WorldWideScience

Sample records for rat cerebellar membranes

  1. Neurodevelopmental malformations of the cerebellar vermis in genetically engineered rats

    Science.gov (United States)

    The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformati...

  2. A composite neurobehavioral test to evaluate acute functional deficits after cerebellar haemorrhage in rats.

    Science.gov (United States)

    McBride, Devin W; Nowrangi, Derek; Kaur, Harpreet; Wu, Guangyong; Huang, Lei; Lekic, Tim; Tang, Jiping; Zhang, John H

    2018-03-01

    Cerebellar haemorrhage accounts for 5-10% of all intracerebral haemorrhages and leads to severe, long-lasting functional deficits. Currently, there is limited research on this stroke subtype, which may be due to the lack of a suitable composite neuroscoring system specific for cerebellar injury in rodents. The purpose of this study is to develop a comprehensive composite neuroscore test for cerebellar injury using a rat model of cerebellar haemorrhage. Sixty male Sprague-Dawley rats were subjected to either sham surgery or cerebellar haemorrhage. Twenty-four hours post-injury, neurological behaviour was evaluated using 17 cost-effective and easy-to-perform tests, and a composite neuroscore was developed. The composite neuroscore was then used to assess functional recovery over seven days after cerebellar haemorrhage. Differences in the composite neuroscore deficits for the mild and moderate cerebellar haemorrhage models were observed for up to five days post-ictus. Until now, a composite neuroscore for cerebellar injury was not available for rodent studies. Herein, using mild and moderate cerebellar haemorrhage rat models a composite neuroscore for cerebellar injury was developed and used to assess functional deficits after cerebellar haemorrhage. This composite neuroscore may also be useful for other cerebellar injury models.

  3. Age-related changes of monoaminooxidases in rat cerebellar cortex

    Directory of Open Access Journals (Sweden)

    FM Tranquilli Leali

    2009-06-01

    Full Text Available Age-related changes of the monoaminoxidases, evaluated by enzymatic staining, quantitative analysis of images, biochemical assay and statistical analysis of data were studied in cerebellar cortex of young (3-month-old and aged (26- month-old male Sprague-Dawley rats. The enzymatic staining shows the presence of monoamino-oxidases within the molecular and granular layers as well as within the Purkinje neurons of the cerebellum of young and aged animals. In molecular layer, and in Purkinje neurons the levels of monoaminooxidases were strongly increased in old rats. The granular layer showed, on the contrary, an age-dependent loss of enzymatic staining. These morphological findings were confirmed by biochemical results. The possibility that age-related changes in monoaminooxidase levels may be due to impaired energy production mechanisms and/or represent the consequence of reduced energetic needs is discussed.

  4. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine

    2013-01-01

    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  5. Tiagabine treatment in kainic acid induced cerebellar lesion of dystonia rat model

    Science.gov (United States)

    Wang, Tsui-chin; Ngampramuan, Sukonthar; Kotchabhakdi, Naiphinich

    2016-01-01

    Dystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements. The exaggerated movements have been studied and have implicated basal ganglia as the point of origin. In more recent studies, the cerebellum has also been identified as the possible target of dystonia, in the search for alternative treatments. Tiagabine is a selective GABA transporter inhibitor, which blocks the reuptake and recycling of GABA. The study of GABAergic drugs as an alternative treatment for cerebellar induced dystonia has not been reported. In our study, tiagabine was i.p. injected into kainic acid induced, cerebellar dystonic adult rats, and the effects were compared with non-tiagabine injected and sham-operated groups. Beam walking apparatus, telemetric electromyography (EMG) recording, and histological verification were performed to confirm dystonic symptoms in the rats on post-surgery treatment. Involuntary dystonic spasm was observed with repetitive rigidity, and twisting movements in the rats were also confirmed by a high score on the dystonic scoring and a high amplitude on the EMG data. The rats with tiagabine treatment were scored based on motor amelioration assessed via beam walking. The result of this study suggests and confirms that low dose of kainic acid microinjection is sufficient to induce dystonia from the cerebellar vermis. In addition, from the results of the EMG recording and the behavioral assessment through beam walking, tiagabine is demonstrated as being effective in reducing dystonic spasm and may be a possible alternative therapeutic drug in the treatment of dystonia. PMID:28337103

  6. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  7. Changes of amino acid concentrations in the rat vestibular nuclei after inferior cerebellar peduncle transection.

    Science.gov (United States)

    Sun, Yizhe; Godfrey, Donald A; Godfrey, Timothy G; Rubin, Allan M

    2007-02-15

    Although there is a close relationship between the vestibular nuclear complex (VNC) and the cerebellum, little is known about the contribution of cerebellar inputs to amino acid neurotransmission in the VNC. Microdissection of freeze-dried brain sections and high-performance liquid chromatography (HPLC) were combined to measure changes of amino acid concentrations within the VNC of rats following transection of the cerebellovestibular connections in the inferior cerebellar peduncle. Distributions of 12 amino acids within the VNC at 2, 4, 7, and 30 days after surgery were compared with those for control and sham-lesioned rats. Concentrations of gamma-aminobutyric acid (GABA) decreased by 2 days after unilateral peduncle transection in nearly all VNC regions on the lesioned side and to lesser extents on the unlesioned side and showed partial recovery up to 30 days postsurgery. Asymmetries between the two sides of the VNC were maintained through 30 days. Glutamate concentrations were reduced bilaterally in virtually all regions of the VNC by 2 days and showed complete recovery in most VNC regions by 30 days. Glutamine concentrations increased, starting 2 days after surgery, especially on the lesioned side, so that there was asymmetry generally opposite that of glutamate. Concentrations of taurine, aspartate, and glycine also underwent partially reversible changes after peduncle transection. The results suggest that GABA and glutamate are prominent neurotransmitters in bilateral projections from the cerebellum to the VNC and that amino acid metabolism in the VNC is strongly influenced by its cerebellar connections.

  8. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats.

    Science.gov (United States)

    Bueno-Nava, Antonio; Gonzalez-Pina, Rigoberto; Alfaro-Rodriguez, Alfonso; Nekrassov-Protasova, Vladimir; Durand-Rivera, Alfredo; Montes, Sergio; Ayala-Guerrero, Fructuoso

    2010-10-01

    The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum.

  9. Low and high dietary folic acid levels perturb postnatal cerebellar morphology in growing rats.

    Science.gov (United States)

    Partearroyo, Teresa; Pérez-Miguelsanz, Juliana; Peña-Melián, Ángel; Maestro-de-Las-Casas, Carmen; Úbeda, Natalia; Varela-Moreiras, Gregorio

    2016-06-01

    The brain is particularly sensitive to folate metabolic disturbances, because methyl groups are critical for brain functions. This study aimed to investigate the effects of different dietary levels of folic acid (FA) on postnatal cerebellar morphology, including the architecture and organisation of the various layers. A total of forty male OFA rats (a Sprague-Dawley strain), 5 weeks old, were classified into the following four dietary groups: FA deficient (0 mg/kg FA); FA supplemented (8 mg/kg FA); FA supra-supplemented (40 mg/kg FA); and control (2 mg/kg FA) (all n 10 per group). Rats were fed ad libitum for 30 d. The cerebellum was quickly removed and processed for histological and immunohistochemical analysis. Slides were immunostained for glial fibrillary acidic protein (to label Bergmann glia), calbindin (to label Purkinje cells) and NeuN (to label post-mitotic neurons). Microscopic analysis revealed two types of defect: partial disappearance of fissures and/or neuronal ectopia, primarily in supra-supplemented animals (incidence of 80 %, P≤0·01), but also in deficient and supplemented groups (incidence of 40 %, P≤0·05), compared with control animals. The primary fissure was predominantly affected, sometimes accompanied by defects in the secondary fissure. Our findings show that growing rats fed an FA-modified diet, including both deficient and supplemented diets, have an increased risk of disturbances in cerebellar corticogenesis. Defects caused by these diets may have functional consequences in later life. The present study is the first to demonstrate that cerebellar morphological defects can arise from deficient, as well as high, FA levels in the diet.

  10. Electrophysiological Monitoring of Injury ProgressionIn the Rat Cerebellar Cortex

    Directory of Open Access Journals (Sweden)

    Gokhan eOrdek

    2014-10-01

    Full Text Available The changes of excitability in affected neural networks can be used as a marker to study the temporal course of traumatic brain injury (TBI. The cerebellum is an ideal platform to study brain injury mechanisms at the network level using the electrophysiological methods. Within its crystalline morphology, the cerebellar cortex contains highly organized topographical subunits that are defined by two main inputs, the climbing and mossy fibers. Here we demonstrate the use of cerebellar evoked potentials (EPs mediated through these afferent systems for monitoring the injury progression in a rat model of fluid percussion injury (FPI. A mechanical tap on the dorsal hand was used as a stimulus, and EPs were recorded from the paramedian lobule (PML of the posterior cerebellum via multi-electrode arrays (MEA. Post-injury evoked response amplitudes (EPAs were analyzed on a daily basis for one week and compared with pre-injury values. We found a trend of consistently decreasing EPAs in all nine animals, losing as much as 72±4% of baseline amplitudes measured before the injury. Notably, our results highlighted two particular time windows; the first 24 hours of injury in the acute period and day-3 to day-7 in the delayed period where the largest drops (~50% and 24% were observed in the EPAs. In addition, cross-correlations of spontaneous signals between electrode pairs declined (from 0.47±0.1 to 0.35±0.04, p<0.001 along with the EPAs throughout the week of injury. In support of the electrophysiological findings, immunohistochemical analysis at day-7 post-injury showed detectable Purkinje cell loss at low FPI pressures and more with the largest pressures used. Our results suggest that sensory evoked potentials recorded from the cerebellar surface can be a useful technique to monitor the course of cerebellar injury and identify the phases of injury progression even at mild levels.

  11. Cerebellar Fastigial Nucleus Electrical Stimulation Alleviates Depressive-Like Behaviors in Post-Stroke Depression Rat Model and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Objective: To identify the molecular mechanism of post-stroke depression (PSD, and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS on the behaviors and regional cerebral blood flow (rCBF in a PSD rat model. Methods: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group. Sham group (n = 6 underwent sham operation. The other three groups (n = 6*3 underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. Results: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. Conclusion: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.

  12. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Immerdal, Lissi; Niels-Christiansen, Lise-Lotte W

    2005-01-01

    The microdomain localization of the GABA(A) receptor in rat cerebellar granule cells was studied by subcellular fractionation and fluorescence- and immunogold electron microscopy. The receptor resided in lipid rafts, prepared at 37 degrees C by extraction with the nonionic detergent Brij 98......, but the raft fraction, defined by the marker ganglioside GM(1) in the floating fractions following density gradient centrifugation, was heterogeneous in density and protein composition. Thus, another major raft-associated membrane protein, the Na(+), K(+)-ATPase, was found in discrete rafts of lower density......, reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor...

  13. Cerebellar level of neurotransmitters in rats exposed to paracetamol during development.

    Science.gov (United States)

    Blecharz-Klin, Kamilla; Joniec-Maciejak, Ilona; Jawna-Zboińska, Katarzyna; Pyrzanowska, Justyna; Piechal, Agnieszka; Wawer, Adriana; Widy-Tyszkiewicz, Ewa

    2016-12-01

    The present study was designed to clarify the effect of prenatal and postnatal paracetamol administration on the neurotransmitter level and balance of amino acids in the cerebellum. Biochemical analysis to determine the concentration of neurotransmitters in this brain structure was performed on two-month-old Wistar male rats previously exposed to paracetamol in doses of 5 (P5, n=10) or 15mg/kg (P15, n=10) throughout the entire prenatal period, lactation and until the completion of the second month of life, when the experiment was terminated. Control animals were given tapped water (Con, n=10). The cerebellar concentration of monoamines, their metabolites and amino acids were assayed using High Performance Liquid Chromatography (HPLC). The present experiment demonstrates that prenatal and postnatal paracetamol exposure results in modulation of cerebellar neurotransmission with changes concerning mainly 5-HIAA and MHPG levels. The effect of paracetamol on monoaminergic neurotransmission in the cerebellum is reflected by changes in the level of catabolic end-products of serotonin (5-HIAA) and noradrenaline (MHPG) degradation. Further work is required to define the mechanism of action and impact of prenatal and postnatal exposure to paracetamol in the cerebellum and other structures of the central nervous system (CNS). Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats.

    Science.gov (United States)

    Dieni, Cristina V; Ferraresi, Aldo; Sullivan, Jacqueline A; Grassi, Sivarosa; Pettorossi, Vito E; Panichi, Roberto

    2018-03-01

    The vestibulo-ocular reflex (VOR) adaptation is an ideal model for investigating how the neurosteroid 17 beta-estradiol (E2) contributes to the modification of behavior by regulating synaptic activities. We hypothesized that E2 impacts VOR adaptation by affecting cerebellar synaptic plasticity at the parallel fiber-Purkinje cell (PF) synapse. To verify this hypothesis, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in adaptation of the VOR in male rats using an oral dose (2.5 mg/kg) of the aromatase inhibitor letrozole. We also assessed the effect of letrozole on synaptic plasticity at the PF synapse in vitro, using cerebellar slices from male rats. We found that letrozole acutely impaired both gain increases and decreases adaptation of the VOR without altering basal ocular-motor performance. Moreover, letrozole prevented long-term potentiation at the PF synapse (PF-LTP) without affecting long-term depression (PF-LTD). Thus, in male rats neurosteroid E2 has a relevant impact on VOR adaptation and affects exclusively PF-LTP. These findings suggest that E2 might regulate changes in VOR adaptation by acting locally on cerebellar and extra-cerebellar synaptic plasticity sites.

  15. Neuroprotective Effect of Carnosine on Primary Culture of Rat Cerebellar Cells under Oxidative Stress.

    Science.gov (United States)

    Lopachev, A V; Lopacheva, O M; Abaimov, D A; Koroleva, O V; Vladychenskaya, E A; Erukhimovich, A A; Fedorova, T N

    2016-05-01

    Dipeptide carnosine (β-alanyl-L-histidine) is a natural antioxidant, but its protective effect under oxidative stress induced by neurotoxins is studied insufficiently. In this work, we show the neuroprotective effect of carnosine in primary cultures of rat cerebellar cells under oxidative stress induced by 1 mM 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), which directly generates free radicals both in the medium and in the cells, and 20 nM rotenone, which increases the amount of intracellular reactive oxygen species (ROS). In both models, adding 2 mM carnosine to the incubation medium decreased cell death calculated using fluorescence microscopy and enhanced cell viability estimated by the MTT assay. The antioxidant effect of carnosine inside cultured cells was demonstrated using the fluorescence probe dichlorofluorescein. Carnosine reduced by half the increase in the number of ROS in neurons induced by 20 nM rotenone. Using iron-induced chemiluminescence, we showed that preincubation of primary neuronal cultures with 2 mM carnosine prevents the decrease in endogenous antioxidant potential of cells induced by 1 mM AAPH and 20 nM rotenone. Using liquid chromatography-mass spectrometry, we showed that a 10-min incubation of neuronal cultures with 2 mM carnosine leads to a 14.5-fold increase in carnosine content in cell lysates. Thus, carnosine is able to penetrate neurons and exerts an antioxidant effect. Western blot analysis revealed the presence of the peptide transporter PEPT2 in rat cerebellar cells, which suggests the possibility of carnosine transport into the cells. At the same time, Western blot analysis showed no carnosine-induced changes in the level of apoptosis regulating proteins of the Bcl-2 family and in the phosphorylation of MAP kinases, which suggests that carnosine could have minimal or no side effects on proliferation and apoptosis control systems in normal cells.

  16. Isolation of plasma membrane-associated membranes from rat liver.

    Science.gov (United States)

    Suski, Jan M; Lebiedzinska, Magdalena; Wojtala, Aleksandra; Duszynski, Jerzy; Giorgi, Carlotta; Pinton, Paolo; Wieckowski, Mariusz R

    2014-02-01

    Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.

  17. Modulation of ASIC channels in rat cerebellar purkinje neurons by ischaemia-related signals

    Science.gov (United States)

    Allen, Nicola J; Attwell, David

    2002-01-01

    Acid-sensing ion channels (ASICs), activated by a decrease of extracellular pH, are found in neurons throughout the nervous system. They have an amino acid sequence similar to that of ion channels activated by membrane stretch, and have been implicated in touch sensation. Here we characterize the pH-dependent activation of ASICs in cerebellar Purkinje cells and investigate how they are modulated by factors released in ischaemia. Lowering the external pH from 7.4 activated an inward current at −66 mV, carried largely by Na+ ions, which was half-maximal for a step to pH 6.4 and was blocked by amiloride and gadolinium. The H+-gated current desensitized within a few seconds, but approximately 30% of cells showed a sustained inward current (11% of the peak current) in response to the maintained presence of pH 6 solution. The peak H+-evoked current was potentiated by membrane stretch (which occurs in ischaemia when [K+]o rises) and by arachidonic acid (which is released when [Ca2+]i rises in ischaemia). Arachidonic acid increased to 77% the fraction of cells showing a sustained current evoked by acid pH. The ASIC currents were also potentiated by lactate (which is released when metabolism becomes anaerobic in ischaemia) and by FMRFamide (which may mimic the action of related mammalian RFamide transmitters). These data reinforce suggestions of a mechanosensory aspect to ASIC channel function, and show that the activation of ASICs reflects the integration of multiple signals which are present during ischaemia. PMID:12205186

  18. Sensorimotor-correlated discharge recorded from ensembles of cerebellar Purkinje cells varies across the estrous cycle of the rat.

    Science.gov (United States)

    Smith, S S

    1995-09-01

    1. In the present study, locomotor-correlated activity of cerebellar Purkinje cells, recorded using arrays of microwires chronically implanted in adult female rats, was examined across estrous-cycle-associated fluctuations in endogenous sex steroids. Ongoing studies from this laboratory have shown that systemic and local administration of the sex steroid 17 beta-estradiol (E2) augments excitatory responses of cerebellar Purkinje cells to iontophoretically applied glutamate, recorded in vivo from anesthetized female rats. In addition, this steroid potentiated discharge correlated with limb movement. For the present study, extracellular single-unit activity was recorded from as many as 5-11 Purkinje cells simultaneously during treadmill locomotion paradigms. Motor modulation of activity was recorded across three to five consecutive estrous cycles from behaviorally identified cohorts of neurons to test the hypothesis that fluctuations in endogenous sex steroids alter motor modulation of Purkinje cell discharge. 2. Locomotor-associated discharge correlated with treadmill locomotion was increased by a mean of 47% on proestrus, when E2 levels are elevated, relative to diestrus 1. These changes in discharge rate during treadmill locomotion were of significantly greater magnitude than corresponding cyclic alterations in discharge during stationary periods. 3. Correlations with the circadian cycle were also significant, because peak levels of locomotor-associated discharge on the night of behavioral estrus, following elevations in circulating E2, were on average 67% greater than corresponding discharge recorded during the light (proestrus). 4. Alterations in the step cycle were also observed across the estrous cycle: significant decreases in the duration of the flexion phase (by 265 ms, P estrus compared with diestrus. 5. When recorded on estrus, Purkinje cell discharge correlated with the stance or flexion phase of the step cycle was greater in magnitude and preceded the

  19. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  20. Ablation of Cerebellar Nuclei Prevents H-Reflex Down-Conditioning in Rats

    Science.gov (United States)

    Chen, Xiang Yang; Wolpaw, Jonathan R.

    2005-01-01

    While studies of cerebellar involvement in learning and memory have described plasticity within the cerebellum, its role in acquisition of plasticity elsewhere in the CNS is largely unexplored. This study set out to determine whether the cerebellum is needed for acquisition of the spinal cord plasticity that underlies operantly conditioned…

  1. Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: A non-fluorescent double labeling study

    NARCIS (Netherlands)

    T.M. Teune (Thea); J. van der Burg (Johannes); T.J.H. Ruigrok (Tom)

    1995-01-01

    textabstractIn the rat, the extent of collateralization of projections from the cerebellar nuclei to the red nucleus and inferior olive was investigated using a retrograde double labeling technique. The combination of tracers selected, cholera toxin-β-subunit and WGA-BSA-gold, not only enabled the

  2. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats

    Directory of Open Access Journals (Sweden)

    Fernando B. R. da Silva

    2018-05-01

    Full Text Available Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures’ morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF, pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  3. Antioxidant supplementation upregulates calbindin expression in cerebellar Purkinje cells of rat pups subjected to post natal exposure to sodium arsenite.

    Science.gov (United States)

    Dhar, Pushpa; Kaushal, Parul; Kumar, Pavan

    2018-07-01

    Optimal cytoplasmic calcium (Ca 2+ ) levels have been associated with adequate cell functioning and neuronal survival. Altered intracellular Ca 2+ levels following impaired Ca 2+ homeostasis could induce neuronal degeneration or even cell death. There are reports of arsenite induced oxidative stress and the associated disturbances in intracellular calcium homeostasis. The present study focused on determining the strategies that would modulate tissue redox status and calcium binding protein (CaBP) (Calbindin D28k-CB) expression affected adversely by sodium arsenite (NaAsO 2 ) exposure (postnatal) of rat pups. NaAsO 2 alone or along with antioxidants (AOXs) (alpha lipoic acid or curcumin) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 1-21 (covering rapid brain growth period - RBGP) to experimental groups and animals receiving sterile water by the same route served as the controls. At the end of the experimental period, the animals were subjected to euthanasia and the cerebellar tissue obtained therefrom was processed for immunohistochemical localization and western blot analysis of CB protein. CB was diffusely expressed in cell body as well as dendritic processes of Purkinje cells (PCs) along the PC Layer (PCL) in all cerebellar folia of the control and the experimental animals. The multilayered pattern of CB +ve cells along with their downregulated expression and low packing density was significantly evident in the arsenic (iAs) alone exposed group as against the controls and AOX supplemented groups. The observations are suggestive of AOX induced restoration of CaBP expression in rat cerebellum following early postnatal exposure to NaAsO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Uptake and metabolism of L-[3H]glutamate and L-[3H]glutamine in adult rat cerebellar slices

    International Nuclear Information System (INIS)

    de Barry, J.; Vincendon, G.; Gombos, G.

    1983-01-01

    Using very low concentrations (1 mumol range) of L-2-3-[ 3 H]glutamate, ( 3 H-Glu) or L-2-3-[ 3 H]glutamine ( 3 H-Gln), the authors have previously shown by autoradiography that these amino acids were preferentially taken up in the molecular layer of the cerebellar cortex. Furthermore, the accumulation of 3 H-Glu was essentially glial in these conditions. Uptake and metabolism of either ( 3 H-Glu) or ( 3 H-Gln) were studied in adult rat cerebellar slices. Both amino acids were rapidly converted into other metabolic compounds: after seven minutes of incubation in the presence of exogenous 3 H-Glu, 70% of the tissue accumulated radioactivity was found to be in compounds other than glutamate. The main metabolites were Gln (42%), alpha-ketoglutarate (25%) and GABA (1,4%). In the presence of exogenous 3 H-Gln the rate of metabolism was slightly slower (50% after seven minutes of incubation) and the metabolites were also Glu (29%), alpha-ketoglutarate (15%) and GABA (5%). Using depolarizing conditions (56 mM KCl) with either exogenous 3 H-Glu or 3 H-Gln, the radioactivity was preferentially accumulated in glutamate compared to control. From these results we conclude: i) there are two cellular compartments for the neurotransmission-glutamate-glutamine cycle; one is glial, the other neuronal; ii) these two cellular compartments contain both Gln and Glu; iii) transmitter glutamate is always in equilibrium with the so-called ''metabolic'' pool of glutamate; iv) the regulation of the glutamate-glutamine cycle occurs at least at two different levels: the uptake of glutamate and the enzymatic activity of the neuronal glutaminase

  5. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats.

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    Full Text Available Acetamiprid (ACE and imidacloprid (IMI belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs. Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment-including proliferation, migration, differentiation, and morphological and functional maturation-can be observed in vitro. Using these cultures, an excitatory Ca(2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca(2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca(2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the

  6. Cerebellar cytokine expression in a rat model for fetal asphyctic preconditioning and perinatal asphyxia

    DEFF Research Database (Denmark)

    Vlassaks, Evi; Brudek, Tomasz; Pakkenberg, Bente

    2014-01-01

    the effects of perinatal asphyxia and fetal asphyctic preconditioning on the inflammatory cytokine response in the cerebellum. Fetal asphyxia was induced at embryonic day 17 by clamping the uterine vasculature for 30 min. At term birth, global perinatal asphyxia was induced by placing the uterine horns...... was decreased 96 h postfetal asphyxia. When applied as preconditioning stimulus, fetal asphyxia attenuates the cerebellar cytokine response. These results indicate that sublethal fetal asphyxia may protect the cerebellum from perinatal asphyxia-induced damage via inhibition of inflammation.......Asphyctic brain injury is a major cause of neuronal inflammation in the perinatal period. Fetal asphyctic preconditioning has been shown to modulate the cerebral inflammatory cytokine response, hereby protecting the brain against asphyctic injury at birth. This study was designated to examine...

  7. Ethanol Influences on Bax Associations with Mitochondrial Membrane Proteins in Neonatal Rat Cerebellum

    Science.gov (United States)

    Heaton, Marieta Barrow; Siler-Marsiglio, Kendra; Paiva, Michael; Kotler, Alexandra; Rogozinski, Jonathan; Kubovec, Stacey; Coursen, Mary; Madorsky, Vladimir

    2012-01-01

    These studies investigated interactions taking place at the mitochondrial membrane in neonatal rat cerebellum following ethanol exposure, and focused on interactions between pro-apoptotic Bax and proteins of the permeability transition pore (PTP), voltage-dependent anion channel (VDAC), and adenine nucleotide translocator (ANT), of the outer and inner mitochondrial membranes, respectively. Cultured cerebellar granule cells were used to assess the role of these interactions in ethanol neurotoxicity. Analyses were made at the age of maximal cerebellar ethanol vulnerability (P4), compared to the later age of relative resistance (P7), to determine whether differential ethanol sensitivity was mirrored by differences in these molecular interactions. We found that following ethanol exposure, Bax pro-apoptotic associations with both VDAC and ANT were increased, particularly at the age of greater ethanol sensitivity, and these interactions were sustained at this age for at least two hours post-exposure. Since Bax:VDAC interactions disrupt protective VDAC interactions with mitochondrial hexokinase (HXK), we also assessed VDAC:HXK associations following ethanol treatment, and found such interactions were altered by ethanol treatment, but only at two-hours post-exposure, and only in the P4, ethanol-sensitive cerebellum. Ethanol neurotoxicity in cultured neuronal preparations was abolished by pharmacological inhibition of both VDAC and ANT interactions with Bax, but not by a Bax channel blocker. Therefore, we conclude that at this age, within the constraints of our experimental model, a primary mode of Bax-induced initiation of the apoptosis cascade following ethanol insult involves interactions with proteins of the PTP complex, and not channel formation independent of PTP constituents. PMID:22767450

  8. Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells

    International Nuclear Information System (INIS)

    Jimenez, Andres; Jorda, Elvira G.; Verdaguer, Ester; Pubill, David; Sureda, Francesc X.; Canudas, Anna M.; Escubedo, Elena; Camarasa, Jordi; Camins, Antoni; Pallas, Merce

    2004-01-01

    The neurotoxic action of the abuse drugs methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) on cerebellar granule neurones (CGNs) culture was examined. Treatment for 48 h with METH or MDMA (1-5 mM) induced a higher decrease in viability than 24 h treatment. z.VAD.fmk (100 μM) but not MK-801 nor NBQX recovered control viability values. In both cases, cell death was characterised as apoptotic rather than necrotic by morphology cell observation. Apoptosis measured by flow cytometry indicated an increase in the hypodiploid population after 48 h treatment with METH and MDMA. Apoptosis was reverted by the presence of z.VAD.fmk (100 μM) but not by 10 μM MK-801 or NBQX. Similar results were obtained by analysing nuclear chromatine condensation. These results ruled out excitotoxic participation in amphetamine derivative-induced neurotoxicity in CGNs. Participation of radical oxygen species (ROS) was evaluated using α-tocopherol (1-15 μM) and cytometric studies. The co-treatment with 4 mM METH or MDMA for 48 h partially reverted neurotoxic action and apoptotic features, indicating ROS implication in CGNs death by amphetamine derivatives. Alteration of mitochondrial function induced cytochrome C (Cyt C) release after 48-h treatment with METH and MDMA (4 mM). There was also indication of caspase-3-like activation, measured by immunoanalysis and biochemically. Finally, neurodegenerative action caused by amphetamine derivatives may be prevented by using caspase inhibitors

  9. Effects of methadone hydrochloride on the growth of organotypic cerebellar cultures prepared from methadone-tolerant and control rats.

    Science.gov (United States)

    Willson, N J; Schneider, J F; Roizin, L; Fleiss, J F; Rivers, W; Demartini, J E

    1976-11-01

    Male and female Sprague-Dawley rats were given dl-methadone (5 mg/kg) for at least 3 months and then mated. The drug was continued throughout pregnancy and after delivery. The newly born pups were divided into two groups. One group was tested for in vivo methadone tolerance, while the animals in the othergroup were used to prepare organotypic cerebellar cultures. Various amounts of dl-methadone were added to the media of half of these cerebellum cultures. The effect of the drug in the medium was assessed by measuring explant outgrowth. Similar experiments were carried out with control animals. Statistical analysis of the data obtained in the in vivo portion of the experiment indicates that the pups of methadone-treated mothers tolerate methadone better than those of untreated mothers. The culture experiments revealed that the addition of methadone to the medium reduced explant outgrowth size and this was a dose-related effect. Also, there was significantly less outgrowth from explants prepared using pups of methadone-treated mothers as compared to the controls. There was no significant difference in the effect of methadone on the growth of cultures prepared from the methadone-tolerant and control animals.

  10. Hearing assessment during deep brain stimulation of the central nucleus of the inferior colliculus and dentate cerebellar nucleus in rat

    Directory of Open Access Journals (Sweden)

    Jasper V. Smit

    2017-10-01

    Full Text Available Background Recently it has been shown in animal studies that deep brain stimulation (DBS of auditory structures was able to reduce tinnitus-like behavior. However, the question arises whether hearing might be impaired when interfering in auditory-related network loops with DBS. Methods The auditory brainstem response (ABR was measured in rats during high frequency stimulation (HFS and low frequency stimulation (LFS in the central nucleus of the inferior colliculus (CIC, n = 5 or dentate cerebellar nucleus (DCBN, n = 5. Besides hearing thresholds using ABR, relative measures of latency and amplitude can be extracted from the ABR. In this study ABR thresholds, interpeak latencies (I–III, III–V, I–V and V/I amplitude ratio were measured during off-stimulation state and during LFS and HFS. Results In both the CIC and the CNBN groups, no significant differences were observed for all outcome measures. Discussion DBS in both the CIC and the CNBN did not have adverse effects on hearing measurements. These findings suggest that DBS does not hamper physiological processing in the auditory circuitry.

  11. [Effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage].

    Science.gov (United States)

    Li, Xiao-Li; Jia, Tian-Ming; Luan, Bin; Liu, Tao; Yuan, Yan

    2011-04-01

    To study the effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible mechanism. One hundred and eighty 7-day-old neonatal Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group) and HIBD with and without electric stimulation (n=60 each). The HIBD model of neonatal rats was prepared by the Rice-Vennucci method. Electric stimulation at the cerebellar fastigial nucleus was given 24 hrs after the operation in the electric stimulation group once daily and lasted for 30 minutes each time. The other two groups were not subjected to electric stimulation but captured to fix in corresponding periods. Rats were sacrificed 3, 7, 14 and 21 days after stimulations to observe the glial fibrillary acidic protein (GFAP) expression by immunohistochemisty and the ultrastructural changes of astrocytes in the hippocampus under an electron microscope. Immunohistochemical analysis showed the expression of GFAP in the HIBD groups with and without electric stimulation increased significantly compared with the control group on day 3, reached the peak on day 7, and the increased expression remained till to day 21. The GFAP expression in the electric stimulation group was significantly lower than that in the untreated HIBD group at all time points. Under the electron microscope, the astrocytes in the untreated HIBD group were swollen and the amount of organelles was reduced, while the swelling of astrocytes was alleviated and the organelles remained in integrity in the electric stimulation group. The electric stimulation at the cerebellar fastigial nucleus can inhibit the excessive proliferation of astrocytes and relieve the structural damage of astrocytes in neonatal rats following HIBD.

  12. Cerebellar Degeneration

    Science.gov (United States)

    ... FARA) National Ataxia Foundation (NAF) National Multiple Sclerosis Society See all related organizations Publications Degeneración cerebelosa Order NINDS Publications Definition Cerebellar degeneration is a process in which neurons ( ...

  13. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  14. Poly (ADP-ribose polymerase plays an important role in intermittent hypoxia-induced cell death in rat cerebellar granule cells

    Directory of Open Access Journals (Sweden)

    Chiu Sheng-Chun

    2012-03-01

    Full Text Available Abstract Background Episodic cessation of airflow during sleep in patients with sleep apnea syndrome results in intermittent hypoxia (IH. Our aim was to investigate the effects of IH on cerebellar granule cells and to identify the mechanism of IH-induced cell death. Methods Cerebellar granule cells were freshly prepared from neonatal Sprague-Dawley rats. IH was created by culturing the cerebellar granule cells in the incubators with oscillating O2 concentration at 20% and 5% every 30 min for 1-4 days. The results of this study are based on image analysis using a confocal microscope and associated software. Cellular oxidative stress increased with increase in IH. In addition, the occurrence of cell death (apoptosis and necrosis increased as the duration of IH increased, but decreased in the presence of an iron chelator (phenanthroline or poly (ADP-ribose polymerase (PARP inhibitors [3-aminobenzamide (3-AB and DPQ]. The fluorescence of caspase-3 remained the same regardless of the duration of IH, and Western blots did not detect activation of caspase-3. However, IH increased the ratio of apoptosis-inducing factor (AIF translocation to the nucleus, while PARP inhibitors (3-AB reduced this ratio. Results According to our findings, IH increased oxidative stress and subsequently leading to cell death. This effect was at least partially mediated by PARP activation, resulting in ATP depletion, calpain activation leading to AIF translocation to the nucleus. Conclusions We suggest that IH induces cell death in rat primary cerebellar granule cells by stimulating oxidative stress PARP-mediated calpain and AIF activation.

  15. The survival of cultured mouse cerebellar granule cells is not dependent on elevated potassium-ion concentration

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Hack, N; Balázs, R

    1994-01-01

    The effects of K(+)-induced membrane depolarization were studied on the survival and biochemical parameters in mouse and rat cerebellar granule cells grown in micro-well cultures. Cell numbers were determined by estimating DNA content using the Hoechst 33258 fluorochrome binding assay. DNA from d...

  16. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... of epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan...

  17. Cerebellar Insulin/IGF-1 signaling in diabetic rats: Effects of exercise training.

    Science.gov (United States)

    Borges, Mariana Eiras; Ribeiro, Alessandra Mussi; Pauli, José Rodrigo; Arantes, Luciana Mendonça; Luciano, Eliete; de Moura, Leandro Pereira; de Almeida Leme, José Alexandre Curiacos; Medeiros, Alessandra; Bertolini, Natália Oliveira; Sibuya, Clarice Yoshiko; Gomes, Ricardo José

    2017-02-03

    The Diabetes Mellitus (DM) is a chronic disease associated with loss of brain regions such as the cerebellum, increasing the risk of developing neurodegenerative diseases such as Parkinson's disease (PD). In the brain of diabetic and PD organisms the insulin/IGF-1 signaling is altered. Exercise training is an effective intervention for the prevention of neurodegerative diseases since it release neurotrophic factors and regulating insulin/IGF-1 signaling in the brain. This study aimed to evaluate the proteins involved in the insulin/IGF-1 pathway in the cerebellum of diabetic rats subjected to exercise training protocol. Wistar rats were distributed in four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Diabetes was induced by Alloxan (ALX) (32mg/kgb.w.). The training program consisted in swimming 5days/week, 1h/day, during 6 weeks, supporting an overload corresponding to 90% of the anaerobic threshold. At the end, cerebellum was extracted to determinate the protein expression of GSK-3β, IRβ and IGF-1R and the phosphorylation of β-amyloid, Tau, ERK1+ERK2 by Western Blot analysis. All dependent variables were analyzed by one-way analysis of variance with significance level of 5%. Diabetes causes hyperglycemia in both diabetic groups; however, in TD, there was a reduction in hyperglycemia compared to SD. Diabetes increased Tau and β-amyloid phosphorylation in both SD and TD groups. Furthermore, aerobic exercise increased ERK1+ERK2 expression in TC. The data showed that in cerebellum of diabetic rats induced by alloxan there are some proteins expression like Parkinson cerebellum increased, and the exercise training was not able to modulate the expression of these proteins. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Cerebellar malformations in prenatally x-irradiated rats: quantitative analysis and detailed description

    International Nuclear Information System (INIS)

    Inouye, M.

    1979-01-01

    Pregnant WKA/HoK rats were exposed to 100 R or 200 R x-irradiation on one of gestation days 16 through 21. Offspring were killed at 60 days of age and the cerebellum was examined. The cerebellum of animals exposed to 200 R was slightly reduced in weight but not in width. The observed reduction in the dorsoventral length of the cerebellum was more evident when the x-irradiation was early in gestation. The anterior portions of hemispheres were situated anterior to the culmen in every 200 R group. Histologically, ectopic Purkinje cells in the granule cell layer and white matter appeared following x-irradiation on day 20 or 21, but they were not found following earlier treatment. In the cerebellum of animals exposed to 100 R the reduction in size was mild and the folial abnormalities were rare, but the number of sublobules decreased

  19. Principal cell spiking, postsynaptic excitation, and oxygen consumption in the rat cerebellar cortex

    DEFF Research Database (Denmark)

    Thomsen, Kirsten; Piilgaard, Henning; Gjedde, Albert

    2009-01-01

    excitatory synaptic input. Subsequent inhibition of action potential propagation and neurotransmission by blocking voltage-gated Na+-channels eliminated the increases in CMRO2 due to PF stimulation and increased PC spiking, but left a large fraction of CMRO2, i.e., basal CMRO2, intact. In conclusion, whereas......) of postsynaptic excitation and PC spiking during evoked and ongoing neuronal activity in the rat. By inhibiting excitatory synaptic input using ionotropic glutamate receptor blockers, we found that the increase in CMRO2 evoked by parallel fiber (PF) stimulation depended entirely on postsynaptic excitation...... basal CMRO2 in anesthetized animals did not seem to be related to neurosignaling, increases in CMRO2 could be induced by all aspects of neurosignaling. Our findings imply that CMRO2 responses cannot a priori be assigned to specific neuronal activities....

  20. Circadian oscillations of molecular clock components in the cerebellar cortex of the rat

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Møller, Morten

    2012-01-01

    these genes, Per1, Per2, Per3, Cry1, Arntl, Nr1d1, and Dbp were found to exhibit circadian rhythms in a sequential temporal manner similar to that of the SCN, but with several hours of delay. The results of lesion studies indicate that the molecular oscillatory profiles of Per1, Per2, and Cry1......The central circadian clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the circadian clockwork of the SCN constitutes a self-sustained autoregulatory feedback mechanism reflected by the rhythmic expression of clock genes. However...... in the cerebellum are controlled, though possibly indirectly, by the central clock of the SCN. These data support the presence of a circadian oscillator in the cortex of the rat cerebellum....

  1. L-2-Chloropropionic acid metabolism and disposition in male rats: relevance to cerebellar injury

    International Nuclear Information System (INIS)

    Wyatt, I.; Farnworth, M.; Gyte, A.J.; Lock, E.A.

    1997-01-01

    L-CPA produces selective necrosis to the granule cell layer of the rat cerebellum. As part of a study to understand the mechanism of selective toxicity we have investigated the metabolism and disposition of [2- 14 C]L-CPA in the rat, with particular emphasis on the brain. Following a single oral non-toxic dose of 250 mg/kg or a neurotoxic dose of 750 mg/kg or 250 mg/kg per day for 3 days, L-CPA is very rapidly absorbed from the gastrointestinal tract into the blood stream. Peak plasma concentrations of 2 mM and 6 mM L-CPA occurred within 1 h of dosing, and the compound was readily cleared from the plasma with a half-life of 2.6 h. The only metabolite detected in the plasma was 2-S-cysteinylpropanoic acid. About 60% of the dose is excreted in the urine in the first 24 h as unchanged L-CPA, with a smaller amount excreted as the mercapturate, 2-S-N-acetylcysteinylpropanoic acid. Little radiolabel from L-CPA is excreted in the faeces; however, ∝18% of a 250 mg/kg dose of L-CPA is eliminated as carbon dioxide. The radiolabel from [2- 14 C]L-CPA present in the cerebellum, forebrain and liver at all time intervals examined was L-CPA. There was some indication of retention of L-CPA in the brain relative to the plasma with a small but consistently higher concentration found in the cerebellum. Whole body autoradiography studies indicated some selective retention of radiolabel in the cerebellum after the third dose of 250 mg/kg [2- 14 C]L-CPA. Our findings indicate that the initial insult to the cerebellum following L-CPA administration is probably due to the parent compound however, the prolonged presence of 2-S-cysteinylpropanoic acid in the plasma and concomitant depletion of glutathione in the cerebellum may also play a role in the toxicity. The relevance of the slightly greater retention of L-CPA in the cerebellum to the selective neurotoxicity of L-CPA requires further study. (orig./MG). With 4 figs., 3 tabs

  2. The Effect of Salvia Rhytidea Extract on the Number of Cells of Different Layers of Cerebellar Cortex Following Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    M Farahmand

    2016-09-01

    Full Text Available Background & aim: Salvia has anti-oxidant oxygen free radicals which are generated during the interruption and reestablishment of ischemia reperfusion.  The aim of study was to investigate the effect of Salvia Rhytidea extract on the number of cells of different layers of cerebellar cortex following ischemia reperfusion in rats. Methods: In the present experimental study, 35 adult male rats were randomly divided into 7 groups of 5: Group 1 (control-: Sampling without ischemia. Group 2 (control +: Cerebellar ischemia with administration of normal saline. Group 3(sham: Manipulation without ischemia with normal saline administration. Group 4   received (3.2 mg/kg aqueous and alcoholic Salvia extract 2 hours after ischemia. Group 5 received 50 mg/kg silymarin drug, 2 hours after ischemia. Group 6 received 3.2 mg/kg aqueous and alcoholic Salvia extract 72, 48, 24 and 0 h before ischemia and group 7 received silymarin drug (50 mg/kg, 0, 24, 48, and 72, hrs. before ischemia. 24 hrs. following reperfusion, the rats were euthanized and samples of the cerebellum were obtained. By using routine histological technique, the sections were stained by H&E. The measurement of cell count in cerebellar cortex were accomplished. Data were evaluated with One-Way ANOVA and Tukey diagnostic tests. Results: A significant decrease was observed in the number of neural cells in granular layer in the non-treated ischemia group and in the groups which received Salvia extract and silymarin, two hours after the ischemia (p< 0.05. No significant decrease was observed in the number of cells of this layer in the groups which received salvia extract before ischemia. But regarding the cell number of molecular and purkinje layers in above groups, no significant difference was observed compared to the control group (P˃0.05. However, no significant differences was seen in the number of cells layers compared to the control group (P˃0.05. Conclusion: Finally, administration of

  3. Ultrastructural immunocytochemical localization of chondroitin sulfate proteoglycan in Bruch's membrane of the rat

    DEFF Research Database (Denmark)

    Lin, W L; Essner, E; McCarthy, K J

    1992-01-01

    Two monoclonal antibodies (Mab 4D5 and 2D6) raised against the core protein of a basement membrane chondroitin sulfate proteoglycan from Reichert's membrane of the rat, were used for ultrastructural immunoperoxidase localization of this protein in Bruch's membrane of the rat. Immunoreactivity...

  4. Critical periods during the in situ repair of radiation-induced DNA damage in rat cerebellar neurons and 9L brain tumor cells

    International Nuclear Information System (INIS)

    Wierowski, J.V.; Thomas, R.R.; Ritter, P.; Wheeler, K.T.

    1982-01-01

    The consequences of delivering a second 1250-rad dose at various times during and after the repair of DNA damage produced by an initial 1250-rad dose were assessed in intracerebral 9L tumor cells and rat cerebellar neurons by measuring the sedimentation properties of their DNA through alkaline sucrose gradients in zonal rotors with slow gradient reorienting capabilities.In cerebellar neurons, separating the two doses by 15 min resulted in an accumulation of DNA damage as expressed by an increase in the amount of DNA sedimenting >250 S over that obtained from unirradiated controls. Although not statistically different from unirradiated controls, a slight increase in the amount of fast-sedimenting neuronal DNA also occurred when a 1-hr interval between the two doses was investigated. At intervals of 2 hr or more, no such increase in fast-sedimenting neuronal DNA was observed. None of the periods between doses resulted in an accumulation of DNA damage in intracerebral 9L tumor cells. The accumulation of this type of DNA damage in neurons but not in tumor cells suggests that avoidance of a critical period in neuronal DNA repair may someday be an important concept in the design of brain tumor therapy schedules

  5. The membrane fraction of homogenized rat kidney contains an enzyme that releases epidermal growth factor from the kidney membranes

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1991-01-01

    shows that the membrane fraction of homogenized rat kidney contains an enzyme that releases immuno and receptor reactive EGF from the kidney membranes when incubated at 37 degrees C. Gel filtration shows that the EGF reactivity released from the membranes is similar to the EGF reactivity in rat urine......High levels of epidermal growth factor (EGF) are excreted in the urine and high levels of mRNA for the EGF-precursor have been demonstrated in the kidney. The EGF-precursor is a membrane bound peptide in the kidney, but little is known about the renal processing of the precursor. The present study...

  6. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury

    International Nuclear Information System (INIS)

    Edwards, Joshua R.; Marty, M. Sue; Atchison, William D.

    2005-01-01

    The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 μM MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 μM MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in a proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca 2+ and non-Ca 2+ divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 μM MeHg, 97.7% of Purkinje cells were viable. At 3 μM MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 μM MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca 2+ divalent cation released by MeHg in Purkinje neurons

  7. Membrane potential of mitochondria from the liver of irradiated rats

    International Nuclear Information System (INIS)

    Fomenko, B.S.; Kaminin, A.N.; Elfimova, I.A.; Akoev, I.G.

    1977-01-01

    Measurements of the membrane potential of rat liver mitochondria 1 hour after irradiation with 800 R dose showed a decrease of its value. The potential decreased against the background of the activation of the generating mechanisms (the electron transport chain and ATP-ases). During energization of the membranes by the electron transport chain similar effect has been observed with different oxidation substrates (NAD linked substrates and succinate). It suggests that similar causative factors are at the basis of the changes observed. It is quite possible that the increase in the rate of both mitochondria respiration and ATP hydrolysis after the irradiation of animals was a consequence of the radiation-induced decrease in the potential value. (author)

  8. Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

    Science.gov (United States)

    Salavati, Parvin; Ramezani, Mina; Monsef-Esfahani, Hamid R; Hajiagha, Reza; Parsa, Maliheh; Tavajohi, Shoreh; Ostad, Seyed Nasser

    2013-01-01

    Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss (Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pups Cerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were prepared and cultured. The experiments were performed after 8 days in culture. The plant was collected from the northeastern part (Ruin region) of Iran and air-dried at room temperature. The total extract was prepared with maceration of prepared powder in ethanol 80% for three times. Sequential extracts were obtained using dried and powdered aerial parts with increasingly polar solvents: petroleum ether, chloroform, ethyl acetate and methanol 80% solution. Cultured cells were exposed to 125 μM of glutamate for 12 h following a 24 h of incubation with test fractions at concentration of 10 mcg/mL. Morphological assay was performed using invert light microscope after fixation and staining with haematoxylin. Neuronal viability was measured using MTT assay. Statistical analysis was done using SPSS software. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test. Values were considered statistically significant when p-value ≤ 0.05. Results of this study showed a significant neuroprotective activity of high polarity methanolic fraction of aerial parts of Scrophularia striata against glutamate-induced neurotoxicity in a dosedependent manner. Treatment with 10 mcg/mL of the fractions showed the best result. PMID:24250613

  9. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles

    International Nuclear Information System (INIS)

    Meier, P.J.; Valantinas, J.; Hugentobler, G.; Rahm, I.

    1987-01-01

    The mechanism(s) and driving forces for biliary excretion of sulfate were investigated in canalicular rat liver plasma membrane vesicles (cLPM). Incubation of cLPM vesicles in the presence of an inside-to-outside (in, out) bicarbonate gradient but not pH or out-to-in sodium gradients, stimulated sulfate uptake 10-fold compared with the absence of bicarbonate and approximately 2-fold above sulfate equilibrium (overshoot). Initial rates of this bicarbonate gradient-driven [ 35 S]-sulfate uptake were saturable with increasing concentrations of sulfate and could be inhibited by probenecid, N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate, acetazolamide, furosemide, 4-acetamideo-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (IC 50 , ∼40 μM). Cisinhibition of initial bicarbonate gradient-stimulated sulfate uptake and transstimulation of sulfate uptake in the absence of bicarbonate were observed with sulfate, thiosulfate, and oxalate but not with chloride, nitrate, phosphate, acetate, lactate, glutamate, aspartate, cholate, taurocholate, dehydrocholate, taurodehydrocholate, and reduced or oxidized glutathione. These findings indicate the presence of a sulfate (oxalate)-bicarbonate anion exchange system in canalicular rat liver plasma membranes. These findings support the concept that bicarbonate-sensitive transport system might play an important role in bile acid-independent canalicular bile formation

  10. Fibronectin binding to gangliosides and rat liver plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, G R; Evers, D C; Radinsky, R; Morre, D J

    1986-02-01

    Binding of fibronectins to gangliosides was tested directly using several different in vitro models. Using an enzyme-linked immunoabsorbent assay (ELISA), gangliosides were immobilized on polystyrene tubes and relative binding of fibronectin was estimated by alkaline phosphatase activity of conjugated second antibody. Above a critical ganglioside concentration, the gangliosides bound the fibronectin (G/sub T1b/ approx. = G/sub D1b/ approx. = G/sub D1a/ > G/sub M1/ >> G/sub M2/ approx. = G/sub D3/ approx. = G/sub M3/) in approximately the same order of efficiency as they competed for the cellular sites of fibronectin binding in cell attachment assays. Alternatively, these same gangliosides bound to immobilized fibronectin. Rat erythrocytes coated with gangliosides G/sub M1/, G/sub D1a/ or G/sub T1b/ bound more fibronectin than erythrocytes not supplemented with gangliosides. Using fibronectin in which lysine residues were radioiodinated, an apparent K/sub d/ for binding to mixed rat liver gangliosides of 7.8 x 10/sup -9/ M was determined. This value compared favorably with the apparent K/sub d/ for attachment of fibronectin to isolated plasma membranes from rat liver of 3.7 x 10/sup -9/ M for fibronectin modified on the tyrosine residue, or 6.4 x 10/sup -9/ M for fibronectin modified on lysine residues. As shown previously by Grinnell and Minter, fibronectin modified on tyrosine residues did not promote spreading and attachment of CHO cells. It did, however, bind to cells. In contrast, lysine-modified fibronectin both bound to cells and promoted cell attachment. Plasma membranes isolated from hepatic tumors in which the higher gangliosides that bind fibronectin were depleted bound 43-75% less (/sup 125/I)fibronectin than did plasma membranes from control livers. The findings were consistent with binding of fibronectins to gangliosides, including the same gangliosides depleted from cell surfaces during tumorigenesis in the rat.

  11. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    NARCIS (Netherlands)

    van Leeuwen, A. C.; Huddleston Slater, J. J. R.; Gielkens, P. F. M.; de Jong, J. R.; Grijpma, D. W.; Bos, R. R. M.

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague-Dawley rats, a

  12. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    NARCIS (Netherlands)

    van Leeuwen, A.C.; Huddelston Slater, J.J.R.; Gielkens, P.F.M.; de Jong, J.R.; Grijpma, Dirk W.; Bos, R.R.M.

    2012-01-01

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague–Dawley rats, a

  13. Questioning the cerebellar doctrine

    NARCIS (Netherlands)

    Galliano, Elisa; De Zeeuw, Chris I

    2014-01-01

    The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells

  14. Fenspiride and membrane transduction signals in rat alveolar macrophages.

    Science.gov (United States)

    Féray, J C; Mohammadi, K; Taouil, K; Brunet, J; Garay, R P; Hannaert, P

    1997-07-15

    Fenspiride inhibits the calcium signal evoked by the inflammatory peptide formyl-Met-Leu-Phe (fMLP) in peritoneal macrophages, but at concentrations (approximately 1 mM) far above the therapeutic range (approximately 1 microM). Here, in rat alveolar macrophages, high fenspiride concentrations (1 mM) were required to inhibit the calcium signals evoked by the calcium agonist Bay K8644 or by ionomycin. Moreover, fenspiride (1 mM) was a poor inhibitor of the cell membrane depolarization induced by gramicidine D. By contrast, fenspiride blocked Na+-H+ antiport activation by (i) fMLP with an IC50 = 3.1 +/- 1.9 nM and (ii) PMA (phorbol 12-myristate 13-acetate) with an IC50 = 9.2 +/- 3.1 nM. Finally, protein kinase C (PKC) activity of macrophage homogenate was not significantly modified by 10 or 100 microM fenspiride (at 100 microM: 2.57 +/- 1.60 vs. 2.80 +/- 1.71 pmol/10(6) cells/min). In conclusion, fenspiride inhibits fMLP- and PMA-induced pH signals in rat alveolar macrophages, probably by acting distally on the PKC transduction signal. This pH antagonistic action may be relevant for the antiinflammatory mechanism of fenspiride and requires further investigation.

  15. Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle.

    Science.gov (United States)

    Marette, A; Dimitrakoudis, D; Shi, Q; Rodgers, C D; Klip, A; Vranic, M

    1999-02-01

    We have previously demonstrated that chronic hyperglycemia per se decreases GLUT4 glucose transporter expression and plasma membrane content in mildly streptozotocin- (STZ) diabetic rats (Biochem. J. 284, 341-348, 1992). In the present study, we investigated the effect of an acute rise in glycemia on muscle GLUT4 and GLUT1 protein contents in the plasma membrane, in the absence of insulin elevation. Four experimental groups of rats were analyzed in the postabsorptive state: 1. Control rats. 2. Hyperglycemic STZ-diabetic rats with moderately reduced fasting insulin levels. 3. STZ-diabetic rats made normoglycemic with phlorizin treatment. 4. Phlorizin-treated (normoglycemic) STZ-diabetic rats infused with glucose for 40 min. The uniqueness of the latter model is that glycemia can be rapidly raised without any concomitant increase in plasma insulin levels. Plasma membranes were isolated from hindlimb muscle and GLUT1 and GLUT4 proteins amounts determined by Western blot analysis. As predicted, STZ-diabetes caused a significant decrease in the abundance of GLUT4 in the isolated plasma membranes. Normalization of glycemia for 3 d with phlorizin treatment restored plasma membrane GLUT4 content in muscle of STZ-diabetic rats. A sudden rise in glycemia over a period of 40 min caused the GLUT4 levels in the plasma membrane fraction to decrease to those of nontreated STZ-diabetic rats. In contrast to the GLUT4 transporter, plasma membrane GLUT1 abundance was not changed by the acute glucose challenge. It is concluded that glucose can have regulatory effect by acutely reducing plasma membrane GLUT4 protein contents in rat skeletal muscle. We hypothesize that this glucose-induced downregulation of plasma membrane GLUT4 could represent a protective mechanism against excessive glucose uptake under hyperglycemic conditions accompanied by insulin resistance.

  16. Anatomical evidence for direct fiber projections from the cerebellar nucleus interpositus to rubrospinal neurons. A quantitative EM study in the rat combining anterograde and retrograde intra-axonal tracing methods

    International Nuclear Information System (INIS)

    Dekker, J.J.

    1981-01-01

    A quantitative electron microscopic (EM) study combining the anterograde intra-axonal transport of radioactive amino acids and the retrograde intra-axonal transport of the enzyme horseradish peroxidase (HRP) was performed in the magnocellular red nucleus of the rat to obtain anatomical evidence as to whether there is a direct projection from the cerebellar nucleus interpositus to the cells in the red nucleus that give rise to the rubrospinal tract. Large asymmetrical synaptic terminals were radioactively labeled in the magnocellular red nucleus following injections of [ 3 H]leucine into the cerebellar nucleus interpositus. In these same animals, the postsynaptic target neurons were labeled with HRP granules after injection of this substance in the rubrospinal tract. A quantitative analysis showed that more than 85% of the large and giant neurons in the magnocellular red nucleus were labeled with HRP granules and also received synaptic contacts from radioactively-labeled terminals. Thus, it can be concluded that in the rat, afferents from the cerebellar nucleus interpositus establish asymmetrical synaptic contacts with large and giant rubrospinal neurons, thus confirming and extending the previous physiological evidence of such direct monosynaptic connections. (Auth.)

  17. Neurochemical, pharmacological, and developmental studies on cerebellar receptors for dicarboxylic amino acids

    International Nuclear Information System (INIS)

    Sharif, N.A.; Roberts, P.J.

    1984-01-01

    Specific binding of L-[ 3 H]glutamate ([ 3 H]Glu) and L[ 3 H]Asp) to cerebellar membranes represented a time-, temperature-, pH- and protein-dependent interaction which was both saturable and reversible. Binding sites for both radioligands appeared maximally enriched in synaptosomal fractions isolated by gradient centrifugation. Kinetically derived dissociation constant (K/sub off//K/sub on/ . K/sub d/) for [ 3 H]Glu binding to this fraction indicated high-affinity (433 nM). Competition experiments employing analogs of excitatory amino acids, including new antagonists, helped identify binding sites for [ 3 H]Glu and [ 3 H]Asp as receptors with differential pharmacological specificities. Membrane freezing reduced numbers of both receptor types, but binding activity could be recovered partially by incubation at 37 degrees C. Glu receptors exhibited a pronounced deleterious sensitivity to thiol modifying reagents and L-Glu (50-1000 microM) provided protection against these compounds during co-incubation with cerebellar membranes. It is suggested that cold storage may induce partially reversible receptor inactivation by promoting sulfhydryl group/bond modification. Rat cerebellar glutamatergic function (endogenous Glu content, Glu uptake and receptor sites) exhibited an apparent ontogenetic peak between days 8-12 postpartum with a plateauing profile from day 30 to adulthood. The accelerated development (days 8-12) coincides with the first demonstrable Glu release and kainic acid neurotoxicity, as described previously

  18. Garcinia kola aqueous suspension prevents cerebellar neurodegeneration in long-term diabetic rat - a type 1 diabetes mellitus model.

    Science.gov (United States)

    Farahna, Mohammed; Seke Etet, Paul F; Osman, Sayed Y; Yurt, Kıymet K; Amir, Naheed; Vecchio, Lorella; Aydin, Isınsu; Aldebasi, Yousef H; Sheikh, Azimullah; Chijuka, John C; Kaplan, Süleyman; Adem, Abdu

    2017-01-04

    The development of compounds able to improve metabolic syndrome and mitigate complications caused by inappropriate glycemic control in type 1 diabetes mellitus is challenging. The medicinal plant with established hypoglycemic properties Garcinia kola Heckel might have the potential to mitigate diabetes mellitus metabolic syndrome and complications. We have investigated the neuroprotective properties of a suspension of G. kola seeds in long-term type 1 diabetes mellitus rat model. Wistar rats, made diabetic by single injection of streptozotocin were monitored for 8 months. Then, they were administered with distilled water or G. kola oral aqueous suspension daily for 30 days. Body weight and glycemia were determined before and after treatment. After sacrifice, cerebella were dissected out and processed for stereological quantification of Purkinje cells. Histopathological and immunohistochemical analyses of markers of neuroinflammation and neurodegeneration were performed. Purkinje cell counts were significantly increased, and histopathological signs of apoptosis and neuroinflammation decreased, in diabetic animals treated with G. kola compared to diabetic rats given distilled water. Glycemia was also markedly improved and body weight restored to non-diabetic control values, following G. kola treatment. These results suggest that G. kola treatment improved the general condition of long-term diabetic rats and protected Purkinje cells partly by improving the systemic glycemia and mitigating neuroinflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Cerebellar abnormalities following hypoxia alone compared to hypoxic-ischemic forebrain injury in the developing rat brain

    NARCIS (Netherlands)

    Biran, V.; Heine, V.M.; Verney, C.; Sheldon, R.A.; Spadafora, R.; Vexler, Z.S.; Rowitch, D.H.; Ferriero, D.M.

    2011-01-01

    Two-day-old (P2) rat pups were subjected to either a global hypoxia or to electrocoagulation of the right carotid artery followed by 2.5. h hypoxia. Cellular and regional injury in the cerebellum (CB) was studied at 1, 2 and 19. days using immunohistology. Following hypoxia and hypoxia-ischemia, all

  20. Lack of histological cerebellar changes in Wistar rats given pulegone for 28 days. Comparison of immersion and perfusion tissue fixation

    DEFF Research Database (Denmark)

    Mølck, Anne-Marie; Poulsen, Morten; Lauridsen, Søren Tindgard

    1998-01-01

    Pulegone was given orally by gavage to groups of 28 SPF Wistar rats at dosage levels of 0 or 160 mg/kg body weight per day for 28 days. Clinically treated animals showed slackness, depression, decreased food consumption, and body weight. The loss of body weight was accompanied by a marked decrease...

  1. Induction and repair of DNA double-strand breaks in rat cerebellar cortex exposed to 60Co γ-rays

    Science.gov (United States)

    Bulanova, T. S.; Zadneprianetc, M. G.; Ježková, L.; Kruglyakova, E. A.; Smirnova, E. V.; Boreyko, A. V.

    2018-01-01

    The induction and repair of DNA double-strand breaks are studied using the immunohistochemical staining procedure of paraffin-embedded rat cerebellum tissues after exposure to γ-rays of 60Co. The dose dependence of radiation-induced colocalized γH2AX/53BP1 foci is studied and its linear character is established. It is shown that these foci are efficiently eliminated 24 h after irradiation.

  2. Effect of Omega-3 Fatty Acids on Erythrocyte Membrane in Diabetic Rats

    OpenAIRE

    Hussein, Jihan; Mostafa, Ehab; El-Waseef, Maha; El-Khayat, Zakarya; Badawy, Ehsan; Medhat, Dalia

    2011-01-01

    Background: Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia resulting from defects in insulin secretion, almost always with a major contribution from insulin resistance which may be affected by cell membrane fatty acids and phospholipids fractions.Aim: To evaluate the effects of omega-3 fatty acids on erythrocyte membrane and also in decreasing oxidative stress in diabetic rats.Material and Methods: Sixty healthy male albino rats weighting 180-200 g divided int...

  3. [Modification of red cell membranes with perftoran in papaine emphysema in rats].

    Science.gov (United States)

    Zoirova, N I; Arifkhanov, S I; Rakhmatullaev, Kh U; Tadzhikhodzhaev, Iu Kh

    2006-01-01

    Papaine emphysema model on 75 mongrel mature white male rats (10 intact rats were control) was used to study the size, form, surface architechtonics, deformability and state of membrane-receptor erythrocyte complex before and after perftoran intraperitoneal administration. Perftoran emulsion produced a membrane-modulating effect with recovery of hormonal reception sensitivity, PHA-, cAMP-receptor systems as well as restoration of erythrocytic normocytosis and diskocytosis.

  4. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Directory of Open Access Journals (Sweden)

    Susana González-Reyes

    2013-01-01

    Full Text Available Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1 expression and by 5.6–14.3-fold glutathione (GSH levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS production, by 94% the reduction of GSH/glutathione disulfide (GSSG ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2-like 2 (Nrf2 translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death.

  5. GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells.

    Science.gov (United States)

    Wang, Chang-Ying; Huang, An-Qi; Zhou, Meng-Hua; Mei, Yan-Ai

    2014-05-15

    GDF15 (growth/differentiation factor 15), a novel member of the TGFβ (transforming growth factor β) superfamily, plays critical roles in the central and peripheral nervous systems, but the signal transduction pathways and receptor subtypes involved are not well understood. In the present paper, we report that GDF15 specifically increases the IK (delayed-rectifier outward K+ current) in rat CGNs (cerebellar granule neurons) in time- and concentration-dependent manners. The GDF15-induced amplification of the IK is mediated by the increased expression and reduced lysosome-dependent degradation of the Kv2.1 protein, the main α-subunit of the IK channel. Exposure of CGNs to GDF15 markedly induced the phosphorylation of ERK (extracellular-signal-regulated kinase), Akt and mTOR (mammalian target of rapamycin), but the GDF15-induced IK densities and increased expression of Kv2.1 were attenuated only by Akt and mTOR, and not ERK, inhibitors. Pharmacological inhibition of the Src-mediated phosphorylation of TGFβR2 (TGFβ receptor 2), not TGFβR1, abrogated the effect of GDF15 on IK amplification and Kv2.1 induction. Immunoprecipitation assays showed that GDF15 increased the tyrosine phosphorylation of TGFβRII in the CGN lysate. The results of the present study reveal a novel regulation of Kv2.1 by GDF15 mediated through the TGFβRII-activated Akt/mTOR pathway, which is a previously uncharacterized Smad-independent mechanism of GDF15 signalling.

  6. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors.

    Science.gov (United States)

    Zhang, Yue; Kaneko, Ryosuke; Yanagawa, Yuchio; Saito, Yasuhiko

    2014-04-01

    Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Science.gov (United States)

    González-Reyes, Susana; Guzmán-Beltrán, Silvia; Medina-Campos, Omar Noel; Pedraza-Chaverri, José

    2013-01-01

    Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs) of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1) expression and by 5.6–14.3-fold glutathione (GSH) levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS) production, by 94% the reduction of GSH/glutathione disulfide (GSSG) ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death. PMID:24454990

  8. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. III. Kinetics of cell proliferation in the external granular layer.

    Science.gov (United States)

    Lauder, J M

    1977-04-22

    The effects of early hypo- and hyperthyroidism on the rates of cell acquisition and proliferation have been studied in the external granular layer (EGL) of the developing rat cerebellar cortex at 10 days of age using quantitative autoradiographic methods. Both altered thyroid states reduce the rate of cell acquisition in the EGL, but appear to do so for different reasons. Hyperthyroidism shortens the average length of the cell cycle by decreasing the duration of the pre-DNA synthetic phase (G1), indicating that excess thyroxine may exert a direct effect on the EGL. This action involves the early onset of neuronal differentiation (cessation of proliferation)46 which presumably leads to the observed decrease in the rate of cell acquisition (increased doubling time). Such differentiating cells do not, however, leave the proliferative zone or the EGL prematurely, resulting in a reduced labeling index, mitotic index, and growth fraction as non-dividing cells dilute the proliferating cell population. Hypothyroidism, on the other hand, leads to no significant change in the length of the cell cycle or in the mitotic index, but causes a decreased labeling index and growth fraction, as well as a reduced rate of cell acquisition (increased doubling time). No significant change in the amount of cell death in the EGL could be found to explain this apparent discrepancy between the rate of cell proliferation (cell cycle length) and cell acqusiition. The answer to this puzzle appears to lie in the mitotic index, which is not affected to the same extent as the labeling index, although it is also slightly reduced. If cells were to remain longer in mitosis, this could result in a decreased labeling index and growth fraction but nearly normal mitotic index and cell cycle length (as measured using the % labeled mitoses method), since those cells dropping out of the cycling population would be counted as mitoses...

  9. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and neuron-like γ-aminobutyric acid transport

    International Nuclear Information System (INIS)

    Levi, G.; Gallo, V.; Ciotti, T.

    1986-01-01

    When postnatal rat cerebellar cells were cultured in a chemically defined, serum-free medium, the only type of astrocyte present was unable to accumulate γ-[ 3 H]aminobutyric acid (GABA), did not express surface antigens recognized by two monoclonal antibodies, A2B5 and LB1, and showed minimal proliferation. In these cultures, nonneuronal A2B5 + , LB1 + stellate cells exhibiting neuron-like [ 3 H]GABA uptake formed cell colonies of increasing size and were GFAP - . After about one week of culturing, the A2B5 + , LB1 + , GABA-uptake positive cell groups became galactocerebroside (GalCer) positive. Immunocytolysis of the A2B5 + cells at 3 and 4 days in vitro prevented the appearance of the A2B5 + , LB1 + , GABA-uptake positive cell colonies, and also of the GalCer + cell groups. If 10% (vol/vol) fetal calf serum was added to 6-day cultures, the A2B5 + , LB1 + , GABA-uptake positive cell groups expressed GFAP and not GalCer. If the serum was added to the cultures 2 days after lysing the A2B5 + cells, only A2B5 - , LB1 - , GABA-uptake negative astrocytes proliferated. It is concluded that the putative fibrous astrocytes previously described in serum-containing cultures derive from bipotential precursors that differentiate into oligodendrocytes (GalCer + ) in serum-free medium or into astrocytes (GFAP + ) in the presence of serum, while the epithelioid A2B5 - , LB1 - , GABA-uptake negative astrocytes originate from a different precursor not yet identified

  10. Effect of dietary zinc deficiency on the endogenous phosphorylation and dephosphorylation of rat erythrocyte membrane

    International Nuclear Information System (INIS)

    Paterson, P.G.; Allen, O.B.; Bettger, W.J.

    1987-01-01

    The effect of dietary zinc deficiency on patterns of phosphorylation and dephosphorylation of rat erythrocyte membrane proteins and erythrocyte filterability was examined. Weanling male Wistar rats were fed an egg white-based diet containing less than 1.1 mg zinc/kg diet ad libitum for 3 wk. Control rats were either pair-fed or ad libitum-fed the basal diet supplemented with 100 mg zinc/kg diet. Net phosphorylation and dephosphorylation of erythrocyte membrane proteins were carried out by an in vitro assay utilizing [gamma- 32 P]ATP. The membrane proteins were subsequently separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the 32 P content of gel slices was counted by Cerenkov counting. Erythrocyte filterability was measured as the filtration time of suspensions of erythrocytes, both untreated and preincubated with diamide, under constant pressure. Erythrocyte ghosts from zinc-deficient rats demonstrated greater dephosphorylation of protein bands R1 plus R2 and R7 than pair-fed rats and greater net phosphorylation of band R2.2 than pair-fed or ad libitum-fed control rats (P less than 0.05). Erythrocytes from ad libitum-fed control rats showed significantly longer filtration times than those from zinc-deficient or pair-fed control rats. In conclusion, dietary zinc deficiency alters in vitro patterns of erythrocyte membrane protein phosphorylation and dephosphorylation, whereas the depression in food intake associated with the zinc deficiency increases erythrocyte filterability. 71 references

  11. Vivosorb (R) as a barrier membrane in rat mandibular defects. An evaluation with transversal microradiography

    NARCIS (Netherlands)

    Hoogeveen, E. J.; Gielkens, P. F. M.; Schortinghuis, J.; Ruben, J. L.; Huysmans, M-C D. N. J. M.; Stegenga, B.

    Vivosorb(R) is a new degradable membrane composed of poly(DL-lactide-epsilon-caprolactone) (PDLLCL). The aim of this study was to appraise its performance in guided bone regeneration procedures. In 192 rats a 5.0 mm defect was drilled in the mandibular angle. The defects were covered with a membrane

  12. Vivosorb as a barrier membrane in rat mandibular defects. An evaluation with transversal microradiography.

    NARCIS (Netherlands)

    Hoogeveen, E.J.; Gielkens, P.F.; Schortinghuis, J.; Ruben, J.L.; Huysmans, M.C.D.N.J.M.; Stegenga, B.

    2009-01-01

    Vivosorb is a new degradable membrane composed of poly(DL-lactide-epsilon-caprolactone) (PDLLCL). The aim of this study was to appraise its performance in guided bone regeneration procedures. In 192 rats a 5.0 mm defect was drilled in the mandibular angle. The defects were covered with a membrane

  13. Insulin stimulation of phospholipid methylation in isolated rat adipocyte plasma membranes.

    OpenAIRE

    Kelly, K L; Kiechle, F L; Jarett, L

    1984-01-01

    Partially purified plasma membranes prepared from rat adipocytes contain N-methyltransferase(s) that utilize(s) S-adenosyl-L-methionine to synthesize phosphatidylcholine from phosphatidylethanolamine. The incorporation of [3H]methyl from S-adenosyl-L-[methyl-3H]methionine into plasma membrane phospholipids was linear with incubation time and plasma membrane protein concentration and was inhibited in a dose-dependent manner by both S-adenosyl-L-homocysteine and 3-deazadenosine. The addition of...

  14. K+ transport and membrane potentials in isolated rat parotid acini

    International Nuclear Information System (INIS)

    Nauntofte, B.; Dissing, S.

    1988-01-01

    42K+ transport properties of isolated rat parotid acini were characterized concomitant with measurements of membrane potentials (Em) by means of the fluorescent dye diSC3-(5). In unstimulated acini suspended in a 5 mM K+ buffer, Em was governed by the K+ and Cl- gradients and amounted to about -59 mV, a value that remained unaffected on cholinergic stimulation. In unstimulated acini, 42K+ influx was largely mediated by the Na+-K+ pump, and the residual influxes were mediated by a bumetanide-sensitive component (cotransport system) and by K+ channels. Efflux of 42K+ was largely mediated by a bumetanide-sensitive component and by K+ channels. In the unstimulated state, the cotransport system was mediating K+-K+ exchange without contributing to the net uptake of K+. Within 10 s after stimulation, a approximately 10-fold increase in the acinar K+ conductance (gK) occurred, resulting in a rapid net efflux of K+ that amounted to approximately 3.8 mmol.l cells-1.s-1. Measurements of 42K+ fluxes as a function of the external K+ concentration revealed that in the stimulated state gK increases when external K+ is raised from 0.7 to 10 mM, consistent with an activation of acinar gK by the binding of external K+ to the channel. 42K+ flux ratios as well as the effect of the K+ channel inhibitor from scorpion venom (LQV) suggest that approximately 90% of K+ transport in the stimulated state is mediated by ''maxi'' K+ channels

  15. Questioning the cerebellar doctrine.

    Science.gov (United States)

    Galliano, Elisa; De Zeeuw, Chris I

    2014-01-01

    The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine. © 2014 Elsevier B.V. All rights reserved.

  16. Mutant PrP Suppresses Glutamatergic Neurotransmission in Cerebellar Granule Neurons by Impairing Membrane Delivery of VGCC α2δ-1 Subunit

    Science.gov (United States)

    Senatore, Assunta; Colleoni, Simona; Verderio, Claudia; Restelli, Elena; Morini, Raffaella; Condliffe, Steven B.; Bertani, Ilaria; Mantovani, Susanna; Canovi, Mara; Micotti, Edoardo; Forloni, Gianluigi; Dolphin, Annette C.; Matteoli, Michela; Gobbi, Marco; Chiesa, Roberto

    2012-01-01

    Summary How mutant prion protein (PrP) leads to neurological dysfunction in genetic prion diseases is unknown. Tg(PG14) mice synthesize a misfolded mutant PrP which is partially retained in the neuronal endoplasmic reticulum (ER). As these mice age, they develop ataxia and massive degeneration of cerebellar granule neurons (CGNs). Here, we report that motor behavioral deficits in Tg(PG14) mice emerge before neurodegeneration and are associated with defective glutamate exocytosis from granule neurons due to impaired calcium dynamics. We found that mutant PrP interacts with the voltage-gated calcium channel α2δ-1 subunit, which promotes the anterograde trafficking of the channel. Owing to ER retention of mutant PrP, α2δ-1 accumulates intracellularly, impairing delivery of the channel complex to the cell surface. Thus, mutant PrP disrupts cerebellar glutamatergic neurotransmission by reducing the number of functional channels in CGNs. These results link intracellular PrP retention to synaptic dysfunction, indicating new modalities of neurotoxicity and potential therapeutic strategies. PMID:22542184

  17. Solubilization of rat kidney plasma membrane proteins associated with 3H-aldosterone

    International Nuclear Information System (INIS)

    Ozegovic, B.; Dobrovic-Jenik, D.; Milkovic, S.

    1988-01-01

    The treatment of rat kidney plasma membranes with sodium dodecyl sulphate (SDS) did not essentially affect the ability of the membranes for 3 H-aldosterone binding as compared with the intact plasma membranes (Ozegovic et al., 1977). A gel filtration of 3 H-aldosterone - kidney plasma membranes complex on Sepharose 6B yielded 2 protein and 2 3 H-aldosterone peaks. The proteins which were eluted in the first peak were associated with the first 3 H-aldosterone peak while the second 3 H-aldosterone peak was eluted with Ve corresponding to Ve of free 3 H-aldosterone. Spironolactone, a competitive antagonist of aldosterone, prevented the binding of 3 H-aldosterone to the membrane proteins. The results demonstrated a high affinity of the kidney plasma membranes solubilized with SDS and a specificity of aldosterone binding to the plasma membrane proteins of higher molecular mass. (author)

  18. Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABA(A) receptor δ subunit in cerebellar granule neurons and delays motor development in rats.

    Science.gov (United States)

    Diaz, Marvin R; Vollmer, Cyndel C; Zamudio-Bulcock, Paula A; Vollmer, William; Blomquist, Samantha L; Morton, Russell A; Everett, Julie C; Zurek, Agnieszka A; Yu, Jieying; Orser, Beverley A; Valenzuela, C Fernando

    2014-04-01

    Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ∼60 mM (∼0.28 g/dl) during the 4 h of exposure. EtOH levels gradually decreased to baseline 8 h after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABA(A) receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Updates to a 13C metabolic flux analysis model for evaluating energy metabolism in cultured cerebellar granule neurons from neonatal rats.

    Science.gov (United States)

    Jekabsons, Mika B; Gebril, Hoda M; Wang, Yan-Hong; Avula, Bharathi; Khan, Ikhlas A

    2017-10-01

    A hexose phosphate recycling model previously developed to infer fluxes through the major glucose consuming pathways in cultured cerebellar granule neurons (CGNs) from neonatal rats metabolizing [1,2- 13 C 2 ]glucose was revised by considering reverse flux through the non-oxidative pentose phosphate pathway (PPP) and symmetrical succinate oxidation within the tricarboxylic acid (TCA) cycle. The model adjusts three flux ratios to effect 13 C distribution in the hexose, pentose, and triose phosphate pools, and in TCA cycle malate to minimize the error between predicted and measured 13 C labeling in exported lactate (i.e., unlabeled, single-, double-, and triple-labeled; M, M1, M2, and M3, respectively). Inclusion of reverse non-oxidative PPP flux substantially increased the number of calculations but ultimately had relatively minor effects on the labeling of glycolytic metabolites. From the error-minimized solution in which the predicted M-M3 lactate differed by 0.49% from that measured by liquid chromatography-triple quadrupole mass spectrometry, the neurons exhibited negligible forward non-oxidative PPP flux. Thus, no glucose was used by the pentose cycle despite explicit consideration of hexose phosphate recycling. Mitochondria consumed only 16% of glucose while 45% was exported as lactate by aerobic glycolysis. The remaining 39% of glucose was shunted to pentose phosphates presumably for de novo nucleotide synthesis, but the proportion metabolized through the oxidative PPP vs. the reverse non-oxidative PPP could not be determined. The lactate exported as M1 (2.5%) and M3 (1.2%) was attributed to malic enzyme, which was responsible for 7.8% of pyruvate production (vs. 92.2% by glycolysis). The updated model is more broadly applicable to different cell types by considering bi-directional flux through the non-oxidative PPP. Its application to cultured neurons utilizing glucose as the sole exogenous substrate has demonstrated substantial oxygen-independent glucose

  20. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  1. A Novel Mutation in Isoform 3 of the Plasma Membrane Ca2+ Pump Impairs Cellular Ca2+ Homeostasis in a Patient with Cerebellar Ataxia and Laminin Subunit 1α Mutations.

    Science.gov (United States)

    Calì, Tito; Lopreiato, Raffaele; Shimony, Joshua; Vineyard, Marisa; Frizzarin, Martina; Zanni, Ginevra; Zanotti, Giuseppe; Brini, Marisa; Shinawi, Marwan; Carafoli, Ernesto

    2015-06-26

    The particular importance of Ca(2+) signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca(2+) ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca(2+). A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca(2+) ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca(2+) transients generated by cell stimulation and impairs its Ca(2+) extrusion function under conditions of low resting cytosolic Ca(2+) as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca(2+)-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca(2+) homeostasis and the previous finding that PMCAs act as digenic modulators in Ca(2+)-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A Novel Mutation in Isoform 3 of the Plasma Membrane Ca2+ Pump Impairs Cellular Ca2+ Homeostasis in a Patient with Cerebellar Ataxia and Laminin Subunit 1α Mutations*

    Science.gov (United States)

    Calì, Tito; Lopreiato, Raffaele; Shimony, Joshua; Vineyard, Marisa; Frizzarin, Martina; Zanni, Ginevra; Zanotti, Giuseppe; Brini, Marisa; Shinawi, Marwan; Carafoli, Ernesto

    2015-01-01

    The particular importance of Ca2+ signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca2+ ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca2+. A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca2+ ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca2+ transients generated by cell stimulation and impairs its Ca2+ extrusion function under conditions of low resting cytosolic Ca2+ as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca2+-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca2+ homeostasis and the previous finding that PMCAs act as digenic modulators in Ca2+-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype. PMID:25953895

  3. Rat macrophages: membrane glycoproteins in differentiation and function

    NARCIS (Netherlands)

    van den Berg, T. K.; Döpp, E. A.; Dijkstra, C. D.

    2001-01-01

    Macrophages (mphi) play a crucial role in the immune system. The rat offers unique advantages for studying the biology of mphi. Firstly, monoclonal antibodies (mAb) against many rat mphi surface glycoproteins have become available. These have not only demonstrated a considerable heterogeneity among

  4. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum.

    Science.gov (United States)

    Berginc, Katja; Zakelj, Simon; Levstik, Lea; Ursic, Darko; Kristl, Albin

    2007-05-01

    Membrane transport characteristics of a paracellular permeability marker fluorescein were evaluated using artificial membrane, Caco-2 cell monolayers and rat jejunum, all mounted in side-by-side diffusion cells. Modified Ringer buffers with varied pH values were applied as incubation salines on both sides of artificial membrane, cell culture monolayers or rat jejunum. Passive transport according to pH partition theory was determined using all three permeability models. In addition to that, active transport of fluorescein in the M-S (mucosal-to-serosal) direction through rat jejunum was observed. The highest M-S P(app) values regarding the active transport through the rat jejunum were observed in incubation saline with pH 6.5. Fluorescein transport through the rat jejunum was inhibited by DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and alpha-CHC (alpha-cyano-4-hydroxycinnamic acid). Thus, we assume that two pH-dependent influx transporters could be involved in the fluorescein membrane transport through the intestinal (jejunal) epithelium. One is very likely an MCT (monocarboxylic acid cotransporter) isoform, inhibited by specific MCT inhibitor alpha-CHC, while the involvement of the second one with overlapping substrate/inhibitor specificities (most probably a member of the organic anion-transporting polypeptide family, inhibited at least partially by DIDS) could not be excluded.

  5. Studies on the postnatal development of the rat liver plasma membrane following maternal ethanol ingestion

    Energy Technology Data Exchange (ETDEWEB)

    Rovinski, B

    1984-01-01

    Studies on the developing rat liver and on the structure and function of the postnatal rat liver plasma membrane were carried out following maternal consumption of alcohol during pregnancy and lactation. A developmental study of alcohol dehydrogenase (ADH) indicated that both the activity and certain kinetic properties of the enzyme from the progeny of alcohol-fed and pair-fed mothers were similar. Fatty liver, however, developed in the alcoholic progeny only after ADH appeared on a day 19 of gestation. Further studies on structural and functional changes were then undertaken on the postnatal development of the rat liver plasma membrane. Radioligand binding studies performed using the hapatic alpha{sub 1}-adrenergic receptor as a plasma membrane probe demonstrated a significant decrease in receptor density in the alcoholic progeny, but no changes in binding affinity. Finally, the fatty acid composition of constituent phospholipids and the cholesterol content of rat liver plasma membranes were determined. All these observations suggest that membrane alterations in the newborn may be partially responsible for the deleterious action(s) of maternal alcoholism at the molecular level.

  6. Characterization of beta-adrenergic receptors in synaptic membranes from rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Lautens, L.

    1986-01-01

    Beta-adrenergic receptor ligand binding sites have been characterized in synaptic membranes from rat cerebral cortex and cerebellum using radioligand binding techniques. The equilibrium and kinetic properties of binding were assessed. The binding sites were non-interacting and exhibited two states of agonist binding which were sensitive to guanyl nucleotide. Synaptic membranes from cerebral cortex contained an equal number of beta 1 - and beta 2 -receptors; membranes from cerebellum possessed more beta 2 -than beta 1 -receptors. Photoaffinity labeling experiments revealed two different beta-adrenergic receptor polypeptides, R 1 and R 2 (and possibly a third, R 3 ) in synaptic membranes. The ratios of incorporation of photoaffinity label into R 1 : 2 were approximately 1:1 (cerebral cortex) and 5:1 (cerebellum). Photoaffinity labeling of R 1 and R 2 was inhibited equally well by both agonist and antagonist in synaptic membranes from cerebellum; whereas agonist was a less potent inhibitor in membranes from cerebral cortex. Both subtypes of beta-adrenergic receptors exhibited the same apparent molecular weight in synaptic membranes from cerebral cortex. The beta-adrenergic receptors in synaptic membranes from cerebral cortex and cerebellum were glycoproteins which exhibited the same apparent molecular weight after exposure to endoglycosidase F. The partial proteolytic digest maps of photoaffinity labeled beta-adrenergic receptors from rat cerebral cortex, cerebellum, lung and heart were compared

  7. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.

    Science.gov (United States)

    Wang, Jin-Ye; Sekine, Seiji; Saito, Morio

    2003-04-01

    Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.

  8. G-protein activity in Percoll-purified plasma membranes, bulk plasma membranes, and low-density plasma membranes isolated from rat cerebral cortex

    Czech Academy of Sciences Publication Activity Database

    Bouřová, Lenka; Stöhr, Jiří; Lisý, Václav; Rudajev, Vladimír; Novotný, Jiří; Svoboda, Petr

    2009-01-01

    Roč. 15, č. 4 (2009), BR111-BR122 ISSN 1234-1010 R&D Projects: GA MŠk(CZ) LC554; GA MŠk(CZ) LC06063; GA ČR(CZ) GA309/06/0121; GA AV ČR(CZ) IAA500110606 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat cerebral cortex * plasma membrane * G-protein activity Subject RIV: CE - Biochemistry Impact factor: 1.543, year: 2009

  9. Endogenous glycosphingolipid acceptor specificity of sialosyltransferase systems in intact golgi membranes, synaptosomes, and synaptic plasma membranes from rat brain

    International Nuclear Information System (INIS)

    Durrie, R.; Saito, M.; Rosenberg, A.

    1988-01-01

    Preparations highly enriched in Golgi complex membranes, synaptosomes, and synaptic plasma membranes (SPM) by marker enzyme analysis and electron microscopic morphology were made from the brains of 28-day-old rats. These were incubated with cytidine 5'-monophosphate-N-acetyl[ 14 C]neuraminic acid (CMP-NeuAc) in a physiologic buffer, without detergents. Glycolipid sialosyltransferase activities (SATs) were measured by analyzing incorporation of radiolabeled NeuAc into endogenous membrane gangliosides. Golgi SAT was diversified in producing all the various molecular species of labeled gangliosides. Synaptosomal SAT exhibited a lower activity, but it was highly specific in its labeling pattern, with a marked preference for labeling NeuAcα2 → 8NeuAcα2 → 3Galβ1 → 4Glcβ1 → 1Cer (GD3 ganglioside). SPM prepared from the synaptosomes retained the GD3-related SAT (or SAT-2), and the total specific activity increased, which suggests that the location of the synaptosomal activity is in the SPM. These results indicate that SAT activity in Golgi membranes differs from that in synaptosomes with regard to endogenous acceptor substrate specificity and SAT activity of synaptosomes should be located in the synaptosomal plasma membrane. This SAT could function as an ectoenzyme in concert with ecto-sialidase to modulate the GD3 and other ganglioside population in situ at the SPM of the central nervous system

  10. Effects of human low and high density lipoproteins on the binding of rat intermediate density lipoproteins to rat liver membranes

    International Nuclear Information System (INIS)

    Brissette, L.; Nol, S.P.

    1986-01-01

    Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat 125 I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific 125 I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat 125 I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors

  11. Evaluation of castor oil-based polyurethane membranes in rat bone-marrow cell culture.

    Science.gov (United States)

    Cerejo, Sofia de Amorim; Rahal, Sheila Canevese; Lima Neto, João Ferreira de; Voorwald, Fabiana Azevedo; Alvarenga, Fernanda da Cruz Landim e

    2011-10-01

    To evaluate three methods to isolate rats MSCs and to analyze the potential of a castor oil polyurethane base membrane as a scaffold for MSCs. Four male Wistar rats, aged 20-30 days were used. Bone marrow aspirates from femur and tibia were harvested using DMEM high glucose and heparin. The cell culture was performed in three different ways: direct culture and two types of density gradients. After 15 days, was made the 1st passage and analyzed cell viability with markers Hoerscht 33342 and propidium iodide. The MSCs were characterized by surface markers with the aid of flow cytometry. After this, three types of castor oil polyurethane membranes associated with the MSCs were kept on the 6-well plate for 5 days and were analyzed by optical microscopy to confirm cell aggregation and growth. Separation procedures 1 and 2 allowed adequate isolation of MSCs and favored cell growth with the passage being carried out at 70% confluence after 15 days in culture. The cells could not be isolated using procedure 3. When the 3 castor oil polyurethane membrane types were compared it was possible to observe that the growth of MSCs was around 80% in membrane type 3, 20% in type 2, and 10% in type 1. Both Ficoll-Hypaque densities allow isolation of rat MSCs, and especially castor oil-based membrane type 3 may be used as a scaffold for MSCs.

  12. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor

    DEFF Research Database (Denmark)

    Wewer, U; Albrechtsen, R; Ruoslahti, E

    1981-01-01

    Laminin, a glycoprotein antigenically similar or identical to a component of epithelial basement membranes, was identified as a major component of the abundant extracellular matrix synthesized by an experimentally induced rat yolk sac tumor. Immunocytochemical staining revealed laminin in cultured...... polypeptides with molecular weights of approximately 200,000 and 400,000. These comigrated with the polypeptides of mouse laminin isolated previously. The yolk sac tumor tissue grown in vivo contained laminin in the tumor cells and in the extracellular material as evidenced by immunofluorescence...... membranes in rat tissues in a manner indistinguishable from antilaminin. The presence of laminin in rat yolk sac cells, the presumed origin of our yolk sac tumor, was studied in some detail. Laminin was found to be present in normal cells of the visceral as well as the parietal yolk sac layer...

  13. Membrane potential and cation channels in rat juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, U G; Jørgensen, F; Andreasen, D

    2004-01-01

    The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK(Ca)) of the Z......The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK...

  14. Olopatadine Inhibits Exocytosis in Rat Peritoneal Mast Cells by Counteracting Membrane Surface Deformation

    Directory of Open Access Journals (Sweden)

    Asuka Baba

    2015-01-01

    Full Text Available Backgroud/Aims: Besides its anti-allergic properties as a histamine receptor antagonist, olopatadine stabilizes mast cells by inhibiting the release of chemokines. Since olopatadine bears amphiphilic features and is preferentially partitioned into the lipid bilayers of the plasma membrane, it would induce some morphological changes in mast cells and thus affect the process of exocytosis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of olopatadine and other anti-allergic drugs on the membrane capacitance (Cm in rat peritoneal mast cells during exocytosis. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on the deformation of the plasma membrane. Results: Low concentrations of olopatadine (1 or 10 µM did not significantly affect the GTP-γ-S-induced increase in the Cm. However, 100 µM and 1 mM olopatadine almost totally suppressed the increase in the Cm. Additionally, these doses completely washed out the trapping of the dye on the cell surface, indicating that olopatadine counteracted the membrane surface deformation induced by exocytosis. As shown by electron microscopy, olopatadine generated inward membrane bending in mast cells. Conclusion: This study provides electrophysiological evidence for the first time that olopatadine dose-dependently inhibits the process of exocytosis in rat peritoneal mast cells. Such mast cell stabilizing properties of olopatadine may be attributed to its counteracting effects on the plasma membrane deformation in degranulating mast cells.

  15. Mother/offspring co-administration of the traditional herbal remedy yokukansan during the nursing period influences grooming and cerebellar serotonin levels in a rat model of neurodevelopmental disorders.

    Science.gov (United States)

    Muneoka, Katsumasa; Kuwagata, Makiko; Ogawa, Tetsuo; Shioda, Seiji

    2015-04-01

    Neurodevelopmental impairment in the serotonergic system may be involved in autism spectrum disorder. Yokukansan is a traditional herbal remedy for restlessness and agitation in children, and mother-infant co-administration (MICA) to both the child and the nursing mother is one of the recommended treatment approaches. Recent studies have revealed the neuropharmacological properties of Yokukansan (YKS), including its 5-HT1A (serotonin) receptor agonistic effects. We investigated the influence of YKS treatment on behavior in a novel environment and on brain monoamine metabolism during the nursing period in an animal model of neurodevelopmental disorders, prenatally BrdU (5-bromo-2'-deoxyuridine)-treated rats (BrdU-rats). YKS treatment did not influence locomotor activity in BrdU-rats but reduced grooming in open-field tests. YKS treatment without MICA disrupted the correlation between locomotor behaviors and rearing and altered levels of serotonin and its metabolite in the cerebellum. These effects were not observed in the group receiving YKS treatment with MICA. These data indicate a direct pharmacological effect of YKS on the development of grooming behavior and profound effects on cerebellar serotonin metabolism, which is thought to be influenced by nursing conditions.

  16. Cerebellar anatomy as applied to cerebellar microsurgical resections

    Directory of Open Access Journals (Sweden)

    Alejandro Ramos

    2012-06-01

    Full Text Available OBJECTIVE: To define the anatomy of dentate nucleus and cerebellar peduncles, demonstrating the surgical application of anatomic landmarks in cerebellar resections. METHODS: Twenty cerebellar hemispheres were studied. RESULTS: The majority of dentate nucleus and cerebellar peduncles had demonstrated constant relationship to other cerebellar structures, which provided landmarks for surgical approaching. The lateral border is separated from the midline by 19.5 mm in both hemispheres. The posterior border of the cortex is separated 23.3 mm from the posterior segment of the dentate nucleus; the lateral one is separated 26 mm from the lateral border of the nucleus; and the posterior segment of the dentate nucleus is separated 25.4 mm from the posterolateral angle formed by the junction of lateral and posterior borders of cerebellar hemisphere. CONCLUSIONS: Microsurgical anatomy has provided important landmarks that could be applied to cerebellar surgical resections.

  17. Even a Chronic Mild Hyperglycemia Affects Membrane Fluidity and Lipoperoxidation in Placental Mitochondria in Wistar Rats

    Science.gov (United States)

    Figueroa-García, María del Consuelo; Espinosa-García, María Teresa; Martinez-Montes, Federico; Palomar-Morales, Martín; Mejía-Zepeda, Ricardo

    2015-01-01

    It is known the deleterious effects of diabetes on embryos, but the effects of diabetes on placenta and its mitochondria are still not well known. In this work we generated a mild hyperglycemia model in female wistar rats by intraperitoneal injection of streptozotocin in 48 hours-old rats. The sexual maturity onset of the female rats was delayed around 6–7 weeks and at 16 weeks-old they were mated, and sacrificed at day 19th of pregnancy. In placental total tissue and isolated mitochondria, the fatty acids composition was analyzed by gas chromatography, and lipoperoxidation was measured by thiobarbituric acid reactive substances. Membrane fluidity in mitochondria was measured with the excimer forming probe dipyrenylpropane and mitochondrial function was measured with a Clark-type electrode. The results show that even a chronic mild hyperglycemia increases lipoperoxidation and decreases mitochondrial function in placenta. Simultaneously, placental fatty acids metabolism in total tissue is modified but in a different way than in placental mitochondria. Whereas the chronic mild hyperglycemia induced a decrease in unsaturated to saturated fatty acids ratio (U/S) in placental total tissue, the ratio increased in placental mitochondria. The measurements of membrane fluidity showed that fluidity of placenta mitochondrial membranes increased with hyperglycemia, showing consistency with the fatty acids composition through the U/S index. The thermotropic characteristics of mitochondrial membranes were changed, showing lower transition temperature and activation energies. All of these data together demonstrate that even a chronic mild hyperglycemia during pregnancy of early reproductive Wistar rats, generates an increment of lipoperoxidation, an increase of placental mitochondrial membrane fluidity apparently derived from changes in fatty acids composition and consequently, mitochondrial malfunction. PMID:26630275

  18. Diode λ830nm laser associated with hydroxyapatite and biological membranes: bone repair in rats

    Science.gov (United States)

    Carneiro, Vanda S. M.; Limeira, Francisco d. A.; Gerbi, Marleny E. M.; Menezes, Rebeca F. d.; Santos-Neto, Alexandrino P. d.; Araújo, Natália C.

    2016-02-01

    The aim of the present study was to histologically assess the effect of laser therapy (AsGaAl, 830nm, 40mW, CW, φ ~0,6mm, 16J/cm2 per session, four points of 4J/cm2) on the repair of surgical defects created in the femur of Wistar rats. Background data: Several techniques have been proposed for the correction of bone defects, including the use of grafts and membranes. Despite the increase in the use of laser therapy for the biomodulation of bone repair, very few studies have assessed the associations between laser light and biomaterials. Method: The defects were filled with synthetic micro granular hydroxyapatite (HA) Gen-phos® implants and associated with bovine bone membranes (Gen-derm®). Surgical bone defects were created in 48 rats and divided into four groups: Group IA (control, n=12); Group IB (laser, n=12); Group IIA (HA + membrane, n=12); Group IIB (HA + membrane + laser, n=12). The irradiated groups received the first irradiation immediately after surgery. This radiation was then repeated seven times every 48h. The animals were sacrificed after 15, 21, and 30 days. Results: When comparing the groups irradiated with implants and membranes, it was found that the repair of the defects submitted to laser therapy occurred more quickly, starting 15 and 21 days after surgery. By the 30th day, the level of repair of the defects was similar in the irradiated and the non-irradiated groups. New bone formation was confirmed inside the cavity by the implant's osteoconduction. In the irradiated groups, there was an increment of this new bone formation. Conclusions: In conclusion, the use of laser therapy, particularly when associated with hydroxyapatite and biological membranes, produced a positive biomodulation effect on the healing process of bone defects on the femurs of rats.

  19. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder.

    Science.gov (United States)

    Shakirova, Yulia; Swärd, Karl; Uvelius, Bengt; Ekman, Mari

    2010-12-15

    Organ hypertrophy is often found to be associated with changes in the expression of caveolins and altered density of caveolae in the membrane. A plethora of signalling intermediaries are associated with caveolae and loss of caveolae has profound effects on contractility of the urinary bladder. We hypothesized that smooth muscle hypertrophy caused by bladder outflow obstruction (BOO) might lead to an altered caveola density with consequences for contractile regulation. Rat BOO for 6 weeks caused a 2.56-fold increase in the number of smooth muscle caveolae per μm membrane. No changes in the expression of caveolin-1 or cavin-1, normalized to β-actin were seen, but membrane area per unit muscle volume dropped to 0.346. Hypertrophy was associated with altered contraction in response to carbachol. The effect on contraction of cholesterol desorption, which disrupts lipid rafts and caveolae, was however not changed. Contraction in response to bradykinin resisted mβcd in control destrusor, but was inhibited by it after 6 weeks of obstruction. It is concluded that rat detrusor hypertrophy leads to an increased number of caveolae per unit membrane area. This change is due to a reduction of membrane area per volume muscle and it does not play a role for cholinergic activation, but promotes contraction in response to bradykinin after long-term obstruction. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Basement membrane heparan sulfate proteoglycan from the L2 rat yolk sac carcinoma

    DEFF Research Database (Denmark)

    Fenger, M; Wewer, U; Albrechtsen, R

    1984-01-01

    Heparan sulfate proteoglycan from the L2 rat yolk sac carcinoma has been purified and partially characterized. The proteoglycan has an apparent Mr of 750 000, 35% of which represents the core protein. The core protein seems to be homogeneous, whereas the heparan sulfate chains are heterogeneous...... with an Mr of about 50 000-70 000, with 30% of the glucosamine being N-sulfated. Antibodies raised against the core protein of the heparan sulfate proteoglycan reacted with basement membranes of various rat and human tissue....

  1. Synthesis of erythrocyte membrane proteins in dispersed cells from fetal rat liver

    International Nuclear Information System (INIS)

    Kitagawa, Yasuo; Murakami, Akihiko; Sugimoto, Etsuro

    1984-01-01

    Protein synthesis in dispersed cells from fetal liver was studied by fluorography of SDS-polyacrylamide gel electrophoresis of a [ 35 S] methionine labeled cell lysate. Synthesis of several proteins with molecular weights ranging from 45,000 to 220,000 was observed during erythropoiesis in fetal liver. Some of these proteins were demonstrated to be erythrocyte membrane proteins because they were immunoprecipitated with antiserum against rat red blood cells and the immunoprecipitation was competitive with non-radioactive proteins solubilized from erythrocyte ghosts. The same antiserum caused agglutination of dispered cells from fetal liver. This supported the possibility that these proteins are translocated onto plasma membranes of the dispersed cells. (author)

  2. A cerebellar neuroprosthetic system: computational architecture and in vivo experiments

    Directory of Open Access Journals (Sweden)

    Ivan eHerreros Alonso

    2014-05-01

    Full Text Available Emulating the input-output functions performed by a brain structure opens the possibility for developing neuro-prosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model's inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuro-prosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step towards replacing lost functions of the central nervous system via neuro-prosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuro-prosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step towards the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term

  3. A Cerebellar Neuroprosthetic System: Computational Architecture and in vivo Test

    International Nuclear Information System (INIS)

    Herreros, Ivan; Giovannucci, Andrea; Taub, Aryeh H.; Hogri, Roni; Magal, Ari; Bamford, Sim; Prueckl, Robert; Verschure, Paul F. M. J.

    2014-01-01

    Emulating the input–output functions performed by a brain structure opens the possibility for developing neuroprosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention, and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model’s inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuroprosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step toward replacing lost functions of the central nervous system via neuroprosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuroprosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step toward the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term, humans.

  4. A Cerebellar Neuroprosthetic System: Computational Architecture and in vivo Test

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, Ivan; Giovannucci, Andrea [Synthetic Perceptive, Emotive and Cognitive Systems group (SPECS), Universitat Pompeu Fabra, Barcelona (Spain); Taub, Aryeh H.; Hogri, Roni; Magal, Ari [Psychobiology Research Unit, Tel Aviv University, Tel Aviv (Israel); Bamford, Sim [Physics Laboratory, Istituto Superiore di Sanità, Rome (Italy); Prueckl, Robert [Guger Technologies OG, Graz (Austria); Verschure, Paul F. M. J., E-mail: paul.verschure@upf.edu [Synthetic Perceptive, Emotive and Cognitive Systems group (SPECS), Universitat Pompeu Fabra, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats, Barcelona (Spain)

    2014-05-21

    Emulating the input–output functions performed by a brain structure opens the possibility for developing neuroprosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention, and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model’s inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuroprosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step toward replacing lost functions of the central nervous system via neuroprosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuroprosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step toward the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term, humans.

  5. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder.

    OpenAIRE

    Shakirova, Yulia; Swärd, Karl; Uvelius, Bengt; Ekman, Mari

    2010-01-01

    Organ hypertrophy is often found to be associated with changes in the expression of caveolins and altered density of caveolae in the membrane. A plethora of signalling intermediaries are associated with caveolae and loss of caveolae has profound effects on contractility of the urinary bladder. We hypothesized that smooth muscle hypertrophy caused by bladder outflow obstruction (BOO) might lead to an altered caveola density with consequences for contractile regulation. Rat BOO for 6weeks cause...

  6. Biotransformation of endorphins by a synaptosomal plasma membrane preparation of rat brain and by human serum

    NARCIS (Netherlands)

    Burbach, J.P.H.; Loeber, J.G.; Verhoef, J.; Kloet, E.R. de; Wied, D. de

    1979-01-01

    β-Endorphin (β-LPH 61–91), γ-endorphin (61–77), des-tyrosine-γ-endorphin (62–77), α-endorphin (61–76), and β-LPH 61–69 either labeled with [125I] at the N-terminal 61-tyrosine residue or unlabeled were incubated with a crude synaptosomal plasma membrane fraction of rat brain or in human serum. At

  7. Proton permeability of membranes of Streptococcus faecalis and submitochondrial particles of rats after irradiation

    International Nuclear Information System (INIS)

    Fomenko, B.S.; Pinchukova, V.A.

    1977-01-01

    It has been shown that at a changed, by HCl impulse, pH of Streptococcus faecalis suspension and submitochondrial liver particles (SLP) of rats, H + concentration decreases more rapidly in the irradiated bacteria and SLP than in the controls. The curves of energy dependence of accumulation of the penetrating ions were also displaced toward the alkaline zone depending on pH. These effects are suggested to be connected with an increased proton permeability of irradiated membranes

  8. Influence of Glucose Deprivation on Membrane Potentials of Plasma Membranes, Mitochondria and Synaptic Vesicles in Rat Brain Synaptosomes.

    Science.gov (United States)

    Hrynevich, Sviatlana V; Pekun, Tatyana G; Waseem, Tatyana V; Fedorovich, Sergei V

    2015-06-01

    Hypoglycemia can cause neuronal cell death similar to that of glutamate-induced cell death. In the present paper, we investigated the effect of glucose removal from incubation medium on changes of mitochondrial and plasma membrane potentials in rat brain synaptosomes using the fluorescent dyes DiSC3(5) and JC-1. We also monitored pH gradients in synaptic vesicles and their recycling by the fluorescent dye acridine orange. Glucose deprivation was found to cause an inhibition of K(+)-induced Ca(2+)-dependent exocytosis and a shift of mitochondrial and plasma membrane potentials to more positive values. The sensitivity of these parameters to the energy deficit caused by the removal of glucose showed the following order: mitochondrial membrane potential > plasma membrane potential > pH gradient in synaptic vesicles. The latter was almost unaffected by deprivation compared with the control. The pH-dependent dye acridine orange was used to investigate synaptic vesicle recycling. However, the compound's fluorescence was shown to be enhanced also by the mixture of mitochondrial toxins rotenone (10 µM) and oligomycin (5 µg/mL). This means that acridine orange can presumably be partially distributed in the intermembrane space of mitochondria. Glucose removal from the incubation medium resulted in a 3.7-fold raise of acridine orange response to rotenone + oligomycin suggesting a dramatic increase in the mitochondrial pH gradient. Our results suggest that the biophysical characteristics of neuronal presynaptic endings do not favor excessive non-controlled neurotransmitter release in case of hypoglycemia. The inhibition of exocytosis and the increase of the mitochondrial pH gradient, while preserving the vesicular pH gradient, are proposed as compensatory mechanisms.

  9. Na+/K+-ATPase inhibition partially mimics the ethanol-induced increase of the Golgi cell-dependent component of the tonic GABAergic current in rat cerebellar granule cells.

    Directory of Open Access Journals (Sweden)

    Marvin R Diaz

    Full Text Available Cerebellar granule cells (CGNs are one of many neurons that express phasic and tonic GABAergic conductances. Although it is well established that Golgi cells (GoCs mediate phasic GABAergic currents in CGNs, their role in mediating tonic currents in CGNs (CGN-I(tonic is controversial. Earlier studies suggested that GoCs mediate a component of CGN-I(tonic that is present only in preparations from immature rodents. However, more recent studies have detected a GoC-dependent component of CGN-I(tonic in preparations of mature rodents. In addition, acute exposure to ethanol was shown to potentiate the GoC component of CGN-I(tonic and to induce a parallel increase in spontaneous inhibitory postsynaptic current frequency at CGNs. Here, we tested the hypothesis that these effects of ethanol on GABAergic transmission in CGNs are mediated by inhibition of the Na(+/K(+-ATPase. We used whole-cell patch-clamp electrophysiology techniques in cerebellar slices of male rats (postnatal day 23-30. Under these conditions, we reliably detected a GoC-dependent component of CGN-I(tonic that could be blocked with tetrodotoxin. Further analysis revealed a positive correlation between basal sIPSC frequency and the magnitude of the GoC-dependent component of CGN-I(tonic. Inhibition of the Na(+/K(+-ATPase with a submaximal concentration of ouabain partially mimicked the ethanol-induced potentiation of both phasic and tonic GABAergic currents in CGNs. Modeling studies suggest that selective inhibition of the Na(+/K(+-ATPase in GoCs can, in part, explain these effects of ethanol. These findings establish a novel mechanism of action of ethanol on GABAergic transmission in the central nervous system.

  10. Acetylcholinesterase potentiates [3H]fluorowillardiine and [3H]AMPA binding to rat cortical membranes

    International Nuclear Information System (INIS)

    Olivera, S.; Rodriguez-Ithurralde, D.; Henley, J.M.

    1999-01-01

    In addition to its action at cholinergic synapses acetylcholinesterase (AChE) has been proposed to modulate neuronal activity by mechanisms unrelated to the hydrolysis of acetylcholine. We have investigated the effects of AChE on the binding of the specific AMPA receptor agonists (S)-[ 3 H]5-fluorowillardiine ([ 3 H]FW) and [ 3 H]AMPA to rat cortical membranes. Pretreatment of membranes with AChE causes a dose-dependent increase in the binding of both radiolabelled agonists with a maximal increase to ∼60% above control. This increase is completely blocked by the specific AChE inhibitors propidium, physostigmine, DFP and BW 284C51. AChE pretreatment had no effect on [ 3 H]kainate binding. [ 3 H]FW binding to membranes from young (15-day-old) rats is four orders of magnitude more sensitive to AChE modulation than membranes from adult rats (EC 50 values of 4x10 -5 and 0.1 unit/ml, respectively) although the total percentage increase in binding is similar. Furthermore, the AChE-induced potentiation of [ 3 H]FW binding is Ca 2+ - and temperature-dependent suggesting an enzymatic action for AChE in this system. Saturation binding experiments with [ 3 H]FW to adult membranes reveal high and low affinity binding sites and demonstrate that the main action of AChE is to increase the B max of both sites. These findings suggest that modulation of AMPA receptors could provide a molecular mechanism of action for the previously reported effects of AChE in synapse formation, synaptic plasticity and neurodegeneration. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Localization of ras antigenicity in rat hepatocyte plasma membrane and rough endoplasmic reticulum fractions

    International Nuclear Information System (INIS)

    Dominguez, J.M.; Lanoix, J.; Paiement, J.

    1991-01-01

    We have examined the antigenicity of plasma membrane (PM) and rough microsomal (RM) fractions from rat liver using anti-ras monoclonal antibodies 142-24EO5 and Y13-259 and immunochemistry as well as electron microscope immunocytochemistry. Proteins immunoprecipitated with monoclonal antibody 142-24E05 were separated using single-dimensional gradient-gel electrophoresis. The separated proteins were then blotted onto nitrocellulose sheets and incubated with [alpha-32P]GTP. Radioautograms of blots indicated the presence of specific 21.5- and 22-kDa labeled proteins in the PM fraction. A 23.5-kDa [alpha- 32 P] GTP-binding protein was detected in immunoprecipitates of both PM and RM fractions. Monoclonal antibody Y13-259 reacted only with the 21.5-kDa [alpha- 32 P] GTP-binding protein in the plasma membrane fraction. When anti-ras monoclonal antibody 142-24E05 and the immunogold technique were applied to membrane fractions using a preembedding immunocytochemical method, specific labeling was observed in association with both vesicular structures and membrane sheets in the PM fraction but only with electron-dense vesicular structures in the RM fraction. Thus ras antigenicity is associated with hepatocyte plasma membranes and ras-like antigenicity is probably associated with vesicular (secretory/endocytic) elements in both plasma membrane and rough microsomal preparations

  12. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    International Nuclear Information System (INIS)

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-01-01

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size

  13. Amphipaths Differentially Modulate Membrane Surface Deformation in Rat Peritoneal Mast Cells During Exocytosis

    Directory of Open Access Journals (Sweden)

    Itsuro Kazama

    2013-04-01

    Full Text Available Background/Aims: Salicylate and chlorpromazine exert differential effects on the chemokine release from mast cells. Since these drugs are amphiphilic and preferentially partitioned into the lipid bilayers of the plasma membranes, they would induce some morphological changes in mast cells and thus affect the process of exocytosis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of salicylate and chlorpromazine on the membrane capacitance (Cm during exocytosis in rat peritoneal mast cells. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on plasma membrane deformation of the cells. Results: Salicylate dramatically accelerated the GTP-γ-S-induced increase in the Cm immediately after its application, whereas chlorpromazine significantly suppressed the increase. Treatment with salicylate increased the trapping of the dye on the cell surface, while treatment with chlorpromazine completely washed it out, indicating that both drugs induced membrane surface deformation in mast cells. Conclusion: This study demonstrated for the first time that membrane amphipaths, such as salicylate and chlorpromazine, may oppositely modulate the process of exocytosis in mast cells, as detected by the changes in the Cm. The plasma membrane deformation induced by the drugs was thought to be responsible for their differential effects.

  14. Insulin and adenosine regulate the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes.

    Science.gov (United States)

    Kiechle, F L; Sykes, E; Artiss, J D

    1995-01-01

    Blockade of adenosine receptors by 3-isobutyl-1-methylxanthine or degradation of endogenous adenosine with adenosine deaminase increased the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes, an effect which was suppressed by the phosphatidylethanolamine methyltransferase inhibitor, S-adenosyl-L-homocysteine, and reversed by the adenosine analogue, N6-(L-phenylisopropyl)-adenosine. For example, the addition of N6-(L-phenylisopropyl)-adenosine to adenosine deaminase pretreated plasma membranes rapidly lowered the concentration of phosphatidylcholine by 171 nmol/mg at 30 seconds compared to control. Insulin-induced stimulation of phospholipid methylation in membranes treated with 3-isobutyl-1-methylxanthine or adenosine deaminase was achieved only after the addition of N6-(L-phenylisopropyl)-adenosine. These results suggest that adenosine receptor occupancy inhibits phospholipid methylation, is required for insulin stimulation of phospholipid methylation, and may perhaps activate a phosphatidylcholine-specific phospholipase C or phospholipase D.

  15. Rat hair follicle dermal papillae have an extracellular matrix containing basement membrane components

    DEFF Research Database (Denmark)

    Couchman, J R

    1986-01-01

    , to be replaced by synthesis of other components including type I and III collagens. It seems likely therefore that the dermal papilla cells in vivo synthesize a basement membrane type of extracellular matrix, although a contribution from epithelial, and in some cases capillary endothelial, cells cannot be ruled......Dermal papillae are small mesenchymally derived zones at the bases of hair follicles which have an important role in hair morphogenesis in the embryo and control of the hair growth cycle in postnatal mammals. The cells of the papilla are enmeshed in a dense extracellular matrix which undergoes...... extensive changes in concert with the hair cycle. Here it is shown that this matrix in anagen pelage follicles of postnatal rats contains an abundance of basement membrane components rather than dermal components such as interstitial collagens. In particular, type IV collagen, laminin, and basement membrane...

  16. Radiation damages to cell membranes of dogs and rats quantitatively estimated by changes in sedimentation behaviour of erythrocytes

    International Nuclear Information System (INIS)

    Mikhajlov, V.F.; Potemkin, L.A.

    1985-01-01

    It was shown that injury to plasma membranes leads to a change in the sedimentation behaviour of erythrocytes: the maximum effect is produced when a protein component of the membrane is affected. The same dose dependent character of the change in erythrocyte sedimentation in urografine are observed during the first 24 h after γ-irradiation of rats and dogs

  17. Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats

    DEFF Research Database (Denmark)

    McCarthy, K J; Abrahamson, D R; Bynum, K R

    1994-01-01

    exception being the normal glomerular capillary basement membrane (GBM), where it is absent. In the present study of mature kidneys we examined the distribution of BM-CSPG in streptozocin-induced diabetes mellitus in rats. We found BM-CSPG atypically associated with the GBM of diabetic animals as early as 1...... month after induction of diabetes mellitus. Immunoelectron microscopy (IEM) of affected capillary loops showed BM-CSPG present in the subendothelial matrix in areas of GBM thickening and absent in areas where the GBM appears to be of normal thickness. Moreover, the association of BM-CSPG with regions...... of the pericapillary GBM affects the morphology of the capillary endothelial cells within these areas, directly displacing the cell body from the GBM proper and causing loss of fenestrae. These new data on BM-CSPG distribution reflect abnormal glomerular extracellular matrix protein biosynthesis/turnover in diabetes...

  18. Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit

    NARCIS (Netherlands)

    Zampini, Valeria; Liu, Jian K; Diana, Marco A; Maldonado, Paloma P; Brunel, Nicolas; Dieudonné, Stéphane

    2016-01-01

    Synaptic currents display a large degree of heterogeneity of their temporal characteristics, but the functional role of such heterogeneities remains unknown. We investigated in rat cerebellar slices synaptic currents in Unipolar Brush Cells (UBCs), which generate intrinsic mossy fibers relaying

  19. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells

    Science.gov (United States)

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2014-01-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413

  20. Administration of memantine during ethanol withdrawal in neonatal rats: effects on long-term ethanol-induced motor incoordination and cerebellar Purkinje cell loss.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Riley, Edward P; Thomas, Jennifer D

    2011-02-01

    Alcohol consumption during pregnancy can damage the developing fetus, illustrated by central nervous system dysfunction and deficits in motor and cognitive abilities. Binge drinking has been associated with an increased risk of fetal alcohol spectrum disorders, likely due to increased episodes of ethanol withdrawal. We hypothesized that overactivity of the N-methyl-D-aspartate (NMDA) receptor during ethanol withdrawal leads to excitotoxic cell death in the developing brain. Consistent with this, administration of NMDA receptor antagonists (e.g., MK-801) during withdrawal can attenuate ethanol's teratogenic effects. The aim of this study was to determine whether administration of memantine, an NMDA receptor antagonist, during ethanol withdrawal could effectively attenuate ethanol-related deficits, without the adverse side effects associated with other NMDA receptor antagonists. Sprague-Dawley pups were exposed to 6.0 g/kg ethanol or isocaloric maltose solution via intubation on postnatal day 6, a period of brain development equivalent to a portion of the 3rd trimester. Twenty-four and 36 hours after ethanol, subjects were injected with 0, 10, or 15 mg/kg memantine, totaling doses of 0, 20, or 30 mg/kg. Motor coordination was tested on a parallel bar task and the total number of cerebellar Purkinje cells was estimated using unbiased stereology. Alcohol exposure induced significant parallel bar motor incoordination and reduced Purkinje cell number. Memantine administration significantly attenuated both ethanol-associated motor deficits and cerebellar cell loss in a dose-dependent manner. Memantine was neuroprotective when administered during ethanol withdrawal. These data provide further support that ethanol withdrawal contributes to fetal alcohol spectrum disorders. Copyright © 2010 by the Research Society on Alcoholism.

  1. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect

    International Nuclear Information System (INIS)

    Jung, Ui-Won; Song, Kun-Young; Kim, Chang-Sung; Lee, Yong-Keun; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho

    2007-01-01

    The purpose of this study was to evaluate the effects of a chitosan membrane coated with polylactic and polyglycolic acid (PLGA) on bone regeneration in a rat calvarial defect. Surgical implantation of chitosan membranes resulted in enhanced local bone formation at both 2 and 8 weeks. In conclusion, the chitosan membrane coated with PLGA had a significant potential to induce bone formation in the rat calvarial defect model. Within the selected PLGA dose range and observation intervals, there appeared to be no meaningful differences in bone formation

  2. Falls and cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    I. V. Damulin

    2015-01-01

    Full Text Available The paper considers the main causes of falls. Whatever their cause is, falls may lead to severe maladjustment in everyday life. In nearly 1 out of 10 cases, they are accompanied by severe injuries, including fractures (most commonly those of the proximal femur and humerus, hands, pelvic bones, and vertebrae, subdural hematoma, and severe soft tissue and head injuries. This process is emphasized to be multifactorial. Particular emphasis is laid on the involvement of the cerebellum and its associations, which may be accompanied by falls. This is clinically manifested mainly by gait disorders. Walking is a result of an interaction of three related functions (locomotion, maintenance of balance and adaptive reactions. In addition to synergies related to locomotion and balance maintenance, standing at rest and walking are influenced bythe following factors: postural and environmental information (proprioceptive, vestibular, and visual, the capacity to interpret and integrate this information, the ability of the musculoskeletal system to make movements, and the capability to optimally modulate these movements in view of the specific situation and the ability to choose and adapt synergy in terms of external factors and the capacities and purposes of an individual. The clinical signs of damage to the cerebellum and its associations are considered in detail. These structures are emphasized to be involved not only in movements, but also in cognitive functions. The major symptoms that permit cerebellar dysfunction to be diagnosed are given. Symptoms in cerebellar injuries are generally most pronounced when suddenly changing the direction of movements or attempting to start walking immediately after a dramatic rise. The magnitude of ataxia also increases in a patient who tries to decrease the step size. Falling tendencies or bending to one side (in other symptoms characteristic of cerebellar diseases suggest injury of the corresponding

  3. Cerebellar abiotrophy in a miniature schnauzer

    OpenAIRE

    Berry, Michelle L.; Blas-Machado, Uriel

    2003-01-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  4. Cerebellar abiotrophy in a miniature schnauzer.

    Science.gov (United States)

    Berry, Michelle L; Blas-Machado, Uriel

    2003-08-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  5. Glucagon effects on the membrane potential and calcium uptake rate of rat liver mitochondria

    International Nuclear Information System (INIS)

    Wingrove, D.E.; Amatruda, J.M.; Gunter, T.E.

    1984-01-01

    It has been widely reported that the in vivo administration of glucagon to rats results in the stimulation of calcium influx in subsequently isolated liver mitochondria. The mechanism of this effect is investigated through simultaneous measurements of calcium uptake rate and mitochondrial membrane potential. This allows the measurement of the calcium uniporter conductance independent of hormonal effects on electron transport or respiration. Two experimental approaches are used. The first involves measuring the uptake of 40-50 nmol of Ca 2+ /mg of mitochondrial protein with the calcium dye antipyrylazo III; the second uses 45 Ca 2+ to follow uptake in the presence of 0.5 to 1.5 μM free calcium, buffered with HEDTA. In both cases a tetraphenyl phosphonium electrode is used to follow membrane potential, and membrane potential is varied using either malonate or butylmalonate in the presence of rotenone. The relative merits of these two approaches are discussed. The conductance of the calcium uniporter is found not to be stimulated by glucagon pretreatment. Also, the relative glucagon stimulation of both calcium influx and membrane potential is found to increase with increasing malonate concentration. These results imply that there is no direct stimulation of calcium uptake into liver mitochondria following glucagon treatment. The results are consistent with a glucagon stimulation of substrate transport, substrate oxidation, or a stimulation of electron transport resulting in an increased membrane potential and secondary stimulation of calcium uptake

  6. Identification of immunogenic outer membrane proteins of Haemophilus influenzae type b in the infant rat model system

    International Nuclear Information System (INIS)

    Hansen, E.J.; Frisch, C.F.; McDade, R.L. Jr.; Johnston, K.H.

    1981-01-01

    Outer membrane proteins of Haemophilus influenzae type b which are immunogenic in infant rats were identified by a radioimmunoprecipitation method. Intact cells of H. influenzae type b were radioiodinated by a lactoperoxidase-catalyzed procedure, and an outer membrane-containing fraction was prepared from these cells. These radioiodinated outer membranes were mixed with sera obtained from rats convalescing from systemic H. influenzae type b disease induced at 6 days of age, and the resultant (antibody-outer membrane protein antigen) complexes were extracted from these membranes by treatment with nonionic detergent and ethylenediaminetetraacetic acid. These soluble antibody-antigen complexes were isolated by means of adsorption to protein A-bearing staphylococci, and the radioiodinated protein antigens were identified by gel electrophoresis followed by autoradiography. Infant rats were shown to mount a readily detectable antibody response to several different proteins present in the outer membrane of H. influenzae type b. Individual infant rats were found to vary both qualitatively and quantitatively in their immune response to these immunogenic outer membrane proteins

  7. Variations au cours de la journée de l'incorporation in vivo de la leucine tritiée dans les protéines du cervelet et du cerveau du jeune rat normal et hypothyroïdien. Daily variations of the in vivo [3H] leucine incorporation into the cerebellar and cerebral proteins of the normal and hypothyroid young rat [(author's transl)].

    Science.gov (United States)

    Dainat, J; Rebière, A

    1978-02-15

    In the normal and hypothyroid 6-day-old rat, the specific radioactivity (RSA) and the relative RSA (ratio of the RSA to the [3H] lecine concentration of the acido soluble phase) of the cerebral and cerebellar proteins, changes during the day synchronally. They show a maximum at 15.00 h and a minimum at 0.300 h. At all stages studied, these values are significantly lower in the hyothyroid animals than in normal ones.

  8. Pentoxifylline Ameliorates Glomerular Basement Membrane Ultrastructural Changes Caused by Gentamicin Administration in Rats

    Directory of Open Access Journals (Sweden)

    Nenad Stojiljković

    2009-08-01

    Full Text Available Gentamicin is commonly used for the treatment of severe gram negative bacterial infections but inevi-tably cause renal failure during prolonged use. The aim of our study was to emphasize protective effects of pentoxifylline on glomerular basement membrane (GBM alterations induced by gentamicin in rats. Experiments were done on 40 male Wistar rats divided in three experimental groups. GM-group was treated daily with gentamicin in dose of 100 mg/kg during 8 days. PTX-group was treated daily with pentoxifylline in dose of 45 mg/kg and the same dose of gentamicin as in GM-group during 8 days. The control group received 1 ml/day saline intraperitoneally. Morphometric parameter measured during the analysis was glomerular basement membrane thickness. In GM-group of animals glomeruli were en-larged and GMB was diffusely and unequally thickened with neutrophil cells infiltration. In proximal tu-bules epithelial cells, vacuolization of cytoplasm with coagulation-type necrosis were observed. In PTX-group of animals glomeruli were somewhat enlarged and GBM was thickened only in some segments. Coagulation-type necrosis was not found. Blood urea and serum creatinine concentration in GM-group were significantly elevated in comparison with PTX-group while potassium level was decreased. Our results suggest that PTX has protective effects on GBM and proximal tubules in GM-treated rats.

  9. [Relationship between the changes in ischemia/reperfusion cerebro-microvessel basement membrane injury and gelatinase system in senile rat].

    Science.gov (United States)

    Li, Jian-sheng; Liu, Ke; Liu, Jing-xia; Wang, Ming-hang; Zhao, Yue-wu; Liu, Zheng-guo

    2008-11-01

    To study the relationship of cerebro-microvessel basement membrane injury and gelatinase system after cerebral ischemia/reperfusion (I/R) in aged rats. Cerebral I/R injury model was reproduced by intraluminal silk ligature thrombosis of the middle cerebral artery occlusion (MCAO). Rats were divided randomly into sham control and I/R groups in young rats [ischemia 3 hours (I 3 h) and reperfusion 6 hours (I/R 6 h), 12 hours (I/R 12 h), 24 hours (I/R 24 h), 3 days (I/R 3 d), 6 days (I/R 6 d)], and sham control group and I/R group in aged rats (I 3 h and I/R 6 h, I/R 12 h, I/R 24 h , I/R 3 d, I/R 6 d). The change in cerebro-cortex microvessel basement membrane structure, basement membrane type IV collagen (Col IV) and laminin (LN) contents, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression in every group were determined with immunohistochemical method and zymogram analysis. With the increase in age, Col IV and LN contents of the microvessel basement membrane were increased, and MMP-2 and MMP-9 expressions were stronger. With prolongation of I/R, the degradation of microvessel basement membrane components (Col IV and LN) was positively correlated with the duration of cerebral I/R. MMP-2 expression was increased gradually, and MMP-9 and TIMP-1 expression increased at the beginning and decreased subsequently. Col IV(I 3 h, I/R 6 h , I/R 12 h), LN (I 3 h, I/R 6-24 h), MMP-2 (I 3 h, I/R 6 h-6 d) and MMP-9 (I 3 h, I/R 6-24 h) expression level in aged rats with I/R injury were higher, and TIMP-1 (I/R 24 h) expression was lower than those in young rats (Pcerebro-microvessel basement membrane in rats is related with MMPs and TIMP. Cerebro-microvessel basement membrane injury is more serious in aged rats than that of young rats. Changes in cerebro-microvessel basement membrane injury in aged rats is related with gelatinase system change.

  10. Effect of chronic psychogenic stress on characteristics of some rat brain synaptic membrane receptors

    International Nuclear Information System (INIS)

    Nikuradze, V.O.; Kozlovskaya, M.M.; Rozhanets, V.V.; Val'dman, A.V.

    1986-01-01

    This paper studies characteristics of alpha- and beta-adrenoreceptors, and imipramine and bensodiazepine receptors in brain synaptic membranes of rats after exposure to combined stress for 15 days by a modified Hecht's method. Before the experiment the suspension was thawed and centrifuged. Specific binding of tritium-WB-4101 (30 Ci/mmole), tritium-dihydroalprenolol, tritium-flunitrazepam, and tritium-imipramine was carried out by known methods with certain modifications. The results suggest that pathology of behavior in rats observed in the model may be classed as a depressive-like state rather than a neurosis-like state, and the model itself may be more appropriate for the study of the mechanisms of action of compounds with marked tranquilizing activity

  11. Effect of chronic psychogenic stress on characteristics of some rat brain synaptic membrane receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nikuradze, V.O.; Kozlovskaya, M.M.; Rozhanets, V.V.; Val' dman, A.V.

    1986-02-01

    This paper studies characteristics of alpha- and beta-adrenoreceptors, and imipramine and bensodiazepine receptors in brain synaptic membranes of rats after exposure to combined stress for 15 days by a modified Hecht's method. Before the experiment the suspension was thawed and centrifuged. Specific binding of tritium-WB-4101 (30 Ci/mmole), tritium-dihydroalprenolol, tritium-flunitrazepam, and tritium-imipramine was carried out by known methods with certain modifications. The results suggest that pathology of behavior in rats observed in the model may be classed as a depressive-like state rather than a neurosis-like state, and the model itself may be more appropriate for the study of the mechanisms of action of compounds with marked tranquilizing activity.

  12. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.......1% of total fatty acids, respectively) was uniformly higher across groups (P fatty acids) compared to the control leg (38.2 +/- 0...

  13. Anemia of the Belgrade rat: evidence for defective membrane transport of iron

    International Nuclear Information System (INIS)

    Bowen, B.J.; Morgan, E.H.

    1987-01-01

    The mechanisms underlying the impaired utilization of transferrin-bound iron by erythroid cells in the anemia of the Belgrade laboratory rat were investigated using reticulocytes from homozygous anemic animals and transferrin labeled with 59 Fe and 125 I. The results were compared with those obtained using reticulocytes from phenylhydrazine-treated rats and iron-deficient rats. Each step in the iron uptake mechanism was investigated, ie, transferrin-receptor interaction, transferrin endocytosis, iron release from transferrin, and transferrin exocytosis. Although there were quantitative differences, no fundamental difference was found in any of the abovementioned aspects of cellular function when the reticulocytes from Belgrade rats were compared with those from iron-deficient animals. The basic defect in the Belgrade reticulocytes must therefore reside in subsequent steps in iron uptake, after it is released from transferrin within endocytotic vesicles, ie, in the mechanism by which it is transferred across the lining membrane of the vesicles into the cell cytosol. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of reticulocyte ghosts extracts demonstrated a prominent protein band of mol wt 69,000 that was absent or present only in low concentration extracts from the other two types of reticulocytes. This may be a result of the genetic defect

  14. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    DEFF Research Database (Denmark)

    Beavan, L A; Davies, M; Couchman, J R

    1989-01-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently......-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane...

  15. Toxic agents causing cerebellar ataxias.

    Science.gov (United States)

    Manto, Mario

    2012-01-01

    The cerebellum is particularly vulnerable to intoxication and poisoning, especially so the cerebellar cortex and Purkinje neurons. In humans, the most common cause of a toxic lesion to the cerebellar circuitry is alcohol related, but the cerebellum is also a main target of drug exposure (such as anticonvulsants, antineoplastics, lithium salts, calcineurin inhibitors), drug abuse and addiction (such as cocaine, heroin, phencyclidine), and environmental toxins (such as mercury, lead, manganese, toluene/benzene derivatives). Although data for the prevalence and incidence of cerebellar lesions related to intoxication and poisoning are still unknown in many cases, clinicians should keep in mind the list of agents that may cause cerebellar deficits, since toxin-induced cerebellar ataxias are not rare in daily practice. Moreover, the patient's status may require immediate therapies when the intoxication is life-threatening. 2012 Elsevier B.V. All rights reserved.

  16. Use of hyperdry amniotic membrane in operations for cleft palate: a study in rats.

    Science.gov (United States)

    Tsuno, Hiroaki; Noguchi, Makoto; Okabe, Motonori; Tomihara, Kei; Yoshida, Toshiko; Nikaido, Toshio

    2015-04-01

    The growth of maxillary bone and the development of dentition are often impaired in patients who have had pushback operations for repair of a cleft palate. There has been considerable discussion about the most suitable technique or material used in such repairs to resolve the problem. Hyperdry amniotic membrane, a new preservable material derived from human amnion, has recently been introduced in several procedures. We have evaluated its use during pushback surgery in animal studies to try to correct the inhibition of growth and development of the maxilla. Mucosal defects were created in 3-week-old rats, and then covered with hyperdry amniotic membrane or not. Healing was assessed by histological and morphological examination at 1 week and 7 weeks postoperatively. In the group treated with hyperdry amniotic membrane, submucosal tissue was reconstructed successfully during the early postoperative period. Lateral palatal growth was not inhibited as much, and medial inclination of the teeth was less, after a period of growth using this material. The results suggest that hyperdry amniotic membrane is a suitable new dressing material for use in the treatment of cleft palate. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Intracellular and transcellular transport of secretory and membrane proteins in the rat hepatocyte

    International Nuclear Information System (INIS)

    Sztul, E.S.

    1984-01-01

    The intra- and transcellular transport of hepatic secretory and membrane proteins was studied in rats in vivo using [ 3 H]fucose and [ 35 S]cyteine as metabolic precursors. Incorporated radioactivity in plasma, bile, and liver subcellular fractions was measured and the labeled proteins of the Golgi complex, bile and plasma were separated by SDS-PAGE and identified by fluorography. 3 H-radioactivity in Golgi fractions peaked at 10 min post injection (p.i.) and then declined concomitantly with the appearance of labeled glycoproteins in plasma. Maximal secretion of secretory fucoproteins from the Golgi complex occurred between 10 and 20 min p.i. In contrast, the clearance of labeled proteins from Golgi membrane subfractions occurred past 30 min p.i., indicating that membrane proteins leave the Golgi complex at least 10 min later than the bulk of content proteins. A major 80K form of Secretory Component (SC) was identified in the bile by precipitation with an anti IgA antibody. A comparative study of kinetics of transport of 35 S-labeled SC and 35 S-labeled albumin showed that albumin peaked in bile at ∼45 min p.i., whereas the SC peak occurred at 80 min p.i., suggesting that the transit time differs for plasma and membrane proteins which are delivered to the bile canaliculus (BC)

  18. Free radical-mediated stimulation of tyrosine-specific protein kinase in rat liver plasma membrane

    International Nuclear Information System (INIS)

    Chan, T.M.; Tatoyan, A.; Cheng, E.; Shargill, N.S.; Pleta, M.

    1986-01-01

    Incorporation of 32 P from (γ- 32 P)-ATP into endogenous proteins of plasma membranes isolated from rat liver was significantly increased by several naphthoquinones including menadione. This apparent stimulation of membrane-associated protein kinase activity by these compounds was most striking (up to 6-7 fold) when the synthetic copolymers containing glutamate and tyrosine residues (4:1) was used as substrate. Since tyrosine residues are the only possible phosphate acceptor in the copolymers, the quinone-stimulated liver membrane protein kinase is most likely tyrosine specific. Although not required for protein kinase activity, dithiothreitol (DTT) was necessary for its stimulation by these quinonoid compounds. Hydrolysis of ATP was not significantly affected by quinones under the experimental conditions. Both menadione and vitamin k 5 increased phosphorylation of plasma membrane proteins of molecular weight 45 and 60 kd. The stimulatory effect of menadione on protein phosphorylation was prevented by the addition of superoxide dismutase. Dihydroxyfumerate, which spontaneously produces various radical species, and H 2 O 2 , also stimulated tyrosine-specific protein phosphorylation. DTT was also required for their full effect. It, therefore, appears that quinonone stimulation of tyrosine-specific protein phosphorylation is mediated by oxygen radicals

  19. Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Shimada, H.; Moewes, B.; Burckhardt, G.

    1987-01-01

    Experiments with basolateral membrane vesicles prepared from rat kidney cortex were performed to study the mechanism by which p-aminohippuric acid (PAH) is taken up across the contraluminal membrane and is concentrated in proximal tubule cells. An inward Na + gradient failed to stimulate [ 3 H]PAH uptake compared with K + or Li + and did not cause intravesicular PAH accumulation above equilibrium distribution. In the absence of Na + , the dicarboxylates glutarate and suberate cis-inhibited and trans-stimulated [ 3 H]PAH uptake, indicating a common transport system. In the presence of Na + , 10 μM glutarate in the incubation medium did not cis-inhibit, but rather stimulated [ 3 H]PAH uptake and caused PAH accumulation above equilibrium distribution (over-shoot). Li + diminished this stimulation, but was without effect on [ 3 H]PAH/PAH- and [ 3 H]PAH/glutarate exchange. The data indicate the coexistence of a Na + -sensitive transport system for dicarboxylates and a Li + -insensitive PAH/dicarboxylate exchanger in the basolateral membrane. The authors propose that dicarboxylates are cotransported with Na + into the cell and subsequently exchange for extracellular PAH at the basolateral membrane. PAH uptake is thereby indirectly coupled to Na + via the Na + /dicarboxylate cotransporter

  20. Effect of the Human Amniotic Membrane on Liver Regeneration in Rats

    Directory of Open Access Journals (Sweden)

    Mesut Sipahi

    2015-01-01

    Full Text Available Introduction. Operations are performed for broader liver surgery indications for a better understanding of hepatic anatomy/physiology and developments in operation technology. Surgery can cure some patients with liver metastasis of some tumors. Nevertheless, postoperative liver failure is the most feared complication causing mortality in patients who have undergone excision of a large liver mass. The human amniotic membrane has regenerative effects. Thus, we investigated the effects of the human amniotic membrane on regeneration of the resected liver. Methods. Twenty female Wistar albino rats were divided into control and experimental groups and underwent a 70% hepatectomy. The human amniotic membrane was placed over the residual liver in the experimental group. Relative liver weight, histopathological features, and biochemical parameters were assessed on postoperative day 3. Results. Total protein and albumin levels were significantly lower in the experimental group than in the control group. No difference in relative liver weight was observed between the groups. Hepatocyte mitotic count was significantly higher in the experimental group than in the control group. Hepatic steatosis was detected in the experimental group. Conclusion. Applying the amniotic membrane to residual liver adversely affected liver regeneration. However, mesenchymal stem cell research has the potential to accelerate liver regeneration investigations.

  1. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    International Nuclear Information System (INIS)

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-01-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 μM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt max of 105 ± 8 mN/s in control hearts vs. 49 ± 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 ± 0.2 in control hearts vs. 2.2 ± 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 ± 1 μM cytochrome c/min/mg in control hearts vs. 14 ± 3 μM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  2. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Wu Kong-Yan

    2010-06-01

    Full Text Available Abstract Background During cerebellar development, Purkinje cells (PCs form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML, the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.

  3. Aldosterone induction of electrogenic sodium transport in the apical membrane vesicles of rat distal colon

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Kashgarian, M.; Binder, H.J.

    1989-01-01

    Na-H exchange is present in apical membrane vesicles (AMV) isolated from distal colon of normal rats. Because in intact tissue aldosterone both induces amiloride-sensitive electrogenic sodium transport and inhibits electroneutral sodium absorption, these studies with AMV were designed to establish the effect of aldosterone on sodium transport. An outward-directed proton gradient stimulated 22Na uptake in AMV isolated from distal colon of normal and dietary sodium depleted (with elevated aldosterone levels) experimental rats. Unlike normal AMV, proton gradient-dependent 22Na uptake in experimental AMV was inhibited when uptake was measured under voltage-clamped conditions. 10 microM amiloride inhibited the initial rate of proton gradient-dependent 22Na uptake in AMV of normal and experimental rats by 30 and 75%, respectively. In contrast, 1 mM amiloride produced comparable inhibition (90 and 80%) of 22Na uptake in normal and experimental AMV. Intravesicular-negative potential stimulated 22Na uptake in experimental but not in normal AMV. This increase was inhibited by 90% by 10 microM amiloride. An analogue of amiloride, 5-(N-ethylisopropyl) amiloride (1 microM), a potent inhibitor of electroneutral Na-H exchange in AMV of normal rat distal colon, did not alter potassium diffusion potential-dependent 22Na uptake. Increasing sodium concentration saturated proton gradient-dependent 22Na uptake in normal AMV. However, in experimental AMV, 22Na uptake stimulated by both proton gradient and potassium diffusion potential did not saturate as a function of increasing sodium concentration. We conclude from these results that an electrically sensitive conductive channel, not electroneutral Na-H exchange, mediates 22Na uptake in AMV isolated from the distal colon of aldosterone rats

  4. Activity of adenylate cyclase in plasma membranes of pulmonary tissue remote times following nonlethal gamma-irradiation of rats

    International Nuclear Information System (INIS)

    Slozhenkina, L.V.; Ruda, V.P.; Ushakova, T.E.; Kuzin, A.M.

    1990-01-01

    Basal and stimulated activity of adenylate cyclase (cyclizing ATP-pyrophosphate lyase, E.C. 4.6.1.1., AC) in plasma membranes of pumonary tissye was being studied during a year after fractionated irradiation of rats (2 Gyx3). Basal and hormone-stimulated activity of AC was shown to vary significantly from normal 6 and 12 months after irradiation. The exposed membranes responded differently to AC activation by isoproterenol and F -

  5. [Change in the lipid composition of the inner mitochondrial membranes in rat organs during adaptation to heat].

    Science.gov (United States)

    Zubareva, E V; Seferova, R I; Denisova, N A

    1991-01-01

    Under conditions of adaptation to heating lipid composition in mitochondrial membranes of rat inner tissues was altered as follows: an increase in relative concentration of plasmalogenous forms of phospholipids (kidney, heart) and in content of saturated fatty acids (liver tissue), a decrease in the index of fatty acids unsaturation and in the ratio of fatty acids omega-3/omega-6. The alterations observed enabled the membranes to keep sufficient amount of liquidity essential for functional activity of mitochondria in heating.

  6. Sleep disorders in cerebellar ataxias

    Directory of Open Access Journals (Sweden)

    José L. Pedroso

    2011-04-01

    Full Text Available Cerebellar ataxias comprise a wide range of etiologies leading to central nervous system-related motor and non-motor symptoms. Recently, a large body of evidence has demonstrated a high frequency of non-motor manifestations in cerebellar ataxias, specially in autosomal dominant spinocerebellar ataxias (SCA. Among these non-motor dysfunctions, sleep disorders have been recognized, although still under or even misdiagnosed. In this review, we highlight the main sleep disorders related to cerebellar ataxias focusing on REM sleep behavior disorder (RBD, restless legs syndrome (RLS, periodic limb movement in sleep (PLMS, excessive daytime sleepiness (EDS, insomnia and sleep apnea.

  7. Dietary milk fat globule membrane reduces the incidence of aberrant crypt foci in Fischer-344 rats.

    Science.gov (United States)

    Snow, Dallin R; Jimenez-Flores, Rafael; Ward, Robert E; Cambell, Jesse; Young, Michael J; Nemere, Ilka; Hintze, Korry J

    2010-02-24

    Milk fat globule membrane (MFGM) is a biopolymer composed primarily of membrane proteins and lipids that surround the fat globules in milk. Although it is considered to have potential as a bioactive ingredient, few feeding studies have been conducted to measure its potential benefits. The aim of this investigation was to determine if dietary MFGM confers protection against colon carcinogenesis compared to diets containing corn oil (CO) or anhydrous milk fat (AMF). Male, weanling Fischer-344 rats were randomly assigned to one of three dietary treatments that differed only in the fat source: (1) AIN-76A diet, corn oil; (2) AIN-76A diet, AMF; and (3) AIN-76A diet, 50% MFGM, 50% AMF. Each diet contained 50 g/kg diet of fat. With the exception of the fat source, diets were formulated to be identical in macro and micro nutrient content. Animals were injected with 1,2-dimethylhydrazine once per week at weeks 3 and 4, and fed experimental diets for a total of 13 weeks. Over the course of the study dietary treatment did not affect food consumption, weight gain or body composition. After 13 weeks animals were sacrificed, colons were removed and aberrant crypt foci (ACF) were counted by microscopy. Rats fed the MFGM diet (n = 16) had significantly fewer ACF (20.9 +/- 5.7) compared to rats fed corn oil (n = 17) or AMF (n = 16) diets (31.3 +/- 9.5 and 29.8 +/- 11.4 respectively; P < 0.05). Gene expression analysis of colonic mucosa did not reveal differential expression of candidate colon cancer genes, and the sphingolipid profile of the colonic mucosa was not affected by diet. While there were notable and significant differences in plasma and red blood cell lipids, there was no relationship to the cancer protection. These results support previous findings that dietary sphingolipids are protective against colon carcinogenesis yet extend this finding to MFGM, a milk fat fraction available as a food ingredient.

  8. Genetic regulation by amino acids of specific membrane protein biosynthesis in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Chiles, T.C.; Handlogten, M.E.; Kilberg, M.S.

    1986-01-01

    Rat Hepatocytes in primary culture were incubated in amino acid-free (AAF) medium or amino acid-supplemented (AAS) medium for 2-6 hr. The effect of amino acid starvation on the synthesis of specific membrane proteins was monitored by including 3 H-leucine during the incubation. A crude plasma membrane fraction was prepared and then analyzed by 2-D gel electrophoresis followed by fluorography. Amino acid deprivation caused an induction of the synthesis of 5 of the 30 proteins studied. The ratio (AAF/-AAS) of cpm incorporated into the remaining 25 proteins was 0.8 +/- 0.2, whereas the ratio for the 5 proteins that showed amino acid-dependent synthesis ranged from 1.5 to 2.5. The presence of 4 μM actinomycin in the AAF medium completely blocked the starvation-induced synthesis of the 5 proteins tested, but did not alter significantly the ratio of cpm incorporated into the other 25 proteins. Binding studies involving ConA suggested a plasma membrane location for the 5 proteins. The molecular weight values of the starvation-induced proteins are 70, 66, 66, 67, and 45kD. Surface-labelling of intact cells and preparation of antibodies against the 5 proteins will be used to establish the subcellular location and to describe the amino acid-dependent synthesis of each in more detail

  9. Studies on interaction of insulin and insulin receptor in rat liver cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y; Hara, H; Kawate, R; Kawasaki, T [Hiroshima Univ. (Japan). School of Medicine

    1975-07-01

    Rat liver was homogenized with a Polytron PT 20 ST and fractionated by differential centrifugation. Prepared plasma membranes (100 ..mu..g protein) were incubated with enzymatically iodinated /sup 125/I-insulin (0.3 ng, specific activity 107 ..mu..Ci/..mu..g) in 25 mM Tris-HCl buffer, pH 7.5, containing 0.9% NaCl and 1% bovine serum albumin. The 12,000xg- and 17,000xg-sediments obtained after subfractionation of liver homogenates showed almost equally high specific binding activity with /sup 125/I-insulin and less activity was detected in the 600 g-, 5,000 g- and 40,000 g- sediments and the 40,000 g- supernatant. Specific binding of insulin with the membrane fraction was time-, temperature- and ionic strength-dependent. The highest binding was obtained under conditions in which the membrane fraction was incubated with insulin for 24 hours at 4/sup 0/C in the buffer containing 1 M NaCl. Under these conditions, specific binding of /sup 125/I-insulin was 26.8% of the total radioactivity. The effect of native insulin on the binding of /sup 125/I-insulin with the membrane fraction was studied in the range of 0--6.4 x 10/sup 5/ ..mu..U/ml of unlabeled insulin and a distinct competitive displacement of /sup 125/I-insulin with native insulin was observed between 10 and 10/sup 4/ ..mu..U/ml. Kinetic studies by Scatchard plot analysis of the above results revealed heterogeneity in insulin receptors or receptor sites, one with a high affinity of 10/sup 9/ M/sup -1/ order and the other with a low affinity of 10/sup 8/ M/sup -1/ order. Both affinities were also affected by temperature and ionic strength.

  10. Effect of pinacidil on norepinephrine- and potassium-induced contractions and membrane potential in rat and human resistance vessels and in rat aorta

    International Nuclear Information System (INIS)

    Videbaek, L.M.; Aalkjaer, C.; Mulvany, M.J.

    1988-01-01

    The effect of pinacidil on contractile responses to norepinephrine, potassium, and membrane potential was examined in rat and human resistance vessels. In some experiments rat aorta was also used. Pinacidil (0.1-30 microM) caused a concentration-dependent relaxation of norepinephrine-induced contractions in all vessels studied. In the same concentration range, pinacidil had only little effect on potassium (125 mM) activated rat mesenteric and femoral resistance vessels. In denervated rat mesenteric resistance vessels, a depolarization with potassium (125 mM) before superimposing a norepinephrine tone markedly diminished the effect of pinacidil. In resting rat mesenteric resistance vessels, pinacidil (1-10 microM) caused a hyperpolarization of 10-15 mV. In rat aorta, pinacidil (10 microM) caused a significant (p less than 0.001) increase in 86 Rb+ efflux rate constant whereas 1 microM had no effect. The results of these experiments indicate that the vasodilating effect may be caused by a hyperpolarization of the vascular smooth muscle cell membrane

  11. Complex partial seizures: cerebellar metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Theodore, W.H.; Fishbein, D.; Deitz, M.; Baldwin, P.

    1987-07-01

    We used positron emission tomography (PET) with (/sup 18/F)2-deoxyglucose to study cerebellar glucose metabolism (LCMRglu) and the effect of phenytoin (PHT) in 42 patients with complex partial seizures (CPS), and 12 normal controls. Mean +/- SD patient LCMRglu was 6.9 +/- 1.8 mg glucose/100 g/min (left = right), significantly lower than control values of 8.5 +/- 1.8 (left, p less than 0.006), and 8.3 +/- 1.6 (right, p less than 0.02). Only four patients had cerebellar atrophy on CT/MRI; cerebellar LCMRglu in these was 5.5 +/- 1.5 (p = 0.054 vs. total patient sample). Patients with unilateral temporal hypometabolism or EEG foci did not have lateralized cerebellar hypometabolism. Patients receiving phenytoin (PHT) at the time of scan and patients with less than 5 years total PHT exposure had lower LCMRglu, but the differences were not significant. There were weak inverse correlations between PHT level and cerebellar LCMRglu in patients receiving PHT (r = -0.36; 0.05 less than p less than 0.1), as well as between length of illness and LCMRglu (r = -0.22; 0.05 less than p less than 0.1). Patients with complex partial seizures have cerebellar hypometabolism that is bilateral and due only in part to the effect of PHT.

  12. Antioxidant activity of erythrocyte membranes of rats exposed to X-radiation and injected with α-tocopheral acetate

    International Nuclear Information System (INIS)

    Tsvetkova, T.V.; Tsokur, Eh.V.

    1988-01-01

    Injection of α-tocopherol acetate to albino mongrel rats potentiates antioxidant activity (AOA) that involves water-soluble factors of the antioxidant system in erythrocyte membranes. The activation of AOA by a α-tocopherol takes place immediately after irradiation and drug injection and persists during the first 24 h following irradiation

  13. Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Effect of cyclic AMP and blockers of chloride transport

    DEFF Research Database (Denmark)

    Novak, I; Greger, R

    1988-01-01

    - and interlobular ducts of rat pancreas was used. Responses of the epithelium to inhibitors and agonists were monitored by electrophysiological techniques. Addition of HCO-3/CO2 to the bath side of nonstimulated ducts depolarized the PD across the basolateral membrane (PDbl) by about 9 mV, as also observed...

  14. Changes in markers of oxidative stress and membrane properties in synaptosomes from rats exposed prenatally to toluene

    DEFF Research Database (Denmark)

    Edelfors, Sven; Hass, Ulla; Hougaard, Karin S.

    2002-01-01

    for the experiments, Synaptosomes from rats exposed prenatally to toluene exhibited an increased level of oxidative stress when incubated with toluene in vitro compared to synaptosomes from unexposed offspring. Also the cell membrane was affected, as the calcium leakage was more increased from exposed synaptosomes...

  15. Association of canalicular membrane enzymes with bile acid micelles and lipid aggregates in human and rat bile.

    Science.gov (United States)

    Accatino, L; Pizarro, M; Solís, N; Koenig, C S

    1995-01-18

    This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.

  16. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Friis, U G; Praetorius, Birger Hans; Knudsen, T

    1997-01-01

    1. The aim of this study was to investigate the effect of the Na+/K+-ATPase on the membrane potential of peritoneal mast cells isolated from male Sprague-Dawley SPF-rats. 2. Experiments were performed at 22-26 degrees C in the tight-seal whole-cell configuration of the patch-clamp technique by use...

  17. Influence of kaempferol, a flavonoid compound, on membrane-bound ATPases in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Al-Numair, Khalid S; Veeramani, Chinnadurai; Alsaif, Mohammed A; Chandramohan, Govindasamy

    2015-01-01

    Kaempferol is a flavonoid found in many edible plants (e.g. tea, cabbage, beans, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine. Numerous preclinical studies have shown that kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, and antidiabetic activities. The present study investigates the effect of kaempferol on membrane-bound ATPases in erythrocytes and in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into adult male albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 d to normal and STZ-induced diabetic rats. The effects of kaempferol on membrane-bound ATPases (total ATPase, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase) activity in erythrocytes and in liver, kidney, and heart were determined. In our study, diabetic rats had significantly (p kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) for a period of 45 d resulted in significant (p kaempferol has the potential to restore deranged activity of membrane-bound ATPases in STZ-induced diabetic rats. Further detailed investigation is necessary to discover kaempferol's action mechanism.

  18. [Peroxide modification of membranes and isomorphic composition of cytochrome P-450 of rat liver microsomes during antioxidant deficiency].

    Science.gov (United States)

    Gubskiy, Iu I; Paramonova, G I; Boldeskul, A E; Primak, R G; Bogdanova, L A; Zadorina, O V; Litvinova, N V

    1992-01-01

    Lipid peroxidation (LPO), physico-chemical properties of the membranes and isoformic composition of microsomal cytochrome P-450 from the rat liver were studied under conditions of antioxidant insufficiency (AOI) which was modelled by exclusion of alpha-tocopherol from the animals' ration. An insignificant accumulation of microsomal diene conjugates and schiff bases against a sharp increase of the ability to the prooxidant stimulated LPO in vitro took place. A significant decrease of membrane lipid microviscosity and a change in surface properties of microsomal membranes of rats with AOI was determined. Absence of alpha-tocopherol in the ration was accompanied by a significant change in the content of separate isoforms of cytochrome P-450 exhibited in growth of a polypeptide with m. w. 54 kDa and the lowering of proteins with m. w. 48 and 50 kDa. Less intensive quenching of tryptophan fluorescence by acrylamide was also revealed, which testified to a lower accessibility of the quencher to membrane proteins or their fluorophore sites. Modification of lipid composition and of physicochemical properties of the rat liver membrane microsomes which was observed at AOI was significantly correlated by pretreatment with the antioxidant 4-methyl-2,6-ditretbutylphenol (ionol).

  19. Association and dissociation of Escherichia coli heat-stable enterotoxin from rat brush border membrane receptors

    International Nuclear Information System (INIS)

    Cohen, M.B.; Thompson, M.R.; Overmann, G.J.; Giannella, R.A.

    1987-01-01

    Escherichia coli heat-stable enterotoxin (ST) binds to receptors on rat intestinal cells and brush border membranes (BBM). We devised experiments to examine the reversibility of ST binding. We found that both 125 I-labeled ST and native ST were spontaneously dissociable from the BBM receptor. Radiolabeled ST bound to BBM was also dissociated by the addition of avid goat anti-ST antiserum. Furthermore, using a computer program for analysis of ligand binding, we calculated an apparent Ka of 10(8) liters/mol from competitive inhibition and saturation-binding data. This is significantly lower than the value previously reported by others. Our findings, of a lower Ka and a reversible ST-binding process, suggest that a therapeutic strategy of removing bound ST from its receptor or competing with the enterocyte receptor for unbound ST might be successful in terminating ST-induced secretion

  20. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    International Nuclear Information System (INIS)

    Beavan, L.A.; Davies, M.; Couchman, J.R.; Williams, M.A.; Mason, R.M.

    1989-01-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of [35S]heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-[(cholamidopropyl)dimethy-lammonio]-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane

  1. [Cerebellar cognitive affective syndrome secondary to a cerebellar tumour].

    Science.gov (United States)

    Domínguez-Carral, J; Carreras-Sáez, I; García-Peñas, J J; Fournier-Del Castillo, C; Villalobos-Reales, J

    2015-01-01

    Cerebellar cognitive affective syndrome is characterized by disturbances of executive function, impaired spatial cognition, linguistic difficulties, and personality change. The case of an 11 year old boy is presented, with behavior problems, learning difficulties and social interaction problems. In the physical examination he had poor visual contact, immature behavior, reduced expressive language and global motor disability with gait dyspraxia, with no defined cerebellar motor signs. In the neuropsychological evaluation he has a full scale overall intellectual quotient of 84, with signs of cerebellar cognitive affective syndrome. A tumour affecting inferior cerebellar vermis was observed in the magnetic resonance imaging, which had not significantly grown during 5 years of follow up. The cerebellum participates in controlling cognitive and affective functions. Cerebellar pathology must be considered in the differential diagnosis of children with cognitive or learning disorder with associated behavioral and emotional components. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  2. The protective effect of DNA on the rat cell membrane damage induced by ultraviolet radiation

    International Nuclear Information System (INIS)

    Ma Shouxiang; Zhong Jinyan

    1988-01-01

    The protective effect of DNA on the cell membrane damage induced by ultra-violet radiation was studied. Rat erythrocytes were used as experimental materials. Blood samples were taken from the rat, and centrifuged to separate the plasma. The cells were washed twice with isotonic saline, resuspended in normal saline solution and then irradiated by ultra-violet radiation. The DNA was added before or after irradiation. THe cell suspensions were kept at 5 deg C for 20 hours after irradiation, and then centrifuged. The supernatants were used for hemoglobin determination. The main results obtained may summarized as follows: the cell suspension of erythrocytes were irradiated for 5, 10 and 20 min. The amount of hemolysis induced by irradiation dosage revealed a direct proportional relationship. If DNA (20-40μg/ml) was applied before irradiation, the amount of hemolysis induced apparently decreased. The differences between the control and DNA treated were statistically significant, P<0.01, but insignificant for DNA added after irradiation

  3. Biochemical characterization of domain-specific glycoproteins of the rat hepatocyte plasma membrane

    International Nuclear Information System (INIS)

    Bartles, J.R.; Braiterman, L.T.; Hubbard, A.L.

    1985-01-01

    Seven integral proteins (CE 9, HA 21, HA 116, HA 16, HA 4, HA 201, and HA 301) were isolated from rat hepatocyte plasma membranes by immunoaffinity chromatography on monoclonal antibody-Sepharose. Six of the proteins (all but HA 16) exhibit domain-specific localizations (either bile canalicular or sinusoidal/lateral) about the hepatocyte surface. The authors identified three of these protein antigens as leucine aminopeptidase (HA 201), dipeptidyl peptidase IV (HA 301), and the asialoglycoprotein receptor (HA 116). They also developed 125 I-lectin blotting procedures that, when used in conjunction with chemical and glycosidase treatments, permitted a comparison of the types of oligosaccharides present on the seven proteins. All seven are sialoglycoproteins, based upon the effects of prior neuraminidase and periodate-aniline-cyanoborohydride treatments of blots on labeling by 125 I-wheat germ agglutinin. Depending upon the protein, they estimated the presence of 2-26 N-linked oligosaccharides/polypeptide chain from the Mr reductions accompanying chemical or enzymatic deglycosylation. Three of these mature plasma membrane proteins (HA 21, HA 116, and HA 4) have both high mannose-type and complex-type oligosaccharides on every copy of their polypeptide chains

  4. Characterization of [125I]endothelin-1 binding sites in rat cardiac membrane fragments

    International Nuclear Information System (INIS)

    Gu, X.H.; Casley, D.J.; Nayler, W.G.

    1989-01-01

    Standard binding and displacement techniques were used to identify high-affinity binding sites for [ 125 I]-labeled endothelin-1 (ET-1) in membranes harvested from the hearts of adult female Sprague-Dawley rats. A single population of binding sites was identified, with a KD of 0.20 +/- 0.03 nM at 37 degrees C, and a Bmax of 93.5 +/- 6.4 fmol/mg protein. Bound [ 125 I]ET-1 was displaced by ET-1 (10(-13)-10(-8) M), with a Ki of 0.08 nM. Neither (-)Bay K 8644 (10(-11)-10(-5) M), prenylamine (10(-11)-10(-5) M), (+)-cis-diltiazem (10(-10)-10(-5) M), (-)D888 (10(-10)-10(-5) M), nicardipine (10(-10)-10(-5) M), lidoflazine (10(-11)-10(-5) M), flunarizine (10(-11)-10(-5) M), omega-conotoxin (10(-13)-10(-7) M), nor prazosin (10(-10)-10(-5) M) displaced the bound ligand. Binding occurred in the absence of Ca2+ and was absent in heat-denatured membranes. These results are interpreted to mean that [ 125 I]ET-1 binds to a single class of high-affinity binding sites that differ from those occupied by known regulators of voltage activated L- and N-type Ca2+ channels

  5. Effect of alpha interferon on glucose and alanine transport by rat renal brush border membrane vesicles

    International Nuclear Information System (INIS)

    Batuman, V.; Chadha, I.

    1990-01-01

    To investigate the pathogenetic mechanisms of interferon nephrotoxicity, we studied the effect of recombinant interferon alfa-2b on the uptake of 14 C-D-glucose and 14 C-L-alanine by rat renal brush-border-membrane vesicles. Interferon significantly inhibited 20 sec. sodium-dependent and 5 and 10 min. equilibrium uptake of both glucose and alanine. The inhibitory effect was dose dependent with maximum effect achieved at interferon concentration of 5 x 10 -8 M in the uptake media. The half-maximal inhibitory concentrations, IC 50 , of interferon on glucose uptake was 1.8 x 10 -8 M, and 5.4 x 10 -9 M on alanine uptake. Dixon plot analysis of uptake data was consistent with pure non-competitive inhibition. The inhibition constants, K i , 1.5 x 10 -8 M for glucose uptake, and 7.3 x 10 -9 M for alanine uptake, derived from Dixon plots were in close agreement with the IC 50 s calculated from the semilog dose response curves. These observations reveal that direct interactions at the proximal tubule cell membrane are involved in the pathogenesis of interferon nephrotoxicity, and that its mechanism of nephrotoxicity is similar to that of other low molecular weight proteins

  6. Immobilization of Na,K-ATPase isolated from rat brain synaptic plasma membranes

    Directory of Open Access Journals (Sweden)

    ANICA HROVAT

    2002-12-01

    Full Text Available Rat brain Na,K-ATPase partially purified by SDS from synaptic plasma membranes (SPM was immobilized by adsorption on nitrocellulose (NC, polyvinylidene fluoride (PVDF and glass fiber (GF membranes. Partial SDS solubilization increased the enzyme activity by 40 %. With regard to the preservation of the enzyme activity, nitrocellulose was shown to be the optimal support for the immobilization. The enzyme showed the highest percentage activity (14 % after 30 min of SPM adsorption, at 20°C under the vaccum, with 25 mg of proteins per NC disc filter. In addition, adsorption on NC stabilizes the Na,K-ATPase, since the activity was substantial 72 h after adsorption at 20°C. After adsorption, the sensitivity of the enzyme to HgCl2and CdCll2 inhibition was higher. The results show that immobilized Na,K-ATPase SPM can be used as a practical model for the detection of metal ions in different samples.

  7. Membrane-associated IL 1-like activity on rat dendritic cells

    International Nuclear Information System (INIS)

    Nagelkerken, L.M.; van Breda Vriesman, P.J.C.

    1986-01-01

    The secretion of interleukin 1 (IL 1) by rat dendritic cells (DC) was studied in relation to their ability to induce the production interleukin 2 (IL 2 ) and to induce IL 2 responsiveness. IL 1 (or IL 1-like activity) was measured by its capacity to enhance IL 2 production by EL4 cells. In contrast to peritoneal exudate cells (PEC) or splenic adherent cells, DC from thoracic duct lymph (TD-DC) or from spleen did not secrete detectable amounts of IL 1 on stimulation with LPS/Silica. However, TD-DC and splenic DC were able to enhance IL 2 production by EL4 cells directly, and were only two times less effective than PEC. By preventing cell-to-cell contact between stimulator cells and EL4 cells, it was demonstrated that most of the IL 2-inducing activity of TD-DC and PEC was associated with the cell membrane. Treatment with 1% paraformaldehyde (PFA) to abolish metabolic activity resulted in a 50% decrease (or inactivation) of IL 2-inducing activity of TD-DC in the EL4 assay. Moreover, UVB-irradiation (300 mJ/cm 2 ) of TD-DC, which has been described to inhibit the release of IL 1 by macrophages, caused a 70% decrease in IL 2-inducing activity. These results suggest that membrane-associated structures, that are identical to or mimic Il 1, are involved in the activation of T cells by DC

  8. A Simple and Reproducible Method to Prepare Membrane Samples from Freshly Isolated Rat Brain Microvessels.

    Science.gov (United States)

    Brzica, Hrvoje; Abdullahi, Wazir; Reilly, Bianca G; Ronaldson, Patrick T

    2018-05-07

    The blood-brain barrier (BBB) is a dynamic barrier tissue that responds to various pathophysiological and pharmacological stimuli. Such changes resulting from these stimuli can greatly modulate drug delivery to the brain and, by extension, cause considerable challenges in the treatment of central nervous system (CNS) diseases. Many BBB changes that affect pharmacotherapy, involve proteins that are localized and expressed at the level of endothelial cells. Indeed, such knowledge on BBB physiology in health and disease has sparked considerable interest in the study of these membrane proteins. From a basic science research standpoint, this implies a requirement for a simple but robust and reproducible method for isolation of microvessels from brain tissue harvested from experimental animals. In order to prepare membrane samples from freshly isolated microvessels, it is essential that sample preparations be enriched in endothelial cells but limited in the presence of other cell types of the neurovascular unit (i.e., astrocytes, microglia, neurons, pericytes). An added benefit is the ability to prepare samples from individual animals in order to capture the true variability of protein expression in an experimental population. In this manuscript, details regarding a method that is utilized for isolation of rat brain microvessels and preparation of membrane samples are provided. Microvessel enrichment, from samples derived, is achieved by using four centrifugation steps where dextran is included in the sample buffer. This protocol can easily be adapted by other laboratories for their own specific applications. Samples generated from this protocol have been shown to yield robust experimental data from protein analysis experiments that can greatly aid the understanding of BBB responses to physiological, pathophysiological, and pharmacological stimuli.

  9. Nephrotoxicity of uranyl acetate: effect on rat kidney brush border membrane vesicles

    International Nuclear Information System (INIS)

    Goldman, M.; Yaari, A.; Moran, A.; Doshnitzki, Z.; Cohen-Luria, R.

    2006-01-01

    Since the Gulf war exposure to depleted uranium, a known nephrotoxic agent, there is a renewed interest in the toxic effects of uranium in general and its mechanism of nephrotoxicity which is still largely unknown in particular. In order to investigate the mechanism responsible for uranium nephrotoxicity and the therapeutic effect of urine alkalization, we utilized rat renal brush border membrane vesicles (BBMV). Uranyl acetate (UA) caused a decrease in glucose transport in BBMV. The apparent K i of uranyl was 139±30 μg uranyl/mg protein of BBMV. Uranyl at 140 μg/mg protein of BBMV reduced the maximal capacity of the system to transport glucose [V max 2.2±0.2 and 0.96±0.16 nmol/mg protein for control and uranyl treated BBMV (P m (1.54±0.33 and 1.54±0.51 mM for control, and uranyl treated BBMV, respectively). This reduction in V max is at least partially due to a decrease in the number of sodium-coupled glucose transporters as apparent from the reduction in phlorizin binding to the uranyl treated membranes, V max was reduced from 247±13 pmol/mg protein in control BBMV to 119±3 pmol/mg protein in treated vesicles (P<0.001). The pH of the medium has a profound effect on the toxicity of UA on sodium-coupled glucose transport in BBMV: higher toxicity at neutral pH (around pH 7.0), and practically no toxicity at alkaline pH (7.6). This is the first report showing a direct inhibitory dose and pH dependent effect of uranyl on the glucose transport system in isolated apical membrane from kidney cortex. (orig.)

  10. [Age-related change in the alpha-tocopherolquinone/alpha-tocopherol ratio in the rat erythrocyte membrane].

    Science.gov (United States)

    Yanagawa, K; Takeda, H; Matsumiya, T; Takasaki, M

    1999-05-01

    alpha-Tocopherol (alpha-Toc), a lipophilic phenolic antioxidant that is localized mainly in the biomembrane, protects cells against oxidation-associated cytotoxicity by prevention of membrane lipid peroxidation, maintenance of the redox balance intracellular thiols and stabilization of the membrane structure. We investigated the age-related changes in redox dynamics of alpha-Toc in plasma and erythrocyte membrane of an elderly (66 weeks old) and young group (10 weeks old). Total, alpha-, beta + gamma-, delta-Toc and alpha-tocopherolquinone (alpha-TocQ) in plasma and erythrocyte membrane were determined by high-performance liquid chromatography (HPLC) with a series of multiple coulometric working electrodes (CWE). Rat venous blood sample was divided into plasma and erythrocyte layers by centrifugation, and then erythrocyte membrane sample was prepared according to the method of Dodge et al. under a stream of nitrogen. In plasma, total and alpha-Toc concentrations were increased, and beta + gamma-, delta-Toc and alpha-TocQ concentrations were decreased age-dependently. In the erythrocyte membrane, total, alpha-TocQ concentrations and three fractions of tocopherols decreased age-dependently. Also, a decrease in the alpha-TocQ/alpha-Toc ratio in erythrocyte membrane was observed in the elderly group. These findings suggest that the alpha-Toc uptake in erythrocyte membrane and utilization rate of alpha-Toc in erythrocyte membrane decline age-dependently. This decline may promote membrane lipid peroxidation. alpha-Toc redox dynamics in erythrocyte membrane were useful to investigate the pathophysiology of aging mechanisms related to oxidative stress.

  11. Lipoprotein receptors in copper-deficient rats: in vitro binding of high-density lipoprotein subfractions to liver membranes

    International Nuclear Information System (INIS)

    Hassel, C.A.

    1986-01-01

    Three studies were conducted to determine whether the elevated plasma and HDL cholesterol levels observed in copper-deficient rats could be explained by the interaction of 125 I-HDL subfractions with liver membrane preparations in vitro. Rats from all studies were randomly divided into two dietary treatments, copper-deficient and adequate (0.7 mg and 8.0 mg Cukg diet, respectively). Total binding data and computer derived estimates (K/sub d/ and B/sub max/) were used to compare differences between treatments. Binding data from all experiments conformed to a one-site model. In all cases, binding was saturable and EDTA and pronase insensitive. Treatment differences were observed in Study I ( 125 I-apo E-free HDL binding to crude liver membranes). Significantly lower total binding and B/sub max/ were observed when lipoproteins and membranes from copper-deficient animals were used in the assay. Competition experiments from Studies II and III demonstrate that the different HDL subfractions competed effectively with one another for binding sites, indicating that apo E is not a determinant in binding of rat 125 I-HDL subfractions to purified liver plasma membranes

  12. [Molecular organization of glutamate-sensitive chemoexcitatory membranes of nerve cells. Comparative analysis of glutamate-binding membrane proteins from the cerebral cortex of rats and humans].

    Science.gov (United States)

    Dambinova, S A; Gorodinskiĭ, A I; Lekomtseva, T M; Koreshonkov, O N

    1987-10-01

    The kinetics of 3H-L-glutamate binding to human brain synaptic membranes revealed the existence of one type of binding sites with Kd and Vmax comparable with those for freshly isolated rat brain membranes. The fraction of glutamate-binding proteins (GBP) was shown to contain three components with Mr of 14, 60 and 280 kD whose stoichiometry is specific for human and rat brain. All fractions were found to bind the radiolabeled neurotransmitter and to dissociate into subunits with Mr of 14 kD after treatment with-potent detergents (with the exception of the 56-60 kD component). Study of association-dissociation of GBP protein subunits by high performance liquid chromatography confirmed the hypothesis on the oligomeric structure of glutamate receptors which are made up of low molecular weight glycoprotein-lipid subunits and which form ionic channels by way of repeated association. Despite the similarity of antigen determinants in the active center of glutamate receptors from human and rat brain, it was assumed that the stoichiometry of structural organization of receptor subunits isolated from different sources is different. The functional role of structural complexity of human brain glutamate receptors is discussed.

  13. Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes

    Directory of Open Access Journals (Sweden)

    T.R. Oliveira

    2009-09-01

    Full Text Available Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR and normotensive control rat strains (WKY and NWR. Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.

  14. Hypertensive cerebellar hemorrhage and cerebellar hemorrhage caused by cryptic angioma

    International Nuclear Information System (INIS)

    Yoshida, Shinichi; Sano, Keiji; Kwak, Suyong; Saito, Isamu.

    1981-01-01

    A series of 44 patients with hypertensive cerebellar hemorrhage and nine patients with cerebellar hemorrhage caused by small angiomas is described. Hypertensive hemorrhage occurred most frequently in the patients in their seventies, whereas the onset of angioma-caused hemorrhage was often seen below the age of 40. Clinical syndromes of cerebellar hemorrhages can be categorized into three basic types: the vertigo syndrome, cerebellar dysfunction syndrome and brain stem compression syndrome. Patients with small (>= 2 cm in diameter in CT scans) and medium-sized (2 cm = 3 cm) hematomas deteriorated into unresponsive conditions and developed signs of brain stem compression. Surgical mortality was 32% in the hypertensive group, while it was 0% in the angioma group. Mortality as well as morbidity in both groups was strongly influenced by the preoperative status of consciousness. Our results suggest that substantial improvement could be obtained in the overall outcome of this disease by emergency craniectomy and removal of hematomas in all patients with large hematomas regardless of the levels of consciousness and regardless of the causes of bleeding. Furthermore, when clinical information and CT findings are suggestive of a ''cryptic'' angioma as the causative lesion, posterior fossa surgery may be indicated to extirpate the lesion, even if the hematoma is small. (author)

  15. Gestational Undernourishment Modifies the Composition of Skeletal Muscle Transverse Tubule Membranes and the Mechanical Properties of Muscles in Newborn Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Tonathiu Ramírez-Oseguera

    2013-10-01

    Full Text Available Backgroud/Aims: Skeletal muscle (SM constitutes more than 40% of the body weight in adulthood. Transports dietary glucose mainly through the insulin-dependent glucose transporter (Glut-4 located in the Transverse tubule membrane system (TT. The TT development ends shortly after birth. The TT membrane hosts the proteins involved in excitation-contraction coupling and glucose uptake. Glycaemic regulation through movement is a key function of fully developed skeletal muscle. In this study, we aimed to characterize the effect of gestational undernourishment (GUN in rats GLUT-4 expression and on the protein/lipid content of the TT membranes. We also examined the effect of GUN on the mechanical properties of muscles as an indication of the metabolic condition of the SM at birth. Methods: Isolated TT membrane from SM of GUN rats were used to study lipid/protein content and protein stability by differential scanning calorimetry. The effect of GUN on the SM mechanical properties was determined in isolated Extensor Digitorum Longus (EDL muscle. Results: We demonstrate that compared to control, GUN in the new-born produces; i decreases body weight; ii diminution in SM mass; iii decreases the formation of TT membranes; iv expresses TT membrane proteins with higher thermal stability. The TT membrane expression of GLUT-4 in GUN offspring was twice that of controls. The isolated EDL of GUN offspring was 20% stronger as measured by contractile force and more resistant to fatigue relative to controls. Conclusion; These results provide the first evidence of adaptive changes of the SM in new-borns exposed to severe gestational food restriction. The effects of GUN on muscle at birth are the first step toward detrimental SM metabolic function, contributing to the physiopathology of metabolic diseases in adulthood.

  16. Gestational undernourishment modifies the composition of skeletal muscle transverse tubule membranes and the mechanical properties of muscles in newborn rats.

    Science.gov (United States)

    Ramírez-Oseguera, Ricardo Tonathiu; Jiménez-Garduño, Aura Matilde; Alvarez, Rocío; Heine, Katharina; Pinzón-Estrada, Enrique; Torres-Saldaña, Ismael; Ortega, Alicia

    2013-01-01

    [corrected] Skeletal muscle (SM) constitutes more than 40% of the body weight in adulthood. Transports dietary glucose mainly through the insulin-dependent glucose transporter (Glut-4) located in the Transverse tubule membrane system (TT). The TT development ends shortly after birth. The TT membrane hosts the proteins involved in excitation-contraction coupling and glucose uptake. Glycaemic regulation through movement is a key function of fully developed skeletal muscle. In this study, we aimed to characterize the effect of gestational undernourishment (GUN) in rats GLUT-4 expression and on the protein/lipid content of the TT membranes. We also examined the effect of GUN on the mechanical properties of muscles as an indication of the metabolic condition of the SM at birth. Isolated TT membrane from SM of GUN rats were used to study lipid/protein content and protein stability by differential scanning calorimetry. The effect of GUN on the SM mechanical properties was determined in isolated Extensor Digitorum Longus (EDL) muscle. We demonstrate that compared to control, GUN in the new-born produces; i) decreases body weight; ii) diminution in SM mass; iii) decreases the formation of TT membranes; iv) expresses TT membrane proteins with higher thermal stability. The TT membrane expression of GLUT-4 in GUN offspring was twice that of controls. The isolated EDL of GUN offspring was 20% stronger as measured by contractile force and more resistant to fatigue relative to controls. These results provide the first evidence of adaptive changes of the SM in new-borns exposed to severe gestational food restriction. The effects of GUN on muscle at birth are the first step toward detrimental SM metabolic function, contributing to the physiopathology of metabolic diseases in adulthood. © 2013 S. Karger AG, Basel

  17. Distribution of two basement membrane proteoglycans through hair follicle development and the hair growth cycle in the rat

    DEFF Research Database (Denmark)

    Couchman, J R; King, J L; McCarthy, K J

    1990-01-01

    The distribution of two distinct populations of basement membrane proteoglycans has been monitored through hair growth development in the rat embryo and subsequent hair growth cycle. An antiserum against a small heparan sulfate proteoglycan uniformly stained the dermal-epidermal junction...... of embryonic rats throughout the period of hair follicle formation. On the other hand, monoclonal antibodies recognizing a basement membrane-specific chondroitin sulfate proteoglycan only weakly stained 16-d embryo dermal-epidermal junction, but strong staining was associated with hair follicle buds...... as they developed. Through the hair growth cycle, it was found that the heparan sulfate proteoglycan persisted around the follicles, while the chondroitin sulfate proteoglycan decreased in amount through catagen until it was undetectable at the base and dermal papilla of the telogen follicle. As anagen commenced...

  18. Cerebellar arteriovenous malformations in children

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, P.D. [Sheffield Univ. (United Kingdom). Acad. Dept. of Radiol.; Blaser, S.; Armstrong, D.; Chuang, S.; Harwood-Nash, D. [Division of Neuroradiology, The Hospital for Sick Children and University of Toronto, Toronto (Canada); Humphreys, R.P. [Division of Neurosurgery, The Hospital for Sick Children and University of Toronto, Toronto (Canada)

    1998-05-01

    We review the presentation, imaging findings and outcome in 18 children with cerebellar arteriovenous malformations (AVM). This group is of particular interest because of the reported poor outcome despite modern imaging and neurosurgical techniques. All children had CT and 15 underwent catheter angiography at presentation. Several of the children in the latter part of the study had MRI. Of the 18 children, 17 presented with a ruptured AVM producing intracranial haemorrhage. The remaining child presented with temporal lobe epilepsy and was shown to have temporal, vermian and cerebellar hemisphere AVM. This child had other stigmata of Osler-Weber-Rendu syndrome. Three other children had pre-existing abnormalities of possible relevance. One had a vascular malformation of the cheek and mandible, one a documented chromosomal abnormality and another a midline cleft upper lip and palate. Six of the 17 children with a ruptured cerebellar AVM died within 7 days of the ictus. Vascular pathology other than an AVM was found in 10 of the 14 children with a ruptured cerebellar AVM who had angiography: 4 intranidal aneurysms, 5 venous aneurysms and 2 cases of venous outflow obstruction (one child having both an aneurysm and obstruction). The severity of clinical presentation was directly related to the size of the acute haematoma, which was a reasonable predictor of outcome. (orig.) With 4 figs., 4 tabs., 23 refs.

  19. Language Impairment in Cerebellar Ataxia

    NARCIS (Netherlands)

    van Gaalen, Judith; de Swart, Bert J. M.; Oostveen, Judith; Knuijt, Simone; van de Warrenburg, Bart P. C.; Kremer, Berry (H. ) P. H.

    Background: Several studies have suggested that language impairment can be observed in patients with cerebellar pathology. The aim of this study was to investigate language performance in patients with spinocerebellar ataxia type 6 (SCA6). Methods: We assessed speech and language in 29 SCA6 patients

  20. Cerebellar arteriovenous malformations in children

    International Nuclear Information System (INIS)

    Griffiths, P.D.; Humphreys, R.P.

    1998-01-01

    We review the presentation, imaging findings and outcome in 18 children with cerebellar arteriovenous malformations (AVM). This group is of particular interest because of the reported poor outcome despite modern imaging and neurosurgical techniques. All children had CT and 15 underwent catheter angiography at presentation. Several of the children in the latter part of the study had MRI. Of the 18 children, 17 presented with a ruptured AVM producing intracranial haemorrhage. The remaining child presented with temporal lobe epilepsy and was shown to have temporal, vermian and cerebellar hemisphere AVM. This child had other stigmata of Osler-Weber-Rendu syndrome. Three other children had pre-existing abnormalities of possible relevance. One had a vascular malformation of the cheek and mandible, one a documented chromosomal abnormality and another a midline cleft upper lip and palate. Six of the 17 children with a ruptured cerebellar AVM died within 7 days of the ictus. Vascular pathology other than an AVM was found in 10 of the 14 children with a ruptured cerebellar AVM who had angiography: 4 intranidal aneurysms, 5 venous aneurysms and 2 cases of venous outflow obstruction (one child having both an aneurysm and obstruction). The severity of clinical presentation was directly related to the size of the acute haematoma, which was a reasonable predictor of outcome. (orig.)

  1. Speech Prosody in Cerebellar Ataxia

    Science.gov (United States)

    Casper, Maureen A.; Raphael, Lawrence J.; Harris, Katherine S.; Geibel, Jennifer M.

    2007-01-01

    Persons with cerebellar ataxia exhibit changes in physical coordination and speech and voice production. Previously, these alterations of speech and voice production were described primarily via perceptual coordinates. In this study, the spatial-temporal properties of syllable production were examined in 12 speakers, six of whom were healthy…

  2. Acetylcholinesterase potentiates [{sup 3}H]fluorowillardiine and [{sup 3}H]AMPA binding to rat cortical membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olivera, S.; Rodriguez-Ithurralde, D. [Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD (United Kingdom); Henley, J.M. [Molecular Neuroscience Unit, Division Neuromyology, Instituto de Investigaciones Biologicas Clemente Estable, 11600 Montevideo (Uruguay)

    1999-04-01

    In addition to its action at cholinergic synapses acetylcholinesterase (AChE) has been proposed to modulate neuronal activity by mechanisms unrelated to the hydrolysis of acetylcholine. We have investigated the effects of AChE on the binding of the specific AMPA receptor agonists (S)-[{sup 3}H]5-fluorowillardiine ([{sup 3}H]FW) and [{sup 3}H]AMPA to rat cortical membranes. Pretreatment of membranes with AChE causes a dose-dependent increase in the binding of both radiolabelled agonists with a maximal increase to {approx}60% above control. This increase is completely blocked by the specific AChE inhibitors propidium, physostigmine, DFP and BW 284C51. AChE pretreatment had no effect on [{sup 3}H]kainate binding. [{sup 3}H]FW binding to membranes from young (15-day-old) rats is four orders of magnitude more sensitive to AChE modulation than membranes from adult rats (EC{sub 50} values of 4x10{sup -5} and 0.1 unit/ml, respectively) although the total percentage increase in binding is similar. Furthermore, the AChE-induced potentiation of [{sup 3}H]FW binding is Ca{sup 2+}- and temperature-dependent suggesting an enzymatic action for AChE in this system. Saturation binding experiments with [{sup 3}H]FW to adult membranes reveal high and low affinity binding sites and demonstrate that the main action of AChE is to increase the B{sub max} of both sites. These findings suggest that modulation of AMPA receptors could provide a molecular mechanism of action for the previously reported effects of AChE in synapse formation, synaptic plasticity and neurodegeneration. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Amniotic membranes as prosthetic material: experimental utilization data of a rat model.

    Science.gov (United States)

    Zachariou, Z

    1997-10-01

    Prosthetic materials are applied for closing big tissue defects, the repair of traumatized organs, or hernias. Because nonabsorbable synthetic materials are rigid, possess a defined and unchangeable size, and foreign body reaction (FBR) may occur, biological materials may be an alternative. In experimental studies in rats the authors implanted the fetal parts of the human amniotic membranes and examined the utilization and FBR induced in a standardized model. In addition amnion (AM) was combined with vicryl-net (VN) for higher implant stability. Fifteen, 30 and 90 days after implantation, macroscopic appearance was examined, and light microscopy and immunohistology testing of the specimens were performed. Adhesions to parenchymal organs and omentum were present irrespective of the side facing the abdominal cavity. AM induced a rapid FBR, which diminished with time. Chorion (CH) and parts of the AM were resorbed within the examined period after infiltration with recipient cells and neovascularisation. The combined implant, AM, and VN showed best results because disadvantages of one material could be compensated for by the advantages of the other. The studies show that AM, in its anatomic definition, combined with VN proves to be a safe and reliable prosthetic material for the use in tissue defects.

  4. [3H]opipramol labels a novel binding site and sigma receptors in rat brain membranes

    International Nuclear Information System (INIS)

    Ferris, C.D.; Hirsch, D.J.; Brooks, B.P.; Snowman, A.M.; Snyder, S.H.

    1991-01-01

    Opipramol (OP), a clinically effective antidepressant with a tricyclic structure, is inactive as an inhibitor of biogenic amine uptake. [ 3 H]Opipramol binds saturably to rat brain membranes (apparent KD = 4 nM, Bmax = 3 pmol/mg of protein). [ 3 H]Opipramol binding can be differentiated into haloperidol-sensitive and -resistant components, with Ki values for haloperidol of 1 nM (Bmax = 1 pmol/mg of protein) and 350 nM (Bmax = 1.9 pmol/mg of protein), respectively. The drug specificity of the haloperidol-sensitive component is the same as that of sigma receptors labeled with (+)-[ 3 H]3-(3-hydroxyphenyl)-N-(1-propyl)piperdine. The haloperidol-resistant component does not correspond to any known neurotransmitter receptor or uptake recognition site. It displays high affinity for phenothiazines and related structures such as perphenazine, clopenthixol, and flupenthixol, whose potencies are comparable to that of opipramol. Because certain of these drugs are more potent at the haloperidol-resistant opipramol site than in exerting any other action, it is possible that this opipramol-selective site may mediate their therapeutic effects

  5. 3H-dopamine accumulation by rat brain synaptic vesicles in a membrane-impermeable medium.

    Science.gov (United States)

    Gershten, M J; Disbrow, J K; Ruth, J A

    1983-07-25

    3H-Dopamine (DA) accumulation by storage vesicles from whole rat brain was significantly stablized in a buffer system based upon the membrane-impermeant D-potassium tartrate. 3H-DA uptake saturated by twenty minutes (Km 2.1 X 10(-5)M) and remained stable for periods of 40-60 minutes. Accumulated DA was rapidly exchangeable with exogenous DA. Total levels of accumulation (pmol/mg protein) were 41.7 +/- 2.9 (37 degrees), 11.9 +/- 2.5 (4 degrees), 31.3 +/- 1.8 (absence of ATP), 26.3 +/- 2.7 (reserpine, 10(-6)M), 26.1 +/- 0.67 (no ATP + reserpine 10(-6), and 14.6 +/- 2.4 (carbonylcyanide-p-triflouromethoxyphenylhydrazone, FCCP, 10(-6)M). Depletion of endogenous DA levels by pretreatment of the animals with alpha-methyl-p-tyrosine greatly diminished the reserpine-insensitive DA accumulation. After depletion of endogenous DA, ATP-independent uptake was significantly retarded, but eventually reached near-control levels. This uptake was abolished in the presence of FCCP (10(-6)M). The results suggest that endogenous levels of DA and ATP contribute to the reserpine- and ATP-insensitive DA accumulation observed in vesicles from untreated animals. HPLC analysis demonstrated no conversion of DA to norepinephrine (NE) in the course of the experiments.

  6. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    International Nuclear Information System (INIS)

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S.; Wada, H.; Horio, Y.

    1990-01-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP PM ) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP PM have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP PM reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of [ 3 H]oleate but not that of [ 35 S]sulfobromophthalein or [ 14 C]taurocholate. The inhibition of oleate uptake produced by anti-h-FABP PM can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP PM and mGOT are closely related

  7. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    Energy Technology Data Exchange (ETDEWEB)

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S. (Mount Sinai School of Medicine, New York, NY (USA)); Wada, H.; Horio, Y. (Univ. of Osaka (Japan))

    1990-05-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP{sub PM}) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP{sub PM} have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP{sub PM} reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of ({sup 3}H)oleate but not that of ({sup 35}S)sulfobromophthalein or ({sup 14}C)taurocholate. The inhibition of oleate uptake produced by anti-h-FABP{sub PM} can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP{sub PM} and mGOT are closely related.

  8. Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain.

    Science.gov (United States)

    Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo

    2014-10-01

    We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.

  9. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes

    OpenAIRE

    Mohamed, Jamaludin; Shing, Saw Wuan; Idris, Muhd Hanis Md; Budin, Siti Balkis; Zainalabidin, Satirah

    2013-01-01

    OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes. METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-f...

  10. Angiotensin II-induced hypertension increases plasma membrane Na pump activity by enhancing Na entry in rat thick ascending limbs.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Garvin, Jeffrey L

    2013-11-01

    Thick ascending limbs (TAL) reabsorb 30% of the filtered NaCl load. Na enters the cells via apical Na-K-2Cl cotransporters and Na/H exchangers and exits via basolateral Na pumps. Chronic angiotensin II (ANG II) infusion increases net TAL Na transport and Na apical entry; however, little is known about its effects on the basolateral Na pump. We hypothesized that in rat TALs Na pump activity is enhanced by ANG II-infusion, a model of ANG II-induced hypertension. Rats were infused with 200 ng·kg(-1)·min(-1) ANG II or vehicle for 7 days, and TAL suspensions were obtained. We studied plasma membrane Na pump activity by measuring changes in 1) intracellular Na (Nai) induced by ouabain; and 2) ouabain-sensitive oxygen consumption (QO2). We found that the ouabain-sensitive rise in Nai in TALs from ANG II-infused rats was 12.8 ± 0.4 arbitrary fluorescent units (AFU)·mg(-1)·min(-1) compared with only 9.9 ± 1.1 AFU·mg(-1)·min(-1) in controls (P Na pump expression, the number of Na pumps in the plasma membrane, or the affinity for Na. When furosemide (1.1 mg·kg(-1)·day(-1)) was coinfused with ANG II, no increase in plasma membrane Na pump activity was observed. We concluded that in ANG II-induced hypertension Na pump activity is increased in the plasma membrane of TALs and that this increase is caused by the chronically enhanced Na entry occurring in this model.

  11. Visuomotor learning in cerebellar patients.

    Science.gov (United States)

    Timmann, D; Shimansky, Y; Larson, P S; Wunderlich, D A; Stelmach, G E; Bloedel, J R

    1996-11-01

    The aim of the present study was to demonstrate that patients with pathology affecting substantial regions of the cerebellum can improve their performance in a series of two-dimensional tracing tasks, thus supporting the view that this type of motor behavior can be acquired even when the integrity of this structure is compromised. Eight patients with chronic, isolated cerebellar lesions and eight age- and sex-matched healthy controls were tested. Three patients had mild, five had moderate upper limb ataxia. The experiment was divided into two parts. In the first, subjects traced an irregularly shaped outline over 20 consecutive trials ('Trace 1' task). Next, subjects were asked to redraw the object without any underlying template as a guide ('Memory 1' task). In the second part of the study, subjects were asked to trace a different, irregularly shaped outline over 20 consecutive trials ('Trace 2' task). Next, they were required to redraw it by memory with its axis rotated 90 degrees ('Memory 2' task). In each of the memory tasks the template was placed over the drawn image after each trial and shown to the subjects. The error of performance was determined by calculating three different measurements, each focused on different aspects of the task. Based on these measurements, the cerebellar patients showed improvement in both memory tasks. In the 'Memory 1' task the calculated error decreased significantly for the patients with mild ataxia. In the 'Memory 2' task all cerebellar patients improved their performance substantially enough to reduce significantly the magnitude of all three error measurements. The experiments demonstrate that patients with cerebellar lesions are capable of improving substantially their performance of a complex motor task involving the recall of memorized shapes and the visuomotor control of a tracing movement.

  12. Hepatocyte membrane injury and bleb formation following low dose comfrey toxicity in rats.

    Science.gov (United States)

    Yeong, M L; Wakefield, S J; Ford, H C

    1993-04-01

    Comfrey, a popular herbal remedy, contains hepatotoxic pyrrolizidine alkaloids and has been implicated in recent human toxicity. Although alkaloids from other plant sources have been extensively researched, studies on the hepatotoxic effects of comfrey alkaloids are scant. The effects of high dose comfrey toxicity have been studied and the present investigation was undertaken to identify changes associated with relatively low dose toxicity. Eight young adult rats were dosed weekly for six weeks with 50 mg/kg of comfrey derived alkaloids. The animals were dissected one week after the last dose and the livers examined by light and electron microscopy. Changes at the light microscopic level showed vascular congestion, mild zone 3 necrosis and loss of definition of hepatocyte cellular membranes. Extensive ultrastructural abnormalities were identified in the form of endothelial sloughing and the loss of hepatocyte microvilli. A striking finding was florid bleb formation on the sinusoidal borders of hepatocytes. Many blebs were shed into the space of Disse and extruded to fill, and sometimes occlude, sinusoidal lumina. Platelets were frequently found in areas of bleb formation. There was evidence of late damage in collagenization of Disse's space. Hepatocyte bleb formation is known to occur under a variety of pathological conditions but there is little to no information in the literature on the effects, if any, of bleb formation on fibrogenesis and the microcirculation and its role in the pathogenesis of liver disease. The pyrrolizidine alkaloids of comfrey may serve as an experimental tool to study the process of bleb formation and the intimate relationship between hepatocyte and sinusoidal injury in the liver.

  13. Exercise increases the plasma membrane content of the Na+ -K+ pump and its mRNA in rat skeletal muscles.

    Science.gov (United States)

    Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A

    1996-02-01

    Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2

  14. Cerebellar ataxia of early onset

    International Nuclear Information System (INIS)

    Yamashita, Sumimasa; Miyake, Shota; Yamada, Michiko; Iwamoto, Hiroko; Yamada, Kazuhiko.

    1989-01-01

    Eight cases of childhood cerebellar ataxia were reported. All these cases showed chronic cerebellar ataxia with early onset, and the other diseases of cerebellum such as infections, neoplasms and storage diseases were excluded by clinical symptoms and laboratory findings including blood counts, blood chemistry, lactate, pyruvate, ceruloplasmine, urinalysis, serum immunoglobulins, amino acid analysis in blood and urine, CSF analysis, leukocyte lysosomal enzymes, MCV, EMG, EEG and brain X-CT. Two pairs of siblings were included in this study. The clinical diagnosis were cerebellar type (5), spinocerebellar type (1), one Marinesco-Sjoegren syndrome and undetermined type (1). The age of onset was 1 to 5 years. The chief complaint was motor developmental delay in 6 cases; among them 5 patients could walk alone at the ages of 2 to 3 years'. Mental retardation was observed in 7 cases and epilepsy in 2. TRH was effective in 5 cases. The MRI study revealed that the area of medial sagittal slice of the cerebellum was reduced significantly in all cases and also that of pons was reduced in 5 cases. Different from typical adult onset spinocerebellar degenerations, most of the present cases have achieved slow developmental milestones and the clinical course was not progressive. Genetic factors are suspected in the pathogenesis of this disease in some cases. (author)

  15. Cerebellar mutism--report of four cases.

    Science.gov (United States)

    Ozimek, A; Richter, S; Hein-Kropp, C; Schoch, B; Gorissen, B; Kaiser, O; Gizewski, E; Ziegler, W; Timmann, D

    2004-08-01

    The aim of the present study was to investigate the manifestations of mutism after surgery in children with cerebellar tumors. Speech impairment following cerebellar mutism in children was investigated based on standardized acoustic speech parameters and perceptual criteria. Mutistic and non-mutistic children after cerebellar surgery as well as orthopedic controls were tested pre-and postoperatively. Speech impairment was compared with the localization of cerebellar lesions (i. e. affected lobules and nuclei). Whereas both control groups showed no abnormalities in speech and behavior, the mutistic group could be divided into children with dysarthria in post mutistic phase and children with mainly behavioral disturbances. In the mutistic children involvement of dentate and fastigial nuclei tended to be more frequent and extended than in the nonmutistic cerebellar children. Cerebellar mutism is a complex phenomenon of at least two types. Dysarthric symptoms during resolution of mutism support the anarthria hypothesis, while mainly behavioral changes suggest an explanation independent from speech motor control.

  16. Supplementation of T3 Recovers Hypothyroid Rat Liver Cells from Oxidatively Damaged Inner Mitochondrial Membrane Leading to Apoptosis

    Directory of Open Access Journals (Sweden)

    Sutapa Mukherjee

    2014-01-01

    Full Text Available Hypothyroidism is a growing medical concern. There are conflicting reports regarding the mechanism of oxidative stress in hypothyroidism. Mitochondrial oxidative stress is pivotal to thyroid dysfunction. The present study aimed to delineate the effects of hepatic inner mitochondrial membrane dysfunction as a consequence of 6-n-propyl-2-thiouracil-induced hypothyroidism in rats. Increased oxidative stress predominance in the submitochondrial particles (SMP and altered antioxidant defenses in the mitochondrial matrix fraction correlated with hepatocyte apoptosis. In order to check whether the effects caused by hypothyroidism are reversed by T3, the above parameters were evaluated in a subset of T3-treated hypothyroid rats. Complex I activity was inhibited in hypothyroid SMP, whereas T3 supplementation upregulated electron transport chain complexes. Higher mitochondrial H2O2 levels in hypothyroidism due to reduced matrix GPx activity culminated in severe oxidative damage to membrane lipids. SMP and matrix proteins were stabilised in hypothyroidism but exhibited increased carbonylation after T3 administration. Glutathione content was higher in both. Hepatocyte apoptosis was evident in hypothyroid liver sections; T3 administration, on the other hand, exerted antiapoptotic and proproliferative effects. Hence, thyroid hormone level critically regulates functional integrity of hepatic mitochondria; hypothyroidism injures mitochondrial membrane lipids leading to hepatocyte apoptosis, which is substantially recovered upon T3 supplementation.

  17. Naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor?

    Science.gov (United States)

    Tsao, L I; Su, T P

    1997-02-01

    A naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein was partially purified from rat liver and rat brain membranes in an affinity chromatography originally designed to purify sigma receptors. Detergent-solubilized extracts from membranes were adsorbed to Sephadex G-25 resin containing an affinity ligand for sigma receptors: N-(2- 3,4-dichlorophenyl]ethyl)-N-(6-aminohexyl)-(2-[1-pyrrolidinyl]) ethylamine (DAPE). After eluting the resin with haloperidol, a protein that bound [3H](+)SKF-10047 was detected in the eluates. However, the protein was not the sigma receptor. [3H](+)SKF-10047 binding to the protein was inhibited by the following compounds in the order of decreasing potency: (+)pentazocine > (-) pentazocine > (+/-)cyclazocine > (-)morphine > (-)naloxone > haloperidol > (+)SKF-10047 > DADLE > (-)SKF-10047. Further, the prototypic sigma receptor ligands, such as 1,3-di-o-tolylguanidine (DTG), (+)3-PPP, and progesterone, bound poorly to the protein. Tryptic digestion and heat treatment of the affinity-purified protein abolished radioligand binding. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of the partially-purified protein from the liver revealed a major diffuse band with a molecular mass of 31 kDa, a polypeptide of 65 kDa, and another polypeptide of > 97 kDa. This study demonstrates the existence of a novel protein in the rat liver and rat brain which binds opioids, benzomorphans, and haloperidol with namomolar affinity. The protein resembles the opioid/sigma receptor originally proposed by Martin et al. [(1976): J. Pharmacol. Exp. Ther., 197:517-532.]. A high degree of purification of this protein has been achieved in the present study.

  18. Massive cerebellar infarction: a neurosurgical approach

    Directory of Open Access Journals (Sweden)

    Salazar Luis Rafael Moscote

    2015-12-01

    Full Text Available Cerebellar infarction is a challenge for the neurosurgeon. The rapid recognition will crucial to avoid devastating consequences. The massive cerebellar infarction has pseudotumoral behavior, should affect at least one third of the volume of the cerebellum. The irrigation of the cerebellum presents anatomical diversity, favoring the appearance of atypical infarcts. The neurosurgical management is critical for massive cerebellar infarction. We present a review of the literature.

  19. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  20. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  1. Anti-glomerular basement membrane autoantibodies in the Brown Norway rat: detection by a solid-phase radioimmunoassay

    International Nuclear Information System (INIS)

    Bowman, C.; Peters, D.K.; Lockwood, C.M.

    1983-01-01

    A solid-phase radioimmunoassay (RIA) is described for the detection of IgG autoantibodies to glomerular basement membrane (GBM) induced in the Brown Norway rat by mercuric chloride. The assay involves the adsorption of a collagenase digest of GBM to plastic microtitre plates and detection of bound antibody with affinity purified radiolabelled rabbit anti-rat IgG. Comparison with existing immunofluorescence methods for detection of anti-GBM antibody showed that the solid-phase RIA is highly sensitive, allowing detection of antibody in solutions with as low as 0.5 ng protein/ml. The assay is suitable for detection of anti-GBM antibody both in serum and in eluates from nephritic kidneys. The assay proved to be specific in competitive studies of inhibition brought about by GBM, keyhole limpet antigen and ovalbumin. This solid-phase RIA is reproducible, robust and easy to perform. (Auth.)

  2. The anti-apoptotic effect of fluid mechanics preconditioning by cells membrane and mitochondria in rats brain microvascular endothelial cells.

    Science.gov (United States)

    Tian, Shan; Zhu, Fengping; Hu, Ruiping; Tian, Song; Chen, Xingxing; Lou, Dan; Cao, Bing; Chen, Qiulei; Li, Bai; Li, Fang; Bai, Yulong; Wu, Yi; Zhu, Yulian

    2018-01-01

    Exercise preconditioning is a simple and effective way to prevent ischemia. This paper further provided the mechanism in hemodynamic aspects at the cellular level. To study the anti-apoptotic effects of fluid mechanics preconditioning, Cultured rats brain microvascular endothelial cells were given fluid intervention in a parallel plate flow chamber before oxygen glucose deprivation. It showed that fluid mechanics preconditioning could inhibit the apoptosis of endothelial cells, and this process might be mediated by the shear stress activation of Tie-2 on cells membrane surface and Bcl-2 on the mitochondria surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2015-07-01

    Full Text Available Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet.Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate.Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls. In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight. The detected levels of glucose in

  4. Electrophysiological mapping of novel prefrontal - cerebellar pathways

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2009-08-01

    Full Text Available Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre; they were not attenuated by local anesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency. Single-unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  5. Cerebellar atrophy in epileptic patients

    International Nuclear Information System (INIS)

    Taneva, N.

    1991-01-01

    52 patients with epileptic seizures of different form, frequency and duration who had received long term treatment with anticonvulsive drugs were examined on Siretom 2000, a brain scanner of II generation. 6 standard incisions were made in all patients in the area of cerebellum, side ventricules and high convexity. Additional scanning with an incision width of 5 mm was made when pathological changes were detected. There were found 3 cases of cerebellar atrophy, 3 - cerebral atrophy, 1 - combined atrophy and 4 - with other changes. It was difficult to establish any relation between the rerebellar atrophy and the type of anticonvulsant used because treatment had usually been complex. 1 fig., 1 tab., 4 refs

  6. Learning of Sensory Sequences in Cerebellar Patients

    Science.gov (United States)

    Frings, Markus; Boenisch, Raoul; Gerwig, Marcus; Diener, Hans-Christoph; Timmann, Dagmar

    2004-01-01

    A possible role of the cerebellum in detecting and recognizing event sequences has been proposed. The present study sought to determine whether patients with cerebellar lesions are impaired in the acquisition and discrimination of sequences of sensory stimuli of different modalities. A group of 26 cerebellar patients and 26 controls matched for…

  7. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes

    Science.gov (United States)

    Mohamed, Jamaludin; Shing, Saw Wuan; Md Idris, Muhd Hanis; Budin, Siti Balkis; Zainalabidin, Satirah

    2013-01-01

    OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes. METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight) for 28 days. RESULTS: The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained. CONCLUSION: The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients. PMID:24212844

  8. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2 against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes

    Directory of Open Access Journals (Sweden)

    Jamaludin Mohamed

    2013-10-01

    Full Text Available OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2 against red blood cell (RBC membrane oxidative stress in rats with streptozotocin-induced diabetes. METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each: control group (N, roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight for 28 days. RESULTS: The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained. CONCLUSION: The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients.

  9. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Mohamed, Jamaludin; Shing, Saw Wuan; Idris, Muhd Hanis Md; Budin, Siti Balkis; Zainalabidin, Satirah

    2013-10-01

    The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes. Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight) for 28 days. The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained. The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients.

  10. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  11. The bihemispheric posterior inferior cerebellar artery

    International Nuclear Information System (INIS)

    Cullen, Sean P.; Ozanne, Augustin; Alvarez, Hortensia; Lasjaunias, Pierre

    2005-01-01

    Rarely, a solitary posterior inferior cerebellar artery (PICA) will supply both cerebellar hemispheres. We report four cases of this variant. We present a retrospective review of clinical information and imaging of patients undergoing angiography at our institution to identify patients with a bihemispheric PICA. There were four patients: three males and one female. One patient presented with a ruptured arteriovenous malformation, and one with a ruptured aneurysm. Two patients had normal angiograms. The bihemispheric PICA was an incidental finding in all cases. The bihemispheric vessel arose from the dominant left vertebral artery, and the contralateral posterior inferior cerebellar artery was absent or hypoplastic. In all cases, contralateral cerebellar supply arose from a continuation of the ipsilateral PICA distal to the choroidal point and which crossed the midline dorsal to the vermis. We conclude that the PICA may supply both cerebellar hemispheres. This rare anatomic variant should be considered when evaluating patients with posterior fossa neurovascular disease. (orig.)

  12. Activity of retinene palmitasynthetase and retinene palmitatehydrolase in the small intestine mucosa and membranes of its cells in white rats affected by A-avitaminosis and irradiation

    International Nuclear Information System (INIS)

    Leutskij, K.M.; Sovtysik, D.D.

    1977-01-01

    A combined action of A-avitaminosis and ionizing radiation on the activity of retinenepalmitatesynthetase and retinenepalmitatehydrolase in the small intestine mucosa and cell membranes of white rats has been investigated. The activity of retinenepalmitatehydrolase has been shown to decrease in the irradiated animals deficient in vitamin A as compared to the control nonirradiated animals. The activity of retinenepalmitatesynthetase affected by a combination of A-avitaminosis and irradiation increases as compared to the control nonirradiated rats both in the small intestine mucosa and its cell membranes

  13. [Influence of delta-sleep inducing peptide on the state of lysosomal membranes and intensity of lysosomal proteolysis in different rat tissues during physiological aging of the organism].

    Science.gov (United States)

    Kutilin, D S; Bondarenko, T I; Mikhaleva, I I

    2014-01-01

    It is shown that subcutaneous injection of exogenous delta-sleep inducing peptide (DSIP) to rats aged 2-24 months in a dose of 100 μg/kg animal body weight by courses of 5 consecutive days per month has a stabilizing effect on the state of lysosomal membranes in rat tissues (brain, heart muscle and liver) at different ontogenetic stages, and this effect is accompanied by increasing intensity of lysosomal proteolysis in these tissues.

  14. Preparation of rat gastric heavy and light microsomal membranes enriched in (H+-K+)-ATPase using 2H2O and Percoll gradients

    International Nuclear Information System (INIS)

    Im, W.B.; Davis, J.P.; Blakeman, D.P.

    1985-01-01

    Gastric heavy microsomal membranes highly enriched in (H + -K + )-ATPase were obtained from cimetidine- or carbachol-treated rats through 2 H 2 O and Percoll gradient centrifugations. Both the resting (cimetidine-treated) and the stimulated (carbachol-treated) heavy membranes which presumably represent the apical membrane of gastric parietal cells were enriched with the polypeptides of 81,000 and 45,000 besides that of 93,000 representing (H + -K + )-ATPase. No apparent differences could be detected between the resting and the stimulated heavy membranes in their polypeptide profiles or their specific activity of (H + -K + )-ATPase. Nevertheless, the level of 86 RbCl uptake was greater in the stimulated than the resting heavy microsomal membrane vesicles. The light gastric microsomes which abound in intracellular tubulovesicles containing reserve (H + -K + )-ATPase as isolated from cimetidine-treated rats were similarly purified with respect to (H + -K + )-ATPase. The purified light gastric membranes were largely devoid of the polypeptides of 81,000 and 45,000 found in the heavy gastric membranes. These observations further support the current hypothesis that secretagogues bring about changes in the environment of (H + -K + )-ATPase and induce KCl permeability in the apical membrane of the parietal cells, although at present the authors have been unable to identify the polypeptide(s) responsible for the KCl pathway

  15. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: Prevention by thiol group protecting agents

    International Nuclear Information System (INIS)

    Custodio, Jose B.A.; Cardoso, Carla M.P.; Santos, Maria S.; Almeida, Leonor M.; Vicente, Joaquim A.F.; Fernandes, Maria A.S.

    2009-01-01

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca 2+ -induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20 nmol/mg protein) induced Ca 2+ -dependent mitochondrial swelling, depolarization of membrane potential (ΔΨ), Ca 2+ release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40 nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the ΔΨ, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H 2 O 2 generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca 2+ -induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to

  16. Resistance exercise recovers the structure of cartilage and synovial membrane of the ankle joint of rats after sciatic compression

    Directory of Open Access Journals (Sweden)

    Lizyana Vieira

    2017-08-01

    Full Text Available Abstract Aim to determine the effects of sciatic compression and treatment with resistance exercise on the morphology of the ankle joint of Wistar rats. Methods 32 male rats, aged 10 ± 1 week, weighing 376±22 grams were divided into the following four groups (n=8/group: CG (control, LG (lesion, EG (exercise and LEG (lesion and exercise. Three days after sciatic compression, the animals in the EG and LEG were submitted to resistance exercise by climbing stairs (five days/week for three weeks and a load of 100 grams was added. The exercise was carried out in two sets of ten consecutive ascents of the steps. The ankle joint tissues were analyzed for their morphometry and morphology using light microscopy. Results Regarding the number of chondrocytes, the LG and EG had more cells in the anterior articular cartilage in the tibia (62 and 43% and in the talus (57 and 45% when compared to the CG. In the LEG there was a 25% and 26% reduction of chondrocytes in the anterior cartilage in the tibia and talus when compared to the LG. Changes were observed in the tibia and talus in the LG, with the presence of flocculation, invagination of the subchondral bone, discontinuity of tidemark and pannus covering the subchondral bone in the talus, as well as changes in the synovial membrane. These alterations were minimized in the articular cartilage and synovial membrane in the LEG. Conclusions exercise restores the tissue morphology of ankle joint in Wistar rats after sciatic compression.

  17. Synaptic Membrane Synthesis in Rats Depends on Dietary Sufficiency of Vitamin C, Vitamin E, and Selenium: Relevance for Alzheimer's Disease.

    Science.gov (United States)

    Cansev, Mehmet; Turkyilmaz, Mesut; Sijben, John W C; Sevinc, Cansu; Broersen, Laus M; van Wijk, Nick

    2017-01-01

    Chronic consumption of a diet enriched with nutritional precursors of phospholipids, including uridine and the polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), was shown previously to enhance levels of brain phospholipids and synaptic proteins in rodents. Vitamin C, vitamin E, and selenium may directly affect the breakdown or synthesis of membrane phospholipids. The present study investigated the necessity of antioxidants for the effectiveness of supplementation with uridine plus DHA and EPA (as fish oil) in rats. Rats were randomized to four treatment groups and received, for 6 weeks, one of four experimental diets, i.e., a diet low in antioxidants, a diet high in antioxidants, a diet low in antioxidants supplemented with DHA+EPA+uridine, or a diet high in antioxidants supplemented with DHA+EPA+uridine. On completion of dietary treatment, rats were sacrificed, and brain levels of phospholipids, synaptic proteins, and two enzymes involved in phospholipid synthesis (choline-phosphate cytidylyltransferase, PCYT1A, and choline/ethanolamine phosphotransferase, CEPT1) were analyzed. Levels of phospholipids, the pre- and post-synaptic proteins Synapsin-1 and PSD95, and the enzymes PCYT1A and CEPT1 were significantly enhanced by combined supplementation of DHA+EPA+uridine and antioxidants and not enhanced by supplementation of DHA+EPA+uridine with insufficient antioxidant levels. Our data suggest that dietary vitamin C, vitamin E, and selenium are essential for the phospholipid precursors' effects on increasing levels of membrane phospholipids and synaptic proteins, the indirect indicators of synaptogenesis. Their concomitant supply may be relevant in Alzheimer's disease patients, because the disease is characterized by synapse loss and lower plasma and brain levels of phospholipid precursors and antioxidants.

  18. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring.

    Science.gov (United States)

    Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba

    2016-12-01

    Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na + K + -ATPase, Mg 2+ -ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

  19. Skin Mast Cell Promotion in Random Skin Flaps in Rats using Bone Marrow Mesenchymal Stem Cells and Amniotic Membrane

    Science.gov (United States)

    Chehelcheraghi, Farzaneh; Abbaszadeh, Abolfazl; Tavafi, Magid

    2018-03-06

    Skin flap procedures are employed in plastic surgery, but failure can lead to necrosis of the flap. Studies have used bone marrow mesenchymal stem cells (BM-MSCs) to improve flap viability. BM-MSCs and acellular amniotic membrane (AAM) have been introduced as alternatives. The objective of this study was to evaluate the effect of BM-MSCs and AAM on mast cells of random skin flaps (RSF) in rats. RSFs (80 × 30 mm) were created on 40 rats that were randomly assigned to one of four groups, including (I) AAM, (II) BM-MSCs, (III) BM-MSCs/AAM, and (IV) saline (control). Transplantation was carried out during the procedure (zero day). Flap necrosis was observed on day 7, and skin samples were collected from the transition line of the flap to evaluate the total number and types of mast cells. The development and the total number of mast cells were related to the development of capillaries. The results of one-way ANOVA indicated that there was no statistically significant difference between the mean numbers of mast cell types for different study groups. However, the difference between the total number of mast cells in the study groups was statistically significant (p = 0.001). The present study suggests that the use of AAM/BM-MSCs can improve the total number of mast cells and accelerate the growth of capillaries at the transient site in RSFs in rats.

  20. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Zhao, S; Pinholt, E M; Madsen, J E

    2000-01-01

    Different types of biodegradable membranes have become available for guided tissue regeneration. The purpose of this study was to evaluate histologically three different biodegradable membranes (Bio-Gide, Resolut and Vicryl) and one non-biodegradable membrane (expanded polytetrafluoroethylene/e-PTFE...... that e-PTFE was well tolerated and encapsulated by a fibrous connective tissue capsule. There was capsule formation around Resolut and Vicryl and around Bio-Gide in the early phase there was a wide inflammatory zone already. e-PTFE and Vicryl were stable materials while Resolut and Bio-Gide fragmented...

  1. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar

  2. Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease

    DEFF Research Database (Denmark)

    Ehara, T; Carone, F A; McCarthy, K J

    1994-01-01

    of distal tubules and collecting ducts was observed by 4 days with phenol II treatment, but the morphology returned to normal after 7 days of subsequent normal diet. Staining of tissue sections with two mouse monoclonal antibodies to a recently described basement membrane chondroitin sulfate proteoglycan...... to chondroitin sulfate chains confirmed these changes in cystic tubule basement membranes. During the recovery stage, interstitial chondroitin sulfate (representing a CSPG other than BM-CSPG) was greatly increased around these tubules, along with the glycoprotein fibronectin. Staining with antibody to a basement...... membrane heparan sulfate proteoglycan core protein related to perlecan did not diminish but rather stained affected tubules intensely, whereas laminin, on the other hand, was apparently diminished in the basement membranes of the cystic tubules. Type IV collagen staining did not change through disease...

  3. Etiology, Localization and Prognosis in Cerebellar Infarctions

    Directory of Open Access Journals (Sweden)

    Yavuz Yücel

    2006-01-01

    Full Text Available Cerebrovasculer disease are the most frequent disease of the brain. Cerebellar infarct remains % 1.5-4.2 of these diseases. Etiological factors, lesion localization, symptoms and findings and relationship with prognosis of our patients with cerebellar infarct were investigated in our study. For this purpose, 32 patients were evaluated who were admitted to the Dicle University Medical School Department of Neurology in 1995-2001 hospitalized with the diagnosis of clinically and radiological confirmed cerebellar infarction.All of patients in the study group, 21 (%65.6 were male and 11 (%34.3 female. Age of overall patients ranged between 40 and 75 years with a mean of 57.8±10.2 years. Atherothrombotic infarct was the most frequent reason at the etiologic clinical classification. The most frequently found localization was the posterior inferior cerebellar artery infarct (%50. The leading two risk factors were hypertension (%78.1 and cigarette smoking (%50. The most common sign and symptoms were vertigo (%93.7, vomiting (%75, headache (%68.7 and cerebellar dysfunction findings (%50. The mean duration of hospitalization was 16.3±7.6 days. Overall mortality rate was found to be % 6.2. Finally, the most remarkable risk factors at cerebellar infarct patients are hypertension and atherosclerosis at etiology. We are considering that, controlling of these factors will reduce the appearance frequency of cerebellar infarcts.

  4. Origin, lineage and function of cerebellar glia.

    Science.gov (United States)

    Buffo, Annalisa; Rossi, Ferdinando

    2013-10-01

    The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. [Memory transfer in cerebellar motor learning].

    Science.gov (United States)

    Nagao, Soichi

    2012-01-01

    Most of our motor skills are acquired through learning. Experiments of gain adaptation of ocular reflexes have consistently suggested that the memory of adaptation is initially formed in the cerebellar cortex, and is transferred to the cerebellar (vestibular) nuclei for consolidation to long-term memory after repetitions of training. We have recently developed a new system to evaluate the motor learning in human subjects using prism adaptation of hand reaching movement, by referring to the prism adaptation of dart throwing of Martin et al. (1996). In our system, the subject views the small target presented in the touch-panel screen, and touches it with his/her finger without direct visual feedback. After 15-30 trials of touching wearing prisms, an adaptation occurs in healthy subjects: they became able to touch the target correctly. Meanwhile, such an adaptation was impaired in patients of cerebellar disease. We have proposed a model of human prism adaptation that the memory of adaptation is initially encoded in the cerebellar cortex, and is later transferred to the cerebellar nuclei after repetitions of training. The memory in the cerebellar cortex may be formed and extinguished independently of the memory maintained in the cerebellar nuclei, and these two memories work cooperatively.

  6. Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia.

    Science.gov (United States)

    Main, Stacey L; Kulesza, Randy J

    2017-01-06

    Autism spectrum disorder (ASD) is a developmental brain disorder characterized by restricted and repetitive patterns of behavior, social and communication defects, and is commonly associated with difficulties with motor coordination. The etiology of ASD, while mostly idiopathic, has been linked to hereditary factors and teratogens, such as valproic acid (VPA). VPA is used clinically to treat epilepsy, mood disorders, and in the prevention of migraines. The use of VPA during pregnancy significantly increases the risk of ASD in the offspring. Neuropathological studies show decreased cerebellar function in patients with ASD, resulting in gait, balance and coordination impairments. Herein, we have exposed pregnant rats to a repeated oral dose of VPA on embryonic days 10 and 12 and performed a detailed investigation of the structure and function of the cerebellar vermis. We found that throughout all ten lobules of the cerebellar vermis, Purkinje cells were significantly smaller and expression of the calcium binding protein calbindin (CB) was significantly reduced. We also found that dendritic arbors of Purkinje cells were shorter and less complex. Additionally, animals exposed to a repeated dose of VPA performed significantly worse in a number of motor tasks, including beam walking and the rotarod. These results suggest that repeated embryonic exposure to VPA induces significant cerebellar dysfunction and is an effective animal model to study the cerebellar alterations in ASD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Switch in the expression of mGlu1 and mGlu5 metabotropic glutamate receptors in the cerebellum of mice developing experimental autoimmune encephalomyelitis and in autoptic cerebellar samples from patients with multiple sclerosis

    NARCIS (Netherlands)

    Fazio, F.; Notartomaso, S.; Aronica, E.; Storto, M.; Battaglia, G.; Vieira, E.; Gatti, S.; Bruno, V.; Biagioni, F.; Gradini, R.; Nicoletti, F.; Di Marco, R.

    2008-01-01

    Recent evidence suggests that changes in the expression of membrane receptors/ion channels in cerebellar Purkinje cells contribute to the onset of cerebellar motor symptoms in patients with multiple sclerosis (MS). We examined the expression of group-I metabotropic glutamate receptors (mGlu1 and

  8. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat

    Czech Academy of Sciences Publication Activity Database

    Vokurková, Martina; Rauchová, Hana; Dobešová, Zdenka; Loukotová, Jana; Nováková, O.; Kuneš, Jaroslav; Zicha, Josef

    2016-01-01

    Roč. 65, č. 1 (2016), s. 91-99 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NV15-25396A; GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : reticulocytes * immature erythrocytes * mean cellular hemoglobin content * membrane phospholipids * membrane cholesterol Subject RIV: ED - Physiology Impact factor: 1.461, year: 2016

  9. Neuropharmacologic characterization of strychnine seizure potentiation in the inferior olive lesioned rat

    International Nuclear Information System (INIS)

    Anderson, M.C.

    1988-01-01

    Cerebellar stimulation is associated with anticonvulsant activity in several animal models. There are two afferent inputs to cerebellar Purkinje cells: (1) parallel fibers, which relay mossy fiber input, from brainstem, spinal cord, cerebral cortex and cerebellum, and (2) climbing fibers, arising from the inferior olive. Both climbing and parallel fibers release excitatory amino acid neurotransmitters, which stimulate Purkinje cells and cause GABA release in the deep cerebellar nuclei. Climbing fibers also exert tonic inhibition over Purkinje cell activity by producing an absolute refractory period following stimulation, rendering Purkinje cells unresponsive to parallel fibers. Climbing fiber deafferentation by bilateral inferior olive lesions produced a specific decrease in threshold for strychnine-seizures in the rat. Inferior olive lesions produced no change in threshold to seizures induced by picrotoxin, bicuculline or pentylenetetrazole. Inferior olive lesions also produced abnormal motor behavior including, myoclonus, backward locomotion and hyperextension, which was significantly aggravated by strychnine, brucine, picrotoxin, bicuculline and pentylenetetrazole. Inferior olive lesions produced a significant increase in quisqualate sensitive [ 3 H]AMPA ((Rs)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding to cerebellar membranes. AMPA is a glutamate analog with high affinity for quisqualate sensitive receptors

  10. A bioabsorbable membrane (Seprafilm®) may prevent postoperative mediastinal adhesions following mediastinoscopy: an experimental study in rats.

    Science.gov (United States)

    Büyükkale, Songül; Çıtak, Necati; İşgörücü, Özgür; Sayar, Adnan

    2015-01-01

    The aim of this experimental study was to investigate the anti-adhesion property of a bioabsorbable membrane following mediastinoscopy in a rat model. The study was conducted in 20 male Sprague-Dawley rats. Mediastinoscopy was performed all of them. Rats were divided into two groups; control group (n=10); mediastinoscopy alone, study group (n=10); mediastinoscopy and sodiumhyaluronate-carboxymethlycellulose film (Seprafilm®; Genzyme Corporation, Cambridge, Mass. USA). It was used to the mediastinal surface at the end of the surgical procedure in study group. Re-mediastinoscopy was performed after 7 days. Adhesion and vascularity grade description scores were analyzed. The parameters evaluated were presence of polymorhphonucleer leucocyte, macrophage, lymphocyte, fibroblasts, edema, neovascularisation, collagenisation, and foreing body reaction. All the rats survived uneventfully until being sacrificed without any postoperative complications. The mean adhesion score was found to be significantly higher in control group (n=2.5±0.5) compared with study group (n=1.0±0.1) (P=0.007). Vascularity grade description score was significantly higher in control group (n=2.3±0.6) than in study group (n=1.4±0.6) (P=0.009). There were no statistical differences between the groups with regard to edema, lymphocyte and macrophage infiltration, fibroblast proliferation and foreign body reactions (P>0.05). The used of Seprafilm® during the primary procedure can reduce to the mediastinal adhesions. However, further studies are required to assess the precise impact of the anti-adhesive agents on adhesion.

  11. Novel function of glutathione transferase in rat liver mitochondrial membrane: Role for cytochrome c release from mitochondria

    International Nuclear Information System (INIS)

    Lee, Kang Kwang; Shimoji, Manami; Hossain, Quazi Sohel; Sunakawa, Hajime; Aniya, Yoko

    2008-01-01

    Microsomal glutathione transferase (MGST1) is activated by oxidative stress. Although MGST1 is found in mitochondrial membranes (mtMGST1), there is no information about the oxidative activation of mtMGST1. In the present study, we aimed to determine whether mtMGST1 also undergoes activation and about its function. When rats were treated with galactosamine/lipopolysaccharide (GalN/LPS), mtMGST1 activity was significantly increased, and the increased activity was reduced by the disulfide reducing agent dithiothreitol. In mitochondria from GalN/LPS-treated rats, disulfide-linked mtMGST1 dimer and mixed protein glutathione disulfides (glutathionylation) were detected. In addition, cytochrome c release from mitochondria isolated from GalN/LPS-treated rats was observed, and the release was inhibited by anti-MGST1 antibodies. Incubation of mitochondria from control rats with diamide and diamide plus GSH in vitro resulted in dimer- and mixed disulfide bond-mediated activation of mtMGST1, respectively. The activation of mtMGST1 by diamide plus GSH caused cytochrome c release from the mitochondria, and the release was prevented by treatment with anti-MGST1 antibodies. In addition, diamide plus GSH treatment caused mitochondrial swelling accompanied by cytochrome c release, which was inhibited by cyclosporin A (CsA) and bongkrekic acid (BKA), inhibitors of the mitochondrial permeability transition (MPT) pore. Furthermore, mtMGST1 activity was also inhibited by CsA and BKA. These results indicate that mtMGST1 is activated through mixed disulfide bond formation that contributes to cytochrome c release from mitochondria through the MPT pore

  12. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    Science.gov (United States)

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  13. Erythrocytes Membrane Alterations Reflecting Liver Damage in CCl₄-Induced Cirrhotic Rats: The Ameliorative Effect of Naltrexone

    Directory of Open Access Journals (Sweden)

    Fatemeh Sarhadi Kholari

    2016-11-01

    Full Text Available Cirrhosis is the consequence of chronic liver disease. Deleterious effects of oxidative stress on hepatocytes may be reflected in the erythrocyte membrane. Naltrexone (NTX has been shown to attenuate hepatocellular injury in fibrotic animal models. The aim of this study was to investigate the progressive effect of CCl4 on the liver and whether the improvement of liver cirrhosis can be monitored through alterations in the erythrocyte membrane. In this study, 84 male Wistar rats were divided into 4 groups and received reagents (i.p. as follows: 1- CCl₄, 2- NTX + CCl₄, 3- Mineral Oil (M, and 4- NTX + M. After 2, 6 and 8 weeks, the blood and liver tissue samples were collected. Plasma enzyme activities, the content of erythrocyte GSH and some membrane compositions, including protein carbonyl, protein sulfhydryl, and malondialdehyde were assessed. After 6 and 8 weeks, plasma enzyme activities and the content of protein carbonyl were higher in CCl4 group significantly, as compared to other groups (P<0.001. NTX significantly diminished protein carbonyl and plasma enzyme activities (P<0.001. GSH did not change until the 6th week. However, CCl4+NTX increased it significantly as compared to CCl₄ group (P<0.05. Protein sulfhydryl showed changes in NTX+CCl₄ group which indicated a significant increase in protein sulfhydryl content in a 6th week compared to CCl4 group (P<0.05. MDA did not show any significant alteration. CCl₄-induced cirrhosis is accompanied by increased content of oxidative stress markers, especially protein carbonyl of RBC membrane and plasma enzyme activities. This study shows that the progression of liver cirrhosis and the ameliorative effect of NTX can be followed through alterations of these markers.

  14. Computed tomography in alcoholic cerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Haubek, A; Lee, K [Hvidovre Hospital Copenhagen (Denmark). Dept. of Radiology; Municipal Hospital, Copenhagen (Denmark). Dept. of Neurology)

    1979-01-01

    This is a controlled CT evaluation of the infratentorial region in 41 male alcoholics under age 35. Criteria for the presence of atrophy are outlined. Twelve patients had cerebellar atrophy. Vermian atrophy was present in all. Atrophy of the cerebellar hemispheres was demonstrated in eight patients as well. The results are statistically significant when compared to an age-matched group of 40 non-alcoholic males among whom two cases of vermian atrophy were found. There were clinical signs of alcoholic cerebellar atrophy in one patient only. The disparity between the clinical and the radiological data are discussed with reference to previous pneumoencephalographic findings. (orig.) 891 AJ/orig. 892 MKO.

  15. Acute Cerebellar Ataxia Induced by Nivolumab

    Science.gov (United States)

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy followed by the administration of decreasing doses of oral steroids. Nivolumab, an immune checkpoint inhibitor, is known to induce various neurological adverse events. However, this is the first report of acute cerebellar ataxia associated with nivolumab treatment. PMID:29249765

  16. Acetaminophen influence on change of endogenous intoxication indices status of plasmatic membranes in rats with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Olga Furka

    2017-08-01

    Full Text Available Introduction: Accumulation of excessive amounts of exo- and endotoxins in the body leads to the inevitable occurrence endogenous intoxication. This status is accompanied by a different type of inflammatory processes in the tissues. Middle mass molecules are products of catabolism of endo- and exogenous proteins. Separate fractions of middle molecular peptides have neurotoxic activity, change the membranes permeability, disturb the sodium-potassium balance, transport amino acids, creatinine excretion, protein biosynthesis, tissue respiration, cause microcirculation disorders, and have cytotoxic activity. Transaminases are enzymes that catalyze biochemical reactions progress. Aminotransferases influence on reaction of the formation and decomposition of amino acids and carbohydrates. The aim of the study: The aim of our work was to study endogenous intoxication and status of plasmatic membranes in animals with type 2 diabetes mellitus and acetaminophen toxic lesions. Research materials and methods: We conducted two series of experiments. In the first series toxic lesion was caused by a single intragastric administration of acetaminophen suspension in 2 % starch solution to animals in a dose of 1250 mg/kg (1/2 LD50. In the second series the suspension of acetaminophen in 2 % starch solution in a dose of 55 mg/kg was given. Non-genetic form of experimental type 2 diabetes mellitus was modeled by a single intraperitoneal administration of streptozotocin solution in doses 65 mg/kg, which was diluted by citrate buffer (pH 4.5 with the previous intraperitoneal nicotinamide administration in doses of 230 mg/kg. Rats, which were given the same amount of solvent (citrate buffer pH 4.5, were used as the control group. Results and discussion: Content of middle mass molecules and erythrocyte intoxication index were determined for research of endogenous intoxication status of rats with type 2 diabetes at single administration of acetaminophen. The experimental

  17. Cerebellar injury in preterm infants.

    Science.gov (United States)

    Tam, Emily W Y

    2018-01-01

    Although preterm birth is best known to result in adverse neurodevelopmental outcomes through injury of the supratentorial structures, including intraventricular hemorrhage and periventricular leukomalacia, the cerebellum has become increasingly recognized as an important target for injury and adverse motor and cognitive outcomes. Undergoing the most dramatic growth during the preterm period, the cerebellum is vulnerable to large and small hemorrhages, as well as hypoplasia resulting from a number of potentially modifiable risk factors. These factors include contact with intraventricular blood, crossed cerebrocerebellar diaschisis, postnatal glucocorticoid exposure, pain and opioid exposure, nutrition and somatic growth, cardiorespiratory factors, and socioeconomic status. Strategies targeting these factors may result in prevention of the motor and cognitive deficits seen after cerebellar hemorrhage or hypoplasia. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  19. Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics.

    Science.gov (United States)

    Mitchell, Todd W; Buffenstein, Rochelle; Hulbert, A J

    2007-11-01

    Phospholipids containing highly polyunsaturated fatty acids are particularly prone to peroxidation and membrane composition may therefore influence longevity. Phospholipid molecules, in particular those containing docosahexaenoic acid (DHA), from the skeletal muscle, heart, liver and liver mitochondria were identified and quantified using mass-spectrometry shotgun lipidomics in two similar-sized rodents that show an approximately 9-fold difference in maximum lifespan. The naked mole rat is the longest-living rodent known with a maximum lifespan of >28 years. Total phospholipid distribution is similar in tissues of both species; DHA is only found in phosphatidylcholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS), and DHA is relatively more concentrated in PE than PC. Naked mole-rats have fewer molecular species of both PC and PE than do mice. DHA-containing phospholipids represent 27-57% of all phospholipids in mice but only 2-6% in naked mole-rats. Furthermore, while mice have small amounts of di-polyunsaturated PC and PE, these are lacking in naked mole-rats. Vinyl ether-linked phospholipids (plasmalogens) are higher in naked mole-rat tissues than in mice. The lower level of DHA-containing phospholipids suggests a lower susceptibility to peroxidative damage in membranes of naked mole-rats compared to mice. Whereas the high level of plasmalogens might enhance membrane antioxidant protection in naked mole-rats compared to mice. Both characteristics possibly contribute to the exceptional longevity of naked mole-rats and may indicate a special role for peroxisomes in this extended longevity.

  20. Rat behaviour reactions and brain synaptic membrane lipids under the chronical gamma-irradiation

    International Nuclear Information System (INIS)

    Semenova, T.P.; Medvinskaya, N.I.; Potekhina, N.I.; Kolomijtseva, I.K.

    1997-01-01

    The effects of low level chronical ionising irradiation (12.9 cGy/day on the sensory attention to the stimuli of different modalities (somatosensor, visual, odor) of Wistar rats were studied. Analysis of animals behaviour was made after they had received the different doses of irradiation: 4, 6, 8, 10, 15 and 20 Gy. It was founded, that the attention and exploratory activity of rats is significantly decreased up to 20-30% after 4-6 Gy. The irradiation doses 8 Gy did not change animal behaviour as compared to control animals, but doses 10, 15 and 20 Gy decreased the exploratory activity as well as sensory attention of rats to 3-5-times as compared to previous dose. Such a wave-like way of behaviour reflects the functioning of an adaptive mechanism. Biochemical data indicated that after 5 months of the irradiation (dose 20 Gy) the level of phospholipids, lysophosphatidylcholine, phosphatdylethanolamine, phosphatidylcholine, cholesterol were decreased

  1. Inhibition of [3H]-dihydroalprenolol binding to rat cardiac membranes by various β-blocking agents

    International Nuclear Information System (INIS)

    Chenieux-Guicheney, P.; Dausse, J.P.; Meyer, P.; Schmitt, H.

    1978-01-01

    Binding of [ 3 H]-dihydroalprenolol ([ 3 H]-DHA) to rat cardiac membranes was rapid and reversible (k 1 = 0.633 to 0.701 x 10 6 M -1 s -1 and ksub(-1) = 0.0017 to 0.0043 s -1 ). [ 3 H]-DHA bound to a single class of binding sites with an equilibrium dissociation constant (Ksub(d25 0 C) of 5.7 +- 1.1 x 10 -9 M. This binding was specific and the order of potency of adrenoceptor agonists in competing for the binding sites was (-)-isoproterenol > (+-)-isoproterenol >(+)-isoproterenol > (-)-adrenaline > (-)-noradrenaline. This was in agreement with the β 1 nature of the cardiac β-receptors. Cardioselective β-blockers (i.e. metoprolol, acebutolol and practolol) were shown to have lower binding site affinities, when compared to other blockers. This may be related to steric hindrance by the side-chain at the aromatic end of these molecules. (author)

  2. Cerebellar mutism: review of the literature

    DEFF Research Database (Denmark)

    Gudrunardottir, Thora; Sehested, Astrid; Juhler, Marianne

    2011-01-01

    Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention....

  3. Degenerative cerebellar diseases and differential diagnoses

    International Nuclear Information System (INIS)

    Reith, W.; Roumia, S.; Dietrich, P.

    2016-01-01

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions. (orig.) [de

  4. [Degenerative cerebellar diseases and differential diagnoses].

    Science.gov (United States)

    Reith, W; Roumia, S; Dietrich, P

    2016-11-01

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions.

  5. Neuroprotective effects of thymoquinone against cerebellar ...

    African Journals Online (AJOL)

    cerebellum mainly functions to coordinate motor functions and control ... development of the brain and life-long cognitive function [2]. ... and serial equidistant sections of the right cerebellar ... Cells outside of the left vertical and bottom bars ...

  6. Non-neoplastic gliotic cerebellar cysts

    International Nuclear Information System (INIS)

    Weisberg, L.A.

    1982-01-01

    The clinical and CT findings in 3 patients with non-neoplastic gliotic cerebellar cyst are described. CT does not permit accurate preoperative differentiation of these lesions from neoplastic disorders. (orig.)

  7. Cerebellar leukoencephalopathy: most likely histiocytosis-related

    NARCIS (Netherlands)

    van der Knaap, M.S.; Arts, W.F.M.; Garbern, J.Y.; Hedlund, G.; Winkler, F.; Barbosa, C.; King, M.D.; Bjornstad, A.; Hussain, N.; Beyer, M.K.; Gomez, C.; Patterson, M.C.; Grattan-Smith, P.; Timmons, M.; van der Valk, P.

    2008-01-01

    Background: Histiocytosis, both Langerhans and non-Langerhans cell type, can be associated with cerebellar white matter abnormalities, thought to be paraneoplastic. The associated clinical picture consists of ataxia, spasticity, and cognitive decline. Hormonal dysfunction is frequent. MRI shows

  8. Cerebellar medulloblastoma presenting with skeletal metastasis

    Directory of Open Access Journals (Sweden)

    Barai Sukanta

    2004-04-01

    Full Text Available Medulloblastomas are highly malignant brain tumours, but only rarely produce skeletal metastases. No case of medulloblastoma has been documented to have produced skeletal metastases prior to craniotomy or shunt surgery. A 21-year-old male presented with pain in the hip and lower back with difficulty in walking of 3 months′ duration. Signs of cerebellar dysfunction were present hence a diagnosis of cerebellar neoplasm or skeletal tuberculosis with cerebellar abscess formation was considered. MRI of brain revealed a lesion in the cerebellum suggestive of medulloblastoma. Bone scan revealed multiple sites of skeletal metastases excluding the lumbar vertebrae. MRI of lumbar spine and hip revealed metastases to all lumbar vertebrae and both hips. Computed tomography-guided biopsy was obtained from the L3 vertebra, which revealed metastatic deposits from medulloblastoma. Cerebrospinal fluid cytology showed the presence of medulloblastoma cells. A final diagnosis of cerebellar medulloblastoma with skeletal metastases was made. He underwent craniotomy and histopathology confirmed medulloblastoma.

  9. Ataxias and Cerebellar or Spinocerebellar Degeneration

    Science.gov (United States)

    ... and conducts a broad range of basic and clinical research on cerebellar and spinocerebellar degeneration, including work aimed at finding the cause(s) of ataxias and ways to ... Publications Definition Ataxia ...

  10. Cerebellar mutism: review of the literature

    DEFF Research Database (Denmark)

    Gudrunardottir, Thora; Sehested, Astrid; Juhler, Marianne

    2011-01-01

    Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention.......Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention....

  11. Acute Cerebellar Ataxia Induced by Nivolumab

    OpenAIRE

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy follow...

  12. Enzymatic conversion of bilirubin monoglucuronide to diglucuronide by rat liver plasma membranes

    NARCIS (Netherlands)

    Jansen, P. L.; Chowdhury, J. R.; Fischberg, E. B.; Arias, I. M.

    1977-01-01

    Formation of bilirubin monoglucuronide from unconjugated bilirubin requires a microsomal enzyme, UDP-glucuronate glucuronyltransferase (EC 2.4.1.17). Conversion of bilirubin monoglucuronide to bilirubin diglucuronide, the major bilirubin conjugate in bile, was studied in subcellular fractions of rat

  13. Functional activity of Gi alpha protein in detergent resistant membrane domains from rat brain cortex

    Czech Academy of Sciences Publication Activity Database

    Stöhr, Jiří; Rudajev, Vladimír; Bouřová, Lenka; Lisý, Václav; Novotný, Jiří; Svoboda, Petr

    2007-01-01

    Roč. 101, Suppl.1 (2007), s. 52-52 ISSN 0022-3042. [European Society for Neurochemistry Meeting /17./. 19.05.2007-22.05.2007, Salamanca] Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * GABAB receptor * Gi protein * membrane domains Subject RIV: ED - Physiology

  14. Dietary fatty acids alter blood pressure, behavior and brain membrane composition of hypertensive rats

    NARCIS (Netherlands)

    de Wilde, MC; Hogyes, E; Kiliaan, AJ; Farkas, T; Luiten, PGM; Farkas, E; Wilde, Martijn C. de; Hőgyes, Endre; Kiliaan, Amanda J.

    2003-01-01

    The beneficial effect of dietary n-3 polyunsaturated fatty acids (PUFAs) on developing hypertension has been repeatedly demonstrated. However. related changes in brain membrane composition and its cognitive correlates have remained unclear. Our study aimed at a comprehensive analysis of behavior and

  15. Physiologically based pharmacokinetics of radioiodinated human beta-endorphin in rats. An application of the capillary membrane-limited model

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Hanano, M.

    1987-07-01

    In order to simulate the distribution and elimination of radioiodinated human beta-endorphin (/sup 125/I-beta-EP) after iv bolus injection in rats, we proposed a physiologically based pharmacokinetic model incorporating diffusional transport of /sup 125/I-beta-EP across the capillary membrane. This model assumes that the distribution of /sup 125/I-beta-EP is restricted only within the blood and the tissue interstitial fluid, and that a diffusional barrier across the capillary membrane exists in each tissue except the liver. The tissue-to-blood partition coefficients were estimated from the ratios of the concentration in tissues to that in arterial plasma at the terminal (pseudoequilibrium) phase. The total body plasma clearance (9.0 ml/min/kg) was appropriately assigned to the liver and kidney. The transcapillary diffusion clearances of /sup 125/I-beta-EP were also estimated and shown to correlate linearly with that of inulin in several tissues. Numerically solving the mass-balance differential equations as to plasma and each tissue simultaneously, simulated concentration curves of /sup 125/I-beta-EP corresponded well with the observed data. It was suggested by the simulation that the initial rapid disappearance of /sup 125/I-beta-EP from plasma after iv injection could be attributed in part to the transcapillary diffusion of the peptide.

  16. Oxidative Stress Parameters and Erythrocyte Membrane Adenosine Triphosphatase Activities in Streptozotocin-induced Diabetic Rats Administered Aqueous Preparation of Kalanchoe Pinnata Leaves.

    Science.gov (United States)

    Menon, Nikhil; Sparks, Jean; Omoruyi, Felix O

    2016-01-01

    Diabetes mellitus is a chronic metabolic disease that according to the World Health Organization affects more than 382 million people. The rise in diabetes mellitus coupled with the lack of an effective treatment has led many to investigate medicinal plants to identify a viable alternative. To evaluate red blood cell (RBC) membrane adenosine triphosphatase (ATPase) activities and antioxidant levels in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe pinnata leaves. Diabetes mellitus was induced in rats by a single administration of streptozotocin (60 mg/kg). Diabetic rats were then treated with aqueous K. pinnata preparation (three mature leaves ~ 9.96 g/70 kg body weight or about 0.14 g/kg body weight/day) for 30 days. Serum glucose, RBC membrane ATPase activities, and antioxidant levels were determined. We noted weight loss and reduced food consumption in the treated diabetic group. Serum glucose levels were reduced in the treated diabetic group compared to the other groups. Superoxide dismutase activity and glutathione levels were not significantly elevated in the treated group compared to the diabetic group. However, serum catalase activity was significantly (P < 0.05) increased in the treated diabetic group compared to the other groups. Serum thiobarbituric acid reactive substances were not significantly altered among the groups. There was a significant (P < 0.05) increase in Mg(2+) ATPase activity and a nonsignificant increase in Na(+)/K(+) ATPase activity in the RBC membrane of the treated diabetic group compared to the diabetic group. The consumption of aqueous preparation of K. pinnata may accrue benefits in the management of diabetes by lowering oxidative stress often associated with the disease and improving the availability of cellular magnesium through an increase in the magnesium ATPase pump in the RBC membrane for increased cellular metabolism of glucose through the glycolytic pathway. We noted weight loss and

  17. Photoaffinity labeling of opiate (enkephalin) receptor of rat brain plasma membranes with 125I(D-Ala2, p-N3-Phe4-Met5)-enkephalin

    International Nuclear Information System (INIS)

    Yeung, C.W.T.

    1986-01-01

    A photoreactive (D-Ala 2 , p-N 3 -Phe 4 -Met 5 )enkephalin derivative was prepared, iodinated with carrier free 125 I and then purified by high performance liquid chromatography. The purified radioactive photoprobe was monoiodinated at the amino terminal tyrosine residue. This radioactive photoprobe was used to photoaffinity label plasma membranes prepared from rat brain, spinal cord and cerebellum. The photolabeled plasma membranes were analyzed by sodium dodecyl sulfate gel electrophoresis. A 46,000-daltons band was specifically photolabeled in the plasma membranes of brain and spinal cord but not in the plasma membranes from cerebellum. The photolabeling of this band was inhibited by peptides related to enkephalin by not but substance P or gastrin tetrapeptide. These data demonstrate that the labeled 46,000-daltons band is a protein of the opiate (enkephalin)receptor

  18. Effect of long-term propranolol administration on specific binding of 3H-WB-4101 with rat mesenteric vascular membranes

    International Nuclear Information System (INIS)

    Ismailov, S.I.; Rozhanets, V.V.; Val'dman, A.V.

    1985-01-01

    The aim of this investigation was, first, to study the affinity of certain beta-adrenoblockers for specific binding sites of 3 H-WB-4101 (identifiable as alpha-adrenoreceptors) of brain membranes and, second, to study the characteristics of these same receptors in membranes of mesenteric vessels of rats during long-term administration of propranolol. Isotherms of specific binding, because of the limited quantity of vascular membranes, were determined by the use of three concentrations of 3 H-WB-4101: 0.1, 0.5, and 1.0 nM. It is shown that some beta-adrenoblockers have weak affinity for alpha-adrenoreceptors of brain synaptic membranes exhibited only when these compounds are present in relatively high concentrations. It is also shown that administration of propranolol for 15 days led to a significant decrease in affinity of the alpha-adrenorecptors for their specific antagonist WB-4101

  19. Effect of Kaiyu Qingwei Granule (开郁清胃颗粒) on Insulin Receptor in Liver and Skeletal Muscular Cell Membrane in Diabetes Mellitus Rats

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-fang (柳红芳); TONG Xiao-lin(仝小林); WANG Qing-guo(王庆国); ZUO Ping-ping(左萍萍); GUO An-chen(郭安臣); LIU Hong-xing(刘红星)

    2003-01-01

    Objective: To investigate the effect of Kaiyu Qingwei granule (KYQWG,开郁清胃颗粒) on the insulin binding capacity of liver and skeletal muscular cell membrane and serum insulin-like growth factor-1 (IGF-1) in streptozotocin-induced diabetic rats. Methods:Rats in four experimental groups were investigated: the control group, the model group, the KYQWG group and the Metformin group. The insulin binding rate (IBR) of liver and skeletal muscular cell membrane was detected by receptor-ligand radiometric method and changes of serum levels of glucose, insulin and IGF-1 were observed before and after 4 weeks of medication. Results: The KYQWG group had a lower blood glucose level and IBR of liver and muscular cell membrane, as compared with those in the model group (P<0.01 or P<0.05), and a higher level of IGF-1 than that in the model group(P<0.01), but had no obvious changes in the serum level of insulin. Conclusion: KYQWG may increase the serum level of IGF-1 in diabetic rats, thus to decrease the insulin resistance at ante-receptor sites and improve the sugar metabolic disturbance in rats with diabetes mellitus.

  20. Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes.

    Science.gov (United States)

    Fang, Peng; An, Jie; Tan, Xin; Zeng, Ling-Li; Shen, Hui; Qiu, Shijun; Hu, Dewen

    2017-04-01

    Currently, 422 million adults suffer from diabetes worldwide, leading to tremendous disabilities and a great burden to families and society. Functional and structural MRIs have demonstrated that patients with type 2 diabetes mellitus (T2DM) exhibit abnormalities in brain regions in the cerebral cortex. However, the changes of cerebellar anatomical connections in diabetic patients remains unclear. In the current study, diffusion tensor imaging deterministic tractography and statistical analysis were employed to investigate abnormal cerebellar anatomical connections in diabetic patients. This is the first study to investigate the altered cerebellar anatomical connectivity in T2DM patients. Decreased anatomical connections were found in the cerebellar and cerebro-cerebellar circuits of T2DM patients, providing valuable new insights into the potential neuro-pathophysiology of diabetes-related motor and cognitive deficits. Copyright © 2017. Published by Elsevier Inc.

  1. Bilateral Cerebellar Cortical Dysplasia without Other Malformations: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Seok; Ahn Kook Jin; Kim, Jee Young; Lee, Sun Jin; Park, Jeong Mi [Catholic University Yeouido St. Mary' s Hospital, College of Medicine, Seoul (Korea, Republic of)

    2010-06-15

    Recent advances in MRI have revealed congenital brain malformations and subtle developmental abnormalities of the cerebral and cerebellar cortical architecture. Typical cerebellar cortical dysplasia as a newly categorized cerebellar malformation, has been seen in patients with Fukuyama congenital muscular dystrophy. Cerebellar cortical dysplasia occurs at the embryonic stage and is often observed in healthy newborns. It is also incidentally and initially detected in adults without symptoms. To the best of our knowledge, cerebellar dysplasia without any related disorders is very rare. We describe the MRI findings in one patient with disorganized foliation of both cerebellar hemispheres without a related disorder or syndrome

  2. Identification of the D-1 dopamine receptor subunit in rat striatum after photoaffinity labeling

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, T; Tanaka, C [Kobe Univ. (Japan). School of Medicine

    1982-12-28

    When rat striatal membranes, photolabeled with (/sup 3/H)dopamine under assay conditions similar to those used for dopamine-sensitive adenylate cyclase, were subjected to sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, several radioactively labeled bands appeared. Labeling of these bands was reduced in the presence of non-radioactive dopamine during photolysis, but was unaffected by the presence of sulpiride. Haloperidol preferentially reduced the labeling of the main band which had a molecular weight of about 57,000 rather than the other weakly labeled bands. Labeling of this 57,000 dalton protein was not apparent when rat cerebellar membranes were used and was markedly eliminated by kainic acid-induced lesions that destroyed the intrastriatal nerve cell bodies. These results indicate that this 57,000 dalton protein is the binding subunit of the D-1 dopamine receptor.

  3. The studies on the toxicity mechanism of environmentally hazardous natural (IAA) and synthetic (NAA) auxin--The experiments on model Arabidopsis thaliana and rat liver plasma membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Flasiński, Michał

    2015-06-01

    This paper concerns the studies towards membrane-damage effect of two auxins: indole-3-acetic acid - IAA and 1-naphthaleneacetic acid - NAA on plant (Arabidopsis thaliana) and animal (rat liver) model membranes. The foregoing auxins are plant growth regulators widely used in agriculture to control the quality of the crop. However, their accumulation in the environment makes them hazardous for the living organisms. The aim of our investigations was to compare the effect of natural (IAA) vs. synthetic (NAA) auxin on the organization of plant and animal model membranes and find a possible correlation between membrane-disturbing effect of these compounds and their toxicity. The collected data evidenced that auxins cause destabilization of membranes, decrease their condensation and weakens interactions of molecules. The alterations in the morphology of model systems were also noticed. The foregoing effects of auxins are concentration-dependent and additionally NAA was found to act on animal vs. plant membranes more selectively than IAA. Interestingly, both IAA and NAA induce the strongest disordering in model lipid system at the concentration, which is frequently reported as toxic to animal and plants. Based on the above findings it was proposed that membrane-damage effect induced by IAA and NAA may be important from the point of view of the mechanism of toxicity of these compounds and cannot be ignored in further investigations in this area. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of colchicine on rat small intestinal absorptive cells. II. Distribution of label after incorporation of [3H]fucose into plasma membrane glycoproteins

    International Nuclear Information System (INIS)

    Ellinger, A.; Pavelka, M.; Gangl, A.

    1983-01-01

    By means of radioautography the influence was tested of various periods (5, 15, 30, 40 min, 2 hr) of pretreatment with colchicine, administered intraperitoneally to rats at a dosage of 0.5 mg/100 g of body weight, on the intracellular pathway of [ 3 H]fucose in absorptive cells of the small intestine. Administration of colchicine for 30 min and longer time intervals causes delay in the insertion of [ 3 H]fucose into the oligosaccharide chains of glycoconjugates in the Golgi apparatus, and results in redistribution of the label apparent over the different portions of the plasma membrane. In controls, at 2 and 4 hr after administration of [ 3 H]fucose the apical plasma membrane is strongly labeled. Colchicine causes equalization of the reaction of apical and basolateral regions of the plasma membrane: the number of silver grains attributable to the apical plasma membrane is reduced; following treatment with colchicine, apical portions of the plasma membrane comprise 31.6 +/- 1.8% of the silver grains, 38.6 +/- 3.8% are attributable to basolateral membrane regions. The colchicine-induced equalization of the density of label of apical and basolateral regions of the plasma membrane, in addition to the occurrence of basolateral microvillus borders, suggests microtubules to be important in the maintenance of the polar organization of small intestinal absorptive cells

  5. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain

    Directory of Open Access Journals (Sweden)

    Nimgampalle Mallikarjuna

    2016-12-01

    Results: Chronic injection of D-Galactose caused lipid peroxidation, oxidative stress, and mitochondrial dysfunction leading to the damage of neurons in the brain, finally bringing a significant decrease (-20% in the brain total membrane bound ATPases over the controls. Contrary to this, treatment of AD-induced rats with L. plantarum MTCC1325 reverted all the constituents of ATPase enzymes to near normal levels within 30 days. Conclusion: Lactobacillus plantarum MTCC1325 exerted a beneficial action on the entire ATPases system in AD-induced rat brain by delaying neurodegeneration.

  6. Characterization of [(3)H]harmane binding to rat whole brain membranes.

    Science.gov (United States)

    Anderson, N J; Robinson, E S J; Husbands, S M; Delagrange, P; Nutt, D J; Hudson, A L

    2003-12-01

    This study investigates the binding of [(3)H]harmane to rat whole brain homogenates. Saturation studies revealed [(3)H]harmane labels a single, saturable, high-capacity population with high affinity. All the test compounds displaced [(3)H]harmane completely and in an apparently monophasic manner. The displacement profile of the test ligands indicated labeling of MAO-A. Given the high level of MAO-A binding, it is unlikely that a low-capacity I(2) site would be distinguishable from the total [(3)H]harmane population.

  7. Metabolic anatomy of paraneoplastic cerebellar degeneration

    International Nuclear Information System (INIS)

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-01-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration [PCD]) were evaluated using neuropsychological tests and 18 F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis

  8. Structure of the vitreoretinal border region in spontaneously hypertensive rats (SHR rats)

    DEFF Research Database (Denmark)

    Heegaard, Steffen

    1993-01-01

    Øjenpatologi, vitreoretinal border region, inner limiting membrane of the retina, spontaneously hypertensive rats, SHR rats, ultrastructure......Øjenpatologi, vitreoretinal border region, inner limiting membrane of the retina, spontaneously hypertensive rats, SHR rats, ultrastructure...

  9. Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides

    International Nuclear Information System (INIS)

    Hogberg, Helena T.; Kinsner-Ovaskainen, Agnieszka; Hartung, Thomas; Coecke, Sandra; Bal-Price, Anna K.

    2009-01-01

    The major advantage of primary neuronal cultures for developmental neurotoxicity (DNT) testing is their ability to replicate the crucial stages of neurodevelopment. In our studies using primary culture of cerebellar granule cells (CGCs) we have evaluated whether the gene expression relevant to the most critical developmental processes such as neuronal differentiation (NF-68 and NF-200) and functional maturation (NMDA and GABA A receptors), proliferation and differentiation of astrocytes (GFAP and S100β) as well as the presence of neural precursor cells (nestin and Sox10) could be used as an endpoint for in vitro DNT. The expression of these genes was assessed after exposure to various pesticides (paraquat parathion, dichlorvos, pentachlorophenol and cycloheximide) that could induce developmental neurotoxicity through different mechanisms. All studied pesticides significantly modified the expression of selected genes, related to the different stages of neuronal and/or glial cell development and maturation. The most significant changes were observed after exposure to paraquat and parathion (i.e. down-regulation of mRNA expression of NF-68 and NF-200, NMDA and GABA A receptors). Similarly, dichlorvos affected mainly neurons (decreased mRNA expression of NF-68 and GABA A receptors) whereas cycloheximide had an effect on neurons and astrocytes, as significant decreases in the mRNA expression of both neurofilaments (NF-68 and NF-200) and the astrocyte marker (S100β) were observed. Our results suggest that toxicity induced by pesticides that target multiple pathways of neurodevelopment can be identified by studying expression of genes that are involved in different stages of cell development and maturation, and that gene expression could be used as a sensitive endpoint for initial screening to identify the compounds with the potential to cause developmental neurotoxicity

  10. Comparison of high affinity binding of 3H-proadifen and 3H-(-)-cocaine t rat liver membranes

    International Nuclear Information System (INIS)

    Ross, S.B.

    1995-01-01

    The characteristics of the binding of 3 H-proadifen to rat liver membranes were studied and compared to those of 3 H-cocaine. It was found that 3 H-proadifen was bound reversibly with high affinity (K D =1.8±0.5 nM) and large capacity (B max =2010±340 pmol/g wet tissue) to liver membranes. The corresponding values for the 3 H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of 3 H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 μM CdCl 2 in the incubation buffer it was possible to differentiate between two 3 H-cocaine binding sites with K d values of 1.6 and 7.7 nM and B max values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of 3 H-proadifen and 3 H-cocaine inhibited the binding of 3 H-proadifen (IC 50 =10 nM) and proadifen that of 3 H-cocaine (IC 50 =1 nM). There was a high correlation coefficient (r r =0.972; P 50 =100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl 2 , ZnCl 2 and CuCl 2 inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd 2+ on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15μM. The similarity of the characteristics of the binding of these ligands with that of 3 H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.)

  11. Characterization of thyroid hormone effects on Na-K pump and membrane potential of cultured rat skeletal myotubes

    International Nuclear Information System (INIS)

    Brodie, C.; Sampson, S.R.

    1988-01-01

    The purpose of this study was to characterize the effects of thyroid hormone on the Na-K pump and resting membrane potential (EM) of rat skeletal myotubes in culture. Myotubes were obtained from fetal (19-21 day) or neonatal rats (1-2 day) by serial trypsinization and maintained in culture for up to 10 days. Cells were treated with T4 or T3 on day 6 or 7, and measurements were made of EM, [ 3 H]ouabain binding, and ouabain-sensitive 86 Rb uptake at various times thereafter. Hormone treatment increased the values of all three variables within 24 h, plateau levels being attained by 48-72 h. Cycloheximide and actinomycin D totally blocked the effects of thyroid hormone when added together to the cells, thus suggesting that protein synthesis is necessary for the effects of these hormones. Scatchard analysis showed that the new receptors have lower ouabain affinity than those in control. Blockade of spontaneously occurring action potentials with tetrodotoxin, which blocks voltage-dependent Na channels, or Na/H antiporter with amiloride, abolished the hormone effects seen after 24 h and significantly reduced those obtained after 48 h of hormone treatment. The results demonstrate that thyroid hormone-induced increased amount and activity of the electrogenic Na-K pump in cultured myotubes occurs, at least in part, in response to an initial effect to increase Na influx. Moreover, the findings are consistent with the concept that the Na-K pump plays an important role in regulation of EM in this preparation

  12. Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine.

    Directory of Open Access Journals (Sweden)

    Henrike Planert

    Full Text Available D1 and D2 receptor expressing striatal medium spiny neurons (MSNs are ascribed to striatonigral ("direct" and striatopallidal ("indirect" pathways, respectively, that are believed to function antagonistically in motor control. Glutamatergic synaptic transmission onto the two types is differentially affected by Dopamine (DA, however, less is known about the effects on MSN intrinsic electrical properties. Using patch clamp recordings, we comprehensively characterized the two pathways in rats and mice, and investigated their DA modulation. We identified the direct pathway by retrograde labeling in rats, and in mice we used transgenic animals in which EGFP is expressed in D1 MSNs. MSNs were subjected to a series of current injections to pinpoint differences between the populations, and in mice also following bath application of DA. In both animal models, most electrical properties were similar, however, membrane excitability as measured by step and ramp current injections consistently differed, with direct pathway MSNs being less excitable than their counterparts. DA had opposite effects on excitability of D1 and D2 MSNs, counteracting the initial differences. Pronounced changes in AP shape were seen in D2 MSNs. In direct pathway MSNs, excitability increased across experimental conditions and parameters, and also when applying DA or the D1 agonist SKF-81297 in presence of blockers of cholinergic, GABAergic, and glutamatergic receptors. Thus, DA induced changes in excitability were D1 R mediated and intrinsic to direct pathway MSNs, and not a secondary network effect of altered synaptic transmission. DAergic modulation of intrinsic properties therefore acts in a synergistic manner with previously reported effects of DA on afferent synaptic transmission and dendritic processing, supporting the antagonistic model for direct vs. indirect striatal pathway function.

  13. Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Lan Zhu

    Full Text Available Learning to fear dangerous situations requires the participation of basolateral amygdala (BLA. In the present study, we provide evidence that BLA is necessary for the synaptic strengthening occurring during memory formation in the cerebellum in rats. In the cerebellar vermis the parallel fibers (PF to Purkinje cell (PC synapse is potentiated one day following fear learning. Pretraining BLA inactivation impaired such a learning-induced long-term potentiation (LTP. Similarly, cerebellar LTP is affected when BLA is blocked shortly, but not 6 h, after training. The latter result shows that the effects of BLA inactivation on cerebellar plasticity, when present, are specifically related to memory processes and not due to an interference with sensory or motor functions. These data indicate that fear memory induces cerebellar LTP provided that a heterosynaptic input coming from BLA sets the proper local conditions. Therefore, in the cerebellum, learning-induced plasticity is a heterosynaptic phenomenon that requires inputs from other regions. Studies employing the electrically-induced LTP in order to clarify the cellular mechanisms of memory should therefore take into account the inputs arriving from other brain sites, considering them as integrative units. Based on previous and the present findings, we proposed that BLA enables learning-related plasticity to be formed in the cerebellum in order to respond appropriately to new stimuli or situations.

  14. Cerebellar dentate nuclei lesions reduce motivation in appetitive operant conditioning and open field exploration.

    Science.gov (United States)

    Bauer, David J; Kerr, Abigail L; Swain, Rodney A

    2011-02-01

    Recently identified pathways from the dentate nuclei of the cerebellum to the rostral cerebral cortex via the thalamus suggest a cerebellar role in frontal and prefrontal non-motor functioning. Disturbance of cerebellar morphology and connectivity, particularly involving these cerebellothalamocortical (CTC) projections, has been implicated in motivational and cognitive deficits. The current study explored the effects of CTC disruption on motivation in male Long Evans rats. The results of two experiments demonstrate that electrolytic lesions of the cerebellar dentate nuclei lower breaking points on an operant conditioning progressive ratio schedule and decrease open field exploration compared to sham controls. Changes occurred in the absence of motor impairment, assessed via lever pressing frequency and rotarod performance. Similar elevated plus maze performances between lesioned and sham animals indicated that anxiety did not influence task performance. Our results demonstrate hedonic and purposive motivational reduction and suggest a CTC role in global motivational processes. These implications are discussed in terms of psychiatric disorders such as schizophrenia and autism, in which cerebellar damage and motivational deficits often present concomitantly. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. [Study of cerebellar infarction with isolated vertigo].

    Science.gov (United States)

    Utsumi, Ai; Enomoto, Hiroyuki; Yamamoto, Kaoru; Kimura, Yu; Koizuka, Izumi; Tsukuda, Mamoru

    2010-07-01

    Isolated vertigo is generally attributed to labyrinthine disease, but may also signal otherwise asymptomatic cerebellar infarction. Of 309 subjects admitted between April 2004 and March 2009 for the single symptom of acute vertigo initially thought to be labyrinthine, four were found to have cerebellar infarction of the posterior inferior cerebellar artery area (PICA). All were over 60 years old and had risk factors including hypertension, diabetes mellitus, arrhythmia, and/or hyperlipidemia. Two had trunk ataxia, with magnetic resonance imaging (MRI) showing infarction within a few days. The other two could walk without apparent trunk ataxia, however, it took 4 to 7 days to find the infarction, mainly through neurological, neurootological, and MRI findings. Neurologically, astasia, dysbasia or trunk ataxia were important signs. Neurootologically, nystagmus and electronystagmographic testing involving eye tracking, saccade, and optokinetic patttens were useful.

  16. Cerebellar contribution to feedforward control of locomotion.

    Science.gov (United States)

    Pisotta, Iolanda; Molinari, Marco

    2014-01-01

    The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing-the process that allows spatial and temporal relationships between events to be recognized-has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed.

  17. Counseling a Patient with the Antenatal Diagnosis of a Cerebellar Abnormality and a Pharyngeal Cyst

    Directory of Open Access Journals (Sweden)

    Lissa Francois

    2014-11-01

    Full Text Available Introduction - Prenatal counseling with regards to the prognosis of a cerebellar abnormality is hindered not only by the diverse clinical presentations but also by the presence of subtle findings. We present a case of a distinct combination of asymmetric cerebellar hypoplasia secondary to an anterior meningoencephalocele through a clival defect that caused a severe airway obstruction in the newborn. Case Description - A 21-year-old gravida 4 para 0 mother with a dichorionic–diamniotic twin pregnancy was referred for a second trimester sonographic survey. An asymmetric cerebellar hypoplasia, mega cisterna magna, and a pharyngeal cystic mass were noted on twin A. Magnetic resonance imaging report confirmed posterior fossa abnormalities and shed no light on the differential diagnosis of the cystic mass. The pregnancy ended by Cesarean delivery at 32 weeksʼ gestation after a preterm premature rupture of the membranes. Twin A had a severe airway obstruction. Postnatal evaluation confirmed a midline anterior meningoencephalocele through a defect in the clivus. The microarray chromosomal analysis demonstrated a 5q15 variant with uncertain clinical significance. Conclusion - Antenatal recognition of the unique combination of a cerebellar hypoplasia with a pharyngeal cyst can impact the prenatal counseling as well as neonatal management.

  18. Proteomic analysis of post-nuclear supernatant fraction and percoll-purified membranes prepared from brain cortex of rats exposed to increasing doses of morphine

    Czech Academy of Sciences Publication Activity Database

    Ujčíková, Hana; Eckhardt, Adam; Kagan, Dmytro; Roubalová, Lenka; Svoboda, Petr

    2014-01-01

    Roč. 12, Feb 14 (2014), s. 11 ISSN 1477-5956 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : morphine * long-term exposure * rat brain cortex * isolated plasma membranes * post-nuclear supernatant * 2D electrophoresis Subject RIV: CE - Biochemistry Impact factor: 1.725, year: 2014

  19. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  20. CT and MR imaging of acute cerebellar ataxia

    International Nuclear Information System (INIS)

    Shoji, H.; Hirai, S.; Ishikawa, K.; Aramaki, M.; Sato, Y.; Abe, T.; Kojima, K.

    1991-01-01

    An adult female showed mild cerebellar ataxia and CSF pleocytosis following an acute infection of the upper respiratory tract, and was diagnosed as having acute cerebellar ataxia (ACA). CT and MR appearances in the acute stage revealed moderate swelling of the cerebellum and bilaterally increased signal intensity in the cerebellar cortex. (orig.)

  1. Crossed cerebellar diaschisis in ischemic stroke

    DEFF Research Database (Denmark)

    Meneghetti, G; Vorstrup, S; Mickey, B

    1984-01-01

    Seventy measurements of CBF were performed in 12 stroke patients by 133Xe inhalation and a rapidly rotating single photon emission computerized tomograph. CBF was measured every other day during the acute phase and at 2- and 6-month follow-up visits. A persistent contralateral cerebellar blood flow....... It is concluded from this serial study that crossed cerebellar diaschisis is a common finding in completed stroke. It is probably caused by disconnection of the corticopontine pathways, a disconnection that tends to persist. The phenomenon is in fact less variable than the stroke-related CBF changes...

  2. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    Science.gov (United States)

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Screening antiallergic components from Carthamus tinctorius using rat basophilic leukemia 2H3 cell membrane chromatography combined with high-performance liquid chromatography and tandem mass spectrometry.

    Science.gov (United States)

    Han, Shengli; Huang, Jing; Cui, Ronghua; Zhang, Tao

    2015-02-01

    Carthamus tinctorius, used in traditional Chinese medicine, has many pharmacological effects, such as anticoagulant effects, antioxidant effects, antiaging effects, regulation of gene expression, and antitumor effects. However, there is no report on the antiallergic effects of the components in C. tinctorius. In the present study, we investigated the antiallergic components of C. tinctorius and its mechanism of action. A rat basophilic leukemia 2H3/cell membrane chromatography coupled online with high-performance liquid chromatography and tandem mass spectrometry method was developed to screen antiallergic components from C. tinctorius. The screening results showed that Hydroxysafflor yellow A, from C. tinctorius, was the targeted component that retained on the rat basophilic leukemia 2H3/cell membrane chromatography column. We measured the amount of β-hexosaminidase and histamine released in mast cells and the key markers of degranulation. The release assays showed that Hydroxysafflor yellow A could attenuate the immunoglobulin E induced release of allergic cytokines without affecting cell viability from 1.0 to 50.0 μM. In conclusion, the established rat basophilic leukemia 2H3 cell membrane chromatography coupled with online high-performance liquid chromatography and tandem mass spectrometry method successfully screened and identified Hydroxysafflor yellow A from C. tinctorius as a potential antiallergic component. Pharmacological analysis elucidated that Hydroxysafflor yellow A is an effective natural component for inhibiting immunoglobulin E-antigen-mediated degranulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In vivo and in vitro effect of imipramine and fluoxetine on Na+,K+-ATPase activity in synaptic plasma membranes from the cerebral cortex of rats

    Directory of Open Access Journals (Sweden)

    L.M. Zanatta

    2001-10-01

    Full Text Available The effects of in vivo chronic treatment and in vitro addition of imipramine, a tricyclic antidepressant, or fluoxetine, a selective serotonin reuptake inhibitor, on the cortical membrane-bound Na+,K+-ATPase activity were studied. Adult Wistar rats received daily intraperitoneal injections of 10 mg/kg of imipramine or fluoxetine for 14 days. Twelve hours after the last injection rats were decapitated and synaptic plasma membranes (SPM from cerebral cortex were prepared to determine Na+,K+-ATPase activity. There was a significant decrease (10% in enzyme activity after imipramine but fluoxetine treatment caused a significant increase (27% in Na+,K+-ATPase activity compared to control (P<0.05, ANOVA; N = 7 for each group. When assayed in vitro, the addition of both drugs to SPM of naive rats caused a dose-dependent decrease in enzyme activity, with the maximal inhibition (60-80% occurring at 0.5 mM. We suggest that a imipramine might decrease Na+,K+-ATPase activity by altering membrane fluidity, as previously proposed, and b stimulation of this enzyme might contribute to the therapeutic efficacy of fluoxetine, since brain Na+,K+-ATPase activity is decreased in bipolar patients.

  5. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions

    Directory of Open Access Journals (Sweden)

    Lin Yong

    2009-11-01

    Full Text Available Abstract Background Dorsal root ganglion (DRG neurons are primary sensory neurons that conduct neuronal impulses related to pain, touch and temperature senses. Plasma membrane (PM of DRG cells plays important roles in their functions. PM proteins are main performers of the functions. However, mainly due to the very low amount of DRG that leads to the difficulties in PM sample collection, few proteomic analyses on the PM have been reported and it is a subject that demands further investigation. Results By using aqueous polymer two-phase partition in combination with high salt and high pH washing, PMs were efficiently enriched, demonstrated by western blot analysis. A total of 954 non-redundant proteins were identified from the plasma membrane-enriched preparation with CapLC-MS/MS analysis subsequent to protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE or shotgun digestion. 205 (21.5% of the identified proteins were unambiguously assigned as PM proteins, including a large number of signal proteins, receptors, ion channel and transporters. Conclusion The aqueous polymer two-phase partition is a simple, rapid and relatively inexpensive method. It is well suitable for the purification of PMs from small amount of tissues. Therefore, it is reasonable for the DRG PM to be enriched by using aqueous two-phase partition as a preferred method. Proteomic analysis showed that DRG PM was rich in proteins involved in the fundamental biological processes including material exchange, energy transformation and information transmission, etc. These data would help to our further understanding of the fundamental DRG functions.

  6. Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioral disturbances and cerebellar degeneration.

    Science.gov (United States)

    Omotoso, Gabriel Olaiya; Gbadamosi, Ismail Temitayo; Olajide, Olayemi Joseph; Dada-Habeeb, Shakirat Opeyemi; Arogundade, Tolulope Timothy; Yawson, Emmanuel Olusola

    2018-03-01

    Nicotine is a neuro-stimulant that has been implicated in the pathophysiology of many brain diseases. The need to prevent or alleviate the resulting dysfunction is therefore paramount, which has also given way to the use of medicinal plants in the management of brain conditions. This study was designed to determine the histomorphological and neurobehavioural changes in the cerebellum of Wistar rats following nicotine insult and how such injuries respond to Moringa intervention. Twenty-four adult male Wistar rats were divided into 4 groups. Group A and B were orally treated with normal saline and Moringa oleifera respectively for twenty-eight days; Group C was treated with nicotine while group D was treated orally with Moringa oleifera and intraperitoneally with nicotine for twenty-eight days. Animals were subjected to the open field test on the last day of treatment. 24 h after last day treatment, the animals were anesthetized and perfusion fixation was carried out. The cerebellum was excised and post-fixed in 4% paraformaldehyde and thereafter put through routine histological procedures. Results revealed cytoarchitectural distortion and extreme chromatolysis in neuronal cells of the cerebellar cortical layers in the nicotine-treated group. The Purkinje cells of the cerebellum of animals in this group were degenerated. There were also reduced locomotor activities in the group. Moringa was able to prevent the chromatolysis, distortion of the cerebellar cortical cells and neurobehavioural deficit. Our result suggests that Moringa oleifera could prevent nicotine-induced cerebellar injury in Wistar rats, with the possibility of ameliorating the clinical features presented in associated cerebellar pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. ( sup 3 H)opipramol labels a novel binding site and sigma receptors in rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, C.D.; Hirsch, D.J.; Brooks, B.P.; Snowman, A.M.; Snyder, S.H. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1991-02-01

    Opipramol (OP), a clinically effective antidepressant with a tricyclic structure, is inactive as an inhibitor of biogenic amine uptake. ({sup 3}H)Opipramol binds saturably to rat brain membranes (apparent KD = 4 nM, Bmax = 3 pmol/mg of protein). ({sup 3}H)Opipramol binding can be differentiated into haloperidol-sensitive and -resistant components, with Ki values for haloperidol of 1 nM (Bmax = 1 pmol/mg of protein) and 350 nM (Bmax = 1.9 pmol/mg of protein), respectively. The drug specificity of the haloperidol-sensitive component is the same as that of sigma receptors labeled with (+)-({sup 3}H)3-(3-hydroxyphenyl)-N-(1-propyl)piperdine. The haloperidol-resistant component does not correspond to any known neurotransmitter receptor or uptake recognition site. It displays high affinity for phenothiazines and related structures such as perphenazine, clopenthixol, and flupenthixol, whose potencies are comparable to that of opipramol. Because certain of these drugs are more potent at the haloperidol-resistant opipramol site than in exerting any other action, it is possible that this opipramol-selective site may mediate their therapeutic effects.

  8. Membrane topology of rat sodium-coupled neutral amino acid transporter 2 (SNAT2).

    Science.gov (United States)

    Ge, Yudan; Gu, Yanting; Wang, Jiahong; Zhang, Zhou

    2018-07-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) is a subtype of the amino acid transport system A that is widely expressed in mammalian tissues. It plays critical roles in glutamic acid-glutamine circulation, liver gluconeogenesis and other biological pathway. However, the topology of the SNAT2 amino acid transporter is unknown. Here we identified the topological structure of SNAT2 using bioinformatics analysis, Methoxy-polyethylene glycol maleimide (mPEG-Mal) chemical modification, protease cleavage assays, immunofluorescence and examination of glycosylation. Our results show that SNAT2 contains 11 transmembrane domains (TMDs) with an intracellular N terminus and an extracellular C terminus. Three N-glycosylation sites were verified at the largest extracellular loop. This model is consistent with the previous model of SNAT2 with the exception of a difference in number of glycosylation sites. This is the first time to confirm the SNAT2 membrane topology using experimental methods. Our study on SNAT2 topology provides valuable structural information of one of the solute carrier family 38 (SLC38) members. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Radiation-induced cerebellar chondrosarcoma. Case report

    International Nuclear Information System (INIS)

    Bernstein, M.; Perrin, R.G.; Platts, M.E.; Simpson, W.J.

    1984-01-01

    The authors report a case of chondrosarcoma arising in the cerebellum 16 years after treatment of a cerebellar malignant astrocytoma by subtotal resection and irradiation. It is thought that the chondrosarcoma arising within the intracranial cavity was a probable consequence of previous ionizing radiation

  10. Inverse Stochastic Resonance in Cerebellar Purkinje Cells.

    Directory of Open Access Journals (Sweden)

    Anatoly Buchin

    2016-08-01

    Full Text Available Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR. While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing.

  11. Cerebellar Plasticity in Health and Disease

    NARCIS (Netherlands)

    M.P.H. Coesmans (Michiel)

    2004-01-01

    textabstractThe cerebellum helps fine-tuning movements by evaluating disparities between intention and action, in order to adjust the execution of movements ‘online’, and to keep movements calibrated in the long term. The cerebellar capacity to store information, which provides the ‘memory’ needed

  12. Cerebellar malformations alter regional cerebral development.

    Science.gov (United States)

    Bolduc, Marie-Eve; Du Plessis, Adre J; Evans, Alan; Guizard, Nicolas; Zhang, Xun; Robertson, Richard L; Limperopoulos, Catherine

    2011-12-01

    The aim of this study was to compare total and regional cerebral volumes in children with isolated cerebellar malformations (CBMs) with those in typically developing children, and to examine the extent to which cerebellar volumetric reductions are associated with total and regional cerebral volumes. This is a case-control study of children diagnosed with isolated CBMs. Each child was matched on age and sex to two typically developing children. Using advanced three-dimensional volumetric magnetic resonance imaging, the cerebrum was segmented into tissue classes and partitioned into eight regions. Analysis of variance was used to compare cerebral volumes between children with CBMs and control children, and linear regressions to examine the impact of cerebellar volume reduction on cerebral volumes. Magnetic resonance imaging was performed at a mean age of 27 months in 20 children (10 males, 10 females) with CBMs and 40 typically developing children. Children with CBMs showed significantly smaller deep grey matter nuclei (p developing children. Greater cerebellar volumetric reduction in children with CBMs was associated with decreased total cerebral volume and deep grey matter nuclei (p = 0.02), subgenual white/grey matter (p = 0.001), midtemporal white (p = 0.02) and grey matter (p = 0.01), and parieto-occipital grey matter (p = 0.004). CBMs are associated with impaired regional cerebral growth, suggesting deactivation of principal cerebello-cerebral pathways. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  13. Improving cerebellar segmentation with statistical fusion

    Science.gov (United States)

    Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.

    2016-03-01

    The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.

  14. Ultrasonically detectable cerebellar haemorrhage in preterm infants.

    LENUS (Irish Health Repository)

    McCarthy, Lisa Kenyon

    2011-07-01

    To determine the frequency and pattern of cerebellar haemorrhage (CBH) on routine cranial ultrasound (cUS) imaging in infants of ≤32 weeks gestation, and to investigate how extremely preterm infants with CBH differ from those with severe intraventricular haemorrhage (IVH).

  15. Cerebellar Hypoplasia and Dysmorphia in Neurofibromatosis Type 1.

    Science.gov (United States)

    Toelle, Sandra P; Poretti, Andrea; Weber, Peter; Seute, Tatjana; Bromberg, Jacoline E C; Scheer, Ianina; Boltshauser, Eugen

    2015-12-01

    Unidentified bright objects (UBO) and tumors are well-known cerebellar abnormalities in neurofibromatosis type 1 (NF1). Literature reports on malformative cerebellar anomalies in neurofibromatosis type 1 (NF1), however, are scant. We retrospectively studied the clinical and neuroimaging findings of 5 patients with NF1 (4 females, age 6 to 29 years at last follow-up) and cerebellar anomalies. Cerebellar symptoms on neurological examination were mild or even not evident whereas learning disabilities were more or less pronounced in four patients. Two patients had cerebellar hypoplasia (diffusely enlarged cerebellar interfoliar spaces) and three cerebellar dysmorphias involving mainly one cerebellar hemisphere. In NF1, malformative cerebellar anomalies are rare (estimated prevalence of about 1%), but most likely underestimated and easily overlooked, because physicians tend to focus on more prevalent, obvious, and well-known findings such as optic pathway gliomas, other tumors, and UBO. This kind of cerebellar anomaly in NF1 has most likely a malformative origin, but the exact pathogenesis is unknown. The individual clinical significance is difficult to determine. We suggest that cerebellar anomalies should be systematically evaluated in neuroimaging studies of NF1 patients.

  16. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256

    Science.gov (United States)

    Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew

    2016-01-01

    The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement—specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1–3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways. PMID:26863616

  17. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.

    Directory of Open Access Journals (Sweden)

    Jolanta Sroka

    Full Text Available The endogenous electric field (EF may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC and lamellipodia forming (LC WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm. The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes than LC cells (30 minutes. We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.

  18. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256.

    Science.gov (United States)

    Sroka, Jolanta; Krecioch, Izabela; Zimolag, Eliza; Lasota, Slawomir; Rak, Monika; Kedracka-Krok, Sylwia; Borowicz, Pawel; Gajek, Marta; Madeja, Zbigniew

    2016-01-01

    The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.

  19. Clinicopathological features of cerebellar lipidized medulloblastoma: a case report and review of literatures

    Directory of Open Access Journals (Sweden)

    LIU Li-yan

    2012-06-01

    Full Text Available Objective To explore the clinicopathological features of cerebellar lipidized medulloblastoma. Methods The clinical manifestations, neuroimaging, histopathological and immunohistochemical features were analysed in one case of lipidized medulloblastoma in the cerebellar vermis. Related literatures were reviewed. Results A 26-year-old man presented with intermittent headache,accompanied by dizziness, nausea and vomiting. The magnetic resonance imaging (MRI demonstrated a mass located the cerebellar vermis convex to the fourth ventricle. The tumor with well-demarcated boundary was homogeneous hypointense on T1 weighted and heterogeneous hyperintense on T2 weighted images, and enhanced brilliantly and homogenously on contrast. The patient subsequently underwent gross total mass resection. Microscopically,there was diffuse infiltration by high cellularity of tumor cells. The cytoplasm were thin eosinophilic to amphophilic. The neoplastic cells showed round to oval hyperchromatic nuclei with a delicately stippled chromatin and occasional conspicuous nucleoli and numerous mitotic figures were also present. Thin-wall vascular proliferation was detected. Lipid-laden cells were focally distributed in tumor tissue. On immunohistochemical examination, the neoplasm was reactive for CD56 and synaptophysin (Syn, focally positive for neurofilament protein (NF, weakly positive for oligodendrocyte lineage transcription factor 2 (Olig-2, and negtive for nestin, neuronal nuclei (NeuN, S-100 protein (S-100, glial fibrillary acidic protein (GFAP and epithelial membrane antigen (EMA. TP53 protein was over expressed in 10% of tumor cells. Ki-67 antigen labeling index were about 40% . Conclusion Cerebellar lipidized medulloblastoma is rare. Neuroimaging showed space occupying lesion in cerebellar vermis. Histologically, the tumor cells were consisted of monotonous, round cells with focal accumulations of lipidized cells. The differential diagnosis include

  20. Magnetic resonance imaging of cerebellar Schistosomiasis mansoni

    International Nuclear Information System (INIS)

    Braga, Bruno Perocco; Costa Junior, Leodante Batista da; Lambertucci, Jose Roberto

    2003-01-01

    A 15-year-old boy was admitted to hospital with a history of headache, dizziness, vomiting and double vision that started two weeks before. His parents denied any previous disease. During clinical examination he presented diplopia on lateral gaze to the left and horizontal nystagmus. No major neurological dysfunction was detected. He was well built, mentally responsive and perceptive. Laboratory findings revealed a leukocyte count of 10,000/mL, a normal red blood cell count and no eosinophilia. The magnetic resonance images (MRI) of the brain showed a left cerebellar lesion with mass effect compressing the surrounding tissues. Contrast-enhanced images showed a mass like structure and punctate nodules (Figures A and B: axial and coronal contrast-enhanced T1-weighted MR images showed the nodular - yellow arrows - enhancement pattern of a left cerebellar intraxial lesion). The lesion extended to the vermis and brachium pons and compressed the medulla. There was no hydrocephalus. He was taken to the operating room with the presumptive diagnosis of a neuroglial tumor, and submitted to a lateral suboccipital craniectomy. A brown, brittle tumoral mass without a clearly defined margin with the cerebellar tissue was removed. Microscopic examination revealed schistosomal granulomas in the productive phase in the cerebellum (Figure C). After surgery, treatment with praziquantel (50 mg/kg/dia, single dose) and prednisone (1 mg/kg/day) was offered and the patient improved quickly. Thirty days later he was seen again at the outpatient clinic: he was asymptomatic and with no neurological impairment. This is the eighth case of cerebellar involvement in schistosomiasis mansoni and the second report of a tumoral form of cerebellar schistosomiasis documented by magnetic resonance images. (author)

  1. Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na+, K+ ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats.

    Science.gov (United States)

    Coste, T; Pierlovisi, M; Leonardi, J; Dufayet, D; Gerbi, A; Lafont, H; Vague, P; Raccah, D

    1999-07-01

    Metabolic and vascular abnormalities are implicated in the pathogenesis of diabetic neuropathy. Two principal metabolic defects are altered lipid metabolism resulting from the impairment of delta-6-desaturase, which converts linoleic acid (LA) into gamma linolenic acid (GLA), and reduced nerve Na+, K+ ATPase activity. This reduction may be caused by a lack of incorporation of (n-6) fatty acids in membrane phospholipids. Because this ubiquitous enzyme maintains the membrane electrical potential and allows repolarization, disturbances in its activity can alter the process of nerve conduction velocity (NCV). We studied the effects of supplementation with GLA (260 mg per day) on NCV, fatty acid phospholipid composition, and Na+, K+ ATPase activity in streptozotocin-diabetic rats. Six groups of 10 rats were studied. Two groups served as controls supplemented with GLA or sunflower oil (GLA free). Two groups with different durations of diabetes were studied: 6 weeks with no supplementation and 12 weeks supplemented with sunflower oil. To test the ability of GLA to prevent or reverse the effects of diabetes, two groups of diabetic rats were supplemented with GLA, one group for 12 weeks and one group for 6 weeks, starting 6 weeks after diabetes induction. Diabetes resulted in a 25% decrease in NCV (P < 0.0001), a 45% decrease in Na+, K+ ATPase activity (P < 0.0001), and an abnormal phospholipid fatty acid composition. GLA restored NCV both in the prevention and reversal studies and partially restored Na+, K+ ATPase activity in the preventive treatment group (P < 0.0001). These effects were accompanied by a modification of phospholipid fatty acid composition in nerve membranes. Overall, the results suggest that membrane fatty acid composition plays a direct role in NCV and confirm the beneficial effect of GLA supplementation in diabetic neuropathy.

  2. Basal membrane complex architecture is disrupted during posterior subcapsular cataract formation in Royal College of Surgeons rats

    Science.gov (United States)

    Joy, Anita

    2014-01-01

    Purpose Previous studies detailing the development of posterior subcapsular cataracts (PSC) in Royal College of Surgeons (RCS) rats have shown that aberrant fiber-end migration underlies the structural compromise. This investigation was conducted to examine the distribution of select basal membrane complex (BMC) components and to assess the intravitreal levels of specific cytokines during PSC formation. Methods Lenses from 52 RCS dystrophic rats (RCS/Lav) and 28 genetically matched control animals (RCS-rdy+/Lav) from 2 to 8 weeks old were used. After enucleation, vitreous was collected for eventual cytokine level analyses; lenses were then removed and processed for immunocytochemical localization of actin, cadherin, β integrin, vinculin, and cell nuclei. Results At 2–3 weeks postnatal, dystrophic lenses showed normal BMC distribution of actin, cadherin, and vinculin; however β integrin distribution was altered as compared to controls. By 4–6 weeks of age, F-actin was visible as bright foci arranged in a “rosette” pattern around fiber-end profiles. Concurrently, vinculin was rearranged into a diffuse pattern within the BMC. Cadherin delineated the fiber ends in dystrophic lenses until 5 weeks postnatal, after which it displayed diffuse cytoplasmic staining with more definitive labeling at the BMC periphery. β integrin was initially distributed as punctuate spots at 2–3 weeks postnatal; however, by 4–6 weeks it was co-localized with F-actin around the periphery of fiber ends. The distribution of F-actin, cadherin, and β integrin components did not undergo further changes after 6 weeks of age; however, vinculin was present predominantly at the periphery of the BMC in 7–8-week-old dystrophic lenses. Intravitreal cytokine levels were assessed for interleukin (IL)-1α, IL-4, IL-6, IL-8, tumor necrosis factor (TNF), and interferon (IFN)-γ. Levels of IL-1α, IL-4, TNF, and IFN-γ demonstrated a similar pattern, with concentrations increasing from 2 to 6

  3. 5'-nucleotidase and protein kinase activity of plasmatic membrane and 5'-nucleotidase activity of liver homogenate in the third and fourth rat generations born in the Chernobyl accident zone

    International Nuclear Information System (INIS)

    Bezdrobnij, Yu.V.; Serkyiz, Ya.Yi.; Bozhok, O.V.; Yindik, V.M.

    1994-01-01

    The decrease of plasmatic membrane protein kinase activity of 3 - month rat liver was revealed in animals that have been born and kept in the Chernobyl accident zone during three and four generations. Erythrocyte ghost protein kinase activity from those animals was decreased too. 5'-nucleotidase activity in membranes and in homogenates was increased in the third and decreased in the fourth generation. In 6 month rats of the fourth generation in comparison with 3 month rats of this generation plasmatic membrane protein kinase and 5'-nucleotidase activities did not change but 5'nucleotidase activity of homogenate was increased (to control level). The plasmatic membrane protein kinase activity has been supposed to serve as a bio indicator of ionising irradiation at low dose rate

  4. The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

    Science.gov (United States)

    Forrest, Michael D.; Wall, Mark J.; Press, Daniel A.; Feng, Jianfeng

    2012-01-01

    In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na+/K+ pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ pump. The model can replicate these recordings. We propose that Na+/K+ pump activity controls the intrinsic firing mode of cerbellar Purkinje cells. PMID:23284664

  5. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex

    International Nuclear Information System (INIS)

    Wilkin, G.P.; Csillag, A.; Balazs, R.; Kingsbury, A.E.; Wilson, J.E.; Johnson, A.L.

    1981-01-01

    A study was made of [ 3 H ]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [ 3 H]glycine at the low concentration used. Glial cells also took up [ 3 H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [ 3 H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [ 3 H]GABA uptake (Ksub(i) over 600 μM vs the Ksub(t) of about 20 μM) and that GABA is an even weaker inhibitor of [ 3 H]glycine uptake. (Auth.)

  6. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    Science.gov (United States)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  7. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation

    International Nuclear Information System (INIS)

    Bartles, J.R.; Feracci, H.M.; Stieger, B.; Hubbard, A.L.

    1987-01-01

    We have used pulse-chase metabolic radiolabeling with L-[ 35 S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates

  8. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  9. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  10. Further characterization of cadmium uptake by rat liver sinusoidal plasma membrane vesicles as a carrier mediated process

    International Nuclear Information System (INIS)

    Eastman, H.B.; Frazier, J.M.

    1990-01-01

    Previously we have reported that cadmium (Cd) transport by rat hepatic sinusoidal plasma membrane vesicles (SPMV's) occurs by both carrier mediated process and simple diffusion. This study was undertaken in order to further characterize the carrier mediated component of Cd transport as a carrier mediated process. Efflux of Cd from SPMV's was measured by first loading the vesicles with 1 μM Cd, containing 109 Cd (Amersham, 0.25 mCi/ml, carrier free) as a tracer, and then diluting the vesicles 1 to 5 into efflux buffer containing 0.25 M sucrose, 150 mM NaCl and 50 mM Tris/HCl (pH 7.4). Under standard conditions, no efflux of Cd from the vesicles was observed. However, the presence of 4mM CdCl 2 or 4.0% BSA in the efflux buffer was able to release 109 Cd from the vesicles. When the vesicles were lysed with 0.1% Triton X-100, approximately 75% of the internalized Cd could be released from the vesicles. Efflux of Cd from the vesicles was also determined to be a temperature dependent process. At 0 C the efflux of Cd from the vesicles, in the presence of a 4 mM CdCl 2 or 4.0% BSA chase, was blocked. The specificity of the carrier mediated component of Cd transport for Cd was investigated by determining whether other metals could compete for Cd uptake. Zinc was a competitive inhibitor of the carrier mediated component of Cd uptake while calcium had no effect on Cd uptake. Using this system, we have demonstrated that one component of Cd transport exhibits the basic characteristics of a carrier mediated process: saturation, reversibility, specificity and temperature dependence

  11. Back to front: cerebellar connections and interactions with the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2014-02-01

    Full Text Available Although recent neuroanatomical evidence has demonstrated closed-loop connectivity between prefrontal cortex and the cerebellum, the physiology of cerebello-cerebral circuits and the extent to which cerebellar output modulates neuronal activity in neocortex during behavior remain relatively unexplored. We show that electrical stimulation of the contralateral cerebellar fastigial nucleus (FN in awake, behaving rats evokes distinct local field potential (LFP responses (onset latency ~13 ms in the prelimbic (PrL subdivision of the medial prefrontal cortex. Trains of FN stimulation evoke heterogeneous patterns of response in putative pyramidal cells in frontal and prefrontal regions in both urethane-anaesthetized and awake, behaving rats. However, the majority of cells showed decreased firing rates during stimulation and subsequent rebound increases; more than 90% of cells showed significant changes in response. Simultaneous recording of on-going LFP activity from FN and PrL while rats were at rest or actively exploring an open field arena revealed significant network coherence restricted to the theta frequency range (5-10 Hz. Granger causality analysis indicated that this coherence was significantly directed from cerebellum to PrL during active locomotion. Our results demonstrate the presence of a cerebello-prefrontal pathway in rat and reveal behaviorally dependent coordinated network activity between the two structures, which could facilitate transfer of sensorimotor information into ongoing neocortical processing during goal directed behaviors.

  12. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae), Stigma maydis

    Science.gov (United States)

    Sabiu, S.; O'Neill, F. H.

    2016-01-01

    This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction's ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms. PMID:27579048

  13. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae, Stigma maydis

    Directory of Open Access Journals (Sweden)

    S. Sabiu

    2016-01-01

    Full Text Available This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction’s ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms.

  14. Plasticity of Cerebellar Purkinje Cells in Behavioral Training of Body Balance Control

    Directory of Open Access Journals (Sweden)

    Ray X. Lee

    2015-08-01

    Full Text Available Neural responses to sensory inputs caused by self-generated movements (reafference and external passive stimulation (exafference differ in various brain regions. The ability to differentiate such sensory information can lead to movement execution with better accuracy. However, how sensory responses are adjusted in regard to this distinguishability during motor learning is still poorly understood. The cerebellum has been hypothesized to analyze the functional significance of sensory information during motor learning, and is thought to be a key region of reafference computation in the vestibular system. In this study, we investigated Purkinje cell (PC spike trains as cerebellar cortical output when rats learned to balance on a suspended dowel. Rats progressively reduced the amplitude of body swing and made fewer foot slips during a 5-min balancing task. Both PC simple (SSs; 17 of 26 and complex spikes (CSs; 7 of 12 were found to code initially on the angle of the heads with respect to a fixed reference. Using periods with comparable degrees of movement, we found that such SS coding of information in most PCs (10 of 17 decreased rapidly during balance learning. In response to unexpected perturbations and under anesthesia, SS coding capability of these PCs recovered. By plotting SS and CS firing frequencies over 15-s time windows in double-logarithmic plots, a negative correlation between SS and CS was found in awake, but not anesthetized, rats. PCs with prominent SS coding attenuation during motor learning showed weaker SS-CS correlation. Hence, we demonstrate that neural plasticity for filtering out sensory reafference from active motion occurs in the cerebellar cortex in rats during balance learning. SS-CS interaction may contribute to this rapid plasticity as a form of receptive field plasticity in the cerebellar cortex between two receptive maps of sensory inputs from the external world and of efference copies from the will center for

  15. Impairment of DNA synthesis in Gunn rat cerebellum.

    Science.gov (United States)

    Yamada, N; Sawasaki, Y; Nakajima, H

    1977-05-06

    Brain DNA synthesis was developmentally investigated in Gunn rat with marked cerebellar hypoplasia due to hereditary hyperbilirubinemia. In this mutant rat, the Purkinje cell was nearly selectively affected in the cerebellar cortex by bilirubin. The impaired DNA synthesis was observed in homozygous (jj) Gunn rat cerebellum, in which the DNA content and [3H]thymidine incorporation rate into DNA decreased after 10 days of age compared to those in the heterozygous (Jj)littermate. In contrast, these impairments were not found in the non-cerebellar parts of the brain and liver of jj Gunn rat. The activity of cerebellar thymidine kinase in jj Gunn rat decreased from a very early stae, being 80% of Jj rat at 6 days, and 50% at 10 days of age. The enzyme activity was not affected in the non-cerebellar parts of the brain. Although bilirubin competitively inhibited cerebellar thymidine kinase activity in vitro (15% at 10(-5) M), such bilirubin level was found to be about 1000-fold that in vivo. Moreover, photo-degradation of bilirubin in jj cerebellum exhibited no improvement in thymidine kinase activity, and the presence of an enzyme inactivator was not suggested in jj cerebellum. These results seem to indicate that the induction of thymidine kinase might be affected in jj Gunn rat cerebellum. The possibility that the impaired DNA synthesis in the external granular cells in jj cerebellum may be due to Purkinje cell damage is discussed.

  16. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction

    Science.gov (United States)

    Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  17. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.

    Science.gov (United States)

    Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L

    2016-02-27

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  18. Isolated rhomboencephalosynapsis – a rare cerebellar anomaly

    International Nuclear Information System (INIS)

    Paprocka, Justyna; Jamroz, Ewa; Ścieszka, Ewa; Kluczewska, Ewa

    2012-01-01

    Rhomboencephalosynapsis (RES, RS) is a unique entity usually recognized in infancy based on neuroimaging. Cerebellar fusion and absence of cerebellar vermis is often associated with supratentorial findings. Since now there are about 50 cases described worldwide, with approximately 36 patients diagnosed by MRI. The authors present the first in Poland case of this uncommon malformation and review the literature. The authors describe a 28-month-old-girl with microcephaly and proper psychomotor development. The family history was unrelevant. Based on MRI the congenital malformation of posterior fossa-rhombencephalosynapsis was confirmed Presented patient is a typical example of MRI usefulness especially in patients with RES. RES symptoms are mild and that is why the diagnosis is usually made only in adulthood

  19. Cerebellar interaction with the acoustic reflex.

    Science.gov (United States)

    Jastreboff, P J

    1981-01-01

    The involvement of the cerebellar vermis in the acoustic reflex was analyzed in 12 cats, decerebrated or in pentobarbital anesthesia. Anatomical data suggested the existence of a connection of lobules VIII with the ventral cochlear nucleus. Single cell recording and evoked potential techniques demonstrated the existence of the acoustic projection to lobulus VIII. Electrical stimulation of this area changed the tension of the middle ear muscle and caused evoked potential responses in the caudal part of the ventral cochlear nucleus. Electrical stimulation of the motor nucleus of the facial nerve evoked a slow wave in the recording taken from the surrounding of the cochlear round window. A hypothesis is proposed which postulates the involvement of the acoustic reflex in space localization of acoustic stimuli and the action of cerebellar vermis in order to assure the stability and plasticity of the acoustic reflex arc.

  20. Cerebellar and cerebral atrophy in trichothiodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hye-Kyung; Sargent, Michael A.; Poskitt, Kenneth J. [British Columbia Children' s Hospital, Department of Radiology, Vancouver, BC (Canada); Prendiville, Julie S. [British Columbia Children' s Hospital, Division of Paediatric Dermatology, Department of Paediatrics, Vancouver, BC (Canada)

    2005-10-01

    Trichothiodystrophy is a rare neuroectodermal disorder of autosomal recessive inheritance that is characterized by brittle hair, nail dysplasia, ichthyosis, mental retardation, and gonadal failure. We describe a female patient whose cranial MRI revealed almost total lack of myelination in the supratentorial white matter, which is similar to the previously described cases. In addition, there was progressive cerebellar and cerebral atrophy, which has not been well documented in association with trichothiodystrophy. (orig.)

  1. [Physiological prion and activity of plasma membrane Na+,K(+)- and Ca(2+)-ATPase in the medulla oblongata cells of rats of different ages].

    Science.gov (United States)

    Kushkevych, M V; Vlizlo, V V; Martyn, Iu V

    2013-01-01

    Based on the results of immunohistochemical analysis of the rat medulla tissue the localization of physiological prion has been established. Specifically, in rats aged one month they are placed in the gray matter near the bodies of neurons and mikrohliocytes and in animals of six and thirty months--in olive kernel core and upward path bodies. Physiological prion is localized along the nerve processes and is absent in the neuron bodies. In the medulla oblongata of animals aged six months its amount is the highest compared to animals of other age. The activity of plasma membrane ATPases in this tissue decreases with age, the content of sodium and calcium ions increases, while that of potassium is almost unchanged.

  2. Physiological prion and activity of plasma membrane Na(+,K(+- and Ca(2+-ATPase in the medulla oblongata of rats of different ages

    Directory of Open Access Journals (Sweden)

    M. V. Kushkevych

    2013-04-01

    Full Text Available Based on the results of immunohistochemical analysis of the rat medulla tissue the localization of physiological prion has been established. Specifically, in rats aged one month they are placed in the gray matter near the bodies of neurons and mikrohliocytes and in animals of six and thirty months – in olive kernel core and upward path bodies. Physiological prion is localized along the nerve processes and is absent in the neuron bodies­. In the medulla oblongata of animals aged six months its amount is the highest compared to animals of other age. The activity of plasma membrane ATPases in this tissue decreases with age, the content of sodium and calcium ions increases, while that of potassium is almost unchanged.

  3. Computed tomography in hypertensive cerebellar hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Nose, T; Maki, Y; Ono, Y; Yoshizawa, T; Tsuboi, K [Tsukuba Univ., Sakura, Ibaraki (Japan)

    1981-11-01

    Fourteen cases of cerebellar hemorrhage were analysed from the point of CT-scan, and the following results were obtained. 1. The number of cases of cerebellar hemorrhage forms 4.4% of that of total intracranial hemorrhage. 2. Most of the cerebellar hematomas extend upward. Downward extension is rare. 3. In acute dead cases hematomas are 5 cm or more in diameter and lie over bilateral hemispheres with the extension to third or fourth ventricles in CT-scans. 4. Slowly progressive cases are detriorated by the secondary hydrocephalus. 5. In mild cases hematomas are 3cm or less in diameter on CT-scans and the hematoma evacuation is not indicated for these cases. 6. The shunt operation alone is sufficient for the life saving of the slowly progressive cases, but the hematoma evacuation is indicated in these cases if the functional prognosis is taken into consideration. 7. Immediate hematoma evacuation together with the ventricular drainage is considered to be effective for the life saving of the acute fulminant cases.

  4. Computed tomography in hypertensive cerebellar hemorrhage

    International Nuclear Information System (INIS)

    Nose, Tadao; Maki, Yutaka; Ono, Yukio; Yoshizawa, Takashi; Tsuboi, Kohji

    1981-01-01

    Fourteen cases of cerebellar hemorrhage were analysed from the point of CT-scan, and the following results were obtained. 1. The number of cases of cerebellar hemorrhage forms 4.4% of that of total intracranial hemorrhage. 2. Most of the cerebellar hematomas extend upward. Downward extension is rare. 3. In acute dead cases hematomas are 5 cm or more in diameter and lie over bilateral hemispheres with the extension to third or fourth ventricles in CT-scans. 4. Slowly progressive cases are detriorated by the secondary hydrocephalus. 5. In mild cases hematomas are 3cm or less in diameter on CT-scans and the mematoma evacuation is not indicated for these cases. 6. The shunt operation alone is sufficient for the life saving of the slowly progressive cases, but the hematoma evacuation is indicated in these cases if the functional prognosis is taken into consideration. 7. Immediate hematoma evacuation togather with the ventricular dranage is considered to be effective for the life saving of the acute fulminant cases. (author)

  5. The expression of the Slit-Robo signal in the retina of diabetic rats and the vitreous or fibrovascular retinal membranes of patients with proliferative diabetic retinopathy.

    Science.gov (United States)

    Zhou, Weiyan; Wang, Hongya; Yu, Wenzhen; Xie, Wankun; Zhao, Min; Huang, Lvzhen; Li, Xiaoxin

    2017-01-01

    The Slit-Robo signal has an important role in vasculogenesis and angiogenesis. Our study examined the expression of Slit2 and its receptor, Robo1, in a rat model of streptozotocin-induced diabetes and in patients with proliferative diabetic retinopathy. Diabetes was induced in male Sprague-Dawley rats via a single, intraperitoneal injection of streptozotocin. The rats were sacrificed 1, 3 or 6 months after the injection. The expression of Slit2 and Robo1 in retinal tissue was measured by real-time reverse transcription polymerase chain reaction (RT-PCR), and protein levels were measured by western blotting and immunohistochemistry. Recombinant N-Slit2 protein was used to study the effects of Slit2 on the expression of VEGF in vivo. The concentration of Slit2 protein in human eyes was measured by enzyme-linked immunosorbent assay in 27 eyes with proliferative diabetic retinopathy and 28 eyes in control group. The expression of Slit2, Robo1 and VEGF in the excised human fibrovascular membranes was examined by fluorescence immunostaining and semi-quantitative RT-PCR. The expression of Slit2 and Robo1 in the retina was altered after STZ injection. Recombinant N-Slit2 protein did not increase the retinal VEGF expression. Vitreous concentrations of Slit2 were significantly higher in the study group than in the control group. In the human fibrovascular membranes of the study group, the co-localization of VEGF with the markers for Slit2 and Robo1was observed. The expression of Slit2 mRNA, Robo1 mRNA, and VEGF mRNA was significantly higher in human fibrovascular proliferative diabetic retinopathy membranes than in the control membranes. The alteration of Slit2 and Robo1 expression in the retinas of diabetic rats and patients with proliferative diabetic retinopathy suggests a role for the Slit-Robo signal in the various stages diabetic retinopathy. Further studies should address the possible involvement of the Slit-Robo signal in the pathophysiological progress of diabetic

  6. Correction of enhanced Na(+)-H+ exchange of rat small intestinal brush-border membranes in streptozotocin-induced diabetes by insulin or 1,25-dihydroxycholecalciferol

    International Nuclear Information System (INIS)

    Dudeja, P.K.; Wali, R.K.; Klitzke, A.; Sitrin, M.D.; Brasitus, T.A.

    1991-01-01

    Diabetes was induced in rats by administration of a single i.p. injection of streptozotocin (50 mg/kg body wt). After 7 d, diabetic rats were further treated with insulin or 1,25-dihydroxycholecalciferol [1,25(OH)2D3] for an additional 5-7 d. Control, diabetic, diabetic + insulin, and diabetic + 1,25(OH)2D3 rats were then killed, their proximal small intestines were removed, and villus-tip epithelial cells were isolated and used to prepare brush-border membrane vesicles. Preparations from each of these groups were then analyzed and compared with respect to their amiloride-sensitive, electroneutral Na(+)-H+ exchange activity, using 22 Na uptake as well as acridine orange techniques. The results of these experiments demonstrated that (a) H+ gradient-dependent 22 Na uptake as well as Na+ gradient-dependent transmembrane H+ fluxes were significantly increased in diabetic vesicles compared to their control counterparts, (b) kinetic studies demonstrated that this enhanced 22 Na uptake in diabetes was a result of increased maximal velocity (Vmax) of this exchanger with no change in apparent affinity (Km) for Na+, (c) serum levels of 1,25(OH)2D3 were significantly lower in diabetic animals compared with their control counterparts; and (d) insulin or 1,25(OH)2D3 treatment restored the Vmax alterations to control values, without any significant changes in Km, concomitant with significantly increasing the serum levels of 1,25(OH)2D3 in diabetic animals. These results indicate that Na(+)-H+ activity is significantly increased in proximal small intestinal luminal membranes of streptozotocin-induced diabetic rats. Moreover, alterations in the serum levels of 1,25(OH)2D3 may, at least in part, explain this enhanced antiporter activity and its correction by insulin

  7. Proteomic screen for multiprotein complexes in synaptic plasma membrane from rat hippocampus by blue native gel electrophoresis and tandem mass spectrometry.

    Science.gov (United States)

    Li, Xuanwen; Xie, Chunliang; Jin, Qihui; Liu, Mingjun; He, Quanyuan; Cao, Rui; Lin, Yong; Li, Jianglin; Li, Yan; Chen, Ping; Liang, Songping

    2009-07-01

    Neuronal synapses are specialized sites for information exchange between neurons. Many diseases, such as addiction and mood disorders, likely result from altered expression of synaptic proteins, or altered formation of synaptic complexes involved in neurotransmission or neuroplasticity. A detailed description of native multiprotein complexes in synaptic plasma membranes (PM) is therefore essential for understanding biological mechanisms and disease processes. For the first time in this study, two-dimensional Blue Native/SDS-PAGE electrophoresis, combined with tandem mass spectrometry, was used to screen multiprotein complexes in synaptic plasma membranes from rat hippocampus. As a result, 514 unique proteins were identified, of which 36% were integral membrane proteins. In addition, 19 potentially novel and known heterooligomeric multiprotein complexes were found, such as the SNARE and ATPase complexes. A potentially novel protein complex, involving syntaxin, synapsin I and Na+/K+ ATPase alpha-1, was further confirmed by co-immunoprecipitation and immunofluorescence staining. As demonstrated here, Blue Native-PAGE is a powerful tool for the separation of hydrophobic membrane proteins. The combination of Blue Native-PAGE and mass spectrometry could systematically identify multiprotein complexes.

  8. Random/aligned electrospun PCL/PCL-collagen nanofibrous membranes: comparison of neural differentiation of rat AdMSCs and BMSCs

    International Nuclear Information System (INIS)

    Çapkın, Merve; Gümüşderelioğlu, Menemşe; Çakmak, Soner; Kurt, Feyzan Özdal; Şen, B Hakan; Türk, B Tuğba; Deliloğlu-Gürhan, S İsmet

    2012-01-01

    In this study, the aligned (A) and randomly oriented (R) polycaprolactone (PCL-A and PCL-R) and PCL/collagen (PCL/Col-A and PCL/Col-R) nanofibers were electrospun onto smooth PCL membranes (PCLMs) prepared by solvent casting. In order to investigate the effects of chemical composition and nanotopography of fibrous surfaces on proliferation and on neural differentiation of mesenchymal stem cells (MSCs), adipose and bone marrow-derived rat MSCs (AdMSCs and BMSCs) were cultivated in suitable media i.e. inducing medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), and cell maintenance medium (CMM). BMSCs adhered and proliferated on all nanofibrous membranes more efficiently than AdMSCs. PCL/Col-A was found as the most convenient surface supporting proliferation in both cell types. Immunofluorescence staining indicated that BMSCs and AdMSCs are prone for differentiation to oligodendrocytes more than they differentiate to other neuronal cell types. PCL-A nanofibrous membranes supported differentiation of MSCs to O4 + (an oligodendrocytes surface antigen) cells in both culture media. The intensity of immunoreactivity of O4 + cells differentiated from BMSCs on PCL-A was highest when compared with the other groups (p + cells. In conclusion, this study can be evaluated to establish the cell therapy strategies in neurodegenerative disorders, which are relevant to oligodendrocyte abstinence using BMSCs or AdMSCs on aligned nanofibrous membranes. (paper)

  9. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition.

    Science.gov (United States)

    Matsugi, Akiyoshi; Okada, Y

    The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.

  10. Cerebro-cerebellar circuits in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Anila M. D'Mello

    2015-11-01

    Full Text Available The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. In contrast, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.

  11. Cerebro-cerebellar circuits in autism spectrum disorder.

    Science.gov (United States)

    D'Mello, Anila M; Stoodley, Catherine J

    2015-01-01

    The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.

  12. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa, E-mail: nebojsa.andric@dbe.uns.ac.rs

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATP level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig

  13. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    International Nuclear Information System (INIS)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATP level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig

  14. Cerebro-Cerebellar Functional Connectivity is Associated with Cerebellar Excitation-Inhibition Balance in Autism Spectrum Disorder.

    Science.gov (United States)

    Hegarty, John P; Weber, Dylan J; Cirstea, Carmen M; Beversdorf, David Q

    2018-05-23

    Atypical functional connectivity (FC) and an imbalance of excitation-to-inhibition (E/I) have been previously reported in cerebro-cerebellar circuits in autism spectrum disorder (ASD). The current investigation used resting state fMRI and proton magnetic resonance spectroscopy ( 1 H-MRS) to examine the relationships between E/I (glutamate + glutamine/GABA) and FC of the dorsolateral prefrontal cortex and posterolateral cerebellar hemisphere from 14 adolescents/adults with ASD and 12 age/sex/IQ-matched controls. In this pilot sample, cerebro-cerebellar FC was positively associated with cerebellar E/I and listening comprehension abilities in individuals with ASD but not controls. Additionally, a subgroup of individuals with ASD and low FC (n = 5) exhibited reduced E/I and impaired listening comprehension. Thus, altered functional coherence of cerebro-cerebellar circuits in ASD may be related with a cerebellar E/I imbalance.

  15. Abnormalities of cerebellar foliation and fissuration: classification, neurogenetics and clinicoradiological correlations

    Energy Technology Data Exchange (ETDEWEB)

    Demaerel, P. [University Hospital, Department of Radiology, Herestraat 49, 3000 Leuven (Belgium)

    2002-08-01

    Several genes have been found to influence the different cells involved in the processes of foliation and fissuration in the mouse and rat cerebellum. In the light of these new concepts and on the basis of the imaging findings in 42 patients, a classification is proposed for abnormalities of foliation and fissuration. On the basis of recent genetic and experimental evidence on mechanisms which control the origin of the cerebellum, it is suggested that abnormalities of foliation and fissuration form a single group, with a spectrum of severity. Some patients have only abnormal fissuration of the anterior lobe (type 1a) and others additional dysplasia of the anterior and part of the posterior lobe (type 1b). Extension of abnormalities into the hemispheres is often seen in the latter group. A second group has vermian and hemisphere abnormalities (type 2). In addition to the malformation of the anterior lobe of the vermis, three different hemispheric lesions can be seen in this group: cortical dysgenesis, hypertrophy of the cerebellar cortex, and malorientation of the folia. The mild abnormalities (type 1a) can be considered an incidental observation without clinical relevance. The moderate and severe cerebellar anomalies (type 1b and 2) are always associated with cerebellar symptoms and/or signs. (orig.)

  16. Abnormalities of cerebellar foliation and fissuration: classification, neurogenetics and clinicoradiological correlations

    International Nuclear Information System (INIS)

    Demaerel, P.

    2002-01-01

    Several genes have been found to influence the different cells involved in the processes of foliation and fissuration in the mouse and rat cerebellum. In the light of these new concepts and on the basis of the imaging findings in 42 patients, a classification is proposed for abnormalities of foliation and fissuration. On the basis of recent genetic and experimental evidence on mechanisms which control the origin of the cerebellum, it is suggested that abnormalities of foliation and fissuration form a single group, with a spectrum of severity. Some patients have only abnormal fissuration of the anterior lobe (type 1a) and others additional dysplasia of the anterior and part of the posterior lobe (type 1b). Extension of abnormalities into the hemispheres is often seen in the latter group. A second group has vermian and hemisphere abnormalities (type 2). In addition to the malformation of the anterior lobe of the vermis, three different hemispheric lesions can be seen in this group: cortical dysgenesis, hypertrophy of the cerebellar cortex, and malorientation of the folia. The mild abnormalities (type 1a) can be considered an incidental observation without clinical relevance. The moderate and severe cerebellar anomalies (type 1b and 2) are always associated with cerebellar symptoms and/or signs. (orig.)

  17. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.

    Science.gov (United States)

    Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L

    2017-01-01

    Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition

  18. Oral administration of thymoquinone mitigates the effect of cisplatin on brush border membrane enzymes, energy metabolism and antioxidant system in rat intestine.

    Science.gov (United States)

    Shahid, Faaiza; Farooqui, Zeba; Abidi, Subuhi; Parwez, Iqbal; Khan, Farah

    2017-10-01

    Cisplatin (CP) is a widely used chemotherapeutic agent that elicits severe gastrointestinal toxicity. Nigella sativa, a member of family Ranunculaceae, is one of the most revered medicinal plant known for its numerous health benefits. Thymoquinone (TQ), a major bioactive component derived from the volatile oil of Nigella sativa seeds, has been shown to improve gastrointestinal functions in animal models of acute gastric/intestinal injury. In view of this, the aim of the present study was to investigate the protective effect of TQ on CP induced toxicity in rat intestine and to elucidate the mechanism underlying these effects. Rats were divided into four groups viz. control, CP, TQ and CP+TQ. Animals in CP+TQ and TQ groups were orally administered TQ (1.5mg/kg bwt) with and without a single intraperitoneal dose of CP (6mg/kg bwt) respectively. The effect of TQ was determined on CP induced alterations in the activities of brush border membrane (BBM), carbohydrate metabolism, and antioxidant defense enzymes in rat intestine. TQ administration significantly mitigated CP induced decline in the specific activities of BBM marker enzymes, both in the mucosal homogenates and in the BBM vesicles (BBMV) prepared from intestinal mucosa. Furthermore, TQ administration restored the redox and metabolic status of intestinal mucosal tissue in CP treated rats. The biochemical results were supported by histopathological findings that showed extensive damage to intestine in CP treated rats and markedly preserved intestinal histoarchitecture in CP and TQ co-treated group. The biochemical and histological data suggest a protective effect of TQ against CP-induced gastrointestinal damage. Thus, TQ may have a potential for clinical application to counteract the accompanying gastrointestinal toxicity in CP chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Metabolism of phosphatidylinositol in plasma membranes and synaptosomes of rat cerebral cortex: A comparison between endogenous vs exogenous substrate pools

    International Nuclear Information System (INIS)

    Navidi, M.; MacQuarrie, R.A.; Sun, G.Y.

    1990-01-01

    The metabolism of phosphatidylinositols (PI) labeled with [14C]arachidonic acid within plasma membranes or synaptosomes was compared to the metabolism of PI prelabeled with [14C]arachidonic acid and added exogenously to the same membranes. Incubation of membranes containing the endogenously-labeled PI pool in the presence of Ca2+ resulted in the release of labeled arachidonic acid, as well as a small amount of labeled diacylglycerol. Labeled arachidonic acid was effectively reutilized and returned to the membrane phospholipids in the presence of adenosine triphosphate (ATP), CoA, and lysoPI. Although Ca2+ promoted the release of labeled diacylglycerol from prelabeled plasma membranes, this amount was only 17% of the maximal release, i.e., release in the presence of deoxycholate and Ca2+. This latter condition is known to fully activate the PI-phospholipase C, and incubation of prelabeled plasma membranes resulted in a six-fold increase in labeled diacylglycerols. On the other hand, when exogenously labeled PI were incubated with plasma membranes in the presence of Ca2+, the labeled diacylglycerols released were 59% of that compared to the fully activated condition. The phospholipase C action was calcium-dependent, regardless of whether exogenous or endogenous substrates were used in the incubation. In contrast to plasma membranes, intact synaptosomes had limited ability to metabolize exogenous PI even in the presence of Ca2+, although the activity of phospholipase C was similar to that in the plasma membranes when assayed in the presence of deoxycholate and Ca2+. These results suggest that discrete pools of PI are present in plasma membranes, and that the pool associated with the acyltransferase is apparently not readily accessible to hydrolysis by phospholipase C

  20. Time course of cerebellar catalase levels after neonatal ionizing radiations

    International Nuclear Information System (INIS)

    Di Meglio, A.; Caceres, L.; Zieher, L.M.; Guelman, L.R.

    2005-01-01

    Full text: Reactive oxygen species are physiologically generated as a consequence of aerobic respiration, but this generation is increased in response to external stimuli, including ionizing radiation. The central nervous system (CNS) is vulnerable to oxidative stress due to its high oxygen consumption rate, its high level of polyunsaturated fatty acids and low levels of antioxidant defences. An important compound of this defence system is the antioxidant enzyme catalase, an heme protein that removes hydrogen peroxide from the cell by catalyzing its conversion to water. The aim of the present work was to study if catalase is susceptible to oxidative stress generated by ionizing radiation on the cerebellum. Neonatal rats were irradiated with 5 Gy of X rays and the levels of catalase were measured at 15, 30 and 60 days of age. Results show that there is a decrease in the activity of catalase in irradiated cerebellum at 15 (% respect the control, 65.6 ± 14.8), 30 (51.35± 5.8%), and 60 days (9.3 ± 0.34%). Catalase activity at 15 and 30 days has shown to be positively correlated with the radiation-induced decrease in tissue's weight, while at 60 days there is an extra decrease. It would be suggested that, at long term, radiation exposure might induce, in addition to cerebellar atrophy, the oxidation of the radiosensitive heme group of the enzyme, leading to its inactivation. In conclusion, the antioxidant enzyme catalase has shown to be especially sensitive to ionizing radiation. (author)

  1. Components of action potential repolarization in cerebellar parallel fibres.

    Science.gov (United States)

    Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna J; Raastad, Morten

    2014-11-15

    Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of typical grey matter axons, to investigate the effects of K(+) channel blockers on repolarization. We show that repolarization is composed of a fast tetraethylammonium (TEA)-sensitive component, determining the width and amplitude of the spike, and a slow margatoxin (MgTX)-sensitive depolarized after-potential (DAP). These two components could be recorded at the granule cell soma as antidromic action potentials and from the axons with a newly developed miniaturized grease-gap method. A considerable proportion of fast repolarization remained in the presence of TEA, MgTX, or both. This residual was abolished by the addition of quinine. The importance of proper control of fast repolarization was demonstrated by somatic recordings of antidromic action potentials. In these experiments, the relatively broad K(+) channel blocker 4-aminopyridine reduced the fast repolarization, resulting in bursts of action potentials forming on top of the DAP. We conclude that repolarization of the action potential in parallel fibres is supported by at least three groups of K(+) channels. Differences in their temporal profiles allow relatively independent control of the spike and the DAP, whereas overlap of their temporal profiles provides robust control of axonal bursting properties.

  2. Mathematical models of human cerebellar development in the fetal period.

    Science.gov (United States)

    Dudek, Krzysztof; Nowakowska-Kotas, Marta; Kędzia, Alicja

    2018-04-01

    The evaluation of cerebellar growth in the fetal period forms a part of a widely used examination to identify any features of abnormalities in early stages of human development. It is well known that the development of anatomical structures, including the cerebellum, does not always follow a linear model of growth. The aim of the study was to analyse a variety of mathematical models of human cerebellar development in fetal life to determine their adequacy. The study comprised 101 fetuses (48 males and 53 females) between the 15th and 28th weeks of fetal life. The cerebellum was exposed and measurements of the vermis and hemispheres were performed, together with statistical analyses. The mathematical model parameters of fetal growth were assessed for crown-rump length (CRL) increases, transverse cerebellar diameter and ventrodorsal dimensions of the cerebellar vermis in the transverse plane, and rostrocaudal dimensions of the cerebellar vermis and hemispheres in the frontal plane. A variety of mathematical models were applied, including linear and non-linear functions. Taking into consideration the variance between models and measurements, as well as correlation parameters, the exponential and Gompertz models proved to be the most suitable for modelling cerebellar growth in the second and third trimesters of pregnancy. However, the linear model gave a satisfactory approximation of cerebellar growth, especially in older fetuses. The proposed models of fetal cerebellar growth constructed on the basis of anatomical examination and objective mathematical calculations could be useful in the estimation of fetal development. © 2018 Anatomical Society.

  3. Postural responses to multidirectional stance perturbations in cerebellar ataxia

    NARCIS (Netherlands)

    Bakker, Maaike; Allum, John H J; Visser, Jasper E; Grüneberg, Christian; van de Warrenburg, Bart P; Kremer, H P H; Bloem, Bastiaan R

    Previous studies of patients with focal cerebellar damage underscored the importance of the cerebellum for balance control. These studies were restricted to postural control in the pitch plane, and focused mainly on leg muscle responses. Here, we examined the effect of degenerative cerebellar

  4. Cerebellar transcranial direct current stimulation modulates verbal working memory.

    Science.gov (United States)

    Boehringer, Andreas; Macher, Katja; Dukart, Juergen; Villringer, Arno; Pleger, Burkhard

    2013-07-01

    Neuroimaging studies show cerebellar activations in a wide range of cognitive tasks and patients with cerebellar lesions often present cognitive deficits suggesting a cerebellar role in higher-order cognition. We used cathodal transcranial direct current stimulation (tDCS), known to inhibit neuronal excitability, over the cerebellum to investigate if cathodal tDCS impairs verbal working memory, an important higher-order cognitive faculty. We tested verbal working memory as measured by forward and backward digit spans in 40 healthy young participants before and after applying cathodal tDCS (2 mA, stimulation duration 25 min) to the right cerebellum using a randomized, sham-controlled, double-blind, cross-over design. In addition, we tested the effect of cerebellar tDCS on word reading, finger tapping and a visually cued sensorimotor task. In line with lower digit spans in patients with cerebellar lesions, cerebellar tDCS reduced forward digit spans and blocked the practice dependent increase in backward digit spans. No effects of tDCS on word reading, finger tapping or the visually cued sensorimotor task were found. Our results support the view that the cerebellum contributes to verbal working memory as measured by forward and backward digit spans. Moreover, the induction of reversible "virtual cerebellar lesions" in healthy individuals by means of tDCS may improve our understanding of the mechanistic basis of verbal working memory deficits in patients with cerebellar lesions. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Distinct Critical Cerebellar Subregions for Components of Verbal Working Memory

    Science.gov (United States)

    Cooper, Freya E.; Grube, Manon; Von Kriegstein, Katharina; Kumar, Sukhbinder; English, Philip; Kelly, Thomas P.; Chinnery, Patrick F.; Griffiths, Timothy D.

    2012-01-01

    A role for the cerebellum in cognition has been proposed based on studies suggesting a profile of cognitive deficits due to cerebellar stroke. Such studies are limited in the determination of the detailed organisation of cerebellar subregions that are critical for different aspects of cognition. In this study we examined the correlation between…

  6. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    Science.gov (United States)

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Postural responses to multidirectional stance perturbations in cerebellar ataxia

    NARCIS (Netherlands)

    Bakker, Maaike; Allum, John H J; Visser, Jasper E; Grüneberg, Christian; van de Warrenburg, Bart P; Kremer, H P H; Bloem, Bastiaan R

    2006-01-01

    Previous studies of patients with focal cerebellar damage underscored the importance of the cerebellum for balance control. These studies were restricted to postural control in the pitch plane, and focused mainly on leg muscle responses. Here, we examined the effect of degenerative cerebellar

  8. Time estimation in Parkinson's disease and degenerative cerebellar disease

    NARCIS (Netherlands)

    Beudel, Martijin; Galama, Sjoukje; Leenders, Klaus L.; de Jong, Bauke M.

    2008-01-01

    With functional MRI, we recently identified fronto-cerebellar activations in predicting time to reach a target and basal ganglia activation in velocity estimation, that is, small interval assessment. We now tested these functions in patients with Parkinson's disease (PD) and degenerative cerebellar

  9. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  10. Humor and laughter in patients with cerebellar degeneration.

    Science.gov (United States)

    Frank, B; Propson, B; Göricke, S; Jacobi, H; Wild, B; Timmann, D

    2012-06-01

    Humor is a complex behavior which includes cognitive, affective and motor responses. Based on observations of affective changes in patients with cerebellar lesions, the cerebellum may support cerebral and brainstem areas involved in understanding and appreciation of humorous stimuli and expression of laughter. The aim of the present study was to examine if humor appreciation, perception of humorous stimuli, and the succeeding facial reaction differ between patients with cerebellar degeneration and healthy controls. Twenty-three adults with pure cerebellar degeneration were compared with 23 age-, gender-, and education-matched healthy control subjects. No significant difference in humor appreciation and perception of humorous stimuli could be found between groups using the 3 Witz-Dimensionen Test, a validated test asking for funniness and aversiveness of jokes and cartoons. Furthermore, while observing jokes, humorous cartoons, and video sketches, facial expressions of subjects were videotaped and afterwards analysed using the Facial Action Coding System. Using depression as a covariate, the number, and to a lesser degree, the duration of facial expressions during laughter were reduced in cerebellar patients compared to healthy controls. In sum, appreciation of humor appears to be largely preserved in patients with chronic cerebellar degeneration. Cerebellar circuits may contribute to the expression of laughter. Findings add to the literature that non-motor disorders in patients with chronic cerebellar disease are generally mild, but do not exclude that more marked disorders may show up in acute cerebellar disease and/or in more specific tests of humor appreciation.

  11. Cerebellar involvement in metabolic disorders: a pattern-recognition approach

    International Nuclear Information System (INIS)

    Steinlin, M.; Boltshauser, E.; Blaser, S.

    1998-01-01

    Inborn errors of metabolism can affect the cerebellum during development, maturation and later during life. We have established criteria for pattern recognition of cerebellar abnormalities in metabolic disorders. The abnormalities can be divided into four major groups: cerebellar hypoplasia (CH), hyperplasia, cerebellar atrophy (CA), cerebellar white matter abnormalities (WMA) or swelling, and involvement of the dentate nuclei (DN) or cerebellar cortex. CH can be an isolated typical finding, as in adenylsuccinase deficiency, but is also occasionally seen in many other disorders. Differentiation from CH and CA is often difficult, as in carbohydrate deficient glycoprotein syndrome or 2-l-hydroxyglutaric acidaemia. In cases of atrophy the relationship of cerebellar to cerebral atrophy is important. WMA may be diffuse or patchy, frequently predominantly around the DN. Severe swelling of white matter is present during metabolic crisis in maple syrup urine disease. The DN can be affected by metabolite deposition, necrosis, calcification or demyelination. Involvement of cerebellar cortex is seen in infantile neuroaxonal dystrophy. Changes in DN and cerebellar cortex are rather typical and therefore most helpful; additional features should be sought as they are useful in narrowing down the differential diagnosis. (orig.)

  12. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions

    DEFF Research Database (Denmark)

    Sönmezoğlu, K; Sperling, B; Henriksen, T

    1993-01-01

    Four patients with clinical signs of cerebellar stroke were studied twice by SPECT using 99mTc-HMPAO as a tracer for cerebral blood flow (CBF). When first scanned 6 to 22 days after onset, all had a region of very low CBF in the symptomatic cerebellar hemisphere, and a mild to moderate CBF reduct...

  13. The Cerebellum and Language: Evidence from Patients with Cerebellar Degeneration

    Science.gov (United States)

    Stoodley, Catherine J.; Schmahmann, Jeremy D.

    2009-01-01

    Clinical and imaging studies suggest that the cerebellum is involved in language tasks, but the extent to which slowed language production in cerebellar patients contributes to their poor performance on these tasks is not clear. We explored this relationship in 18 patients with cerebellar degeneration and 16 healthy controls who completed measures…

  14. New evidence for the cerebellar involvement in personality traits

    Directory of Open Access Journals (Sweden)

    Eleonora ePicerni

    2013-10-01

    Full Text Available Following the recognition of its role in sensory-motor coordination and learning, the cerebellum has been involved in cognitive, emotional and even personality domains. This study investigated the relationships between cerebellar macro- and micro-structural variations and temperamental traits measured by Temperament and Character Inventory (TCI. High resolution T1-weighted and Diffusion Tensor Images of 100 healthy subjects aged 18-59 years were acquired by 3 Tesla Magnetic Resonance scanner. In multiple regression analyses, cerebellar Gray Matter (GM or White Matter (WM volumes, GM Mean Diffusivity (MD, and WM Fractional Anisotropy (FA were used as dependent variables, TCI scores as regressors, gender, age, and education years as covariates. Novelty Seeking scores were associated positively with the cerebellar GM volumes and FA, and negatively with MD. No significant association between Harm Avoidance, Reward Dependence or Persistence scores and cerebellar structural measures was found. The present data put toward a cerebellar involvement in the management of novelty.

  15. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    International Nuclear Information System (INIS)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S.

    2006-01-01

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  16. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan)

    2006-03-15

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  17. [The influence of N-, S-containing chinasolone derivatives (NC-224) on the biochemical and physicochemical parameters of membrane endoplasmatic reticulum and nuclear chromatine fractions of rats liver cells in conditions of its injury by tetrachloromethane].

    Science.gov (United States)

    Gubs'kyî, Iu I; Goriushko, G G; Belenichev, I F; Kovalenko, S I; Litvinova, N V; Marchenko, O M; Kurapova, T M; Babenko, L P; Velychko, O M

    2010-01-01

    Using biochemical and physicochemical methods of investigation in vivo, the effect of the substance NC-224, N-, S-chinasolone-derivative, on the lipoperoxidation activity in rat liver endoplasmatic reticulum membranes and nuclear chromatin fractions under tetrachloromethane intoxication have been studied. It was shown that NC-224 has pronounced antioxidant activity which is the biochemical basis of the substance membrane- and genome-protective effects and its ability to restore physicochemical properties of the surface and hydrophobic zones of hepatocyte membranes and structural parameter nuclear chromatin fractions in the conditions of chemical liver injury.

  18. Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

    Directory of Open Access Journals (Sweden)

    Samira Abbasi

    2016-01-01

    Discussion: Therefore, inhibition of SK channel in DCN can cause cerebellar ataxia, and SK channel openers can have a therapeutic effect on cerebellar ataxia. In addition, the location of SK channels could be important in therapeutic goals. Dendritic SK channels can be a more effective target compared to somatic SK channels

  19. Disorganized foliation of unilateral cerebellar hemisphere as cerebellar cortical dysplasia in patients with recurrent seizures: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hye Jin [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-09-15

    We present a rare case of abnormal foliation for one cerebellar hemisphere on MR imaging, showing vertically-oriented folia. Foliation of contralateral cerebellar hemisphere and other structures in the posterior fossa were normal, and the patient has no neurologic deficits. This rare and unique abnormality is considered a kind of developmental error of the cerebellum.

  20. Insights into cerebellar development and medulloblastoma.

    Science.gov (United States)

    Bihannic, Laure; Ayrault, Olivier

    2016-01-01

    Cerebellar development is an extensive process that begins during early embryonic stages and persists more than one year after birth in human. Therefore, the cerebellum is susceptible to acquire various developmental abnormalities leading to numerous diseases such as medulloblastoma, the most common pediatric malignant brain tumor. One third of the patients with medulloblastoma are incurable and survivors have a poor quality of life due to the aggressiveness of the broad-spectrum treatments. Within the past few years, it has been highlighted that medulloblastoma is a heterogeneous disease that is divided in four molecular subgroups. This recent advance in the field, combined with the development of associated preclinical models for each subgroup, should enable, in the future, the discovery and use of targeted therapy in clinical treatments for each subtype of medulloblastoma. In this review, we first aim to show how deregulation of cerebellar development can lead to medulloblastoma formation and then to present the advances in the molecular subgrouping of medulloblastoma and the associated preclinical models. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  1. Remote cerebellar hemorrhage after lumbar spinal surgery

    International Nuclear Information System (INIS)

    Cevik, Belma; Kirbas, Ismail; Cakir, Banu; Akin, Kayihan; Teksam, Mehmet

    2009-01-01

    Background: Postoperative remote cerebellar hemorrhage (RCH) as a complication of lumbar spinal surgery is an increasingly recognized clinical entity. The aim of this study was to determine the incidence of RCH after lumbar spinal surgery and to describe diagnostic imaging findings of RCH. Methods: Between October 1996 and March 2007, 2444 patients who had undergone lumbar spinal surgery were included in the study. Thirty-seven of 2444 patients were scanned by CT or MRI due to neurologic symptoms within the first 7 days of postoperative period. The data of all the patients were studied with regard to the following variables: incidence of RCH after lumbar spinal surgery, gender and age, coagulation parameters, history of previous arterial hypertension, and position of lumbar spinal surgery. Results: The retrospective study led to the identification of two patients who had RCH after lumbar spinal surgery. Of 37 patients who had neurologic symptoms, 29 patients were women and 8 patients were men. CT and MRI showed subarachnoid hemorrhage in the folia of bilateral cerebellar hemispheres in both patients with RCH. The incidence of RCH was 0.08% among patients who underwent lumbar spinal surgery. Conclusion: RCH is a rare complication of lumbar spinal surgery, self-limiting phenomenon that should not be mistaken for more ominous pathologic findings such as hemorrhagic infarction. This type of bleeding is thought to occur secondary to venous infarction, but the exact pathogenetic mechanism is unknown. CT or MRI allowed immediate diagnosis of this complication and guided conservative management.

  2. Anatomy of cerebellar nucleo-bulbar projections in the rat

    NARCIS (Netherlands)

    T.M. Teune (Thea)

    1999-01-01

    textabstractThe cerebellum is located caudal to the cerebral hemispheres and is connected to the rest of the brain by way of three "peduncles", that convey its afferent and efferent information. The cerebellum is functionally related to spinal, bulbar and cerebral motor systems. Its role in the

  3. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  4. Isolation, purification, and partial characterization of a membrane-bound Cl-/HCO3--activated ATPase complex from rat brain with sensitivity to GABAAergic ligands.

    Science.gov (United States)

    Menzikov, Sergey A

    2017-02-07

    This study describes the isolation and purification of a protein complex with [Formula: see text]-ATPase activity and sensitivity to GABA A ergic ligands from rat brain plasma membranes. The ATPase complex was enriched using size-exclusion, affinity, and ion-exchange chromatography. The fractions obtained at each purification step were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE), which revealed four subunits with molecular mass ∼48, 52, 56, and 59 kDa; these were retained at all stages of the purification process. Autoradiography revealed that the ∼52 and 56 kDa subunits could bind [ 3 H]muscimol. The [Formula: see text]-ATPase activity of this enriched protein complex was regulated by GABA A ergic ligands but was not sensitive to blockers of the NKCC or KCC cotransporters.

  5. Effect of secretin and inhibitors of HCO3-/H+ transport on the membrane voltage of rat pancreatic duct cells

    DEFF Research Database (Denmark)

    Novak, I; Pahl, C

    1993-01-01

    depolarized the basolateral membrane voltage, Vbl, by up to 35 mV (n = 37); a half-maximal response was obtained at 3 x 10(-11) mol/l. In unstimulated ducts a decrease in the luminal Cl- concentration (120 to 37 mmol/l) had a marginal effect on Vbl, but after maximal secretin stimulation it evoked a 14 +/- 2......), respectively. The fractional resistance of the basolateral membrane (FRbl) doubled, and the depolarizing responses to changes in bath K+ concentrations (5 to 20 mmol/l) decreased from 22 +/- 1 to 11 +/- 2 mV.(ABSTRACT TRUNCATED AT 250 WORDS)...

  6. (/sup 3/H)MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, E H; Knight, A R; Woodruff, G N

    1988-01-01

    The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist (/sup 3/H)MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of (/sup 3/H)MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. (/sup 3/H)MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated (/sup 3/H)MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by (/sup 3/H)TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-(/sup 3/H)SKF 10,047. (/sup 3/H)MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that (/sup 3/H)MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.

  7. Heat stroke induced cerebellar dysfunction: A “forgotten syndrome”

    Science.gov (United States)

    Kosgallana, Athula D; Mallik, Shreyashee; Patel, Vishal; Beran, Roy G

    2013-01-01

    We report a case of heat stroke induced acute cerebellar dysfunction, a rare neurological disease characterized by gross cerebellar dysfunction with no acute radiographic changes, in a 61 years old ship captain presenting with slurred speech and gait ataxia. A systematic review of the literature on heat stroke induced cerebellar dysfunction was performed, with a focus on investigations, treatment and outcomes. After review of the literature and detailed patient investigation it was concluded that this patient suffered heat stroke at a temperature less than that quoted in the literature. PMID:24340279

  8. Cerebellar abiotrophy in a family of Border Collie dogs.

    Science.gov (United States)

    Sandy, J R; Slocombe, R E; Mitten, R W; Jedwab, D

    2002-11-01

    Cerebellar abiotrophies have a nonsex-linked, autosomal, recessively inherited basis in a number of species, and lesions typically reflect profound and progressive loss of Purkinje cells. In this report, an unusual form of abiotrophy is described for two sibling Border Collies. Extensive loss of the cerebellar granular cell layer was present with relative sparing of Purkinje cells of two female pups. The biochemical basis for this form of cerebellar abiotrophy is unknown, but the lack of disease in other siblings supports an autosomal recessive mode of inheritance.

  9. Hereditary spastic paraplegia with cerebellar ataxia

    DEFF Research Database (Denmark)

    Nielsen, J E; Johnsen, B; Koefoed, P

    2004-01-01

    Complex forms of hereditary spastic paraplegia (HSP) are rare and usually transmitted in an autosomal recessive pattern. A family of four generations with autosomal dominant hereditary spastic paraplegia (AD-HSP) and a complex phenotype with variably expressed co-existing ataxia, dysarthria......, unipolar depression, epilepsy, migraine, and cognitive impairment was investigated. Genetic linkage analysis and sequencing of the SPG4 gene was performed and electrophysiologic investigations were carried out in six individuals and positron emission tomography (PET) in one patient. The disease was linked...... in those individuals who were clinically affected by a complex phenotype consisting of HSP and cerebellar ataxia. Other features noted in this kindred including epilepsy, cognitive impairment, depression, and migraine did not segregate with the HSP phenotype or mutation, and therefore the significance...

  10. The Cerebellar-Cerebral Microstructure Is Disrupted at Multiple Sites in Very Preterm Infants with Cerebellar Haemorrhage.

    Science.gov (United States)

    Neubauer, Vera; Djurdjevic, Tanja; Griesmaier, Elke; Biermayr, Marlene; Gizewski, Elke Ruth; Kiechl-Kohlendorfer, Ursula

    2018-01-01

    Recent advances in magnetic resonance imaging (MRI) techniques have prompted reconsideration of the anatomical correlates of adverse outcomes in preterm infants. The importance of the contribution made by the cerebellum is now increasingly appreciated. The effect of cerebellar haemorrhage (CBH) on the microstructure of the cerebellar-cerebral circuit is largely unexplored. To investigate the effect of CBH on the microstructure of cerebellar-cerebral connections in preterm infants aged microstructure (fractional anisotropy [FA] and apparent diffusion coefficient) were quantified in 5 vulnerable regions (the centrum semiovale, posterior limb of the internal capsule, corpus callosum, and superior and middle cerebellar peduncles). Group differences between infants with CBH and infants without CBH were assessed. There were 267 infants included in the study. Infants with CBH (isolated and combined) had significantly lower FA values in all regions investigated. Infants with isolated CBH showed lower FA in the middle and superior cerebellar peduncles and in the posterior limb of the internal capsule. This study provides evidence that CBH causes alterations in localised and remote WM pathways in the developing brain. The disruption of the cerebellar-cerebral microstructure at multiple sites adds further support for the concept of developmental diaschisis, which is propagated as an explanation for the consequences of early cerebellar injury on cognitive and affective domains. © 2017 S. Karger AG, Basel.

  11. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Directory of Open Access Journals (Sweden)

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  12. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver

    Directory of Open Access Journals (Sweden)

    Zeba Farooqui

    Full Text Available Cisplatin (CP is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p. respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism. Keywords: Cisplatin, Nigella sativa oil, Carbohydrate metabolism, Antioxidant

  13. Rat mesangial cells in vitro synthesize a spectrum of proteoglycan species including those of the basement membrane and interstitium

    DEFF Research Database (Denmark)

    Thomas, G J; Shewring, L; McCarthy, K J

    1995-01-01

    is localized in the mesangium but is not found in the pericapillary glomerular basement membrane (GBM). Further characterization of the proteoglycans synthesized by RMC in vitro revealed: (i) a second large CSPG, identified as versican; (ii) two small dermatan sulphate proteoglycans identified as biglycan...

  14. Ultrastructural localization of the core protein of a basement membrane-specific chondroitin sulfate proteoglycan in adult rat skin

    DEFF Research Database (Denmark)

    McCarthy, K J; Horiguchi, Y; Couchman, J R

    1990-01-01

    Basement membranes are complex extracellular matrices present at epithelial/mesenchymal interfaces of tissues. The dermal-epidermal junction has been shown to contain numerous components, some of the most well known being laminin, types IV and VII collagens, heparan sulfate proteoglycan, fibronec...

  15. Individual and Combined Effects of Fumonisin B1, Deoxynivalenol and Zearalenone on the Hepatic and Renal Membrane Lipid Integrity of Rats

    Directory of Open Access Journals (Sweden)

    András Szabó

    2017-12-01

    Full Text Available (1 Background and (2 Methods: A 14-day in vivo, multitoxic (pure mycotoxins rat experiment was conducted with zearalenone (ZEA; 15 μg/animal/day, deoxynivalenol (DON; 30 μg/animal/day and fumonisin B1 (FB1; 150 μg/animal/day, as individual mycotoxins, binary (FD, FZ and DZ and ternary combinations (FDZ, via gavage in 1 mL water boluses. (3 Results: Body weight was unaffected, while liver (ZEA↑ vs. DON and kidney weight (ZEA↑ vs. FDZ increased. Hepatocellular membrane lipid fatty acids (FAs referred to ceramide synthesis disturbance (C20:0, C22:0, and decreased unsaturation (C22:5 n3 and unsat. index, mainly induced by DON and to a lesser extent by ZEA. The DON-FB1 interaction was additive on C20:0 in liver lipids. In renal phospholipids, ZEA had the strongest effect on the FA profile, affecting the saturated (C18:0 and many n6 FAs; ZEA was in an antagonistic relationship with FB1 (C18:0 or DON (C18:2 n6, C20:1 n9. Hepatic oxidative stress was the most expressed in FD (reduced glutathione and glutathione peroxidase, while the nephrotoxic effect was further supported by lipid peroxidation (malondialdehyde in the DON treatment. (4 Conclusions: In vivo study results refer to multiple mycotoxin interactions on membrane FAs, antioxidants and lipid peroxidation compounds, needing further testing.

  16. Purification and partial characterization of analogous 26-kDa rat submandibular and parotid gland integral membrane phosphoproteins that may have a role in exocytosis.

    Science.gov (United States)

    Quissell, D O; Deisher, L M

    1992-04-01

    Rat submandibular and parotid gland exocytosis is primarily controlled by beta-adrenergic receptor stimulation. Although its precise role in the regulation of salivary gland exocytosis is not fully understood, protein phosphorylation, mediated by the activation of cAMP-dependent protein kinase, may be directly involved. Previous studies suggest that analogous 26-kDa integral membrane phosphoproteins may play a direct role in regulating exocytosis. Studies were here undertaken to purify and partially characterize both phosphoproteins. After endogenous phosphorylation with 32P, subcellular fraction and solubilization of the microsomal fraction in n-octyl beta-glucopyranoside, the 26-kDa integral membrane phosphoproteins were purified by high performance liquid chromatography (HPLC), followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and electroelution of the proteins. Amino acid analysis indicated a significant number of serine amino acids: N-terminal sequence data demonstrated a high level of homology; and trypsin digestion followed by reversed-phase HPLC indicated the possibility of multiple phosphorylation sites.

  17. Comparative characterization of thyroid hormone receptors and binding proteins in rat liver nucleus, plasma membrane, and cytosol by photoaffinity labeling with L-thyroxine

    International Nuclear Information System (INIS)

    Dozin, B.; Cahnmann, H.J.; Nikodem, V.M.

    1985-01-01

    Photoaffinity labeling with underivatized thyroxine (T4) was used to identify and compare the T4 binding proteins in rat liver cytosol, nuclear extract, and purified plasma membrane. When these subcellular fractions were incubated with a tracer concentration of [125I]T4, irradiated with light above 300 nm, and individually analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the radioactivity profiles revealed the presence of T4 binding proteins of molecular masses of 70, 52, 43, 37, 30, and 26 kilodaltons (kDa) in cytosol, of 96, 56, 45, and 35 kDa in nuclear extract, and of 70, 44, and 30 kDa in plasma membrane. Competition experiments performed in the presence of a 1000-fold excess of unlabeled T4 demonstrated that these binding proteins display different hormone binding activities. The similar electrophoretic mobilities of some binding proteins present in the different subcellular fractions, i.e., the 70-, 43-45-, and 30-kDa proteins, suggested that these proteins might be identical. However, double-labeling experiments in which plasma membrane, nuclear extract, and cytosol were photolabeled with either [125I] or [131I]T4 and mixed, two at a time, in all possible combinations showed that from one cellular fraction to another, the radioactivity peaks corresponding to the approximately 70-, 43-45-, and 30-kDa proteins were not superimposed. Their relative positions on the gel differed by one or two slices, which indicated differences in molecular mass of 1.9-3.6 kDa. Moreover, enzymatic digestion with Staphylococcus aureus V8 protease of these three proteins, prepared from each subcellular fraction, yielded dissimilar peptide patterns

  18. The effect of sodium hyaluronate-carboxymethyl cellulose membrane in the prevention of parenchymal air leaks: an experimental and manometric study in rats.

    Science.gov (United States)

    Büyükkale, Songül; Çıtak, Necati; İşgörücü, Özgür; Sayar, Adnan

    2017-12-01

    We aimed to examine effectiveness of sodium hyaluronate-carboxymethly cellulose (NaH/CMC) for sealing pulmonary air leaks during postoperative period. The study was conducted in 16 male Sprague-Dawley rats. A linear insicion (length= 0.2 cm, depth= 0.1 cm) to the lung parenchyma on the inflated by a cutter was made. The animals were randomly divided; the control group (n= 8) and NaH/CMC-treated group (the study group, n= 8). Control group was left for physiologic healing while a NaH/CMC membrane was applied over the the incisional area in the study group. Then the pressure point where the air leakage observed was noted. No polymorphonucleer leucocytes (PMNL) infiltration was detected in control group, whereas PMNL infiltration was 0.38 ± 0.5 cell per 100 high field in study group (p= 0.234). The degree of macrophage, lymphocyte infiltration and the mean fibroblast count were found to be higher in study group compared with control group (p= 0.007, p= 0.02, p= 0.05, respectively). The mean pressure value for air leak to occur in the control group was 43.50 ± 9.55 mmHg whereas it was 73.75 ± 16.68 mmHg in the study group (p< 0.001). The data revealed that bioabsorbable NaH/CMC membrane accelerates healing with preserving the expansile character of lung parenchyma even in high ventilation pressures. However, further studies are required to assess the prevent impact of the pulmonary air-leak for NaH/CMC membrane.

  19. Synthesis and binding of [125I2]philanthotoxin-343, [125I2]philanthotoxin-343-lysine, and [125I2]philanthotoxin-343-arginine to rat brain membranes

    International Nuclear Information System (INIS)

    Goodnow, R.A. Jr.; Bukownik, R.; Nakanishi, K.; Usherwood, P.N.; Eldefrawi, A.T.; Anis, N.A.; Eldefrawi, M.E.

    1991-01-01

    125I2-iodinated philanthotoxin-343 (PhTX-343), [125I2]PhTX-343-arginine, and [125I2]PhTX-343-lysine were synthesized and evaluated as probes for glutamate receptors in rat brain synaptic membranes. It was found that these probes were not specific for the glutamate receptors but may be useful for investigating the polyamine binding site. Filtration assays with Whatman GF/B fiber glass filters were unsuitable because the iodinated PhTX-343 analogues exhibited high nonspecific binding to the filters, thus hindering detection of specific binding to membranes. When binding was measured by a centrifugal assay, [125I2]PhTX-343-lysine bound with low affinity (KD = 11.4 ± 2 microM) to a large number of sites (37.2 ± 9.1 nmol/mg of protein). The binding of [125I2]PhTX-343-lysine was sensitive only to the polyamines spermine and spermidine, which displaced [125I2]PhTX-343-lysine with Ki values of (3.77 ± 1.4) x 10(-5) M and (7.51 ± 0.77) x 10(-5) M, respectively. The binding was insensitive to glutamate receptor agonists and antagonists. Binding results with [125I2]PhTX-343-arginine were similar to those of [125I2]-PhTX-343-lysine. Considering the high number of toxin binding sites (10000-fold more than glutamate) in these membranes and the insensitivity of the binding to almost all drugs that bind to glutamate receptors, it is evident that most of the binding observed is not to glutamate receptors. On the other hand, PhTX analogues with photoaffinity labels may be useful in the isolation/purification of various glutamate and nicotinic acetylcholine receptors; they could also be useful in structural studies of receptors and their binding sites

  20. Maternal Different Degrees of Iodine Deficiency during Pregnant and Lactation Impair the Development of Cerebellar Pinceau in Offspring

    Directory of Open Access Journals (Sweden)

    Jing Dong

    2017-05-01

    Full Text Available Aims: Iodine is critical for synthesis of thyroid hormones (TH. And iodine deficiency (ID is one of the most significant reasons of intellectual disability and motor memory impairment, although the potential mechanisms are still under investigation. Presently, mild ID and marginal ID are largely ignored problems for women of child bearing age. Mild ID is a subtle form of TH deficiency, which shows low levels of free thyroxine (FT4 and relatively normal free triiodothyronine (FT3 or thyroid stimulation hormone (TSH. And marginal ID is a milder form of ID with decreased total T4 (TT4 but relatively normal FT3, FT4, and TSH. Therefore, we investigated the effects of maternal different degrees of ID on the development of pinceau in cerebellar purkinje cells (PCs and studied the expression of pinceau related protein, which is crucial for the development and maturation of pinceau.Methods and Results: Three developmental iodine deficient rat models were created by feeding dam rats with an iodine-deficient diet and deionized water supplemented with potassiumiodide. Our study showed that different degrees of ID inhibited cerebellar pinceau synapse development and maturation on postnatal day (PN 14 and PN21. What's more, mild and severe ID reduced the expression of AnkG, β4-spectrin, neurofascin186 and NrCAM on PN7, PN14, and PN21. However, marginal ID rarely altered expression of these proteins in the offspring.Conclusion: These results suggested that maternal mild and severe ID impaired the development and maturation of cerebellar pinceau, which may be attributed to the decrease of AnkG, β4-spectrin, neurofascin 186, and NrCAM. And the alteration of development and maturation in cerebellar pinceau in the offspring were also observed following maternal marginal ID, which is slighter than that of mild ID.

  1. High Antifouling Property of Ion-Selective Membrane: toward In Vivo Monitoring of pH Change in Live Brain of Rats with Membrane-Coated Carbon Fiber Electrodes.

    Science.gov (United States)

    Hao, Jie; Xiao, Tongfang; Wu, Fei; Yu, Ping; Mao, Lanqun

    2016-11-15

    In vivo monitoring of pH in live brain remains very essential to understanding acid-base chemistry in various physiological processes. This study demonstrates a potentiometric method for in vivo monitoring of pH in the central nervous system with carbon fiber-based proton-selective electrodes (CF-H + ISEs) with high antifouling property. The CF-H + ISEs are prepared by formation of a H + -selective membrane (H + ISM) with polyvinyl chloride polymeric matrixes containing plasticizer bis(2-ethylhexyl)sebacate, H + ionophore tridodecylamine, and ion exchanger potassium tetrakis(4-chlorophenyl)borate onto carbon fiber electrodes (CFEs). Both in vitro and in vivo studies demonstrate that the H + ISM exhibits strong antifouling property against proteins, which enables the CF-H + ISEs to well maintain the sensitivity and reversibility for pH sensing after in vivo measurements. Moreover, the CF-H + ISEs exhibit a good response to pH changes within a narrow physiological pH range from 6.0 to 8.0 in quick response time with high reversibility and selectivity against species endogenously existing in the central nervous system. The applicability of the CF-H + ISEs is illustrated by real-time monitoring of pH changes during acid-base disturbances, in which the brain acidosis is induced by CO 2 inhalation and brain alkalosis is induced by bicarbonate injections. The results demonstrate that brain pH value rapidly decreases in the amygdaloid nucleus by ca. 0.14 ± 0.01 (n = 5) when the rats breath in pure CO 2 gas, while increases in the cortex by about 0.77 ± 0.12 (n = 3) following intraperitoneal injection of 5 mmol/kg NaHCO 3 . This study demonstrates a new potentiometric method for in vivo measurement of pH change in the live brain of rats with high reliability.

  2. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M. [Dept. of Radiology, Kumamoto University School of Medicine (Japan); Okajima, T. [Dept. of Neurology, Johnan Hospital, Maihara, Johnan-mochi (Japan); Sato, H. [Dept. of Neurology, Minamata City General Hospital and Medical Centre (Japan)

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  3. Bilateral cerebellar activation in unilaterally challenged essential tremor

    Directory of Open Access Journals (Sweden)

    Marja Broersma

    2016-01-01

    Conclusions: Our results expand on previous findings of bilateral cerebellar involvement in ET. We have identified specific areas in the bilateral somatomotor regions of the cerebellum: lobules V, VI and VIII.

  4. Anomalous cerebellar anatomy in Chinese children with dyslexia

    Directory of Open Access Journals (Sweden)

    Ying-Hui eYang

    2016-03-01

    Full Text Available The cerebellar deficit hypothesis for developmental dyslexia (DD claims that cerebellar dysfunction causes the failures in the acquisition of visuomotor skills and automatic reading and writing skills. In people with dyslexia in the alphabetic languages, the abnormal activation and structure of the right or bilateral cerebellar lobes have been identified. Using a typical implicit motor learning task, however, one neuroimaging study demonstrated the left cerebellar dysfunction in Chinese children with dyslexia. In the present study, using voxel-based morphometry, we found decreased gray matter volume in the left cerebellum in Chinese children with dyslexia relative to age-matched controls. The positive correlation between reading performance and regional gray matter volume suggests that the abnormal structure in the left cerebellum is responsible for reading disability in Chinese children with dyslexia.

  5. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  6. Cerebellar infarct patterns: The SMART-Medea study

    Directory of Open Access Journals (Sweden)

    Laurens J.L. De Cocker, MD

    2015-01-01

    Conclusions: Small cerebellar infarcts proved to be much more common than larger infarcts, and preferentially involved the cortex. Small cortical infarcts predominantly involved the posterior lobes, showed sparing of subcortical white matter and occurred in characteristic topographic patterns.

  7. Late Onset of Cerebellar Abiotrophy in a Boxer Dog

    Directory of Open Access Journals (Sweden)

    Sanjeev Gumber

    2010-01-01

    Full Text Available Cerebellar abiotrophy is a degenerative disorder of the central nervous system and has been reported in humans and animals. This case report documents clinical, histopathological, and immunohistochemical findings of cerebellar abiotrophy in an adult Boxer dog. A 3.5-year-old, female, tan Boxer dog presented with a six-week history of left-sided head tilt. Neurological examination and additional diagnostics during her three subsequent visits over 4.5 months revealed worsening of neurological signs including marked head pressing, severe proprioceptive deficits in all the four limbs, loss of menace response and palpebral reflex in the left eye, and a gradual seizure lasting one hour at her last visit. Based on the immunohistochemical staining for glial fibrillary acidic protein and histopathological examination of cerebellum, cerebellar cortical abiotrophy was diagnosed. This is the first reported case of cerebellar abiotrophy in a Boxer dog to our knowledge.

  8. Bilateral cerebellar activation in unilaterally challenged essential tremor

    NARCIS (Netherlands)

    Broersma, Marja; van der Stouwe, Anna M. M.; Buijink, Arthur W. G.; de Jong, Bauke M.; Groot, Paul F. C.; Speelman, Johannes D.; Tijssen, Marina A. J.; van Rootselaar, Anne-Fleur; Maurits, Natasha M.

    2016-01-01

    Essential tremor (ET) is one of the most common hyperkinetic movement disorders. Previous research into the pathophysiology of ET suggested underlying cerebellar abnormalities. In this study, we added electromyography as an index of tremor intensity to functional Magnetic Resonance Imaging

  9. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    International Nuclear Information System (INIS)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M.; Okajima, T.; Sato, H.

    2001-01-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  10. Influence of γ-irradiation on the structure and enzymatic activity of nuclear membrane in pregnant rats and their embryos

    International Nuclear Information System (INIS)

    Mirakhmedov, A.K.; Mirkhamidova, P.; Shamsutdinova, G.T.; Filatova, L.S.; Khamidov, D.Kh.; Zbarskij, I.B.; AN SSSR, Moscow

    1992-01-01

    Morphological and biochemical investigations of pregnant rats and embryo liver cell nuclei after in vivo irradiation in the doses of 1 and 2 Gy revealed their high radiosnsitivity at all stages of gestation and embryonal development. At damaging effect of radiation, we managed to observe sharp accumulation of products of lipid peroxide oxidation and suppresion of the activities of such enzymes in liver nuclei of pregnant rats and embryos. The changes of such a kind are shown to intensify with the increasing of irradiation doses. The most profound inhibition of activities of these enzymes in liver nuclei of embryos irradiated in utero was observed during the period of organogenesis (the 13th day of the development) and in fetal period of embryogenesis (the 17th day of the development), as well as the 13th and 17th day of gestation. The morphological data also demonstate the high level of cell nucleus sensitivity to the action of radiation during gestattion and embryogenesis

  11. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control

    Science.gov (United States)

    Esterman, Michael; Thai, Michelle; Okabe, Hidefusa; DeGutis, Joseph; Saad, Elyana; Laganiere, Simon E.; Halko, Mark A.

    2018-01-01

    Developing non-invasive brain stimulation interventions to improve attentional control is extremely relevant to a variety of neurologic and psychiatric populations, yet few studies have identified reliable biomarkers that can be readily modified to improve attentional control. One potential biomarker of attention is functional connectivity in the core cortical network supporting attention - the dorsal attention network (DAN). We used a network-targeted cerebellar transcranial magnetic stimulation (TMS) procedure, intended to enhance cortical functional connectivity in the DAN. Specifically, in healthy young adults we administered intermittent theta burst TMS (iTBS) to the midline cerebellar node of the DAN and, as a control, the right cerebellar node of the default mode network (DMN). These cerebellar targets were localized using individual resting-state fMRI scans. Participants completed assessments of both sustained (gradual onset continuous performance task, gradCPT) and transient attentional control (attentional blink) immediately before and after stimulation, in two sessions (cerebellar DAN and DMN). Following cerebellar DAN stimulation, participants had significantly fewer attentional lapses (lower commission error rates) on the gradCPT. In contrast, stimulation to the cerebellar DMN did not affect gradCPT performance. Further, in the DAN condition, individuals with worse baseline gradCPT performance showed the greatest enhancement in gradCPT performance. These results suggest that temporarily increasing functional connectivity in the DAN via network-targeted cerebellar stimulation can enhance sustained attention, particularly in those with poor baseline performance. With regard to transient attention, TMS stimulation improved attentional blink performance across both stimulation sites, suggesting increasing functional connectivity in both networks can enhance this aspect of attention. These findings have important implications for intervention applications

  12. Transient cerebellopontine demyelinisation revealed by MRI in acute cerebellar ataxia

    International Nuclear Information System (INIS)

    Aufricht, C.A.; Tenner, W.; Rosenmayr, F.; Stiglbauer, R.

    1990-01-01

    An eight year old boy was admitted to our ward with a history of abrupt onset of rapidly progressive gait disorder, nausea, vertigo and vomiting. The clinical as well as the laboratory findings suggested the diagnosis of acute cerebellar ataxia. Magnetic resonance imaging (MRI), however, showed marked demyelinisation in the cerebellar region and visual evoked potentials were pathologic. After immunosuppression the patient promptly improved clinically and the lesions depicted by MRI disappeared almost completely. (orig.)

  13. Tissue expression and enzymologic characterization of human prostate specific membrane antigen and its rat and pig orthologs

    Czech Academy of Sciences Publication Activity Database

    Rovenská, Miroslava; Hlouchová, Klára; Šácha, Pavel; Mlčochová, Petra; Horák, Vratislav; Zámečník, J.; Bařinka, C.; Konvalinka, Jan

    2008-01-01

    Roč. 68, č. 2 (2008), s. 171-182 ISSN 0270-4137 R&D Projects: GA MŠk 1M0508; GA ČR GA524/04/0102 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50450515 Keywords : prostate specific membrane antigen * glutamate carboxypeptidase II * animal orthologs * prostate cancer * animal model Subject RIV: CE - Biochemistry Impact factor: 3.069, year: 2008

  14. Aberrant cerebellar connectivity in bipolar disorder with psychosis.

    Science.gov (United States)

    Shinn, Ann K; Roh, Youkyung S; Ravichandran, Caitlin T; Baker, Justin T; Öngür, Dost; Cohen, Bruce M

    2017-07-01

    The cerebellum, which modulates affect and cognition in addition to motor functions, may contribute substantially to the pathophysiology of mood and psychotic disorders, such as bipolar disorder. A growing literature points to cerebellar abnormalities in bipolar disorder. However, no studies have investigated the topographic representations of resting state cerebellar networks in bipolar disorder, specifically their functional connectivity to cerebral cortical networks. Using a well-defined cerebral cortical parcellation scheme as functional connectivity seeds, we compared ten cerebellar resting state networks in 49 patients with bipolar disorder and a lifetime history of psychotic features and 55 healthy control participants matched for age, sex, and image signal-to-noise ratio. Patients with psychotic bipolar disorder showed reduced cerebro-cerebellar functional connectivity in somatomotor A, ventral attention, salience, and frontoparietal control A and B networks relative to healthy control participants. These findings were not significantly correlated with current symptoms. Patients with psychotic bipolar disorder showed evidence of cerebro-cerebellar dysconnectivity in selective networks. These disease-related changes were substantial and not explained by medication exposure or substance use. Therefore, they may be mechanistically relevant to the underlying susceptibility to mood dysregulation and psychosis. Cerebellar mechanisms deserve further exploration in psychiatric conditions, and this study's findings may have value in guiding future studies on pathophysiology and treatment of mood and psychotic disorders, in particular.

  15. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions

    International Nuclear Information System (INIS)

    Soenmezoglu, K.; Sperling, B.; Lassen, N.A.; Henriksen, T.; Tfelt-Hansen, P.

    1993-01-01

    Four patients with clinical signs of cerebellar stroke were studied twice by SPECT using 99m Tc-HMPAO as a tracer for cerebral blood flow (CBF). When first scanned 6 to 22 days after onset, all had a region of very low CBF in the symptomatic cerebellar hemisphere, and a mild to moderate CBF reduction (average 10%) in contralateral hemispheric cortex. In all four cases clinical signs of unilateral cerebellar dysfunction were still present when rescanned 1 to 4 months later and the relative CBF decrease in the contralateral cortex of the forebrain also remained. The basal ganglia contralateral to the cerebellar lesion CBF showed variable alterations. A relative CBF decrease was seen in upper part of basal ganglia in all four cases, but it was not a constant phenomenon. A relative CBF increase in both early and late SPECT scans was seen at low levels of neostriatum in two cases. The remote CBF changes in cerebellar stroke seen in the forebrain are probably caused by reduced or abolished cerebellar output. The term ''Crossed Cerebral Diaschisis'' may be used to describe these CBF changes that would appear to reflect both decreased and increased neuronal activity. (au)

  16. Verbal Memory Impairments in Children after Cerebellar Tumor Resection

    Directory of Open Access Journals (Sweden)

    Matthew P. Kirschen

    2008-01-01

    Full Text Available This study was designed to investigate cerebellar lobular contributions to specific cognitive deficits observed after cerebellar tumor resection. Verbal working memory (VWM tasks were administered to children following surgical resection of cerebellar pilocytic astrocytomas and age-matched controls. Anatomical MRI scans were used to quantify the extent of cerebellar lobular damage from each patient's resection. Patients exhibited significantly reduced digit span for auditory but not visual stimuli, relative to controls, and damage to left hemispheral lobule VIII was significantly correlated with this deficit. Patients also showed reduced effects of articulatory suppression and this was correlated with damage to the vermis and hemispheral lobule IV/V bilaterally. Phonological similarity and recency effects did not differ overall between patients and controls, but outlier patients with abnormal phonological similarity effects to either auditory or visual stimuli were found to have damage to hemispheral lobule VIII/VIIB on the left and right, respectively. We postulate that damage to left hemispheral lobule VIII may interfere with encoding of auditory stimuli into the phonological store. These data corroborate neuroimaging studies showing focal cerebellar activation during VWM paradigms, and thereby allow us to predict with greater accuracy which specific neurocognitive processes will be affected by a cerebellar tumor resection.

  17. Factors associated with the misdiagnosis of cerebellar infarction.

    Science.gov (United States)

    Masuda, Yoko; Tei, Hideaki; Shimizu, Satoru; Uchiyama, Shinichiro

    2013-10-01

    Cerebellar infarction is easily misdiagnosed or underdiagnosed. In this study, we investigated factors leading to misdiagnosis of cerebellar infarction in patients with acute ischemic stroke. Data on neurological and radiological findings from 114 consecutive patients with acute cerebellar infarction were analyzed. We investigated factors associated with misdiagnosis from the data on clinical findings. Thirty-two (28%) patients were misdiagnosed on admission. Misdiagnosis was significantly more frequent in patients below 60 years of age and in patients with vertebral artery dissection, and significantly less frequent in patients with dysarthria. It tended to be more frequent in patients with the medial branch of posterior inferior cerebellar artery territory infarction, and infrequent in patients with the medial branch of the superior cerebellar artery territory infarction. Thirty out of 32 (94%) misdiagnosed patients were seen by physicians that were not neurologists at the first visit. Twenty-four of 32 (75%) misdiagnosed patients were screened only by brain CT. However, patients were not checked by brain MRI or follow-up CT until their conditions worsened. Patients below 60 years of age and patients with vertebral artery dissection are more likely to have a cerebellar infarction misdiagnosed by physicians other than neurologists. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  18. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  19. Acute ethanol exposure inhibits silencing of cerebellar Golgi cell firing induced by granule cell axon input

    Directory of Open Access Journals (Sweden)

    Paolo eBotta

    2014-02-01

    Full Text Available Golgi cells (GoCs are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na+/K+ pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

  20. Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: effects on astrocyte adhesion.

    Science.gov (United States)

    Trentin, Andréa Gonçalves; De Aguiar, Cláudia Beatriz Nedel Mendes; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio

    2003-06-01

    The effects of thyroid hormone (T(3)) on extracellular matrix (ECM) expression and organization in cerebellar astrocytes were studied. Control astrocytes exhibit laminin immunostaining distributed in a punctate configuration and fibronectin concentrated in focal points at the cell surface. These cells attach to the substratum by membrane points, as shown by scanning microscopy, possibly by focal points stained to fibronectin. In contrast, after T(3) treatment, laminin assumes a fibrillary pattern and fibronectin becomes organized in filaments homogeneously distributed on the cell surface; the cells acquire a very flat and spread morphology. T(3) treatment also modulates astrocyte adhesion. In addition, increased expression of both laminin and fibronectin was detected by Western blot. These alterations in fibronectin and/or laminin production and organization may be involved in the flat and spread morphology and in altered adhesion. We observed that fibroblast growth factor-2 (FGF(2)) added to cultures had similar effects to those described to T(3). Neutralizing antibodies against FGF(2) reversed T(3) effects on fibronectin and laminin distribution. We also observed that cerebellar neurons co-cultured on T(3)-treated astrocytes had an increase in the number of cells and presented longer neurites. Thus, we propose a novel mechanism of the effect of thyroid hormone on cerebellar development mediated by astrocytes: T(3) may induce astrocyte secretion of growth factors, mainly FGF(2), that autocrinally stimulate astrocyte proliferation, reorganization in ECM proteins, and alterations in cell spreading and adhesion. These effects may indirectly influence neuronal development. Copyright 2003 Wiley-Liss, Inc.

  1. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    International Nuclear Information System (INIS)

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.; Rand, J.; Kiang, C.L.; Stump, D.; Berk, P.D.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of [ 3 H]-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound [ 3 H]oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation of the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 μg/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10 4 adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

  2. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure

    Czech Academy of Sciences Publication Activity Database

    Ujčíková, Hana; Brejchová, Jana; Vošahlíková, Miroslava; Kagan, Dmytro; Dlouhá, Kateřina; Sýkora, Jan; Merta, Ladislav; Drastichová, Z.; Novotný, J.; Ostašov, Pavel; Roubalová, Lenka; Parenti, M.; Hof, Martin; Svoboda, Petr

    2014-01-01

    Roč. 63, Suppl.1 (2014), S165-S176 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : GPCR * morphine * mu-OR, delta-OR and kappa-OR * rat brain cortex * adenylyl cyclase I and II * proteomic analysis Subject RIV: CE - Biochemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.293, year: 2014

  3. Quantification of 5-hydroxytryptamine1A receptors in the cerebellum of normal and x-irradiated rats during postnatal development

    International Nuclear Information System (INIS)

    Matthiessen, L.; Daval, G.; Bailly, Y.; Gozlan, H.; Hamon, M.; Verge, D.

    1992-01-01

    5-Hydroxytryptamine 1A receptors were studied in rats during the first postnatal month in the normal cerebellum and in the granule cell-deprived cerebellum produced by X-irradiation at postnatal day 5. Quantitative autoradiographic studies on sagittal sections of cerebellar vermis, using [ 125 1]BH-8-MeO-N-PAT as radioligand or specific anti-receptor antibodies, revealed that 5-hydroxytryptamine 1A receptors existed in the molecular/Purkinje cell layer but at variable density from one lobule to another. Thus, in both normal and X-irradiated rats, the posterior lobules were more heavily labelled than the anterior ones, and the density of 5-hydroxytryptamine 1A sites decreased progressively in all the cerebellar folia down to hardly detectable levels at postnatal day 21. However, the intensity of labelling remained higher at postnatal day 8 and postnatal day 12 in X-irradiated rats than in age-paired controls. Measurements of [ 3 H]8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] specific binding to membranes from whole cerebellum confirmed that the density of 5-hydroxytryptamine 1A sites per mg membrane protein (B max ) was higher in X-irradiated animals than in age-paired controls. However, on a ''per cerebellum'' basis, no significant difference could be detected between the total number of 5-hydroxytryptamine 1A sites, which progressively increased in both control and X-irradiated animals during the first postnatal month. These results therefore show that 5-hydroxytryptamine 1A receptors are not located on developing granule cells. (author)

  4. Structural alterations of the DNA in cerebellar neurons after whole-brain irradiation

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Winstein, R.E.; Kaufman, K.; Ritter, P.

    1981-01-01

    Male Sprague-Dawley rats weighing 260 to 280 g were whole-brain-irradiated with x-ray doses of 433, 867, 1083, 1300, 1516, and 1713 rad. Over the next 2.25 years rats were killed at various times, and the state of the DNA in their cerebellar neurons was examined by sedimentation through alkaline sucrose gradients in reorienting zonal rotors. The data were analyzed as the percentage of the sedimenting DNA with sedimentation coefficients greater than 300 S, an arbitrarily selected category of no defined molecular significance. The general pattern at all doses consisted first of a slow return to the unirradiated DNA state that was relatively dose dependent. This was followed by an increase in the amount of DNA sedimenting >300 S; both the extent and time course of this increase appeared to be dose dependent. Finally, the DNA degraded at a relatively dose independent rate. There was little change in the neuronal DNA from unirradiated rats during this study. The data suggest that increases in the amount of fast-sedimenting DNA observed 30 to 80 weeks after low to moderate doses of whole-brain irradiation represent a type of DNA damage rather than repair and that this damage ultimately results in degradation of the neuronal DNA and death of the rat

  5. Sensory coding by cerebellar mossy fibres through inhibition-driven phase resetting and synchronisation.

    Directory of Open Access Journals (Sweden)

    Tahl Holtzman

    Full Text Available Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex.

  6. Sensory Coding by Cerebellar Mossy Fibres through Inhibition-Driven Phase Resetting and Synchronisation

    Science.gov (United States)

    Holtzman, Tahl; Jörntell, Henrik

    2011-01-01

    Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex. PMID:22046297

  7. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    Directory of Open Access Journals (Sweden)

    Egidio eD‘Angelo

    2013-05-01

    Full Text Available The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through double feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of the neuron. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and extension of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.

  8. Comparison of high affinity binding of {sup 3}H-proadifen and {sup 3}H-(-)-cocaine t rat liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, S.B. [Astra Arcus AB, Dept. of Neuropharmacology, Soedertaelje (Sweden)

    1995-06-01

    The characteristics of the binding of {sup 3}H-proadifen to rat liver membranes were studied and compared to those of {sup 3}H-cocaine. It was found that {sup 3}H-proadifen was bound reversibly with high affinity (K{sub D}=1.8{+-}0.5 nM) and large capacity (B{sub max}=2010{+-}340 pmol/g wet tissue) to liver membranes. The corresponding values for the {sup 3}H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of {sup 3}H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 {mu}M CdCl{sub 2} in the incubation buffer it was possible to differentiate between two {sup 3}H-cocaine binding sites with K{sub d} values of 1.6 and 7.7 nM and B{sub max} values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of {sup 3}H-proadifen and {sup 3}H-cocaine inhibited the binding of {sup 3}H-proadifen (IC{sub 50}=10 nM) and proadifen that of {sup 3}H-cocaine (IC{sub 50}=1 nM). There was a high correlation coefficient (r{sub r}=0.972; P<0.01; n=12) in the Spearman rank test between the inhibitory potencies of compounds examined in both systems. Beside some potent alaproclate analogues a couple of compounds had moderately high affinity (IC{sub 50}=100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl{sub 2}, ZnCl{sub 2} and CuCl{sub 2} inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd{sup 2+} on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15{mu}M. The similarity of the characteristics of the binding of these ligands with that of {sup 3}H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.).

  9. Increased 3-nitrotyrosine levels in mitochondrial membranes and impaired respiratory chain activity in brain regions of adult female rats submitted to daily vitamin A supplementation for 2 months.

    Science.gov (United States)

    de Oliveira, Marcos Roberto; Lorenzi, Rodrigo; Schnorr, Carlos Eduardo; Morrone, Maurílio; Moreira, José Cláudio Fonseca

    2011-10-10

    Vitamin A supplementation among women is a common habit worldwide in an attempt to slow aging progression due to the antioxidant potential attributed to retinoids. Nonetheless, vitamin A elicits a myriad of side effects that result from either therapeutic or inadvertent intake at varying doses for different periods. The mechanism behind such effects remains to be elucidated. In this regard, we performed the present work aiming to investigate the effects of vitamin A supplementation at 100, 200, or 500IU/kgday(-1) for 2 months on female rat brain, analyzing tissue lipid peroxidation levels, antioxidant enzyme activities (both Cu/Zn-superoxide dismutase - SOD - and Mn-SOD); glutathione S-transferase (GST) and monoamine oxidase (MAO) enzyme activity; mitochondrial respiratory chain activity and redox parameters in mitochondrial membranes, as well as quantifying α- and β-synucleins, β-amyloid peptide(1-40), immunoglobulin heavy-chain binding protein/78kDa glucose-regulated protein (BiP/GRP78), receptor for advanced glycation end products (RAGE), D2 receptor, and tumor necrosis factor-α (TNF-α) contents in rat frontal cortex, hippocampus, striatum, and cerebellum. We observed increased lipid peroxidation marker levels, altered Cu/Zn-SOD and Mn-SOD enzyme activities, mitochondrial nitrosative stress, and impaired respiratory chain activity in such brain regions. On the other hand, we did not find any change in MAO and GST enzyme activities, and on α- and β-synucleins, β-amyloid peptide(1-40), GRP78/BiP, RAGE, D2 receptor, and TNF-α contents. Importantly, we did not observed any evidence regarding an antioxidant effect of such vitamin at low doses in this experimental model. The use of vitamin A as an antioxidant therapy among women needs to be reexamined. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Long-lasting alterations in membrane properties, K+ currents and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Igor eSpigelman

    2012-06-01

    Full Text Available Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known about the molecular mechanisms underlying alcohol-induced neuroadaptive changes in NAcc function. The aim of this study was to investigate the effects of chronic intermittent ethanol (CIE treatment, a rat model of alcohol withdrawal and dependence, on intrinsic electrical membrane properties and glutamatergic synaptic transmission of medium spiny neurons (MSNs in the NAcc core during protracted withdrawal. We show that CIE treatment followed by prolonged withdrawal increased the inward rectification of MSNs observed at hyperpolarized potentials. In addition, MSNs from CIE-treated animals displayed a lower input resistance, faster action potentials (APs and larger fast afterhyperpolarizations (fAHPs than MSNs from vehicle-treated animals, all suggestive of increases in K+-channel conductances. Significant increases in the Cs+-sensitive inwardly-rectifying K+-current accounted for the increased input resistance, while increases in the A-type K+-current accounted for the faster APs and increased fAHPs in MSNs from CIE rats. We also show that the amplitude and the conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR-mediated mEPSCs were enhanced in CIE-treated animals due to an increase in a small fraction of functional postsynaptic GluA2-lacking AMPARs. These long-lasting modifications of excitability and excitatory synaptic receptor function of MSNs in the NAcc core could play a critical role in the neuroadaptive changes underlying alcohol withdrawal and dependence.

  11. Microvascular anatomy of the cerebellar parafloccular perforating space.

    Science.gov (United States)

    Sosa, Pablo; Dujovny, Manuel; Onyekachi, Ibe; Sockwell, Noressia; Cremaschi, Fabián; Savastano, Luis E

    2016-02-01

    The cerebellopontine angle is a common site for tumor growth and vascular pathologies requiring surgical manipulations that jeopardize cranial nerve integrity and cerebellar and brainstem perfusion. To date, a detailed study of vessels perforating the cisternal surface of the middle cerebellar peduncle-namely, the paraflocculus or parafloccular perforating space-has yet to be published. In this report, the perforating vessels of the anterior inferior cerebellar artery (AICA) in the parafloccular space, or on the cisternal surface of the middle cerebellar peduncle, are described to elucidate their relevance pertaining to microsurgery and the different pathologies that occur at the cerebellopontine angle. Fourteen cadaveric cerebellopontine cisterns (CPCs) were studied. Anatomical dissections and analysis of the perforating arteries of the AICA and posterior inferior cerebellar artery at the parafloccular space were recorded using direct visualization by surgical microscope, optical histology, and scanning electron microscope. A comprehensive review of the English-language and Spanish-language literature was also performed, and findings related to anatomy, histology, physiology, neurology, neuroradiology, microsurgery, and endovascular surgery pertaining to the cerebellar flocculus or parafloccular spaces are summarized. A total of 298 perforating arteries were found in the dissected specimens, with a minimum of 15 to a maximum of 26 vessels per parafloccular perforating space. The average outer diameter of the cisternal portion of the perforating arteries was 0.11 ± 0.042 mm (mean ± SD) and the average length was 2.84 ± 1.2 mm. Detailed schematics and the surgical anatomy of the perforating vessels at the CPC and their clinical relevance are reported. The parafloccular space is a key entry point for many perforating vessels toward the middle cerebellar peduncle and lateral brainstem, and it must be respected and protected during surgical approaches to the

  12. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    Science.gov (United States)

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  13. Local changes in the excitability of the cerebellar cortex produce spatially restricted changes in complex spike synchrony.

    Science.gov (United States)

    Marshall, Sarah P; Lang, Eric J

    2009-11-11

    Complex spike (CS) synchrony patterns are modulated by the release of GABA within the inferior olive (IO). The GABAergic projection to most of the IO arises from the cerebellar nuclei, which are themselves subject to strong inhibitory control by Purkinje cells in the overlying cortex. Moreover, the connections between the IO and cerebellum are precisely aligned, raising the possibility that each cortical region controls its own CS synchrony distribution. This possibility was tested using multielectrode recordings of CSs and simple spikes (SSs) in crus 2a of anesthetized rats. Picrotoxin or muscimol was applied to the cerebellar cortex at the borders of the recording array. These drugs induced significant changes in CS synchrony and in CS and SS firing rates and changes in post-CS pauses and modulation of SS activity. The level of CS synchrony was correlated with SS firing rate in control, and application of picrotoxin increased both. In contrast, muscimol decreased CS synchrony. Furthermore, when picrotoxin was applied only at the lateral edge of the array, changes in CS synchrony occurred sequentially across the recording array, with cells located in the lateral half of the array having earlier and larger changes in CS synchrony than cells in the medial half. The results indicate that a double-inhibitory feedback circuit from Purkinje cells to the IO provides a mechanism by which SS activity may regulate CS synchrony. Thus, CS synchrony may be a physiologically controlled parameter of cerebellar activity, with the cerebellum and IO comprising a series of self-updating circuits.

  14. Distributed Cerebellar Motor Learning; a Spike-Timing-Dependent Plasticity Model

    Directory of Open Access Journals (Sweden)

    Niceto Rafael Luque

    2016-03-01

    Full Text Available Deep cerebellar nuclei neurons receive both inhibitory (GABAergic synaptic currents from Purkinje cells (within the cerebellar cortex and excitatory (glutamatergic synaptic currents from mossy fibres. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP located at different cerebellar sites (parallel fibres to Purkinje cells, mossy fibres to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibres to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP and inhibitory (i-STDP mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibres to Purkinje cells synapses and then transferred to mossy fibres to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation towards optimising its working range.

  15. Desensitization of γ-aminobutyric acid receptor from rat brain: two distinguishable receptors on the same membrane

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    Transmembrane chloride flux mediated by γ-aminobutyric acid (GABA) receptor can be measured with a mammalian brain homogenate preparation containing sealed membrane vesicles. The preparation can be mixed rapidly with solutions of defined composition. Influx of 36 Cl - tracer initiated by mixing with GABA was rapidly terminated by mixing with bicuculline methiodide. The decrease in the isotope influx measurement due to prior incubation of the vesicle preparation with GABA, which increased with preincubation time and GABA concentration, was attributed to desensitization of the GABA receptor. By varying the time of preincubation with GABA between 10 ms and 50 s with quench-flow technique, the desensitization rates could be measured over their whole time course independently of the chloride ion flux rate. Most of the receptor activity decreased in a fast phase of desensitization complete in 200 ms at saturation with GABA. Remaining activity was desensitized in a few seconds. These two phases of desensitization were each kinetically first order and were shown to correspond with two distinguishable GABA receptors on the same membrane. The receptor activities could be estimated, and the faster desensitizing receptor was the predominant one, giving on average ca. 80% of the total activity. The half-response concentrations were similar, 150 and 114 μM for the major and minor receptors, respectively. The dependence on GABA concentration indicated that desensitization is mediated by two GABA binding sites. The fast desensitization rate was approximately 20-fold faster than previously reported rates while the slower desensitization rate was slightly faster than previously reported rates

  16. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  17. Does cerebellar neuronal integrity relate to cognitive ability?

    International Nuclear Information System (INIS)

    Rae, C.; Lee, M.; Dixon, R.M.; Blamire, A.; Thompson, C.; Styles, P.; Radda, G.K.; University of Sydney, NSW; Karmiloff-Smith, A.; Grant, J.

    1998-01-01

    Full text: Magnetic resonance spectroscopy (MRS) allows the non-invasive measurement of metabolite levels in the brain. One of these is N-acetylaspartate (NA), a molecule found solely in neurones, synthesised there by mitochondria. This compound can be considered as a marker of 1) neuronal density and 2) neuronal mitochondria function. We recently completed a joint MRS and neuropsychological investigation of Williams-Beuren syndrome (WBS), a rare (1/20,000) autosomal dominant disorder caused by a deletion which includes the elastin locus and LIM-kinase. The syndrome has an associated behavioural and cognitive profile which includes hyperactivity, hyperacusis and excessive sociability. Spatial skills are severely affected, while verbal skills are left relatively intact Our investigation showed loss of NA from the cerebellum in WBS compared with normal controls, with the subject population as a whole displaying a continuum of cerebellar NA concentration. Ability at cognitive tests, including the Weschler IQ scale and various verbal and spatial tests, was shown to correlate significantly and positively with the concentration of NA in the cerebellum. This finding can be interpreted in one of two ways: 1. Our sampling of cerebellar metabolite levels represents a 'global' sampling of total brain neuronal density and, as such, is independent of cerebellar integrity. 2. Cerebellar neuronal integrity is associated with performance at cognitive tests. If the latter interpretation is shown to be the case, it will have important implications for our current understanding of cerebellar function. Copyright (1998) Australian Neuroscience Society

  18. Plasma membrane ordering agent pluronic F-68 (PF-68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats

    Science.gov (United States)

    Clarke, M. S.; Prendergast, M. A.; Terry, A. V. Jr

    1999-01-01

    A substantial body of evidence indicates that aged-related changes in the fluidity and lipid composition of the plasma membrane contribute to cellular dysfunction in humans and other mammalian species. In the CNS, reductions in neuronal plasma membrane order (PMO) (i.e., increased plasma membrane fluidity) have been attributed to age as well as the presence of the beta-amyloid peptide-25-35, known to play an important role in the neuropathology of Alzheimer's disease (AD). These PMO increases may influence neurotransmitter synthesis, receptor binding, and second messenger systems as well as signal transduction pathways. The effects of neuronal PMO on learning and memory processes have not been adequately investigated, however. Based on the hypothesis that an increase in PMO may alter a number of aspects of synaptic transmission, we investigated several neurochemical and behavioral effects of the membrane ordering agent, PF-68. In cell culture, PF-68 (nmoles/mg SDS extractable protein) reduced [3H]norepinephrine (NE) uptake into differentiated PC-12 cells as well as reduced nicotine stimulated [3H]NE release. The compound (800-2400 microg/kg, i.p., resulting in nmoles/mg SDS extractable protein in the brain) decreased step-through latencies and increased the frequencies of crossing into the unsafe side of the chamber in inhibitory avoidance training. In the Morris water maze, PF-68 increased the latencies and swim distances required to locate a hidden platform and reduced the time spent and distance swam in the previous target quadrant during transfer (probe) trials. PF-68 did not impair performance of a well-learned working memory task, the rat delayed stimulus discrimination task (DSDT), however. Studies with 14C-labeled PF-68 indicated that significant (pmoles/mg wet tissue) levels of the compound entered the brain from peripheral (i.p.) injection. No PF-68 related changes were observed in swim speeds or in visual acuity tests in water maze experiments, rotorod

  19. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Xinhua Zhou

    2015-01-01

    Full Text Available Edaravone (EDA is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA- induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities.

  20. Olivary degeneration after cerebellar or brain stem haemorrhage: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan) Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Hasuo, K. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan)); Uchida, K. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Matsumoto, S. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan)); Tsukamoto, Y. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Ohno, M. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Masuda, K. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan))

    1993-05-01

    Magnetic resonance (MR) images of seven patients with olivary degeneration caused by cerebellar or brain stem haemorrhages were reviewed. In four patients with cerebellar haemorrhage, old haematomas were identified as being located in the dentate nucleus; the contralateral inferior olivary nuclei were hyperintense on proton-density- and T2-weighted images. In two patients with pontine haemorrhages, the old haematomas were in the tegmentum and the ipsilateral inferior olivary nuclei, which were hyperintense. In one case of midbrain haemorrhage, the inferior olivary nuclei were hyperintense bilaterally. The briefest interval from the ictus to MRI was 2 months. Hypertrophic olivary nuclei were observed only at least 4 months after the ictus. Olivary degeneration after cerebellar or brain stem haemorrhage should not be confused with ischaemic, neoplastic, or other primary pathological conditions of the medulla. (orig.)

  1. Early childhood obesity is associated with compromised cerebellar development.

    Science.gov (United States)

    Miller, Jennifer L; Couch, Jessica; Schwenk, Krista; Long, Michelle; Towler, Stephen; Theriaque, Douglas W; He, Guojun; Liu, Yijun; Driscoll, Daniel J; Leonard, Christiana M

    2009-01-01

    As part of a study investigating commonalities between Prader-Willi syndrome (PWS-a genetic imprinting disorder) and early-onset obesity of unknown etiology (EMO) we measured total cerebral and cerebellar volume on volumetric magnetic resonance imaging (MRI) images. Individuals with PWS (N = 16) and EMO (N = 12) had smaller cerebellar volumes than a control group of 15 siblings (p = .02 control vs. EMO; p = .0005 control vs. PWS), although there was no difference among the groups in cerebral volume. Individuals with PWS and EMO also had impaired cognitive function: general intellectual ability (GIA): PWS 65 +/- 25; EMO 81 +/- 19; and Controls 112 +/- 13 (p cognitive development, these results raise the possibility that early childhood obesity retards both cerebellar and cognitive development.

  2. Distal anterior inferior cerebellar artery syndrome after acoustic neuroma surgery.

    Science.gov (United States)

    Hegarty, Joseph L; Jackler, Robert K; Rigby, Peter L; Pitts, Lawrence H; Cheung, Steven W

    2002-07-01

    To define a clinicopathologic syndrome associated with persistent cerebellar dysfunction after acoustic neuroma (AN) excision. Case series derived from radiographic and clinical chart review. Tertiary referral center. In 12 patients with AN, persistent cerebellar dysfunction developed after AN removal. Each case demonstrated abnormality in the ipsilateral cerebellar peduncle on postoperative magnetic resonance imaging. Cerebellar function and ambulatory status over the first postoperative year. On magnetic resonance imaging scans, the extent of cerebellar peduncle infarcts was variable. It ranged from focal brain injury (2 cm) spanning the full thickness of the peduncle. Peduncular infarcts were associated with large tumor size (average 3.8 cm, range 2.0-5.5 cm diameter). The long-term functional outcomes (>1 yr) varied. Dysmetria was unchanged or improved in over half of the patients (6 of 11 patients). Gait recovered to normal or to preoperative levels in 5 patients. In the 6 patients with persistent impaired mobility, 2 had mild gait disturbance, 3 required regular use of a cane, and 1 has been dependent on a walker. One patient had sustained mild motor weakness. Three of 11 patients remained dependent on others for activities of daily living. Peduncle injury most likely stems from interruption of distal branches of the anterior inferior cerebellar artery (AICA). These small vessels are intimately related to the capsule of the tumor and may supply both the neoplasm and the brain parenchyma. It has long been recognized that interruption of the proximal segment of the AICA results in severe injury to the pons, with devastating neurologic sequelae. A limited AICA syndrome caused by loss of its distal ramifications seems a more plausible explanation for peduncular infarction than either venous insufficiency or direct surgical trauma.

  3. Recent Advances in Cerebellar Ischemic Stroke Syndromes Causing Vertigo and Hearing Loss.

    Science.gov (United States)

    Kim, Hyun-Ah; Yi, Hyon-Ah; Lee, Hyung

    2016-12-01

    Cerebellar ischemic stroke is one of the common causes of vascular vertigo. It usually accompanies other neurological symptoms or signs, but a small infarct in the cerebellum can present with vertigo without other localizing symptoms. Approximately 11 % of the patients with isolated cerebellar infarction simulated acute peripheral vestibulopathy, and most patients had an infarct in the territory of the medial branch of the posterior inferior cerebellar artery (PICA). A head impulse test can differentiate acute isolated vertigo associated with PICA territory cerebellar infarction from more benign disorders involving the inner ear. Acute hearing loss (AHL) of a vascular cause is mostly associated with cerebellar infarction in the territory of the anterior inferior cerebellar artery (AICA), but PICA territory cerebellar infarction rarely causes AHL. To date, at least eight subgroups of AICA territory infarction have been identified according to the pattern of neurotological presentations, among which the most common pattern of audiovestibular dysfunction is the combined loss of auditory and vestibular functions. Sometimes acute isolated audiovestibular loss can be the initial symptom of impending posterior circulation ischemic stroke (particularly within the territory of the AICA). Audiovestibular loss from cerebellar infarction has a good long-term outcome than previously thought. Approximately half of patients with superior cerebellar artery territory (SCA) cerebellar infarction experienced true vertigo, suggesting that the vertigo and nystagmus in the SCA territory cerebellar infarctions are more common than previously thought. In this article, recent findings on clinical features of vertigo and hearing loss from cerebellar ischemic stroke syndrome are summarized.

  4. File list: DNS.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  5. File list: Pol.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  6. File list: Pol.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  7. File list: Unc.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: His.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  9. File list: His.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  10. File list: His.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  11. File list: Oth.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  12. File list: Pol.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  13. File list: Oth.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  14. File list: ALL.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  15. File list: Oth.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  16. File list: Unc.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  17. File list: Unc.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  18. File list: ALL.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  19. File list: His.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  20. File list: DNS.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  1. File list: Oth.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  2. File list: ALL.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685878,SRX685882,SRX685877,SRX685880,SRX685883 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  3. File list: ALL.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  4. File list: DNS.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  5. Surgical approach to posterior inferior cerebellar artery aneurysms.

    Science.gov (United States)

    La Pira, Biagia; Sturiale, Carmelo Lucio; Della Pepa, Giuseppe Maria; Albanese, Alessio

    2018-02-01

    The far-lateral is a standardised approach to clip aneurysms of the posterior inferior cerebellar artery (PICA). Different variants can be adopted to manage aneurysms that differ in morphology, topography, ruptured status, cerebellar swelling and surgeon preference. We distinguished five paradigmatic approaches aimed to manage aneurysms that are: proximal unruptured; proximal ruptured requiring posterior fossa decompression (PFD); proximal ruptured not requiring PFD; distal unruptured; distal ruptured. Preoperative planning in the setting of PICA aneurysm surgery is of paramount importance to perform an effective and safe procedure, to ensure an adequate PFD and optimal proximal control before aneurysm manipulation.

  6. Dyke–Davidoff–Masson syndrome with crossed cerebellar atrophy

    Directory of Open Access Journals (Sweden)

    Sanjay M. Khaladkar

    2017-09-01

    Full Text Available Dyke–Davidoff–Masson syndrome is a rare condition with classical, clinical and radiological changes – mental retardation, hemiparesis, facial asymmetry, seizures and cerebral hemiatrophy with calvarial changes. Contralateral cerebellar atrophy is rare and occurs if insult occurs after 1 month of age. We report a case of a 6-year-old female child presenting with right-sided hemiparesis, convulsions and left cerebral hemiatrophy with an old infarct in left middle cerebral artery (MCA territory, ipsilateral calvarial thickening and right (crossed cerebellar atrophy.

  7. Biliary atresia and cerebellar hypoplasia in polysplenia syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Vanderdood, Kurt; Op de Beeck, Bart; Desprechins, Brigitte; Osteaux, Michel [Department of Radiology, Free University Brussels, AZ-VUB, Laarbeeklaan 101, 1090 Brussels (Belgium)

    2003-09-01

    We report a 3.5-month-old boy with polysplenia syndrome who demonstrated hemiazygos continuation of the inferior vena cava, extrahepatic biliary atresia, multiple splenunculi, bowel malrotation, and the rare finding of brainstem and cerebellar hypoplasia. A possible pathogenesis for cerebellar hypoplasia in this syndrome is suggested after review of the literature. The importance of seeking associated anomalies in biliary atresia, which may be possible indicators of polysplenia syndrome, is stressed since these patients need appropriate management when surgery is considered. (orig.)

  8. Quantification of 5-hydroxytryptamine[sub 1A] receptors in the cerebellum of normal and x-irradiated rats during postnatal development

    Energy Technology Data Exchange (ETDEWEB)

    Matthiessen, L; Daval, G; Bailly, Y [Pierre et Marie Curie Univ., Paris (France). Centre National de la Recherche Scientifique, UA; Gozlan, H; Hamon, M; Verge, D [INSERM, Paris (France). Lab. de Neurobiologie Cellulaire et Fonctionnelle

    1992-11-01

    5-Hydroxytryptamine[sub 1A] receptors were studied in rats during the first postnatal month in the normal cerebellum and in the granule cell-deprived cerebellum produced by X-irradiation at postnatal day 5. Quantitative autoradiographic studies on sagittal sections of cerebellar vermis, using [[sup 125]1]BH-8-MeO-N-PAT as radioligand or specific anti-receptor antibodies, revealed that 5-hydroxytryptamine[sub 1A] receptors existed in the molecular/Purkinje cell layer but at variable density from one lobule to another. Thus, in both normal and X-irradiated rats, the posterior lobules were more heavily labelled than the anterior ones, and the density of 5-hydroxytryptamine[sub 1A] sites decreased progressively in all the cerebellar folia down to hardly detectable levels at postnatal day 21. However, the intensity of labelling remained higher at postnatal day 8 and postnatal day 12 in X-irradiated rats than in age-paired controls. Measurements of [[sup 3]H]8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] specific binding to membranes from whole cerebellum confirmed that the density of 5-hydroxytryptamine[sub 1A] sites per mg membrane protein (B[sub max]) was higher in X-irradiated animals than in age-paired controls. However, on a ''per cerebellum'' basis, no significant difference could be detected between the total number of 5-hydroxytryptamine[sub 1A] sites, which progressively increased in both control and X-irradiated animals during the first postnatal month. These results therefore show that 5-hydroxytryptamine[sub 1A] receptors are not located on developing granule cells. (author).

  9. Dyslexic Children Show Atypical Cerebellar Activation and Cerebro-Cerebellar Functional Connectivity in Orthographic and Phonological Processing.

    Science.gov (United States)

    Feng, Xiaoxia; Li, Le; Zhang, Manli; Yang, Xiujie; Tian, Mengyu; Xie, Weiyi; Lu, Yao; Liu, Li; Bélanger, Nathalie N; Meng, Xiangzhi; Ding, Guosheng

    2017-04-01

    Previous neuroimaging studies have found atypical cerebellar activation in individuals with dyslexia in either motor-related tasks or language tasks. However, studies investigating atypical cerebellar activation in individuals with dyslexia have mostly used tasks tapping phonological processing. A question that is yet unanswered is whether the cerebellum in individuals with dyslexia functions properly during orthographic processing of words, as growing evidence shows that the cerebellum is also involved in visual and spatial processing. Here, we investigated cerebellar activation and cerebro-cerebellar functional connectivity during word processing in dyslexic readers and typically developing readers using tasks that tap orthographic and phonological codes. In children with dyslexia, we observed an abnormally higher engagement of the bilateral cerebellum for the orthographic task, which was negatively correlated with literacy measures. The greater the reading impairment was for young dyslexic readers, the stronger the cerebellar activation was. This suggests a compensatory role of the cerebellum in reading for children with dyslexia. In addition, a tendency for higher cerebellar activation in dyslexic readers was found in the phonological task. Moreover, the functional connectivity was stronger for dyslexic readers relative to typically developing readers between the lobule VI of the right cerebellum and the left fusiform gyrus during the orthographic task and between the lobule VI of the left cerebellum and the left supramarginal gyrus during the phonological task. This pattern of results suggests that the cerebellum compensates for reading impairment through the connections with specific brain regions responsible for the ongoing reading task. These findings enhance our understanding of the cerebellum's involvement in reading and reading impairment.

  10. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  11. Drug Clearance from Cerebrospinal Fluid Mediated by Organic Anion Transporters 1 (Slc22a6) and 3 (Slc22a8) at Arachnoid Membrane of Rats.

    Science.gov (United States)

    Zhang, Zhengyu; Tachikawa, Masanori; Uchida, Yasuo; Terasaki, Tetsuya

    2018-03-05

    Although arachnoid mater epithelial cells form the blood-arachnoid barrier (BAB), acting as a blood-CSF interface, it has been generally considered that the BAB is impermeable to water-soluble substances and plays a largely passive role. Here, we aimed to clarify the function of transporters at the BAB in regulating CSF clearance of water-soluble organic anion drugs based on quantitative targeted absolute proteomics (QTAP) and in vivo analyses. Protein expression levels of 61 molecules, including 19 ATP-binding-cassette (ABC) transporters and 32 solute-carrier (SLC) transporters, were measured in plasma membrane fraction of rat leptomeninges using QTAP. Thirty-three proteins were detected; others were under the quantification limits. Expression levels of multidrug resistance protein 1 (Mdr1a/P-gp/Abcb1a) and breast cancer resistance protein (Bcrp/Abcg2) were 16.6 and 3.27 fmol/μg protein (51.9- and 9.82-fold greater than in choroid plexus, respectively). Among those organic anion transporters detected only at leptomeninges, not choroid plexus, organic anion transporter 1 (oat1/Slc22a6) showed the greatest expression (2.73 fmol/μg protein). On the other hand, the protein expression level of oat3 at leptomeninges was 6.65 fmol/μg protein, and the difference from choroid plexus was within two-fold. To investigate oat1's role, we injected para-aminohippuric acid (PAH) with or without oat1 inhibitors into cisterna magna (to minimize the contribution of choroid plexus function) of rats. A bulk flow marker, FITC-inulin, was not taken up from CSF up to 15 min, whereas uptake clearance of PAH was 26.5 μL/min. PAH uptake was completely blocked by 3 mM cephalothin (inhibits both oat1 and oat3), while 17% of PAH uptake was inhibited by 0.2 mM cephalothin (selectively inhibits oat3). These results indicate that oat1 and oat3 at the BAB provide a distinct clearance pathway of organic anion drugs from CSF independently of choroid plexus.

  12. Hydrogen-rich saline controls remifentanil-induced hypernociception and NMDA receptor NR1 subunit membrane trafficking through GSK-3β in the DRG in rats.

    Science.gov (United States)

    Zhang, Linlin; Shu, Ruichen; Wang, Chunyan; Wang, Haiyun; Li, Nan; Wang, Guolin

    2014-07-01

    Although NMDAR trafficking mediated by GSK-3β involvement in transmission of pronociceptive messages in the spinal cord has been confirmed by our previous studies, whether NMDAR trafficking is implicated in peripheral sensitization remains equivocal. It is demonstrated that inflammation is associated with spinal NMDAR-containing nociceptive neurons activation and the maintenance of opioid induced pain hypersensitivity. However, whether and how hydrogen-rich saline, as an effective anti-inflammatory drug, could prevent hyperalgesia through affecting peripheral sensitization caused by NMDAR activation remains to be explored. To test these effects, hydrogen-rich saline (2.5, 5 or 10 ml/kg) was administrated intraperitoneally after remifentanil infusion, NMDAR antagonist MK-801 or GSK-3β inhibitor TDZD-8 was administrated intravenously before remifentanil infusion in rats. We examined time course of hydrogen concentration in blood after hydrogen-rich saline administration. Mechanical and thermal hyperalgesia were evaluated by measuring PWT and PWL for 48 post-infusion hours, respectively. Western blotting and real-time qPCR assay were applied to analyze the NR1 membrane trafficking, GSK-3β expression and activity in DRG. Inflammatory mediators (TNF-α, IL-1β, and IL-6) expressions in DRG were also analyzed. We found that NR1 membrane trafficking in DRG increased, possibly due to GSK-3β activation after remifentanil infusion. We also discovered that hydrogen-rich saline not 2.5 ml/kg but 5 and 10 ml/kg could dose-dependently attenuate mechanical and thermal hyperalgesia without affecting baseline nociceptive threshold, reduce expressions of inflammatory mediators (TNF-α, IL-1β, and IL-6) and decrease NR1 trafficking mediated by GSK-3β, and minimal effective concentration was observed to be higher than 10 μmol/L, namely peak concentration in arterial blood after administration of HRS 2.5 ml/kg without any influence on hyperalgesia. Our results indicated that

  13. Protection by meningococcal outer membrane protein PorA-specific antibodies and a serogroup B capsular polysaccharide-specific antibody in complement-sufficient and C6-deficient infant rats.

    Science.gov (United States)

    Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena

    2006-05-01

    The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.

  14. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    Science.gov (United States)

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  15. Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3β pathway and preserving mitochondrial membrane potential.

    Directory of Open Access Journals (Sweden)

    Eleonora Bassino

    Full Text Available Catestatin (Cst is a 21-amino acid peptide deriving from Chromogranin A. Cst exerts an overall protective effect against an excessive sympathetic stimulation of cardiovascular system, being able to antagonize catecholamine secretion and to reduce their positive inotropic effect, by stimulating the release of nitric oxide (NO from endothelial cells. Moreover, Cst reduces ischemia/reperfusion (I/R injury, improving post-ischemic cardiac function and cardiomyocyte survival. To define the cardioprotective signaling pathways activated by Cst (5 nM we used isolated adult rat cardiomyocytes undergoing simulated I/R. We evaluated cell viability rate with propidium iodide labeling and mitochondrial membrane potential (MMP with the fluorescent probe JC-1. The involvement of Akt, GSK3β, eNOS and phospholamban (PLN cascade was studied by immunofluorescence. The role of PI3K-Akt/NO/cGMP pathway was also investigated by using the pharmacological blockers wortmannin (Wm, L-NMMA and ODQ. Our experiments revealed that Cst increased cell viability rate by 65% and reduced cell contracture in I/R cardiomyocytes. Wm, L-NMMA and ODQ limited the protective effect of Cst. The protective outcome of Cst was related to its ability to maintain MMP and to increase AktSer473, GSK3βSer9, PLNThr17 and eNOSSer1179 phosphorylation, while treatment with Wm abolished these effects. Thus, the present results show that Cst is able to exert a direct action on cardiomyocytes and give new insights into the molecular mechanisms involved in its protective effect, highlighting the PI3K/NO/cGMP pathway as the trigger and the MMP preservation as the end point of its action.

  16. Expression of progesterone receptor membrane component-2 within the immature rat ovary and its role in regulating mitosis and apoptosis of spontaneously immortalized granulosa cells.

    Science.gov (United States)

    Griffin, Daniel; Liu, Xiufang; Pru, Cindy; Pru, James K; Peluso, John J

    2014-08-01

    Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular (3)H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development. © 2014 by the Society for the Study of Reproduction, Inc.

  17. Prenatal MR imaging features of isolated cerebellar haemorrhagic lesions

    International Nuclear Information System (INIS)

    Martino, Francesca; Malova, Mariya; Ramenghi, Luca A.; Cesaretti, Claudia; Parazzini, Cecilia; Doneda, Chiara; Righini, Andrea; Rossi, Andrea

    2016-01-01

    Prenatal features of isolated cerebellar haemorrhagic lesions have not been sufficiently characterised. We aimed to better define their MR imaging characteristics, documenting the location, extension, evolution stage and anatomic sequelae, and to better understand cerebellar haemorrhage pathophysiology. We screened our foetal MR imaging database (3200 cases) for reports of haemorrhagic lesions affecting only the cerebellum (without any supratentorial bleeding or other clastic lesions), defined as one of the following: T2-weighted hypointense or mixed hypo-/hyperintense signal; rim of T2-weighted hypointense signal covering the surface of volume-reduced parenchyma; T1-weighted hyperintense signal; increased DWI signal. Seventeen cases corresponded to the selection criteria. All lesions occurred before the 26th week of gestation, with prevalent origin from the peripheral-caudal portion of the hemispheres and equal frequency of unilateral/bilateral involvement. The caudal vermis appeared affected in 2/3 of cases, not in all cases confirmed postnatally. Lesions evolved towards malformed cerebellar foliation. The aetiology and pathophysiology were unknown, although in a subset of cases intra- and extracranial venous engorgement seemed to play a key role. Onset from the peripheral and caudal portion of the hemispheres seems characteristic of prenatal cerebellar haemorrhagic lesions. Elective involvement of the peripheral germinal matrix is hypothesised. (orig.)

  18. Role of Calcium in Cerebellar Learning and Function

    NARCIS (Netherlands)

    Z. Gao (Zhenyu)

    2011-01-01

    textabstractThe cerebellum, which means little brain in Latin, occupies most of the posterior cranial fossa and connects with the dorsal brainstem (Kandel et al., 2000). The cerebellar cortex is one of the most foliated brain structures, which accounts for 10% of the total volume and over half of

  19. Cerebellar Codings for Control of Compensatory Eye Movements

    NARCIS (Netherlands)

    M. Schonewille (Martijn)

    2008-01-01

    textabstractThis thesis focuses on the control of the cerebellum on motor behaviour, and more specifically on the role of the cerebellar Purkinje cells in exerting this control. As the cerebellum is an online control system, we look at both motor performance and learning, trying to identify

  20. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia.

    NARCIS (Netherlands)

    Teo, J.T.; Warrenburg, B.P.C. van de; Schneider, S.A.; Rothwell, J.C.; Bhatia, K.P.

    2009-01-01

    Recent studies have suggested that there may be functional and structural changes in the cerebellum of patients with adult onset primary focal dystonia. The aim of this study was to establish whether there is any neurophysiological indicator of abnormal cerebellar function, using the classic

  1. Stereotactic biopsy of cerebellar lesions: straight versus oblique frame positioning.

    Science.gov (United States)

    Quick-Weller, Johanna; Brawanski, Nina; Dinc, Nazife; Behmanesh, Bedjahn; Kammerer, Sara; Dubinski, Daniel; Seifert, Volker; Marquardt, Gerhard; Weise, Lutz

    2017-10-26

    Biospies of brain lesions with unknown entity are an everyday procedure among many neurosurgical departments. Biopsies can be performed frame-guided or frameless. However, cerebellar lesions are a special entity with a more complex approach. All biopsies in this study were performed stereotactically frame guided. Therefore, only biopsies of cerebellar lesions were included in this study. We compared whether the frame was attached straight versus oblique and we focused on diagnostic yield and complication rate. We evaluated 20 patients who underwent the procedure between 2009 and 2017. Median age was 56.5 years. 12 (60%) Patients showed a left sided lesion, 6 (30%) showed a lesion in the right cerebellum and 2 (10%) patients showed a midline lesion. The stereotactic frame was mounted oblique in 12 (60%) patients and straight in 8 (40%) patients. Postoperative CT scan showed small, clinically silent blood collection in two (10%) of the patients, one (5%) patient showed haemorrhage, which caused a hydrocephalus. He received an external ventricular drain. In both patients with small haemorrhage the frame was positioned straight, while in the patient who showed a larger haemorrhage the frame was mounted oblique. In all patients a final histopathological diagnosis was established. Cerebellar lesions of unknown entity can be accessed transcerebellar either with the stereotactic frame mounted straight or oblique. Also for cerebellar lesions the procedure shows a high diagnostic yield with a low rate of severe complications, which need further treatment.

  2. Cerebellar Damage Produces Selective Deficits in Verbal Working Memory

    Science.gov (United States)

    Ravizza, Susan M.; Mccormick, Cristin A.; Schlerf, John E.; Justus, Timothy; Ivry, Richard B.; Fiez, Julie A.

    2006-01-01

    The cerebellum is often active in imaging studies of verbal working memory, consistent with a putative role in articulatory rehearsal. While patients with cerebellar damage occasionally exhibit a mild impairment on standard neuropsychological tests of working memory, these tests are not diagnostic for exploring these processes in detail. The…

  3. Cerebro-cerebellar interactions underlying temporal information processing.

    Science.gov (United States)

    Aso, Kenji; Hanakawa, Takashi; Aso, Toshihiko; Fukuyama, Hidenao

    2010-12-01

    The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.

  4. [Cerebellar Infarction After Carbon Monoxide Poisoning and Hyperbaric Oxygen Therapy].

    Science.gov (United States)

    Wick, Matthias; Schneiker, André; Bele, Sylvia; Pawlik, Michael; Meyringer, Helmut; Graf, Bernhard; Wendl, Christina; Kieninger, Martin

    2017-06-01

    We report on a patient who developed a space-occupying cerebellar infarction with occlusive hydrocephalus after a poisoning with carbon monoxide with the intention to commit suicide. A neurosurgical and intensive care therapy were needed. The patient's survival without severe neurological deficits could be secured due to the early detection of the intracerebral lesions. Georg Thieme Verlag KG Stuttgart · New York.

  5. Mutations in PTF1A cause pancreatic and cerebellar agenesis

    NARCIS (Netherlands)

    Sellick, GS; Barker, KT; Stolte-Dijkstra, [No Value; Fleischmann, C; Coleman, RJ; Garrett, C; Gloyn, AL; Edghill, EL; Hattersley, AT; Wellauer, PK; Goodwin, G; Houlston, RS

    2004-01-01

    Individuals with permanent neonatal diabetes mellitus usually present within the first three months of life and require insulin treatment(1,2). We recently identified a locus on chromosome 10p13-p12.1 involved in permanent neonatal diabetes mellitus associated with pancreatic and cerebellar agenesis

  6. Cerebellar and pontine tegmental hypermetabolism in miller-fisher syndrome

    International Nuclear Information System (INIS)

    Kim, Yu Kyrong; Kim, Ji Soo; Lee, Won Woo; Kim, Sang Eun

    2007-01-01

    Miller Fisher syndrome (MFS) has been considered as a variant of Guillain-Barre syndrome (GBS), a type of acute immune neuropathies involving peripheral nerve system. Unlike GBS, presence of cerebellar type ataxia and supranuclear ophthalmioplesia in MFS suggests additional involvement of the central nervous system. To determine involvement of the central nervous system in MFS, we investigated the cerebral metabolic abnormalities in patients with MFS using FDG PET. Nine patients who were diagnosed as MFS based on acute ophthalmoplegia, ataxia, and areflexia without other identifiable causes participated in this study. In six patients, serum antibodies possibly related with symptom of MFS (anti- GQ1b or anti-GM1) were detected at the time of the study. With the interval of 25 26 days (range: 3-83 days) from the symptom on set, brain FDG PET were underwent in patients and compared with those from healthy controls. In group analysis comparing with healthy controls, FDG PET of patients revealed increased metabolism in the bilateral cerebellar hemispheres and vermis, and the thalamus. In contrast, the occipital cortex showed decreased metabolism. Individual analyses disclosed hypermetabolism in the cerebellar vermis or hemispheres in 5, and in the pontine tegmentum in 2 of the 9 patients. We also found that the cerebellar vermian hypermetabolism was inversely correlated with the interval between from the symptom on set to PET study. Moreover, follow-up PET of a patient demonstrated that cerebellar hypermetabolism decreased markedly with an improvement of the ophthalmoplegia and ataxia. These findings indicate an involvement of the central nervous system in MFS and suggest an antibody-associated acute inflammatory process as a mechanism of this disorder

  7. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  8. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  9. Adaptive filters and internal models: multilevel description of cerebellar function.

    Science.gov (United States)

    Porrill, John; Dean, Paul; Anderson, Sean R

    2013-11-01

    Cerebellar function is increasingly discussed in terms of engineering schemes for motor control and signal processing that involve internal models. To address the relation between the cerebellum and internal models, we adopt the chip metaphor that has been used to represent the combination of a homogeneous cerebellar cortical microcircuit with individual microzones having unique external connections. This metaphor indicates that identifying the function of a particular cerebellar chip requires knowledge of both the general microcircuit algorithm and the chip's individual connections. Here we use a popular candidate algorithm as embodied in the adaptive filter, which learns to decorrelate its inputs from a reference ('teaching', 'error') signal. This algorithm is computationally powerful enough to be used in a very wide variety of engineering applications. However, the crucial issue is whether the external connectivity required by such applications can be implemented biologically. We argue that some applications appear to be in principle biologically implausible: these include the Smith predictor and Kalman filter (for state estimation), and the feedback-error-learning scheme for adaptive inverse control. However, even for plausible schemes, such as forward models for noise cancellation and novelty-detection, and the recurrent architecture for adaptive inverse control, there is unlikely to be a simple mapping between microzone function and internal model structure. This initial analysis suggests that cerebellar involvement in particular behaviours is therefore unlikely to have a neat classification into categories such as 'forward model'. It is more likely that cerebellar microzones learn a task-specific adaptive-filter operation which combines a number of signal-processing roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Cerebellar and pontine tegmental hypermetabolism in miller-fisher syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyrong; Kim, Ji Soo; Lee, Won Woo; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Miller Fisher syndrome (MFS) has been considered as a variant of Guillain-Barre syndrome (GBS), a type of acute immune neuropathies involving peripheral nerve system. Unlike GBS, presence of cerebellar type ataxia and supranuclear ophthalmioplesia in MFS suggests additional involvement of the central nervous system. To determine involvement of the central nervous system in MFS, we investigated the cerebral metabolic abnormalities in patients with MFS using FDG PET. Nine patients who were diagnosed as MFS based on acute ophthalmoplegia, ataxia, and areflexia without other identifiable causes participated in this study. In six patients, serum antibodies possibly related with symptom of MFS (anti- GQ1b or anti-GM1) were detected at the time of the study. With the interval of 25 26 days (range: 3-83 days) from the symptom on set, brain FDG PET were underwent in patients and compared with those from healthy controls. In group analysis comparing with healthy controls, FDG PET of patients revealed increased metabolism in the bilateral cerebellar hemispheres and vermis, and the thalamus. In contrast, the occipital cortex showed decreased metabolism. Individual analyses disclosed hypermetabolism in the cerebellar vermis or hemispheres in 5, and in the pontine tegmentum in 2 of the 9 patients. We also found that the cerebellar vermian hypermetabolism was inversely correlated with the interval between from the symptom on set to PET study. Moreover, follow-up PET of a patient demonstrated that cerebellar hypermetabolism decreased markedly with an improvement of the ophthalmoplegia and ataxia. These findings indicate an involvement of the central nervous system in MFS and suggest an antibody-associated acute inflammatory process as a mechanism of this disorder.

  11. Cerebellar motor learning: when is cortical plasticity not enough?

    Directory of Open Access Journals (Sweden)

    John Porrill

    2007-10-01

    Full Text Available Classical Marr-Albus theories of cerebellar learning employ only cortical sites of plasticity. However, tests of these theories using adaptive calibration of the vestibulo-ocular reflex (VOR have indicated plasticity in both cerebellar cortex and the brainstem. To resolve this long-standing conflict, we attempted to identify the computational role of the brainstem site, by using an adaptive filter version of the cerebellar microcircuit to model VOR calibration for changes in the oculomotor plant. With only cortical plasticity, introducing a realistic delay in the retinal-slip error signal of 100 ms prevented learning at frequencies higher than 2.5 Hz, although the VOR itself is accurate up to at least 25 Hz. However, the introduction of an additional brainstem site of plasticity, driven by the correlation between cerebellar and vestibular inputs, overcame the 2.5 Hz limitation and allowed learning of accurate high-frequency gains. This "cortex-first" learning mechanism is consistent with a wide variety of evidence concerning the role of the flocculus in VOR calibration, and complements rather than replaces the previously proposed "brainstem-first" mechanism that operates when ocular tracking mechanisms are effective. These results (i describe a process whereby information originally learnt in one area of the brain (cerebellar cortex can be transferred and expressed in another (brainstem, and (ii indicate for the first time why a brainstem site of plasticity is actually required by Marr-Albus type models when high-frequency gains must be learned in the presence of error delay.

  12. Diffusion Tensor Imaging of Human Cerebellar Pathways and their Interplay with Cerebral Macrostructure

    Directory of Open Access Journals (Sweden)

    Zafer eKeser

    2015-04-01

    Full Text Available Cerebellar white matter connections to the central nervous system are classified functionally into the spinocerebellar, vestibulocerebellar, and cerebrocerebellar subdivisions. The Spinocerebellar (SC pathways project from spinal cord to cerebellum, whereas the vestibulocerebellar (VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI. Ten right-handed healthy subjects (7 males and 3 females, age range 20-51 years were studied. DT-MRI data were acquired with a voxel size = 2mm x 2mm x 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC, parieto-ponto-cerebellar (PPC, temporo-ponto-cerebellar (TPC and occipito-ponto-cerebellar (OPC. The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM, cerebral white matter (WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~ 3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~ 25.8 ± 7.3 mL, or a percentage of 1.52 ± 0.43 of the total intracranial volume.

  13. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  14. Timing tasks synchronize cerebellar and frontal ramping activity and theta oscillations: Implications for cerebellar stimulation in diseases of impaired cognition

    Directory of Open Access Journals (Sweden)

    Krystal Lynn Parker

    2016-01-01

    Full Text Available Timing is a fundamental and highly conserved mammalian capability yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time, has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. We hypothesis that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. These hypotheses could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic

  15. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX......)-sensitive fast Na(+) spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers....... Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon...

  16. Regularity, variability and bi-stability in the activity of cerebellar purkinje cells.

    Science.gov (United States)

    Rokni, Dan; Tal, Zohar; Byk, Hananel; Yarom, Yosef

    2009-01-01

    Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state), and a quiescent hyperpolarized state (down state). A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  17. Regularity, variabilty and bi-stability in the activity of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2009-11-01

    Full Text Available Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state, and a quiescent hyperpolarized state (down state. A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in-vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  18. Abnormality in cerebellar blood flow in solo vertigo patients

    Energy Technology Data Exchange (ETDEWEB)

    Nagahori, Takeshi [Shakaihoken Takaoka Hospital, Toyama (Japan); Nishijima, Michiharu; Endo, Shunro; Takaku, Akira

    1997-03-01

    Little is known about the blood flow of the vertebrobasilar system as a cause of vertigo and dizziness. We used Xe-CT to study cerebellar blood flow in 53 patients who ranged in age from 35 to 85 years. The patients were divided into two groups. One of them was the vertigo group that comprised 28 patients with rotatory sensation, and the other, the non-vertigo group of 25 patients with a sensation other than rotation. At the stage of severe symptoms, there was decreased cerebellar blood flow in all patients of both, the vertigo and the non-vertigo groups, and a decrease in the bilateral cerebellar hemisphere was observed in five patients and in a unilateral hemisphere in three patients of the vertigo group. By comparison, in the non-vertigo group, unilateral decrease of cerebellar blood flow was observed in only one patient, and a bilateral decrease in five. At the stage of severe symptoms, the mean regional cerebellar blood flow was 40.5{+-}8.0 ml/100 g/min (n=16 sides) in the vertigo group and 45.3{+-}9.5 ml/100 g/min (n=12 sides) in the non-vertigo group. At the stage of moderate symptoms, blood flow image was normal in four of 14 vertigo patients and in seven of 12 non-vertigo patients. The mean regional blood flow was 47.8{+-}8.6 ml/100 g/min (n=28 sides) in the vertigo group and 47.1{+-}5.1 ml/100 g/min (n=24 sides) in the non-vertigo group. At the asymptomatic stage, a high proportion of normal blood flow images (nine of 16 vertigo patients and 10 of 10 non-vertigo patients) was observed. The mean regional cerebellar blood flow was 51.6{+-}10.7 ml/100 g/min (n=32 sides) in the vertigo group and 52.8{+-}8.5 ml/100 g/min (n=20 sides) in the non-vertigo group. This study demonstrates that a unilateral or bilateral decrease in blood flow of the vertebrobasilar system may cause vertigo and dizziness. It also shows that Xe-CT of the cerebellum may be a valuable examination modality for the diagnosis and treatment of vertigo and dizziness. (author)

  19. Abnormality in cerebellar blood flow in solo vertigo patients

    International Nuclear Information System (INIS)

    Nagahori, Takeshi; Nishijima, Michiharu; Endo, Shunro; Takaku, Akira

    1997-01-01

    Little is known about the blood flow of the vertebrobasilar system as a cause of vertigo and dizziness. We used Xe-CT to study cerebellar blood flow in 53 patients who ranged in age from 35 to 85 years. The patients were divided into two groups. One of them was the vertigo group that comprised 28 patients with rotatory sensation, and the other, the non-vertigo group of 25 patients with a sensation other than rotation. At the stage of severe symptoms, there was decreased cerebellar blood flow in all patients of both, the vertigo and the non-vertigo groups, and a decrease in the bilateral cerebellar hemisphere was observed in five patients and in a unilateral hemisphere in three patients of the vertigo group. By comparison, in the non-vertigo group, unilateral decrease of cerebellar blood flow was observed in only one patient, and a bilateral decrease in five. At the stage of severe symptoms, the mean regional cerebellar blood flow was 40.5±8.0 ml/100 g/min (n=16 sides) in the vertigo group and 45.3±9.5 ml/100 g/min (n=12 sides) in the non-vertigo group. At the stage of moderate symptoms, blood flow image was normal in four of 14 vertigo patients and in seven of 12 non-vertigo patients. The mean regional blood flow was 47.8±8.6 ml/100 g/min (n=28 sides) in the vertigo group and 47.1±5.1 ml/100 g/min (n=24 sides) in the non-vertigo group. At the asymptomatic stage, a high proportion of normal blood flow images (nine of 16 vertigo patients and 10 of 10 non-vertigo patients) was observed. The mean regional cerebellar blood flow was 51.6±10.7 ml/100 g/min (n=32 sides) in the vertigo group and 52.8±8.5 ml/100 g/min (n=20 sides) in the non-vertigo group. This study demonstrates that a unilateral or bilateral decrease in blood flow of the vertebrobasilar system may cause vertigo and dizziness. It also shows that Xe-CT of the cerebellum may be a valuable examination modality for the diagnosis and treatment of vertigo and dizziness. (author)

  20. Autoradiographic visualization of A 1-adenosine receptors in brain and peripheral tissues of rat and guinea pig using 125I-HPIA

    International Nuclear Information System (INIS)

    Weber, R.G.; Lohse, M.J.; Jones, C.R.; Palacios, J.M.

    1988-01-01

    A 1 -adenosine receptors were identified in sections of rat brain and guinea pig kidney with the radioiodinated agonist 1 25I-N 6 -p-hydroxyphenylisopropyladenosine ( 1 25I-HPIA) using in vitro autoradiography. The affinities of adenosine receptor ligands in competing with 1 25I-HPIA binding to tissue sections were in good agreement with those found in membranes and indicate that the binding site represents an A 1 pattern of [ 3 H]N 6 -cyclohexyladenosine ([ 3 H]CHA) binding sites determined previously, with highest densities in the hippocampus and dentate gyrus, the cerebellar cortex, some thalamic nuclei and certain layers of the cerebral cortex. In the guinea pig kidney 1 25I-HPIA labelled longitudinal structures in the medulla. This study demonstrates that 1 25I-HPIA allows the autoradiographic detection of A-1 adenosine receptors in the brain and peripheral organs and has the advantage of short exposure times (author)

  1. [The effect of alpha-tocopherol and ionol on the physical structure of the membranes of rat liver microsomes under conditions of antioxidant insufficiency].

    Science.gov (United States)

    Gubskiĭ, Iu I; Boldeskul, A E; Primak, R G; Zadorina, O V

    1989-01-01

    Physiochemical conformity of the alpha-tocopherol interaction with hepatic microsomal membranes has been studied by means of fluorescent probes (pyrene and 1-anilinonaphthalene-8-sulphonate). The microsomal membrane microviscosity is shown to sharply decrease under conditions of the antioxidant deficiency with vitamin E expelled into animals normalizes microviscosity, but feebly influences the microsomal surface charge. Microcalorimetry has been used to establish that penetration of tocopherol into microsomal membranes was accompanied by the exothermic effect.

  2. Inhibition of rat synaptic membrane Na⁺/K⁺-ATPase and ecto-nucleoside triphosphate diphosphohydrolases by 12-tungstosilicic and 12-tungstophosphoric acid.

    Science.gov (United States)

    Čolović, Mirjana B; Bajuk-Bogdanović, Danica V; Avramović, Nataša S; Holclajtner-Antunović, Ivanka D; Bošnjaković-Pavlović, Nada S; Vasić, Vesna M; Krstić, Danijela Z

    2011-12-01

    The in vitro influence of Keggin structure polyoxotungstates, 12-tungstosilicic acid, H(4)SiW(12)O(40) (WSiA) and 12-tungstophosphoric acid, H(3)PW(12)O(40) (WPA), and monomer Na(2)WO(4) × 2H(2)O on rat synaptic plasma membrane (SPM) Na(+)/K(+)-ATPase and E-NTPDase activity was studied, whereas the commercial porcine cerebral cortex Na(+)/K(+)-ATPase served as a reference. Dose-dependent Na(+)/K(+)-ATPase inhibition was obtained for all investigated compounds. Calculated IC(50) (10 min) values, in mol/l, for SPM/commercial Na(+)/K(+)-ATPase, were: 3.4 × 10(-6)/4.3 × 10(-6), 2.9 × 10(-6)/3.1 × 10(-6) and 1.3 × 10(-3)/1.5 × 10(-3) for WSiA, WPA and Na(2)WO(4) × 2H(2)O, respectively. In the case of E-NTPDase, increasing concentrations of WSiA and WPA induced its activity reduction, while Na(2)WO(4) × 2H(2)O did not noticeably affect the enzyme activity at all investigated concentrations (up to 1 × 10(-3)mol/l). IC(50) (10 min) values, obtained from the inhibition curves, were (in mol/l): 4.1 × 10(-6) for WSiA and 1.6 × 10(-6) for WPA. Monolacunary Keggin anion was found as the main active molecular species present under physiological conditions (in the enzyme assays, pH 7.4), for the both polyoxotungstates solutions (1 mmol/l), using Fourier transform infrared (FT-IR) and micro-Raman spectroscopy. Additionally, commercial porcine cerebral cortex Na(+)/K(+)-ATPase was exposed to the mixture of Na(2)WO(4) × 2H(2)O and WSiA at different concentrations. Additive inhibition effect was achieved for lower concentrations of Na(2)WO(4) × 2H(2)O/WSiA (≤ 1 × 10(-3)/4 × 10(-6) mol/l), while antagonistic effect was obtained for all higher concentrations of the inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. [Effect of damage integrity rat brain synaptic membranes on the functional activity GABA(A)-receptor/Cl(-)-ionophore complex in the CNC].

    Science.gov (United States)

    Rebrov, I G; Kalinina, M V

    2013-01-01

    Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.

  4. Endovascular treatment of the posterior inferior cerebellar artery aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Bradac, G.B.; Bergui, M. [Neuroradiology, Univ. di Torino, Turin (Italy)

    2004-12-01

    Aneurysms may arise at various locations along the course of the posterior inferior cerebellar artery. Brainstem and cranial nerves manipulation make the surgical approach to proximal aneurysms difficult, while the occlusion of the parent vessel is sometimes unavoidable in peripheral aneurysms. Endovascular treatment can be a good alternative, but also with this approach the location of the aneurysm is critical. If occlusion of the parent vessel is planned, anatomical variations and vascular territories of the brainstem should be considered. We report our experience with 18 consecutive aneurysms (12 proximal, 6 peripheral) treated by coils. Complete occlusion was achieved in 14 patients and subtotal in 4. In three patients the parent vessel had to be sacrificed. During treatment two perforations occurred; aneurysms were completely occluded without clinical consequences. Two small asymptomatic cerebellar infarctions were seen on postoperative computed tomography. Clinical outcome was good in 16 patients. (orig.)

  5. Crossed cerebellar diaschisis demonstrated by SPECT in hemiplegic children

    International Nuclear Information System (INIS)

    Hamano, Shin-ichiro; Nara, Takahiro; Nozaki, Hidetsugu; Fukushima, Kiyomi; Imai, Masayuki; Kumagai, Koumei; Maekawa, Kihei.

    1991-01-01

    Crossed cerebellar diaschisis (CCD) in twenty five children with hemiplegia were studied using single photon emission computed tomography (SPECT) with N-isopropyl-p-I-123-iodoamphetamine. Seven of twenty-five patients had cerebral palsy, and the others were impaired by acquired brain injury between ten months and fourteen years of age. CCD was demonstrated in five patients (20%), who were impaired by acquired brain injury after seven years of age. CCD could never be detected in patients with cerebral palsy. Ipsilateral cerebellar diaschisis was also demonstrated in two patients with cerebral palsy and three with early acquired brain injury before three years of age. It is suggested that diaschisis presents itself as a different form in a contralateral and ipsilateral cerebellum before three years of age from a form which presents after seven years of age. (author)

  6. High-Frequency Network Oscillations in Cerebellar Cortex

    Science.gov (United States)

    Middleton, Steven J.; Racca, Claudia; Cunningham, Mark O.; Traub, Roger D.; Monyer, Hannah; Knöpfel, Thomas; Schofield, Ian S.; Jenkins, Alistair; Whittington, Miles A.

    2016-01-01

    SUMMARY Both cerebellum and neocortex receive input from the somatosensory system. Interaction between these regions has been proposed to underpin the correct selection and execution of motor commands, but it is not clear how such interactions occur. In neocortex, inputs give rise to population rhythms, providing a spatiotemporal coding strategy for inputs and consequent outputs. Here, we show that similar patterns of rhythm generation occur in cerebellum during nicotinic receptor subtype activation. Both gamma oscillations (30–80 Hz) and very fast oscillations (VFOs, 80–160 Hz) were generated by intrinsic cerebellar cortical circuitry in the absence of functional glutamatergic connections. As in neocortex, gamma rhythms were dependent on GABAA receptor-mediated inhibition, whereas VFOs required only nonsynaptically connected intercellular networks. The ability of cerebellar cortex to generate population rhythms within the same frequency bands as neocortex suggests that they act as a common spatiotemporal code within which corticocerebellar dialog may occur. PMID:18549787

  7. Palatoglossal fusion with cleft palate and hypoplasia of cerebellar vermis

    Directory of Open Access Journals (Sweden)

    Shailesh Solanki

    2016-01-01

    Full Text Available A new-born male presented within 12 h of birth with respiratory distress. On examination and workup, he had palatoglossal fusion, cleft palate and hypoplasia of the cerebellar vermis. A 2.5 Fr endotracheal tube was inserted into the pharynx through nostril as a nasopharyngeal stent, following which his respiratory distress improved. Once child was optimised, then feeding was started by nasogastric tube and feeds were tolerated well. Elective tracheostomy and gastrostomy were done, followed by release of adhesions between the tongue and palate at a later stage. Review of literature suggests that palatoglossal fusion is uncommon and presents as an emergency. Mostly, these oral synechiae are associated with digital and/or cardiac anomaly. Other disorders associated with intra-oral synechiae include congenital alveolar synechiae, van der Woude syndrome, popliteal pterygium syndrome and oromandibular limb hypogenesis syndrome. The authors report a hitherto undescribed association of palatoglossal fusion with cleft palate and hypoplasia of the cerebellar vermis.

  8. [Atypical cerebellar neurocytoma resembling a hemangioblastoma. A case report].

    Science.gov (United States)

    Lista Martínez, Olalla; Rivas López, Luis Alfredo; Pombo Otero, Jorge Francisco; Amaro Cendón, Santiago; Bravo García, Christian; Villa Fernández, Juan Manuel

    2014-01-01

    Through August 2013, 105 cases of intracranial extraventricular neurocytoma (EVN) had been described; 6% were located in cerebellum and 22% were atypical EVN. A rare morphologic form of neurocytoma, atypical EVN has had only 24 cases reported to date. Its prognosis is poorer than the typical central neurocytoma. This case report describes an atypical cerebellar EVN, a form that has not been reported yet, hence the interest of this article. We emphasise its cystic nature and mural nodule, in an infrequent presentation. EVN are low-incidence tumours that we need to take into consideration when making the differential diagnosis of cystic cerebellar lesions with mural nodule. Given that the prognosis of atypical EVNs depends on the atypical nature and on the grade of resection, medical follow up has to be more constant, due to the greater degree of recurrence. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  9. Cerebellar Cognitive Affective Syndrome Presented as Severe Borderline Personality Disorder

    Directory of Open Access Journals (Sweden)

    Danilo Pesic

    2014-01-01

    Full Text Available An increasing number of findings confirm the significance of cerebellum in affecting regulation and early learning. Most consistent findings refer to association of congenital vermis anomalies with deficits in nonmotor functions of cerebellum. In this paper we presented a young woman who was treated since sixteen years of age for polysubstance abuse, affective instability, and self-harming who was later diagnosed with borderline personality disorder. Since the neurological and neuropsychological reports pointed to signs of cerebellar dysfunction and dysexecutive syndrome, we performed magnetic resonance imaging of brain which demonstrated partially developed vermis and rhombencephalosynapsis. These findings match the description of cerebellar cognitive affective syndrome and show an overlap with clinical manifestations of borderline personality disorder.

  10. Degenerative cerebellar diseases and differential diagnoses; Degenerative Kleinhirnerkrankungen und Differenzialdiagnosen

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Roumia, S.; Dietrich, P. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2016-11-15

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions. (orig.) [German] Klinisch imponieren Kleinhirnsyndrome durch Ataxie, Dysarthrie, Dysmetrie, Intentionstremor und Augenbewegungsstoerungen. Neben der Anamnese und klinischen Untersuchung ist die Bildgebung v. a. wichtig um andere Erkrankungen wie Hydrozephalus und Multiinfarktdemenz von degenerativen Kleinhirnerkrankungen zu differenzieren. Zu den degenerativen Erkrankungen mit Kleinhirnbeteiligung gehoeren der Morbus Parkinson, die Multisystematrophie sowie weitere Erkrankungen einschliesslich der spinozerebellaeren Ataxien. Neben der MRT sind auch nuklearmedizinische Untersuchungen zur Differenzierung hilfreich. Axiale Fluid-attenuated-inversion-recovery(FLAIR)- und T2-gewichtete Sequenzen koennen mitunter eine Signalsteigerung im Pons als Ausdruck einer Degeneration der pontinen Neuronen und transversalen Bahnen im Brueckenfuss zeigen. Die Bildgebung ist aber v. a. notwendig, um andere Erkrankungen wie Normaldruckhydrozephalus

  11. Cerebellar Herniation after Lumbar Puncture in Galactosemic Newborn

    Directory of Open Access Journals (Sweden)

    Salih Kalay

    2011-09-01

    Full Text Available Cerebral edema resulting in elevated intracranial pressure is a well-known complication of galactosemia. Lumbar puncture was performed for the diagnosis of clinically suspected bacterial meningitis. Herniation of cerebral tissue through the foramen magnum is not a common problem in neonatal intensive care units because of the open fontanelle in infants. We present the case of a 3-week-old infant with galactosemia who presented with signs of cerebellar herniation after lumbar puncture.

  12. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    Multiple regions in the CNS display propagating correlated activity during embryonic and postnatal development. This activity can be recorded as waves of increased calcium concentrations in spiking neurons or glia cells, and have been suggested to be involved in patterning, axonal guidance and es......, that the propagating wave activity is carried through the tissue by axonal collaterals formed by neighboring granule cells, and further suggest that the correlated activity may be related to processes that ensure correct postnatal wiring of the cerebellar circuits....

  13. Imaging Spectrum of Cerebellar Pathologies: A Pictorial Essay

    International Nuclear Information System (INIS)

    Arora, Richa

    2015-01-01

    The cerebellum is a crucial structure of hindbrain which helps in maintaining motor tone, posture, gait and also coordinates skilled voluntary movements including eye movements. Cerebellar abnormalities have different spectrum, presenting symptoms and prognosis as compared to supratentorial structures and brainstem. This article intends to review the various pathological processes involving the cerebellum along with their imaging features on MR, which are must to know for all radiologists, neurologists and neurosurgeons for their prompt diagnosis and management

  14. CT evaluation of cerebellar atrophy with aging in healthy persons

    International Nuclear Information System (INIS)

    Nishimiya, Jin

    1988-01-01

    In a retrospective analysis of CT scans available from 2,102 neurologically normal persons, dilatations of the cerebellar vermis fissures (CVF), cerebellar hemispheric fissures (CHF), subarachnoid space (SAS) around the cerebellum and the fourth ventricle (FV) were examined according the age groups of persons younger than one year, one to four, five to nine, 10 to 19, 20 to 29, 30 to 39, 40 to 49, 50 to 59, 60 to 69, and 70 years and older. An dilatation of both the CVF and CHF was associated with aging, with statistically significant differences among age groups of persons older than 20 years. This was especially noted in age groups of 60 years or older. There was a significant enlargement in the SAS around the cerebellum in age groups 60 years or more compared with age groups less than 60 years. For age groups of persons 20 years or older, both the FV transverse width and the radio of the FV transverse width to the inside diameter of the posterior fossa (PF) increased with aging. This was significant in age groups 60 years or older. For age groups younger than 10 years, however, there was inverse correlation between the ratio of the FV transverse width to the PF inside diameter and aging. Plotted curve of the ratio of the FV to the PF was U-shaped with smallest value in persons in their twenties. Since changes in the FV might reflect the volume of the cerebellar medullary substance, the cerebellar medullary substance should increase up to the age of 20. (Namekawa, K.)

  15. Patterns of regional cerebellar atrophy in genetic frontotemporal dementia

    Directory of Open Access Journals (Sweden)

    Martina Bocchetta

    2016-01-01

    Conclusion: There appears to be a differential pattern of cerebellar atrophy in the major genetic forms of FTD, being relatively spared in GRN, localized to the lobule VIIa-Crus I in the superior-posterior region of the cerebellum in C9orf72, the area connected via the thalamus to the prefrontal cortex and involved in cognitive function, and localized to the vermis in MAPT, the ‘limbic cerebellum’ involved in emotional processing.

  16. Cerebellar ataxia of early onset. Clinical symptoms and MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Sumimasa; Miyake, Shota; Yamada, Michiko; Iwamoto, Hiroko (Kanagawa Children' s Medical Center, Yokohama (Japan)); Yamada, Kazuhiko

    1989-07-01

    Eight cases of childhood cerebellar ataxia were reported. All these cases showed chronic cerebellar ataxia with early onset, and the other diseases of cerebellum such as infections, neoplasms and storage diseases were excluded by clinical symptoms and laboratory findings including blood counts, blood chemistry, lactate, pyruvate, ceruloplasmine, urinalysis, serum immunoglobulins, amino acid analysis in blood and urine, CSF analysis, leukocyte lysosomal enzymes, MCV, EMG, EEG and brain X-CT. Two pairs of siblings were included in this study. The clinical diagnosis were cerebellar type (5), spinocerebellar type (1), one Marinesco-Sjoegren syndrome and undetermined type (1). The age of onset was 1 to 5 years. The chief complaint was motor developmental delay in 6 cases; among them 5 patients could walk alone at the ages of 2 to 3 years'. Mental retardation was observed in 7 cases and epilepsy in 2. TRH was effective in 5 cases. The MRI study revealed that the area of medial sagittal slice of the cerebellum was reduced significantly in all cases and also that of pons was reduced in 5 cases. Different from typical adult onset spinocerebellar degenerations, most of the present cases have achieved slow developmental milestones and the clinical course was not progressive. Genetic factors are suspected in the pathogenesis of this disease in some cases. (author).

  17. β-Catenin is critical for cerebellar foliation and lamination.

    Directory of Open Access Journals (Sweden)

    Jing Wen

    Full Text Available The cerebellum has a conserved foliation pattern and a well-organized layered structure. The process of foliation and lamination begins around birth. β-catenin is a downstream molecule of Wnt signaling pathway, which plays a critical role in tissue organization. Lack of β-catenin at early embryonic stages leads to either prenatal or neonatal death, therefore it has been difficult to resolve its role in cerebellar foliation and lamination. Here we used GFAP-Cre to ablate β-catenin in neuronal cells of the cerebellum after embryonic day 12.5, and found an unexpected role of β-catenin in determination of the foliation pattern. In the mutant mice, the positions of fissure formation were changed, and the meninges were improperly incorporated into fissures. At later stages, some lobules were formed by Purkinje cells remaining in deep regions of the cerebellum and the laminar structure was dramatically altered. Our results suggest that β-catenin is critical for cerebellar foliation and lamination. We also found a non cell-autonomous role of β-catenin in some developmental properties of major cerebellar cell types during specific stages.

  18. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI

    International Nuclear Information System (INIS)

    Tavani, F.; Zimmerman, R.A.; Gatti, R.; Bingham, P.; Berry, G.T.; Sullivan, K.

    2003-01-01

    We describe MRI of the brain in 19 patients with ataxia-telangiectasia (AT) and correlate the appearances with the degree of neurologic deficit. We examined 10 male and nine female patients; 17 were aged between 2 and 12 years (mean 8 years) but a woman and her brother were 35 and 38 years old, and had a variant of AT. Ataxia was the first recognized sign of the disease in every patient. We detected the following patterns of cerebellar atrophy: in the youngest patient, aged 2 years, the study was normal; in the five next youngest patients 3-7 years of age, the lateral cerebellum and superior vermis showed the earliest changes of atrophy; and all but one of the other patients had moderate to marked diffuse atrophy of vermis and cerebellar hemispheres. There were 12 patients aged 9 years and above; one, who was normal, was 9 years old. The five patients who at the time of examination were unable to walk all had diffuse atrophy involving both vermis and cerebellar hemispheres. (orig.)

  19. Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording

    NARCIS (Netherlands)

    Schaap, J.; Bos, N. P.; de Jeu, M. T.; Geurtsen, A. M.; Meijer, J. H.; Pennartz, C. M.

    1999-01-01

    The suprachiasmatic nucleus is commonly considered to contain the main pacemaker of behavioral and hormonal circadian rhythms. Using whole-cell patch-clamp recordings, the membrane properties of suprachiasmatic nucleus neurons were investigated in order to get more insight in membrane physiological

  20. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....