anti-androgens and thereby a more sensitive endpoint than morphological effects on the male external reproductive organs? The thesis is based on the results of in vivo studies where mated female Wistar rats were exposed to anti......-androgens either alone or in mixtures during pregnancy and lactation. The endpoints examined for anti-androgenic effects in the offspring were: Anogenital distance (AGD), nipple retention (NR), and external (morphological) malformations in pups and sexually mature male rats. Furthermore, the effects of the anti...

  16. Effect of hypothyroidism on ovarian follicular development, granulosa cell proliferation and peripheral hormone levels in the prepubertal rat

    NARCIS (Netherlands)

    Dijkstra, G.; de rooij, D. G.; de Jong, F. H.; van den Hurk, R.

    1996-01-01

    The aim of this study was to examine the effects of prepubertal hypothyroidism on ovarian development in rats. Therefore, from birth up to day 40 postpartum, rats were given 6-propyl-2-thiouracil (PTU) via the drinking water of mothers and pups. At ages ranging from 12 to 40 days, ovarian weights

  17. Mechanisms of dendritic spine remodeling in a rat model of traumatic brain injury.

    Science.gov (United States)

    Campbell, John N; Low, Brian; Kurz, Jonathan E; Patel, Sagar S; Young, Matt T; Churn, Severn B

    2012-01-20

    Traumatic brain injury (TBI), a leading cause of death and disability in the United States, causes potentially preventable damage in part through the dysregulation of neural calcium levels. Calcium dysregulation could affect the activity of the calcium-sensitive phosphatase calcineurin (CaN), with serious implications for neural function. The present study used both an in vitro enzymatic assay and Western blot analyses to characterize the effects of lateral fluid percussion injury on CaN activity and CaN-dependent signaling in the rat forebrain. TBI resulted in an acute alteration of CaN phosphatase activity and long-lasting alterations of its downstream effector, cofilin, an actin-depolymerizing protein. These changes occurred bilaterally in the neocortex and hippocampus, appeared to persist for hours after injury, and coincided with synapse degeneration, as suggested by a loss of the excitatory post-synaptic protein PSD-95. Interestingly, the effect of TBI on cofilin in some brain regions was blocked by a single bolus of the CaN inhibitor FK506, given 1 h post-TBI. Overall, these findings suggest a loss of synapse stability in both hemispheres of the laterally-injured brain, and offer evidence for region-specific, CaN-dependent mechanisms.

  18. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  19. Slice cultures of the imprinting-relevant forebrain area MNH of the domestic chick: quantitative characterization of neuronal morphology.

    Science.gov (United States)

    Hofmann, H; Braun, K

    1995-05-26

    The persistence of morphological features of neurons in slice cultures of the imprinting-relevant forebrain area MNH (mediorostral neostriatum and hyperstriatum ventrale) of the domestic chick was analysed at 7, 14, 21 and 28 days in vitro. After having been explanted and kept in culture the neurons in vitro have larger soma areas, longer and more extensively branched dendritic trees and lower spine frequencies compared to the neurons in vivo. During the analyzed culturing period, the parameters soma area, total and mean dendritic length, number of dendrites, number of dendritic nodes per dendrite and per neuron as well as the spine densities in different dendritic segments showed no significant differences between early and late periods. Highly correlated in every age group were the total dendritic length and the number of dendritic nodes per neuron, indicating regular ramification during dendritic growth. Since these morphological parameters remain stable during the first 4 weeks in vitro, this culture system may provide a suitable model to investigate experimentally induced morphological changes.

  20. Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory.

    Science.gov (United States)

    Chen, Adele P; Ohno, Masuo; Giese, K Peter; Kühn, Ralf; Chen, Rachel L; Silva, Alcino J

    2006-01-01

    Raf kinases are downstream effectors of Ras and upstream activators of the MEK-ERK cascade. Ras and MEK-ERK signaling play roles in learning and memory (L&M) and neural plasticity, but the roles of Raf kinases in L&M and plasticity are unclear. Among Raf isoforms, B-raf is preferentially expressed in the brain. To determine whether B-raf has a role in synaptic plasticity and L&M, we used the Cre-LoxP gene targeting system to derive forebrain excitatory neuron B-raf knockout mice. This conditional knockout resulted in deficits in ERK activation and hippocampal long-term potentiation (LTP) and impairments in hippocampus-dependent L&M, including spatial learning and contextual discrimination. Despite the widespread expression of B-raf, this mutation did not disrupt other forms of L&M, such as cued fear conditioning and conditioned taste aversion. Our findings demonstrate that B-raf plays a role in hippocampal ERK activation, synaptic plasticity, and L&M.

  1. The effect of exposure of rats during prenatal period to radiation spreading from mobile phones on renal development.

    Science.gov (United States)

    Bedir, Recep; Tumkaya, Levent; Şehitoğlu, İbrahim; Kalkan, Yıldıray; Yilmaz, Adnan; Şahin, Osman Zikrullah

    2015-03-01

    The aim of this study was to investigate the effects of exposure to a 900-MHz electromagnetic field (EMF) produced by mobile phones on the renal development of prenatal rats. Histopathological changes and apoptosis in the kidneys, together with levels of urea, creatinine and electrolyte in serum were determined. A total of 14 Sprague-Dawley rats were studied. Pregnant rats were divided into two equal groups: a control group and an EMF-exposed group. The study group was exposed to 900-MHz of EMF during the first 20 days of pregnancy, while the control group was unexposed to EMF. Sections obtained from paraffin blocks were stained for caspase-3 by immunohistochemistry, hematoxylin-eosin and Masson's trichrome. Mild congestion and tubular defects, and dilatation of Bowman's capsule were observed in the kidney tissues of rats in the exposed group. Apoptosis was evaluated using anti-caspase-3; stronger positive staining was observed in the renal tubular cells in the study group than those of the control group. Although there was a significant difference between the study and control groups in terms of K+ level (p0.05). Our study shows that the electromagnetic waves propagated from mobile phones have harmful effects on the renal development of prenatal rats.

  2. Rats with steroid-induced polycystic ovaries develop hypertension and increased sympathetic nervous system activity

    Directory of Open Access Journals (Sweden)

    Ploj Karolina

    2005-09-01

    Full Text Available Abstract Background Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction, abdominal obesity, hyperandrogenism, hypertension, and insulin resistance. Methods Our objectives in this study were (1 to estimate sympathetic-adrenal medullary (SAM activity by measuring mean systolic blood pressure (MSAP in rats with estradiol valerate (EV-induced PCO; (2 to estimate alpha1a and alpha2a adrenoceptor expression in a brain area thought to mediate central effects on MSAP regulation and in the adrenal medulla; (3 to assess hypothalamic-pituitary-adrenal (HPA axis regulation by measuring adrenocorticotropic hormone (ACTH and corticosterone (CORT levels in response to novel-environment stress; and (4 to measure abdominal obesity, sex steroids, and insulin sensitivity. Results The PCO rats had significantly higher MSAP than controls, higher levels of alpha1a adrenoceptor mRNA in the hypothalamic paraventricular nucleus (PVN, and lower levels of alpha2a adrenoceptor mRNA in the PVN and adrenal medulla. After exposure to stress, PCO rats had higher ACTH and CORT levels. Plasma testosterone concentrations were lower in PCO rats, and no differences in insulin sensitivity or in the weight of intraabdominal fat depots were found. Conclusion Thus, rats with EV-induced PCO develop hypertension and increased sympathetic and HPA-axis activity without reduced insulin sensitivity, obesity, or hyperandrogenism. These findings may have implications for mechanisms underlying hypertension in PCOS.

  3. Development of telmisartan in the therapy of spinal cord injury: pre-clinical study in rats

    Directory of Open Access Journals (Sweden)

    Lin CM

    2015-08-01

    Full Text Available Chien-Min Lin,1,* Jo-Ting Tsai,2,* Chen Kuei Chang,1 Juei-Tang Cheng,3 Jia-Wei Lin11Department of Neurosurgery, 2Department of Radiation Oncology, Shuang Ho Hospital-Taipei Medical University, 3Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan City, Taiwan*These authors contributed equally to this workBackground: Decrease of peroxisome proliferator-activated receptors-δ (PPARδ expression has been observed after spinal cord injury (SCI. Increase of PPARδ may improve the damage in SCI. Telmisartan, the antihypertensive agent, has been mentioned to increase the expression of PPARδ. Thus, we are going to screen the effectiveness of telmisartan in SCI for the development of it in clinical application.Methods: In the present study, we used compressive SCI in rats. Telmisartan was then used to evaluate the influence in rats after SCI. Change in PPARδ expression was identified by Western blots. Also, behavioral tests were performed to check the recovery of damage.Results: Recovery of damage from SCI was observed in telmisartan-treated rats. Additionally, this action of telmisartan was inhibited by GSK0660 at the dose sufficient to block PPARδ. However, metformin at the dose enough to activate adenosine monophosphate-activated protein kinase failed to produce similar action as telmisartan. Thus, mediation of adenosine monophosphate-activated protein kinase in this action of telmisartan can be rule out. Moreover, telmisartan reversed the expressions of PPARδ in rats with SCI.Conclusion: The obtained data suggest that telmisartan can improve the damage of SCI in rats through an increase in PPARδ expression. Thus, telmisartan is useful to be developed as an agent in the therapy of SCI.Keywords: PPARδ, AMPK, spinal cord injury, angiotensin receptor blocker, metformin

  4. ALLOPURINOL DOES NOT DECREASE BLOOD PRESSURE OR PREVENT THE DEVELOPMENT OF HYPERTENSION IN THE DOCA-SALT RAT MODEL

    Science.gov (United States)

    Szasz, Theodora; Linder, A. Elizabeth; Davis, Robert P.; Burnett, Robert; Fink, Gregory D.; Watts, Stephanie W.

    2010-01-01

    Reactive oxygen species (ROS) play an important role in the pathogenesis of hypertension, disease in which ROS levels and markers of oxidative stress are increased. Xanthine oxidase (XO) is a ROS-producing enzyme the activity of which may increase during hypertension. Studies on XO inhibition effects on BP have yielded controversial results. We hypothesized that XO inhibition would decrease BP or attenuate the development of DOCA-salt hypertension. We administered the XO inhibitor, allopurinol (50 mg/kg/day, orally) or its vehicle to rats during the established or development stages of DOCA-salt hypertension. We validated XO inhibition by HPLC measurements of XO metabolites in urine, serum and tissues demonstrating decrease in products, increase in substrates and detection of the active metabolite of allopurinol, oxypurinol. We monitored BP continuously via radiotelemetry and performed gross evaluations of target organs of hypertension. Allopurinol treatment did not impact the course of DOCA-salt hypertension, regardless of the timing of administration. Aside from a significant decrease in pulse pressure in allopurinol-treated rats, no positive differences were observed between the allopurinol and the vehicle-treated rats. We conclude that XO does not play an important role in the development or maintenance of hypertension in the rat DOCA-salt hypertension model. PMID:20881613

  5. Physical and behavioral development in rats after late prenatal exposure to diazepam.

    Science.gov (United States)

    Lall, S B; Sahoo, R N

    1990-01-01

    The effect of late prenatal exposure to diazepam (DZP) on physical and behavioral development of rat pups was investigated. Prenatal exposure to DZP (20 mg/kg, sc, in last week of pregnancy) did not alter litter size and no gross malformations were noted at birth. Body weight at birth and subsequent weight gain was significantly less in these animals. The development of reflexes and neuromuscular maturation was normal. Open field locomotor activity and rearing scores were significantly decreased. Test of social play in juvenile rats revealed normal pattern of sexual dimorphism with increased masculinized behavior. Acquisition and retention of passive avoidance task was not affected by DZP exposure, however, retention of brightness discrimination task was significantly decreased. The hypnotic effect of a challenge dose of DZP and convulsive effect of pentylene tetrazole remained unaltered. Open field activity test in adult animals revealed increased ambulation. Probe dose of amphetamine in these animals caused paradoxical decrease in activity. It is concluded that exposure to high dose of DZP during late prenatal period may not manifest in physical or neuromuscular impairment during early development period, except for weight loss, however, it may have long term effects on behavior becoming manifest in adolescence and at maturity.

  6. Early development influences ontogeny of personality types in young laboratory rats.

    Science.gov (United States)

    Rödel, Heiko G; Meyer, Susann

    2011-09-01

    Features of an individual's early development are frequently reported to alter the postnatal ontogeny in litter-bearing mammals with respect to various physiological parameters. We hypothesized that such effects might also apply to the ontogeny of personality types. On the one hand, litter size effects by means of more contacts with littermates, might lead to the development of more offensive types. On the other hand, smaller and less developed young from larger litters might be less offensive due to their lower physical capabilities to deal with challenging situations. We studied these contrasting hypotheses in young rats, which we tested in a battery of emotionality tests. There were clear indications for the existence of distinct behavioral types by means of consistencies in behavioral responses within and across contexts. Based on these responses, we calculated three new variables by PCA, which we interpreted to mainly reflect boldness, exploration, and anxiety. Overall, our results strongly suggest that the early development alters the ontogeny of personality types, with heavier individuals being bolder and more explorative. Furthermore, body mass and litter size influenced the changes in the behavioral responses in successive tests, further supporting the importance of the litter size-dependent body mass for the ontogeny of personalities. Anxiety also depended on litter size, however, in a nonlinear way. Animals born to litters of small or large sizes had higher scores, whereas individuals from medium-sized litters were less anxious. This optimum curve indicates that opposing effects of litter size are involved in shaping personalities in young rats. Copyright © 2011 Wiley Periodicals, Inc.

  7. Effects of metabotropic glutamate receptor 5 antagonist MPEP on learning in developing rats

    Czech Academy of Sciences Publication Activity Database

    Mikulecká, Anna; Mareš, Pavel

    2007-01-01

    Roč. 18, Suppl. 1 (2007), S48-S48 ISSN 0955-8810. [Biennial Meeting of the European Behavioural Pharmacology Society /12./. 31.08.2007-03.09.2007, Tübingen] Institutional research plan: CEZ:AV0Z50110509 Keywords : MPEP * developing rats * behavioral parameters Subject RIV: ED - Physiology

  8. Juvenile female rats, but not male rats, show renewal, reinstatement, and spontaneous recovery following extinction of conditioned fear.

    Science.gov (United States)

    Park, Chun Hui J; Ganella, Despina E; Kim, Jee Hyun

    2017-12-01

    Anxiety disorders emerge early, and girls are significantly more likely to develop anxiety compared to boys. However, sex differences in fear during development are poorly understood. Therefore, we investigated juvenile male and female rats in the relapse behaviors following extinction of conditioned fear. In all experiments, 18-d-old rats first received three white-noise-footshock pairings on day 1. On day 2, extinction involved 60 white-noise alone trials. In experiment 1, we examined renewal by testing the rats in either the same or different context as extinction on day 3. Male rats did not show renewal, however, female rats showed renewal. Experiment 2 investigated reinstatement by giving rats either a mild reminder footshock or context exposure on day 3. When tested the next day, male rats did not show reinstatement, whereas female rats showed reinstatement. Experiment 3 investigated spontaneous recovery by testing the rats either 1 or 5 d following extinction. Male rats did not show any spontaneous recovery whereas female rats did. Taken together, fear regulation appear to be different in males versus females from early in development, which may explain why girls are more prone to suffer from anxiety disorders compared to boys. © 2017 Park et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Tartrazine and the developing nervous system of rats.

    Science.gov (United States)

    Sobotka, T J; Brodie, R E; Spaid, S L

    1977-05-01

    Rat dams were exposed to the artificial food color tartrazine (FD&C Yellow no. 5) at dietary levels of 0, 1, and 2% during gestation and lactation. The experimental offspring were continued on the same diets for approximately 3 months after weaning. No adverse physical or behavioral effects were noted in the dams. Fetal development and postnatal viability of the offspring were also normal. The only effect on postnatal development of the central nervous system (CNS) was a small transient change in neuromotor clinging ability of female offspring. The limited effect of tartrazine on the CNS was further evidenced by the facts that (1) the neurobehavioral profiles of the experimental weanlings revealed no significant abnormalities, and (2) morphochemical analysis of brain tissue, as well as brain weights, revealed no abnormalities. Tartrazine did appear to exert more general signs of toxicity in the offspring--namely, depressed body weight, an apparent reduction in thymus weight, and a slight elevation of red blood cells and hemoglobin.

  10. The potential of cell sheet technique on the development of hepatocellular carcinoma in rat models.

    Directory of Open Access Journals (Sweden)

    Alaa T Alshareeda

    Full Text Available Hepatocellular carcinoma (HCC is considered the 3rd leading cause of death by cancer worldwide with the majority of patients were diagnosed in the late stages. Currently, there is no effective therapy. The selection of an animal model that mimics human cancer is essential for the identification of prognostic/predictive markers, candidate genes underlying cancer induction and the examination of factors that may influence the response of cancers to therapeutic agents and regimens. In this study, we developed a HCC nude rat models using cell sheet and examined the effect of human stromal cells (SCs on the development of the HCC model and on different liver parameters such as albumin and urea.Transplanted cell sheet for HCC rat models was fabricated using thermo-responsive culture dishes. The effect of human umbilical cord mesenchymal stromal cells (UC-MSCs and human bone marrow mesenchymal stromal cells (BM-MSCs on the developed tumour was tested. Furthermore, development of tumour and detection of the liver parameter was studied. Additionally, angiogenesis assay was performed using Matrigel.HepG2 cells requires five days to form a complete cell sheet while HepG2 co-cultured with UC-MSCs or BM-MSCs took only three days. The tumour developed within 4 weeks after transplantation of the HCC sheet on the liver of nude rats. Both UC-MSCs and BM-MSCs improved the secretion of liver parameters by increasing the secretion of albumin and urea. Comparatively, the UC-MSCs were more effective than BM-MSCs, but unlike BM-MSCs, UC-MSCs prevented liver tumour formation and the tube formation of HCC.Since this is a novel study to induce liver tumour in rats using hepatocellular carcinoma sheet and stromal cells, the data obtained suggest that cell sheet is a fast and easy technique to develop HCC models as well as UC-MSCs have therapeutic potential for liver diseases. Additionally, the data procured indicates that stromal cells enhanced the fabrication of HepG2

  11. IPRODIONE DELAYS MALE RAT PUBERTAL DEVELOPMENT, REDUCING SERUM TESTOSTERONE AND EX VIVO TESTOSTERONE PRODUCTION

    Science.gov (United States)

    Iprodione (IPRO) is a dichlorophenyl dicarboximide fungicide similar to the androgen receptor (AR) antagonist vinclozolin. The current studies were designed to determine if IPRO would delay male rat pubertal development like vinclozolin and to identify the mechanism(s) of action...

  12. Oxcarbazepine causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

    Science.gov (United States)

    Song, Y; Zhong, M; Cai, F-C

    2018-01-01

    Anti-epileptic drugs (AEDs) are the main methods for treatment of neonatal seizures; however, a few AEDs may cause developing brain damage of neonate. This study aims to investigate effects of oxcarbazepine (OXC) on developing brain damage of neonatal rats. Both of neonatal and adult rats were divided into 6 groups, including Control, OXC 187.5 mg/kg, OXC 281.25 mg/kg, OXC 375 mg/kg group, LEV and PHT group. Body weight and brain weight were evaluated. Hematoxylin and eosin (HE) and Nissl staining were used to observe neurocyte morphology and Nissl bodies, respectively. Apoptosis was examined using TUNEL assay, and caspase 8 activity was evaluated using spectrophotometer method. Cytochrome C-release was evaluated using flow cytometry. Western blot was used to examine Bax and Bcl-2 expression. OXC 375 mg/kg treatment significantly decreased brain weight compared to Control group in neonatal rats (P5 rats) (pOxcarbazepine at a concentration of 281.25 mg/kg or more causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

  13. Zic-Proteins Are Repressors of Dopaminergic Forebrain Fate in Mice and C. elegans.

    Science.gov (United States)

    Tiveron, Marie-Catherine; Beclin, Christophe; Murgan, Sabrina; Wild, Stefan; Angelova, Alexandra; Marc, Julie; Coré, Nathalie; de Chevigny, Antoine; Herrera, Eloisa; Bosio, Andreas; Bertrand, Vincent; Cremer, Harold

    2017-11-01

    In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegans SIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species. Copyright © 2017 the authors 0270-6474/17/3710611-13$15.00/0.

  14. Atrophy and structural covariance of the cholinergic basal forebrain in primary progressive aphasia.

    Science.gov (United States)

    Teipel, Stefan; Raiser, Theresa; Riedl, Lina; Riederer, Isabelle; Schroeter, Matthias L; Bisenius, Sandrine; Schneider, Anja; Kornhuber, Johannes; Fliessbach, Klaus; Spottke, Annika; Grothe, Michel J; Prudlo, Johannes; Kassubek, Jan; Ludolph, Albert; Landwehrmeyer, Bernhard; Straub, Sarah; Otto, Markus; Danek, Adrian

    2016-10-01

    Primary progressive aphasia (PPA) is characterized by profound destruction of cortical language areas. Anatomical studies suggest an involvement of cholinergic basal forebrain (BF) in PPA syndromes, particularly in the area of the nucleus subputaminalis (NSP). Here we aimed to determine the pattern of atrophy and structural covariance as a proxy of structural connectivity of BF nuclei in PPA variants. We studied 62 prospectively recruited cases with the clinical diagnosis of PPA and 31 healthy older control participants from the cohort study of the German consortium for frontotemporal lobar degeneration (FTLD). We determined cortical and BF atrophy based on high-resolution magnetic resonance imaging (MRI) scans. Patterns of structural covariance of BF with cortical regions were determined using voxel-based partial least square analysis. We found significant atrophy of total BF and BF subregions in PPA patients compared with controls [F(1, 82) = 20.2, p covariance analysis in healthy controls revealed associations of the BF nuclei, particularly the NSP, with left hemispheric predominant prefrontal, lateral temporal, and parietal cortical areas, including Broca's speech area (p covariance of the BF nuclei mostly with right but not with left hemispheric cortical areas (p covariance of the BF with left hemispheric cortical areas in healthy aging towards right hemispheric cortical areas in PPA, possibly reflecting a consequence of the profound and early destruction of cortical language areas in PPA. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Effects of chronic treatment with valproate and oxcarbazepine on testicular development in rats.

    Science.gov (United States)

    Cansu, Ali; Ekinci, Ozgür; Serdaroglu, Ayse; Gürgen, Seren Gulsen; Ekinci, Ozalp; Erdogan, Deniz; Coskun, Zafer Kutay; Tunc, Lutfi

    2011-04-01

    The aim of this study was to examine the potential effects of valproate (VPA) and oxcarbazepine (OXC) on testicular development in rats. Forty-two Wistar rats were randomly divided into three groups of 14 rats each. Each group received the following via gavage over 90 days: group 1, tap water (control group); group 2, VPA (300mg/kg/day); group 3, OXC (100mg/kg/day). After sacrifice, body, testicular and epididymidis weights were measured. Testes were sampled, fixed and processed, and quantitative morphometric analysis of Sertoli cells, spermatocytes and spermatids was performed in stages II, V and XII by histopathological examination. Immunohistochemical staining was performed to transform growth factor beta 1 (TGF-β1) and p53, and the apoptotic index was assessed using the TUNEL method. Testis and relative testis weights were significantly lower in the VPA group compared to the control group (p0.05). Apoptotic cell counts and p53 immunoreaction were significantly high and TGF-β1 expression was significantly lower in the VPA group compared to that of the control group (p0.05). Our results show that VPA treatment from prepuberty to adulthood significantly negatively affects spermatogenesis, not only by reducing testicular weight, but also by increasing apoptotic death and p53 and decreasing TGF-β1 activation. OXC has a minimal side effect on testicular development. Copyright © 2010 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  16. Effects of prenatal exposure to toluene on postnatal development and behavior in rats

    DEFF Research Database (Denmark)

    Hougaard, K. S.; Hass, Ulla; Lund, S. P.

    1999-01-01

    Development and neurobehavioral effects of prenatal exposure to toluene (CAS 108-88-3) were studied after exposing pregnant rats (Mol:WIST) to 1800 ppm of the solvent for 6 h daily on days 7-20 of gestation. Body weights of exposed offspring were lower until day 10 after parturition. Neurobehavio...

  17. Coupling of the Functional Stability of Rat Myocardium and Activity of Lipid Peroxidation in Combined Development of Postinfarction Remodeling and Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    S. A. Afanasiev

    2016-01-01

    Full Text Available Coupling of the functional stability of rat myocardium and activity of lipid peroxidation processes in combined development of postinfarction remodeling and diabetes mellitus has been studied. The functional stability of myocardium was studied by means of the analysis of inotropic reaction on extrasystolic stimulus, the degree of left ventricular hypertrophy, and the size of scar zone. It was shown that in combined development of postinfarction cardiac remodeling of heart (PICR with diabetes mellitus (DM animal body weight decreased in less degree than in diabetic rats. Animals with combined pathology had no heart hypertrophy. The amplitude of extrasystolic contractions in rats with PICR combined with DM had no differences compared to the control group. In myocardium of rats with PICR combined with DM postextrasystolic potentiation was observed in contrast with the rats with PICR alone. The rats with combined pathology had the decreased value of TBA-active products. Thus, the results of study showed that induction of DM on the stage of the development of postinfarction remodeling increases adaptive ability of myocardium. It is manifested in inhibition of increase of LPO processes activity and maintaining of force-interval reactions of myocardium connected with calcium transport systems of sarcoplasmic reticulum of cardiomyocytes.

  18. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum.

    Science.gov (United States)

    Bergstrom, B P; Garris, P A

    1999-03-01

    The present study evaluated tripolar stimulating electrodes for eliciting dopamine release in the rat brain in vivo. Stimulating electrodes were placed either in the medial forebrain bundle or in the ventral mesencephalon associated with the ventral tegmental area and substantia nigra. The concentration of extracellular dopamine was monitored in dopamine terminal fields at 100-ms intervals using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. To characterize the stimulated area, recordings were collected in several striatal regions including the caudate putamen and the core and shell of the nucleus accumbens. The tripolar electrode was equally effective in stimulating dopamine release in medial and lateral regions of the striatum. In contrast, responses evoked by a bipolar electrode were typically greater in one mediolateral edge versus the other. The added size of the tripolar electrode did not appear to cause complications as signals were stable over the course of the experiment (3 h). Subsets of mesostriatal dopamine neurons could also be selectively activated using the tripolar electrode in excellent agreement with previously described topography. Taken together, these results suggested that the tripolar stimulating electrode is well suited for studying the regulation of midbrain dopamine neurons in vivo.

  19. Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life.

    Science.gov (United States)

    Ardais, Ana Paula; Rocha, Andréia S; Borges, Maurício Felisberto; Fioreze, Gabriela T; Sallaberry, Cássia; Mioranzza, Sabrina; Nunes, Fernanda; Pagnussat, Natália; Botton, Paulo Henrique S; Cunha, Rodrigo A; Porciúncula, Lisiane de Oliveira

    2016-04-15

    Caffeine is the psychostimulant most consumed worldwide. In moderate doses, it affords a beneficial effect in adults and upon aging, but has a deleterious effect during brain development. We now tested if caffeine consumption by rats (0.1, 0.3, 1.0 g/L in the drinking water, only during active cycle and weekdays) during adulthood could revert the potentially negative effects of caffeine during early life. Thus, we compared caffeine intake starting 15 days before mating and lasting either up to weaning (development) or up to adulthood, on behavior and synaptic proteins in male and female rats. Recognition memory was impaired only in female rats receiving caffeine (0.3 and 1.0 g/L) during development, coincident with increased proBDNF and unchanged BDNF levels in the hippocampus. Caffeine in both treatment regimens caused hyperlocomotion only in male rats, whereas anxiety-related behavior was attenuated in both sexes by caffeine (1.0 g/L) throughout life. Both caffeine treatment regimens decreased GFAP (as an astrocyte marker) and SNAP-25 (as a nerve terminals marker) in the hippocampus from male rats. TrkB receptor was decreased in the hippocampus from both sexes and treatment regimens. These findings revealed that caffeine intake during a specific time window of brain development promotes sex-dependent behavioral outcomes related to modification in BDNF signaling. Furthermore, caffeine throughout life can overcome the deleterious effects of caffeine on recognition memory during brain development in female rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Development of a bio-magnetic measurement system and sensor configuration analysis for rats

    Science.gov (United States)

    Kim, Ji-Eun; Kim, In-Seon; Kim, Kiwoong; Lim, Sanghyun; Kwon, Hyukchan; Kang, Chan Seok; Ahn, San; Yu, Kwon Kyu; Lee, Yong-Ho

    2017-04-01

    Magnetoencephalography (MEG) based on superconducting quantum interference devices enables the measurement of very weak magnetic fields (10-1000 fT) generated from the human or animal brain. In this article, we introduce a small MEG system that we developed specifically for use with rats. Our system has the following characteristics: (1) variable distance between the pick-up coil and outer Dewar bottom (˜5 mm), (2) small pick-up coil (4 mm) for high spatial resolution, (3) good field sensitivity (45 ˜ 80 fT /cm/√{Hz} ) , (4) the sensor interval satisfies the Nyquist spatial sampling theorem, and (5) small source localization error for the region to be investigated. To reduce source localization error, it is necessary to establish an optimal sensor layout. To this end, we simulated confidence volumes at each point on a grid on the surface of a virtual rat head. In this simulation, we used locally fitted spheres as model rat heads. This enabled us to consider more realistic volume currents. We constrained the model such that the dipoles could have only four possible orientations: the x- and y-axes from the original coordinates, and two tangentially layered dipoles (local x- and y-axes) in the locally fitted spheres. We considered the confidence volumes according to the sensor layout and dipole orientation and positions. We then conducted a preliminary test with a 4-channel MEG system prior to manufacturing the multi-channel system. Using the 4-channel MEG system, we measured rat magnetocardiograms. We obtained well defined P-, QRS-, and T-waves in rats with a maximum value of 15 pT/cm. Finally, we measured auditory evoked fields and steady state auditory evoked fields with maximum values 400 fT/cm and 250 fT/cm, respectively.

  1. Cortical interhemispheric responses to rhythmic stimulation are influenced by status epilepticus in developing rats

    Czech Academy of Sciences Publication Activity Database

    Tsenov, Grygoriy; Mareš, Pavel

    2005-01-01

    Roč. 46, č. S6 (2005), s. 209-210 ISSN 0013-9580. [International Epilepsy Congress /26./. 28.08.2005-01.09.2005, Paris] Institutional research plan: CEZ:AV0Z50110509 Keywords : status epilepticus * interhemispheric responses * developing rats Subject RIV: ED - Physiology

  2. Cholinergic Basal Forebrain Lesion Decreases Neurotrophin Signaling without Affecting Tau Hyperphosphorylation in Genetically Susceptible Mice.

    Science.gov (United States)

    Turnbull, Marion T; Coulson, Elizabeth J

    2017-01-01

    Alzheimer's disease (AD) is a progressive, irreversible neurodegenerative disease that destroys memory and cognitive function. Aggregates of hyperphosphorylated tau protein are a prominent feature in the brain of patients with AD, and are a major contributor to neuronal toxicity and disease progression. However, the factors that initiate the toxic cascade that results in tau hyperphosphorylation in sporadic AD are unknown. Here we investigated whether degeneration of basal forebrain cholinergic neurons (BFCNs) and/or a resultant decrease in neurotrophin signaling cause aberrant tau hyperphosphorylation. Our results reveal that the loss of BFCNs in pre-symptomatic pR5 (P301L) tau transgenic mice results in a decrease in hippocampal brain-derived neurotrophic factor levels and reduced TrkB receptor activation. However, there was no exacerbation of the levels of phosphorylated tau or its aggregation in the hippocampus of susceptible mice. Furthermore the animals' performance in a hippocampal-dependent learning and memory task was unaltered, and no changes in hippocampal synaptic markers were observed. This suggests that tau pathology is likely to be regulated independently of BFCN degeneration and the corresponding decrease in hippocampal neurotrophin levels, although these features may still contribute to disease etiology.

  3. Neonatal systemic inflammation in rats alters retinal vessel development and simulates pathologic features of retinopathy of prematurity.

    Science.gov (United States)

    Hong, Hye Kyoung; Lee, Hyun Ju; Ko, Jung Hwa; Park, Ji Hyun; Park, Ji Yeon; Choi, Chang Won; Yoon, Chang-Hwan; Ahn, Seong Joon; Park, Kyu Hyung; Woo, Se Joon; Oh, Joo Youn

    2014-05-15

    Alteration of retinal angiogenesis during development leads to retinopathy of prematurity (ROP) in preterm infants, which is a leading cause of visual impairment in children. A number of clinical studies have reported higher rates of ROP in infants who had perinatal infections or inflammation, suggesting that exposure of the developing retina to inflammation may disturb retinal vessel development. Thus, we investigated the effects of systemic inflammation on retinal vessel development and retinal inflammation in neonatal rats. To induce systemic inflammation, we intraperitoneally injected 100 μl lipopolysaccharide (LPS, 0.25 mg/ml) or the same volume of normal saline in rat pups on postnatal days 1, 3, and 5. The retinas were extracted on postnatal days 7 and 14, and subjected to assays for retinal vessels, inflammatory cells and molecules, and apoptosis. We found that intraperitoneal injection of LPS impaired retinal vessel development by decreasing vessel extension, reducing capillary density, and inducing localized overgrowth of abnormal retinal vessels and dilated peripheral vascular ridge, all of which are characteristic findings of ROP. Also, a large number of CD11c+ inflammatory cells and astrocytes were localized in the lesion of abnormal vessels. Further analysis revealed that the number of major histocompatibility complex (MHC) class IIloCD68loCD11bloCD11chi cells in the retina was higher in LPS-treated rats compared to controls. Similarly, the levels of TNF-α, IL-1β, and IL-12a were increased in LPS-treated retina. Also, apoptosis was increased in the inner retinal layer where retinal vessels are located. Our data demonstrate that systemic LPS-induced inflammation elicits retinal inflammation and impairs retinal angiogenesis in neonatal rats, implicating perinatal inflammation in the pathogenesis of ROP.

  4. Developing a Speaker Identification System for the DARPA RATS Project

    DEFF Research Database (Denmark)

    Plchot, O; Matsoukas, S; Matejka, P

    2013-01-01

    This paper describes the speaker identification (SID) system developed by the Patrol team for the first phase of the DARPA RATS (Robust Automatic Transcription of Speech) program, which seeks to advance state of the art detection capabilities on audio from highly degraded communication channels. ...... such as CFCCs out-perform MFCC front-ends on noisy audio, and (c) fusion of multiple systems provides 24% relative improvement in EER compared to the single best system when using a novel SVM-based fusion algorithm that uses side information such as gender, language, and channel id....

  5. Altered ERK1/2 Signaling in the Brain of Learned Helpless Rats: Relevance in Vulnerability to Developing Stress-Induced Depression

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2016-01-01

    Full Text Available Extracellular signal-regulated kinase 1/2- (ERK1/2- mediated cellular signaling plays a major role in synaptic and structural plasticity. Although ERK1/2 signaling has been shown to be involved in stress and depression, whether vulnerability to develop depression is associated with abnormalities in ERK1/2 signaling is not clearly known. The present study examined ERK1/2 signaling in frontal cortex and hippocampus of rats that showed vulnerability (learned helplessness, (LH or resiliency (non-learned helplessness, (non-LH to developing stress-induced depression. In frontal cortex and hippocampus of LH rats, we found that mRNA and protein expressions of ERK1 and ERK2 were significantly reduced, which was associated with their reduced activation and phosphorylation in cytosolic and nuclear fractions, where ERK1 and ERK2 target their substrates. In addition, ERK1/2-mediated catalytic activities and phosphorylation of downstream substrates RSK1 (cytosolic and nuclear and MSK1 (nuclear were also lower in the frontal cortex and hippocampus of LH rats without any change in their mRNA or protein expression. None of these changes were evident in non-LH rats. Our study indicates that ERK1/2 signaling is differentially regulated in LH and non-LH rats and suggests that abnormalities in ERK1/2 signaling may be crucial in the vulnerability to developing depression.

  6. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Directory of Open Access Journals (Sweden)

    Joana E Coelho

    2014-06-01

    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  7. Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety.

    Science.gov (United States)

    Coelho, Joana E; Alves, Pedro; Canas, Paula M; Valadas, Jorge S; Shmidt, Tatiana; Batalha, Vânia L; Ferreira, Diana G; Ribeiro, Joaquim A; Bader, Michael; Cunha, Rodrigo A; do Couto, Frederico Simões; Lopes, Luísa V

    2014-01-01

    Adenosine A2A receptors (A2AR) are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well-established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer's disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine-related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR)] and aged-matched wild-types (WT) of the same strain (Sprague-Dawley) were studied. The forced swimming test (FST), sucrose preference test (SPT), and the open-field test (OFT) were performed to evaluate behavioral despair, anhedonia, locomotion, and anxiety. Tg(CaMKII-hA2AR) animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48 h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR) rats exhibit depressive-like behavior, hyperlocomotion, and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress, and Alzheimer's disease.

  8. Involvement of hypothalamic cyclooxygenase-2, interleukin-1β and melanocortin in the development of docetaxel-induced anorexia in rats.

    Science.gov (United States)

    Yamamoto, Kouichi; Asano, Keiko; Ito, Yui; Matsukawa, Naoki; Kim, Seikou; Yamatodani, Atsushi

    2012-12-16

    Docetaxel, a taxane derivative, is frequently used for the treatment of advanced breast cancer, non-small cell lung cancer, and metastatic prostate cancer. Clinical reports demonstrated that docetaxel-based chemotherapy often induces anorexia, but the etiology is not completely understood. To elucidate possible mechanisms, we investigated the involvement of central interleukin (IL)-1β, cyclooxygenase (COX)-2, and pro-opiomelanocortin (POMC) in the development of docetaxel-induced anorexia in rats. Rats received docetaxel (10mg/kg, i.p.) with or without pretreatment with selective COX-2 inhibitors, NS-398 (10 and 30 mg/kg, i.g.) or celecoxib (10 and 30 mg/kg, i.g.), and a non-selective COX inhibitor, indomethacin (10mg/kg, i.g.), then food intake was monitored for 24h after administration. We also examined expression of IL-1β, COX-2, and POMC mRNA in hypothalamus of docetaxel-treated rats and the effect of a COX-2 inhibitor on docetaxel-induced POMC mRNA expression. Food consumption in rats was significantly decreased 24h after administration of docetaxel and anorexia was partially reversed by all COX inhibitors. Administration of docetaxel increased IL-1β, COX-2, and POMC mRNA expression in the hypothalamus of rats. The time required to increase these gene expressions was comparable to the latency period of docetaxel-induced anorexia in rats. In addition, pretreatment with COX-2 inhibitors suppressed docetaxel-induced expression of POMC mRNA. These results suggest that IL-1β and COX-2 mRNA expression and subsequent activation of POMC in the hypothalamus may contribute to the development of docetaxel-induced anorexia in rats. Copyright © 2012. Published by Elsevier Ireland Ltd.

  9. Acute reversible inactivation of the bed nucleus of stria terminalis induces antidepressant-like effect in the rat forced swimming test

    Science.gov (United States)

    2010-01-01

    Background The bed nucleus of stria terminalis (BNST) is a limbic forebrain structure involved in hypothalamo-pituitary-adrenal axis regulation and stress adaptation. Inappropriate adaptation to stress is thought to compromise the organism's coping mechanisms, which have been implicated in the neurobiology of depression. However, the studies aimed at investigating BNST involvement in depression pathophysiology have yielded contradictory results. Therefore, the objective of the present study was to investigate the effects of temporary acute inactivation of synaptic transmission in the BNST by local microinjection of cobalt chloride (CoCl2) in rats subjected to the forced swimming test (FST). Methods Rats implanted with cannulae aimed at the BNST were submitted to 15 min of forced swimming (pretest). Twenty-four hours later immobility time was registered in a new 5 min forced swimming session (test). Independent groups of rats received bilateral microinjections of CoCl2 (1 mM/100 nL) before or immediately after pretest or before the test session. Additional groups received the same treatment and were submitted to the open field test to control for unspecific effects on locomotor behavior. Results CoCl2 injection into the BNST before either the pretest or test sessions reduced immobility in the FST, suggesting an antidepressant-like effect. No significant effect of CoCl2 was observed when it was injected into the BNST immediately after pretest. In addition, no effect of BNST inactivation was observed in the open field test. Conclusion These results suggest that acute reversible inactivation of synaptic transmission in the BNST facilitates adaptation to stress and induces antidepressant-like effects. PMID:20515458

  10. Acute reversible inactivation of the bed nucleus of stria terminalis induces antidepressant-like effect in the rat forced swimming test

    Directory of Open Access Journals (Sweden)

    Joca Sâmia RL

    2010-06-01

    Full Text Available Abstract Background The bed nucleus of stria terminalis (BNST is a limbic forebrain structure involved in hypothalamo-pituitary-adrenal axis regulation and stress adaptation. Inappropriate adaptation to stress is thought to compromise the organism's coping mechanisms, which have been implicated in the neurobiology of depression. However, the studies aimed at investigating BNST involvement in depression pathophysiology have yielded contradictory results. Therefore, the objective of the present study was to investigate the effects of temporary acute inactivation of synaptic transmission in the BNST by local microinjection of cobalt chloride (CoCl2 in rats subjected to the forced swimming test (FST. Methods Rats implanted with cannulae aimed at the BNST were submitted to 15 min of forced swimming (pretest. Twenty-four hours later immobility time was registered in a new 5 min forced swimming session (test. Independent groups of rats received bilateral microinjections of CoCl2 (1 mM/100 nL before or immediately after pretest or before the test session. Additional groups received the same treatment and were submitted to the open field test to control for unspecific effects on locomotor behavior. Results CoCl2 injection into the BNST before either the pretest or test sessions reduced immobility in the FST, suggesting an antidepressant-like effect. No significant effect of CoCl2 was observed when it was injected into the BNST immediately after pretest. In addition, no effect of BNST inactivation was observed in the open field test. Conclusion These results suggest that acute reversible inactivation of synaptic transmission in the BNST facilitates adaptation to stress and induces antidepressant-like effects.

  11. Changes in the Serum Urate Level Can Predict the Development of Parkinsonism in the 6-Hydroxydopamine Animal Model.

    Science.gov (United States)

    Sarukhani, Mohammad Reza; Haghdoost-Yazdi, Hashem; Khandan-Chelarci, Gilda

    2018-05-01

    Epidemiological studies indicate that a higher plasma level of uric acid (UA) associates with the reduced risk of Parkinson's disease (PD). To confirm the role of UA as a biomarker for PD, we evaluated changes in the serum UA level in the 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonism in rat. For this purpose, 6-OHDA was administered in the medial forebrain bundle by stereotaxic surgery. According to the apomorphine-induced rotational test, the increased intensity of behavioral symptoms as a function of time was associated with the further reduction of UA level. On the other hand, the level of UA increased in the midbrain of the injured hemisphere. The level of reduction in the serum UA level of rats with severe and moderate symptoms was significantly higher than that of rats with mild symptoms. The immunohistofluorescence and biochemical analyses showed that the serum UA level was also correlated with the death of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc), reduced level of striatal dopamine, and severity of oxidative stress in the midbrain. The rats with mild symptoms also showed a significant decrease in TH-positive neurons and striatal dopamine level. These findings suggest a positive correlation between the level of reduction in the serum urate level and severity of 6-OHDA-induced Parkinsonism. In addition, our findings indicated that UA had no marked neuroprotective effects, at least at concentrations obtained in this study. On the other hand, UA was introduced as a biomarker for PD, as a significant decline was observed in the serum UA level of rats with mild behavioral symptoms but with significant dopaminergic cell death in the SNc.

  12. Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis.

    Science.gov (United States)

    Teema, Asmaa M; Zaitone, Sawsan A; Moustafa, Yasser M

    2016-08-01

    Neuroinflammation and angiogenesis have been involved in the pathogenesis of Parkinson's disease (PD). This study investigated the effect of ibuprofen or piroxicam on the motor response to l-dopa and development of dyskinesia in Parkinsonian rats focusing on the anti-angiogenic role of the two non-steroidal anti-inflammatory drugs (NSAIDs). Rats were divided into nine groups as follows: Group I: the vehicle group, Group II: rotenone group, rats were injected with nine doses of rotenone (1 mg/kg/48 h), group III&IV: rats received rotenone + ibuprofen (10 or 30 mg/kg), Group V-VI: rats received rotenone + piroxicam (1 or 3 mg/kg), Group VII: rats received rotenone + l-dopa/carbidopa (100/10 mg/kg), Group VIII-IX: rats received rotenone + l-dopa/carbidopa + ibuprofen (30 mg/kg) or piroxicam (3 mg/kg). In general, drugs were administered daily for ten weeks. Rotenone-treated rats showed motor dysfunction, lower striatal dopamine, lower staining for nigral tyrosine hydroxylase but higher level of striatal cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) compared to vehicle-treated rats (P piroxicam in combination with l-dopa preserved the effect of l-dopa at the end of week 10, delayed the development of dyskinesia and decreased striatal COX-2 and VEGF levels. In conclusion, the current study suggests that ibuprofen and piroxicam are promising candidates for neuroprotection in PD and may have utility in conjunction with l-dopa in order to ensure the longevity of its action and to delay the development of dyskinesia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides

    DEFF Research Database (Denmark)

    Hass, Ulla; Boberg, Julie; Christiansen, Sofie

    2012-01-01

    The present study investigated whether a mixture of low doses of five environmentally relevant endocrine disrupting pesticides, epoxiconazole, mancozeb, prochloraz, tebuconazole and procymidone, would cause adverse developmental toxicity effects in rats. In rat dams, a significant increase...... and cumulative intake, because of the potentially serious impact of mixed exposure on development and reproduction in humans....

  14. Exposure to urban PM1 in rats: development of bronchial inflammation and airway hyperresponsiveness.

    Science.gov (United States)

    Filep, Ágnes; Fodor, Gergely H; Kun-Szabó, Fruzsina; Tiszlavicz, László; Rázga, Zsolt; Bozsó, Gábor; Bozóki, Zoltán; Szabó, Gábor; Peták, Ferenc

    2016-03-10

    Several epidemiological and laboratory studies have evidenced the fact that atmospheric particulate matter (PM) increases the risk of respiratory morbidity. It is well known that the smallest fraction of PM (PM1 - particulate matter having a diameter below 1 μm) penetrates the deepest into the airways. The ratio of the different size fractions in PM is highly variable, but in industrial areas PM1 can be significant. Despite these facts, the health effects of PM1 have been poorly investigated and air quality standards are based on PM10 and PM2.5 (PM having diameters below 10 μm and 2.5 μm, respectively) concentrations. Therefore, this study aimed at determining whether exposure to ambient PM1 at a near alert threshold level for PM10 has respiratory consequences in rats. Rats were either exposed for 6 weeks to 100 μg/m(3) (alert threshold level for PM10 in Hungary) urban submicron aerosol, or were kept in room air. End-expiratory lung volume, airway resistance (Raw) and respiratory tissue mechanics were measured. Respiratory mechanics were measured under baseline conditions and following intravenous methacholine challenges to characterize the development of airway hyperresponsiveness (AH). Bronchoalveolar lavage fluid (BALF) was analyzed and lung histology was performed. No significant differences were detected in lung volume and mechanical parameters at baseline. However, the exposed rats exhibited significantly greater MCh-induced responses in Raw, demonstrating the progression of AH. The associated bronchial inflammation was evidenced by the accumulation of inflammatory cells in BALF and by lung histology. Our findings suggest that exposure to concentrated ambient PM1 (mass concentration at the threshold level for PM10) leads to the development of mild respiratory symptoms in healthy adult rats, which may suggest a need for the reconsideration of threshold limits for airborne PM1.

  15. Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia).

    Science.gov (United States)

    Azizi, Amir Hossein; Pusch, Roland; Koenen, Charlotte; Klatt, Sebastian; Bröcker, Franziska; Thiele, Samuel; Kellermann, Janosch; Güntürkün, Onur; Cheng, Sen

    2018-06-06

    Recognizing and categorizing visual stimuli are cognitive functions vital for survival, and an important feature of visual systems in primates as well as in birds. Visual stimuli are processed along the ventral visual pathway. At every stage in the hierarchy, neurons respond selectively to more complex features, transforming the population representation of the stimuli. It is therefore easier to read-out category information in higher visual areas. While explicit category representations have been observed in the primate brain, less is known on equivalent processes in the avian brain. Even though their brain anatomies are radically different, it has been hypothesized that visual object representations are comparable across mammals and birds. In the present study, we investigated category representations in the pigeon visual forebrain using recordings from single cells responding to photographs of real-world objects. Using a linear classifier, we found that the population activity in the visual associative area mesopallium ventrolaterale (MVL) distinguishes between animate and inanimate objects, although this distinction is not required by the task. By contrast, a population of cells in the entopallium, a region that is lower in the hierarchy of visual areas and that is related to the primate extrastriate cortex, lacked this information. A model that pools responses of simple cells, which function as edge detectors, can account for the animate vs. inanimate categorization in the MVL, but performance in the model is based on different features than in MVL. Therefore, processing in MVL cells is very likely more abstract than simple computations on the output of edge detectors. Copyright © 2018. Published by Elsevier B.V.

  16. Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia

    Directory of Open Access Journals (Sweden)

    Dae Young Yoo

    2016-01-01

    Full Text Available Recent evidence exists that glucose transporter 3 (GLUT3 plays an important role in the energy metabolism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein (GFAP, we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion. In a double immunofluorescence study using GLUT3 and doublecortin (DCX, we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.

  17. Processes underlying the nutritional programming of embryonic development by iron deficiency in the rat.

    Directory of Open Access Journals (Sweden)

    Angelina Swali

    Full Text Available Poor iron status is a global health issue, affecting two thirds of the world population to some degree. It is a particular problem among pregnant women, in both developed and developing countries. Feeding pregnant rats a diet deficient in iron is associated with both hypertension and reduced nephron endowment in adult male offspring. However, the mechanistic pathway leading from iron deficiency to fetal kidney development remains elusive. This study aimed to establish the underlying processes associated with iron deficiency by assessing gene and protein expression changes in the rat embryo, focussing on the responses occurring at the time of the nutritional insult. Analysis of microarray data showed that iron deficiency in utero resulted in the significant up-regulation of 979 genes and down-regulation of 1545 genes in male rat embryos (d13. Affected processes associated with these genes included the initiation of mitosis, BAD-mediated apoptosis, the assembly of RNA polymerase II preinitiation complexes and WNT signalling. Proteomic analyses highlighted 7 proteins demonstrating significant up-regulation with iron deficiency and the down-regulation of 11 proteins. The main functions of these key proteins included cell proliferation, protein transport and folding, cytoskeletal remodelling and the proteasome complex. In line with our recent work, which identified the perturbation of the proteasome complex as a generalised response to in utero malnutrition, we propose that iron deficiency alone leads to a more specific failure in correct protein folding and transport. Such an imbalance in this delicate quality-control system can lead to cellular dysfunction and apoptosis. Therefore these findings offer an insight into the underlying mechanisms associated with the development of the embryo during conditions of poor iron status, and its health in adult life.

  18. Development of mechanical hypersensitivity in rats during heroin and ethanol dependence: alleviation by CRF₁ receptor antagonism.

    Science.gov (United States)

    Edwards, Scott; Vendruscolo, Leandro F; Schlosburg, Joel E; Misra, Kaushik K; Wee, Sunmee; Park, Paula E; Schulteis, Gery; Koob, George F

    2012-02-01

    Animal models of drug dependence have described both reductions in brain reward processes and potentiation of stress-like (or anti-reward) mechanisms, including a recruitment of corticotropin-releasing factor (CRF) signaling. Accordingly, chronic exposure to opiates often leads to the development of mechanical hypersensitivity. We measured paw withdrawal thresholds (PWTs) in male Wistar rats allowed limited (short access group: ShA) or extended (long access group: LgA) access to heroin or cocaine self-administration, or in rats made dependent on ethanol via ethanol vapor exposure (ethanol-dependent group). In heroin self-administering animals, after transition to LgA conditions, thresholds were reduced to around 50% of levels observed at baseline, and were also significantly lower than thresholds measured in animals remaining on the ShA schedule. In contrast, thresholds in animals self-administering cocaine under either ShA (1 h) or LgA (6 h) conditions were unaltered. Similar to heroin LgA rats, ethanol-dependent rats also developed mechanical hypersensitivity after eight weeks of ethanol vapor exposure compared to non-dependent animals. Systemic administration of the CRF1R antagonist MPZP significantly alleviated the hypersensitivity observed in rats dependent on heroin or ethanol. The emergence of mechanical hypersensitivity with heroin and ethanol dependence may thus represent one critical drug-associated negative emotional state driving dependence on these substances. These results also suggest a recruitment of CRF-regulated nociceptive pathways associated with escalation of intake and dependence. A greater understanding of relationships between chronic drug exposure and pain-related states may provide insight into mechanisms underlying the transition to drug addiction, as well as reveal new treatment opportunities. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Maternal Style Selectively Shapes Amygdalar Development and Social Behavior in Rats Genetically Prone to High Anxiety.

    Science.gov (United States)

    Cohen, Joshua L; Glover, Matthew E; Pugh, Phyllis C; Fant, Andrew D; Simmons, Rebecca K; Akil, Huda; Kerman, Ilan A; Clinton, Sarah M

    2015-01-01

    The early-life environment critically influences neurodevelopment and later psychological health. To elucidate neural and environmental elements that shape emotional behavior, we developed a rat model of individual differences in temperament and environmental reactivity. We selectively bred rats for high versus low behavioral response to novelty and found that high-reactive (bred high-responder, bHR) rats displayed greater risk-taking, impulsivity and aggression relative to low-reactive (bred low-responder, bLR) rats, which showed high levels of anxiety/depression-like behavior and certain stress vulnerability. The bHR/bLR traits are heritable, but prior work revealed bHR/bLR maternal style differences, with bLR dams showing more maternal attention than bHRs. The present study implemented a cross-fostering paradigm to examine the contribution of maternal behavior to the brain development and emotional behavior of bLR offspring. bLR offspring were reared by biological bLR mothers or fostered to a bLR or bHR mother and then evaluated to determine the effects on the following: (1) developmental gene expression in the hippocampus and amygdala and (2) adult anxiety/depression-like behavior. Genome-wide expression profiling showed that cross-fostering bLR rats to bHR mothers shifted developmental gene expression in the amygdala (but not hippocampus), reduced adult anxiety and enhanced social interaction. Our findings illustrate how an early-life manipulation such as cross-fostering changes the brain's developmental trajectory and ultimately impacts adult behavior. Moreover, while earlier studies highlighted hippocampal differences contributing to the bHR/bLR phenotypes, our results point to a role of the amygdala as well. Future work will pursue genetic and cellular mechanisms within the amygdala that contribute to bHR/bLR behavior either at baseline or following environmental manipulations. © 2015 S. Karger AG, Basel.

  20. Effects of genistein in the maternal diet on reproductive development and spatial learning in male rats.

    Science.gov (United States)

    Ball, Evan R; Caniglia, Mary Kay; Wilcox, Jenna L; Overton, Karla A; Burr, Marra J; Wolfe, Brady D; Sanders, Brian J; Wisniewski, Amy B; Wrenn, Craige C

    2010-03-01

    Endocrine disruptors, chemicals that disturb the actions of endogenous hormones, have been implicated in birth defects associated with hormone-dependent development. Phytoestrogens are a class of endocrine disruptors found in plants. In the current study we examined the effects of exposure at various perinatal time periods to genistein, a soy phytoestrogen, on reproductive development and learning in male rats. Dams were fed genistein-containing (5 mg/kg feed) food during both gestation and lactation, during gestation only, during lactation only, or during neither period. Measures of reproductive development and body mass were taken in the male offspring during postnatal development, and learning and memory performance was assessed in adulthood. Genistein exposure via the maternal diet decreased body mass in the male offspring of dams fed genistein during both gestation and lactation, during lactation only, but not during gestation only. Genistein decreased anogenital distance when exposure was during both gestation and lactation, but there was no effect when exposure was limited to one of these time periods. Similarly, spatial learning in the Morris water maze was impaired in male rats exposed to genistein during both gestation and lactation, but not in rats exposed during only one of these time periods. There was no effect of genistein on cued or contextual fear conditioning. In summary, the data indicate that exposure to genistein through the maternal diet significantly impacts growth in male offspring if exposure is during lactation. The effects of genistein on reproductive development and spatial learning required exposure throughout the pre- and postnatal periods. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Effects of hyper- and hypothyroidism on the development and proliferation of testicular cells in prepubertal rats.

    Science.gov (United States)

    Fadlalla, Mohamed Babo; Wei, Quanwei; Fedail, Jaafar Sulieman; Mehfooz, Asif; Mao, Dagan; Shi, Fangxiong

    2017-12-01

    Thyroid hormones are important in the development and regulation of testes. This study was conducted to determine the effects of hyper- and hypothyroidism on testicular development in prepubertal rats aged 20-70 days. Weaning male rats (20 days old) until day 70 age were randomly divided into four groups: control, hyperthyroid (hyper-T), hypothyroid (hypo-T) and hypothyroid treated with thyroxine (T4) (hypo-T+T4). The results indicated that thyroid hormones caused a significant effect in body and testis weights, and food and water consumption. In addition there were changes in serum concentrations of tri-iodothyronine, T4, thyroid stimulating hormone (TSH) and testosterone. Histomorphology showed a significant decrease in seminiferous tubule diameter in hyper-T compared to the other groups. Leydig cell numbers showed a significant elevation in hyper-T but not in hypo-T groups. Immunostaining indicated that TSH receptor (TSHR), thyroid hormone receptors α/β (TRαβ) and proliferating cell nuclear antigen (PCNA) have the roles in testicular development. Our findings suggest that hyper- and hypo-thyroidism regulate testicular cell proliferation and spermatogenesis in prepubertal rats, indicating that expression of TSHR, TRαβ and PCNA may be regulated by thyroid hormones that are involved in testicular development; and that the administration of T4 to the hypo-T+T4 group leads to an improvement in the testicular condition. © 2017 Japanese Society of Animal Science.

  2. Postnatal development of resistance to short-term high-dose toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in TCDD-resistant and -semiresistant rats

    International Nuclear Information System (INIS)

    Simanainen, Ulla; Tuomisto, Jouni T.; Pohjanvirta, Raimo; Syrjaelae, Paula; Tuomisto, Jouko; Viluksela, Matti

    2004-01-01

    Despite great interspecies differences in adult 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) sensitivity, the toxic potency of TCDD is similar across species in fetal mortality. Han/Wistar (Kuopio; H/W) rats are exceptionally resistant to acute toxicity of TCDD, but show sensitivity to embryotoxicity and teratogenicity. The resistance of adult H/W rats to acute TCDD toxicity is based on a point mutation in the transactivation domain of the aryl hydrocarbon receptor (AHR) and to an unknown gene ''B''. This study investigated the time course of postnatal development of resistance to TCDD and the significance of genotypic variation in resistance development. H/W, line A (a new line with the H/W-type mutated AHR), and line B rats (a line with normal AHR but moderately resistant because of gene ''B'') were exposed to a single dose of TCDD 2-56 days after birth. H/W and line A rats received 1000 μg/kg; male and female B rats received 200 and 100 μg/kg, respectively. Survival was monitored for 42 days. Interestingly, although TCDD ceased growth and weight gain in all TCDD groups, the younger dosed animals did not seem to reach the body weight of the older dosed animals even in 100 days. The survival results after 42 days showed that line A rats are fairly resistant to TCDD immediately after birth, and their full TCDD resistance develops during the first week of life. The moderate resistance of line B rats develops approximately at the time of weaning. This difference in the time course of resistance development suggests that there are basic differences in pathways mediating resistance in lines A and B rats

  3. Wfs1- deficient rats develop primary symptoms of Wolfram syndrome: insulin-dependent diabetes, optic nerve atrophy and medullary degeneration.

    Science.gov (United States)

    Plaas, Mario; Seppa, Kadri; Reimets, Riin; Jagomäe, Toomas; Toots, Maarja; Koppel, Tuuliki; Vallisoo, Tuuli; Nigul, Mait; Heinla, Indrek; Meier, Riho; Kaasik, Allen; Piirsoo, Andres; Hickey, Miriam A; Terasmaa, Anton; Vasar, Eero

    2017-08-31

    Wolfram syndrome (WS) is a rare autosomal-recessive disorder that is caused by mutations in the WFS1 gene and is characterized by juvenile-onset diabetes, optic atrophy, hearing loss and a number of other complications. Here, we describe the creation and phenotype of Wfs1 mutant rats, in which exon 5 of the Wfs1 gene is deleted, resulting in a loss of 27 amino acids from the WFS1 protein sequence. These Wfs1-ex5-KO232 rats show progressive glucose intolerance, which culminates in the development of diabetes mellitus, glycosuria, hyperglycaemia and severe body weight loss by 12 months of age. Beta cell mass is reduced in older mutant rats, which is accompanied by decreased glucose-stimulated insulin secretion from 3 months of age. Medullary volume is decreased in older Wfs1-ex5-KO232 rats, with the largest decreases at the level of the inferior olive. Finally, older Wfs1-ex5-KO232 rats show retinal gliosis and optic nerve atrophy at 15 months of age. Electron microscopy revealed axonal degeneration and disorganization of the myelin in the optic nerves of older Wfs1-ex5-KO232 rats. The phenotype of Wfs1-ex5-KO232 rats indicates that they have the core symptoms of WS. Therefore, we present a novel rat model of WS.

  4. Acquisition and extinction of continuously and partially reinforced running in rats with lesions of the dorsal noradrenergic bundle.

    Science.gov (United States)

    Owen, S; Boarder, M R; Gray, J A; Fillenz, M

    1982-05-01

    Local injection of 6-hydroxydopamine was used to selectively destroy the dorsal ascending noradrenergic bundle (DB) in rats. Two lesion procedures were used, differing in the extent of depletion of forebrain noradrenaline they produced (greater than 90% or 77%). In Experiments 1-3 the rats were run in a straight alley for food reward on continuous (CR) or partial (PR) reinforcement schedules. The smaller lesion reduced and the larger lesion eliminated the partial reinforcement acquisition effect (i.e. the faster start and run speeds produced by PR during training) and the partial reinforcement extinction effect (PREE, i.e. the greater resistance to extinction produced by PR training); these changes were due to altered performance only in the PR condition. Abolition of the PREE by the larger DB lesion occurred with 50 acquisition trials, but with 100 trials the lesion had no effect. In Experiment 4 rats were run in a double runway with food reward on CR in the second goal box, and on CR, PR or without reinforcement in the first. The larger lesion again eliminated the PREE in the first runway, but did not block the frustration effect in the second runway (i.e. the faster speeds observed in the PR condition after non-reward than after reward in the first goal box). These results are consistent with the hypothesis that DB lesions alter behavioural responses to signals of non-reward, but not to non-reward itself. They cannot be predicted from two other hypotheses: that the DB mediates responses to reward or that it subserves selective attention. Since septal and hippocampal, but not amygdalar, lesions have been reported to produced similar behavioural changes, it is proposed that the critical DB projection for the effects observed in these experiments is to the septo-hippocampal system.

  5. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  6. Hippocampal N-methyl-d-aspartate and kainate binding in response to entorhinal cortex aspiration or 192 IgG-saporin lesions of the basal forebrain

    International Nuclear Information System (INIS)

    Gallagher, M.; Gill, T.M.; Shivers, A.; Nicolle, M.M.

    1997-01-01

    Lesion models in the rat were used to examine the effects of removing innervation of the hippocampal formation on glutamate receptor binding in that system. Bilateral aspiration of the entorhinal cortex was used to remove the cortical innervation of the hippocampal formation and the dentate gyrus. The subcortical input to the hippocampus from cholinergic neurons of the basal forebrain was lesioned by microinjection of the immunotoxin 192 IgG-saporin into the medial septum and vertical limb of diagonal band. After a 30-day postlesion survival, the effects of these lesions on N-methyl-d-aspartate-displaceable [ 3 H]glutamate and [ 3 H]kainate binding in the hippocampus were quantified using in vitro autoradiography. The bilateral entorhinal lesion induced a sprouting response in the dentate gyrus, measured by an increase in the width of [ 3 H]kainate binding. It also induced an increase in the density of [ 3 H]kainate binding in CA3 stratum lucidum and an increase in N-methyl-d-aspartate binding throughout the hippocampus proper and the dentate gyrus. The selective lesion of cholinergic septal input did not have any effect on hippocampal [ 3 H]kainate binding and induced only a moderate decrease in N-methyl-d-aspartate binding that was not statistically reliable.The entorhinal and cholinergic lesions were used as in vivo models of the degeneration of hippocampal input that occurs in normal aging and Alzheimer's disease. The results from the present lesion study suggest that some, but not all, of the effects on hippocampal [ 3 H]kainate and N-methyl-d-aspartate binding induced by the lesions are consistent with the status of binding to these receptors in aging and Alzheimer's disease. Consistent with the effects of aging and Alzheimer's disease is an altered topography of [ 3 H]kainate binding after entorhinal cortex lesion and a modest decline in N-methyl-d-aspartate binding after lesions of the cholinergic septal input to the hippocampus. (Copyright (c) 1997

  7. De rijping van het cerebellum; a study of the postnatal development of the rat cerebellum.

    NARCIS (Netherlands)

    Ebels, E.J.

    1969-01-01

    Chapter I: INTRODUCTION In this investigation the development of the rat cerebellum from 0 -30 days after birth is studied morphologically, by means of enzymchistochemistry and electronmicroscopy. Enzymchistochemistry and electronmicroscopy were chosen because changes in enzyme content or enzyme

  8. Oral Morphine Consumption Reduces Lens Development in Rat Embryos

    Directory of Open Access Journals (Sweden)

    Hossein Bahadoran

    2012-07-01

    Full Text Available Objective: Consumption of morphine, during pregnancy, in addition to inducing defects in the mother’s nervous system function, caused defects or delays in the formation and evolution of embryonic visual system. In the present study, changes in lens development was assessed in embryos exposed in utero to morphine. Material and Methods: Female Wistar rats (250-300 g were mated with male rats and pregnancy was determined by sperm observation in vaginal smear. This day was considered as embryonic day zero (E0. The females were then divided randomly into the experimental and the control groups. The control group received tap water and the experimental group received morphine (0.05 mg/ml in their water. On embryonic day 13 ( E13, blood samples were collected from the retro-orbital sinus of all animals for plasma corticosterone detection. On embryonic day 17(E17, the animals were killed by an overdose of chloroform and the embryos were taken out surgically. The embryos were fixed in 10% formalin for 30 days. At this time, the head of the embryos were removed for tissue processing and Hematoxylin- Eosin (H&E staining. The samples were evaluated using light microscope and MOTIC software. Results: Our data indicated that plasma corticosterone level was dramatically increased and the lens was thinner in the experimental group. (Although the proliferation of lens cells increased in the experiment group but that lens had delay in removing the proliferated and elongation cells with abnormal density in the lateral part of the lens in compare with control group. I have no idea what the authors are stating here. Moreover, the opening of the eyelids was delayed in the off springs of the mothers who received morphine. Conclusions: This study showed that morphine consumption during pregnancy leads to defects in fetal visual system development, particularly in the lens, and eyelids.

  9. Development of LC-MS determination method and back-propagation ANN pharmacokinetic model of corynoxeine in rat.

    Science.gov (United States)

    Ma, Jianshe; Cai, Jinzhang; Lin, Guanyang; Chen, Huilin; Wang, Xianqin; Wang, Xianchuan; Hu, Lufeng

    2014-05-15

    Corynoxeine(CX), isolated from the extract of Uncaria rhynchophylla, is a useful and prospective compound in the prevention and treatment for vascular diseases. A simple and selective liquid chromatography mass spectrometry (LC-MS) method was developed to determine the concentration of CX in rat plasma. The chromatographic separation was achieved on a Zorbax SB-C18 (2.1 mm × 150 mm, 5 μm) column with acetonitrile-0.1% formic acid in water as mobile phase. Selective ion monitoring (SIM) mode was used for quantification using target ions m/z 383 for CX and m/z 237 for the carbamazepine (IS). After the LC-MS method was validated, it was applied to a back-propagation artificial neural network (BP-ANN) pharmacokinetic model study of CX in rats. The results showed that after intravenous administration of CX, it was mainly distributed in blood and eliminated quickly, t1/2 was less than 1h. The predicted concentrations generated by BP-ANN model had a high correlation coefficient (R>0.99) with experimental values. The developed BP-ANN pharmacokinetic model can be used to predict the concentration of CX in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Relationship of adipocyte size to hyperphagia in developing male obese Zucker rats.

    Science.gov (United States)

    Vasselli, J R; Fiene, J A; Maggio, C A

    1992-01-01

    In growing male obese Zucker rats, hyperphagia reaches a maximum or "breakpoint" and declines at an earlier age with high fat than with chow-type diets. A serial adipose tissue biopsy technique was used to correlate changes of retroperitoneal adipocyte size and feeding behavior in 5- to 7-wk-old male lean and obese rats fed laboratory chow or a 35% fat diet until 30 wk of age. Although chow-fed groups had significantly greater cumulative intake, fat-fed groups had significantly greater body weight gain, retroperitoneal depot weight, and adipocyte number. Mean adipocyte size increased continuously in chow-fed groups but decreased over weeks 20-30 in fat-fed groups, reflecting increased adipocyte number. In fat-fed obese rats, hyperphagia reached a breakpoint at 11 wk and disappeared by 13 wk. In chow-fed obese rats, hyperphagia reached a breakpoint at 15-16 wk and disappeared by 19 wk. Biopsy samples revealed that adipocyte size of fat-fed obese rats was already close to maximal at 10 wk (1.12 micrograms lipid), while that of chow-fed obese rats only approached maximal at 20 wk (0.81 microgram lipid). At these time points, lipoprotein lipase activity paralleled adipocyte size. These data indicate that the duration of the growing obese rat's hyperphagia coincides with adipocyte filling and suggest the existence of feeding stimulatory and inhibitory signals from adipose tissue.

  11. Activation of the Basal Forebrain by the Orexin/Hypocretin Neurons: Orexin International Symposium

    Science.gov (United States)

    Arrigoni, Elda; Mochizuki, Takatoshi; Scammell, Thomas E.

    2010-01-01

    The orexin neurons play an essential role in driving arousal and in maintaining normal wakefulness. Lack of orexin neurotransmission produces a chronic state of hypoarousal characterized by excessive sleepiness, frequent transitions between wake and sleep, and episodes of cataplexy. A growing body of research now suggests that the basal forebrain (BF) may be a key site through which the orexin-producing neurons promote arousal. Here we review anatomical, pharmacological and electrophysiological studies on how the orexin neurons may promote arousal by exciting cortically-projecting neurons of the BF. Orexin fibers synapse on BF cholinergic neurons and orexin-A is released in the BF during waking. Local application of orexins excites BF cholinergic neurons, induces cortical release of acetylcholine, and promotes wakefulness. The orexin neurons also contain and probably co-release the inhibitory neuropeptide dynorphin. We found that orexin-A and dynorphin have specific effects on different classes of BF neurons that project to the cortex. Cholinergic neurons were directly excited by orexin-A, but did not respond to dynorphin. Non-cholinergic BF neurons that project to the cortex seem to comprise at least two populations with some directly excited by orexin that may represent wake-active, GABAergic neurons, whereas others did not respond to orexin but were inhibited by dynorphin and may be sleep-active, GABAergic neurons. This evidence suggests that the BF is a key site through which orexins activate the cortex and promotes behavioral arousal. In addition, orexins and dynorphin may act synergistically in the BF to promote arousal and improve cognitive performance. PMID:19723027

  12. Fourth ventricle injection of ghrelin decreases angiotensin II-induced fluid intake and neuronal activation in the paraventricular nucleus of the hypothalamus.

    Science.gov (United States)

    Plyler, Kimberly S; Daniels, Derek

    2017-09-01

    Ghrelin acts in the CNS to decrease fluid intake under a variety of dipsogenic and natriorexigenic conditions. Previous studies on this topic, however, focused on the forebrain as a site of action for this effect of ghrelin. Because the hindbrain contains neural substrates that are capable of mediating the well-established orexigenic effects of ghrelin, the current study tested the hypothesis that ghrelin applied to the hindbrain also would affect fluid intake. To this end, water and saline intakes were stimulated by central injection of angiotensin II (AngII) in rats that also received injections of ghrelin (0.5μg/μl) into either the lateral or fourth ventricle. Ghrelin injected into either ventricle reduced both water and 1.8% NaCl intake that was stimulated by AngII. The nature of the intake effect revealed some differences between the injection sites. For example, forebrain application of ghrelin reduced saline intake by a reduction in both the number of licking bursts and the size of each licking burst, but hindbrain application of ghrelin had a more selective effect on burst number. In an attempt to elucidate a brain structure in which hindbrain-administered ghrelin and forebrain-administered AngII interact to cause the ingestive response, we used Fos-immunohistochemistry in rats given the treatments used in the behavioral experiments. Although several brain areas were found to respond to either ghrelin or AngII, of the sites examined, only the paraventricular nucleus of the hypothalamus (PVN) emerged as a potential site of interaction. Specifically, AngII treatment caused expression of Fos in the PVN that was attenuated by concomitant treatment with ghrelin. These experiments provide the novel finding that the hindbrain contains elements that can respond to ghrelin and cause decreases in AngII-induced fluid intake, and that direct actions by ghrelin on forebrain structures is not necessary. Moreover, these studies suggest that the PVN is an important site

  13. Disturbed sensorimotor and electrophysiological patterns in lead intoxicated rats during development are restored by curcumin I.

    Directory of Open Access Journals (Sweden)

    Hind Benammi

    Full Text Available Lead poisoning is one of the most significant health problem of environmental origin. It is known to cause different damages in the central and peripheral nervous system which could be represented by several neurophysiological and behavioral symptoms. In this study we firstly investigated the effect of lead prenatal exposure in rats to (3g/L, from neonatal to young age, on the motor/sensory performances, excitability of the spinal cord and gaits during development. Then we evaluated neuroprotective effects of curcumin I (Cur I against lead neurotoxicity, by means of grasping and cliff avoidance tests to reveal the impairment of the sensorimotor functions in neonatal rats exposed prenatally to lead. In addition, extracellular recordings of motor output in spinal cord revealed an hyper-excitability of spinal networks in lead treated rats. The frequency of induced fictive locomotion was also increased in treated rats. At the young age, rats exhibited an impaired locomotor gait. All those abnormalities were attenuated by Cur I treatment at a dose of 16g/kg. Based on our finding, Cur I has shown features of a potent chemical compound able to restore the neuronal and the relative locomotor behaviors disturbances induced by lead intoxication. Therefore, this chemical can be recommended as a new therapeutic trial against lead induced neurotoxicity.

  14. Effect of hyperbaric oxygen on lipid peroxidation and visual development in neonatal rats with hypoxia-ischemia brain damage.

    Science.gov (United States)

    Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting

    2016-07-01

    The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.

  15. Exposure of pregnant rats to uranium and restraint stress: Effects on postnatal development and behavior of the offspring

    International Nuclear Information System (INIS)

    Sanchez, Domenec J.; Belles, Montserrat; Albina, Maria L.; Gomez, Mercedes; Linares, Victoria; Domingo, Jose L.

    2006-01-01

    The effects on postnatal development and behavior were assessed in the offspring of female rats concurrently exposed to uranium (U) and restraint stress. Adult female rats were administered uranyl acetate dihydrate (UAD) in the drinking water at doses of 0, 40 and 80 mg/(kg day) for 4 weeks before mating with untreated males, as well as during pregnancy and lactation. One-half of female rats in each group were concurrently subjected to restraint (2 h/day). On gestation day 14, one-half of restrained and unrestrained rats were sacrificed in order to evaluate maternal toxicity and gestational parameters. Pups were evaluated for physical development, neuromotor maturation, and behavior. Uranium concentrations were also determined in various tissues of dams and fetuses. In all uranium-treated groups, the highest concentrations of this element were found in kidney and bone, being considerably higher than those in brain. Uranium levels in tissues of dam or fetuses were not significantly affected by restraint. No significant interactions between uranium and restraint could be observed in maternal toxicity. Moreover, no relevant effects of uranium, maternal restraint, or their combination were noted on developmental landmarks in the offspring. In the passive avoidance test, at 40 and 80 mg UAD/(kg day) restraint significantly modified passive avoidance acquisition (T1) and retention time (T2) 24 h later. However, no significant differences were observed on the Morris water maze test. The results of the present study indicate that, in general terms, exposure of female rats to UAD before mating with untreated males, as well as during gestation and lactation, did not cause relevant dose-related adverse effects on postnatal development and behavior of the offspring. The influence of stress was very limited

  16. Glutamate co-transmission from developing medial nucleus of the trapezoid body - Lateral superior olive synapses is cochlear dependent in kanamycin-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ho [Institute of Tissue Regeneration Engineering (ITREN), Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Pradhan, Jonu [Department of Nanobio Medical Science, Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Maskey, Dhiraj; Park, Ki Sup [Department of Anatomy, College of Medicine, Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Hong, Sung Hwa [Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Suh, Myung-Whan [Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Kim, Myeung Ju, E-mail: mjukim99@dankook.ac.kr [Department of Anatomy, College of Medicine, Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Ahn, Seung Cheol, E-mail: ansil67@hanmail.net [Department of Physiology, College of Medicine, Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of)

    2011-02-11

    Research highlights: {yields} Glutamate co-transmission is enhanced in kanamycin-treated rats. {yields} VGLUT3 expression is increased in kanamycin-treated rats. {yields} GlyR expression is decreased in kanamycin-treated rats. {yields} GlyR, VGLUT3 expression patterns are asymmetric in unilaterally cochlear ablated rat. -- Abstract: Cochlear dependency of glutamate co-transmission at the medial nucleus of the trapezoid body (MNTB) - the lateral superior olive (LSO) synapses was investigated using developing rats treated with high dose kanamycin. Rats were treated with kanamycin from postnatal day (P) 3 to P8. A scanning electron microscopic study on P9 demonstrated partial cochlear hair cell damage. A whole cell voltage clamp experiment demonstrated the increased glutamatergic portion of postsynaptic currents (PSCs) elicited by MNTB stimulation in P9-P11 kanamycin-treated rats. The enhanced VGLUT3 immunoreactivities (IRs) in kanamycin-treated rats and asymmetric VGLUT3 IRs in the LSO of unilaterally cochlear ablated rats supported the electrophysiologic data. Taken together, it is concluded that glutamate co-transmission is cochlear-dependent and enhanced glutamate co-transmission in kanamycin-treated rats is induced by partial cochlear damage.

  17. Effects of the phytoestrogen genistein on the development of the reproductive system of Sprague Dawley rats

    Directory of Open Access Journals (Sweden)

    Siti Rosmani Md Zin

    2013-01-01

    Full Text Available OBJECTIVES: Genistein is known to influence reproductive system development through its binding affinity for estrogen receptors. The present study aimed to further explore the effect of Genistein on the development of the reproductive system of experimental rats. METHODS: Eighteen post-weaning female Sprague Dawley rats were divided into the following groups: (i a control group that received vehicle (distilled water and Tween 80; (ii a group treated with 10 mg/kg body weight (BW of Genistein (Gen 10; and (iii a group treated with a higher dose of Genistein (Gen 100. The rats were treated daily for three weeks from postnatal day 22 (P22 to P42. After the animals were sacrificed, blood samples were collected, and the uteri and ovaries were harvested and subjected to light microscopy and immunohistochemical study. RESULTS: A reduction of the mean weekly BW gain and organ weights (uteri and ovaries were observed in the Gen 10 group compared to the control group; these findings were reversed in the Gen 100 group. Follicle stimulating hormone and estrogen levels were increased in the Gen 10 group and reduced in the Gen 100 group. Luteinizing hormone was reduced in both groups of Genistein-treated animals, and there was a significant difference between the Gen 10 and control groups (p<0.05. These findings were consistent with increased atretic follicular count, a decreased number of corpus luteum and down-regulation of estrogen receptors-a in the uterine tissues of the Genistein-treated animals compared to the control animals. CONCLUSION: Post-weaning exposure to Genistein could affect the development of the reproductive system of ovarian-intact experimental rats because of its action on the hypothalamic-pituitary-gonadal axis by regulating hormones and estrogen receptors.

  18. Dahl salt-sensitive rats develop hypovitaminosis D and hyperparathyroidism when fed a standard diet

    Science.gov (United States)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Sayavongsa, Phouyong; Doherty, Akins; Arnaud, Sara B.

    2005-01-01

    The Dahl salt-sensitive rat (S), a model for salt-sensitive hypertension, excretes protein-bound 25-hydroxyvitamin D (25-OHD) into urine when fed a low salt diet. Urinary 25-OHD increases during high salt intake. We tested the hypothesis that continuous loss of 25-OHD into urine would result in low plasma 25-OHD concentration in mature S rats raised on a standard diet. Dahl S and salt-resistant (R) male rats were raised to maturity (12-month-old) on a commercial rat diet (1% salt) and switched to 0.3% (low) or 2% (high) salt diets 3 weeks before euthanasia. Urine (24 h) was collected at the end of the dietary treatments. Urinary 25-OHD and urinary 25-OHD binding activity of S rats were three times that of R rats, resulting in lower plasma 25-OHD and 24,25-dihydroxyvitamin D concentrations in S rats than in R rats (P D concentrations than those fed 0.3% salt (P = 0.002). S rats excreted more calcium into urine than R rats (P D and high plasma 1,25-dihydroxyvitamin D and PTH concentrations seen in the mature S rats have also been reported for elderly patients with low-renin (salt-induced) hypertension. An implication of this study is that low vitamin D status may occur with age in salt-sensitive individuals, even when salt intake is normal.

  19. A comparison of effects between accelerated heavy ion irradiation and X-irradiation on the development of rat cerebellum

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Murata, Yoshiharu; Takahashi, Sentaro; Kubota, Yoshihisa

    1999-01-01

    The purpose of this experiment is to compare the effects of 290 MeV/u carbon-ion irradiation and X-irradiation on the development of rat cerebellum. Pregnant rats were exposed to carbon-ion beams at a single dose of 1.5 Gy on day 19.0 of gestation. Other groups of pregnant rats were exposed to X-rays on day 19.0 at single doses of 1.5, 2.0 and 2.5 Gy. Their fetuses were removed 8 hr after exposure, and an acute effect examined microscopically for cell death in the external granular layer of the cerebellum. Other dams were allowed to give birth and rear their litters. The offspring were sacrificed at 6 weeks of age, and their cerebella were examined for foliar malformation. The results showed that the effect of 1.5 Gy carbon-ion irradiation on the development of cerebellum was stronger than that of 1.5 Gy X-irradiation and similar to 2.0-2.5 Gy X-irradiation. (author)

  20. Development of a hyperpolarized 129Xe system on 3T for the rat lungs

    International Nuclear Information System (INIS)

    Sato, Hiroshi; Enmi, Jun-ichiro; Hayashi, Takuya

    2004-01-01

    MRI (magnetic resonance imaging) with 129 Xe has gained much attention as a diagnostic methodology because of its affinity for lipids and possible polarization. The quantitative estimation of net detectability and stability of hyperpolarized 129 Xe in the dissolved phase in vivo is valuable to the development of clinical applications. The goal of this study was to develop a stable hyperpolarized 129 Xe experimental 3T system to statistically analyze the dissolved-phase 129 Xe signal in the rat lungs. The polarization of 129 Xe with buffer gases at the optical pumping cell was measured under adiabatic fast passage against the temperature of an oven and laser absorption at the cell. The gases were insuffiated into the lungs of Sprague-Dawley rats (n=15, 400-550 g) through an endotracheal tube under spontaneous respiration. Frequency-selective spectroscopy was performed for the gas phase and dissolved phase. We analyzed the 129 Xe signal in the dissolved phase to measure the chemical shift, T 2 * , delay and its ratio in a rat lungs on 3T. The polarizer was able to produce polarized gas (1.1±0.47%, 120 cm 3 ) hundreds of times with the laser absorption ratio (25%) kept constant at the cell. The optimal buffer gas ratio of 25-50% rendered the maximum signal in the dissolved phase. Two dominant peaks of 211.8±0.9 and 201.1±0.6 ppm were observed with a delay of 0.4±0.9 and 0.9±1.0 s from the gas phase spectra. The ratios of their average signal to that of the gas phase were 5.6±5.2% and 4.4±4.7%, respectively. The T 2 * of the air space in the lungs was 2.5±0.5 ms, which was 3.8 times shorter than that in a syringe. We developed a hyperpolarized 129 Xe experimental system using a 3T MRI scanner that yields sufficient volume and polarization and quantitatively analyzed the dissolved-phase 129 Xe signal in the rat lungs. (author)

  1. Development of Eimeria nieschulzi (Coccidia, Apicomplexa Gamonts and Oocysts in Primary Fetal Rat Cells

    Directory of Open Access Journals (Sweden)

    Hong Chen

    2013-01-01

    Full Text Available The in vitro production of gametocytes and oocysts of the apicomplexan parasite genus Eimeria is still a challenge in coccidiosis research. Until today, an in vitro development of gametocytes or oocysts had only been shown in some Eimeria species. For several mammalian Eimeria species, partial developments could be achieved in different cell types, but a development up to gametocytes or oocysts is still lacking. This study compares several permanent cell lines with primary fetal cells of the black rat (Rattus norvegicus concerning the qualitative in vitro development of the rat parasite Eimeria nieschulzi. With the help of transgenic parasites, the developmental progress was documented. The selected Eimeria nieschulzi strain constitutively expresses the yellow fluorescent protein and a macrogamont specific upregulated red tandem dimer tomato. In the majority of all investigated host cells the development stopped at the second merozoite stage. In a mixed culture of cells derived from inner fetal organs the development of schizont generations I-IV, macrogamonts, and oocysts were observed in crypt-like organoid structures. Microgamonts and microgametes could not be observed and oocysts did not sporulate under air supply. By immunohistology, we could confirm that wild-type E. nieschulzi stages can be found in the crypts of the small intestine. The results of this study may be helpful for characterization of native host cells and for development of an in vitro cultivation system for Eimeria species.

  2. Modified high-sucrose diet-induced abdominally obese and normal-weight rats developed high plasma free fatty acid and insulin resistance.

    Science.gov (United States)

    Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei

    2012-01-01

    Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.

  3. Effect of tritium (tritium water) on prenatal and postnatal development of rats

    International Nuclear Information System (INIS)

    Bajrakova, A.; Baev, I.; Yagova, A.

    1983-01-01

    Female rats were injected intraperitoneally on the first day after their fecundation with 3,7 kBq/g b.w. tritium water - activity which under these conditions does not increase prenatal death rate. The postnatal development of the born alive was traced in respect to the lethality rate and growth rate (mean bodily weight in dynamics up to the 60-th day p.p.) and compared with that of the offsprings from the control group. It was shown that the used activity tritium water during the initial stages of embryonic development does not result in deviations from the norm. (authors)

  4. Elamipretide (SS-31 Ameliorates Isoflurane-Induced Long-Term Impairments of Mitochondrial Morphogenesis and Cognition in Developing Rats

    Directory of Open Access Journals (Sweden)

    Jian-Jun Yang

    2017-04-01

    Full Text Available Mitochondria are supposed to be involved in the early pathogenesis of general anesthesia (GA-induced neurotoxicity and long-term cognitive deficits in developing brains. However, effective pharmacologic agents targeted on mitochondria during GA exposure are lacking. This study explores the protective effects of mitochondrion-targeted antioxidant elamipretide (SS-31 on mitochondrial morphogenesis and cognition in developing rats exposed to isoflurane. Rat pups at postnatal day (PND 7 were exposed to 1.5% isoflurane for 6 h following intraperitoneal administration of elamipretide or vehicle with 30 min interval. The hippocampus was immediately removed for biochemical assays. Histopathological studies were conducted at PND 21, and behavioral tests were performed at PND 40 or 60. We found that early exposure to isoflurane caused remarkable reactive oxygen species (ROS accumulation, mitochondrial deformation and neuronal apoptosis in hippocampus. The injury occurrence ultimately gave rise to long-term cognitive deficits in developing rats. Interestingly, pretreatment with elamipretide not only provided protective effect against oxidative stress and mitochondrial damages, but also attenuated isoflurane-induced cognitive deficits. Our data support the notion that mitochondrial damage is an early and long lasting event of GA-induced injury and suggest that elamipretide might have clinically therapeutic benefits for pediatric patients undertaking GA.

  5. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    Science.gov (United States)

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  6. Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain.

    Science.gov (United States)

    Beckers, Gabriël J L; Gahr, Manfred

    2012-08-01

    Auditory systems bias responses to sounds that are unexpected on the basis of recent stimulus history, a phenomenon that has been widely studied using sequences of unmodulated tones (mismatch negativity; stimulus-specific adaptation). Such a paradigm, however, does not directly reflect problems that neural systems normally solve for adaptive behavior. We recorded multiunit responses in the caudomedial auditory forebrain of anesthetized zebra finches (Taeniopygia guttata) at 32 sites simultaneously, to contact calls that recur probabilistically at a rate that is used in communication. Neurons in secondary, but not primary, auditory areas respond preferentially to calls when they are unexpected (deviant) compared with the same calls when they are expected (standard). This response bias is predominantly due to sites more often not responding to standard events than to deviant events. When two call stimuli alternate between standard and deviant roles, most sites exhibit a response bias to deviant events of both stimuli. This suggests that biases are not based on a use-dependent decrease in response strength but involve a more complex mechanism that is sensitive to auditory deviance per se. Furthermore, between many secondary sites, responses are tightly synchronized, a phenomenon that is driven by internal neuronal interactions rather than by the timing of stimulus acoustic features. We hypothesize that this deviance-sensitive, internally synchronized network of neurons is involved in the involuntary capturing of attention by unexpected and behaviorally potentially relevant events in natural auditory scenes.

  7. Blocking estradiol synthesis affects memory for songs in auditory forebrain of male zebra finches.

    Science.gov (United States)

    Yoder, Kathleen M; Lu, Kai; Vicario, David S

    2012-11-14

    Estradiol (E2) has recently been shown to modulate sensory processing in an auditory area of the songbird forebrain, the caudomedial nidopallium (NCM). When a bird hears conspecific song, E2 increases locally in NCM, where neurons express both the aromatase enzyme that synthesizes E2 from precursors and estrogen receptors. Auditory responses in NCM show a form of neuronal memory: repeated playback of the unique learned vocalizations of conspecific individuals induces long-lasting stimulus-specific adaptation of neural responses to each vocalization. To test the role of E2 in this auditory memory, we treated adult male zebra finches (n=16) with either the aromatase inhibitor fadrozole (FAD) or saline for 8 days. We then exposed them to 'training' songs and, 6 h later, recorded multiunit auditory responses with an array of 16 microelectrodes in NCM. Adaptation rates (a measure of stimulus-specific adaptation) to playbacks of training and novel songs were computed, using established methods, to provide a measure of neuronal memory. Recordings from the FAD-treated birds showed a significantly reduced memory for the training songs compared with saline-treated controls, whereas auditory processing for novel songs did not differ between treatment groups. In addition, FAD did not change the response bias in favor of conspecific over heterospecific song stimuli. Our results show that E2 depletion affects the neuronal memory for vocalizations in songbird NCM, and suggest that E2 plays a necessary role in auditory processing and memory for communication signals.

  8. Allopurinol does not decrease blood pressure or prevent the development of hypertension in the deoxycorticosterone acetate-salt rat model.

    Science.gov (United States)

    Szasz, Theodora; Linder, A Elizabeth; Davis, Robert P; Burnett, Robert; Fink, Gregory D; Watts, Stephanie W

    2010-12-01

    Reactive oxygen species play an important role in the pathogenesis of hypertension, disease in which reactive oxygen species levels and markers of oxidative stress are increased. Xanthine oxidase (XO) is a reactive oxygen species-producing enzyme the activity of which may increase during hypertension. Studies on XO inhibition effects on blood pressure have yielded controversial results. We hypothesized that XO inhibition would decrease blood pressure or attenuate the development of deoxycorticosterone acetate (DOCA)-salt hypertension. We administered the XO inhibitor, allopurinol (50 mg/kg per day, orally) or its vehicle to rats during the established or development stages of DOCA-salt hypertension. We validated XO inhibition by high-performance liquid chromatography measurements of XO metabolites in urine, serum, and tissues demonstrating a decrease in products, increase in substrates, and detection of the active metabolite of allopurinol, oxypurinol. We monitored blood pressure continuously through radiotelemetry and performed gross evaluations of target organs of hypertension. Allopurinol treatment did not impact the course of DOCA-salt hypertension regardless of the timing of administration. Aside from a significant decrease in pulse pressure in allopurinol-treated rats, no positive differences were observed between the allopurinol and the vehicle-treated rats. We conclude that XO does not play an important role in the development or maintenance of hypertension in the rat DOCA-salt hypertension model.

  9. DEET potentiates the development and persistence of anticholinesterase dependent chronic pain signs in a rat model of Gulf War Illness pain

    International Nuclear Information System (INIS)

    Flunker, L.K.; Nutter, T.J.; Johnson, R.D.; Cooper, B.Y.

    2017-01-01

    Exposure to DEET (N,N-diethyl-meta-toluamide) may have influenced the pattern of symptoms observed in soldiers with GWI (Gulf War Illness; Haley and Kurt, 1997). We examined how the addition of DEET (400 mg/kg; 50% topical) to an exposure protocol of permethrin (2.6 mg/kg; topical), chlorpyrifos (CP; 120 mg/kg), and pyridostigmine bromide (PB;13 mg/kg) altered the emergence and pattern of pain signs in an animal model of GWI pain (). Rats underwent behavioral testing before, during and after a 4 week exposure: 1) hindlimb pressure withdrawal threshold; 2) ambulation (movement distance and rate); and 3) resting duration. Additional studies were conducted to assess the influence of acute DEET (10–100 μM) on muscle and vascular nociceptor K v 7, K DR , Na v 1.8 and Na v 1.9. We report that a 50% concentration of DEET enhanced the development and persistence of pain-signs. Rats exposed to all 4 compounds exhibited ambulation deficits that appeared 5–12 weeks post-exposure and persisted through weeks 21–24. Rats exposed to only three agents (CP or PB excluded), did not fully develop ambulation deficits. When PB was excluded, rats also developed rest duration pain signs, in addition to ambulation deficits. There was no evidence that physiological doses of DEET acutely modified nociceptor K v 7, K DR , Na v 1.8 or Na v 1.9 activities. Nevertheless, DEET augmented protocols decreased the conductance of K v 7 expressed in vascular nociceptors harvested from chronically exposed rats. We concluded that DEET enhanced the development and persistence of pain behaviors, but the anticholinesterases CP and PB played a determinant role. - Highlights: • DEET accelerated and prolonged pain-like behaviors in a rat model of Gulf War Illness. • The development of pain behaviors were dependent upon chlorpyrifos and pyridostigmine. • Conductance of vascular nociceptor Kv7 was diminished 12 weeks following exposures. • DEET did not have any acute influence on nociceptor Kv7

  10. Quantitative autoradiography of muscarinic and benzodiazepine receptors in the forebrain of the turtle, Pseudemys scripta

    International Nuclear Information System (INIS)

    Schlegel, J.R.; Kriegstein, A.R.

    1987-01-01

    The distribution of muscarinic and benzodiazepine receptors was investigated in the turtle forebrain by the technique of in vitro receptor autoradiography. Muscarinic binding sites were labeled with 1 nM 3 H-quinuclidinyl benzilate ( 3 H-QNB), and benzodiazepine sites were demonstrated with the aid of 1 nM 3 H-flunitrazepam ( 3 H-FLU). Autoradiograms generated on 3 H-Ultrofilm apposed to tissue slices revealed regionally specific distributions of muscarinic and benzodiazepine binding sites that are comparable with those for mammalian brain. Dense benzodiazepine binding was found in the anterior olfactory nucleus, the lateral and dorsal cortices, and the dorsal ventricular ridge (DVR), a structure with no clear mammalian homologue. Muscarinic binding sites were most dense in the striatum, accumbens, DVR, lateral geniculate, and the anterior olfactory nucleus. Cortical binding sites were studied in greater detail by quantitative analysis of autoradiograms generated by using emulsion-coated coverslips. Laminar gradients of binding were observed that were specific for each radioligand; 3 H-QNB sites were most dense in the inner molecular layer in all cortical regions, whereas 3 H-FLU binding was generally most concentrated in the outer molecular layer and was least dense through all layers in the dorsomedial cortex. Because pyramidal cells are arranged in register in turtle cortex, the laminar patterns of receptor binding may reflect different receptor density gradients along pyramidal cell dendrites

  11. Extraction of total RNA in the developing chicken forebrain

    Directory of Open Access Journals (Sweden)

    Sayed Rasoul Zaker

    2014-01-01

    Full Text Available Background: Gene expression of Gama-Aminobutyric acid (GABA A receptor subunits may change during development. Procedures in molecular biology are required to understand the gene expression profile GABA A R in chicken. The outcome of the results depends on good-quality high-molecular-weight RNA. Several procedures can be used to isolate RNA from the brain of chicken; however, most of them are time-consuming and require disruption of cells or freeze and thaw in the presence of RNase inhibitors. The aim of this experiment was isolation of RNA from chicken embryonic brain tissues using appropriate RNA extraction kit. Materials and Methods: Fertilized eggs from Ross breed (Gallus gallus were incubated at 38°C and 60% relative humidity in a forced-draft incubator and were turned every 3 h. After 3, 7, 14 and 20 days of incubation, eggs were cooled on ice to induce deep anesthesia. Then whole brains were dissected out. As brains could not be excised in a reproducible way from earlier embryos (embryonic days 4 and 6, whole heads were collected. Chicken embryos between day 7 to 20 and 1 day after birth were decapitated, and their brains removed. Samples were immediately inserted into lysis buffer and stored at −70°C. Total RNA was isolated and a contaminating genomic deoxyribonucleic acid (DNA was digested. RNA quality was checked using gel electrophoresis. Results: We obtained 52 mg/ml to 745 mg/ml with A260/280 1.7-2.2. Only high-quality RNA, with no signs of degradation, was used for further experiments. Conclusion: In conclusion, protocol was found to be suitable for the isolation of total RNA from embryonic chicken cells.

  12. Promoting Effects of Milk on the Development of 7,12-dimethylbenz(a)anthracene (DMBA)-induced Mammary Tumors in Rats

    International Nuclear Information System (INIS)

    Ma, De-Fu; Katoh, Ryohei; Zhou, Hong; Wang, Pei-Yu

    2007-01-01

    To assess the effect of milk on the development of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors, 48 female Sprague-Dawley rats treated with DMBA were divided into 3 groups and given 1 of 3 test solutions for 20 weeks as their drinking liquid: milk, estrone sulfate solution or tap water. The milk group showed a significantly great incidence (75%) in tumor development compared with the water group (38%) and was comparable to the estrone sulfate group (69%). Mean tumor number per rat in the milk group was significantly higher than that in the water group (p=0.009). We classified the mammary tumors into three histological types: intraductal papilloma, fibroadenoma, and adenocarcinoma. Although the percent of intraductal papilloma and fibroadenoma was almost same among the three groups, malignant tumor was found only in the milk and estrone sulfate groups. In conclusion, our results indicate that milk as well as estrone sulfate promotes the development of DMBA-induced mammary tumors in rat and could be associated with the occurrence of adenocarcinoma

  13. Combined effect of carcinogenic n-nitrosodimethylamine precursors and fractioned γ-irradiation on tumor development in rats

    International Nuclear Information System (INIS)

    Galenko, P.M.; Nedopitanskaya, N.N.

    1996-01-01

    The influence of combined action of N-nitrosodimethylamine (NDMA) and fractioned γ-irradiation on tumor development in rats was investigated. Both the tumor frequency and tumor plurality coefficient have been studied for two types of treatment: precursors of NDMA (amidopyrine and/or sodium nitrite (SN)) alone and the combination 'precursors plus radiation'. Tumor frequency decreased by about 11% after combination of γ-irradiation and precursors in comparison with precursors alone. Nevertheless, treatment with SN and γ-irradiation did not change tumor frequency in comparison with SN alone. Irradiation of rats treated with precursors led to an increased tumor plurality coefficient

  14. Effects of in utero and lactational exposure to SbV on rat neurobehavioral development and fertility.

    Science.gov (United States)

    Coelho, Deise R; De-Carvalho, Rosangela R; Rocha, Rafael C C; Saint'Pierre, Tatiana D; Paumgartten, Francisco J R

    2014-12-01

    Meglumine antimoniate (MA) is a pentavalent antimony drug used to treat leishmaniases. We investigated the neurobehavioral development, sexual maturation and fertility of the offspring of MA-treated rats. Dams were administered MA (0, 75, 150, 300 mg Sb(V)/kg body wt/d, sc) from gestation day 0, throughout parturition and lactation, until weaning. At the highest dose, MA reduced the birth weight and the number of viable newborns. In the male offspring, MA did not impair development (somatic, reflex maturation, weight gain, puberty onset, open field test), sperm count, or reproductive performance. Except for a minor effect on body weight gain and vertical exploration in the open field, MA also did not affect the development of female offspring. Measurements of the Sb levels (ICP-MS) in the blood of MA-treated female rats and their offspring demonstrated that Sb is transferred to the fetuses via the placenta and to the suckling pups via milk. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension.

    Science.gov (United States)

    Ivy, D Dunbar; McMurtry, Ivan F; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2005-06-07

    Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ET(B) receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ET(B) receptor-deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT(+/+)) and ET(B) receptor-deficient (MCT(sl/sl)) rats at 6 weeks of age were assessed. MCT(sl/sl) rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCT(sl/sl) rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCT(sl/sl) rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ET(B) receptors was decreased in MCT(sl/sl) rat lungs, ET(A) receptor expression increased. Deficiency of the ET(B) receptor markedly accelerates the progression of

  16. Development of Occlusive Neointimal Lesions in Distal Pulmonary Arteries of Endothelin B Receptor–Deficient Rats: A New Model of Severe Pulmonary Arterial Hypertension

    Science.gov (United States)

    Ivy, D. Dunbar; McMurtry, Ivan F.; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2007-01-01

    Background Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ETB receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ETB receptor–deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. Methods and Results The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT+/+) and ETB receptor–deficient (MCTsl/sl) rats at 6 weeks of age were assessed. MCTsl/sl rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCTsl/sl rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCTsl/sl rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ETB receptors was decreased in MCTsl/sl rat lungs, ETA receptor expression increased. Conclusions Deficiency of the ETB receptor markedly

  17. Effects of nerve and fibroblast growth factors on the production of nitric oxide in experimental model of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Maksimović Ivana D.

    2002-01-01

    Full Text Available The role of nitric oxide (NO in neurological diseases represents one of the most studied, yet controversial subjects in physiology. The aim was to examine the effects of intrastriatal injection neurotrophins (nerve growth factors-NGF, fibroblast growth factors-FGF in order to investigate the possible involvement of NO in quinolinic acid (QA induced striatum toxicity in the rat model of Huntington's disease (HD. QA was administered unilaterally into the striatum of adult Wistar rats in a single dose of 150 nM. The other two groups of animals were pretreated immediately before QA application with NGF and FGF, respectively. Control group was treated with 0.9% saline solution in the same manner. Animals were decapitated 7 days after the treatment. Nitrite levels were significantly decreased both in the ipsi- and contra lateral striatum and forebrain cortex of NGF- and FGF-treated animals compared with QA treatment. These results indicated a temporal and spatial propagation of oxidative stress and spread protective effects of NGF and FGF on the forebrain cortex, the distant structure, but tightly connected with striatum, the place of direct neurotoxin damage. Neurotrophins could be the potential neuroprotective agents in HD.

  18. Development of a melatonin RIA and observation on the plasma melatonin contents in rat models of chronic hyperirritable-depression

    International Nuclear Information System (INIS)

    Rong Yang; Sun Acheng; Ma Cong; Zhao Zhong; Gui Yuning; Li Jianjun; Wang Guangkai; Guo Xiazhen

    2005-01-01

    Objective: To establish a new melatonin assay and to investigate the changes of plasma melatonin content in rat models of chronic hyperirritable-depression. Methods: Quality melatonin antiserum was obtained from immunization of Newzealand white rabbit with melatonin immunogen derived from conjugation of melatonin to bovine thyroglobulin using formaldehyde. Radioiodinated melatonin was used as tracer and a melatonin assay was developed through non-equilibrium competition. Twenty rat models of chronic hyperirritable-depression were prepared with multiple randomly-combined stimuli as previously reported. Plasma and pineal body tissue contents of melatonin in the models were examined in midsummer (n=10) and mid-winter (n=10) with the newly developed melatonin RIA. Contents of melatonin were also determined in 20 control rats. Results: The antiserum possessed very low cross-reaction rate with several melatonin analogous tested (0.09%-2.3%). At the titer of 1:1800, the maximal combination rate was 41%. The affinity constant was 1.7 x 10 9 L/M. The specific radioactivity of the tracer 125 I-melatonin was 55 μCi/μg, with radio-chemical purity of 93% and the tracer was stable at 4 degree C for 65 days. The assay was of high sensitivity (lower detection limit 5pg/ml), intra-CV, 6.5 %; inter-CV, 11%. The plasma and pineal body tissue contents of melatonin in the rat models were consistently significantly lower than those in control rats both during summer and winter, while the contents of melatonin during winter were always significantly higher than those during summer in both groups of animals. Conclusion: The newly developed assay was of good specificity and sensitivity with stable agents (65 days). The experimental results demonstrated definite correlationship between the depression disorder and melatonin contents in the rat models, however, the disorder was not seasonally affective. The seasonal variation of the melatonin contents in the animals was due to different

  19. Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions

    International Nuclear Information System (INIS)

    Conn, P.J.; Sanders-Bush, E.

    1985-01-01

    In rat cerebral cortex, serotonin (5-HT) stimulates phosphoinositide turnover with an EC50 of 1 microM in the presence of pargyline. The EC50 is 16-fold higher in the absence of pargyline. Selective S2 antagonists inhibit 5-HT-stimulated phosphoinositide turnover. Schild analysis of the blockade by ketanserin of the 5-HT effect gives an estimated Kd of ketanserin for the phosphoinositide-linked receptor of 11.7 nM, which agrees with the Kd (3.5 nM) of [ 3 H]ketanserin for the S2 site. Furthermore, MK-212, 5-HT and 5-fluorotryptamine stimulate phosphoinositide turnover with potencies that resemble their potencies at the S2 but not the S1 binding site. Of 11 agonists tested, the tryptamine derivatives tend to be more efficacious than the piperazine derivatives. The selective S1 agonist 8-hydroxy-2-(di-N-propylamino)tetralin is inactive at stimulating phosphoinositide turnover. No significant relationship exists between the regional distributions of 5-HT-stimulated phosphoinositide turnover and S2 binding sites. Furthermore, the S2 antagonist ketanserin is less potent and less efficacious in hippocampus and limbic forebrain than in cerebral cortex. These data suggest that 5-HT-stimulated phosphoinositide turnover is linked to the S2 binding site in rat cerebral cortex. However, 5-HT increases phosphoinositide turnover in subcortical regions by mechanisms other than stimulation of the S2 receptor

  20. Chronic consumption of trans fat can facilitate the development of hyperactive behavior in rats.

    Science.gov (United States)

    Pase, C S; Roversi, Kr; Trevizol, F; Kuhn, F T; Dias, V T; Roversi, K; Vey, L T; Antoniazzi, C T; Barcelos, R C S; Bürger, M E

    2015-02-01

    In recent decades, the increased consumption of processed foods, which are rich in hydrogenated vegetable fat (HVF), has led to a decreased consumption of fish and oilseed, rich in omega-3 fatty acids. This eating habit provides an increased intake of trans fatty acids (TFA), which may be related to neuropsychiatric conditions, including inattention and hyperactivity. In this study, we evaluated the potential connection between prolonged trans fat consumption and development of hyperactivity-like symptoms in rats using different behavioral paradigms. Trans fat intake for 10 months (Experiment 1), as well as during pregnancy and lactation across two sequential generations of rats, (Experiment 4) induced active coping in the forced swimming task (FST). In addition, HVF supplementation was associated with increased locomotion before and after amphetamine (AMPH) administration (Experiment 2). Similarly, HVF supplementation during pregnancy and lactation were associated with increased locomotion in both young and adult rats (Experiment 3). Furthermore, trans fat intake across two sequential generations increased locomotor and exploratory activities following stressors (Experiment 4). From these results, we suggest that chronic consumption of trans fat is able to enhance impulsiveness and reactivity to novelty, facilitating hyperactive behaviors. Copyright © 2014 Elsevier Inc. All rights reserved.