WorldWideScience

Sample records for rat ca1 hippocampal

  1. Serotonin-mediated modulation of Na+/K+ pump current in rat hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Zhang, Li Nan; Su, Su Wen; Guo, Fang; Guo, Hui Cai; Shi, Xiao Lu; Li, Wen Ya; Liu, Xu; Wang, Yong Li

    2012-01-19

    The aim of this study was to investigate whether serotonin (5-hydroxytryptamine, 5-HT) can modulate Na+/K+ pump in rat hippocampal CA1 pyramidal neurons. 5-HT (0.1, 1 mM) showed Na+/K+ pump current (Ip) densities of 0.40 ± 0.04, 0.34 ± 0.03 pA/pF contrast to 0.63 ± 0.04 pA/pF of the control of 0.5 mM strophanthidin (Str), demonstrating 5-HT-induced inhibition of Ip in a dose-dependent manner in hippocampal CA1 pyramidal neurons. The effect was partly attenuated by ondasetron, a 5-HT3 receptor (5-HT3R) antagonist, not by WAY100635, a 5-HT1AR antagonist, while 1-(3-Chlorophenyl) biguanide hydrochloride (m-CPBG), a 5-HT3R specific agonist, mimicked the effect of 5-HT on Ip. 5-HT inhibits neuronal Na+/K+ pump activity via 5-HT3R in rat hippocampal CA1 pyramidal neurons. This discloses novel mechanisms for the function of 5-HT in learning and memory, which may be a useful target to benefit these patients with cognitive disorder.

  2. Acupuncture attenuates cognitive deficits and increases pyramidal neuron number in hippocampal CA1 area of vascular dementia rats.

    Science.gov (United States)

    Li, Fang; Yan, Chao-Qun; Lin, Li-Ting; Li, Hui; Zeng, Xiang-Hong; Liu, Yi; Du, Si-Qi; Zhu, Wen; Liu, Cun-Zhi

    2015-04-28

    Decreased cognition is recognized as one of the most severe and consistent behavioral impairments in dementia. Experimental studies have reported that acupuncture may improve cognitive deficits, relieve vascular dementia (VD) symptoms, and increase cerebral perfusion and electrical activity. Multi-infarction dementia was modeled in rats with 3% microemboli saline suspension. Two weeks after acupuncture at Zusanli (ST36), all rats were subjected to a hidden platform trial to test their 3-day spatial memory using the Morris water maze test. To estimate the numbers of pyramidal neuron, astrocytes, and synaptic boutons in hippocampal CA1 area, we adopted an unbiased stereology method to accurately sample and measure the size of cells. We found that acupuncture at ST36 significantly decreased the escape latency of VD rats. In addition, acupuncture significantly increased the pyramidal neuron number in hippocampal CA1 area (P area in any of the groups (P > 0.05). These findings suggest that acupuncture may improve cognitive deficits and increase pyramidal neuron number of hippocampal CA1 area in VD rats.

  3. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Nabi Shamsaei; Mehdi Khaksari; Sohaila Erfani; Hamid Rajabi; Nahid Aboutaleb

    2015-01-01

    Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral isch-emic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction th rough occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic ex-ercise signiifcantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.

  4. [Effect of Scalp-acupuncture Stimulation on Neurological Function and Expression of ASIC 1 a and ASIC 2 b of Hippocampal CA 1 Region in Cerebral Ischemia Rats].

    Science.gov (United States)

    Tian, Liang; Wang, Jin-Hai; Zhao, Min; Bao, Ying-Cun; Shang, Jun-Fang; Yan, Qi; Zhang, Zhen-Chang; Du, Xiao-Zheng; Jiang, Hua; Sun, Run-Jie; Yuan, Bo; Zhang, Xing-Hua; Zhang, Ting-Zhuo; Li, Xing-Lan

    2016-10-25

    To observe the influence of scalp-acupuncture on the expression of acid-sensing ion channels (ASICs) 1 a and 2 b of hippocampal CA 1 region in cerebral ischemia (CI) rats, so as to investigate its mechanism underlying improvement of ischemic stroke. Thirty-two male SD rats were randomly allocated to normal control, model, scalp-acupuncture and Amiloride group ( n =8 in each group). The model of focal CI was established by middle cerebral artery occlusion (MCAO). Scalp acupuncture stimulation was applied to bilateral Dingnieqianxiexian (MS 6) and Dingniehouxiexian (MS 7), once daily for 7 days. Rats of the Amiloride group were fed with Amiloride solution, twice a day for 7 days, and those of the normal control and model groups were grabbled and fixed in the same way with the acupuncture and Amiloride groups. The neurological deficit score was given according to Longa's method. The expression of hippocampal ASIC 1 a and ASIC 2 b was detected by immunohistochemistry, and the Ca 2+ concentration in the hippocampal tissue assayed using flowing cytometry. After the intervention, the neurological deficit score of both the scalp-acupuncture and Amiloride groups were significantly decreased in comparison with pre-treatment ( P ASIC 1 a and ASIC 2 b in the hippocampal CA 1 region and hip-pocampal Ca 2+ concentration were significantly up-regulated in the model group compared with the normal control group ( P ASIC 1 a and ASIC 2 b expression and Ca 2+ concentration ( P >0.05). Scalp-acupuncture stimulation can improve neurological function in CI rats, which may be related to its effects in suppressing the increased expression of hippocampal ASIC 1 a and ASIC 2 b proteins and in reducing calcium overload in hip-pocampal neurocytes.

  5. Cytomorphometric changes in hippocampal CA1 neurons exposed to simulated microgravity using rats as model

    Directory of Open Access Journals (Sweden)

    Amit eRanjan

    2014-05-01

    Full Text Available Microgravity and sleep loss lead to cognitive and learning deficits. These behavioral alterations are likely to be associated with cytomorphological changes and loss of neurons. To understand the phenomenon, we exposed rats (225-275g to 14 days simulated microgravity (SMg and compared its effects on CA1 hippocampal neuronal plasticity, with that of normal cage control rats. We observed that the mean area, perimeter, synaptic cleft and length of active zone of CA1 hippocampal neurons significantly decreased while dendritic arborization and number of spines significantly increased in SMg group as compared with controls. The mean thickness of the post synaptic density and total dendritic length remained unaltered. The changes may be a compensatory effect induced by exposure to microgravity; however, the effects may be transient or permanent, which need further study. These findings may be useful for designing effective prevention for those, including the astronauts, exposed to microgravity. Further, subject to confirmation we propose that SMg exposure might be useful for recovery of stroke patients.

  6. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats.

    Science.gov (United States)

    Li, Guan Zeng; Liu, Zhe Hui; Wei, XinYa; Zhao, Pan; Yang, Chun Xiao; Xu, Man Ying

    2015-07-01

    To determine the effect of acetylcholine (ACh), pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN) and pain inhibited neurons (PIN) in hippocampal CA3 region of morphine addicted rats. Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation by ACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Intra-CA3 microinjection of ACh (2 μg/1 μl) or pilocarpine (2 μg/1 μl) decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID) of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl) produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  7. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats

    Directory of Open Access Journals (Sweden)

    Guan Zeng Li

    2015-07-01

    Full Text Available Objective(s:To determine the effect of acetylcholine (ACh, pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN and pain inhibited neurons (PIN in hippocampal CA3 region of morphine addicted rats. Materials and Methods:Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation byACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Results:Intra-CA3 microinjection of ACh (2 μg/1 μl or pilocarpine (2 μg/1 μl decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. Conclusion: ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  8. Interaction between the medial prefrontal cortex and hippocampal CA1 area is essential for episodic-like memory in rats.

    Science.gov (United States)

    Chao, Owen Y; Nikolaus, Susanne; Lira Brandão, Marcus; Huston, Joseph P; de Souza Silva, Maria A

    2017-05-01

    The interplay between medial prefrontal cortex (mPFC) and hippocampus, particularly the hippocampal CA3 area, is critical for episodic memory. To what extent the mPFC also interacts with the hippocampus CA1 subregion still requires elucidation. To investigate this issue, male rats received unilateral N-methyl- D -aspartate lesions of the mPFC together with unilateral lesions of the hippocampal CA1 area, either in the same (control) or in the opposite hemispheres (disconnection). They underwent an episodic-like memory test, combining what-where-when information, and separate tests for novel object preference (what), object place preference (where) and temporal order memory (when). Compared to controls, the disconnected mPFC-CA1 rats exhibited disrupted episodic-like memory with an impaired integration of the what-where-when elements. Both groups showed intact memories for what and when, while only the control group showed intact memory for where. These findings suggest that the functional interaction of the mPFC-CA1 circuit is crucial for the processing of episodic memory and, in particular, for the integration of the spatial memory component. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Possible relationship between the stress-induced synaptic response and metaplasticity in the hippocampal CA1 field of freely moving rats.

    Science.gov (United States)

    Hirata, Riki; Matsumoto, Machiko; Judo, Chika; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro; Togashi, Hiroko

    2009-07-01

    Hippocampal long-term potentiation (LTP) is suppressed not only by stress paradigms but also by low frequency stimulation (LFS) prior to LTP-inducing high frequency stimulation (HFS; tetanus), termed metaplasticity. These synaptic responses are dependent on N-methyl-D-aspartate receptors, leading to speculations about the possible relationship between metaplasticity and stress-induced LTP impairment. However, the functional significance of metaplasticity has been unclear. The present study elucidated the electrophysiological and neurochemical profiles of metaplasticity in the hippocampal CA1 field, with a focus on the synaptic response induced by the emotional stress, contextual fear conditioning (CFC). The population spike amplitude in the CA1 field was decreased during exposure to CFC, and LTP induction was suppressed after CFC in conscious rats. The synaptic response induced by CFC was mimicked by LFS, i.e., LFS impaired the synaptic transmission and subsequent LTP. Plasma corticosterone levels were increased by both CFC and LFS. Extracellular levels of gamma-aminobutyric acid (GABA), but not glutamate, in the hippocampus increased during exposure to CFC or LFS. Furthermore, electrical stimulation of the medial prefrontal cortex (mPFC), which caused decreases in freezing behavior during exposure to CFC, counteracted the LTP impairment induced by LFS. These findings suggest that metaplasticity in the rat hippocampal CA1 field is related to the neural basis of stress experience-dependent fear memory, and that hippocampal synaptic response associated stress-related processes is under mPFC regulation.

  10. Two organizational effects of pubertal testosterone in male rats: transient social memory and a shift away from long-term potentiation following a tetanus in hippocampal CA1.

    Science.gov (United States)

    Hebbard, Pamela C; King, Rebecca R; Malsbury, Charles W; Harley, Carolyn W

    2003-08-01

    The organizational role of pubertal androgen receptor (AR) activation in synaptic plasticity in hippocampal CA1 and in social memory was assessed. Earlier data suggest pubertal testosterone reduces adult hippocampal synaptic plasticity. Four groups were created following gonadectomy at the onset of puberty: rats given testosterone; rats given testosterone but with the AR antagonist flutamide, present during puberty; rats given testosterone at the end of puberty; and rats given cholesterol at the end of puberty. A tetanus normally inducing long-term potentiation (LTP) was used to stimulate CA1 in the urethane-anesthetized adults during the dark phase of their cycle. Social memory was assessed prior to electrophysiology. Social memory for a juvenile rat at 120 min was seen only in rats not exposed to AR activation during puberty. Pubertal AR activation may induce the reduced social memory of male rats. Early CA1 LTP occurred following tetanus in rats with no pubertal testosterone. Short-term potentiation occurred in rats exposed to pubertal testosterone. Unexpectedly, rats with pubertal AR activation developed long-term depression (LTD). The same pattern was seen in normal male rats. Lack of LTP during the dark phase is consistent with other data on circadian modulation of CA1 LTP. No correlations were seen among social memory scores and CA1 plasticity measures. These data argue for two organizational effects of pubertal testosterone: (1) CA1 synaptic plasticity shifts away from potentiation toward depression; (2) social memory is reduced. Enduring effects of pubertal androgen on limbic circuits may contribute to reorganized behaviors in the postpubertal period.

  11. Neuroprotective effects of oleuropein against cognitive dysfunction induced by colchicine in hippocampal CA1 area in rats.

    Science.gov (United States)

    Pourkhodadad, Soheila; Alirezaei, Masoud; Moghaddasi, Mehrnoush; Ahmadvand, Hassan; Karami, Manizheh; Delfan, Bahram; Khanipour, Zahra

    2016-09-01

    Alzheimer's disease is a progressive neurodegenerative disorder with decline in memory. The role of oxidative stress is well known in the pathogenesis of the disease. The purpose of this study was to evaluate pretreatment effects of oleuropein on oxidative status and cognitive dysfunction induced by colchicine in the hippocampal CA1 area. Male Wistar rats were pretreated orally once daily for 10 days with oleuropein at doses of 10, 15 and 20 mg/kg. Thereafter, colchicine (15 μg/rat) was administered into the CA1 area of the hippocampus to induce cognitive dysfunction. The Morris water maze was used to assess learning and memory. Biochemical parameters such as glutathione peroxidase and catalase activities, nitric oxide and malondialdehyde concentrations were measured to evaluate the antioxidant status in the rat hippocampus. Our results indicated that colchicine significantly impaired spatial memory and induced oxidative stress; in contrast, oleuropein pretreatment significantly improved learning and memory retention, and attenuated the oxidative damage. The results clearly indicate that oleuropein has neuroprotective effects against colchicine-induced cognitive dysfunction and oxidative damage in rats.

  12. Turmeric extract inhibits apoptosis of hippocampal neurons of trimethyltin-exposed rats.

    Science.gov (United States)

    Yuliani, S; Widyarini, S; Mustofa; Partadiredja, G

    2017-01-01

    The aim of the present study was to reveal the possible antiapoptotic effect of turmeric (Curcuma longa Linn.) on the hippocampal neurons of rats exposed to trimethyltin (TMT). Oxidative damage in the hippocampus can induce the apoptosis of neurons associated with the pathogenesis of dementiaMETHODS. The ethanolic turmeric extract and a citicoline (as positive control) solution were administered to the TMT-exposed rats for 28 days. The body weights of rats were recorded once a week. The hippocampal weights and imumunohistochemical expression of caspase 3 proteins in the CA1 and CA2-CA3 regions of the hippocampi were examined at the end of the experiment. Immunohistochemical analysis showed that the injection of TMT increased the expression of caspase 3 in the CA1 and CA2-CA3 regions of hippocampus. TMT also decreased the body and hippocampal weights. Furthermore, the administration of 200 mg/kg bw dose of turmeric extract decreased the caspase 3 expression in the CA2-CA3 pyramidal neurons but not in the CA1 neurons. It also prevented the decrease of the body and hippocampal weights. We suggest that the 200 mg/kg bw dose of turmeric extract may exert antiapoptotic effect on the hippocampal neurons of the TMT-exposed rats (Tab. 1, Fig. 3, Ref. 49).

  13. The effect of propofol on CA1 pyramidal cell excitability and GABAA-mediated inhibition in the rat hippocampal slice.

    Science.gov (United States)

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1996-05-24

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of propofol on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid, and electrodes were placed in the CA1 region to record extracellular field population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. The major effect of propofol (7-28 microM) was a dose and time dependent increase in the intensity and duration of GABA-mediated inhibition. This propofol effect could be rapidly and completely reversed by exposure to known GABAA antagonists, including picrotoxin, bicuculline and pentylenetetrazol. It was also reversed by the chloride channel antagonist, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). It was not antagonized by central (flumazenil) or peripheral (PK11195) benzodiazepine antagonists. Reversal of endogenous inhibition was also noted with the antagonists picrotoxin and pentylenetetrazol. Input/output curves constructed using stimulus propofol caused only a small enhancement of EPSPs at higher stimulus intensities but had no effect on PS amplitudes. These studies are consistent with propofol having a GABAA-chloride channel mechanism causing its effect on recurrent collateral evoked inhibition in the rat hippocampal slice.

  14. Salicylate-induced changes in immediate-early genes in the hippocampal CA1 area.

    Science.gov (United States)

    Wu, Hao; Xu, Feng-Lei; Yin, Yong; Da, Peng; You, Xiao-Dong; Xu, Hui-Min; Tang, Yan

    2015-08-01

    Studies have suggested that salicylate affects neuronal function via interactions with specific membrane channels/receptors. However, the effect of salicylate on activity and synaptic morphology of the hippocampal Cornu Ammonis (CA) 1 area remains to be elucidated. The activation of immediate-early genes (IEGs) was reported to correlate with neuronal activity, in particular activity-regulated cytoskeleton-associated protein and early growth response gene 1. The aim of the present study was to evaluate the expression of these IEGs, as well that of N-methyl D-aspartate (NMDA) receptor subunit 2B in rats following acute and chronic salicylate treatment. Protein and messenger RNA levels of all three genes were increased in rats following chronic administration of salicylate (300 mg/kg for 10 days), returning to baseline levels 14 days post-cessation of treatment. The transient upregulation of gene expression following treatment was accompanied by ultrastructural alterations in hippocampal CA1 area synapses. An increase in synaptic interface curvature was observed as well as an increased number of presynaptic vesicles; in addition, postsynaptic densities thickened and lengthened. In conclusion, the results of the present study indicated that chronic exposure to salicylate may lead to structural alteration of hippocampal CA1 neurons, and it was suggested that this process occurs through induced expression of IEGs via NMDA receptor activation.

  15. Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors.

    Science.gov (United States)

    Chen, Xin-Yi; Chen, Lei; Du, Yi-Feng

    2017-07-01

    Orexins including two peptides, orexin-A and orexin-B, are produced in the posterior lateral hypothalamus. Much evidence has indicated that central orexinergic systems play numerous functions including energy metabolism, feeding behavior, sleep/wakefulness, and neuroendocrine and sympathetic activation. Morphological studies have shown that the hippocampal CA1 regions receive orexinergic innervation originating from the hypothalamus. Positive orexin-1 (OX 1 ) receptors are detected in the CA1 regions. Previous behavioral studies have shown that microinjection of OX 1 receptor antagonist into the hippocampus impairs acquisition and consolidation of spatial memory. However, up to now, little has been known about the direct electrophysiological effects of orexin-A on hippocampal CA1 neurons. Employing multibarrel single-unit extracellular recordings, the present study showed that micropressure administration of orexin-A significantly increased the spontaneous firing rate from 2.96 ± 0.85 to 8.45 ± 1.86 Hz (P neurons in male rats. Furthermore, application of the specific OX 1 receptor antagonist SB-334867 alone significantly decreased the firing rate from 4.02 ± 1.08 to 2.11 ± 0.58 Hz in 7 out of the 17 neurons (P neurons. Coapplication of SB-334867 completely blocked orexin-A-induced excitation of hippocampal CA1 neurons. The PLC pathway may be involved in activation of OX 1 receptor-induced excitation of CA1 neurons. Taken together, the present study's results suggest that orexin-A produces excitatory effects on hippocampal neurons via OX 1 receptors. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Changes in rat hippocampal CA1 synapses following imipramine treatment

    DEFF Research Database (Denmark)

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers

    2008-01-01

    Neuronal plasticity in hippocampus is hypothesized to play an important role in both the pathophysiology of depressive disorders and the treatment. In this study, we investigated the consequences of imipramine treatment on neuroplasticity (including neurogenesis, synaptogenesis, and remodelling...... and number of neurons of hippocampal subregions following imipramine treatment were found. However, the number and percentage of CA1 asymmetric spine synapses increased significantly and, conversely, the percentage of asymmetric shaft synapses significantly decreased in the imipramine treated group. Our...

  17. Control theory-based regulation of hippocampal CA1 nonlinear dynamics.

    Science.gov (United States)

    Hsiao, Min-Chi; Song, Dong; Berger, Theodore W

    2008-01-01

    We are developing a biomimetic electronic neural prosthesis to replace regions of the hippocampal brain area that have been damaged by disease or insult. Our previous study has shown that the VLSI implementation of a CA3 nonlinear dynamic model can functionally replace the CA3 subregion of the hippocampal slice. As a result, the propagation of temporal patterns of activity from DG-->VLSI-->CA1 reproduces the activity observed experimentally in the biological DG-->CA3-->CA1 circuit. In this project, we incorporate an open-loop controller to optimize the output (CA1) response. Specifically, we seek to optimize the stimulation signal to CA1 using a predictive dentate gyrus (DG)-CA1 nonlinear model (i.e., DG-CA1 trajectory model) and a CA1 input-output model (i.e., CA1 plant model), such that the ultimate CA1 response (i.e., desired output) can be first predicted by the DG-CA1 trajectory model and then transformed to the desired stimulation through the inversed CA1 plant model. Lastly, the desired CA1 output is evoked by the estimated optimal stimulation. This study will be the first stage of formulating an integrated modeling-control strategy for the hippocampal neural prosthetic system.

  18. Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats.

    Science.gov (United States)

    Chan, Jiangping; Guan, Xin; Ni, Yiling; Luo, Lilu; Yang, Liqiang; Zhang, Pengyue; Zhang, Jichuan; Chen, Yanmei

    2017-03-15

    The Lateral Habenula (LHb) plays an important role in emotion and cognition. Recent experiments suggest that LHb has functional interaction with the hippocampus and plays an important role in spatial learning. LHb is reciprocally connected with midbrain monoaminergic brain areas such as the ventral tegmental area (VTA). However, the role of dopamine type 1 receptor (D1R) in LHb in learning and memory is not clear yet. In the present study, D1R agonist or antagonist were administered bilaterally into the LHb in rats. We found that both D1R agonist and antagonist impaired the acquisition of contextual fear memory in rats. D1R agonist or antagonist also impaired long term potentiation (LTP) in hippocampal CA3-CA1 synapses in freely moving rats and attenuated learning induced phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit 1 (GluA1) at Ser831 and Ser845 in hippocampus. Taken together, our results suggested that dysfunction of D1R in LHb affected the function of hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress in rats with streptozotocin-induced type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Sang Gun Lee

    2015-01-01

    Full Text Available In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxidant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental parameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.

  20. [Conditions required for appearance of a double response to a single-shock stimulation of Schaffer collaterals in hippocampal field CA1 in freely moving rats].

    Science.gov (United States)

    Zosimovskiĭ, V A; Korshunov, V A; Markevich, V A

    2007-01-01

    Schaffer collateral stimulation with a single current impulse can evoke a double response in hippocampal field CA1 of freely moving rats. The late response appears as a population excitatory postsynaptic potential with a preceding short-term potential (frequently biphasic) only after the early population spike and is time-locked to it. The wave shape and polarity of the late response, its latency with respect to the peak of the early population spike suggest that the excitation wave produced in the CA1 field by the stimulation of Schaffer collaterals passes across the entorhinal cortex and returns to the CA1 directly via the perforant path fibers. In waking rat, the medium-intensity stimulation of Schaffer collaterals (able to evoke in the CA1 an early population spike of sufficiently high amplitude) usually does not result in the appearance of the late response. However, similar stimulation becomes efficient after the tetanization of Schaffer collaterals, under conditions of the long-term potentiation of the early population spike. Moreover, the late response occurrence is facilitated in a rat falling asleep after the development in the CA1 of high-amplitude low-frequency EEG oscillations typical for the slow-wave sleep and in a sleeping rat independently of the EEG pattern.

  1. Cannabinoids disrupt memory encoding by functionally isolating hippocampal CA1 from CA3.

    Directory of Open Access Journals (Sweden)

    Roman A Sandler

    2017-07-01

    Full Text Available Much of the research on cannabinoids (CBs has focused on their effects at the molecular and synaptic level. However, the effects of CBs on the dynamics of neural circuits remains poorly understood. This study aims to disentangle the effects of CBs on the functional dynamics of the hippocampal Schaffer collateral synapse by using data-driven nonparametric modeling. Multi-unit activity was recorded from rats doing an working memory task in control sessions and under the influence of exogenously administered tetrahydrocannabinol (THC, the primary CB found in marijuana. It was found that THC left firing rate unaltered and only slightly reduced theta oscillations. Multivariate autoregressive models, estimated from spontaneous spiking activity, were then used to describe the dynamical transformation from CA3 to CA1. They revealed that THC served to functionally isolate CA1 from CA3 by reducing feedforward excitation and theta information flow. The functional isolation was compensated by increased feedback excitation within CA1, thus leading to unaltered firing rates. Finally, both of these effects were shown to be correlated with memory impairments in the working memory task. By elucidating the circuit mechanisms of CBs, these results help close the gap in knowledge between the cellular and behavioral effects of CBs.

  2. 17β Estradiol increases resilience and improves hippocampal synaptic function in helpless ovariectomized rats

    Science.gov (United States)

    Bredemann, Teruko M.; McMahon, Lori L.

    2014-01-01

    Summary Memory impairment is the most commonly reported cognitive symptom associated with major depressive disorder. Decreased hippocampal volume and neurogenesis in depression link hippocampal dysfunction with deficits in memory. Stress decreases hippocampal dendritic spine density and long-term potentiation (LTP) at glutamate synapses, a cellular correlate of learning and memory. However, elevated plasma levels of 17β estradiol (E2) during proestrus increase hippocampal structure and function, directly opposing the negative consequences of stress. In women, significant fluctuations in ovarian hormones likely increase vulnerability of hippocampal circuits to stress, potentially contributing to the greater incidence of depression compared to men. Using the learned helplessness model of depression and ovariectomized female rats, we investigated whether acquisition of helplessness and hippocampal synaptic dysfunction is differentially impacted by the presence or absence of plasma E2. We find that inescapable shock induces a greater incidence of helplessness in vehicle- versus E2-treated OVX rats. In the vehicle-treated group, LTP was absent at CA3-CA1 synapses in slices only from helpless rats, and CA1 spine density was decreased compared to resilient rats. In contrast, significant LTP was observed in slices from E2-treated helpless rats; importantly, spine density was not different between E2-treated helpless and resilient rats, dissociating spine density from the LTP magnitude. We also find that E2 replacement can reverse previously established helpless behavior. Thus, our results show that E2 replacement in OVX rats increases resilience and improves hippocampal plasticity, suggesting that E2 therapy may increase resilience to stress and preserve hippocampal function in women experiencing large fluctuations in plasma estrogen levels. PMID:24636504

  3. DDPH ameliorated oxygen and glucose deprivation-induced injury in rat hippocampal neurons via interrupting Ca2+ overload and glutamate release.

    Science.gov (United States)

    He, Zhi; Lu, Qing; Xu, Xulin; Huang, Lin; Chen, Jianguo; Guo, Lianjun

    2009-01-28

    Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.

  4. Conditions required for the appearance of double responses in hippocampal field CA1 to application of single stimuli to Shäffer collaterals in freely moving rats.

    Science.gov (United States)

    Zosimovskii, V A; Korshunov, V A; Markevich, V A

    2008-03-01

    Stimulation of Shäffer collaterals with single current impulses could evoke double responses in hippocampal field CA1 in freely moving rats. The late response - the population excitatory postsynaptic potential with a preceding transient potential, often biphasic - occurred only after an early population spike and was time-locked to it. The shape characteristics of the late response, its polarity, and its latent period relative to the early population spike suggest that stimulation of Shäffer collaterals gives rise, in CA1, to a wave of excitation which passes through the entorhinal cortex and returns to CA1 directly via fibers of the perforant path. In conscious rats, medium-strength stimulation of Shäffer collaterals, sufficient to evoke a quite early population spike in CA1, did not usually lead to the appearance of a late response; the same stimulation became effective after tetanization of Shäffer collaterals in conditions of long-term potentiation of the early population spike. Furthermore, the appearance of the late response was facilitated in rats falling asleep on the background of high-amplitude, low-frequency EEG oscillations in CA1 characteristic of slow-wave sleep, as well as in sleeping rats, regardless of the EEG pattern.

  5. Protective effects of endoplasmic reticulum stress preconditioning on hippocampal neurons in rats with status epilepticus

    Directory of Open Access Journals (Sweden)

    Yi ZHANG

    2014-12-01

    Full Text Available Objective To evaluate the protective effects of endoplasmic reticulum stress preconditioning induced by 2-deoxyglucose (2-DG on hippocampal neurons of rats with status epilepticus (SE and the possible mechanism.  Methods Ninety Sprague-Dawley (SD rats were randomly enrolled into preconditioning group (N = 30, SE group (N = 30 and control group (N = 30. Each group was divided into 6 subsets (N = 5 according to six time points (before seizure, 6 h, 12 h, 1 d, 2 d and 7 d after seizure. The preconditioning group was administered 2-DG intraperitoneally with a dose of 150 mg/kg for 7 days, and the lithium-pilocarpine induced SE rat model was established on both preconditioning group and SE group. The rats were sacrificed at the above six time points, and the brains were removed to make paraffin sections. Nissl staining was performed by toluidine blue to evaluate the hippocampal neuronal damage after seizure, and the number of survival neurons in hippocampal CA1 and CA3 regions of the rats were counted. Immunohistochemical staining was performed to detect the expressions of glucose regulated protein 78 (GRP78 and X-box binding protein 1 (XBP-1 in hippocampal CA3 region of the rats.  Results The number of survival neurons in preconditioning group was much more than that in SE group at 7 d after seizure (t = 5.353, P = 0.000, and was more obvious in CA1 region. There was no significant hippocampal neuronal damage in control group. The expressions of GRP78 and XBP-1 in CA3 region of hippocampus in SE group at 6 h after seizure were significantly higher than that in control group (P = 0.000, and then kept increasing until reaching the peak at 2 d (P = 0.000, for all. The expressions of GRP78 and XBP-1 in hippocampal CA3 region in preconditioning group were significantly higher than that in control group before seizure (P = 0.000, for all. The level of GRP78 maintained the highest at 24 h and 2 d after seizure (P = 0.000, for all, while the XBP-1 level

  6. Cyclic ADP ribose-dependent Ca2+ release by group I metabotropic glutamate receptors in acutely dissociated rat hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jong-Woo Sohn

    Full Text Available Group I metabotropic glutamate receptors (group I mGluRs; mGluR1 and mGluR5 exert diverse effects on neuronal and synaptic functions, many of which are regulated by intracellular Ca(2+. In this study, we characterized the cellular mechanisms underlying Ca(2+ mobilization induced by (RS-3,5-dihydroxyphenylglycine (DHPG; a specific group I mGluR agonist in the somata of acutely dissociated rat hippocampal neurons using microfluorometry. We found that DHPG activates mGluR5 to mobilize intracellular Ca(2+ from ryanodine-sensitive stores via cyclic adenosine diphosphate ribose (cADPR, while the PLC/IP(3 signaling pathway was not involved in Ca(2+ mobilization. The application of glutamate, which depolarized the membrane potential by 28.5±4.9 mV (n = 4, led to transient Ca(2+ mobilization by mGluR5 and Ca(2+ influx through L-type Ca(2+ channels. We found no evidence that mGluR5-mediated Ca(2+ release and Ca(2+ influx through L-type Ca(2+ channels interact to generate supralinear Ca(2+ transients. Our study provides novel insights into the mechanisms of intracellular Ca(2+ mobilization by mGluR5 in the somata of hippocampal neurons.

  7. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo

    Science.gov (United States)

    Tukker, John J; Klausberger, Thomas; Somogyi, Peter

    2015-01-01

    Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation. PMID:24141313

  8. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites.

    Science.gov (United States)

    Znamensky, Vladimir; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2003-03-15

    In addition to genomic pathways, estrogens may regulate gene expression by activating specific signal transduction pathways, such as that involving phosphatidylinositol 3-kinase (PI3-K) and the subsequent phosphorylation of Akt (protein kinase B). The Akt pathway regulates various cellular events, including the initiation of protein synthesis. Our previous studies showed that synaptogenesis in hippocampal CA1 pyramidal cell dendritic spines is highest when brain estrogen levels are highest. To address the role of Akt in this process, the subcellular distribution of phosphorylated Akt immunoreactivity (pAkt-I) in the hippocampus of female rats across the estrous cycle and male rats was analyzed by light microscopy (LM) and electron microscopy (EM). By LM, the density of pAkt-I in stratum radiatum of CA1 was significantly higher in proestrus rats (or in estrogen-supplemented ovariectomized females) compared with diestrus, estrus, or male rats. By EM, pAkt-I was found throughout the shafts and in select spines of stratum radiatum dendrites. Quantitative ultrastructural analysis identifying pAkt-I with immunogold particles revealed that proestrus rats compared with diestrus, estrus, and male rats contained significantly higher pAkt-I associated with (1) dendritic spines (both cytoplasm and plasmalemma), (2) spine apparati located within 0.1 microm of dendritic spine bases, (3) endoplasmic reticula and polyribosomes in the cytoplasm of dendritic shafts, and (4) the plasmalemma of dendritic shafts. These findings suggest that estrogens may regulate spine formation in CA1 pyramidal neurons via Akt-mediated signaling events.

  9. The GLP-1 Receptor Agonist Exendin-4 and Diazepam Differentially Regulate GABAA Receptor-Mediated Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons.

    Directory of Open Access Journals (Sweden)

    Sergiy V Korol

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM, an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM plus diazepam (1 μM, only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons.

  10. Involvement of glucocorticoid-mediated Zn2+ signaling in attenuation of hippocampal CA1 LTP by acute stress.

    Science.gov (United States)

    Takeda, Atsushi; Suzuki, Miki; Tamano, Haruna; Takada, Shunsuke; Ide, Kazuki; Oku, Naoto

    2012-03-01

    Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Disinhibition mediates a form of hippocampal long-term potentiation in area CA1.

    Directory of Open Access Journals (Sweden)

    Jake Ormond

    Full Text Available The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs followed rapidly by feedforward (disynaptic inhibitory postsynaptic potentials (IPSPs. Long-term potentiation (LTP of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs, required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain.

  12. The Effect of N-acetyl-cysteine on Memory Retrieval and the Number of Intact Neurons of Hippocampal CA1 Area in Streptozotocin-induced Alzheimeric Male Rats

    Directory of Open Access Journals (Sweden)

    Niloufar Darbandi

    2018-01-01

    Full Text Available Abstract Background: Alzheimer is a neurodegenerative disease wich caused memory impairment, reduced cognitive functions, intellectual ability and behavior changes. In this study, the effect of N-acetyl-cysteine (NAC as a strong antioxidant on memory deficiency and number of CA1 pyramidal neurons in Streptozotocine (STZ - induced Alzheimeric rats were studied. Materials and Methods: 32 Male Wistar rats were divided into four groups: sham group, streptozotocin group, treated group with streptozotocin plus N-acetyl-cysteine, and treated group with N-acetyl-cysteine alone. Intracerebroventricular (ICV administration of STZ was done in the first and the third day of surgery and i.p injection of N-acetyl-cysteine was done in the fourth of surgery. After the memory test, the animals were killed and their brains were fixed and density of intact neurons in the CA1 area of the hippocampus was investigated. Statistical analysis was performed with software SPSS, ANOVA and Prisme software. The level of statistical significance was set at p 0.05. Conclusion: N-acetyl-cysteine improved memory retrieval and hippocampal CA1 area intact neurons in streptozotocin-induced Alzheimeric male rats.

  13. Perirhinal cortical inactivation impairs object-in-place memory and disrupts task-dependent firing in hippocampal CA1, but not in CA3.

    Science.gov (United States)

    Lee, Inah; Park, Seong-Beom

    2013-01-01

    Objects and their locations can associatively define an event and a conjoint representation of object-place can form an event memory. Remembering how to respond to a certain object in a spatial context is dependent on both hippocampus and perirhinal cortex (PER). However, the relative functional contributions of the two regions are largely unknown in object-place associative memory. We investigated the PER influence on hippocampal firing in a goal-directed object-place memory task by comparing the firing patterns of CA1 and CA3 of the dorsal hippocampus between conditions of PER muscimol inactivation and vehicle control infusions. Rats were required to choose one of the two objects in a specific spatial context (regardless of the object positions in the context), which was shown to be dependent on both hippocampus and PER. Inactivation of PER with muscimol (MUS) severely disrupted performance of well-trained rats, resulting in response bias (i.e., choosing any object on a particular side). MUS did not significantly alter the baseline firing rates of hippocampal neurons. We measured the similarity in firing patterns between two trial conditions in which the same target objects were chosen on opposite sides within the same arm [object-in-place (O-P) strategy] and compared the results with the similarity in firing between two trial conditions in which the rat chose any object encountered on a particular side [response-in-place (R-P) strategy]. We found that the similarity in firing patterns for O-P trials was significantly reduced with MUS compared to control conditions (CTs). Importantly, this was largely because MUS injections affected the O-P firing patterns in CA1 neurons, but not in CA3. The results suggest that PER is critical for goal-directed organization of object-place associative memory in the hippocampus presumably by influencing how object information is associated with spatial information in CA1 according to task demand.

  14. Perirhinal cortical inactivation impairs object-in-place memory and disrupts task-dependent firing in hippocampal CA1, but not in CA3

    Directory of Open Access Journals (Sweden)

    Inah eLee

    2013-08-01

    Full Text Available Objects and their locations can associatively define an event and a conjoint representation of object-place can form an event memory. Remembering how to respond to a certain object in a spatial context is dependent on both hippocampus and perirhinal cortex (PER. However, the relative functional contributions of the two regions are largely unknown in object-place associative memory. We investigated the PER influence on hippocampal firing in a goal-directed object-place memory task by comparing the firing patterns of CA1 and CA3 of the dorsal hippocampus between conditions of PER muscimol inactivation and vehicle control infusions. Rats were required to choose one of the two objects in a specific spatial context (regardless of the object positions in the context, which was shown to be dependent on both hippocampus and PER. Inactivation of PER with muscimol (MUS severely disrupted performance of well-trained rats, resulting in response bias (i.e., choosing any object on a particular side. MUS did not significantly alter the baseline firing rates of hippocampal neurons. We measured the similarity in firing patterns between two trial conditions in which the same target objects were chosen on opposite sides within the same arm (object-in-place strategy and compared the results with the similarity in firing between two trial conditions in which the rat chose any object encountered on a particular side (response-in-place strategy. We found that the similarity in firing patterns for object-in-place trials was significantly reduced with MUS compared to control conditions. Importantly, this was largely because MUS injections affected the object-in-place firing patterns in CA1 neurons, but not in CA3. The results suggest that PER is critical for goal-directed organization of object-place associative memory in the hippocampus presumably by influencing how object information is associated with spatial information in CA1 according to task demand.

  15. Enhancement of synchronized activity between hippocampal CA1 neurons during initial storage of associative fear memory.

    Science.gov (United States)

    Liu, Yu-Zhang; Wang, Yao; Shen, Weida; Wang, Zhiru

    2017-08-01

    Learning and memory storage requires neuronal plasticity induced in the hippocampus and other related brain areas, and this process is thought to rely on synchronized activity in neural networks. We used paired whole-cell recording in vivo to examine the synchronized activity that was induced in hippocampal CA1 neurons by associative fear learning. We found that both membrane potential synchronization and spike synchronization of CA1 neurons could be transiently enhanced after task learning, as observed on day 1 but not day 5. On day 1 after learning, CA1 neurons showed a decrease in firing threshold and rise times of suprathreshold membrane potential changes as well as an increase in spontaneous firing rates, possibly contributing to the enhancement of spike synchronization. The transient enhancement of CA1 neuronal synchronization may play important roles in the induction of neuronal plasticity for initial storage and consolidation of associative memory. The hippocampus is critical for memory acquisition and consolidation. This function requires activity- and experience-induced neuronal plasticity. It is known that neuronal plasticity is largely dependent on synchronized activity. As has been well characterized, repetitive correlated activity of presynaptic and postsynaptic neurons can lead to long-term modifications at their synapses. Studies on network activity have also suggested that memory processing in the hippocampus may involve learning-induced changes of neuronal synchronization, as observed in vivo between hippocampal CA3 and CA1 networks as well as between the rhinal cortex and the hippocampus. However, further investigation of learning-induced synchronized activity in the hippocampus is needed for a full understanding of hippocampal memory processing. In this study, by performing paired whole-cell recording in vivo on CA1 pyramidal cells (PCs) in anaesthetized adult rats, we examined CA1 neuronal synchronization before and after associative fear

  16. Effect of realgar on extracellular amino acid neurotransmitters in hippocampal CA1 region determined by online microdialysis–dansyl chloride derivatization–high-performance liquid chromatography and fluorescence detection.

    Science.gov (United States)

    Huo, Taoguang; Zhang, Yinghua; Li, Weikai; Yang, Huilei; Jiang, Hong; Sun, Guifan

    2014-09-01

    An online microdialysis (MD)–dansyl chloride (Dns) derivatization–high-performance liquid chromatography (HPLC) and fluorescence detection (FD) system was developed for simultaneous determination of eight extracellular amino acid neurotransmitters in hippocampus. The MD probe was implanted in hippocampal CA1 region. Dialysate and Dns were online mixed and derivatized. The derivatives were separated on an ODS column and detected by FD. The developed online system showed good linearity, precision, accuracy and recovery. This online MD-HPLC system was applied to monitor amino acid neurotransmitters levels in rats exposed to realgar (0.3, 0.9 and 2.7 g/kg body weight). The result shows that glutamate concentrations were significantly increased (p<0.05) in hippocampal CA1 region of rats exposed to three doses of realgar. A decrease in γ-aminobutyric acid concentrations was found in rats exposed to medium and high doses of realgar (p<0.05). Elevation of excitotoxic index (EI) values in hippocampal CA1 region of realgar-exposed rats was observed (p<0.05). Positive correlation was found between EI values and arsenic contents in hippocampus of realgar-exposed rats, which indicates that the change in extracellular EI values is associated with arsenic accumulation in hippocampus. The developed online MD–Dns derivatization–HPLC–FD system provides a new experimental method for studying the effect of toxic Chinese medicines on amino acid neurotransmitters.

  17. Opioid withdrawal for 4 days prevents synaptic depression induced by low dose of morphine or naloxone in rat hippocampal CA1 area in vivo.

    Science.gov (United States)

    Dong, Zhifang; Han, Huili; Cao, Jun; Xu, Lin

    2010-02-01

    The formation of memory is believed to depend on experience- or activity-dependent synaptic plasticity, which is exquisitely sensitive to psychological stress since inescapable stress impairs long-term potentiation (LTP) but facilitates long-term depression (LTD). Our recent studies demonstrated that 4 days of opioid withdrawal enables maximal extents of both hippocampal LTP and drug-reinforced behavior; while elevated-platform stress enables these phenomena at 18 h of opioid withdrawal. Here, we examined the effects of low dose of morphine (0.5 mg kg(-1), i.p.) or the opioid receptor antagonist naloxone (1 mg kg(-1), i.p.) on synaptic efficacy in the hippocampal CA1 region of anesthetized rats. A form of synaptic depression was induced by low dose of morphine or naloxone in rats after 18 h but not 4 days of opioid withdrawal. This synaptic depression was dependent on both N-methyl-D-aspartate receptor and synaptic activity, similar to the hippocampal long-term depression induced by low frequency stimulation. Elevated-platform stress given 2 h before experiment prevented the synaptic depression at 18 h of opioid withdrawal; in contrast, the glucocorticoid receptor (GR) antagonist RU38486 treatment (20 mg kg(-1), s.c., twice per day for first 3 days of withdrawal), or a high dose of morphine reexposure (15 mg kg(-1), s.c., 12 h before experiment), enabled the synaptic depression on 4 days of opioid withdrawal. This temporal shift of synaptic depression by stress or GR blockade supplements our previous findings of potentially correlated temporal shifts of LTP induction and drug-reinforced behavior during opioid withdrawal. Our results therefore support the idea that stress experience during opioid withdrawal may modify hippocampal synaptic plasticity and play important roles in drug-associated memory. (c) 2009 Wiley-Liss, Inc.

  18. Attenuation of hypoxic current by intracellular applications of ATP regenerating agents in hippocampal CA1 neurons of rat brain slices.

    Science.gov (United States)

    Chung, I; Zhang, Y; Eubanks, J H; Zhang, L

    1998-10-01

    Hypoxia-induced outward currents (hyperpolarization) were examined in hippocampal CA1 neurons of rat brain slices, using the whole-cell recording technique. Hypoxic episodes were induced by perfusing slices with an artificial cerebrospinal fluid aerated with 5% CO2/95% N2 rather than 5% CO2/95% O2, for about 3 min. The hypoxic current was consistently and reproducibly induced in CA1 neurons dialysed with an ATP-free patch pipette solution. This current manifested as an outward shift in the holding current in association with increased conductance, and it reversed at -78 +/- 2.5 mV, with a linear I-V relation in the range of -100 to -40 mV. To provide extra energy resources to individual neurons recorded, agents were added to the patch pipette solution, including MgATP alone, MgATP + phosphocreatine + creatine kinase, or MgATP + creatine. In CA1 neurons dialysed with patch solutions including these agents, hypoxia produced small outward currents in comparison with those observed in CA1 neurons dialysed with the ATP-free solution. Among the above agents examined, whole-cell dialysis with MgATP + creatine was the most effective at decreasing the hypoxic outward currents. We suggest that the hypoxic hyperpolarization is closely related to energy metabolism in individual CA1 neurons, and that the energy supply provided by phosphocreatine metabolism may play a critical role during transient metabolic stress.

  19. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats

    OpenAIRE

    Li, Guan Zeng; Liu, Zhe Hui; Wei, XinYa; Zhao, Pan; Yang, Chun Xiao; Xu, Man Ying

    2015-01-01

    Objective(s): To determine the effect of acetylcholine (ACh), pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN) and pain inhibited neurons (PIN) in hippocampal CA3 region of morphine addicted rats. Materials and Methods: Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to...

  20. Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats

    Directory of Open Access Journals (Sweden)

    Valentina eCorvino

    2015-11-01

    Full Text Available Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2 administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT administration (8mg/kg, characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg i.p. or vehicle, and were sacrificed 48h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48h upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, Cadherin and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad 67, neuropeptide Y (Npy, parvalbumin , Pgc-1α and Sirtuin 1genes, the latter involved in parvalbumin (PV synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain.

  1. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species.

    Science.gov (United States)

    Yang, Ji Seon; Perveen, Shazia; Ha, Tae Joung; Kim, Seong Yun; Yoon, Shin Hee

    2015-05-05

    Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory.

    Science.gov (United States)

    Shetty, Mahesh Shivarama; Sharma, Mahima; Sajikumar, Sreedharan

    2017-02-01

    Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long-term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging-related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long-term potentiation (LTP), in age-related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82- to 84-week-old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani-induced and dopaminergic agonist-induced late-LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell-permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell-permeable chelating agents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Behavior-driven arc expression is reduced in all ventral hippocampal subfields compared to CA1, CA3, and dentate gyrus in rat dorsal hippocampus.

    Science.gov (United States)

    Chawla, M K; Sutherland, V L; Olson, K; McNaughton, B L; Barnes, C A

    2018-02-01

    Anatomical connectivity and lesion studies reveal distinct functional heterogeneity along the dorsal-ventral axis of the hippocampus. The immediate early gene Arc is known to be involved in neural plasticity and memory and can be used as a marker for cell activity that occurs, for example, when hippocampal place cells fire. We report here, that Arc is expressed in a greater proportion of cells in dorsal CA1, CA3, and dentate gyrus (DG), following spatial behavioral experiences compared to ventral hippocampal subregions (dorsal CA1 = 33%; ventral CA1 = 13%; dorsal CA3 = 23%; ventral CA3 = 8%; and dorsal DG = 2.5%; ventral DG = 1.2%). The technique used here to obtain estimates of numbers of behavior-driven cells across the dorsal-ventral axis, however, corresponds quite well with samples from available single unit recording studies. Several explanations for the two- to-threefold reduction in spatial behavior-driven cell activity in the ventral hippocampus can be offered. These include anatomical connectivity differences, differential gain of the self-motion signals that appear to alter the scale of place fields and the proportion of active cells, and possibly variations in the neuronal responses to non-spatial information within the hippocampus along its dorso-ventral axis. © 2017 Wiley Periodicals, Inc.

  4. Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons.

    Science.gov (United States)

    Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F

    2009-11-18

    Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.

  5. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression.

    Science.gov (United States)

    Hajszan, Tibor; Dow, Antonia; Warner-Schmidt, Jennifer L; Szigeti-Buck, Klara; Sallam, Nermin L; Parducz, Arpad; Leranth, Csaba; Duman, Ronald S

    2009-03-01

    Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications. We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm. Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness. On the other hand, IES elicited no significant synaptic alterations in motor cortex. A single injection of corticosterone reproduced both the hippocampal synaptic changes and the behavioral responses induced by IES. Treatment of IES-exposed animals for 6 days with desipramine reversed both the hippocampal spine synapse loss and the escape deficit in learned helplessness. We noted, however, that desipramine failed to restore the number of CA1 spine synapses to nonstressed levels, which was associated with a minor escape deficit compared with nonstressed control rats. Shorter, 1-day or 3-day desipramine treatments, however, had neither synaptic nor behavioral effects. These results indicate that changes in depressive behavior are associated with remarkable remodeling of hippocampal spine synapses at the ultrastructural level. Because spine synapse loss contributes to hippocampal dysfunction, this cellular mechanism may be an important component in the neurobiology of stress-related disorders such as depression.

  6. Memory Dysfunction in Type 2 Diabetes Mellitus Correlates with Reduced Hippocampal CA1 and Subiculum Volumes

    Directory of Open Access Journals (Sweden)

    Yan-Wei Zhang

    2015-01-01

    Full Text Available Background: Little attention has been paid to the role of subcortical deep gray matter (SDGM structures in type 2 diabetes mellitus (T2DM-induced cognitive impairment, especially hippocampal subfields. Our aims were to assess the in vivo volumes of SDGM structures and hippocampal subfields using magnetic resonance imaging (MRI and to test their associations with cognitive performance in T2DM. Methods: A total of 80 T2DM patients and 80 neurologically unimpaired healthy controls matched by age, sex and education level was enrolled in this study. We assessed the volumes of the SDGM structures and seven hippocampal subfields on MRI using a novel technique that enabled automated volumetry. We used Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA scores as measures of cognitive performance. The association of glycosylated hemoglobin (HbA1c with SDGM structures and neuropsychological tests and correlations between hippocampal subfields and neuropsychological tests were assessed by partial correlation analysis in T2DM. Results: Bilaterally, the hippocampal volumes were smaller in T2DM patients, mainly in the CA1 and subiculum subfields. Partial correlation analysis showed that the MoCA scores, particularly those regarding delayed memory, were significantly positively correlated with reduced hippocampal CA1 and subiculum volumes in T2DM patients. Additionally, higher HbA1c levels were significantly associated with poor memory performance and hippocampal atrophy among T2DM patients. Conclusions: These data indicate that the hippocampus might be the main affected region among the SDGM structures in T2DM. These structural changes in the hippocampal CA1 and subiculum areas might be at the core of underlying neurobiological mechanisms of hippocampal dysfunction, suggesting that degeneration in these regions could be responsible for memory impairments in T2DM patients.

  7. Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.

    Directory of Open Access Journals (Sweden)

    Nada M Porter

    Full Text Available Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses.F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES, and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging.We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter

  8. Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region.

    Science.gov (United States)

    Xu, Guangjin; Wang, Wei; Zhou, Min

    2014-04-01

    Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ∼178, 364 μm(3) . The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and postrecording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. Copyright © 2013 Wiley Periodicals, Inc.

  9. Removal of area CA3 from hippocampal slices induces postsynaptic plasticity at Schaffer collateral synapses that normalizes CA1 pyramidal cell discharge.

    Science.gov (United States)

    Dumas, Theodore C; Uttaro, Michael R; Barriga, Carolina; Brinkley, Tiffany; Halavi, Maryam; Wright, Susan N; Ferrante, Michele; Evans, Rebekah C; Hawes, Sarah L; Sanders, Erin M

    2018-05-05

    Neural networks that undergo acute insults display remarkable reorganization. This injury related plasticity is thought to permit recovery of function in the face of damage that cannot be reversed. Previously, an increase in the transmission strength at Schaffer collateral to CA1 pyramidal cell synapses was observed after long-term activity reduction in organotypic hippocampal slices. Here we report that, following acute preparation of adult rat hippocampal slices and surgical removal of area CA3, input to area CA1 was reduced and Schaffer collateral synapses underwent functional strengthening. This increase in synaptic strength was limited to Schaffer collateral inputs (no alteration to temporoammonic synapses) and acted to normalize postsynaptic discharge, supporting a homeostatic or compensatory response. Short-term plasticity was not altered, but an increase in immunohistochemical labeling of GluA1 subunits was observed in the stratum radiatum (but not stratum moleculare), suggesting increased numbers of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and a postsynaptic locus of expression. Combined, these data support the idea that, in response to the reduction in presynaptic activity caused by removal of area CA3, Schaffer collateral synapses undergo a relatively rapid increase in functional efficacy likely supported by insertion of more AMPARs, which maintains postsynaptic excitability in CA1 pyramidal neurons. This novel fast compensatory plasticity exhibits properties that would allow it to maintain optimal network activity levels in the hippocampus, a brain structure lauded for its ongoing experience-dependent malleability. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  11. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    International Nuclear Information System (INIS)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-01-01

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment

  12. Exogenous hydrogen sulfide eliminates spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress via promoting glutamate uptake.

    Science.gov (United States)

    He, Jin; Guo, Ruixian; Qiu, Pengxin; Su, Xingwen; Yan, Guangmei; Feng, Jianqiang

    2017-05-14

    Acute stress impairs the hippocampus-dependent spatial memory retrieval, and its synaptic mechanisms are associated with hippocampal CA1 long-term depression (LTD) enhancement in the adult rats. Endogenous hydrogen sulfide (H 2 S) is recognized as a novel gasotransmitter and has the neural protective roles. However, very little attention has been paid to understanding the effects of H 2 S on spatial memory retrieval impairment. We observed the protective effects of NaHS (a donor of H 2 S) against spatial memory retrieval impairment caused by acute stress and its synaptic mechanisms. Our results showed that NaHS abolished spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress, but not by glutamate transporter inhibitor l-trans-pyrrolidine-2,4-dicarboxylic (tPDC), indicating that the activation of glutamate transporters is necessary for exogenous H 2 S to exert its roles. Moreover, NaHS restored the decreased glutamate uptake in the hippocampal CA1 synaptosomal fraction caused by acute stress. Dithiothreitol (DTT, a disulfide reducing agent) abolished a decrease in the glutamate uptake caused by acute stress, and NaHS eradicated the decreased glutamate uptake caused by 5,5'-dithio-bis(2-nitrobenzoic)acid (DTNB, a thiol oxidizing agent), collectively, revealing that exogenous H 2 S increases glutamate uptake by reducing disulfide bonds of the glutamate transporters. Additionally, NaHS inhibited the increased expression level of phosphorylated c-Jun-N-terminal kinase (JNK) in the hippocampal CA1 region caused by acute stress. The JNK inhibitor SP600125 eliminated spatial memory retrieval impairment, hippocampal CA1 LTD enhancement and the decreased glutamate uptake caused by acute stress, indicating that exogenous H 2 S exerts these roles by inhibiting the activation of JNK signaling pathway. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. The synthetic cannabinoid HU210 induces spatial memory deficits and suppresses hippocampal firing rate in rats.

    Science.gov (United States)

    Robinson, L; Goonawardena, A V; Pertwee, R G; Hampson, R E; Riedel, G

    2007-07-01

    Previous work implied that the hippocampal cannabinoid system was particularly important in some forms of learning, but direct evidence for this hypothesis is scarce. We therefore assessed the effects of the synthetic cannabinoid HU210 on memory and hippocampal activity. HU210 (100 microg kg(-1)) was administered intraperitoneally to rats under three experimental conditions. One group of animals were pre-trained in spatial working memory using a delayed-matching-to-position task and effects of HU210 were assessed in a within-subject design. In another, rats were injected before acquisition learning of a spatial reference memory task with constant platform location. Finally, a separate group of animals was implanted with electrode bundles in CA1 and CA3 and single unit responses were isolated, before and after HU210 treatment. HU210 treatment had no effect on working or short-term memory. Relative to its control Tween 80, deficits in acquisition of a reference memory version of the water maze were obtained, along with drug-related effects on anxiety, motor activity and spatial learning. Deficits were not reversed by the CB(1) receptor antagonists SR141716A (3 mg kg(-1)) or AM281 (1.5 mg kg(-1)). Single unit recordings from principal neurons in hippocampal CA3 and CA1 confirmed HU210-induced attenuation of the overall firing activity lowering both the number of complex spikes fired and the occurrence of bursts. These data provide the first direct evidence that the underlying mechanism for the spatial memory deficits induced by HU210 in rats is the accompanying abnormality in hippocampal cell firing.

  14. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis.

    Science.gov (United States)

    Miller, Thomas D; Chong, Trevor T-J; Aimola Davies, Anne M; Ng, Tammy W C; Johnson, Michael R; Irani, Sarosh R; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A; Rosenthal, Clive R

    2017-05-01

    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P 3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  15. Regional hippocampal vulnerability in early multiple sclerosis: Dynamic pathological spreading from dentate gyrus to CA1.

    Science.gov (United States)

    Planche, Vincent; Koubiyr, Ismail; Romero, José E; Manjon, José V; Coupé, Pierrick; Deloire, Mathilde; Dousset, Vincent; Brochet, Bruno; Ruet, Aurélie; Tourdias, Thomas

    2018-04-01

    Whether hippocampal subfields are differentially vulnerable at the earliest stages of multiple sclerosis (MS) and how this impacts memory performance is a current topic of debate. We prospectively included 56 persons with clinically isolated syndrome (CIS) suggestive of MS in a 1-year longitudinal study, together with 55 matched healthy controls at baseline. Participants were tested for memory performance and scanned with 3 T MRI to assess the volume of 5 distinct hippocampal subfields using automatic segmentation techniques. At baseline, CA4/dentate gyrus was the only hippocampal subfield with a volume significantly smaller than controls (p < .01). After one year, CA4/dentate gyrus atrophy worsened (-6.4%, p < .0001) and significant CA1 atrophy appeared (both in the stratum-pyramidale and the stratum radiatum-lacunosum-moleculare, -5.6%, p < .001 and -6.2%, p < .01, respectively). CA4/dentate gyrus volume at baseline predicted CA1 volume one year after CIS (R 2  = 0.44 to 0.47, p < .001, with age, T2 lesion-load, and global brain atrophy as covariates). The volume of CA4/dentate gyrus at baseline was associated with MS diagnosis during follow-up, independently of T2-lesion load and demographic variables (p < .05). Whereas CA4/dentate gyrus volume was not correlated with memory scores at baseline, CA1 atrophy was an independent correlate of episodic verbal memory performance one year after CIS (ß = 0.87, p < .05). The hippocampal degenerative process spread from dentate gyrus to CA1 at the earliest stage of MS. This dynamic vulnerability is associated with MS diagnosis after CIS and will ultimately impact hippocampal-dependent memory performance. © 2018 Wiley Periodicals, Inc.

  16. Learned helplessness activates hippocampal microglia in rats: A potential target for the antidepressant imipramine.

    Science.gov (United States)

    Iwata, Masaaki; Ishida, Hisahito; Kaneko, Koichi; Shirayama, Yukihiko

    An accumulating body of evidence has demonstrated that inflammation is associated with the pathology of depression. We recently found that psychological stress induces inflammation in the hippocampus of the rat brain through the inflammasome, a component of the innate immune system. Microglia, the resident macrophages in the brain, play a central role in the innate immune system and express inflammasomes; thus, we hypothesized that hippocampal microglia would be key mediators in the development of depression via stress-induced inflammation. To test this hypothesis and to determine how antidepressants modulate microglial function, we used immunohistochemistry to examine the morphological changes that occur in the hippocampal microglia of rats exposed to the learned helplessness (LH) paradigm. We noted significantly increased numbers of activated microglia in the granule cell layer, hilus, CA1, and CA3 regions of the hippocampi of LH rats. Conversely, administering imipramine to LH rats for 7days produced a significant decrease in the number of activated microglia in the hilus, but not in the other examined regions. Nonetheless, there were no significant differences in the combined number of activated and non-activated microglia either in LH or LH+imipramine rats relative to control rats. In addition, treating the naïve rats with imipramine or fluvoxamine produced no discernible microglial changes. These data suggest that stress activates hippocampal microglia, while certain antidepressants decrease the number of activated microglia in the hilus, but not in other hippocampal regions. Therefore, the hilus represents a candidate target region for the antidepressant imipramine. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats.

    Science.gov (United States)

    Mucio-Ramírez, Samuel; Makeyev, Oleksandr

    2017-01-01

    Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats ( n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals ( p  = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses ( p  = 0.71) nor due to the delay after the last stimulation dose ( p  = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200  μ s, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  18. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Samuel Mucio-Ramírez

    2017-01-01

    Full Text Available Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats (n=36 due to the single dose or five doses (given every 24 hours of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals (p = 0.71. Moreover, it showed no statistically significant differences due to the number of stimulation doses (p = 0.71 nor due to the delay after the last stimulation dose (p = 0.96. Obtained results suggest that stimulation at current parameters (50 mA, 200 μs, 300 Hz, biphasic, charge-balanced pulses for 2 minutes does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  19. Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Directory of Open Access Journals (Sweden)

    Takahashi Susumu

    2009-09-01

    Full Text Available Abstract Background The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder. Results The activity of small neuronal ensembles (6-18 cells over brief time intervals (2-50 ms contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison. The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals. Conclusion The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.

  20. Protective Effect of SGK1 in Rat Hippocampal Neurons Subjected to Ischemia Reperfusion

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-07-01

    Full Text Available Background/Aims: To investigate the protective effect of SGK1 (serum- and glucocorticoid-inducible protein kinase 1 in rat hippocampal neurons in vitro and in vivo following ischemia reperfusion (I/R. Methods: Isolated rat hippocampal neurons were subjected to 2 h of oxygen and glucose deprivation (OGD then returned to normoxic conditions for 10, 30 or 60 min. Cell apoptosis and protein expression of SGK1 were analyzed. To examine SGK1 function, we overexpressed SGK1 in rat hippocampal neurons. Finally we examined the involvement of PI3K/Akt/GSK3β signaling by treating the cells (untransfected or transfected with expression vector encoding SGK1 with the PI3K inhibitor LY294002. Findings were confirmed in vivo in a rat model of middle cerebral artery occlusion. Results: I/R caused a time-dependent increase in apoptosis, both in vitro and in vivo. SGK1 protein levels decreased significantly under the same conditions. Overexpression of SGK1 reduced apoptosis following OGD or I/R compared to cells transfected with empty vector and subjected to the same treatment, or sham-operated animals. Addition of LY294002 revealed that the action of SGK1 in suppressing apoptosis was mediated by the PI3K/Akt/GSK3β pathway. Conclusion: SGK1 plays a protective role in ischemia reperfusion in rat hippocampal neurons, exerting its effects via the PI3K/Akt/GSK3β pathway.

  1. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo.

    Science.gov (United States)

    Lau, Petrina Yau-Pok; Katona, Linda; Saghy, Peter; Newton, Kathryn; Somogyi, Peter; Lamsa, Karri P

    2017-05-01

    Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.

  2. [Effect of electromagnetic radiation on discharge activity of neurons in the hippocampus CA1 in rats].

    Science.gov (United States)

    Tong, Jun; Chen, Su; Liu, Xiang-Ming; Hao, Dong-Mei

    2013-09-01

    In order to explore effect of electromagnetic radiation on learning and memory ability of hippocampus neuron in rats, the changes in discharge patterns and overall electrical activity of hippocampus neuron after electromagnetic radiation were observed. Rat neurons discharge was recorded with glass electrode extracellular recording technology and a polygraph respectively. Radiation frequency of electromagnetic wave was 900 MHZ and the power was 10 W/m2. In glass electrode extracellular recording, the rats were separately irradiated for 10, 20, 30, 40, 50 and 60 min, every points repeated 10 times and updated interval of 1h, observing the changes in neuron discharge and spontaneous discharge patterns after electromagnetic radiation. In polygraph recording experiments, irradiation group rats for five days a week, 6 hours per day, repeatedly for 10 weeks, memory electrical changes in control group and irradiation group rats when they were feeding were repeatedly monitored by the implanted electrodes, observing the changes in peak electric digits and the largest amplitude in hippocampal CA1 area, and taking some electromagnetic radiation sampling sequence for correlation analysis. (1) Electromagnetic radiation had an inhibitory role on discharge frequency of the hippocampus CA1 region neurons. After electromagnetic radiation, discharge frequency of the hippocampus CA1 region neurons was reduced, but the changes in scale was not obvious. (2) Electromagnetic radiation might change the spontaneous discharge patterns of hippocampus CA1 region neurons, which made the explosive discharge pattern increased obviously. (3) Peak potential total number within 5 min in irradiation group was significantly reduced, the largest amplitude was less than that of control group. (4) Using mathematical method to make the correlation analysis of the electromagnetic radiation sampling sequence, that of irradiation group was less than that of control group, indicating that there was a tending

  3. Identification and two-photon imaging of oligodendrocyte in CA1 region of hippocampal slices

    International Nuclear Information System (INIS)

    Zhou Wei; Ge Wooping; Zeng Shaoqun; Duan Shumin; Luo Qingming

    2007-01-01

    Oligodendrocyte (OL) plays a critical role in myelination and axon maintenance in central nervous system. Recent studies show that OL can also express NMDA receptors in development and pathological situations in white matter. There is still lack of studies about OL properties and function in gray matter of brain. Here we reported that some glial cells in CA1 region of rat hippocampal slices (P15-23) had distinct electrophysiological characteristics from the other glia cells in this region, while they displayed uniform properties with OL from white matter in previous report; therefore, they were considered as OL in hippocampus. By loading dye in recording pipette and imaging with two-photon laser scanning microscopy, we acquired the high spatial resolution, three-dimension images of these special cells in live slices. The OL in hippocampus shows a complex process-bearing shape and the distribution of several processes is parallel to Schaffer fiber in CA1 region. When stimulating Schaffer fiber, OL displays a long duration depolarization mediated by inward rectifier potassium channel. This suggested that the OL in CA1 region could sense the neuronal activity and contribute to potassium clearance

  4. 17-AAG post-treatment ameliorates memory impairment and hippocampal CA1 neuronal autophagic death induced by transient global cerebral ischemia.

    Science.gov (United States)

    Li, Jianxiong; Yang, Fei; Guo, Jia; Zhang, Rongrong; Xing, Xiangfeng; Qin, Xinyue

    2015-06-12

    Neuro-inflammation plays an important role in global cerebral ischemia (GCI). The 72-kDa heat shock protein (Hsp70) has been reported to be involved in the inflammatory response of many central nervous system diseases. Preclinical findings implicate that 17-allylamino-demethoxygeldanamycin (17-AAG), an anticancer drug in clinical, provide neuroprotection actions in a rat model of traumatic brain injury, and the beneficial effects of 17-AAG were specifically due to up-regulation of Hsp70. However, no experiments have tested whether 17-AAG has beneficial or harmful effects in the setting of GCI. The present study was designed to determine the hypothesis that administration of 17-AAG could attenuate cerebral infarction and improve neuronal survival, thereby ameliorating memory impairment in a rat model of GCI. Furthermore, to test whether any neuroprotective effect of 17-AAG was associated with inflammatory response and neuronal autophagy, we examined the expression of multiplex inflammatory cytokine levels as well as autophagy-associate protein in hippocampal CA1 of rat brain. Our results showed that post-GCI administration of 17-AAG significantly protected rats against GCI induced brain injury, and 17-AAG is also an effective antagonist of the inflammatory response and thereby ameliorates hippocampal CA1 neuronal autophagic death. We therefore believe that the present study provides novel clues in understanding the mechanisms by which 17-AAG exerts its neuroprotective activity in GCI. All data reveal that 17-AAG might be a potential neuroprotective agent for ischemic stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The cumulative analgesic effect of repeated electroacupuncture involves synaptic remodeling in the hippocampal CA3 region☆

    Science.gov (United States)

    Xu, Qiuling; Liu, Tao; Chen, Shuping; Gao, Yonghui; Wang, Junying; Qiao, Lina; Liu, Junling

    2012-01-01

    In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanli (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptic cleft width and thinning of the postsynaptic density, and it significantly suppressed the down-regulation of intracellular calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. PMID:25657670

  6. Properties of an intermediate-duration inactivation process of the voltage-gated sodium conductance in rat hippocampal CA1 neurons.

    Science.gov (United States)

    French, Christopher R; Zeng, Zhen; Williams, David A; Hill-Yardin, Elisa L; O'Brien, Terence J

    2016-02-01

    Rapid transmembrane flow of sodium ions produces the depolarizing phase of action potentials (APs) in most excitable tissue through voltage-gated sodium channels (NaV). Macroscopic currents display rapid activation followed by fast inactivation (IF) within milliseconds. Slow inactivation (IS) has been subsequently observed in several preparations including neuronal tissues. IS serves important physiological functions, but the kinetic properties are incompletely characterized, especially the operative timescales. Here we present evidence for an "intermediate inactivation" (II) process in rat hippocampal CA1 neurons with time constants of the order of 100 ms. The half-inactivation potentials (V0.5) of steady-state inactivation curves were hyperpolarized by increasing conditioning pulse duration from 50 to 500 ms and could be described by a sum of Boltzmann relations. II state transitions were observed after opening as well as subthreshold potentials. Entry into II after opening was relatively insensitive to membrane potential, and recovery of II became more rapid at hyperpolarized potentials. Removal of fast inactivation with cytoplasmic papaine revealed time constants of INa decay corresponding to II and IS with long depolarizations. Dynamic clamp revealed attenuation of trains of APs over the 10(2)-ms timescale, suggesting a functional role of II in repetitive firing accommodation. These experimental findings could be reproduced with a five-state Markov model. It is likely that II affects important aspects of hippocampal neuron response and may provide a drug target for sodium channel modulation. Copyright © 2016 the American Physiological Society.

  7. The hippocampal CA2 ensemble is sensitive to contextual change.

    Science.gov (United States)

    Wintzer, Marie E; Boehringer, Roman; Polygalov, Denis; McHugh, Thomas J

    2014-02-19

    Contextual learning involves associating cues with an environment and relating them to past experience. Previous data indicate functional specialization within the hippocampal circuit: the dentate gyrus (DG) is crucial for discriminating similar contexts, whereas CA3 is required for associative encoding and recall. Here, we used Arc/H1a catFISH imaging to address the contribution of the largely overlooked CA2 region to contextual learning by comparing ensemble codes across CA3, CA2, and CA1 in mice exposed to familiar, altered, and novel contexts. Further, to manipulate the quality of information arriving in CA2 we used two hippocampal mutant mouse lines, CA3-NR1 KOs and DG-NR1 KOs, that result in hippocampal CA3 neuronal activity that is uncoupled from the animal's sensory environment. Our data reveal largely coherent responses across the CA axis in control mice in purely novel or familiar contexts; however, in the mutant mice subject to these protocols the CA2 response becomes uncoupled from CA1 and CA3. Moreover, we show in wild-type mice that the CA2 ensemble is more sensitive than CA1 and CA3 to small changes in overall context. Our data suggest that CA2 may be tuned to remap in response to any conflict between stored and current experience.

  8. Role of the NO/sGC/PKG signaling pathway of hippocampal CA1 in morphine-induced reward memory.

    Science.gov (United States)

    Shen, Fang; Li, Yi-Jing; Shou, Xiao-Jing; Cui, Cai-Lian

    2012-09-01

    Evidence suggests that the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP dependent protein kinase (PKG) signaling pathway plays a key role in memory processing, but the actual participation of this signaling cascade in the hippocampal CA1 during morphine-induced reward memory remains unknown. In this study, we investigated the role of the NO/sGC/PKG signaling pathway in the CA1 on morphine-induced reward memory using a conditioned place preference (CPP) paradigm. We found that rats receiving an intraperitoneal (i.p.) injection of 4mg/kg morphine exhibited CPP, whereas rats treated with only 0.2mg/kg morphine failed to produce CPP. Intra-CA1 injection of the neuronal NO synthase (nNOS) inhibitor 7-NI, the sGC inhibitor ODQ or the PKG inhibitor Rp-8-Br-PET-cGMPS had no effect on the acquisition of CPP by 4mg/kg morphine. Intra-CA1 injection of 7-NI blocked the consolidation of CPP induced by 4mg/kg morphine, and this amnesic effect of 7-NI was mimicked by ODQ and Rp-8-Br-PET-cGMPS. Intra-CA1 injection of the NOS substrate L-arg or the sGC activator YC-1 with an ineffective dose of morphine (0.2mg/kg, i.p.) elicited CPP. This response induced by L-arg or YC-1 was reversed by pre-microinjection of Rp-8-Br-PET-cGMPS in the CA1. These results indicated that the activation of the NO/sGC/PKG signaling pathway in the CA1 is necessary for the consolidation of morphine-related reward memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing

    Directory of Open Access Journals (Sweden)

    Ayla eAksoy Aksel

    2013-08-01

    Full Text Available In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic path (pp-CA1 synapse and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse. Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We established that field excitatory postsynaptic potentials at the pp-CA1 have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (> 24h was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing.

  10. Aging Enables Ca2+ Overload and Apoptosis Induced by Amyloid-β Oligomers in Rat Hippocampal Neurons: Neuroprotection by Non-Steroidal Anti-Inflammatory Drugs and R-Flurbiprofen in Aging Neurons.

    Science.gov (United States)

    Calvo-Rodríguez, María; García-Durillo, Mónica; Villalobos, Carlos; Núñez, Lucía

    2016-07-22

    The most important risk factor for Alzheimer's disease (AD) is aging. Neurotoxicity in AD has been linked to dyshomeostasis of intracellular Ca2+ induced by small aggregates of the amyloid-β peptide 1-42 (Aβ42 oligomers). However, how aging influences susceptibility to neurotoxicity induced by Aβ42 oligomers is unknown. In this study, we used long-term cultures of rat hippocampal neurons, a model of neuronal in vitro aging, to investigate the contribution of aging to Ca2+ dishomeostasis and neuron cell death induced by Aβ42 oligomers. In addition, we tested whether non-steroidal anti-inflammatory drugs (NSAIDs) and R-flurbiprofen prevent apoptosis acting on subcellular Ca2+ in aged neurons. We found that Aβ42 oligomers have no effect on young hippocampal neurons cultured for 2 days in vitro (2 DIV). However, they promoted apoptosis modestly in mature neurons (8 DIV) and these effects increased dramatically after 13 DIV, when neurons display many hallmarks of in vivo aging. Consistently, cytosolic and mitochondrial Ca2+ responses induced by Aβ42 oligomers increased dramatically with culture age. At low concentrations, NSAIDs and the enantiomer R-flurbiprofen lacking anti-inflammatory activity prevent Ca2+ overload and neuron cell death induced by Aβ42 oligomers in aged neurons. However, at high concentrations R-flurbiprofen induces apoptosis. Thus, Aβ42 oligomers promote Ca2+ overload and neuron cell death only in aged rat hippocampal neurons. These effects are prevented by low concentrations of NSAIDs and R-flurbiprofen acting on mitochondrial Ca2+ overload.

  11. Neuropeptide Y and nestin expression in the hippocampal CA3 region following restrained and inverted stress in rats

    Institute of Scientific and Technical Information of China (English)

    Guogang Sun; Ailing Li; Bo Chen; Guangbi Fan; Hongwen Xiao; Yue Chen; Jie Xu; Ye Nie; Bing Zhang; Lin Gong

    2011-01-01

    Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits, as well as sustained cerebral injury in the adult hippocampus.

  12. Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.

    Directory of Open Access Journals (Sweden)

    Atsushi Takeda

    Full Text Available The translocation of synaptic Zn(2+ to the cytosolic compartment has been studied to understand Zn(2+ neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+ in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+ in the hippocampus was induced with clioquinol (CQ, a zinc ionophore. Zn(2+ delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+ levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2 into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+ in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+ and/or the preferential vulnerability to Zn(2+ in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+ in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+. The present study indicates that the transient increase in cytosolic Zn(2+ in CA1 pyramidal neurons reversibly impairs object recognition memory.

  13. Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.

    Science.gov (United States)

    Takeda, Atsushi; Takada, Shunsuke; Nakamura, Masatoshi; Suzuki, Miki; Tamano, Haruna; Ando, Masaki; Oku, Naoto

    2011-01-01

    The translocation of synaptic Zn(2+) to the cytosolic compartment has been studied to understand Zn(2+) neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+) in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+) in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn(2+) delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+) levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2) into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+) in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+) and/or the preferential vulnerability to Zn(2+) in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+) in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+). The present study indicates that the transient increase in cytosolic Zn(2+) in CA1 pyramidal neurons reversibly impairs object recognition memory.

  14. Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory.

    Science.gov (United States)

    O'Mara, S M; Commins, S; Anderson, M

    2000-01-01

    This paper reviews investigations of synaptic plasticity in the major, and underexplored, pathway from hippocampal area CA1 to the subiculum. This brain area is the major synaptic relay for the majority of hippocampal area CA1 neurons, making the subiculum the last relay of the hippocampal formation prior to the cortex. The subiculum thus has a very major role in mediating hippocampal-cortical interactions. We demonstrate that the projection from hippocampal area CA1 to the subiculum sustains plasticity on a number of levels. We show that this pathway is capable of undergoing both long-term potentiation (LTP) and paired-pulse facilitation (PPF, a short-term plastic effect). Although we failed to induce long-term depression (LTD) of this pathway with low-frequency stimulation (LFS) and two-pulse stimulation (TPS), both protocols can induce a "late-developing" potentiation of synaptic transmission. We further demonstrate that baseline synaptic transmission can be dissociated from paired-pulse stimulation of the same pathway; we also show that it is possible, using appropriate protocols, to change PPF to paired-pulse depression, thus revealing subtle and previously undescribed mechanisms which regulate short-term synaptic plasticity. Finally, we successfully recorded from individual subicular units in the freely-moving animal, and provide a description of the characteristics of such neurons in a pellet-chasing task. We discuss the implications of these findings in relation to theories of the biological consolidation of memory.

  15. Levothyroxine rescues the lead-induced hypothyroidism and impairment of long-term potentiation in hippocampal CA1 region of the developmental rats

    International Nuclear Information System (INIS)

    Wu Chuanyun; Liu Bing; Wang Huili; Ruan Diyun

    2011-01-01

    Lead (Pb) exposure during development has been associated with impaired long-term potentiation (LTP). Hypothyroidism happening upon subjects with occupational exposure to Pb is suggestive of an adverse effect of Pb on thyroid homeostasis, leading to the hypothesis that Pb exposure may alter thyroid hormone homeostasis. Hippocampus is one of the targets of Pb exposure, and is sensitive to and dependent on thyroid hormones, leading us to explore whether levothyroxine (L-T 4 ) administration could alter the thyroid disequilibrium and impairment of LTP in rat hippocampus caused by Pb exposure. Our results show that Pb exposure caused a decrease in triiodothyronine (T 3 ) and tetraiodothyronine (T 4 ) levels accompanied by a dramatic decrease of TSH and application of L-T 4 restored these changes to about control levels. Hippocampal and blood Pb concentration were significantly reduced following L-T 4 treatment. L-T 4 treatment rescued the impairment of LTP induced by the Pb exposure. These results suggest that Pb exposure may lead to thyroid dysfunction and induce hypothyroidism and provide a direct electrophysiological proof that L-T 4 relieves chronic Pb exposure-induced impairment of synaptic plasticity. - Highlights: → Lead may interfere with thyroid hormone homeostasis and induce hypothyroidism. → Levothyroxine decreases the hippocampal and blood Pb concentration. → Levothyroxine amends the T 3 , T 4 and TSH levels in blood. → Levothyroxine rescues the impaired LTP in CA1.

  16. Comparison of the influence of two models of mild stress on hippocampal brain-derived neurotrophin factor (BDNF) immunoreactivity in old age rats.

    Science.gov (United States)

    Badowska-Szalewska, Ewa; Ludkiewicz, Beata; Krawczyk, Rafał; Melka, Natalia; Moryś, Janusz

    2017-01-01

    The way hippocampal neurons function during stress in old age (critical times of life) is dependent on brain derived neurotrophin factor (BDNF). This study examined the influence of acute and chronic forced swim (FS) or high-light open field (HL‑OF) stimulation on the density of BDNF immunoreactive (ir) neurons in the hippocampal pyramidal layers of CA1, CA2, CA3 regions and the granular layer of dentate gyrus (DG) in old (postnatal day 720; P720) Wistar Han rats. Our data showed that in comparison with non-stressed rats, acute FS caused a significant increase in the density of BDNF-ir neurons in CA2 and CA3, while acute HL-OF led to an increase in this factor in all hippocampal subfields with the exception of DG. However, the density of BDNF-ir cells remained unchanged after exposure to chronic FS or HL‑OF in the hippocampal regions in relation to the control rats. These results indicate that acute FS or HL-OF proved to be a stressor that induces an increase in the density of BDNF-ir pyramidal neurons, which was probably connected with up-regulation of HPA axis activity and short‑time memory processing of the stressful situation. Moreover, as far as the influence on BDNF-ir cells in hippocampus is concerned, chronic FS or HL-OF was not an aggravating factor for rats in the ontogenetic periods studied.

  17. Molecular analysis of ivy cells of the hippocampal CA1 stratum radiatum using spectral identification of immunofluorophores

    Directory of Open Access Journals (Sweden)

    Jozsef eSomogyi

    2012-05-01

    Full Text Available Nitric oxide synthase-expressing (NOS+ GABAergic interneurons are common in hippocampal stratum radiatum, but these cells are less well characterised than NOS+ ivy cells in stratum pyramidale or neurogliaform cells in stratum lacunosum-moleculare. Here we have studied the laminar distribution of the axons and dendrites, and the immunoreactivity of these neurons recorded in rat hippocampal slices. We have used spectral analysis of antibody- or streptavidin conjugated fluorophores to improve recognition of genuine signals in reactions for molecules such as NOS and neuropeptide-Y, when immunolabelling was low in the recorded cell. We found that most NOS+ cells with soma in the CA1 area stratum radiatum exhibit characteristic properties of ivy cells; all tested cells were positive for NPY and negative for reelin. However, laminar distributions of their neurites differ from original characterization of ivy cells with the soma close to stratum pyramidale. Both their dendrites and axon are mainly in stratum radiatum and to a lesser extent in stratum oriens. In addition, both the dendrites and axons often extend to stratum lacunosum-moleculare. We conclude that ivy cells in stratum radiatum are predominantly feedforward inhibitory interneurons in the CA1 area, and their axonal output delivering GABA, NPY and NO can influence both the entorhinal cortex innervated and the CA3 innervated zones pre- and postsynaptically. Spectral analysis of fluorophores provides an objective algorithm to analyze signals in immunoreactions for neurochemical markers.

  18. Lateralized hippocampal effects of vasoactive intestinal peptide on learning and memory in rats in a model of depression.

    Science.gov (United States)

    Ivanova, Margarita; Belcheva, Stiliana; Belcheva, Iren; Negrev, Negrin; Tashev, Roman

    2012-06-01

    Findings of pharmacological studies revealed that vasoactive intestinal peptide (VIP) plays a modulatory role in learning and memory. A role of the peptide in the neurobiological mechanisms of affective disorders was also suggested. The objectives are to study the involvement of VIP in learning and memory processes after unilateral and bilateral local application into hippocampal CA1 area in rats with a model of depression (bilateral olfactory bulbectomy--OBX) and to test whether VIP receptors could affect cognition. VIP (50 ng) and combination (VIP(6-28) 10 ng + VIP 50 ng) microinjected bilaterally or into the right CA1 area improved the learning and memory of OBX rats in shuttle-box and step-through behavioral tests as compared to the saline-treated OBX controls. Left-side VIP microinjections did not affect the number of avoidances (shuttle box) and learning criteria (step through) as compared to the left-side saline-treated OBX controls. The administration of the combination into left CA1 influenced positively the performance in the step-through task. VIP antagonist (VIP(6-28), 10 ng) did not affect learning and memory of OBX rats. These findings suggest asymmetric effect of VIP on cognitive processes in hippocampus of rats with OBX model of depression. Our results point to a lateralized modulatory effect of VIP injected in the hippocampal CA1 area on the avoidance deficits in OBX rats. The right CA1 area was predominantly involved in the positive effect of VIP on learning and memory. A possible role of the PAC1 receptors is suggested.

  19. Encoding, Consolidation, and Retrieval of Contextual Memory: Differential Involvement of Dorsal CA3 and CA1 Hippocampal Subregions

    Science.gov (United States)

    Daumas, Stephanie; Halley, Helene; Frances, Bernard; Lassalle, Jean-Michel

    2005-01-01

    Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting…

  20. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    Science.gov (United States)

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-03

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction. Copyright © 2015. Published by Elsevier Inc.

  1. Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Di Mauro, Michela; Scarduzio, Mariangela; Panichi, Roberto; Tozzi, Alessandro; Calabresi, Paolo; Grassi, Silvarosa

    2013-12-01

    Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long-term depression (LTD) and depotentiation (DP) by low-frequency stimulation (LFS) and long-term potentiation (LTP) by high-frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS-dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N-methyl-d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired-pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity-dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively.

  2. Ensemble place codes in hippocampus: CA1, CA3, and dentate gyrus place cells have multiple place fields in large environments.

    Directory of Open Access Journals (Sweden)

    Eunhye Park

    Full Text Available Previously we reported that the hippocampus place code must be an ensemble code because place cells in the CA1 region of hippocampus have multiple place fields in a more natural, larger-than-standard enclosure with stairs that permitted movements in 3-D. Here, we further investigated the nature of hippocampal place codes by characterizing the spatial firing properties of place cells in the CA1, CA3, and dentate gyrus (DG hippocampal subdivisions as rats foraged in a standard 76-cm cylinder as well as a larger-than-standard box (1.8 m×1.4 m that did not have stairs or any internal structure to permit movements in 3-D. The rats were trained to forage continuously for 1 hour using computer-controlled food delivery. We confirmed that most place cells have single place fields in the standard cylinder and that the positional firing pattern remapped between the cylinder and the large enclosure. Importantly, place cells in the CA1, CA3 and DG areas all characteristically had multiple place fields that were irregularly spaced, as we had reported previously for CA1. We conclude that multiple place fields are a fundamental characteristic of hippocampal place cells that simplifies to a single field in sufficiently small spaces. An ensemble place code is compatible with these observations, which contradict any dedicated coding scheme.

  3. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane

    International Nuclear Information System (INIS)

    Huang, Zhenlie; Ichihara, Sahoko; Oikawa, Shinji; Chang, Jie; Zhang, Lingyi; Hu, Shijie; Huang, Hanlin; Ichihara, Gaku

    2015-01-01

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn 2+ )-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p < 0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn 2+ -Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. - Highlights: • 1-BP modified hippocampal phosphoproteome in rat and 23 altered proteins were identified. • 1-BP changed phosphorylation of GRP78

  4. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlie [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ichihara, Sahoko [Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Chang, Jie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507 (Japan); Zhang, Lingyi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510 (Japan); Hu, Shijie [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Huang, Hanlin, E-mail: huanghl@gdoh.org [Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300 (China); Ichihara, Gaku, E-mail: gak@rs.tus.ac.jp [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510 (Japan)

    2015-01-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn{sup 2+})-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p < 0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn{sup 2+}-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. - Highlights: • 1-BP modified hippocampal phosphoproteome in rat and 23 altered proteins were identified. • 1-BP changed phosphorylation

  5. Ebselen increases cytosolic free Ca2+ concentration, stimulates glutamate release and increases GFAP content in rat hippocampal astrocytes

    International Nuclear Information System (INIS)

    Salazar, Miguel; Pariente, Jose Antonio; Salido, Gines Maria; Gonzalez, Antonio

    2008-01-01

    We have investigated the effect of the seleno-organic compound and radical scavenger ebselen on rat hippocampal astrocytes in culture. Throughout our study we carried out determinations of [Ca 2+ ] c in fura-2-loaded cells by single cell imaging, glutamate secretion employing an enzymatic-based assay and GFAP expression, which was monitorized by immunocytochemistry and confocal microscopy. Our results show that ebselen (1-20 μM) dose dependently increases [Ca 2+ ] c , stimulates glutamate release and increases GFAP content, a hallmark of astrocyte reactivity. Ebselen did not alter significantly cell viability as assayed by determination of LDH release into the extracellular medium. Ebselen-evoked glutamate release and increase in GFAP content were Ca 2+ -dependent, because incubation of astrocytes in the absence of extracellular Ca 2+ (medium containing 0.5 mM EGTA) and in the presence of the intracellular Ca 2+ chelator BAPTA (10 μM) significantly reduced ebselen-evoked changes in these parameters. The effects of ebselen we have observed may underline various signalling pathways which are important for cell proliferation, differentiation and function. However, aberrations in astroglial physiology could significantly compromise brain function, due to their role as modulators of neuron activity. Therefore, we consider that careful attention should be paid when employing ebselen as a prophylactic agent against brain damage

  6. Effects of high-altitude environment on cognitive function and ultrastructure in CA1 region of hippocampus of rats after sleep deprivation

    Directory of Open Access Journals (Sweden)

    Jiang-hua SI

    2014-04-01

    Full Text Available Objective To investigate the effects of high-altitude environment on cognitive function and ultrastructure in CA1 region of the hippocampus of Wistar rats in sleep deprivation (SD.  Methods SD was induced in Wistar rats by employing "flower pot" technique. Sixty-four rats were randomly divided into 2 groups: Lanzhou group (at an altitude of 1520 m and Kekexili group (at an altitude of 4767 m, and each group was further divided into 4 subgroups according to the time of SD (0, 1, 3 and 5 d. The behaviors of rats were studied by Morris water maze test at given time points. The ultrastructure of hippocampal neurons was observed by transmission electron microscope (TEM.  Results 1 Compared with Lanzhou group, rat behavior of Kekexili group presented excitement-irritation-suppression changes with the extension of SD time, but the extent was weakened gradually, and time of sleepiness increased obviously. 2 Compared with Lanzhou group, neurons in CA1 region of hippocampus showed enlarged cell body, disappeared nuclear membrane, shrunken nuclei and decreased organelle. End-feet of glia cells sticking to capillaries swelled and ruptured, and the typical synaptic structure disappeared. 3 Morris water maze test: as compared with Lanzhou group, the escape latency of Kekexili group prolonged (P < 0.05, for all, the ability of distance exploration increased (P < 0.05, for all, and the times across plot decreased (P < 0.05, for all in 1, 3 and 5 d of SD.  Conclusions High-altitude environment may significantly influence the cognitive function of rats in SD, and there was close correlation between the cognitive disorders and the changes in the ultrastructure of hippocampal CA1 region. doi: 10.3969/j.issn.1672-6731.2014.04.012

  7. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl phthalate in male Long Evans rats.

    Directory of Open Access Journals (Sweden)

    Catherine A Smith

    Full Text Available Early developmental exposure to di(2-ethylhexyl phthalate (DEHP has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  8. Hippocampal deletion of BDNF gene attenuates gamma oscillations in area CA1 by up-regulating 5-HT3 receptor.

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2011-01-01

    Full Text Available Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown.Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice.These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system.

  9. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region.

    Science.gov (United States)

    Luo, Pan; Lu, Yun; Li, Changjun; Zhou, Mei; Chen, Cheng; Lu, Qing; Xu, Xulin; He, Zhi; Guo, Lianjun

    2015-09-01

    Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons.

    Science.gov (United States)

    Kikuta, Shogo; Murai, Yoshinaka; Tanaka, Eiichiro

    2017-01-01

    Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  12. Ebselen alters mitochondrial physiology and reduces viability of rat hippocampal astrocytes.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Salido, Ginés M; González, Antonio

    2013-04-01

    The seleno-organic compound and radical scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) have been extensively employed as an anti-inflammatory and neuroprotective compound. However, its glutathione peroxidase activity at the expense of cellular thiols groups could underlie certain deleterious actions of the compound on cell physiology. In this study, we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular viability, the intracellular free-Ca(2+) concentration ([Ca(2+)]c), the mitochondrial free-Ca(2+) concentration ([Ca(2+)]m), and mitochondrial membrane potential (ψm) were analyzed. The caspase-3 activity was also assayed. Our results show that cell viability was reduced by treatment of cells with ebselen, depending on the concentration employed. In the presence of ebselen, we observed an initial transient increase in [Ca(2+)]c that was then followed by a progressive increase to an elevated plateau. We also observed a transient increase in [Ca(2+)]m in the presence of ebselen that returned toward a value over the prestimulation level. The compound induced depolarization of ψm and altered the permeability of the mitochondrial membrane. Additionally, a disruption of the mitochondrial network was observed. Finally, we did not detect changes in caspase-3 activation in response to ebselen treatment. Collectively, these data support the likelihood of ebselen, depending on the concentration employed, reduces viability of rat hippocampal astrocytes via its action on the mitochondrial activity. These may be early effects that do not involve caspase-3 activation. We conclude that, depending on the concentration used, ebselen might exert deleterious actions on astrocyte physiology that could compromise cell function.

  13. Point application with Angong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Dong-shu Zhang

    2015-01-01

    Full Text Available Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological functions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris and Realgar, we used transdermal enhancers to deliver Angong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg were administered to the Dazhui (DU14, Qihai (RN6 and Mingmen (DU4 of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application of Angong Niuhuang stickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efficacy similar to interventions by electroacupuncture at Dazhui (DU14, Qihai (RN6 and Mingmen (DU4. Our experimental findings indicate that point application with Angong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efficacy to acupuncture.

  14. βCaMKII plays a nonenzymatic role in hippocampal synaptic plasticity and learning by targeting αCaMKII to synapses.

    Science.gov (United States)

    Borgesius, Nils Z; van Woerden, Geeske M; Buitendijk, Gabrielle H S; Keijzer, Nanda; Jaarsma, Dick; Hoogenraad, Casper C; Elgersma, Ype

    2011-07-13

    The calcium/calmodulin-dependent kinase type II (CaMKII) holoenzyme of the forebrain predominantly consists of heteromeric complexes of the αCaMKII and βCaMKII isoforms. Yet, in contrast to αCaMKII, the role of βCaMKII in hippocampal synaptic plasticity and learning has not been investigated. Here, we compare two targeted Camk2b mouse mutants to study the role of βCaMKII in hippocampal function. Using a Camk2b(-/-) mutant, in which βCaMKII is absent, we show that both hippocampal-dependent learning and Schaffer collateral-CA1 long-term potentiation (LTP) are highly dependent upon the presence of βCaMKII. We further show that βCaMKII is required for proper targeting of αCaMKII to the synapse, indicating that βCaMKII regulates the distribution of αCaMKII between the synaptic pool and the adjacent dendritic shaft. In contrast, localization of αCaMKII, hippocampal synaptic plasticity and learning were unaffected in the Camk2b(A303R) mutant, in which the calcium/calmodulin-dependent activation of βCaMKII is prevented, while the F-actin binding and bundling property is preserved. This indicates that the calcium/calmodulin-dependent kinase activity of βCaMKII is fully dispensable for hippocampal learning, LTP, and targeting of αCaMKII, but implies a critical role for the F-actin binding and bundling properties of βCaMKII in synaptic function. Together, our data provide compelling support for a model of CaMKII function in which αCaMKII and βCaMKII act in concert, but with distinct functions, to regulate hippocampal synaptic plasticity and learning.

  15. Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596.

    Directory of Open Access Journals (Sweden)

    Bopanna I Kalappa

    2010-11-01

    Full Text Available The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596.An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71% of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1-5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV the entire pyramidal neuron and occasionally

  16. Dorsal-CA1 Hippocampal Neuronal Ensembles Encode Nicotine-Reward Contextual Associations.

    Science.gov (United States)

    Xia, Li; Nygard, Stephanie K; Sobczak, Gabe G; Hourguettes, Nicholas J; Bruchas, Michael R

    2017-06-06

    Natural and drug rewards increase the motivational valence of stimuli in the environment that, through Pavlovian learning mechanisms, become conditioned stimuli that directly motivate behavior in the absence of the original unconditioned stimulus. While the hippocampus has received extensive attention for its role in learning and memory processes, less is known regarding its role in drug-reward associations. We used in vivo Ca 2+ imaging in freely moving mice during the formation of nicotine preference behavior to examine the role of the dorsal-CA1 region of the hippocampus in encoding contextual reward-seeking behavior. We show the development of specific neuronal ensembles whose activity encodes nicotine-reward contextual memories and that are necessary for the expression of place preference. Our findings increase our understanding of CA1 hippocampal function in general and as it relates to reward processing by identifying a critical role for CA1 neuronal ensembles in nicotine place preference. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Lovastatin reduces neuronal cell death in hippocampal CA1 subfield after pilocarpine-induced status epilepticus: preliminary results Lovastatina reduz a lesão celular na região CA1 do hipocampo após o status epilepticus induzido pela pilocarpina: resultados preliminares

    Directory of Open Access Journals (Sweden)

    Pauline Rangel

    2005-12-01

    Full Text Available OBJECTIVE: To further characterize the capacity of lovastatin to prevent hippocampal neuronal loss after pilocarpine-induced status epilepticus (SE METHOD: Adult male Wistar rats were divided into four groups: (A control rats, received neither pilocarpine nor lovastatin (n=5; (B control rats, received just lovastatin (n=5; (C rats that received just pilocarpine (n=5; (D rats that received pilocarpine and lovastatin (n=5. After pilocarpine injection (350mg/kg, i.p., only rats that displayed continuous, convulsive seizure activity were included in our study. Seizure activity was monitored behaviorally and terminated with an injection of diazepam (10 mg/kg, i.p. after 4 h of convulsive SE. The rats treated with lovastatin received two doses of 20mg/kg via an oesophagic probe immediately and 24 hours after SE induction. Seven days after pilocarpine-induced SE, all the animals were perfused and their brains were processed for histological analysis through Nissl method. RESULTS: The cell counts in the Nissl-stained sections performed within the hippocampal formation showed a significant cell loss in rats that received pilocarpine and presented SE (CA1= 26.8 ± 13.67; CA3= 38.1 ± 7.2; hilus= 43.8 ± 3.95 when compared with control group animals (Group A: CA1= 53.2 ± 9.63; CA3= 63.5 ± 13.35; hilus= 59.08 ± 10.24; Group B: CA1= 74.3 ± 8.16; CA3= 70.1 ± 3.83; hilus= 70.6 ± 5.10. The average neuronal cell number of CA1 subfield of rats that present SE and received lovastatin (44.4 ± 17.88 was statically significant increased when compared with animals that just presented SE. CONCLUSION: Lovastatin exert a neuroprotective role in the attenuation of brain damage after SE.OBJETIVO: Capacidade da lovastatina em prevenir a perda de neurônios hipocampais após o status epilepticus (SE induzido pela pilocarpina. MÉTODO: Ratos adultos Wistar foram divididos em 4 grupos: (A ratos controles que não receberam pilocarpina nem lovastatina (n=5; (B ratos

  18. Protective effects of hydroponic Teucrium polium on hippocampal neurodegeneration in ovariectomized rats.

    Science.gov (United States)

    Simonyan, K V; Chavushyan, V A

    2016-10-24

    The hippocampus is a target of ovarian hormones, and is necessary for memory. Ovarian hormone loss is associated with a progressive reduction in synaptic strength and dendritic spine. Teucrium polium has beneficial effects on learning and memory. However, it remains unknown whether Teucrium polium ameliorates hippocampal cells spike activity and morphological impairments induced by estrogen deficiency. In the present study, we investigated the effects of hydroponic Teucrium polium on hippocampal neuronal activity and morpho-histochemistry of bilateral ovariectomized (OVX) rats. Tetanic potentiation or depression with posttetanic potentiation and depression was recorded extracellularly in response to ipsilateral entorhinal cortex high frequency stimulation. In morpho-histochemical study revealing of the activity of Ca 2+ -dependent acid phosphatase was observed. In all groups (sham-operated, sham + Teucrium polium, OVX, OVX + Teucrium polium), most recorded hippocampal neurons at HFS of entorhinal cortex showed TD-PTP responses. After 8 weeks in OVX group an anomalous evoked spike activity was detected (a high percentage of typical areactive units). In OVX + Teucrium polium group a synaptic activity was revealed, indicating prevention OVX-induced degenerative alterations: balance of types of responses was close to norm and areactive units were not recorded. All recorded neurons in sham + Teucrium polium group were characterized by the highest mean frequency background and poststimulus activity. In OVX+ Teucrium polium group the hippocampal cells had recovered their size and shape in CA1 and CA3 field compared with OVX group where hippocampal cells were characterized by a sharp drop in phosphatase activity and there was a complete lack of processes reaction. Thus, Teucrium polium reduced OVX-induce neurodegenerative alterations in entorhinal cortex-hippocamp circuitry and facilitated neuronal survival by modulating activity of neurotransmitters and

  19. High-Frequency Stimulation-Induced Synaptic Potentiation in Dorsal and Ventral CA1 Hippocampal Synapses: The Involvement of NMDA Receptors, mGluR5, and (L-Type) Voltage-Gated Calcium Channels

    Science.gov (United States)

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-01-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for shortlasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that…

  20. Neural 17β-estradiol facilitates long-term potentiation in the hippocampal CA1 region.

    Science.gov (United States)

    Grassi, S; Tozzi, A; Costa, C; Tantucci, M; Colcelli, E; Scarduzio, M; Calabresi, P; Pettorossi, V E

    2011-09-29

    In the hippocampal formation many neuromodulators are possibly implied in the synaptic plasticity such as the long-term potentiation (LTP) induced by high-frequency stimulation (HFS) of afferent fibers. We investigated the involvement of locally synthesized neural 17β-estradiol (nE(2)) in the induction of HFS-LTP in hippocampal slices from male rats by stimulating the Schaffer collateral fibers and recording the evoked field excitatory postsynaptic potential (fEPSP) in the CA1 region. We demonstrated that either the blockade of nE(2) synthesis by the aromatase inhibitor letrozole, or the antagonism of E(2) receptors (ERs) by ICI 182,780 did not prevent the induction of HFS-LTP, but reduced its amplitude by ∼60%, without influencing its maintenance. Moreover, letrozole and ICI 182,780 did not affect the first short-term post-tetanic component of LTP and the paired-pulse facilitation (PPF). These findings demonstrate that nE(2) plays an important role in the induction phase of HFS-dependent LTP. Since the basal responses were not affected by the blocking agents, we suggest that the synthesis of nE(2) is induced or enhanced by HFS through aromatase activation. In this context, the local production of nE(2) seems to be a very effective mechanism to modulate the amplitude of LTP. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission.

    Science.gov (United States)

    Lalic, Tatjana; Pettingill, Philippa; Vincent, Angela; Capogna, Marco

    2011-01-01

    Limbic encephalitis (LE) is a central nervous system (CNS) disease characterized by subacute onset of memory loss and epileptic seizures. A well-recognized form of LE is associated with voltage-gated potassium channel complex antibodies (VGKC-Abs) in the patients' sera. We aimed to test the hypothesis that purified immunoglobulin G (IgG) from a VGKC-Ab LE serum would excite hippocampal CA3 pyramidal cells by reducing VGKC function at mossy-fiber (MF)-CA3 pyramidal cell synapses. We compared the effects of LE and healthy control IgG by whole-cell patch-clamp and extracellular recordings from CA3 pyramidal cells of rat hippocampal acute slices. We found that the LE IgG induced epileptiform activity at a population level, since synaptic stimulation elicited multiple population spikes extracellularly recorded in the CA3 area. Moreover, the LE IgG increased the rate of tonic firing and strengthened the MF-evoked synaptic responses. The synaptic failure of evoked excitatory postsynaptic currents (EPSCs) was significantly lower in the presence of the LE IgG compared to the control IgG. This suggests that the LE IgG increased the release probability on MF-CA3 pyramidal cell synapses compared to the control IgG. Interestingly, α-dendrotoxin (120 nm), a selective Kv1.1, 1.2, and 1.6 subunit antagonist of VGKC, mimicked the LE IgG-mediated effects. This is the first functional demonstration that LE IgGs reduce VGKC function at CNS synapses and increase cell excitability. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  2. Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits.

    Science.gov (United States)

    Kohara, Keigo; Pignatelli, Michele; Rivest, Alexander J; Jung, Hae-Yoon; Kitamura, Takashi; Suh, Junghyup; Frank, Dominic; Kajikawa, Koichiro; Mise, Nathan; Obata, Yuichi; Wickersham, Ian R; Tonegawa, Susumu

    2014-02-01

    The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)→dentate gyrus→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Using highly cell type-specific transgenic mouse lines, optogenetics and patch-clamp recordings, we found that dentate gyrus cells, long believed to not project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells through abundant longitudinal projections. CA2 innervated CA1 to complete an alternate trisynaptic circuit, but, unlike CA3, projected preferentially to the deep, rather than to the superficial, sublayer of CA1. Furthermore, contrary to existing knowledge, ECIII did not project to CA2. Our results allow a deeper understanding of the biology of learning and memory.

  3. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons.

    Directory of Open Access Journals (Sweden)

    Fumiaki Fukushima

    Full Text Available Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA, suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.

  4. Changes in hippocampal neurons and memory function during the developmental stage of newborn rats with hypoxic-ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Chuanjun Liu; Yue Li; Huiying Gao

    2006-01-01

    BACKGROUND: Under the normal circumstance, there exist some synapses with inactive functions in central nervous system (CNS), but these functions are activated following nerve injury. At the early stage of brain injury, the abnormal functions of brain are varied, and they have very strong plasticity and are corrected easily.OBJECTTVE: To observe the changes of neuronal morphology in hippocampal CA1 region and memory function in newborn rats with hypoxic-ischemic encephalopathy(HIE) from ischemia 6 hours to adult.DESTGN: Completely randomized grouping, controlled experiment.SETTING: Taian Health Center for Women and Children; Taishan Medical College.MATERTALS: Altogether 120 seven-day-old Wistar rats, of clean grade, were provided by the Experimental Animal Center, Shandong University of Traditional Chinese Medicine. Synaptophysin (SYN) polyclonal antibody was provided by Maixin Biological Company, Fuzhou.METHODS: This experiment was carried out in the Laboratory of Morphology, Taishan Medical College between October 2000 and December 2003. ① The newborn rats were randomly divided into 2 groups: model group and control group, 60 rats in each group. Five rats were chosen from each group at postoperative 6 hours, 24hours, 72 hours, 7 days, 2 weeks and 3 weeks separately for immunohistochemical staining. Fifteen newborn rats were chosen from each group at postoperative 4 weeks and 2 months separately for testing memory ability(After test, 5 rats from each group were sacrificed and used for immunohistochemical staining) ② The right common carotid artery of newborn rats of model group was ligated under the sthetized status. After two hours of incubation, the rats were placed for 2 hours in a container filled with nitrogen oxygen atmosphere containing 0.08 volume fraction of oxygen, thus, HIE models were created; As for the newborn rats in the control group, only blood vessels were isolated, and they were not ligated and hypoxia-treated. ③Thalamencephal tissue

  5. Hippocampal Neuron Number Is Unchanged 1 Year After Fractionated Whole-Brain Irradiation at Middle Age

    International Nuclear Information System (INIS)

    Shi Lei; Molina, Doris P.; Robbins, Michael E.; Wheeler, Kenneth T.; Brunso-Bechtold, Judy K.

    2008-01-01

    Purpose: To determine whether hippocampal neurons are lost 12 months after middle-aged rats received a fractionated course of whole-brain irradiation (WBI) that is expected to be biologically equivalent to the regimens used clinically in the treatment of brain tumors. Methods and Materials: Twelve-month-old Fischer 344 X Brown Norway male rats were divided into WBI and control (CON) groups (n = 6 per group). Anesthetized WBI rats received 45 Gy of 137 Cs γ rays delivered as 9 5-Gy fractions twice per week for 4.5 weeks. Control rats were anesthetized but not irradiated. Twelve months after WBI completion, all rats were anesthetized and perfused with paraformaldehyde, and hippocampal sections were immunostained with the neuron-specific antibody NeuN. Using unbiased stereology, total neuron number and the volume of the neuronal and neuropil layers were determined in the dentate gyrus, CA3, and CA1 subregions of hippocampus. Results: No differences in tissue integrity or neuron distribution were observed between the WBI and CON groups. Moreover, quantitative analysis demonstrated that neither total neuron number nor the volume of neuronal or neuropil layers differed between the two groups for any subregion. Conclusions: Impairment on a hippocampal-dependent learning and memory test occurs 1 year after fractionated WBI at middle age. The same WBI regimen, however, does not lead to a loss of neurons or a reduction in the volume of hippocampus

  6. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes.

    Science.gov (United States)

    González, Antonio; Pariente, José A; Salido, Ginés M

    2007-10-31

    We have employed rat hippocampal astrocytes in culture to investigate the effect of ethanol on reactive oxygen species (ROS) production as well as its effect on [Ca2+]c and GFAP expression. Cells were loaded with the fluorescent probes fura-2 and H2DCFDA for the determination of changes in [Ca2+]c and ROS production respectively, employing spectrofluorimetry. GFAP content was determined by immunocytochemistry and confocal scanning microscopy. Our results show ROS production in response to 50 mM ethanol, that was reduced in Ca2+-free medium (containing 0.5 mM EGTA) and in the presence of the intracellular Ca2+ chelator BAPTA (10 microM). The effect of ethanol on ROS production was significantly reduced in the presence of the alcohol dehydrogenase inhibitor 4-methylpyrazole (1 mM), and the antioxidants resveratrol (100 microM) or catalase (300 U/ml). Preincubation of astrocytes in the presence of 10 microM antimycin plus 10 microM oligomycin to inhibit mitochondria completely blocked ethanol-evoked ROS production. In addition, ethanol led to a sustained increase in [Ca2+]c that reached a constant level over the prestimulation values. Finally, incubation of astrocytes in the presence of ethanol increased the content of GFAP that was significantly reduced in the absence of extracellular Ca2+ and by resveratrol and catalase pretreatment. The data obtained in the present study suggest that astrocytes are able to metabolize ethanol, which induces two effects on intracellular homeostasis: an immediate response (Ca2+ release and ROS generation) and later changes involving GFAP expression. Both effects may underline various signaling pathways which are important for cell proliferation, differentiation and function.

  7. Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN2 surface expression in the hippocampal CA1 area in rats.

    Science.gov (United States)

    Luo, Pan; Zhang, Xiaoxue; Lu, Yun; Chen, Cheng; Li, Changjun; Zhou, Mei; Lu, Qing; Xu, Xulin; Shen, Guanxin; Guo, Lianjun

    2016-01-01

    Chronic cerebral hypoperfusion (CCH) causes cognitive impairments and increases the risk of Alzheimer's disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the underlying neurobiological mechanisms are still poorly understood. In this study, we investigated whether fluoxetine, a selective serotonin reuptake inhibitor (SSRI), could play a neuroprotective role against chronic cerebral hypoperfusion injury and to clarify underlying mechanisms of its efficacy. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg/kg fluoxetine (intragastric injection, i.g.) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recognition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Western blotting was used to quantify the protein levels. Our results showed that fluoxetine treatment significantly improved the cognitive impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, 2VO caused an up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) surface expressions in the hippocampal CA1 area and fluoxetine also effectively recovered the disorder of HCN2 surface expressions, which may be a possible mechanism that fluoxetine treatment ameliorates cognitive impairments in rats with CCH. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Interleukin-1β increases neuronal death in the hippocampal dentate gyrus associated with status epilepticus in the developing rat.

    Science.gov (United States)

    Rincón-López, C; Tlapa-Pale, A; Medel-Matus, J-S; Martínez-Quiroz, J; Rodríguez-Landa, J F; López-Meraz, M-L

    Interleukin-1β (IL-1β) increases necrotic neuronal cell death in the CA1 area after induced status epilepticus (SE) in developing rats. However, it remains uncertain whether IL-1β has a similar effect on the hippocampal dentate gyrus (DG). In this study, we analysed the effects of IL-1β on 14-day-old Wistar rats experiencing DG neuronal death induced by SE. SE was induced with lithium-pilocarpine. Six hours after SE onset, a group of pups was injected with IL-1β (at 0, 0.3, 3, 30, or 300ng/μL) in the right ventricle; another group was injected with IL-1β receptor (IL-1R1) antagonist (IL-1Ra, at 30ng/μL) of IL-1RI antagonist (IL-1Ra) alone, and additional group with 30ng/μL of IL-1Ra plus 3ng/μL of IL-1β. Twenty-four hours after SE onset, neuronal cell death in the dentate gyrus of the dorsal hippocampus was assessed using haematoxylin-eosin staining. Dead cells showed eosinophilic cytoplasm and condensed and fragmented nuclei. We observed an increased number of eosinophilic cells in the hippocampal DG ipsilateral to the site of injection of 3ng/μL and 300ng/μL of IL-1β in comparison with the vehicle group. A similar effect was observed in the hippocampal DG contralateral to the site of injection of 3ng/μL of IL-1β. Administration of both of IL-1β and IL-1Ra failed to prevent an increase in the number of eosinophilic cells. Our data suggest that IL-1β increases apoptotic neuronal cell death caused by SE in the hippocampal GD, which is a mechanism independent of IL-1RI activation. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1

    Directory of Open Access Journals (Sweden)

    A. Rory McQuiston

    2014-09-01

    Full Text Available Acetylcholine release in the central nervous system (CNS has an important role in attention, recall and memory formation. One region influenced by acetylcholine is the hippocampus, which receives inputs from the medial septum and diagonal band of Broca complex (MS/DBB. Release of acetylcholine from the MS/DBB can directly affect several elements of the hippocampus including glutamatergic and GABAergic neurons, presynaptic terminals, postsynaptic receptors and astrocytes. A significant portion of acetylcholine’s effect likely results from the modulation of GABAergic inhibitory interneurons, which have crucial roles in controlling excitatory inputs, synaptic integration, rhythmic coordination of principal neurons and outputs in the hippocampus. Acetylcholine affects interneuron function in large part by altering their membrane potential via muscarinic and nicotinic receptor activation. This minireview describes recent data from mouse hippocampus that investigated changes in CA1 interneuron membrane potentials following acetylcholine release. The interneuron subtypes affected, the receptor subtypes activated, and the potential outcome on hippocampal CA1 network function is discussed.

  10. Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing

    Directory of Open Access Journals (Sweden)

    Yanjun Sun

    2014-04-01

    Full Text Available We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC, the medial septum (MS, and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  11. Rhynchophylline Protects Against the Amyloid β-Induced Increase of Spontaneous Discharges in the Hippocampal CA1 Region of Rats.

    Science.gov (United States)

    Shao, Hui; Mi, Ze; Ji, Wei-gang; Zhang, Cheng-huan; Zhang, Teng; Ren, Shuan-cheng; Zhu, Zhi-ru

    2015-11-01

    Accumulated soluble amyloid β (Aβ)-induced aberrant neuronal network activity has been recognized as a key causative factor leading to cognitive deficits which are the most outstanding characteristic of Alzheimer's disease (AD). As an important structure associated with learning and memory, the hippocampus is one of the brain regions that are impaired very early in AD, and the hippocampal CA1 region is selectively vulnerable to soluble Aβ oligomers. Our recent study showed that soluble Aβ1-42 oligomers induced hyperactivity and perturbed the firing patterns in hippocampal neurons. Rhynchophylline (RIN) is an important active tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla which is a traditional Chinese medicine and often used to treat central nervous system illnesses such as hypertension, convulsions, tremor, stroke etc. Previous evidence showed that RIN possessed neuroprotective effects of improving the cognitive function of mice with Alzheimer-like symptoms. In the present study, we aimed to investigate the protective effect of RIN against soluble Aβ1-42 oligomers-induced hippocampal hyperactivity. The results showed that (1) the mean frequency of spontaneous discharge was increased by the local application of 3 μM soluble Aβ1-42 oligomers; (2) 30 μM RIN did not exert any obvious effects on basal physiological discharges; and (3) treatment with RIN effectively inhibited the soluble Aβ1-42 oligomers-induced enhancement of spontaneous discharge, in a concentration-dependent manner with an IC50 = 9.0 μM. These in vivo electrophysiological results indicate that RIN can remold the spontaneous discharges disturbed by Aβ and counteract the deleterious effect of Aβ1-42 on neural circuit. The experimental findings provide further evidence to affirm the potential of RIN as a worthy candidate for further development into a therapeutic agent for AD.

  12. The Effect of Rosa Damascena Extract on Expression of Neurotrophic Factors in the CA1 Neurons of Adult Rat Hippocampus Following Ischemia

    Directory of Open Access Journals (Sweden)

    Seyedeh Farzaneh Moniri

    2018-01-01

    Full Text Available Ischemic stroke is an important cause of death and disability in the world. Brain ischemia causes damage to brain cell, and among brain neurons, pyramidal neurons of the hippocampal CA1 region are more susceptive to ischemic injury. Recent findings suggest that neurotrophic factors protect against ischemic cell death. A dietary component of Rosa damascene extract possibly is associated with expression of neurotrophic factors mRNA following ischemia, so it can have therapeutic effect on cerebral ischemia. The present study attempts to evaluate the neuroprotective effect of Rosa damascene extract on adult rat hippocampal neurons following ischemic brain injury. Forty-eight adult male Wistar rats (weighing 250±20 gr and ages 10-12 weeks used in this study, animals randomly were divided into 6 groups including Control, ischemia/ reperfusion (IR, vehicle and three treated groups (IR+0.5, 1, 2 mg/ml extract. Global ischemia was induced by bilateral common carotid arteries occlusion for 20 minutes. The treatment was done by different doses of Rosa damascena extract for 30 days. After 30 days cell death and gene expression in neurons of the CA1 region of the hippocampus were evaluated by Nissl staining and real time PCR assay. We found a significant decrease in NGF, BDNF and NT3 mRNA expression in neurons of CA1 region of the hippocampus in ischemia group compared to control group (P<0.0001. Our results also revealed that the number of dark neurons significantly increases in ischemia group compared to control group (P<0.0001. Following treatment with Rosa damascene extract reduced the number of dark neurons that was associated with NGF, NT3, and BDNF mRNA expression. All doses level had positive effects, but the most effective dose of Rosa damascena extract was 1 mg/ml. Our results suggest that neuroprotective activity of Rosa damascena can enhance hippocampal CA1 neuronal survival after global ischemia.

  13. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    Science.gov (United States)

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  14. Inhibition of long-term potentiation in the schaffer-CA1 pathway by repetitive high-intensity sound stimulation.

    Science.gov (United States)

    Cunha, A O S; de Oliveira, J A C; Almeida, S S; Garcia-Cairasco, N; Leão, R M

    2015-12-03

    High-intensity sound can induce seizures in susceptible animals. After repeated acoustic stimuli changes in behavioural seizure repertoire and epileptic EEG activity might be seen in recruited limbic and forebrain structures, a phenomenon known as audiogenic kindling. It is postulated that audiogenic kindling can produce synaptic plasticity events leading to the spread of epileptogenic activity to the limbic system. In order to test this hypothesis, we investigated if long-term potentiation (LTP) of hippocampal Schaffer-CA1 synapses and spatial navigation memory are altered by a repeated high-intensity sound stimulation (HISS) protocol, consisting of one-minute 120 dB broadband noise applied twice a day for 10 days, in normal Wistar rats and in audiogenic seizure-prone rats (Wistar Audiogenic Rats - WARs). After HISS all WARs exhibited midbrain seizures and 50% of these animals developed limbic recruitment, while only 26% of Wistar rats presented midbrain seizures and none of them had limbic recruitment. In naïve animals, LTP in hippocampal CA1 neurons was induced by 50- or 100-Hz high-frequency stimulation of Schaffer fibres in slices from both Wistar and WAR animals similarly. Surprisingly, HISS suppressed LTP in CA1 neurons in slices from Wistar rats that did not present any seizure, and inhibited LTP in slices from Wistar rats with only midbrain seizures. However HISS had no effect on LTP in CA1 neurons from slices of WARs. Interestingly HISS did not alter spatial navigation and memory in both strains. These findings show that repeated high-intensity sound stimulation prevent LTP of Schaffer-CA1 synapses from Wistar rats, without affecting spatial memory. This effect was not seen in hippocampi from audiogenic seizure-prone WARs. In WARs the link between auditory stimulation and hippocampal LTP seems to be disrupted which could be relevant for the susceptibility to seizures in this strain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats.

    Science.gov (United States)

    Blanco, Eduardo; Galeano, Pablo; Holubiec, Mariana I; Romero, Juan I; Logica, Tamara; Rivera, Patricia; Pavón, Francisco J; Suarez, Juan; Capani, Francisco; Rodríguez de Fonseca, Fernando

    2015-01-01

    Perinatal asphyxia (PA) is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS) is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory, and mood. Endocannabinoids, and other acylethanolamides (AEs) without endocannabinoid activity, have recently received growing attention due to their potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals delivered spontaneously or by cesarean section were employed as controls. At 1 month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and glial fibrillary acidic protein, enzymes responsible for synthesis (DAGLα and NAPE-PLD) and degradation (FAAH) of ECS/AEs and their receptors (CB1 and PPARα) in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since, NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA.

  16. Pathological changes in hippocampal neuronal circuits underlie age-associated neurodegeneration and memory loss: positive clue toward SAD.

    Science.gov (United States)

    Moorthi, P; Premkumar, P; Priyanka, R; Jayachandran, K S; Anusuyadevi, M

    2015-08-20

    Among vertebrates hippocampus forms the major component of the brain in consolidating information from short-term memory to long-term memory. Aging is considered as the major risk factor for memory impairment in sporadic Alzheimer's disease (SAD) like pathology. Present study thus aims at investigating whether age-specific degeneration of neuronal-circuits in hippocampal formation (neural-layout of Subiculum-hippocampus proper-dentate gyrus (DG)-entorhinal cortex (EC)) results in cognitive impairment. Furthermore, the neuroprotective effect of Resveratrol (RSV) was attempted to study in the formation of hippocampal neuronal-circuits. Radial-Arm-Maze was conducted to evaluate hippocampal-dependent spatial and learning memory in control and experimental rats. Nissl staining of frontal cortex (FC), subiculum, hippocampal-proper (CA1CA2→CA3→CA4), DG, amygdala, cerebellum, thalamus, hypothalamus, layers of temporal and parietal lobe of the neocortex were examined for pathological changes in young and aged wistar rats, with and without RSV. Hippocampal trisynaptic circuit (EC layerII→DG→CA3→CA1) forming new memory and monosynaptic circuit (EC→CA1) that strengthen old memories were found disturbed in aged rats. Loss of Granular neuron observed in DG and polymorphic cells of CA4 can lead to decreased mossy fibers disturbing neural-transmission (CA4→CA3) in perforant pathway. Further, intensity of nissl granules (stratum lacunosum moleculare (SLM)-SR-SO) of CA3 pyramidal neurons was decreased, disturbing the communication in schaffer collaterals (CA3-CA1) during aging. We also noticed disarranged neuronal cell layer in Subiculum (presubiculum (PrS)-parasubiculum (PaS)), interfering output from hippocampus to prefrontal cortex (PFC), EC, hypothalamus, and amygdala that may result in interruption of thought processes. We conclude from our observations that poor memory performance of aged rats as evidenced through radial arm maze (RAM) analysis was due to the

  17. Housing under the pyramid reduces susceptibility of hippocampal CA3 pyramidal neurons to prenatal stress in the developing rat offspring.

    Science.gov (United States)

    Murthy, Krishna Dilip; George, Mitchel Constance; Ramasamy, Perumal; Mustapha, Zainal Arifin

    2013-12-01

    Mother-offspring interaction begins before birth. The foetus is particularly vulnerable to environmental insults and stress. The body responds by releasing excess of the stress hormone cortisol, which acts on glucocorticoid receptors. Hippocampus in the brain is rich in glucocorticoid receptors and therefore susceptible to stress. The stress effects are reduced when the animals are placed under a model wooden pyramid. The present study was to first explore the effects of prenatal restraint-stress on the plasma corticosterone levels and the dendritic arborisation of CA3 pyramidal neurons in the hippocampus of the offspring. Further, to test whether the pyramid environment would alter these effects, as housing under a pyramid is known to reduce the stress effects, pregnant Sprague Dawley rats were restrained for 9 h per day from gestation day 7 until parturition in a wire-mesh restrainer. Plasma corticosterone levels were found to be significantly increased. In addition, there was a significant reduction in the apical and the basal total dendritic branching points and intersections of the CA3 hippocampal pyramidal neurons. The results thus suggest that, housing in the pyramid dramatically reduces prenatal stress effects in rats.

  18. Effects of FK506 on Hippocampal CA1 Cells Following Transient Global Ischemia/Reperfusion in Wistar Rat

    Directory of Open Access Journals (Sweden)

    Zahra-Nadia Sharifi

    2012-01-01

    Full Text Available Transient global cerebral ischemia causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the neurotrophic effect of the immunosuppressant agent FK506 in rat after global cerebral ischemia. Both common carotid arteries were occluded for 20 minutes followed by reperfusion. In experimental group 1, FK506 (6 mg/kg was given as a single dose exactly at the time of reperfusion. In the second group, FK506 was administered at the beginning of reperfusion, followed by its administration intraperitoneally (IP 6, 24, 48, and 72 hours after reperfusion. FK506 failed to show neurotrophic effects on CA1 region when applied as a single dose of 6 mg/kg. The cell number and size of the CA1 pyramidal cells were increased, also the number of cell death decreased in this region when FK506 was administrated 48 h after reperfusion. This work supports the possible use of FK506 in treatment of ischemic brain damage.

  19. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area.

    Science.gov (United States)

    Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter

    2017-12-20

    Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats

    Directory of Open Access Journals (Sweden)

    Eduardo eBlanco Calvo

    2015-11-01

    Full Text Available Perinatal asphyxia (PA is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory and mood. Endocannabinoids, and other acylethanolamides (AEs without endocannabinoid activity, have recently received growing attention as they have potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals that were delivered spontaneously or by caesarean section were employed as controls. At one month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and GFAP, enzymes responsible for synthesis (DAGLα and NAPE-PLD and degradation (FAAH of ECS/AEs and their receptors (CB1 and PPARα in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA.

  1. Involvement of N-methyl-D-aspartate receptor subunits in zinc-mediated modification of CA1 long-term potentiation in the developing hippocampus.

    Science.gov (United States)

    Takeda, Atsushi; Itagaki, Kosuke; Ando, Masaki; Oku, Naoto

    2012-03-01

    Zinc is an endogenous N-methyl-D-aspartate (NMDA) receptor blocker. It is possible that zinc-mediated modification of hippocampal CA1 long-term potentiation (LTP) is linked to the expression of NMDA receptor subunits, which varies with postnatal development. In the present study, the effect of ZnCl(2) and CaEDTA, a membrane-impermeable zinc chelator, on CA1 LTP induction was examined in hippocampal slices from immature (3-week-old) and young (6-week-old) rats. Tetanus (10-100 Hz, 1 sec)-induced CA1 LTP was more greatly enhanced in 3-week-old rats. CA1 LTP was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and CaEDTA in 3-week-old rats, as in the case of 6-week-old rats reported previously. In 3-week-old rats, on the other hand, 5 μM ZnCl(2) attenuated NMDA receptor-mediated EPSPs more than in 6-week-old rats and significantly attenuated CA1 LTP. Moreover, 5 μM ZnCl(2) significantly attenuated CA1 LTP in the presence of (2R,4S)-4-(3-phosphonopropyl)-2-piperidinecarboxylic acid (PPPA), an NR2A antagonist, in 3-week-old rats, but not that in the presence of ifenprodil, an NR2B antagonist, suggesting that zinc-mediated attenuation of CA1 LTP is associated with the preferential expression of NR2B subunit in 3-week-old rats. In 6-week-old rats, however, 5 μM ZnCl(2) significantly potentiated CA1 LTP and also CA1 LTP in the presence of PPPA. The present study demonstrates that endogenous zinc may participate in the induction of CA1 LTP. It is likely that the changes in expression of NMDA receptor subunits are involved in the zinc-mediated modification of CA1 LTP in the developing hippocampus. Copyright © 2011 Wiley Periodicals, Inc.

  2. Amyloid beta-peptide(25-35) changes [Ca2+] in hippocampal neurons

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Beatty, D M; Morris, S J

    1998-01-01

    of A beta(25-35) on [Ca2+]i and intracellular H+ concentration ([H+]i) in single hippocampal neurons by real time fluorescence imaging using the Ca(2+)- and H(+)-specific ratio dyes, indo-1 and SNARF-1. Incubation of these cultures with A beta(25-35) for 3-12 days in vitro increased [Ca2+]i and [H......+]i in large, NMDA-responsive neurons....

  3. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats

    International Nuclear Information System (INIS)

    Krueger, Katharina; Straub, Heidrun; Hirner, Alfred V.; Hippler, Joerg; Binding, Norbert; Musshoff, Ulrich

    2009-01-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krueger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Muβhoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krueger, K., Straub, H., Binding, N., Muβhoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krueger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Muβhoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA V ) and monomethylarsonous acid (MMA III ) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA V had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA III strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 μmol/l (adult rats) and 25 μmol/l (young rats) and LTP amplitudes at concentrations of 25 μmol/l (adult rats) and 10 μmol/l (young rats), respectively. In contrast, application of 1 μmol/l MMA III led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at this concentration (Krueger, K., Gruner, J

  4. The Role of the Two-Pore Domain Potassium Channel TREK-1 in the Therapeutic Effects of Escitalopram in a Rat Model of Poststroke Depression.

    Science.gov (United States)

    Lin, Dai-Hua; Zhang, Xiang-Rong; Ye, Dong-Qing; Xi, Guang-Jun; Hui, Jiao-Jie; Liu, Shan-Shan; Li, Lin-Jiang; Zhang, Zhi-Jun

    2015-06-01

    Poststroke depression (PSD) is one of the most common neuropsychiatric complications after stroke. TREK-1, a two-pore-domain potassium channel, has been implicated in the pathogenesis of stroke and depression. The aim of this study was to investigate whether TREK-1 plays a role in the therapeutic effects of the selective serotonin reuptake inhibitor (SSRI) escitalopram in a rat PSD model. The whole-cell patch-clamp technique was performed to assess the effect of escitalopram on recombinant TREK-1 currents in HEK293 cells. The expression of TREK-1 mRNA and protein was measured in the hippocampus and prefrontal cortex (PFC), and neural stem cell (NSC) proliferation was detected in the hippocampal dentate gyrus (DG) in PSD rats after 3 weeks of escitalopram administration. Escitalopram reversibly inhibited TREK-1 currents in a concentration-dependent manner. Chronic treatment with escitalopram significantly reversed the reductions in weight gain, locomotor activity, and sucrose preference in PSD rats. The expressions of TREK-1 mRNA and protein were significantly increased in hippocampal CA1, CA3, DG, and PFC in PSD rats, with the exception of TREK-1 mRNA in hippocampal CA1. NSC proliferation was significantly decreased in hippocampal DG of PSD rats. Escitalopram significantly reversed the regional increases of TREK-1 expression and the reduction of hippocampal NSC proliferation in PSD rats. TREK-1 plays an important role in the therapeutic effects of the SSRI escitalopram in PSD model, making TREK-1 an attractive candidate molecule for further understanding the pathophysiology and treatment of PSD. © 2015 John Wiley & Sons Ltd.

  5. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats

    Science.gov (United States)

    Liu, Zhi-Hua; Ding, Jin-Jun; Yang, Qian-Qian; Song, Hua-Zeng; Chen, Xiang-Tao; Xu, Yi; Xiao, Gui-Ran; Wang, Hui-Li

    2016-08-01

    Bisphenol-A (BPA, 4, 4‧-isopropylidene-2-diphenol), a synthetic xenoestrogen that widely used in the production of polycarbonate plastics, has been reported to impair hippocampal development and function. Our previous study has shown that BPA exposure impairs Sprague-Dawley (SD) male hippocampal dendritic spine outgrowth. In this study, the sex-effect of chronic BPA exposure on spatial memory in SD male and female rats and the related synaptic mechanism were further investigated. We found that chronic BPA exposure impaired spatial memory in both SD male and female rats, suggesting a dysfunction of hippocampus without gender-specific effect. Further investigation indicated that BPA exposure causes significant impairment of dendrite and spine structure, manifested as decreased dendritic complexity, dendritic spine density and percentage of mushroom shaped spines in hippocampal CA1 and dentate gyrus (DG) neurons. Furthermore, a significant reduction in Arc expression was detected upon BPA exposure. Strikingly, BPA exposure significantly increased the mIPSC amplitude without altering the mEPSC amplitude or frequency, accompanied by increased GABAARβ2/3 on postsynaptic membrane in cultured CA1 neurons. In summary, our study indicated that Arc, together with the increased surface GABAARβ2/3, contributed to BPA induced spatial memory deficits, providing a novel molecular basis for BPA achieved brain impairment.

  6. Deficits in synaptic function occur at medial perforant path-dentate granule cell synapses prior to Schaffer collateral-CA1 pyramidal cell synapses in the novel TgF344-Alzheimer's Disease Rat Model.

    Science.gov (United States)

    Smith, Lindsey A; McMahon, Lori L

    2018-02-01

    Alzheimer's disease (AD) pathology begins decades prior to onset of clinical symptoms, and the entorhinal cortex and hippocampus are among the first and most extensively impacted brain regions. The TgF344-AD rat model, which more fully recapitulates human AD pathology in an age-dependent manner, is a next generation preclinical rodent model for understanding pathophysiological processes underlying the earliest stages of AD (Cohen et al., 2013). Whether synaptic alterations occur in hippocampus prior to reported learning and memory deficit is not known. Furthermore, it is not known if specific hippocampal synapses are differentially affected by progressing AD pathology, or if synaptic deficits begin to appear at the same age in males and females in this preclinical model. Here, we investigated the time-course of synaptic changes in basal transmission, paired-pulse ratio, as an indirect measure of presynaptic release probability, long-term potentiation (LTP), and dendritic spine density at two hippocampal synapses in male and ovariectomized female TgF344-AD rats and wildtype littermates, prior to reported behavioral deficits. Decreased basal synaptic transmission begins at medial perforant path-dentate granule cell (MPP-DGC) synapses prior to Schaffer-collateral-CA1 (CA3-CA1) synapses, in the absence of a change in paired-pulse ratio (PPR) or dendritic spine density. N-methyl-d-aspartate receptor (NMDAR)-dependent LTP magnitude is unaffected at CA3-CA1 synapses at 6, 9, and 12months of age, but is significantly increased at MPP-DGC synapses in TgF344-AD rats at 6months only. Sex differences were only observed at CA3-CA1 synapses where the decrease in basal transmission occurs at a younger age in males versus females. These are the first studies to define presymptomatic alterations in hippocampal synaptic transmission in the TgF344-AD rat model. The time course of altered synaptic transmission mimics the spread of pathology through hippocampus in human AD and provides

  7. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  8. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring.

    Science.gov (United States)

    Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R

    2016-01-15

    Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield.

    Directory of Open Access Journals (Sweden)

    Francisco J Rubio

    2013-05-01

    Full Text Available Antidepressant drugs are usually administered for long time for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor fluoxetine to naϊve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of treatment with 0.7 mg/kg of fluoxetine on long-term potentiation (LTP and long-term depression (LTD in the Schaffer collateral-CA1 synapses and the perforant path-CA1 synapses. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining experiments revealed decreased AMPA-R Ca2+ permeability in the stratum radiatum together with increased GluA2-containing, Ca2+-impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.

  10. Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory.

    Science.gov (United States)

    Leroy, Felix; Brann, David H; Meira, Torcato; Siegelbaum, Steven A

    2017-08-30

    Input-timing-dependent plasticity (ITDP) is a circuit-based synaptic learning rule by which paired activation of entorhinal cortical (EC) and Schaffer collateral (SC) inputs to hippocampal CA1 pyramidal neurons (PNs) produces a long-term enhancement of SC excitation. We now find that paired stimulation of EC and SC inputs also induces ITDP of SC excitation of CA2 PNs. However, whereas CA1 ITDP results from long-term depression of feedforward inhibition (iLTD) as a result of activation of CB1 endocannabinoid receptors on cholecystokinin-expressing interneurons, CA2 ITDP results from iLTD through activation of δ-opioid receptors on parvalbumin-expressing interneurons. Furthermore, whereas CA1 ITDP has been previously linked to enhanced specificity of contextual memory, we find that CA2 ITDP is associated with enhanced social memory. Thus, ITDP may provide a general synaptic learning rule for distinct forms of hippocampal-dependent memory mediated by distinct hippocampal regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear.

    Science.gov (United States)

    Tronson, Natalie C; Schrick, Christina; Guzman, Yomayra F; Huh, Kyu Hwan; Srivastava, Deepak P; Penzes, Peter; Guedea, Anita L; Gao, Can; Radulovic, Jelena

    2009-03-18

    Learning processes mediating conditioning and extinction of contextual fear require activation of several key signaling pathways in the hippocampus. Principal hippocampal CA1 neurons respond to fear conditioning by a coordinated activation of multiple protein kinases and immediate early genes, such as cFos, enabling rapid and lasting consolidation of contextual fear memory. The extracellular signal-regulated kinase (Erk) additionally acts as a central mediator of fear extinction. It is not known however, whether these molecular events take place in overlapping or nonoverlapping neuronal populations. By using mouse models of conditioning and extinction of fear, we set out to determine the time course of cFos and Erk activity, their cellular overlap, and regulation by afferent cholinergic input from the medial septum. Analyses of cFos(+) and pErk(+) cells by immunofluorescence revealed predominant nuclear activation of either protein during conditioning and extinction of fear, respectively. Transgenic cFos-LacZ mice were further used to label in vivo Fos(+) hippocampal cells during conditioning followed by pErk immunostaining after extinction. The results showed that these signaling molecules were activated in segregated populations of hippocampal principal neurons. Furthermore, immunotoxin-induced lesions of medial septal neurons, providing cholinergic input into the hippocampus, selectively abolished Erk activation and extinction of fear without affecting cFos responses and conditioning. These results demonstrate that extinction mechanisms based on Erk signaling involve a specific population of CA1 principal neurons distinctively regulated by afferent cholinergic input from the medial septum.

  12. Age-dependent changes of presynaptic neuromodulation via A1-adenosine receptors in rat hippocampal slices.

    Science.gov (United States)

    Sperlágh, B; Zsilla, G; Baranyi, M; Kékes-Szabó, A; Vizi, E S

    1997-10-01

    The presynaptic neuromodulation of stimulation-evoked release of [3H]-acetylcholine by endogenous adenosine, via A1-adenosine receptors, was studied in superfused hippocampal slices taken from 4-, 12- and 24-month-old rats. 8-Cyclopentyl-1,3-dimethylxanthine (0.25 microM), a selective A1-receptor antagonist, increased significantly the electrical field stimulation-induced release of [3H]-acetylcholine in slices prepared from 4- and 12-month-old rats, showing a tonic inhibitory action of endogenous adenosine via stimulation of presynaptic A1-adenosine receptors. In contrast, 8-cyclopentyl-1,3-dimethylxanthine had no effect in 24-month-old rats. 2-Chloroadenosine (10 microM), an adenosine receptor agonist decreased the release of [3H]-acetylcholine in slices taken from 4- and 12-month-old rats, and no significant change was observed in slices taken from 24-month-old rats. In order to show whether the number/or affinity of the A1-receptors was affected in aged rats, [3H]-8-cyclopentyl-1,3-dimethylxanthine binding was studied in hippocampal membranes prepared from rats of different ages. Whereas the Bmax value was significantly lower in 2-year-old rats than in younger counterparts, the dissociation constant (Kd) was not affected by aging, indicating that the density rather than the affinity of adenosine receptors was altered. Endogenous adenosine levels present in the extracellular space were also measured in the superfusate by high performance liquid chromatography (HPLC) coupled with ultraviolet detection, and an age-related increase in the adenosine level was found. In summary, our results indicate that during aging the level of adenosine in the extracellular fluid is increased in the hippocampus. There is a downregulation and reduced responsiveness of presynaptic adenosine A1-receptors, and it seems likely that these changes are due to the enhanced adenosine level in the extracellular space.

  13. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Roth, Tania L; Zoladz, Phillip R; Sweatt, J David; Diamond, David M

    2011-07-01

    Epigenetic alterations of the brain-derived neurotrophic factor (Bdnf) gene have been linked with memory, stress, and neuropsychiatric disorders. Here we examined whether there was a link between an established rat model of post-traumatic stress disorder (PTSD) and Bdnf DNA methylation. Adult male Sprague-Dawley rats were given psychosocial stress composed of two acute cat exposures in conjunction with 31 days of daily social instability. These manipulations have been shown previously to produce physiological and behavioral sequelae in rats that are comparable to symptoms observed in traumatized people with PTSD. We then assessed Bdnf DNA methylation patterns (at exon IV) and gene expression. We have found here that the psychosocial stress regimen significantly increased Bdnf DNA methylation in the dorsal hippocampus, with the most robust hypermethylation detected in the dorsal CA1 subregion. Conversely, the psychosocial stress regimen significantly decreased methylation in the ventral hippocampus (CA3). No changes in Bdnf DNA methylation were detected in the medial prefrontal cortex or basolateral amygdala. In addition, there were decreased levels of Bdnf mRNA in both the dorsal and ventral CA1. These results provide evidence that traumatic stress occurring in adulthood can induce CNS gene methylation, and specifically, support the hypothesis that epigenetic marking of the Bdnf gene may underlie hippocampal dysfunction in response to traumatic stress. Furthermore, this work provides support for the speculative notion that altered hippocampal Bdnf DNA methylation is a cellular mechanism underlying the persistent cognitive deficits which are prominent features of the pathophysiology of PTSD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons.

    Science.gov (United States)

    Noble, Emily E; Mavanji, Vijayakumar; Little, Morgan R; Billington, Charles J; Kotz, Catherine M; Wang, ChuanFeng

    2014-10-01

    Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for 7 weeks of exercise intervention. Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (pdiet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. Published by Elsevier Inc.

  15. Pretreatment with apoaequorin protects hippocampal CA1 neurons from oxygen-glucose deprivation.

    Science.gov (United States)

    Detert, Julia A; Adams, Erin L; Lescher, Jacob D; Lyons, Jeri-Anne; Moyer, James R

    2013-01-01

    Ischemic stroke affects ∼795,000 people each year in the U.S., which results in an estimated annual cost of $73.7 billion. Calcium is pivotal in a variety of neuronal signaling cascades, however, during ischemia, excess calcium influx can trigger excitotoxic cell death. Calcium binding proteins help neurons regulate/buffer intracellular calcium levels during ischemia. Aequorin is a calcium binding protein isolated from the jellyfish Aequorea victoria, and has been used for years as a calcium indicator, but little is known about its neuroprotective properties. The present study used an in vitro rat brain slice preparation to test the hypothesis that an intra-hippocampal infusion of apoaequorin (the calcium binding component of aequorin) protects neurons from ischemic cell death. Bilaterally cannulated rats received an apoaequorin infusion in one hemisphere and vehicle control in the other. Hippocampal slices were then prepared and subjected to 5 minutes of oxygen-glucose deprivation (OGD), and cell death was assayed by trypan blue exclusion. Apoaequorin dose-dependently protected neurons from OGD--doses of 1% and 4% (but not 0.4%) significantly decreased the number of trypan blue-labeled neurons. This effect was also time dependent, lasting up to 48 hours. This time dependent effect was paralleled by changes in cytokine and chemokine expression, indicating that apoaequorin may protect neurons via a neuroimmunomodulatory mechanism. These data support the hypothesis that pretreatment with apoaequorin protects neurons against ischemic cell death, and may be an effective neurotherapeutic.

  16. Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1.

    Science.gov (United States)

    Park, Kellie A; Ribic, Adema; Laage Gaupp, Fabian M; Coman, Daniel; Huang, Yuegao; Dulla, Chris G; Hyder, Fahmeed; Biederer, Thomas

    2016-07-13

    Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly

  17. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.

    Science.gov (United States)

    Döhring, Juliane; Stoldt, Anne; Witt, Karsten; Schönfeld, Robby; Deuschl, Günther; Born, Jan; Bartsch, Thorsten

    2017-04-01

    Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology. Copyright © 2016

  18. Streptozotocin Inhibits Electrophysiological Determinants of Excitatory and Inhibitory Synaptic Transmission in CA1 Pyramidal Neurons of Rat Hippocampal Slices: Reduction of These Effects by Edaravone

    Directory of Open Access Journals (Sweden)

    Ting Ju

    2016-12-01

    Full Text Available Background: Streptozotocin (STZ has served as an agent to generate an Alzheimer's disease (AD model in rats, while edaravone (EDA, a novel free radical scavenger, has recently emerged as an effective treatment for use in vivo and vitro AD models. However, to date, these beneficial effects of EDA have only been clearly demonstrated within STZ-induced animal models of AD and in cell models of AD. A better understanding of the mechanisms of EDA may provide the opportunity for their clinical application in the treatment of AD. Therefore, the purpose of this study was to investigate the underlying mechanisms of STZ and EDA as assessed upon electrophysiological alterations in CA1 pyramidal neurons of rat hippocampal slices. Methods: Through measures of evoked excitatory postsynaptic currents (eEPSCs, AMPAR-mediated eEPSCs (eEPSCsAMPA, evoked inhibitory postsynaptic currents (eIPSCs, evoked excitatory postsynaptic current paired pulse ratio (eEPSC PPR and evoked inhibitory postsynaptic current paired pulse ratio (eIPSC PPR, it was possible to investigate mechanisms as related to the neurotoxicity of STZ and reductions in these effects by EDA. Results: Our results showed that STZ (1000 µM significantly inhibited peak amplitudes of eEPSCs, eEPSCsAMPA and eIPSCs, while EDA (1000 µM attenuated these STZ-induced changes at holding potentials ranging from -60mV to +40 mV for EPSCs and -60mV to +20 mV for IPSCs. Our work also indicated that mean eEPSC PPR were substantially altered by STZ, effects which were partially restored by EDA. In contrast, no significant effects upon eIPSC PPR were obtained in response to STZ and EDA. Conclusion: Our data suggest that STZ inhibits glutamatergic transmission involving pre-synaptic mechanisms and AMPAR, and that STZ inhibits GABAergic transmission by post-synaptic mechanisms within CA1 pyramidal neurons. These effects are attenuated by EDA.

  19. Caffeine and REM sleep deprivation: Effect on basal levels of signaling molecules in area CA1.

    Science.gov (United States)

    Alkadhi, Karim A; Alhaider, Ibrahim A

    2016-03-01

    We have investigated the neuroprotective effect of chronic caffeine treatment on basal levels of memory-related signaling molecules in area CA1 of sleep-deprived rats. Animals in the caffeine groups were treated with caffeine in drinking water (0.3g/l) for four weeks before they were REM sleep-deprived for 24h in the Modified Multiple Platforms paradigm. Western blot analysis of basal protein levels of plasticity- and memory-related signaling molecules in hippocampal area CA1 showed significant down regulation of the basal levels of phosphorylated- and total-CaMKII, phosphorylated- and total-CREB as well as those of BDNF and CaMKIV in sleep deprived rats. All these changes were completely prevented in rats that chronically consumed caffeine. The present findings suggest an important neuroprotective property of caffeine in sleep deprivation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood.

    Science.gov (United States)

    Daugherty, Ana M; Flinn, Robert; Ofen, Noa

    2017-06-01

    Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution images in a sample of healthy participants (age 8-25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood

    Science.gov (United States)

    Daugherty, Ana M.; Flinn, Robert; Ofen, Noa

    2017-01-01

    Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution proton density-weighted images in a sample of healthy participants (age 8–25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus. PMID:28342999

  2. Opposite effects of glucocorticoid receptor activation on hippocampal CA1 dendritic complexity in chronically stressed and handled animals

    NARCIS (Netherlands)

    Alfarez, D.N.; Karst, H.; Velzing, E.H.; Joëls, M.; Krugers, H.J.

    2008-01-01

    Remodeling of synaptic networks is believed to contribute to synaptic plasticity and long-term memory performance, both of which are modulated by chronic stress. We here examined whether chronic stress modulates dendritic complexity of hippocampal CA1 pyramidal cells, under conditions of basal as

  3. Functional optical probing of the hippocampal trisynaptic circuit in vitro: network dynamics, filter properties, and polysynaptic induction of CA1 LTP.

    Science.gov (United States)

    Stepan, Jens; Dine, Julien; Eder, Matthias

    2015-01-01

    Decades of brain research have identified various parallel loops linking the hippocampus with neocortical areas, enabling the acquisition of spatial and episodic memories. Especially the hippocampal trisynaptic circuit [entorhinal cortex layer II → dentate gyrus (DG) → cornu ammonis (CA)-3 → CA1] was studied in great detail because of its seemingly simple connectivity and characteristic structures that are experimentally well accessible. While numerous researchers focused on functional aspects, obtained from a limited number of cells in distinct hippocampal subregions, little is known about the neuronal network dynamics which drive information across multiple synapses for subsequent long-term storage. Fast voltage-sensitive dye imaging in vitro allows real-time recording of activity patterns in large/meso-scale neuronal networks with high spatial resolution. In this way, we recently found that entorhinal theta-frequency input to the DG most effectively passes filter mechanisms of the trisynaptic circuit network, generating activity waves which propagate across the entire DG-CA axis. These "trisynaptic circuit waves" involve high-frequency firing of CA3 pyramidal neurons, leading to a rapid induction of classical NMDA receptor-dependent long-term potentiation (LTP) at CA3-CA1 synapses (CA1 LTP). CA1 LTP has been substantially evidenced to be essential for some forms of explicit learning in mammals. Here, we review data with particular reference to whole network-level approaches, illustrating how activity propagation can take place within the trisynaptic circuit to drive formation of CA1 LTP.

  4. Strain-dependent variations in spatial learning and in hippocampal synaptic plasticity in the dentate gyrus of freely behaving rats

    Directory of Open Access Journals (Sweden)

    Denise eManahan-Vaughan

    2011-03-01

    Full Text Available Hippocampal synaptic plasticity is believed to comprise the cellular basis for spatial learning. Strain-dependent differences in synaptic plasticity in the CA1 region have been reported. However, it is not known whether these differences extend to other synapses within the trisynaptic circuit, although there is evidence for morphological variations within that path. We investigated whether Wistar and Hooded Lister (HL rat strains express differences in synaptic plasticity in the dentate gyrus in vivo. We also explored whether they exhibit differences in the ability to engage in spatial learning in an 8-arm radial maze. Basal synaptic transmission was stable over a 24h period in both rat strains, and the input-output relationship of both strains was not significantly different. Paired-pulse analysis revealed significantly less paired-pulse facilitation in the Hooded Lister strain when pulses were given 40-100 msec apart. Low frequency stimulation at 1Hz evoked long-term depression (>24h in Wistar and short-term depression (<2h in HL rats; 200Hz stimulation induced long-term potentiation (>24h in Wistar, and a transient, significantly smaller potentiation (<1h in HL rats, suggesting that HL rats have higher thresholds for expression of persistent synaptic plasticity. Training for 10d in an 8-arm radial maze revealed that HL rats master the working memory task faster than Wistar rats, although both strains show an equivalent performance by the end of the trial period. HL rats also perform more efficiently in a double working and reference memory task. On the other hand, Wistar rats show better reference memory performance on the final (8-10 days of training. Wistar rats were less active and more anxious than HL rats.These data suggest that strain-dependent variations in hippocampal synaptic plasticity occur in different hippocampal synapses. A clear correlation with differences in spatial learning is not evident however.

  5. Effect of intrahippocampal CA1 injection of insulin on spatial learning and memory deficits in diabetic rats

    Directory of Open Access Journals (Sweden)

    Golbarg Ghiasi

    2011-03-01

    Full Text Available Background: Diabetes mellitus is one of the most important diseases in all over the world. Insulin and its receptor are found in specific area of CNS with a variety of regions-specific functions different from its role in direct glucose regulation in the periphery. The hippocampus and cerebral cortex distributed insulin and insulin receptor has been shown to be involved in brain cognitive functions. Previous studies about the effect of insulin on memory in diabetes are controversial and further investigation is necessary.Methods: Seventy male NMRI rats (250-300 g were randomly divided into control, diabetic, saline-saline, saline-insulin (12, 18 or 24 mU, diabetic-saline, diabetic-insulin (12, 18 or 24 mU groups. Diabetes was induced by streptozotocin (65 mg/kg, ip. Saline or insulin were injected bilaterally (1 µl/rat into CA1 region of hippocampus during 1 min. Thirty minutes later, water maze training was performed.Results: Insulin had a dose dependent effect. The spatial learning and memory were impaired with diabetes, and improved by insulin. Escape latency and swimming distance in a water maze in insulin treated animals were significantly lower (P<0.05 than control and diabetic groups. Percentage of time spent by animals in a target quarter in probe trial session showed a significant difference among groups. This difference was significant between insulin treated and the other groups (P<0.05.Conclusions: Our findings suggest that injection of insulin into hippocampal CA1 area may have a dose-dependent effect on spatial learning and memory in diabetic rats.

  6. Various ketogenic diets can differently support brain resistance against experimentally evoked seizures and seizure-induced elemental anomalies of hippocampal formation.

    Science.gov (United States)

    Chwiej, J; Patulska, A; Skoczen, A; Matusiak, K; Janeczko, K; Ciarach, M; Simon, R; Setkowicz, Z

    2017-07-01

    In this paper the influence of two different ketogenic diets (KDs) on the seizure-evoked elemental anomalies of hippocampal formation was examined. To achieve this purpose normal and pilocarpine treated rats previously fed with one of the two high fat and carbohydrate restricted diets were compared with animals on standard laboratory diet. The ketogenic ratios of the examined KDs were equal to 5:1 (KD1) and 9:1 (KD2). KD1 and standard diet fed animals presented similar patterns of seizure-evoked elemental changes in hippocampal formation. Also the analysis of behavioral data recorded after pilocarpine injection did not show any significant differences in intensity and duration of seizures between KD1 and standard diet fed animals. Higher ketogenic ratio KD2 introduced in the normal hippocampal formation prolonged changes in the accumulation of P, K, Zn and Ca. Despite this, both the intensity and duration of seizures were significantly reduced in rats fed with KD2 which suggests that its saving action on the nerve tissue may protect brain from seizure propagation. Also seizure-evoked elemental anomalies in KD2 animals were different than those observed for rats both on KD1 and standard diets. The comparison of seizure experiencing and normal rats on KD2, did not show any statistically significant differences in elemental composition of CA1 and H hippocampal areas whilst in CA3 area only Zn level changed as a result of seizures. DG was the area mostly affected by seizures in KD2 fed rats but areal densities of all examined elements increased in this hippocampal region. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

    Directory of Open Access Journals (Sweden)

    Paula Patricia Perissinotti

    2015-01-01

    Full Text Available Kelch-like 1 (KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type and CaV3.2 (α1H T-type calcium channels; KLHL1 knockdown experiments (KD cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014. Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT; and PQ-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were reduced in the KO hippocampus; cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.

  8. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus

    International Nuclear Information System (INIS)

    Tsurugizawa, Tomokazu; Mukai, Hideo

    2005-01-01

    Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1 nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2 h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but not by MK-801 (NMDA receptor antagonist). ERα agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ERβ agonist DPN did not affect the density of thorns. Note that a 1 nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ERα was performed using purified RC-19 antibody. The localization of ERα (67 kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ERα and MAP kinase

  9. [Effect of 5-HT1A receptors in the hippocampal DG on active avoidance learning in rats].

    Science.gov (United States)

    Jiang, Feng-ze; Lv, Jing; Wang, Dan; Jiang, Hai-ying; Li, Ying-shun; Jin, Qing-hua

    2015-01-01

    To investigate the effects of serotonin (5-HTIA) receptors in the hippocampal dentate gyrus (DG) on active avoidance learning in rats. Totally 36 SD rats were randomly divided into control group, antagonist group and agonist group(n = 12). Active avoidance learning ability of rats was assessed by the shuttle box. The extracellular concentrations of 5-HT in the DG during active avoidance conditioned reflex were measured by microdialysis and high performance liquid chromatography (HPLC) techniques. Then the antagonist (WAY-100635) or agonist (8-OH-DPAT) of the 5-HT1A receptors were microinjected into the DG region, and the active avoidance learning was measured. (1) During the active avoidance learning, the concentration of 5-HT in the hippocampal DG was significantly increased in the extinction but not establishment in the conditioned reflex, which reached 164.90% ± 26.07% (P active avoidance learning. (3) The microinjection of 8-OH-DPAT(an agonist of 5-HT1A receptor) into the DG significantly facilitated the establishment process and inhibited the extinction process during active avoidance conditioned reflex. The data suggest that activation of 5-HT1A receptors in hipocampal DG may facilitate active avoidance learning and memory in rats.

  10. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    Science.gov (United States)

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  11. Damage of hippocampal neurons in rats with chronic alcoholism

    OpenAIRE

    Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling

    2014-01-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons i...

  12. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K; Buckmaster, Paul S

    2014-12-10

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. Copyright © 2014 the authors 0270-6474/14/3416671-17$15.00/0.

  13. Parkia biglobosa Improves Mitochondrial Functioning and Protects against Neurotoxic Agents in Rat Brain Hippocampal Slices

    Directory of Open Access Journals (Sweden)

    Kayode Komolafe

    2014-01-01

    Full Text Available Objective. Methanolic leaf extracts of Parkia biglobosa, PBE, and one of its major polyphenolic constituents, catechin, were investigated for their protective effects against neurotoxicity induced by different agents on rat brain hippocampal slices and isolated mitochondria. Methods. Hippocampal slices were preincubated with PBE (25, 50, 100, or 200 µg/mL or catechin (1, 5, or 10 µg/mL for 30 min followed by further incubation with 300 µM H2O2, 300 µM SNP, or 200 µM PbCl2 for 1 h. Effects of PBE and catechin on SNP- or CaCl2-induced brain mitochondrial ROS formation and mitochondrial membrane potential (ΔΨm were also determined. Results. PBE and catechin decreased basal ROS generation in slices and blunted the prooxidant effects of neurotoxicants on membrane lipid peroxidation and nonprotein thiol contents. PBE rescued hippocampal cellular viability from SNP damage and caused a significant boost in hippocampus Na+, K+-ATPase activity but with no effect on the acetylcholinesterase activity. Both PBE and catechin also mitigated SNP- or CaCl2-dependent mitochondrial ROS generation. Measurement by safranine fluorescence however showed that the mild depolarization of the ΔΨm by PBE was independent of catechin. Conclusion. The results suggest that the neuroprotective effect of PBE is dependent on its constituent antioxidants and mild mitochondrial depolarization propensity.

  14. SNAP-25 in hippocampal CA3 region is required for long-term memory formation

    International Nuclear Information System (INIS)

    Hou Qiuling; Gao Xiang; Lu Qi; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming

    2006-01-01

    SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involved in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation

  15. Modulators of cytoskeletal reorganization in CA1 hippocampal neurons show increased expression in patients at mid-stage Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Patricia F Kao

    2010-10-01

    Full Text Available During the progression of Alzheimer's disease (AD, hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF receptor tyrosine kinase B (TrkB, mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.

  16. Stimulation of estradiol biosynthesis by tributyltin in rat hippocampal slices.

    Science.gov (United States)

    Munetsuna, Eiji; Hattori, Minoru; Yamazaki, Takeshi

    2014-01-01

    Hippocampal functions are influenced by steroid hormones, such as testosterone and estradiol. It has been demonstrated that hippocampus-derived steroid hormones play important roles in neuronal protection and synapse formation. Our research groups have demonstrated that estradiol is de novo synthesized in the rat hippocampus. However, the mechanism(s) regulating this synthesis remains unclear. It has been reported that tributyltin, an environmental pollutant, binds to the retinoid X receptor (RXR) and modifies estrogen synthesis in human granulosa-like tumor cells. This compound can penetrate the blood brain barrier, and tends to accumulate in the brain. Based on these facts, we hypothesized that tributyltin could influence the hippocampal estradiol synthesis. A concentration of 0.1 μM tributyltin induced an increase in the mRNA content of P450(17α) and P450arom in hippocampal slices, as determined using real-time PCR. The transcript levels of other steroidogenic enzymes and a steroidogenic acute regulatory protein were not affected. The estradiol level in rat hippocampal slices was subsequently determined using a radioimmunoassay. We found that the estradiol synthesis was stimulated by ∼2-fold following a 48-h treatment with 0.1 μM tributyltin, and this was accompanied by transcriptional activation of P450(17α) and P450arom. Tributyltin stimulated de novo hippocampal estradiol synthesis by modifying the transcription of specific steroidogenic enzymes.

  17. Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats.

    Science.gov (United States)

    Li, Xiaoliang; Sun, Wei; An, Lei

    2018-06-01

    Manufactured metal nanoparticles and their applications are continuously expanding because of their unique characteristics while their increasing use may predispose to potential health problems. Several studies have reported the adverse effects of copper oxide nanoparticles (nano-CuO) relative to ecotoxicity and cell toxicity, whereas little is known about the neurotoxicity of nano-CuO. The present study aimed to examine its effects on spatial cognition, hippocampal function, and the possible mechanisms. Male Wistar rats were used to establish an animal model, and nano-CuO was administered at a dose of 0.5 mg/kg/day for 2 weeks. The Morris water maze (MWM) test was employed to evaluate learning and memory. The long-term potentiation (LTP) from Schaffer collaterals to the hippocampal CA1 region, and the effects of nano-CuO on synases were recorded in the hippocampal CA1 neurons of rats. MWM test showed that learning and memory abilities were impaired significantly by nano-CuO ( p nano-CuO-treated groups compared with the control group ( p nano-CuO markedly depressed the frequencies of both spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs), indicating an effect of nano-CuO on inhibiting the release frequency of glutamate presynapticly ( p nano-CuO-treated animals, which suggested that the effect of nano-CuO modulates postsynaptic receptor kinetics ( p nano-CuO impaired glutamate transmission presynapticly and postsynapticly, which may contribute importantly to diminished LTP and other induced cognitive deficits.

  18. 4-containing GABA receptors at the hippocampal CA1 spines is a biomarker for resilience to food restriction-evoked excessive exercise and weight loss of adolescent female rats

    Science.gov (United States)

    Aoki, Chiye; Wable, Gauri; Chowdhury, Tara G.; Sabaliauskas, Nicole A.; Laurino, Kevin; Barbarich-Marsteller, Nicole C.

    2014-01-01

    Anorexia nervosa (AN) is a psychiatric illness characterized by restricted eating and an intense fear of gaining weight. Most individuals with AN are females, diagnosed first during adolescence, 40% to 80% of whom exhibit excessive exercise, and an equally high number with a history of anxiety disorder. We sought to determine the cellular basis for individual differences in AN vulnerability by using an animal model, activity-based anorexia (ABA), that is induced by combining food restriction (FR) with access to a running wheel that allows voluntary exercise. Previously, we showed that by the 4th day of FR, the ABA group of adolescent female rats exhibit > 500% greater levels of non-synaptic α4βδ−GABAARs at the plasma membrane of hippocampal CA1 pyramidal cell spines, relative to the levels found in age-matched controls that are not FR and without wheel access. Here, we show that the ABA group exhibits individual differences in body weight loss, with some losing nearly 30%, while others lose only 15%. The individual differences in weight loss are ascribable to individual differences in wheel activity that both precedes and concurs with days of FR. Moreover, the increase in activity during FR correlates strongly and negatively with α4βδ−GABAAR levels (R= - 0.9, p<0.01). This negative correlation is evident within 2 days of FR, before body weight loss approaches life-threatening levels for any individual. These findings suggest that increased shunting inhibition by α4βδ−GABAARs in spines of CA1 pyramidal neurons may participate in the protection against the ABA-inducing environmental factors of severe weight loss by suppressing excitability of the CA1 pyramidal neurons which, in turn, is related indirectly to suppression of excessive exercise. The data also indicate that, although exercise has many health benefits, it can be maladaptive to individuals with low levels of α4βδ−GABAARs in the CA1, particularly when combined with FR. PMID:24444828

  19. Alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats.

    Science.gov (United States)

    Sun, Hongli; Su, Qian; Zhang, Huifang; Liu, Weimin; Zhang, Huiping; Ding, Ding; Zhu, Zhongliang; Li, Hui

    2015-06-01

    To clarify the alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats. We investigated the impact of prenatal restraint stress on the hipocampal cell proliferation in the progeny with 5-bromo-2'-deoxyuridine (BrdU), which is a marker of proliferating cells and their progeny. In addition, we observed the differentiation of neural stem cells (NSCs) with double labeling of BrdU/neurofilament (NF), BrdU/glial fibrillary acidic protein (GFAP) in the hipocampus. Prenatal stress (PS) increased cell proliferation in the dentate gyrus (DG) only in female and neuron differentiation of newly divided cells in the DG and CA4 in both male and female. Moreover, the NF and GFAP-positive cells, but not the BrdU-positive cells, BrdU/NF and BrdU/GFAP-positive cells, were found frequently in the CA3 and CA1 in the offspring of each group. These results possibly suggest a compensatory adaptive response to neuronal damage or loss in hippocampus induced by PS. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  1. Multiple target of hAmylin on rat primary hippocampal neurons.

    Science.gov (United States)

    Zhang, Nan; Yang, Shengchang; Wang, Chang; Zhang, Jianghua; Huo, Lifang; Cheng, Yiru; Wang, Chuan; Jia, Zhanfeng; Ren, Leiming; Kang, Lin; Zhang, Wei

    2017-02-01

    Alzheimer's disease (AD) and type II diabetes mellitus (DM2) are the most common aging-related diseases and are characterized by β-amyloid and amylin accumulation, respectively. Multiple studies have indicated a strong correlation between these two diseases. Amylin oligomerization in the brain appears to be a novel risk factor for developing AD. Although amylin aggregation has been demonstrated to induce cytotoxicity in neurons through altering Ca 2+ homeostasis, the underlying mechanisms have not been fully explored. In this study, we investigated the effects of amylin on rat hippocampal neurons using calcium imaging and whole-cell patch clamp recordings. We demonstrated that the amylin receptor antagonist AC187 abolished the Ca 2+ response induced by low concentrations of human amylin (hAmylin). However, the Ca 2+ response induced by higher concentrations of hAmylin was independent of the amylin receptor. This effect was dependent on extracellular Ca 2+ . Additionally, blockade of L-type Ca 2+ channels partially reduced hAmylin-induced Ca 2+ response. In whole-cell recordings, hAmylin depolarized the membrane potential. Moreover, application of the transient receptor potential (TRP) channel antagonist ruthenium red (RR) attenuated the hAmylin-induced increase in Ca 2+ . Single-cell RT-PCR demonstrated that transient receptor potential vanilloid 4 (TRPV4) mRNA was expressed in most of the hAmylin-responsive neurons. In addition, selective knockdown of TRPV4 channels inhibited the hAmylin-evoked Ca 2+ response. These results indicated that different concentrations of hAmylin act through different pathways. The amylin receptor mediates the excitatory effects of low concentrations of hAmylin. In contrast, for high concentrations of hAmylin, hAmylin aggregates precipitated on the neuronal membrane, activated TRPV4 channels and subsequently triggered membrane voltage-gated calcium channel opening followed by membrane depolarization. Therefore, our data suggest that

  2. A comparative study on the effect of high cholesterol diet on the hippocampal CA1 area of adult and aged rats.

    Science.gov (United States)

    Abo El-Khair, Doaa M; El-Safti, Fatma El-Nabawia A; Nooh, Hanaa Z; El-Mehi, Abeer E

    2014-06-01

    Dementia is one of the most important problems nowadays. Aging is associated with learning and memory impairments. Diet rich in cholesterol has been shown to be detrimental to cognitive performance. This work was carried out to compare the effect of high cholesterol diet on the hippocampus of adult and aged male albino rats. Twenty adult and twenty aged male rats were used in this study. According to age, the rats were randomly subdivided into balanced and high cholesterol diet fed groups. The diet was 15 g/rat/day for adult rats and 20 g/rat/day for aged rats for eight weeks. Serial coronal sections of hippocampus and blood samples were taken from each rat. For diet effect evaluation, Clinical, biochemical, histological, immunohistochemical, and morphometric assessments were done. In compare to a balanced diet fed rat, examination of Cornu Ammonis 1 (CA 1) area in the hippocampus of the high cholesterol diet adult rats showed degeneration, a significant decrease of the pyramidal cells, attenuation and/or thickening of small blood vessels, apparent increase of astrocytes and apparent decrease of Nissl's granules content. Moreover, the high cholesterol diet aged rats showed aggravation of senility changes of the hippocampus together with Alzheimer like pathological changes. In conclusion, the high cholesterol diet has a significant detrimental effect on the hippocampus and aging might pronounce this effect. So, we should direct our attention to limit cholesterol intake in our food to maintain a healthy life style for a successful aging.

  3. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death.

    Science.gov (United States)

    Calderone, Agata; Jover, Teresa; Mashiko, Toshihiro; Noh, Kyung-min; Tanaka, Hidenobu; Bennett, Michael V L; Zukin, R Suzanne

    2004-11-03

    Transient global ischemia induces a delayed rise in intracellular Zn2+, which may be mediated via glutamate receptor 2 (GluR2)-lacking AMPA receptors (AMPARs), and selective, delayed death of hippocampal CA1 neurons. The molecular mechanisms underlying Zn2+ toxicity in vivo are not well delineated. Here we show the striking finding that intraventricular injection of the high-affinity Zn2+ chelator calcium EDTA (CaEDTA) at 30 min before ischemia (early CaEDTA) or at 48-60 hr (late CaEDTA), but not 3-6 hr, after ischemia, afforded robust protection of CA1 neurons in approximately 50% (late CaEDTA) to 75% (early CaEDTA) of animals. We also show that Zn2+ acts via temporally distinct mechanisms to promote neuronal death. Early CaEDTA attenuated ischemia-induced GluR2 mRNA and protein downregulation (and, by inference, formation of Zn2+-permeable AMPARs), the delayed rise in Zn2+, and neuronal death. These findings suggest that Zn2+ acts at step(s) upstream from GluR2 gene downregulation and implicate Zn2+ in transcriptional regulation and/or GluR2 mRNA stability. Early CaEDTA also blocked mitochondrial release of cytochrome c and Smac/DIABLO (second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein-binding protein with low pI), caspase-3 activity (but not procaspase-3 cleavage), p75NTR induction, and DNA fragmentation. These findings indicate that CaEDTA preserves the functional integrity of the mitochondrial outer membrane and arrests the caspase death cascade. Late injection of CaEDTA at a time when GluR2 is downregulated and caspase is activated inhibited the delayed rise in Zn2+, p75NTR induction, DNA fragmentation, and cell death. The finding of neuroprotection by late CaEDTA administration has striking implications for intervention in the delayed neuronal death associated with global ischemia.

  4. The biochemical changes in hippocampal formation occurring in normal and seizure experiencing rats as a result of a ketogenic diet.

    Science.gov (United States)

    Chwiej, Joanna; Skoczen, Agnieszka; Janeczko, Krzysztof; Kutorasinska, Justyna; Matusiak, Katarzyna; Figiel, Henryk; Dumas, Paul; Sandt, Christophe; Setkowicz, Zuzanna

    2015-04-07

    In this study, ketogenic diet-induced biochemical changes occurring in normal and epileptic hippocampal formations were compared. Four groups of rats were analyzed, namely seizure experiencing animals and normal rats previously fed with ketogenic (KSE and K groups respectively) or standard laboratory diet (NSE and N groups respectively). Synchrotron radiation based Fourier-transform infrared microspectroscopy was used for the analysis of distributions of the main organic components (proteins, lipids, compounds containing phosphate group(s)) and their structural modifications as well as anomalies in creatine accumulation with micrometer spatial resolution. Infrared spectra recorded in the molecular layers of the dentate gyrus (DG) areas of normal rats on a ketogenic diet (K) presented increased intensity of the 1740 cm(-1) absorption band. This originates from the stretching vibrations of carbonyl groups and probably reflects increased accumulation of ketone bodies occurring in animals on a high fat diet compared to those fed with a standard laboratory diet (N). The comparison of K and N groups showed, moreover, elevated ratios of absorbance at 1634 and 1658 cm(-1) for DG internal layers and increased accumulation of creatine deposits in sector 3 of the Ammon's horn (CA3) hippocampal area of ketogenic diet fed rats. In multiform and internal layers of CA3, seizure experiencing animals on ketogenic diet (KSE) presented a lower ratio of absorbance at 1634 and 1658 cm(-1) compared to rats on standard laboratory diet (NSE). Moreover, in some of the examined cellular layers, the increased intensity of the 2924 cm(-1) lipid band as well as the massifs of 2800-3000 cm(-1) and 1360-1480 cm(-1), was found in KSE compared to NSE animals. The intensity of the 1740 cm(-1) band was diminished in DG molecular layers of KSE rats. The ketogenic diet did not modify the seizure induced anomalies in the unsaturation level of lipids or the number of creatine deposits.

  5. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  6. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    Science.gov (United States)

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  7. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

    Directory of Open Access Journals (Sweden)

    Jena B. Hales

    2015-01-01

    Full Text Available Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP. However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF. In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion.

  8. Damage of hippocampal neurons in rats with chronic alcoholism.

    Science.gov (United States)

    Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling

    2014-09-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons in rats with chronic alcoholism appeared to have a fuzzy nuclear membrane, mitochondrial edema, and ruptured mitochondrial crista. These findings suggest that chronic alcoholism can cause learning and memory decline in rats, which may be associated with the hydrogen sulfide/cystathionine-beta-synthase system, mitochondrial damage and reduced expression of F-actin.

  9. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    Science.gov (United States)

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  10. Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC, postnatal maternal deprivation (MD or the combination of the two (NIC+MD to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14 pups, MD increased pyramidal neurons, however, in dentate gyrus (DG, decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.

  11. Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons.

    Science.gov (United States)

    Guzowski, John F; Miyashita, Teiko; Chawla, Monica K; Sanderson, Jennifer; Maes, Levi I; Houston, Frank P; Lipa, Peter; McNaughton, Bruce L; Worley, Paul F; Barnes, Carol A

    2006-01-24

    The ability of neurons to alter their transcriptional programs in response to synaptic input is of fundamental importance to the neuroplastic mechanisms underlying learning and memory. Because of technical limitations of conventional gene detection methods, the current view of activity-dependent neural transcription derives from experiments in which neurons are assumed quiescent until a signaling stimulus is given. The present study was designed to move beyond this static model by examining how earlier episodes of neural activity influence transcription of the immediate-early gene Arc. Using a sensitive FISH method that detects primary transcript at genomic alleles, the proportion of hippocampal CA1 neurons that activate transcription of Arc RNA was constant at approximately 40% in response to both a single novel exploration session and daily sessions repeated over 9 days. This proportion is similar to the percentage of active neurons defined electrophysiologically. However, this close correspondence was disrupted in rats exposed briefly, but repeatedly, to the same environment within a single day. Arc transcription in CA1 neurons declined dramatically after as few as four 5-min sessions, despite stable electrophysiological activity during all sessions. Additional experiments indicate that the decrement in Arc transcription occurred at the cellular, rather than synaptic level, and was not simply linked to habituation to novelty. Thus, the neural genomic response is governed by recent, but not remote, cell firing history in the behaving animal. This state-dependence of neuronal transcriptional coupling provides a mechanism of metaplasticity and may regulate capacity for synaptic modification in neural networks.

  12. Regulation of hippocampal synaptic plasticity thresholds and changes in exploratory and learning behavior in dominant negative NPR-B mutant rats

    Directory of Open Access Journals (Sweden)

    Gleb eBarmashenko

    2014-12-01

    Full Text Available The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B and its ligand C-type natriuretic peptide (CNP, one of several cGMP producing signalling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP. We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BdeltaKC lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BdeltaKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1-100 Hz was assessed in transgenic rats the threshold for LTP induction was raised, but LTD induction was facilitated. In parallel, NPR-BdeltaKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signalling has a modulatory role for synaptic information storage and learning.

  13. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    International Nuclear Information System (INIS)

    Chen, Shang-Der; Lin, Tsu-Kung; Yang, Ding-I.; Lee, Su-Ying; Shaw, Fu-Zen; Liou, Chia-Wei; Chuang, Yao-Chung

    2015-01-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield

  14. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shang-Der, E-mail: chensd@adm.cgmh.org.tw [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Lin, Tsu-Kung [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Yang, Ding-I. [Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan (China); Lee, Su-Ying [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Shaw, Fu-Zen [Department of Psychology, National Cheng Kung University, Tainan, Taiwan (China); Liou, Chia-Wei [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Chuang, Yao-Chung, E-mail: ycchuang@adm.cgmh.org.tw [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China)

    2015-05-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield.

  15. Chronic Loss of CA2 Transmission Leads to Hippocampal Hyperexcitability.

    Science.gov (United States)

    Boehringer, Roman; Polygalov, Denis; Huang, Arthur J Y; Middleton, Steven J; Robert, Vincent; Wintzer, Marie E; Piskorowski, Rebecca A; Chevaleyre, Vivien; McHugh, Thomas J

    2017-05-03

    Hippocampal CA2 pyramidal cells project into both the neighboring CA1 and CA3 subfields, leaving them well positioned to influence network physiology and information processing for memory and space. While recent work has suggested unique roles for CA2, including encoding position during immobility and generating ripple oscillations, an interventional examination of the integrative functions of these connections has yet to be reported. Here we demonstrate that CA2 recruits feedforward inhibition in CA3 and that chronic genetically engineered shutdown of CA2-pyramidal-cell synaptic transmission consequently results in increased excitability of the recurrent CA3 network. In behaving mice, this led to spatially triggered episodes of network-wide hyperexcitability during exploration accompanied by the emergence of high-frequency discharges during rest. These findings reveal CA2 as a regulator of network processing in hippocampus and suggest that CA2-mediated inhibition in CA3 plays a key role in establishing the dynamic excitatory and inhibitory balance required for proper network function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The effect of PTZ-induced epileptic seizures on hippocampal expression of PSA-NCAM in offspring born to kindled rats

    Directory of Open Access Journals (Sweden)

    Rajabzadeh Aliakbar

    2012-05-01

    Full Text Available Abstract Background Maternal epileptic seizures during pregnancy can affect the hippocampal neurons in the offspring. The polysialylated neural cell adhesion molecule (PSA-NCAM, which is expressed in the developing central nervous system, may play important roles in neuronal migration, synaptogenesis, and axonal outgrowth. This study was designed to assess the effects of kindling either with or without maternal seizures on hippocampal PSA-NCAM expression in rat offspring. Methods Forty timed-pregnant Wistar rats were divided into four groups: A Kind+/Seiz+, pregnant kindled (induced two weeks prior to pregnancy rats that received repeated intraperitoneal (i.p. pentylenetetrazol, PTZ injections on gestational days (GD 14-19; B Kind-/Seiz+, pregnant non-kindled rats that received PTZ injections on GD14-GD19; C Kind+/Seiz-, pregnant kindled rats that did not receive any PTZ injections; and D Kind-/Seiz-, the sham controls. Following birth, the pups were sacrificed on PD1 and PD14, and PSA-NCAM expression and localization in neonates’ hippocampi were analyzed by Western blots and immunohistochemistry. Results Our data show a significant down regulation of hippocampal PSA-NCAM expression in the offspring of Kind+/Seiz+ (p = 0.001 and Kind-/Seiz+ (p = 0.001 groups compared to the sham control group. The PSA-NCAM immunoreactivity was markedly decreased in all parts of the hippocampus, especially in the CA3 region, in Kind+/Seiz+ (p = 0.007 and Kind-/Seiz+ (p = 0.007 group’s newborns on both PD1 and 14. Conclusion Our findings demonstrate that maternal seizures but not kindling influence the expression of PSA-NCAM in the offspring’s hippocampi, which may be considered as a factor for learning/memory and cognitive impairments reported in children born to epileptic mothers.

  17. Juvenile Hippocampal CA2 Region Expresses Aggrecan

    Directory of Open Access Journals (Sweden)

    Asako Noguchi

    2017-05-01

    Full Text Available Perineuronal nets (PNNs are distributed primarily around inhibitory interneurons in the hippocampus, such as parvalbumin-positive interneurons. PNNs are also present around excitatory neurons in some brain regions and prevent plasticity in these neurons. A recent study demonstrated that PNNs also exist around mouse hippocampal pyramidal cells, which are the principle type of excitatory neurons, in the CA2 subregion and modulate the excitability and plasticity of these neurons. However, the development of PNNs in the CA2 region during postnatal maturation was not fully investigated. This study found that a main component of PNNs, aggrecan, existed in the pyramidal cell layer of the putative CA2 subarea prior to the appearance of the CA2 region, which was defined by the CA2 marker protein regulator of G protein signaling 14 (RGS14. We also found that aggrecan immunoreactivity was more evident in the anterior sections of the CA2 area than the posterior sections, which suggests that the function of CA2 PNNs varies along the anterior-posterior axis.

  18. [Effects of bushen jiannao recipe on the content of acetylcholine and the hippocampal ERK1 and ERK2 protein expressions of vascular dementia rats].

    Science.gov (United States)

    Liu, Yong-Hui; Li, Shao-Wei; Zheng, Qing-Lian

    2012-04-01

    To explore the effects of Bushen Jiannao Recipe (BJR) on the content of acetylcholine (Ach) and ERK1 and ERK2 protein expressions in the hippocampal CA1 region of vascular dementia (VD) rats, and to explore its possible mechanisms for treating VD. Eighty-three rats were selected. The VD model was established by permanent bilateral occlusion of both common carotid arteries (2-VO). Then the modeled rats were randomly divided into 5 groups, i. e., the memory deficit model group, the donepezil group, and the positive drug control groups [including high (n = 13), middle (n = 13), and low (n = 12) dose BJR group]. Besides, another 13 rats were chosen as the sham-operative group. The distilled water was given by gastrogavage to rats in the sham-operative group and the memory deficit model group (5 mL/kg). The donepezil hydrochloride suspension was given to rats in the donepezil group by gastrogavage (0.52 mg/kg). High (56 g/kg), middle (28 g/kg), and low (14 g/kg) dose of BJR were respectively given to rats in the other three groups. After 30 days of intervention, the escape latency period and platform crossing times were determined using Morris water maze experiment. The contents of Ach in the hippocampus and cortex were determined using colorimetry. The expressions of ERK1 and ERK2 in the CA1 region of the hippocampus were detected using immunohistochemical assay. The average escape latency of intervened rats showed an overall decreasing trend. From the third to the fifth day, the escape latency period was prolonged, the platform crossing times were reduced, the contents of Ach in the cortex and the hippocampus were lowered, the numbers of positive stained neuron of ERK1 and ERK2 in the hippocampus CA1 region were reduced, showing statistical difference when compared with the sham-operative group (P<0.01). Compared with the model group, the 4th day escape latency of the donepezil group and the high dose BJR group was shortened. The escape latency was shortened, and the

  19. Hypertension impairs hippocampus-related adult neurogenesis, CA1 neuron dendritic arborization and long-term memory.

    Science.gov (United States)

    Shih, Y-H; Tsai, S-F; Huang, S-H; Chiang, Y-T; Hughes, M W; Wu, S-Y; Lee, C-W; Yang, T-T; Kuo, Y-M

    2016-05-13

    Hypertension is associated with neurodegenerative diseases and cognitive impairment. Several studies using spontaneous hypertensive rats to study the effect of hypertension on memory performance and adult hippocampal neurogenesis have reached inconsistent conclusions. The contradictory findings may be related to the genetic variability of spontaneous hypertensive rats due to the conventional breeding practices. The objective of this study is to examine the effect of hypertension on hippocampal structure and function in isogenic mice. Hypertension was induced by the '2 kidneys, 1 clip' method (2K1C) which constricted one of the two renal arteries. The blood pressures of 2K1C mice were higher than the sham group on post-operation day 7 and remained high up to day 28. Mice with 2K1C-induced hypertension had impaired long-term, but not short-term, memory. Dendritic complexity of CA1 neurons and hippocampal neurogenesis were reduced by 2K1C-induced hypertension on post-operation day 28. Furthermore, 2K1C decreased the levels of hippocampal brain-derived neurotrophic factor, while blood vessel density and activation status of astrocytes and microglia were not affected. In conclusion, hypertension impairs hippocampus-associated long-term memory, dendritic arborization and neurogenesis, which may be caused by down-regulation of brain-derived neurotrophic factor signaling pathways. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Fluoxetine Dose and Administration Method Differentially Affect Hippocampal Plasticity in Adult Female Rats

    Science.gov (United States)

    Pawluski, Jodi L.; van Donkelaar, Eva; Abrams, Zipporah; Steinbusch, Harry W. M.; Charlier, Thierry D.

    2014-01-01

    Selective serotonin reuptake inhibitor medications are one of the most common treatments for mood disorders. In humans, these medications are taken orally, usually once per day. Unfortunately, administration of antidepressant medications in rodent models is often through injection, oral gavage, or minipump implant, all relatively stressful procedures. The aim of the present study was to investigate how administration of the commonly used SSRI, fluoxetine, via a wafer cookie, compares to fluoxetine administration using an osmotic minipump, with regards to serum drug levels and hippocampal plasticity. For this experiment, adult female Sprague-Dawley rats were divided over the two administration methods: (1) cookie and (2) osmotic minipump and three fluoxetine treatment doses: 0, 5, or 10 mg/kg/day. Results show that a fluoxetine dose of 5 mg/kg/day, but not 10 mg/kg/day, results in comparable serum levels of fluoxetine and its active metabolite norfluoxetine between the two administration methods. Furthermore, minipump administration of fluoxetine resulted in higher levels of cell proliferation in the granule cell layer (GCL) at a 5 mg dose compared to a 10 mg dose. Synaptophysin expression in the GCL, but not CA3, was significantly lower after fluoxetine treatment, regardless of administration method. These data suggest that the administration method and dose of fluoxetine can differentially affect hippocampal plasticity in the adult female rat. PMID:24757568

  1. Fluoxetine Dose and Administration Method Differentially Affect Hippocampal Plasticity in Adult Female Rats

    Directory of Open Access Journals (Sweden)

    Jodi L. Pawluski

    2014-01-01

    Full Text Available Selective serotonin reuptake inhibitor medications are one of the most common treatments for mood disorders. In humans, these medications are taken orally, usually once per day. Unfortunately, administration of antidepressant medications in rodent models is often through injection, oral gavage, or minipump implant, all relatively stressful procedures. The aim of the present study was to investigate how administration of the commonly used SSRI, fluoxetine, via a wafer cookie, compares to fluoxetine administration using an osmotic minipump, with regards to serum drug levels and hippocampal plasticity. For this experiment, adult female Sprague-Dawley rats were divided over the two administration methods: (1 cookie and (2 osmotic minipump and three fluoxetine treatment doses: 0, 5, or 10 mg/kg/day. Results show that a fluoxetine dose of 5 mg/kg/day, but not 10 mg/kg/day, results in comparable serum levels of fluoxetine and its active metabolite norfluoxetine between the two administration methods. Furthermore, minipump administration of fluoxetine resulted in higher levels of cell proliferation in the granule cell layer (GCL at a 5 mg dose compared to a 10 mg dose. Synaptophysin expression in the GCL, but not CA3, was significantly lower after fluoxetine treatment, regardless of administration method. These data suggest that the administration method and dose of fluoxetine can differentially affect hippocampal plasticity in the adult female rat.

  2. Electroacupuncture Ameliorates Cognitive Deficit and Improves Hippocampal Synaptic Plasticity in Adult Rat with Neonatal Maternal Separation

    Directory of Open Access Journals (Sweden)

    Lili Guo

    2018-01-01

    Full Text Available Exposure to adverse early-life events is thought to be the risk factors for the development of psychiatric and altered cognitive function in adulthood. The purpose of this study was to investigate whether electroacupuncture (EA treatment in young adult rat would improve impaired cognitive function and synaptic plasticity in adult rat with neonatal maternal separation (MS. Wistar rats were randomly divided into four groups: control group, MS group, MS with EA treatment (MS + EA group, and MS with Sham-EA treatment (MS + Sham-EA group. We evaluated the cognitive function by using Morris water maze and fear conditioning tests. Electrophysiology experiment used in vivo long-term potentiation (LTP at Schaffer Collateral-CA1 synapses was detected to assess extent of synaptic plasticity. Repeated EA stimulation at Baihui (GV 20 and Yintang (GV 29 during postnatal 9 to 11 weeks was identified to significantly ameliorate poor performance in behavior tests and improve the impaired LTP induction detected at Schaffer Collateral-CA1 synapse in hippocampus. Collectively, the findings suggested that early-life stress due to MS may induce adult cognitive deficit associated with hippocampus, and EA in young adult demonstrated that its therapeutic efficacy may be via ameliorating deficit of hippocampal synaptic plasticity.

  3. Antagonism of brain insulin-like growth factor-1 receptors blocks estradiol effects on memory and levels of hippocampal synaptic proteins in ovariectomized rats

    Science.gov (United States)

    Nelson, Britta S.; Springer, Rachel C.; Daniel, Jill M.

    2013-01-01

    Rationale Treatment with estradiol, the primary estrogen produced by the ovaries, enhances hippocampus-dependent spatial memory and increases levels of hippocampal synaptic proteins in ovariectomized rats. Increasing evidence indicates that the ability of estradiol to impact the brain and behavior is dependent upon its interaction with insulin-like growth factor-1 (IGF-1). Objectives The goal of the current experiment was to test the hypothesis that the ability of estradiol to impact hippocampus-dependent memory and levels of hippocampal synaptic proteins is dependent on its interaction with IGF-1. Methods Adult rats were ovariectomized and implanted with estradiol or control capsules and trained on a radial-maze spatial memory task. After training, rats were implanted with intracerebroventricular cannulae attached to osmotic minipumps (flow rate 0.15 μl/hr). Half of each hormone treatment group received continuous delivery of JB1 (300 μg/ml), an IGF-1 receptor antagonist, and half received delivery of aCSF vehicle. Rats were tested on trials in the radial-arm maze during which delays were imposed between the 4th and 5th arm choices. Hippocampal levels of synaptic proteins were measured by western blotting. Results Estradiol treatment resulted in significantly enhanced memory. JB1 blocked that enhancement. Estradiol treatment resulted in significantly increased hippocampal levels of postsynaptic density protein 95 (PSD-95), spinophilin, and synaptophysin. JB1 blocked the estradiol-induced increase of PSD-95 and spinophilin and attenuated the increase of synaptophysin. Conclusions Results support a role for IGF-1 receptor activity in estradiol-induced enhancement of spatial memory that may be dependent on changes in synapse structure in the hippocampus brought upon by estradiol/IGF-1 interactions. PMID:24146138

  4. Biphasic somatic A-type K channel downregulation mediates intrinsic plasticity in hippocampal CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Sung-Cherl Jung

    2009-08-01

    Full Text Available Since its original description, the induction of synaptic long-term potentiation (LTP has been known to be accompanied by a lasting increase in the intrinsic excitability (intrinsic plasticity of hippocampal neurons. Recent evidence shows that dendritic excitability can be enhanced by an activity-dependent decrease in the activity of A-type K(+ channels. In the present manuscript, we examined the role of A-type K(+ channels in regulating intrinsic excitability of CA1 pyramidal neurons of the hippocampus after synapse-specific LTP induction. In electrophysiological recordings we found that LTP induced a potentiation of excitability which was accompanied by a two-phased change in A-type K(+ channel activity recorded in nucleated patches from organotypic slices of rat hippocampus. Induction of LTP resulted in an immediate but short lasting hyperpolarization of the voltage-dependence of steady-state A-type K(+ channel inactivation along with a progressive, long-lasting decrease in peak A-current density. Blocking clathrin-mediated endocytosis prevented the A-current decrease and most measures of intrinsic plasticity. These results suggest that two temporally distinct but overlapping mechanisms of A-channel downregulation together contribute to the plasticity of intrinsic excitability. Finally we show that intrinsic plasticity resulted in a global enhancement of EPSP-spike coupling.

  5. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer's disease rats

    Science.gov (United States)

    Li, Wei; Kong, Li-hong; Wang, Hui; Shen, Feng; Wang, Ya-wen; Zhou, Hua; Sun, Guo-jie

    2016-01-01

    The frequency range of electroacupuncture in treatment of Alzheimer's disease in rats is commonly 2–5 Hz (low frequency) and 50–100 Hz (high frequency). We established a rat model of Alzheimer's disease by injecting β-amyloid 1–42 (Aβ1–42) into the bilateral hippocampal dentate gyrus to verify which frequency may be better suited in treatment. Electroacupuncture at 2 Hz or 50 Hz was used to stimulate Baihui (DU20) and Shenshu (BL23) acupoints. The water maze test and electrophysiological studies demonstrated that spatial memory ability was apparently improved, and the ranges of long-term potentiation and long-term depression were increased in Alzheimer's disease rats after electroacupuncture treatment. Moreover, the effects of electroacupuncture at 50 Hz were better than that at 2 Hz. These findings suggest that high-frequency electroacupuncture may enhance hippocampal synaptic transmission and potentially improve memory disorders in Alzheimer's disease rats. PMID:27335565

  6. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats

    International Nuclear Information System (INIS)

    Zhe, Du; Fang, Han; Yuxiu, Shi

    2008-01-01

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experience. Single-prolonged stress (SPS) is one of the animal models proposed for PTSD. Rats exposed to SPS showed enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, which has been reliably reproduced in patients with PTSD. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus regulate HPA axis by glucocorticoid negative feedback. Abnormalities in negative feedback are found in PTSD, suggesting that GR and MR might be involved in the pathophysiology of these disorders. In the present study, we performed immunohistochemistry and western blotting to examine the changes in hippocampal MR- and GR-expression after SPS. Immunohistochemistry revealed decreased MR- and GR-immunoreactivity (ir) in the CA1 of hippocampus in SPS animals. Change in GR sub-distribution was also observed, where GR-ir was shifted from nucleus to cytoplasm in SPS rats. Western blotting showed that SPS induced significantly decreased MR- and GR-protein in the whole hippocampus, although the degree of decreased expression of both receptors was different. Meanwhile, we also found the MR/GR ratio decreased in SPS rats. In general, SPS induced down-regulation of MR- and GR-expression. These findings suggest that MR and GR play critical roles in affecting hippocampal function. Changes in MR/GR ratio may be relevant for behavioral syndrome in PTSD

  7. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Timo Ruusuvirta

    Full Text Available Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN of event-related potentials (ERPs reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant was interspersed with a repeated tone (standard. Two standard-to-standard (SSI and standard-to-deviant (SDI intervals (200 ms vs. 500 ms were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses. Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical manifestation of MMN.

  8. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  9. Acute alterations of somatodendritic action potential dynamics in hippocampal CA1 pyramidal cells after kainate-induced status epilepticus in mice.

    Directory of Open Access Journals (Sweden)

    Daniel Minge

    Full Text Available Pathophysiological remodeling processes at an early stage of an acquired epilepsy are critical but not well understood. Therefore, we examined acute changes in action potential (AP dynamics immediately following status epilepticus (SE in mice. SE was induced by intraperitoneal (i.p. injection of kainate, and behavioral manifestation of SE was monitored for 3-4 h. After this time interval CA1 pyramidal cells were studied ex vivo with whole-cell current-clamp and Ca(2+ imaging techniques in a hippocampal slice preparation. Following acute SE both resting potential and firing threshold were modestly depolarized (2-5 mV. No changes were seen in input resistance or membrane time constant, but AP latency was prolonged and AP upstroke velocity reduced following acute SE. All cells showed an increase in AP halfwidth and regular (rather than burst firing, and in a fraction of cells the notch, typically preceding spike afterdepolarization (ADP, was absent following acute SE. Notably, the typical attenuation of backpropagating action potential (b-AP-induced Ca(2+ signals along the apical dendrite was strengthened following acute SE. The effects of acute SE on the retrograde spread of excitation were mimicked by applying the Kv4 current potentiating drug NS5806. Our data unveil a reduced somatodendritic excitability in hippocampal CA1 pyramidal cells immediately after acute SE with a possible involvement of both Na(+ and K(+ current components.

  10. Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy

    Science.gov (United States)

    Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that

  11. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    International Nuclear Information System (INIS)

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E.

    1989-01-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage

  12. Low-Dose Sevoflurane Promotes Hippocampal Neurogenesis and Facilitates the Development of Dentate Gyrus-Dependent Learning in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Chong Chen

    2015-04-01

    Full Text Available Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8% sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4–6 were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks.

  13. Nitrous Oxide Induces Prominent Cell Proliferation in Adult Rat Hippocampal Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Farah Chamaa

    2018-05-01

    Full Text Available The identification of distinct and more efficacious antidepressant treatments is highly needed. Nitrous oxide (N2O is an N-methyl-D-aspartic acid (NMDA antagonist that has been reported to exhibit antidepressant effects in treatment-resistant depression (TRD patients. Yet, no studies have investigated the effects of sub-anesthetic dosages of N2O on hippocampal cell proliferation and neurogenesis in adult brain rats. In our study, adult male Sprague-Dawley rats were exposed to single or multiple exposures to mixtures of 70% N2O and 30% oxygen (O2. Sham groups were exposed to 30% O2 and the control groups to atmospheric air. Hippocampal cell proliferation was assessed by bromodeoxyuridine (BrdU incorporation, and BrdU-positive cells were counted in the dentate gyrus (DG using confocal microscopy. Results showed that while the rates of hippocampal cell proliferation were comparable between the N2O and sham groups at day 1, levels increased by 1.4 folds at day 7 after one session exposure to N2O. Multiple N2O exposures significantly increased the rate of hippocampal cell proliferation to two folds. Therefore, sub-anesthetic doses of N2O, similar to ketamine, increase hippocampal cell proliferation, suggesting that there will ultimately be an increase in neurogenesis. Future studies should investigate added N2O exposures and their antidepressant behavioral correlates.

  14. A weak magnetic field inhibits hippocampal neurogenesis in SD rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Pan, Y.

    2017-12-01

    Geomagnetic field is an important barrier that protects life forms on Earth from solar wind and radiation. Paleomagnetic data have well demonstrated that the strength of ancient geomagnetic field was dramatically weakened during a polarity transition. Accumulating evidence has shown that weak magnetic field exposures has serious adverse effects on the metabolism and behaviors in organisms. Hippocampal neurogenesis occurs throughout life in mammals' brains which plays a key role in brain function, and can be influenced by animals' age as well as environmental factors, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we have investigated the weak magnetic field effects on hippocampal neurogenesis of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, a weak magnetic field (≤1.3 μT) and the geomagnetic fields (51 μT).The latter is treated as a control condition. SD rats were exposure to the weak magnetic field up to 6 weeks. We measured the changes of newborn nerve cells' proliferation and survival, immature neurons, neurons and apoptosis in the dentate gyrus (DG) of hippocampus in SD rats. Results showed that, the weak magnetic field (≤1.3 μT) inhibited their neural stem cells proliferation and significantly reduced the survival of newborn nerve cells, immature neurons and neurons after 2 or 4 weeks continuous treatment (i.e. exposure to weak magnetic field). Moreover, apoptosis tests indicated the weak magnetic field can promote apoptosis of nerve cells in the hippocampus after 4 weeks treatment. Together, our new data indicate that weak magnetic field decrease adult hippocampal neurogenesis through inhibiting neural stem cells proliferation and promoting apoptosis, which provides useful experimental constraints on better understanding the mechanism of linkage between life and geomagnetic field.

  15. Progressive Decline in Hippocampal CA1 Volume in Individuals at Ultra-High-Risk for Psychosis Who Do Not Remit: Findings from the Longitudinal Youth at Risk Study.

    Science.gov (United States)

    Ho, New Fei; Holt, Daphne J; Cheung, Mike; Iglesias, Juan Eugenio; Goh, Alex; Wang, Mingyuan; Lim, Joseph Kw; de Souza, Joshua; Poh, Joann S; See, Yuen Mei; Adcock, Alison R; Wood, Stephen J; Chee, Michael Wl; Lee, Jimmy; Zhou, Juan

    2017-05-01

    Most individuals identified as ultra-high-risk (UHR) for psychosis do not develop frank psychosis. They continue to exhibit subthreshold symptoms, or go on to fully remit. Prior work has shown that the volume of CA1, a subfield of the hippocampus, is selectively reduced in the early stages of schizophrenia. Here we aimed to determine whether patterns of volume change of CA1 are different in UHR individuals who do or do not achieve symptomatic remission. Structural MRI scans were acquired at baseline and at 1-2 follow-up time points (at 12-month intervals) from 147 UHR and healthy control subjects. An automated method (based on an ex vivo atlas of ultra-high-resolution hippocampal tissue) was used to delineate the hippocampal subfields. Over time, a greater decline in bilateral CA1 subfield volumes was found in the subgroup of UHR subjects whose subthreshold symptoms persisted (n=40) and also those who developed clinical psychosis (n=12), compared with UHR subjects who remitted (n=41) and healthy controls (n=54). No baseline differences in volumes of the overall hippocampus or its subfields were found among the groups. Moreover, the rate of volume decline of CA1, but not of other hippocampal subfields, in the non-remitters was associated with increasing symptom severity over time. Thus, these findings indicate that there is deterioration of CA1 volume in persistently symptomatic UHR individuals in proportion to symptomatic progression.

  16. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    Science.gov (United States)

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  17. Activation of the canonical nuclear factor-κB pathway is involved in isoflurane-induced hippocampal interleukin-1β elevation and the resultant cognitive deficits in aged rats

    International Nuclear Information System (INIS)

    Li, Zheng-Qian; Rong, Xiao-Ying; Liu, Ya-Jie; Ni, Cheng; Tian, Xiao-Sheng; Mo, Na; Chui, De-Hua; Guo, Xiang-Yang

    2013-01-01

    Highlights: •Isoflurane induces hippocampal IL-1β elevation and cognitive deficits in aged rats. •Isoflurane transiently activates the canonical NF-κB pathway in aged rat hippocampus. •NF-κB inhibitor mitigates isoflurane-induced IL-1β elevation and cognitive deficits. •We report a linkage between NF-κB signaling, IL-1β expression, and cognitive changes. -- Abstract: Although much recent evidence has demonstrated that neuroinflammation contributes to volatile anesthetic-induced cognitive deficits, there are few existing mechanistic explanations for this inflammatory process. This study was conducted to investigate the effects of the volatile anesthetic isoflurane on canonical nuclear factor (NF)-κB signaling, and to explore its association with hippocampal interleukin (IL)-1β levels and anesthetic-related cognitive changes in aged rats. After a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increases in IκB kinase and IκB phosphorylation, as well as a reduction in the NF-κB inhibitory protein (IκBα), were observed in the hippocampi of isoflurane-exposed rats compared with control rats. These events were accompanied by an increase in NF-κB p65 nuclear translocation at 6 h after isoflurane exposure and hippocampal IL-1β elevation from 1 to 6 h after isoflurane exposure. Nevertheless, no significant neuroglia activation was observed. Pharmacological inhibition of NF-κB activation by pyrrolidine dithiocarbamate markedly suppressed the IL-1β increase and NF-κB signaling, and also mitigated the severity of cognitive deficits in the Morris water maze task. Overall, our results demonstrate that isoflurane-induced cognitive deficits may stem from upregulation of hippocampal IL-1β, partially via activation of the canonical NF-κB pathway, in aged rats

  18. Vorinostat ameliorates impaired fear extinction possibly via the hippocampal NMDA-CaMKII pathway in an animal model of posttraumatic stress disorder.

    Science.gov (United States)

    Matsumoto, Yasutaka; Morinobu, Shigeru; Yamamoto, Shigeto; Matsumoto, Tomoya; Takei, Shiro; Fujita, Yosuke; Yamawaki, Shigeto

    2013-09-01

    Given that impairment of fear extinction plays a pivotal role in the pathophysiology of posttraumatic stress disorder (PTSD), drugs that facilitate fear extinction may be useful as novel treatments for PTSD. Histone deacetylase (HDAC) inhibitors have recently been shown to enhance fear extinction in animal studies. Using a single prolonged stress (SPS) paradigm, an animal model of PTSD, we examined whether the HDAC inhibitor vorinostat can facilitate fear extinction in rats, and elucidated the mechanism by which vorinostat enhanced fear extinction, focusing on the N-methyl-D-aspartate (NMDA) receptor signals in the hippocampus. Seven days after SPS, rats received contextual fear conditioning, followed by 2-day extinction training. Vorinostat was intraperitoneally injected immediately after second extinction training session. Contextual fear response was assessed 24 h after vorinostat injection. Hippocampal tissues were dissected 2 h after vorinostat injection. The levels of mRNA and protein tested were measured by RT-PCR or western blotting, respectively. Systemic administration of vorinostat with extinction training significantly enhanced fear extinction in SPS rats as compared with the controls. Furthermore, vorinostat enhanced the hippocampal levels of NR2B and calcium/calmodulin kinase II (CaMKII) α and β proteins, accompanied by increases in the levels of acetylated histone H3 and H4. These findings suggest that vorinostat ameliorated the impaired fear extinction in SPS rats, and this effect was associated with an increase in histone acetylation and thereby enhancement of NR2B and CaMKII in the hippocampus. Our results may provide new insight into the molecular and therapeutic mechanisms of PTSD.

  19. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    International Nuclear Information System (INIS)

    Krueger, Katharina; Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-01-01

    In this study, the effects of pentavalent dimethylarsinic acid ((CH 3 ) 2 AsO(OH); DMA V ) and trivalent dimethylarsinous acid ((CH 3 ) 2 As(OH); DMA III ) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 μmol/l. DMA V had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA III significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 μmol/l DMA III in adult and 10 μmol/l DMA III in young rats. Moreover, DMA III significantly affected the LTP-induction. Application of 10 μmol/l DMA III resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA III . In slices of young rats, the depressant effects of DMA III were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA V on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential

  20. IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function.

    Science.gov (United States)

    Pardo, Joaquín; Abba, Martin C; Lacunza, Ezequiel; Ogundele, Olalekan M; Paiva, Isabel; Morel, Gustavo R; Outeiro, Tiago F; Goya, Rodolfo G

    2018-03-14

    In rats, learning and memory performance decline during normal aging, which makes this rodent species a suitable model to evaluate therapeutic strategies. In aging rats, insulin-like growth factor-I (IGF-I), is known to significantly improve spatial memory accuracy as compared to control counterparts. A constellation of gene expression changes underlie the hippocampal phenotype of aging but no studies on the effects of IGF-I on the hippocampal transcriptome of old rodents have been documented. Here, we assessed the effects of IGF-I gene therapy on spatial memory performance in old female rats and compared them with changes in the hippocampal transcriptome. In the Barnes maze test, experimental rats showed a significantly higher exploratory frequency of the goal hole than controls. Hippocampal RNA-sequencing showed that 219 genes are differentially expressed in 28-month-old rats intracerebroventricularly injected with an adenovector expressing rat IGF-I as compared with placebo adenovector-injected counterparts. From the differentially expressed genes, 81 were down and 138 upregulated. From those genes, a list of functionally relevant genes, concerning hippocampal IGF-I expression, synaptic plasticity as well as neuronal function was identified. Our results provide an initial glimpse at the molecular mechanisms underlying the neuroprotective actions of IGF-I in the aging brain.

  1. Characterization of stress-induced suppression of long-term potentiation in the hippocampal CA1 field of freely moving rats.

    Science.gov (United States)

    Hirata, Riki; Togashi, Hiroko; Matsumoto, Machiko; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro

    2008-08-21

    Several lines of evidence have shown that exposure to stress impairs long-term potentiation (LTP) in the CA1 field of the hippocampus, but the detailed mechanisms for this effect remain to be clarified. The present study elucidated the synaptic mechanism of stress-induced LTP suppression in conscious, freely moving rats using electrophysiological approaches. Open field stress (i.e., novel environment stress) and elevated platform stress (i.e., uncontrollable stress) were employed. Basal synaptic transmission was significantly reduced during exposure to elevated platform stress but not during exposure to open field stress. LTP induction was blocked by elevated platform stress but not influenced by open field stress. Significant increases in serum corticosterone levels were observed in the elevated platform stress group compared with the open field stress group. Furthermore, LTP suppression induced by elevated platform stress was prevented by pretreatment with an anxiolytic drug diazepam (1 mg/kg, i.p.). These results suggest that stress-induced LTP suppression depends on the relative intensity of the stressor. The inhibitory synaptic response induced by an intense psychological stress, such as elevated platform stress, may be attributable to LTP impairment in the CA1 field of the hippocampus.

  2. Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas.

    Science.gov (United States)

    Hsiao, Chun-Jen; Lin, Ching-Lung; Lin, Tian-Yu; Wang, Sheue-Er; Wu, Chung-Hsin

    2016-04-13

    It has been reported that the decimation of honey bees was because of pesticides of imidacloprid. The imidacloprid is a wildly used neonicotinoid insecticide. However, whether imidacloprid toxicity interferes with the spatial memory of echolocation bats is still unclear. Thus, we compared the spatial memory of Formosan leaf-nosed bats, Hipposideros terasensis, before and after chronic treatment with a low dose of imidacloprid. We observed that stereotyped flight patterns of echolocation bats that received chronic imidacloprid treatment were quite different from their originally learned paths. We further found that neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas of echolocation bats that received imidacloprid treatment was significantly enhanced in comparison with echolocation bats that received sham treatment. Thus, we suggest that imidacloprid toxicity may interfere with the spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. The results provide direct evidence that pesticide toxicity causes a spatial memory disorder in echolocation bats. This implies that agricultural pesticides may pose severe threats to the survival of echolocation bats.

  3. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats.

    Science.gov (United States)

    Sadeghi, Malihe; Reisi, Parham; Radahmadi, Maryam

    2017-12-01

    Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S) was injected (1.6 µg/kg, IP) before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long-term potentiation (LTP) in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization) in order to investigate synaptic plasticity. Stress impaired spatial memory significantly ( P stress group. With respect to the control group, both fEPSP amplitude and slope were significantly ( P stress group. However, there were no differences between responses of the control-CCK and Stress-CCK groups compared to the control group. The present results suggest that high levels of CCK-8S during induction of stress can modulate the destructive effects of stress on hippocampal synaptic plasticity and memory. Therefore, the mediatory effects of CCK in stress are likely as compensatory responses.

  4. Modulation of local field potentials by high-frequency stimulation of afferent axons in the hippocampal CA1 region.

    Science.gov (United States)

    Yu, Ying; Feng, Zhouyan; Cao, Jiayue; Guo, Zheshan; Wang, Zhaoxiang; Hu, Na; Wei, Xuefeng

    2016-03-01

    Modulation of the rhythmic activity of local field potentials (LFP) in neuronal networks could be a mechanism of deep brain stimulation (DBS). However, exact changes of LFP during the periods of high-frequency stimulation (HFS) of DBS are unclear because of the interference of dense stimulation artifacts with high amplitudes. In the present study, we investigated LFP changes induced by HFS of afferent axons in the hippocampal CA1 region of urethane-anesthetized rats by using a proper algorithm of artifact removal. Afterward, the LFP changes in the frequency bands of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] rhythms were studied by power spectrum analysis and coherence analysis for the recorded signals collected in the pyramidal layer and in the stratum radiatum of CA1 region before, during and after 1-min long 100 and 200[Formula: see text]Hz HFS. Results showed that the power of LFP rhythms in higher-frequency band ([Formula: see text] rhythm) increased in the pyramidal layer and the power of LFP rhythms in lower-frequency bands ([Formula: see text], [Formula: see text] and [Formula: see text] rhythms) decreased in the stratum radiatum during HFS. The synchronization of [Formula: see text] rhythm decreased and the synchronization of [Formula: see text] rhythm increased during HFS in the stratum radiatum. These results suggest that axonal HFS could modulate LFP rhythms in the downstream brain areas with a plausible underlying mechanism of partial axonal blockage induced by HFS. The study provides new evidence to support the mechanism of DBS modulating rhythmic activity of neuronal populations.

  5. Data on pharmacological applications and hypothermia protection against in vitro oxygen-glucose-deprivation-related neurodegeneration of adult rat CA1 region

    Directory of Open Access Journals (Sweden)

    Pınar Öz

    2017-02-01

    Here, the use CA1sp width measurements on Nissl-stained hippocampal slices is introduced as a valid and affordable method for detecting the level of neurodegeneration and neuroprotection on hippocampal slices. The protective effect of hypothermia was found to be more pronounced compared to other agents.

  6. The 'disector' a tool for quantitative assessment of synaptic plasticity an example on hippocampal synapses and synapse-perforations in ageing rats

    NARCIS (Netherlands)

    Groot, D.M.G. de; Bierman, E.P.B.; Bruijnzeel, P.L.B.; Woutersen, R.A.

    1995-01-01

    The 'disector' method was used to estimate number and size of simple non-perforated and complex 'perforated' synapses and their 'perforations' in the hippocampal CA3 area of 3, 12, 24 and 30 months old rats. A decrease with age from 3 to 24 months of age in the number of non-perforated synapses per

  7. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide

    Science.gov (United States)

    Scullion, Sarah; Brown, Jon T.; Randall, Andrew D.

    2015-01-01

    ABSTRACT Accumulation of beta‐amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ‐overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2–5 h treatment with an oligomeric preparation of synthetic human Aβ 1–42 peptide. Whole cell current clamp recordings were compared between Aβ‐(500 nM) and vehicle‐(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub‐threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated “sag”. Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra‐threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after‐hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:25515596

  8. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons.

    Science.gov (United States)

    Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z

    2008-08-13

    Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.

  9. Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation.

    Science.gov (United States)

    Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Karun, Kalesh M; Nayak, Satheesha B; Bhat, P Gopalakrishna

    2015-10-01

    The effects of chronic and repeated radiofrequency electromagnetic radiation (RFEMR) exposure on spatial cognition and hippocampal architecture were investigated in prepubescent rats. Four weeks old male Wistar rats were exposed to RF-EMR (900 MHz; SAR-1.15 W/kg with peak power density of 146.60 μW/cm(2)) for 1 h/day, for 28 days. Followed by this, spatial cognition was evaluated by Morris water maze test. To evaluate the hippocampal morphology; H&E staining, cresyl violet staining, and Golgi-Cox staining were performed on hippocampal sections. CA3 pyramidal neuron morphology and surviving neuron count (in CA3 region) were studied using H&E and cresyl violet stained sections. Dendritic arborization pattern of CA3 pyramidal neuron was investigated by concentric circle method. Progressive learning abilities were found to be decreased in RF-EMR exposed rats. Memory retention test performed 24 h after the last training revealed minor spatial memory deficit in RF-EMR exposed group. However, RF-EMR exposed rats exhibited poor spatial memory retention when tested 48 h after the final trial. Hirano bodies and Granulovacuolar bodies were absent in the CA3 pyramidal neurons of different groups studied. Nevertheless, RF-EMR exposure affected the viable cell count in dorsal hippocampal CA3 region. RF-EMR exposure influenced dendritic arborization pattern of both apical and basal dendritic trees in RF-EMR exposed rats. Structural changes found in the hippocampus of RF-EMR exposed rats could be one of the possible reasons for altered cognition.

  10. Low-dose sevoflurane promotes hippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats.

    Science.gov (United States)

    Chen, Chong; Shen, Feng-Yan; Zhao, Xuan; Zhou, Tao; Xu, Dao-Jie; Wang, Zhi-Ru; Wang, Ying-Wei

    2015-01-01

    Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4-6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks. © The Author(s) 2015.

  11. Bursting response to current-evoked depolarization in rat CA1 pyramidal neurons is correlated with lucifer yellow dye coupling but not with the presence of calbindin-D28k

    International Nuclear Information System (INIS)

    Baimbridge, K.G.; Peet, M.J.; McLennan, H.; Church, J.

    1991-01-01

    Calbindin-D28k (CaBP) immunohistochemistry has been combined with electrophysiological recording and Lucifer Yellow (LY) cell identification in the CA1 region of the rat hippocampal formation. CaBP is shown to be contained within a distinct sub-population of CA1 pyramidal cells which is equivalent to the superficial layer described by Lorente de No (1934). The neurogenesis of these CaBP-positive neurons occurs 1-2 days later than the CaBP-negative neurons in the deep pyramidal cell layer, as shown by 3H-thymidine autoradiography. No correlation could be found between the presence or absence of CaBP and the type of electrophysiological response to current-evoked depolarizing pulses. The latter could be separated into bursting or non-bursting types, and the bursting-type response was nearly always found to be associated with the presence of LY dye coupling. Furthermore, when dye coupling involved three neurons, a characteristic pattern was observed which may represent the coupling of phenotypically identical neurons into distinct functional units within the CA1 pyramidal cell layer. In this particular case the three neurons were all likely to be CaBP-positive

  12. 1,25(OH)2D3 and Ca-binding protein in fetal rats: Relationship to the maternal vitamin D status

    International Nuclear Information System (INIS)

    Verhaeghe, J.; Thomasset, M.; Brehier, A.; Van Assche, F.A.; Bouillon, R.

    1988-01-01

    The autonomy and functional role of fetal 1,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ] were investigated in nondiabetic and diabetic BB rats fed diets containing 0.85% calcium-0.7% phosphorus or 0.2% calcium and phosphorus and in semistarved rats on the low calcium-phosphorus diet. The changes in maternal and fetal plasma 1,25(OH) 2 D 3 were similar: the levels were increased by calcium-phosphorus restriction and decreased by diabetes and semistarvation. Maternal and fetal 1,25(OH) 2 D 3 levels were correlated. The vitamin D-dependent calcium-binding proteins (CaBP 9K and CaBP 28K ) were measured in multiple maternal and fetal tissues and in the placenta of nondiabetic, diabetic, and calcium-phosphorus-restricted rats. The distributions of CaBP 9K and CaBP 28K in the pregnant rat were similar to that of the growing rat. The increased maternal plasma 1,25(OH) 2 D 3 levels in calcium-phosphorus-restricted rats were associated with higher duodenal CaBP 9K and renal CaBPs, but placental CaBP 9K was not different. In diabetic pregnant rats, duodenal CaBP 9K was not different. In diabetic pregnant rats, duodenal CaBP 9K tended to be lower, while renal CaBPs were normal; placental CaBP 9K was decreased. The results indicate that in the rat fetal 1,25(OH) 2 D 3 depends on maternal 1,25(OH) 2 D 3 or on factors regulating maternal 1,25(OH) 2 D 3 . The lack of changes in fetal CaBP in the presence of altered fetal plasma 1,25(OH) 2 D 3 levels confirms earlier data showing that 1,25(H) 2 D 3 has a limited hormonal function during perinatal development in the rat

  13. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells.

    Science.gov (United States)

    Villanueva-Castillo, Cindy; Tecuatl, Carolina; Herrera-López, Gabriel; Galván, Emilio J

    2017-01-01

    The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Hippocampal Administration of Levothyroxine Impairs Contextual Fear Memory Consolidation in Rats.

    Science.gov (United States)

    Yu, Dafu; Zhou, Heng; Zou, Lin; Jiang, Yong; Wu, Xiaoqun; Jiang, Lizhu; Zhou, Qixin; Yang, Yuexiong; Xu, Lin; Mao, Rongrong

    2017-01-01

    Thyroid hormone (TH) receptors are highly distributed in the hippocampus, which plays a vital role in memory processes. However, how THs are involved in the different stages of memory process is little known. Herein, we used hippocampus dependent contextual fear conditioning to address the effects of hippocampal THs on the different stages of fear memory. First, we found that a single systemic levothyroxine (LT 4 ) administration increased the level of free triiodothyronine (FT 3 ) and free tetraiodothyroxine (FT 4 ) not only in serum but also in hippocampus. In addition, a single systemic LT 4 administration immediately after fear conditioning significantly impaired fear memory. These results indicated the important role of hippocampal THs in fear memory process. To further confirm the effects of hippocampal THs on the different stages of fear memory, LT 4 (0.4 μg/μl, 1 μl/side) was injected bilaterally into hippocampus. Rats given LT 4 into hippocampus before training or tests had no effect on the acquisition or retrieval of fear memory, however rats given LT 4 into hippocampus either immediately or 2 h after training showed being significantly impaired fear memory, which demonstrated LT 4 administration into hippocampus impairs the consolidation but has no effect on the acquisition and retrieval of fear memory. Furthermore, hippocampal injection of LT 4 did not affect rats' locomotor activity, thigmotaxis and THs level in prefrontal cortex (PFC) and serum. These findings may have important implications for understanding mechanisms underlying contribution of THs to memory disorders.

  15. Changes in the content of fatty acids in CA1 and CA3 areas of the hippocampus of Krushinsky-Molodkina rats after single and fivefold audiogenic seizures.

    Science.gov (United States)

    Savina, Tatyana; Aripovsky, Alexander; Kulagina, Tatyana

    2017-09-01

    Audiogenic seizures (AS) are generalized seizures evoked by high frequency sounds. Since the hippocampus is involved in the generation and maintenance of seizures, the effect of AS on the composition and content of fatty acids in the CA1 and CA3 hippocampal areas of AS-susceptible Krushinsky-Molodkina (KM) rats on days 1, 3, and 14 after single and fivefold seizures were examined. The total content of all fatty acids in field СА1 was found to be lower compared with the control at all times of observation after both a single seizure or fivefold seizures. The total content of fatty acids in field СА3 decreased at all times of examination after a single seizure, whereas it remained unchanged on days 3 and 14 following five AS. The content of omega-3 fatty acids in both fields at all times of observation after a single seizure and fivefold AS did not significantly differ from that in intact animals. The absence of significant changes in the content of stearic and α-linolenic acids and a considerable decrease in the levels of palmitic, oleic, and eicosapentaenoic acids were common to both fields at all times after both a single seizure or fivefold AS. The changes in the content of fatty acids in the СА3 and СА1 fields of the brain of AS-susceptible rats indicate that fatty acids are involved in both the development of seizure activity and neuroprotective anticonvulsive processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis

    OpenAIRE

    Miller, T; Chong, T; Aimola Davies, A; Ng, T; Johnson, M; Irani, S; Vincent, A; Husain, M; Jacob, S; Maddison, P; Kennard, C; Gowland, P; Rosenthal, C

    2017-01-01

    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0....

  17. PCB 136 Atropselectively Alters Morphometric and Functional Parameters of Neuronal Connectivity in Cultured Rat Hippocampal Neurons via Ryanodine Receptor-Dependent Mechanisms

    Science.gov (United States)

    Yang, Dongren; Kania-Korwel, Izabela; Ghogha, Atefeh; Chen, Hao; Stamou, Marianna; Bose, Diptiman D.; Pessah, Isaac N.; Lehmler, Hans-Joachim; Lein, Pamela J.

    2014-01-01

    We recently demonstrated that polychlorinated biphenyl (PCB) congeners with multiple ortho chlorine substitutions sensitize ryanodine receptors (RyRs), and this activity promotes Ca2+-dependent dendritic growth in cultured neurons. Many ortho-substituted congeners display axial chirality, and we previously reported that the chiral congener PCB 136 (2,2′,3,3′,6,6′-hexachlorobiphenyl) atropselectively sensitizes RyRs. Here, we test the hypothesis that PCB 136 atropisomers differentially alter dendritic growth and other parameters of neuronal connectivity influenced by RyR activity. (−)-PCB 136, which potently sensitizes RyRs, enhances dendritic growth in primary cultures of rat hippocampal neurons, whereas (+)-PCB 136, which lacks RyR activity, has no effect on dendritic growth. The dendrite-promoting activity of (−)-PCB 136 is observed at concentrations ranging from 0.1 to 100nM and is blocked by pharmacologic RyR antagonism. Neither atropisomer alters axonal growth or cell viability. Quantification of PCB 136 atropisomers in hippocampal cultures indicates that atropselective effects on dendritic growth are not due to differential partitioning of atropisomers into cultured cells. Imaging of hippocampal neurons loaded with Ca2+-sensitive dye demonstrates that (−)-PCB 136 but not (+)-PCB 136 increases the frequency of spontaneous Ca2+ oscillations. Similarly, (−)-PCB 136 but not (+)-PCB 136 increases the activity of hippocampal neurons plated on microelectrode arrays. These data support the hypothesis that atropselective effects on RyR activity translate into atropselective effects of PCB 136 atropisomers on neuronal connectivity, and suggest that the variable atropisomeric enrichment of chiral PCBs observed in the human population may be a significant determinant of individual susceptibility for adverse neurodevelopmental outcomes following PCB exposure. PMID:24385416

  18. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson's disease rat.

    Science.gov (United States)

    Yang, Jiaqing; Song, Shilei; Li, Jian; Liang, Tao

    2014-06-01

    Clinically, Parkinson's disease (PD)-related neuronal lesions commonly occur. The purpose of this study is to investigate potential therapeutic effect of curcumin against hippocampal damage of 6-hydroxydopamine (6-OHDA)-PD rat model. These results showed that curcumin significantly increased the body weight of 6-OHDA-impaired rats (Pcurcumin-treated PD rats were effectively ameliorated as shown in open field test (Pcurcumin increased the contents of monoaminergic neurotransmitters (PCurcumin effectively alleviated the 6-OHDA-induced hippocampal damage as observed in hematoxylin-eosin (H&E) staining. Furthermore, curcumin obviously up-regulated hippocampal brain derived neurotrophic factor (BDNF), TrkB, phosphatidylinositide 3-kinases (PI3K) protein expressions, respectively as shown in Western blot analysis. These findings demonstrated that curcumin mediated the neuroprotection against 6-OHDA-induced hippocampus neurons in rats, which the underlying mechanism is involved in activating BDNF/TrkB-dependent pathway for promoting neural regeneration of hippocampal tissue. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes.

    Science.gov (United States)

    Shima, Takeru; Matsui, Takashi; Jesmin, Subrina; Okamoto, Masahiro; Soya, Mariko; Inoue, Koshiro; Liu, Yu-Fan; Torres-Aleman, Ignacio; McEwen, Bruce S; Soya, Hideaki

    2017-03-01

    Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.

  20. Long-Term Stimulation with Electroacupuncture at DU20 and ST36 Rescues Hippocampal Neuron through Attenuating Cerebral Blood Flow in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Gui-Hua Tian

    2013-01-01

    Full Text Available This study was designed to investigate the effect of long-term electroacupuncture at Baihui (DU20 and Zusanli (ST36 on cerebral microvessels and neurons in CA1 region of hippocampus in spontaneously hypertensive rats (SHR. A total of 45 male Wistar rats and 45 SHR were randomly grouped, with or without electroacupuncture (EA at DU20 and ST36, once every other day for a period of 8 weeks. The mean arterial pressure (MAP was measured once every 2 weeks. Cerebral blood flow (CBF and the number of open microvessels in hippocampal CA1 region were detected by Laser Doppler and immunohistochemistry, respectively. Nissl staining and Western blotting were performed, respectively, to determine hippocampus morphology and proteins that were implicated in the concerning signaling pathways. The results showed that the MAP in SHR increased linearly over the observation period and was significantly reduced following electroacupuncture as compared with sham control SHR rats, while no difference was observed in Wistar rats between EA and sham control. The CBF, learning and memory capacity, and capillary rarefaction of SHR were improved by EA. The upregulation of angiotensin II type I receptor (AT1R, endothelin receptor (ETAR, and endothelin-1 (ET-1 in SHR rats was attenuated by electroacupuncture, suggesting an implication of AT1R, ETAR, and ET-1 pathway in the effect of EA.

  1. Neurogenic function in rats with unilateral hippocampal sclerosis that experienced early-life status epilepticus

    Science.gov (United States)

    Dunleavy, Mark; Schindler, Clara K; Shinoda, Sachiko; Crilly, Shane; Henshall, David C

    2014-01-01

    Status epilepticus in the adult brain invariably causes an increase in hippocampal neurogenesis and the appearance of ectopic cells and this has been implicated as a causal factor in epileptogenesis. The effect of status epilepticus on neurogenesis in the developing brain is less well characterized and models of early-life seizures typically do not reproduce the hippocampal damage common to human mesial temporal sclerosis. We recently reported that evoking status epilepticus by intra-amygdala microinjection of kainic acid in post-natal (P) day 10 rats caused substantial acute neuronal death within the ipsilateral hippocampus and rats later developed unilateral hippocampal sclerosis and spontaneous recurrent seizures. Here, we examined the expression of a selection of genes associated with neurogenesis and assessed neurogenic function in this model. Protein levels of several markers of neurogenesis including polysialic acid neural cell adhesion molecule, neuroD and doublecortin were reduced in the hippocampus three days after status epilepticus in P10 rats. In contrast, protein levels of neurogenesis markers were similar to control in rats at P55. Pulse-chase experiments using thymidine analogues suggested there was a reduction in new neurons at 72 h after status epilepticus in P10 rats, whereas numbers of new neurons labelled in epileptic rats at P55 with hippocampal sclerosis were similar to controls. The present study suggests that status epilepticus in the immature brain suppresses neurogenesis but the neurogenic potential is retained in animals that later develop hippocampal sclerosis. PMID:25755841

  2. Enhancement of information transmission with stochastic resonance in hippocampal CA1 neuron models: effects of noise input location.

    Science.gov (United States)

    Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M

    2007-01-01

    Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal CA1 neuron model. In the computer simulation, random sub-threshold spike trains (signal) generated by a filtered homogeneous Poisson process were presented repeatedly to the middle point of the main apical branch, while the homogeneous Poisson shot noise (background noise) was applied to a location of the dendrite in the hippocampal CA1 model consisting of the soma with a sodium, a calcium, and five potassium channels. The location of the background noise input was varied along the dendrites to investigate the effects of background noise input location on information transmission. The computer simulation results show that the information rate reached a maximum value for an optimal amplitude of the background noise amplitude. It is also shown that this optimal amplitude of the background noise is independent of the distance between the soma and the noise input location. The results also show that the location of the background noise input does not significantly affect the maximum values of the information rates generated by stochastic resonance.

  3. Both oophorectomy and obesity impaired solely hippocampal-dependent memory via increased hippocampal dysfunction.

    Science.gov (United States)

    Mantor, Duangkamol; Pratchayasakul, Wasana; Minta, Wanitchaya; Sutham, Wissuta; Palee, Siripong; Sripetchwandee, Jirapas; Kerdphoo, Sasiwan; Jaiwongkum, Thidarat; Sriwichaiin, Sirawit; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-04-17

    Our previous study demonstrated that obesity aggravated peripheral insulin resistance and brain dysfunction in the ovariectomized condition. Conversely, the effect of obesity followed by oophorectomy on brain oxidative stress, brain apoptosis, synaptic function and cognitive function, particularly in hippocampal-dependent and hippocampal-independent memory, has not been investigated. Our hypothesis was that oophorectomy aggravated metabolic impairment, brain dysfunction and cognitive impairment in obese rats. Thirty-two female rats were fed with either a normal diet (ND, n = 16) or a high-fat diet (HFD, n = 16) for a total of 20 weeks. At week 13, rats in each group were subdivided into sham and ovariectomized subgroups (n = 8/subgroup). At week 20, all rats were tested for hippocampal-dependent and hippocampal-independent memory by using Morris water maze test (MWM) and Novel objective recognition (NOR) tests, respectively. We found that the obese-insulin resistant condition occurred in sham-HFD-fed rats (HFS), ovariectomized-ND-fed rats (NDO), and ovariectomized-HFD-fed rats (HFO). Increased hippocampal oxidative stress level, increased hippocampal apoptosis, increased hippocampal synaptic dysfunction, decreased hippocampal estrogen level and impaired hippocampal-dependent memory were observed in HFS, NDO, and HFO rats. However, the hippocampal-independent memory, cortical estrogen levels, cortical ROS production, and cortical apoptosis showed no significant difference between groups. These findings suggested that oophorectomy and obesity exclusively impaired hippocampal-dependent memory, possibly via increased hippocampal dysfunction. Nonetheless, oophorectomy did not aggravate these deleterious effects under conditions of obesity. Copyright © 2017. Published by Elsevier Inc.

  4. High-density expression of Ca2+-permeable ASIC1a channels in NG2 glia of rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Yen-Chu Lin

    Full Text Available NG2 cells, a fourth type of glial cell in the mammalian CNS, undergo reactive changes in response to a wide variety of brain insults. Recent studies have demonstrated that neuronally expressed acid-sensing ion channels (ASICs are implicated in various neurological disorders including brain ischemia and seizures. Acidosis is a common feature of acute neurological conditions. It is postulated that a drop in pH may be the link between the pathological process and activation of NG2 cells. Such postulate immediately prompts the following questions: Do NG2 cells express ASICs? If so, what are their functional properties and subunit composition? Here, using a combination of electrophysiology, Ca2+ imaging and immunocytochemistry, we present evidence to demonstrate that NG2 cells of the rat hippocampus express high density of Ca2+-permeable ASIC1a channels compared with several types of hippocampal neurons. First, nucleated patch recordings from NG2 cells revealed high density of proton-activated currents. The magnitude of proton-activated current was pH dependent, with a pH for half-maximal activation of 6.3. Second, the current-voltage relationship showed a reversal close to the equilibrium potential for Na+. Third, psalmotoxin 1, a blocker specific for the ASIC1a channel, largely inhibited proton-activated currents. Fourth, Ca2+ imaging showed that activation of proton-activated channels led to an increase of [Ca2+]i. Finally, immunocytochemistry showed co-localization of ASIC1a and NG2 proteins in the hippocampus. Thus the acid chemosensor, the ASIC1a channel, may serve for inducing membrane depolarization and Ca2+ influx, thereby playing a crucial role in the NG2 cell response to injury following ischemia.

  5. Estradiol attenuates ischemia-induced death of hippocampal neurons and enhances synaptic transmission in aged, long-term hormone-deprived female rats.

    Directory of Open Access Journals (Sweden)

    Tomoko Inagaki

    Full Text Available Transient global forebrain ischemia causes selective, delayed death of hippocampal CA1 pyramidal neurons, and the ovarian hormone 17β-estradiol (E2 reduces neuronal loss in young and middle-aged females. The neuroprotective efficacy of E2 after a prolonged period of hormone deprivation is controversial, and few studies examine this issue in aged animals given E2 treatment after induction of ischemia.The present study investigated the neuroprotective effects of E2 administered immediately after global ischemia in aged female rats (15-18 months after 6 months of hormone deprivation. We also used electrophysiological methods to assess whether CA1 synapses in the aging hippocampus remain responsive to E2 after prolonged hormone withdrawal. Animals were ovariohysterectomized and underwent 10 min global ischemia 6 months later. A single dose of E2 (2.25 µg infused intraventricularly after reperfusion significantly increased cell survival, with 45% of CA1 neurons surviving vs 15% in controls. Ischemia also induced moderate loss of CA3/CA4 pyramidal cells. Bath application of 1 nM E2 onto brain slices derived from non-ischemic aged females after 6 months of hormone withdrawal significantly enhanced excitatory transmission at CA1 synapses evoked by Schaffer collateral stimulation, and normal long-term potentiation (LTP was induced. The magnitude of LTP and of E2 enhancement of field excitatory postsynaptic potentials was indistinguishable from that recorded in slices from young rats.The data demonstrate that 1 acute post-ischemic infusion of E2 into the brain ventricles is neuroprotective in aged rats after 6 months of hormone deprivation; and 2 E2 enhances synaptic transmission in CA1 pyramidal neurons of aged long-term hormone deprived females. These findings provide evidence that the aging hippocampus remains responsive to E2 administered either in vivo or in vitro even after prolonged periods of hormone withdrawal.

  6. Ovariectomy increases the age-induced hyperphosphorylation of Tau at hippocampal CA1.

    Science.gov (United States)

    Picazo, O; Espinosa-Raya, J; Briones-Aranda, A; Cerbón, M

    2016-11-01

    One of the main hallmarks of Alzheimer's disease includes the neurofibrillary tangles formation produced by hyperphosphorylation of the Tau protein, whose expression is putatively regulated by the ovarian hormones estradiol and progesterone. Hippocampus is a brain region that participates in many functions related to learning and memory; in addition, it is abundant in both estradiol and progesterone receptors. In this study, we explore the expression of Tau hyperphosphorylation at hippocampus and the performance of rats in an autoshaping learning task at 5, 10 and 15 months after the ovaries removal. In these animals, ovariectomy was performed at 3 months of age. These data were compared with those derived from intact rats at 8, 13 and 18 months old. A clear decrease in the number of conditioned responses of both intact and ovariectomized rats in the autoshaping learning task was observed. The interaction of both factors confirms that, in this test, learning varies depending on aging and the presence or absence of ovaries. A progressive increase in hippocampal Tau phosphorylation at Ser-396 was observed in either intact or ovariectomized rats. Interestingly, an interaction between the analyzed factors shows that such hyperphosphorylation was potentiated by the absence of ovaries. These results emphasize the importance of aging and the lack of ovarian hormones for an associative learning test and for the expression of one of the most important hallmarks of Alzheimer's disease.

  7. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Chun-Sing Lam

    Full Text Available Chronic intermittent hypoxia (CIH is a hallmark of obstructive sleep apnea (OSA, which induces hippocampal injuries mediated by oxidative stress. This study aims to examine the neuroprotective mechanism of Lycium barbarum polysaccharides (LBP against CIH-induced spatial memory deficits. Adult Sprague-Dawley rats were exposed to hypoxic treatment resembling a severe OSA condition for a week. The animals were orally fed with LBP solution (1 mg/kg daily 2 hours prior to hypoxia or in air for the control. The effect of LBP on the spatial memory and levels of oxidative stress, inflammation, endoplasmic reticulum (ER stress, apoptosis and neurogenesis in the hippocampus was examined. There was a significant deficit in the spatial memory and an elevated level of malondialdehyde with a decreased expression of antioxidant enzymes (SOD, GPx-1 in the hypoxic group when compared with the normoxic control. In addition, redox-sensitive nuclear factor kappa B (NFКB canonical pathway was activated with a translocation of NFКB members (p65, p50 and increased expression levels of NFКB-dependent inflammatory cytokines and mediator (TNFα, IL-1β, COX-2; also, a significantly elevated level of ER stress (GRP78/Bip, PERK, CHOP and autophagic flux in the hypoxic group, leading to neuronal apoptosis in hippocampal subfields (DG, CA1, CA3. Remarkably, LBP administration normalized the elevated level of oxidative stress, neuroinflammation, ER stress, autophagic flux and apoptosis induced by hypoxia. Moreover, LBP significantly mitigated both the caspase-dependent intrinsic (Bax, Bcl2, cytochrome C, cleaved caspase-3 and extrinsic (FADD, cleaved caspase-8, Bid signaling apoptotic cascades. Furthermore, LBP administration prevented the spatial memory deficit and enhanced the hippocampal neurogenesis induced by hypoxia. Our results suggest that LBP is neuroprotective against CIH-induced hippocampal-dependent spatial memory deficits by promoting hippocampal neurogenesis

  8. Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo

    OpenAIRE

    Wen-bin He; Kazuho Abe; Tatsuhiro Akaishi

    2018-01-01

    To explore memory enhancing effect of the flavonoid fisetin, we investigated the effect of oral administration of flavonoids on the induction of long-term potentiation (LTP) at hippocampal CA1 synapses of anesthetized rats. Among four flavonoids (fisetin, quercetin, luteolin and myricetin) tested, only fisetin significantly facilitated the induction of hippocampal LTP. The effect of oral fisetin was abolished by intracerebroventricular injection of U0126, an agent that was previously found to...

  9. Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet.

    Science.gov (United States)

    Price, Diana L; Ludwig, Jeffrey W; Mi, Huaiyu; Schwarz, Thomas L; Ellisman, Mark H

    2002-11-29

    Evidence that Ca(2+)-activated K(+) (K(Ca)) channels play a role in cell volume changes and K(+) homeostasis led to a prediction that astrocytes would have K(Ca) channels near blood vessels in order to maintain K(+) homeostasis. Consistent with this thinking the present study demonstrates that rSlo K(Ca) channels are in glial cells of the adult rat central nervous system (CNS) and highly localized to specializations of astrocytes associated with the brain vasculature. Using confocal and thin-section electron microscopic immunolabeling methods the distribution of rSlo was examined in adult rat brain. Strong rSlo immunolabeling was present around the vasculature of most brain regions. Examination of dye-filled hippocampal astrocytes revealed rSlo immunolabeling polarized in astrocytic endfeet. Ultrastructural analysis confirmed that the rSlo staining was concentrated in astrocytic endfeet ensheathing capillaries as well as abutting the pia mater. Immunostaining within the endfeet was predominantly distributed at the plasma membrane directly adjacent to either the vascular basal lamina or the pial surface. The distribution of the aquaporin-4 (AQP-4) water channel was also examined using dye-filled hippocampal astrocytes. In confirmation of earlier reports, intense AQP-4 immunolabeling was generally observed at the perimeter of blood vessels, and coincided with perivascular endfeet and rSlo labeling. We propose that rSlo K(Ca) channels, with their sensitivity to membrane depolarization and intracellular calcium, play a role in the K(+) modulation of cerebral blood flow. Additional knowledge of the molecular and cellular machinery present at perivascular endfeet may provide insight into the structural and functional molecular elements responsible for the neuronal activity-dependent regulation of cerebral blood flow. Copyright 2002 Elsevier Science B.V.

  10. Specific multi-nutrient enriched diet enhances hippocampal cholinergic transmission in aged rats.

    Science.gov (United States)

    Cansev, Mehmet; van Wijk, Nick; Turkyilmaz, Mesut; Orhan, Fulya; Sijben, John W C; Broersen, Laus M

    2015-01-01

    Fortasyn Connect (FC) is a specific nutrient combination designed to target synaptic dysfunction in Alzheimer's disease by providing neuronal membrane precursors and other supportive nutrients. The aim of the present study was to investigate the effects of FC on hippocampal cholinergic neurotransmission in association with its effects on synaptic membrane formation in aged rats. Eighteen-month-old male Wistar rats were randomized to receive a control diet for 4 weeks or an FC-enriched diet for 4 or 6 weeks. At the end of the dietary treatments, acetylcholine (ACh) release was investigated by in vivo microdialysis in the right hippocampi. On completion of microdialysis studies, the rats were sacrificed, and the left hippocampi were obtained to determine the levels of choline, ACh, membrane phospholipids, synaptic proteins, and choline acetyltransferase. Our results revealed that supplementation with FC diet for 4 or 6 weeks, significantly enhanced basal and stimulated hippocampal ACh release and ACh tissue levels, along with levels of phospholipids. Feeding rats the FC diet for 6 weeks significantly increased the levels of choline acetyltransferase, the presynaptic marker Synapsin-1, and the postsynaptic marker PSD-95, but decreased levels of Nogo-A, a neurite outgrowth inhibitor. These data show that the FC diet enhances hippocampal cholinergic neurotransmission in aged rats and suggest that this effect is mediated by enhanced synaptic membrane formation. These data provide further insight into cellular and molecular mechanisms by which FC may support memory processes in Alzheimer's disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. RNaseT2 knockout rats exhibit hippocampal neuropathology and deficits in memory.

    Science.gov (United States)

    Sinkevicius, Kerstin W; Morrison, Thomas R; Kulkarni, Praveen; Cagliostro, Martha K Caffrey; Iriah, Sade; Malmberg, Samantha; Sabrick, Julia; Honeycutt, Jennifer A; Askew, Kim L; Trivedi, Malav; Ferris, Craig F

    2018-05-10

    RNASET2 deficiency in humans is associated with infant cystic leukoencephalopathy, which causes psychomotor impairment, spasticity, and epilepsy. A zebrafish mutant model suggests that loss of RNASET2 function leads to neurodegeneration due to the accumulation of non-degraded RNA in the lysosomes. The goal of this study was to characterize the first rodent model of RNASET2 deficiency. The brains of 3- and 12-month-old RNaseT2 knockout rats were studied using multiple magnetic resonance imaging modalities and behavioral tests. While T1 and T2 weighted images of RNaseT2 knockout rats exhibited no evidence of cystic lesions, the prefrontal cortex and hippocampal complex were enlarged in knockout animals. Diffusion weighted imaging showed altered anisotropy and putative gray matter changes in the hippocampal complex of the RNaseT2 knockout rats. Immunohistochemistry for glial fibrillary acidic protein (GFAP) showed the presence of hippocampal neuroinflammation. Decreased levels of lysosome-associated membrane protein 2 (LAMP2) and elevated acid phosphatase and β-N-Acetylglucosaminidase (NAG) activities indicated that the RNASET2 knockout rats likely had altered lysosomal function and potential defects in autophagy. Object recognition tests confirmed the RNaseT2 knockout rats exhibited memory deficits. However, the Barnes maze, and balance beam and rotarod tests, indicated there were no differences in spatial memory or motor impairments, respectively. Overall, patients with RNASET2 deficiency exhibited a more severe neurodegeneration phenotype than was observed in the RNaseT2 knockout rats. However, the vulnerability of the knockout rat hippocampus as evidenced by neuroinflammation, altered lysosomal function, and cognitive defects indicates this is still a useful in vivo model to study RNASET2 function. © 2018. Published by The Company of Biologists Ltd.

  12. Swimming exercise enhances the hippocampal antioxidant status of female Wistar rats.

    Science.gov (United States)

    Stone, Vinícius; Kudo, Karen Yurika; Marcelino, Thiago Beltram; August, Pauline Maciel; Matté, Cristiane

    2015-05-01

    Moderate exercise is known to have health benefits, while both sedentarism and strenuous exercise have pro-oxidant effects. In this study, we assessed the effect of moderate exercise on the antioxidant homeostasis of rats' hippocampi. Female Wistar rats were submitted to a 30-minute swimming protocol on 5 days a week, for 4 weeks. Control rats were immersed in water and carefully dried. Production of hippocampal reactive species, activity of antioxidant enzymes, and glutathione levels in these animals were determined up to 30 days after completion of the 4-week protocol. Production of reactive species and hippocampal glutathione levels were increased 1 day after completion of the 4-week protocol, and returned to control levels after 7 days. Antioxidant enzyme activities were increased both 1 day (catalase) and 7 days (superoxide dismutase and glutathione peroxidase) after completion of the protocol. Thirty days after completion of the protocol, none of the antioxidant parameters evaluated differed from those of controls. Our results reinforce the benefits of aerobic exercise, which include positive modulation of antioxidant homeostasis in the hippocampi. The effects of exercise are not permanent; rather, an exercise regimen must be continued in order to maintain the neurometabolic adaptations.

  13. Free and membrane-bound ribosomes and polysomes in hippocampal neurons during a learning experiment.

    Science.gov (United States)

    Wenzel, J; David, H; Pohle, W; Marx, I; Matthies, H

    1975-01-24

    The ribosomes of the CA1 and CA3 pyramidal cells of hipocampus were investigated by morphometric methods after the acquisition of a shock-motivated brightness discrimination in rats. A significant increase in the total number of ribosomes was observed in CA1 cells of trained animals and in CA3 cells of both active controls and trained rats. A significant increase in membrane-bound ribosomes was obtained in CA1 and CA3 cells after training only. The results confirm the suggestion of an increased protein synthesis in hippocampal neurons during and after the acquisition of a brightness discrimination, as we have concluded from out previous investigations on the incorporation of labeled amino acids under identical experimental conditions. The results lead to the assumption that the protein synthesis in some neuronal cells may probably differ not only quantitatively, but also qualitatively in trained and untrained animals.

  14. Dyrk1A-ASF-CaMKIIδ Signaling Is Involved in Valsartan Inhibition of Cardiac Hypertrophy in Renovascular Hypertensive Rats.

    Science.gov (United States)

    Yao, Jian; Qin, Xiaotong; Zhu, Jianhua; Sheng, Hongzhuan

    2016-01-01

    It is known that the expression, activity and alternative splicing of Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) are dysregulated in the cardiac remodeling process. Recently, we found a further signaling pathway, by which dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) regulates the alternative splicing of CaMKIIδ via the alternative splicing factor (ASF), i.e., Dyrk1A-ASF-CaMKIIδ. In this study, we aimed to investigate whether Dyrk1A-ASF-CaMKIIδ signaling was involved in valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats. Rats were subjected to two kidney-one clip (2K1C) surgery and then treated with valsartan (30 mg/kg/day) for 8 weeks. Hypertrophic parameter analysis was then performed. Western blot analysis was used to determine the protein expression of Dyrk1A and ASF and RT-PCR was used to analyze the alternative splicing of CaMKIIδ in the left ventricular (LV) sample. Valsartan attenuated cardiac hypertrophy in 2K1C rats but without impairment of cardiac systolic function. Increased protein expression of Dyrk1A and decreased protein expression of ASF were observed in the LV sample of 2K1C rats. Treatment of 2K1C rats with valsartan reversed the changes in Dyrk1A and ASF expression in the LV sample. Valsartan adjusted the 2K1C-induced imbalance in alternative splicing of CaMKIIδ by upregulating the mRNA expression of CaMKIIδC and downregulating the mRNA expression of CaMKIIδA and CaMKIIδB. Valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats was mediated, at least partly, by Dyrk1A-ASF-CaMKIIδ signaling. © 2015 S. Karger AG, Basel.

  15. ASIC-like, proton-activated currents in rat hippocampal neurons.

    Science.gov (United States)

    Baron, Anne; Waldmann, Rainer; Lazdunski, Michel

    2002-03-01

    The expression of mRNA for acid sensing ion channels (ASIC) subunits ASIC1a, ASIC2a and ASIC2b has been reported in hippocampal neurons, but the presence of functional hippocampal ASIC channels was never assessed. We report here the first characterization of ASIC-like currents in rat hippocampal neurons in primary culture. An extracellular pH drop induces a transient Na(+) current followed by a sustained non-selective cation current. This current is highly sensitive to pH with an activation threshold around pH 6.9 and a pH(0.5) of 6.2. About half of the total peak current is inhibited by the spider toxin PcTX1, which is specific for homomeric ASIC1a channels. The remaining PcTX1-resistant ASIC-like current is increased by 300 microM Zn(2+) and, whereas not fully activated at pH 5, it shows a pH(0.5) of 6.0 between pH 7.4 and 5. We have previously shown that Zn(2+) is a co-activator of ASIC2a-containing channels. Thus, the hippocampal transient ASIC-like current appears to be generated by a mixture of homomeric ASIC1a channels and ASIC2a-containing channels, probably heteromeric ASIC1a+2a channels. The sustained non-selective current suggests the involvement of ASIC2b-containing heteromeric channels. Activation of the hippocampal ASIC-like current by a pH drop to 6.9 or 6.6 induces a transient depolarization which itself triggers an initial action potential (AP) followed by a sustained depolarization and trains of APs. Zn(2+) increases the acid sensitivity of ASIC channels, and consequently neuronal excitability. It is probably an important co-activator of ASIC channels in the central nervous system.

  16. Learning, memory and hippocampal LTP in genetically obese rodents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We have found that leptin, at physiological concentrations of 10-12 mol/L, facilitates learning and memory and LTP maintenance in Wistar rats. To explore the role of leptin recepors in learning, memory and synaptic plasticity, experiments were carried out using Zucker rats (Z), db/db mice (db), and ob/ob mice(ob). The former two have defects in leptin receptors and the latter cannot produce normal leptin. Unlike the effects observed in normal rats, high or low frequency stimulation of Schaffer collateral-CA1 synapses in hippocampal slices prepared from Z, db and ob animals failed to induce the learning and memory relevant long-term potentiation or depression in CA1 neurons. However, LTP in ob CA1 synapses was facilitated by leptin at 10-12 mol/L concentration. Moreover, the paired-pulse facilitation of CA1 synaptic potentials and intracellularly recorded postsynaptic responses to the neurotransmitters AMPA, NMDA and GABA, applied electrophoretically to the apical dendrites of CA1 neurons, were approximately the same compared to the control lean animals. In addition, unlike the second messenger responses observed in Wistar rats, calmodulin kinase Ⅱ activity in the CA1 area of Z and db animals was not activated after tetanic stimulation of the Schaffer collaterals. It has been shown that all three strains, Z, db and ob display impaired spatial learning and memory when tested in the Morris water maze. The results of these experiments indicate a close relationship between spatial learning and memory, facilitation of LTP, and calmodulin kinase Ⅱ activity.

  17. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Huaqiu Zhang

    2011-02-01

    Full Text Available Volume-regulated anion channels (VRAC are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM and NPPB (100 µM, but not to tamoxifen (10 µM. Using oxygen-and-glucose deprivation (OGD to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX and NMDA (40 µM AP-5 receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na(+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.

  18. Estradiol pretreatment ameliorates impaired synaptic plasticity at synapses of insulted CA1 neurons after transient global ischemia

    Science.gov (United States)

    Takeuchi, Koichi; Yang, Yupeng; Takayasu, Yukihiro; Gertner, Michael; Hwang, Jee-Yeon; Aromolaran, Kelly; Bennett, Michael V.L.; Zukin, R. Suzanne

    2015-01-01

    Global ischemia in humans or induced experimentally in animals causes selective and delayed neuronal death in pyramidal neurons of the hippocampal CA1. The ovarian hormone estradiol administered before or immediately after insult affords histological protection in experimental models of focal and global ischemia and ameliorates the cognitive deficits associated with ischemic cell death. However, the impact of estradiol on the functional integrity of Schaffer collateral to CA1 (Sch-CA1) pyramidal cell synapses following global ischemia is not clear. Here we show that long term estradiol treatment initiated 14 days prior to global ischemia in ovariectomized female rats acts via the IGF-1 receptor to protect the functional integrity of CA1 neurons. Global ischemia impairs basal synaptic transmission, assessed by the input/output relation at Sch-CA1 synapses, and NMDA receptor (NMDAR)-dependent long term potentiation (LTP), assessed at 3 days after surgery. Presynaptic function, assessed by fiber volley and paired pulse facilitation, is unchanged. To our knowledge, our results are the first to demonstrate that estradiol at near physiological concentrations enhances basal excitatory synaptic transmission and ameliorates deficits in LTP at synapses onto CA1 neurons in a clinically-relevant model of global ischemia. Estradiol-induced rescue of LTP requires the IGF-1 receptor, but not the classical estrogen receptors (ER)-α or β. These findings support a model whereby estradiol acts via the IGF-1 receptor to maintain the functional integrity of hippocampal CA1 synapses in the face of global ischemia. PMID:25463028

  19. Extracellular calcium controls the expression of two different forms of ripple-like hippocampal oscillations.

    Science.gov (United States)

    Aivar, Paloma; Valero, Manuel; Bellistri, Elisa; Menendez de la Prida, Liset

    2014-02-19

    Hippocampal high-frequency oscillations (HFOs) are prominent in physiological and pathological conditions. During physiological ripples (100-200 Hz), few pyramidal cells fire together coordinated by rhythmic inhibitory potentials. In the epileptic hippocampus, fast ripples (>200 Hz) reflect population spikes (PSs) from clusters of bursting cells, but HFOs in the ripple and the fast ripple range are vastly intermixed. What is the meaning of this frequency range? What determines the expression of different HFOs? Here, we used different concentrations of Ca(2+) in a physiological range (1-3 mM) to record local field potentials and single cells in hippocampal slices from normal rats. Surprisingly, we found that this sole manipulation results in the emergence of two forms of HFOs reminiscent of ripples and fast ripples recorded in vivo from normal and epileptic rats, respectively. We scrutinized the cellular correlates and mechanisms underlying the emergence of these two forms of HFOs by combining multisite, single-cell and paired-cell recordings in slices prepared from a rat reporter line that facilitates identification of GABAergic cells. We found a major effect of extracellular Ca(2+) in modulating intrinsic excitability and disynaptic inhibition, two critical factors shaping network dynamics. Moreover, locally modulating the extracellular Ca(2+) concentration in an in vivo environment had a similar effect on disynaptic inhibition, pyramidal cell excitability, and ripple dynamics. Therefore, the HFO frequency band reflects a range of firing dynamics of hippocampal networks.

  20. Paroxetine ameliorates changes in hippocampal energy metabolism in chronic mild stress-exposed rats

    Directory of Open Access Journals (Sweden)

    Khedr LH

    2015-11-01

    Full Text Available Lobna H Khedr, Noha N Nassar, Ezzeldin S El-Denshary, Ahmed M Abdel-tawab 1Department of Pharmacology, Faculty of Pharmacy, Misr International University, 2Department of Pharmacology, Faculty of Pharmacy, Cairo University, 3Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt Abstract: The molecular mechanisms underlying stress-induced depression have not been fully outlined. Hence, the current study aimed at testing the link between behavioral changes in chronic mild stress (CMS model and changes in hippocampal energy metabolism and the role of paroxetine (PAROX in ameliorating these changes. Male Wistar rats were divided into three groups: vehicle control, CMS-exposed rats, and CMS-exposed rats receiving PAROX (10 mg/kg/day intraperitoneally. Sucrose preference, open-field, and forced swimming tests were carried out. Corticosterone (CORT was measured in serum, while adenosine triphosphate and its metabolites, cytosolic cytochrome-c (Cyt-c, caspase-3 (Casp-3, as well as nitric oxide metabolites (NOx were measured in hippocampal tissue homogenates. CMS-exposed rats showed a decrease in sucrose preference as well as body weight compared to control, which was reversed by PAROX. The latter further ameliorated the CMS-induced elevation of CORT in serum (91.71±1.77 ng/mL vs 124.5±4.44 ng/mL, P<0.001 as well as the changes in adenosine triphosphate/adenosine diphosphate (3.76±0.02 nmol/mg protein vs 1.07±0.01 nmol/mg protein, P<0.001. Furthermore, PAROX reduced the expression of Cyt-c and Casp-3, as well as restoring NOx levels. This study highlights the role of PAROX in reversing depressive behavior associated with stress-induced apoptosis and changes in hippocampal energy metabolism in the CMS model of depression. Keywords: rats, CMS, hippocampus, paroxetine, apoptosis, adenine nucleotides, cytochrome-c, caspase-3

  1. Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.

    Science.gov (United States)

    Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin

    2016-12-01

    Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.

  2. Inhibiting the Activity of CA1 Hippocampal Neurons Prevents the Recall of Contextual Fear Memory in Inducible ArchT Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Masanori Sakaguchi

    Full Text Available The optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins can reversibly activate or suppress neuronal activity with precise temporal control. Therefore, optogenetic techniques hold great potential to establish causal relationships between specific neuronal circuits and their function in freely moving animals. Due to the critical role of the hippocampal CA1 region in memory function, we explored the possibility of targeting an inhibitory opsin, ArchT, to CA1 pyramidal neurons in mice. We established a transgenic mouse line in which tetracycline trans-activator induces ArchT expression. By crossing this line with a CaMKIIα-tTA transgenic line, the delivery of light via an implanted optrode inhibits the activity of excitatory CA1 neurons. We found that light delivery to the hippocampus inhibited the recall of a contextual fear memory. Our results demonstrate that this optogenetic mouse line can be used to investigate the neuronal circuits underlying behavior.

  3. Space and time sequence and mosaicism of neurogenesis in hippocampal area CA1 in mice

    International Nuclear Information System (INIS)

    Nazarevskaya, G.D.; Reznikov, K. Yu.

    1986-01-01

    The study of the times and sequence of neuron formation in various structures of the mammalian brain has made substantial progress thanks to the use of autoradiographic techniques, by which the germinative precursors of neurons can be tagged with tritium-thymidine and the subsequent fate of the labeled cells can be followed. The authors study the space and time sequence of neuron formation and look for the presence of mosaicism of neurogenesis in area CA1 of Ammon's horn of the mouse hippocampus, one of the most regularly arranged hippocampal areas. An analysis of the distribution of intensively labeled neurons in areas CA1 showed the presence of groups of intensively labeled neurons alternating with unlabeled and weakly labeled cells.. Mice receiving tritium-thymidine on the 13th-16th day of embryogenesis were most marked when the isotope was injected on the 14th-15th day of embroygeneisis. The investigation showed that a mosaic pattern of neurogenesis exists in the hippocampus, just as in the neocortex, and it can be regarded as the result of asynchronous production of neurons by local areas of the germinative zone, each of which constructs a radial segment of cortex

  4. Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo

    Directory of Open Access Journals (Sweden)

    Wen-bin He

    2018-01-01

    Full Text Available To explore memory enhancing effect of the flavonoid fisetin, we investigated the effect of oral administration of flavonoids on the induction of long-term potentiation (LTP at hippocampal CA1 synapses of anesthetized rats. Among four flavonoids (fisetin, quercetin, luteolin and myricetin tested, only fisetin significantly facilitated the induction of hippocampal LTP. The effect of oral fisetin was abolished by intracerebroventricular injection of U0126, an agent that was previously found to inhibit its effect in hippocampal slices in vitro. These results suggest that orally administered fisetin crosses the blood–brain barrier and promotes synaptic functions in the hippocampus.

  5. [Lessening effect of hypoxia-preconditioned rat cerebrospinal fluid on oxygen-glucose deprivation-induced injury of cultured hippocampal neurons in neonate rats and possible mechanism].

    Science.gov (United States)

    Niu, Jing-Zhong; Zhang, Yan-Bo; Li, Mei-Yi; Liu, Li-Li

    2011-12-25

    The present study was to investigate the effect of cerebrospinal fluid (CSF) from the rats with hypoxic preconditioning (HPC) on apoptosis of cultured hippocampal neurons in neonate rats under oxygen glucose deprivation (OGD). Adult Wistar rats were exposed to 3 h of hypoxia for HPC, and then their CSF was taken out. Cultured hippocampal neurons from the neonate rats were randomly divided into four groups (n = 6): normal control group, OGD group, normal CSF group and HPC CSF group. OGD group received 1.5 h of incubation in glucose-free Earle's solution containing 1 mmol/L Na2S2O4, and normal and HPC CSF groups were subjected to 1 d of corresponding CSF treatments followed by 1.5 h OGD. The apoptosis of neurons was analyzed by confocal laser scanning microscope and flow cytometry using Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in normal control group, whereas the number of apoptotic cells was greatly increased in OGD group. Both normal and HPC CSF could decrease the apoptosis of cultured hippocampal neurons injured by OGD (P neurons by up-regulating expression of Bcl-2 and down-regulating expression of Bax.

  6. NMDA-dependent phase synchronization between septal and temporal CA3 hippocampal networks.

    Science.gov (United States)

    Gu, Ning; Jackson, Jesse; Goutagny, Romain; Lowe, Germaine; Manseau, Frédéric; Williams, Sylvain

    2013-05-08

    Increasing evidence suggests that synchronization between brain regions is essential for information exchange and memory processes. However, it remains incompletely known which synaptic mechanisms contribute to the process of synchronization. Here, we investigated whether NMDA receptor-mediated synaptic plasticity was an important player in synchronization between septal and temporal CA3 areas of the rat hippocampus. We found that both the septal and temporal CA3 regions intrinsically generate weakly synchronized δ frequency oscillations in the complete hippocampus in vitro. Septal and temporal oscillators differed in frequency, power, and rhythmicity, but both required GABAA and AMPA receptors. NMDA receptor activation, and most particularly the NR2B subunit, contributed considerably more to rhythm generation at the temporal than the septal region. Brief activation of NMDA receptors by application of extracellular calcium dramatically potentiated the septal-temporal coherence for long durations (>40 min), an effect blocked by the NMDA antagonist AP-5. This long-lasting NMDA-receptor-dependent increase in coherence was also associated with an elevated phase locking of spikes locally and across regions. Changes in coherence between oscillators were associated with increases in phase locking between oscillators independent of oscillator amplitude. Finally, although the septal CA3 rhythm preceded the oscillations in temporal regions in control conditions, this was reversed during the NMDA-dependent enhancement in coherence, suggesting that NMDA receptor activation can change the direction of information flow along the septotemporal CA3 axis. These data demonstrate that plastic changes in communication between septal and temporal hippocampal regions can arise from the NMDA-dependent phase locking of neural oscillators.

  7. Plasma hormonal profiles and dendritic spine density and morphology in the hippocampal CA1 stratum radiatum, evidenced by light microscopy, of virgin and postpartum female rats.

    Science.gov (United States)

    Brusco, Janaína; Wittmann, Raul; de Azevedo, Márcia S; Lucion, Aldo B; Franci, Celso R; Giovenardi, Márcia; Rasia-Filho, Alberto A

    2008-06-27

    Successful reproduction requires that changes in plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), oxytocin (OT), estrogen (E(2)) and progesterone (P(4)) occur together with the display of maternal behaviors. Ovarian steroids and environmental stimuli can affect the dendritic spines in the rat hippocampus. Here, studying Wistar rats, it is described: (a) the sequential and concomitant changes in the hormonal profile of females at postpartum days (PP) 4, 8, 12, 16, 20 and 24, comparing to estrous cycle referential values; (b) the dendritic spine density in the stratum radiatum of CA1 (CA1-SR) Golgi-impregnated neurons in virgin females across the estrous cycle and in multiparous age-matched ones; and (c) the proportion of different types of spines in the CA1-SR of virgin and postpartum females, both in diestrus. Plasma levels of gonadotrophins and ovarian hormones remained low along PP while LH increased and PRL decreased near the end of the lactating period. The lowest dendritic spine density was found in virgin females in estrus when compared to diestrus and proestrus phases or to postpartum females in diestrus (p0.4). There were no differences in the proportions of the different spine types in nulliparous and postpartum females (p>0.2). Results suggest that medium layer CA1-SR spines undergo rapid modifications in Wistar females across the estrous cycle (not quite comparable to Sprague-Dawley data or to hormonal substitutive therapy following ovariectomy), but persistent effects of motherhood on dendritic spine density and morphology were not found in this area.

  8. Environmental enrichment protects spatial learning and hippocampal neurons from the long-lasting effects of protein malnutrition early in life.

    Science.gov (United States)

    Soares, Roberto O; Horiquini-Barbosa, Everton; Almeida, Sebastião S; Lachat, João-José

    2017-09-29

    As early protein malnutrition has a critically long-lasting impact on the hippocampal formation and its role in learning and memory, and environmental enrichment has demonstrated great success in ameliorating functional deficits, here we ask whether exposure to an enriched environment could be employed to prevent spatial memory impairment and neuroanatomical changes in the hippocampus of adult rats maintained on a protein deficient diet during brain development (P0-P35). To elucidate the protective effects of environmental enrichment, we used the Morris water task and neuroanatomical analysis to determine whether changes in spatial memory and number and size of CA1 neurons differed significantly among groups. Protein malnutrition and environmental enrichment during brain development had significant effects on the spatial memory and hippocampal anatomy of adult rats. Malnourished but non-enriched rats (MN) required more time to find the hidden platform than well-nourished but non-enriched rats (WN). Malnourished but enriched rats (ME) performed better than the MN and similarly to the WN rats. There was no difference between well-nourished but non-enriched and enriched rats (WE). Anatomically, fewer CA1 neurons were found in the hippocampus of MN rats than in those of WN rats. However, it was also observed that ME and WN rats retained a similar number of neurons. These results suggest that environmental enrichment during brain development alters cognitive task performance and hippocampal neuroanatomy in a manner that is neuroprotective against malnutrition-induced brain injury. These results could have significant implications for malnourished infants expected to be at risk of disturbed brain development. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hippocampal 3alpha,5alpha-THP may alter depressive behavior of pregnant and lactating rats.

    Science.gov (United States)

    Frye, Cheryl A; Walf, Alicia A

    2004-07-01

    The 5alpha-reduced metabolite of progesterone (P), 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), may mediate progestins' effects to reduce depressive behavior of female rats in part through actions in the hippocampus. To investigate, forced swim test behavior and plasma and hippocampal progestin levels were assessed in groups of rats expected to differ in their 3alpha,5alpha-THP levels due to endogenous differences (pregnant and postpartum), administration of a 5alpha-reductase inhibitor (finasteride; 50 mg/kg sc), and/or gestational stress [prenatal stress (PNS)], an animal model of depression. Pregnant rats had higher plasma and hippocampal 3alpha,5alpha-THP levels and less depressive behavior (decreased immobility, increased struggling and swimming) in the forced swim test than did postpartum rats. Finasteride, compared to vehicle-administration, reduced plasma and hippocampal 3alpha,5alpha-THP levels and increased depressive behavior (increased immobility, decreased struggling and swimming). PNS was associated with lower hippocampal, but not plasma, 3alpha,5alpha-THP levels and increased swimming compared to that observed in control rats. Together, these data suggest that 3alpha,5alpha-THP in the hippocampus may mediate antidepressive behavior of female rats.

  10. Changes in inhibitory CA1 network in dual pathology model of epilepsy.

    Science.gov (United States)

    Ouardouz, Mohamed; Carmant, Lionel

    2012-01-01

    The combination of two precipitating factors appears to be more and more recognized in patients with temporal lobe epilepsy. Using a two-hit rat model, with a neonatal freeze lesion mimicking a focal cortical malformation combined with hyperthermia-induced seizures mimicking febrile seizures, we have previously reported an increase of inhibition in CA1 pyramidal cells at P20. Here, we investigated the changes affecting excitatory and inhibitory drive onto CA1 interneurons to better define the changes in CA1 inhibitory networks and their paradoxical role in epileptogenesis, using electrophysiological recordings in CA1 hippocampus from rat pups (16-20 d old). We investigated interneurons in CA1 hippocampal area located in stratum oriens (Or) and at the border of strata lacunosum and moleculare (L-M). Our results revealed an increase of the excitatory drive to both types of interneurons with no change in the inhibitory drive. The mechanisms underlying the increase of excitatory synaptic currents (EPSCs) in both types of interneurons are different. In Or interneurons, the amplitude of spontaneous and miniature EPSCs increased, while their frequency was not affected suggesting changes at the post-synaptic level. In L-M interneurons, the frequency of spontaneous EPSCs increases, but the amplitude is not affected. Analyses of miniature EPSCs showed no changes in both their frequency and amplitude. We concluded that L-M interneurons increase in excitatory drive is due to a change in Shaffer collateral axon excitability. The changes described here in CA1 inhibitory network may actually contribute to the epileptogenicity observed in this dual pathology model by increasing pyramidal cell synchronization.

  11. Postoperative intermittent fasting prevents hippocampal oxidative stress and memory deficits in a rat model of chronic cerebral hypoperfusion.

    Science.gov (United States)

    Hu, Yuan; Zhang, Miao; Chen, Yunyun; Yang, Ying; Zhang, Jun-Jian

    2018-01-11

    Whether intermittent fasting (IF) treatment after stroke can prevent its long-term detrimental effects remains unknown. Here, we investigate the effects of postoperative IF on cognitive deficits and its underlying mechanisms in a permanent two-vessel occlusion (2VO) vascular dementia rat model. Rats were subjected to either IF or ad libitum feeding 1 week after 2VO surgery. The cognition of rats was assessed using the novel object recognition (NOR) task and Morris water maze (MWM) 8 weeks after surgery. After behavioral testing, hippocampal malondialdehyde (MDA) and glutathione (GSH) concentrations, superoxide dismutase (SOD) activity, gene expression of antioxidative enzymes, inflammatory protein levels, and microglia density were determined. Postoperative IF significantly ameliorated the cognitive performance of 2VO rats in the NOR and MWM tests. Cognitive enhancement paralleled preservation of the PSD95 and BDNF levels in the 2VO rat hippocampus. Mechanistically, postoperative IF mitigated hippocampal oxidative stress in 2VO rats, as indicated by the reduced MDA concentration and mRNA and the protein levels of the reactive oxygen species-generating enzyme nicotinamide adenine dinucleotide phosphate oxidase 1. IF treatment also preserved the GSH level and SOD activity, as well as the levels of their upstream regulating enzymes, resulting in preserved antioxidative capability. In addition, postoperative IF prevented hippocampal microglial activation and elevation of sphingosine 1-phosphate receptor 1 and inflammatory cytokines in 2VO rats. Our results suggest that postoperative IF suppresses neuroinflammation and oxidative stress induced by chronic cerebral ischemia, thereby preserving cognitive function in a vascular dementia rat model.

  12. [Effect of electroacupuncture intervention on learning-memory ability and injured hippocampal neurons in depression rats].

    Science.gov (United States)

    Bao, Wu-Ye; Jiao, Shuang; Lu, Jun; Tu, Ya; Song, Ying-Zhou; Wu, Qian; A, Ying-Ge

    2014-04-01

    To observe the effect of electroacupuncture (EA) stimulation of "Baihui" (GV 20)-"Yintang" (EX-HN 3) on changes of learning-memory ability and hippocampal neuron structure in chronic stress-stimulation induced depression rats. Forty-eight SD rats were randomly divided into normal, model, EA and medication (Fluoxetine) groups, with 12 rats in each group. The depression model was established by chronic unpredictable mild stress stimulation (swimming in 4 degrees C water, fasting, water deprivation, reversed day and night, etc). Treatment was applied to "Baihui" (GV 20) and "Yintang" (EX-HN 3) for 20 min, once every day for 21 days. For rats of the medication group, Fluoxetine (3.3 mg/kg) was given by gavage (p.o.), once daily for 21 days. The learning-memory ability was detected by Morris water maze tests. The pathological and ultrastructural changes of the hippocampal tissue and neurons were assessed by H.E. staining, light microscope and transmission electron microscopy, respectively. Compared to the normal group, the rats' body weight on day 14 and day 21 after modeling was significantly decreased in the model group (P learning-memory ability. Observations of light microscope and transmission electron microscope showed that modeling induced pathological changes such as reduction in hippocampal cell layers, vague and broken cellular membrane, and ultrastructural changes of hippocampal neurons including swelling and reduction of mitochondria and mitochondrial crests were relived after EA and Fluoxetine treatment. EA intervention can improve the learning-memory ability and relieving impairment of hippocampal neurons in depression rats, which may be one of its mechanisms underlying bettering depression.

  13. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses

    Science.gov (United States)

    Gazit, Neta; Vertkin, Irena; Shapira, Ilana; Helm, Martin; Slomowitz, Edden; Sheiba, Maayan; Mor, Yael; Rizzoli, Silvio; Slutsky, Inna

    2016-01-01

    Summary The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer’s disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca2+ transients, while promoting spontaneous transmission and resting Ca2+ level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca2+ buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer’s disease. Video Abstract PMID:26804996

  14. Taxonomic separation of hippocampal networks: principal cell populations and adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Roelof Maarten evan Dijk

    2016-03-01

    Full Text Available While many differences in hippocampal anatomy have been described between species, it is typically not clear if they are specific to a particular species and related to functional requirements or if they are shared by species of larger taxonomic units. Without such information, it is difficult to infer how anatomical differences may impact on hippocampal function, because multiple taxonomic levels need to be considered to associate behavioral and anatomical changes. To provide information on anatomical changes within and across taxonomic ranks, we present a quantitative assessment of hippocampal principal cell populations in 20 species or strain groups, with emphasis on rodents, the taxonomic group that provides most animals used in laboratory research. Of special interest is the importance of adult hippocampal neurogenesis in species-specific adaptations relative to other cell populations. Correspondence analysis of cell numbers shows that across taxonomic units, phylogenetically related species cluster together, sharing similar proportions of principal cell populations. CA3 and hilus are strong separators that place rodent species into a tight cluster based on their relatively large CA3 and small hilus while non-rodent species (including humans and non-human primates are placed on the opposite side of the spectrum. Hilus and CA3 are also separators within rodents, with a very large CA3 and rather small hilar cell populations separating mole-rats from other rodents that, in turn, are separated from each other by smaller changes in the proportions of CA1 and granule cells. When adult neurogenesis is included, the relatively small populations of young neurons, proliferating cells and hilar neurons become main drivers of taxonomic separation within rodents. The observations provide challenges to the computational modeling of hippocampal function, suggest differences in the organization of hippocampal information streams in rodent and non

  15. Time- and cell-type specific changes in iron, ferritin, and transferrin in the gerbil hippocampal CA1 region after transient forebrain ischemia

    Directory of Open Access Journals (Sweden)

    Dae Young Yoo

    2016-01-01

    Full Text Available In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin (ferritin-H, and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased significantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1-2 days and then increased once again within the CA1 region at 4-7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4-7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was significantly increased. Transferrin immunoreactivity was increased significantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased significantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was significantly increased. Western blot analyses supported these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.

  16. Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones.

    Science.gov (United States)

    Evstratova, Alesya; Tóth, Katalin

    2011-12-01

    The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca(2+) wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca(2+) waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca(2+) signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca(2+) release from CA3 pyramidal cell internal stores.

  17. The effect of chronic ethanol on glutamate binding in human and rat brain

    International Nuclear Information System (INIS)

    Cummins, J.T.; Sack, M.; von Hungen, K.

    1990-01-01

    Quantitative autoradiographic techniques demonstrate that chronic alcohol administration causes a decrease in [ 3 H]-glutamate binding to hippocampal N-methyl-D-aspartate (NMDA) receptors. A 14% decrease in [ 3 H]-glutamate binding in the hippocampal CA 1 region is seen both in the rat after five days of ethanol administration and in postmortem hippocampal tissues from alcoholics. In the rat, 24 hr ethanol withdrawal values are intermediate between control and alcohol binding levels. There was no significant effect of ethanol on [ 3 H]-glutamate binding in the cortex or caudate

  18. Extinction of Contextual Cocaine Memories Requires Cav1.2 within D1R-Expressing Cells and Recruits Hippocampal Cav1.2-Dependent Signaling Mechanisms.

    Science.gov (United States)

    Burgdorf, Caitlin E; Schierberl, Kathryn C; Lee, Anni S; Fischer, Delaney K; Van Kempen, Tracey A; Mudragel, Vladimir; Huganir, Richard L; Milner, Teresa A; Glass, Michael J; Rajadhyaksha, Anjali M

    2017-12-06

    Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Ca v 1.2 L-type Ca 2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Ca v 1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Ca v 1.2 targets revealed that extinction recruited calcium/calmodulin (Ca 2+ /CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Ca v 1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Ca v 1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Ca v 1.2 channels in extinction of contextual cocaine-associated memories. SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of

  19. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    Science.gov (United States)

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques. © The Author(s) 2014.

  20. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat

    Science.gov (United States)

    Meiri, Noam; Ghelardini, Carla; Tesco, Giuseppina; Galeotti, Nicoletta; Dahl, Dennis; Tomsic, Daniel; Cavallaro, Sebastiano; Quattrone, Alessandro; Capaccioli, Sergio; Bartolini, Alessandro; Alkon, Daniel L.

    1997-01-01

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic “knockouts”. PMID:9114006

  1. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat.

    Science.gov (United States)

    Meiri, N; Ghelardini, C; Tesco, G; Galeotti, N; Dahl, D; Tomsic, D; Cavallaro, S; Quattrone, A; Capaccioli, S; Bartolini, A; Alkon, D L

    1997-04-29

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic "knockouts".

  2. Angiotensin IV and LVV-haemorphin 7 enhance spatial working memory in rats: effects on hippocampal glucose levels and blood flow.

    Science.gov (United States)

    De Bundel, Dimitri; Smolders, Ilse; Yang, Rui; Albiston, Anthony L; Michotte, Yvette; Chai, Siew Yeen

    2009-07-01

    The IRAP ligands Angiotensin IV (Ang IV) and LVV-haemorphin 7 (LVV-H7) enhance performance in a range of memory paradigms in normal rats and ameliorate memory deficits in rat models for amnesia. The mechanism by which these peptides facilitate memory remains to be elucidated. In recent in vitro experiments, we demonstrated that Ang IV and LVV-H7 potentiate activity-evoked glucose uptake into hippocampal neurons. This raises the possibility that IRAP ligands may facilitate memory in hippocampus-dependent tasks through enhancement of hippocampal glucose uptake. Acute intracerebroventricular (i.c.v.) administration of 1nmol Ang IV or 0.1nmol LVV-H7 in 3 months-old Sprague-Dawley rats enhanced spatial working memory in the plus maze spontaneous alternation task. Extracellular hippocampal glucose levels were monitored before, during and after behavioral testing using in vivo microdialysis. Extracellular hippocampal glucose levels decreased significantly to about 70% of baseline when the animals explored the plus maze, but remained constant when the animals were placed into a novel control chamber. Ang IV and LVV-H7 did not significantly alter hippocampal glucose levels compared to control animals in the plus maze or control chamber. Both peptides had no effect on hippocampal blood flow as determined by laser Doppler flowmetry, excluding that either peptide increased the hippocampal supply of glucose. We demonstrated for the first time that Ang IV and LVV-H7 enhance spatial working memory in the plus maze spontaneous alternation task but no in vivo evidence was found for enhanced hippocampal glucose uptake or blood flow.

  3. Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons.

    Science.gov (United States)

    Yang, Yoon-Sil; Jeon, Sang-Chan; Kim, Dong-Kwan; Eun, Su-Yong; Jung, Sung-Cherl

    2017-03-01

    Excessive influx and the subsequent rapid cytosolic elevation of Ca 2+ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca 2+ level in normal as well as pathological conditions. Delayed rectifier K + channels (I DR channels) play a role to suppress membrane excitability by inducing K + outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca 2+ -mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of I DR channels to hyperexcitable conditions induced by high Ca 2+ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca 2+ -treatment significantly increased the amplitude of I DR without changes of gating kinetics. Nimodipine but not APV blocked Ca 2+ -induced I DR enhancement, confirming that the change of I DR might be targeted by Ca 2+ influx through voltage-dependent Ca 2+ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated I DR enhancement was not affected by either Ca 2+ -induced Ca 2+ release (CICR) or small conductance Ca 2+ -activated K + channels (SK channels). Furthermore, PP2 but not H89 completely abolished I DR enhancement under high Ca 2+ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca 2+ -mediated I DR enhancement. Thus, SFKs may be sensitive to excessive Ca 2+ influx through VDCCs and enhance I DR to activate a neuroprotective mechanism against Ca 2+ -mediated hyperexcitability in neurons.

  4. Acupuncture Prevents the Impairment of Hippocampal LTP Through β1-AR in Vascular Dementia Rats.

    Science.gov (United States)

    Xiao, Ling-Yong; Wang, Xue-Rui; Yang, Jing-Wen; Ye, Yang; Zhu, Wen; Cao, Yan; Ma, Si-Ming; Liu, Cun-Zhi

    2018-02-13

    It is widely accepted that the synaptic dysfunction and synapse loss contribute to the cognitive deficits of vascular dementia (VD) patients. We have previously reported that acupuncture improved cognitive function in rats with VD. However, the mechanisms involved in acupuncture improving cognitive ability remain to be elucidated. The present study aims to investigate the pathways and molecules involved in the neuroprotective effect of acupuncture. We assessed the effects of acupuncture on hippocampal long-term potentiation (LTP), the most prominent cellular model of memory formation. Acupuncture enhanced LTP and norepinephrine (NE) levels in the hippocampus. Inhibition of the β-adrenergic receptor (AR), but not the α-AR, was able to block the effects of acupuncture on hippocampal LTP. Furthermore, inhibition of β1-AR, not β2-AR, abolished the enhanced LTP induced by acupuncture. The expression analysis revealed a significant upregulation of β1-AR and unchanged β2-AR with acupuncture, which supported the above findings. Specifically, increased β1-ARs in the dentate gyrus were expressed on neurons exclusively. Taken together, the present data supports a beneficial role of acupuncture in synaptic plasticity challenged with VD. A likely mechanism is the increase of NE and activation of β1-AR in the hippocampus.

  5. Hippocampal P3-like auditory event-related potentials are disrupted in a rat model of cholinergic degeneration in Alzheimer's disease: reversal by donepezil treatment.

    Science.gov (United States)

    Laursen, Bettina; Mørk, Arne; Kristiansen, Uffe; Bastlund, Jesper Frank

    2014-01-01

    P300 (P3) event-related potentials (ERPs) have been suggested to be an endogenous marker of cognitive function and auditory oddball paradigms are frequently used to evaluate P3 ERPs in clinical settings. Deficits in P3 amplitude and latency reflect some of the neurological dysfunctions related to several psychiatric and neurological diseases, e.g., Alzheimer's disease (AD). However, only a very limited number of rodent studies have addressed the back-translational validity of the P3-like ERPs as suitable markers of cognition. Thus, the potential of rodent P3-like ERPs to predict pro-cognitive effects in humans remains to be fully validated. The current study characterizes P3-like ERPs in the 192-IgG-SAP (SAP) rat model of the cholinergic degeneration associated with AD. Following training in a combined auditory oddball and lever-press setup, rats were subjected to bilateral intracerebroventricular infusion of 1.25 μg SAP or PBS (sham lesion) and recording electrodes were implanted in hippocampal CA1. Relative to sham-lesioned rats, SAP-lesioned rats had significantly reduced amplitude of P3-like ERPs. P3 amplitude was significantly increased in SAP-treated rats following pre-treatment with 1 mg/kg donepezil. Infusion of SAP reduced the hippocampal choline acetyltransferase activity by 75%. Behaviorally defined cognitive performance was comparable between treatment groups. The present study suggests that AD-like deficits in P3-like ERPs may be mimicked by the basal forebrain cholinergic degeneration induced by SAP. SAP-lesioned rats may constitute a suitable model to test the efficacy of pro-cognitive substances in an applied experimental setup.

  6. Hippocampal-dependent memory in the plus-maze discriminative avoidance task: The role of spatial cues and CA1 activity.

    Science.gov (United States)

    Leão, Anderson H F F; Medeiros, André M; Apolinário, Gênedy K S; Cabral, Alícia; Ribeiro, Alessandra M; Barbosa, Flávio F; Silva, Regina H

    2016-05-01

    The plus-maze discriminative avoidance task (PMDAT) has been used to investigate interactions between aversive memory and an anxiety-like response in rodents. Suitable performance in this task depends on the activity of the basolateral amygdala, similar to other aversive-based memory tasks. However, the role of spatial cues and hippocampal-dependent learning in the performance of PMDAT remains unknown. Here, we investigated the role of proximal and distal cues in the retrieval of this task. Animals tested under misplaced proximal cues had diminished performance, and animals tested under both misplaced proximal cues and absent distal cues could not discriminate the aversive arm. We also assessed the role of the dorsal hippocampus (CA1) in this aversive memory task. Temporary bilateral inactivation of dorsal CA1 was conducted with muscimol (0.05 μg, 0.1 μg, and 0.2 μg) prior to the training session. While the acquisition of the task was not altered, muscimol impaired the performance in the test session and reduced the anxiety-like response in the training session. We also performed a spreading analysis of a fluorophore-conjugated muscimol to confirm selective inhibition of CA1. In conclusion, both distal and proximal cues are required to retrieve the task, with the latter being more relevant to spatial orientation. Dorsal CA1 activity is also required for aversive memory formation in this task, and interfered with the anxiety-like response as well. Importantly, both effects were detected by different parameters in the same paradigm, endorsing the previous findings of independent assessment of aversive memory and anxiety-like behavior in the PMDAT. Taken together, these findings suggest that the PMDAT probably requires an integration of multiple systems for memory formation, resembling an episodic-like memory rather than a pure conditioning behavior. Furthermore, the concomitant and independent assessment of emotionality and memory in rodents is relevant to

  7. IP3-dependent intracellular Ca2+ release is required for cAMP-induced c-fos expression in hippocampal neurons

    International Nuclear Information System (INIS)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng; Johnson, Hong W.; Schell, Michael J.; Lord, Rebecca L.; Chawla, Sangeeta

    2012-01-01

    Highlights: ► cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca 2+ pool. ► The submembraneous Ca 2+ pool derives from intracellular ER stores. ► Expression of IP 3 -metabolizing enzymes inhibits cAMP-induced c-fos expression. ► SRE-mediated and CRE-mediated gene expression is sensitive to IP 3 -metabolizing enzymes. ► Intracellular Ca 2+ release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca 2+ and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca 2+ and cAMP signals, including some that are Ca 2+ -responsive, some that are cAMP-responsive and some that detect coincident Ca 2+ and cAMP signals. Because Ca 2+ and cAMP can influence each other’s amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca 2+ are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca 2+ buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP 3 levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements – the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP 3 metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by depletion of intracellular Ca 2+ stores. Our data indicate that Ca 2+ release from IP 3 -sensitive pools is required for cAMP-induced transcription in hippocampal neurons.

  8. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  9. Over-expression of TSPO in the hippocampal CA1 area alleviates cognitive dysfunction caused by lipopolysaccharide in mice.

    Science.gov (United States)

    Zhang, Hui; Ma, Li; Yin, Yan-Ling; Dong, Lian-Qiang; Cheng, Gang-Ge; Ma, Ya-Qun; Li, Yun-Feng; Xu, Bai-Nan

    2016-09-01

    The translocator protein 18kDa (TSPO) is closely related to regulation of immune/inflammatory response. However, the putative role and signaling mechanisms of TSPO in regulation of neuroinflammation remain unclear. GV287 lentiviral vectors mediating TSPO over-expression were injected into bilateral hippocampal CA1 areas to test whether TSPO over-expression was neuroprotective in lipopolysaccharide (LPS)-induced mice model. Finasteride, a blocker of allopregnanolone production, was used to test whether the protective effects were related to steroideogenesis. The results demonstrated that TSPO over-expression increased progesterone and allopregnanolone synthesis. TSPO over-expression in CA1 area improved LPS-induced cognitive deficiency in mice and this cognitive improvement was reversed by finasteride administration. These data suggest that up-regulation of TSPO level during neuroinflammation may be an adaptive response mechanism, a way to provide more neurosteroids. We confer that TSPO could be an attractive drug target for controlling neuroinflammation in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The influence of the ketogenic diet on the elemental and biochemical compositions of the hippocampal formation.

    Science.gov (United States)

    Chwiej, Joanna; Skoczen, Agnieszka; Matusiak, Katarzyna; Janeczko, Krzysztof; Patulska, Agnieszka; Sandt, Christophe; Simon, Rolf; Ciarach, Malgorzata; Setkowicz, Zuzanna

    2015-08-01

    A growing body of evidence demonstrates that dietary therapies, mainly the ketogenic diet, may be highly effective in the reduction of epileptic seizures. All of them share the common characteristic of restricting carbohydrate intake to shift the predominant caloric source of the diet to fat. Catabolism of fats results in the production of ketone bodies which become alternate energy substrates to glucose. Although many mechanisms by which ketone bodies yield its anticonvulsant effect are proposed, the relationships between the brain metabolism of the ketone bodies and their neuroprotective and antiepileptogenic action still remain to be discerned. In the study, X-ray fluorescence microscopy and FTIR microspectroscopy were used to follow ketogenic diet-induced changes in the elemental and biochemical compositions of rat hippocampal formation tissue. The use of synchrotron sources of X-rays and infrared allowed us to examine changes in the accumulation and distribution of selected elements (P, S, K, Ca, Fe, Cu, Zn, and Se) and biomolecules (proteins, lipids, ketone bodies, etc.) with the micrometer spatial resolution. The comparison of rats fed with the ketogenic diet and rats fed with the standard laboratory diet showed changes in the hippocampal accumulation of P, K, Ca, and Zn. The relations obtained for Ca (increased level in CA3, DG, and its internal area) and Zn (decreased areal density in CA3 and DG) were analogous to those that we previously observed for rats in the acute phase of pilocarpine-induced seizures. Biochemical analysis of tissues taken from ketogenic diet-fed rats demonstrated increased intensity of absorption band occurring at 1740 cm(-1), which was probably the result of elevated accumulation of ketone bodies. Moreover, higher absolute and relative (3012 cm(-1)/2924 cm(-1), 3012 cm(-1)/lipid massif, and 3012 cm(-1)/amide I) intensity of the 3012-cm(-1) band resulting from increased unsaturated fatty acids content was found after the treatment

  11. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Lead (Pb+2) impairs long-term memory and blocks learning-induced increases in hippocampal protein kinase C activity

    International Nuclear Information System (INIS)

    Vazquez, Adrinel; Pena de Ortiz, Sandra

    2004-01-01

    The long-term storage of information in the brain known as long-term memory (LTM) depends on a variety of intracellular signaling cascades utilizing calcium (Ca 2+ ) and cyclic adenosine monophosphate as second messengers. In particular, Ca +2 /phospholipid-dependent protein kinase C (PKC) activity has been proposed to be necessary for the transition from short-term memory to LTM. Because the neurobehavioral toxicity of lead (Pb +2 ) has been associated to its interference with normal Ca +2 signaling in neurons, we studied its effects on spatial learning and memory using a hippocampal-dependent discrimination task. Adult rats received microinfusions of either Na + or Pb +2 acetate in the CA1 hippocampal subregion before each one of four training sessions. A retention test was given 7 days later to examine LTM. Results suggest that intrahippocampal Pb +2 did not affect learning of the task, but significantly impaired retention. The effects of Pb +2 selectively impaired reference memory measured in the retention test, but had no effect on the general performance because it did not affect the latency to complete the task during the test. Finally, we examined the effects of Pb +2 on the induction of hippocampal Ca +2 /phospholipid-dependent PKC activity during acquisition training. The results showed that Pb +2 interfered with the learning-induced activation of Ca +2 /phospholipid-dependent PKC on day 3 of acquisition. Overall, our results indicate that Pb +2 causes cognitive impairments in adult rats and that such effects might be subserved by interference with Ca +2 -related signaling mechanisms required for normal LTM

  13. Hippocampal testosterone relates to reference memory performance and synaptic plasticity in male rats

    Directory of Open Access Journals (Sweden)

    Kristina eSchulz

    2010-12-01

    Full Text Available Steroids are important neuromodulators influencing cognitive performance and synaptic plasticity. While the majority of literature concerns adrenal- and gonadectomized animals, very little is known about the natural endogenous release of hormones during learning. Therefore, we measured blood and brain (hippocampus, prefrontal cortex testosterone, estradiol, and corticosterone concentrations of intact male rats undergoing a spatial learning paradigm which is known to reinforce hippocampal plasticity. We found significant modulations of all investigated hormones over the training course. Corticosterone and testosterone were correlated manifold with behaviour, while estradiol expressed fewer correlations. In the recall session, testosterone was tightly coupled to reference memory performance, which is crucial for reinforcement of synaptic plasticity in the dentate gyrus. Intriguingly, prefrontal cortex and hippocampal levels related differentially to reference memory performance. Correlations of testosterone and corticosterone switched from unspecific activity to specific cognitive functions over training. Correspondingly, exogenous application of testosterone revealed different effects on synaptic and neuronal plasticity in trained versus untrained animals. While hippocampal long-term potentiation (LTP of the field excitatory postsynaptic potential (fEPSP was prolonged in untrained rats, both the fEPSP- and the population spike amplitude-LTP was impaired in trained rats. Behavioural performance was unaffected, but correlations of hippocampal field potentials with behaviour were decoupled in treated rats. The data provide important evidence that besides adrenal, also gonadal steroids play a mechanistic role in linking synaptic plasticity to cognitive performance.

  14. Estradiol treatment in preadolescent females enhances adolescent spatial memory and differentially modulates hippocampal region-specific phosphorylated ERK labeling.

    Science.gov (United States)

    Wartman, Brianne C; Keeley, Robin J; Holahan, Matthew R

    2012-10-24

    Estrogen levels in rats are positively correlated with enhanced memory function and hippocampal dendritic spine density. There is much less work on the long-term effects of estradiol manipulation in preadolescent rats. The present work examined how injections of estradiol during postnatal days 19-22 (p19-22; preadolescence) affected water maze performance and hippocampal phosphorylated ERK labeling. To investigate this, half of the estradiol- and vehicle-treated female rats were trained on a water maze task 24h after the end of estradiol treatment (p23-27) while the other half was not trained. All female rats were tested on the water maze from p40 to p44 (adolescence) and hippocampal pERK1/2 labeling was assessed as a putative marker of neuronal plasticity. During adolescence, preadolescent-trained groups showed lower latencies than groups without preadolescent training. Retention data revealed lower latencies in both estradiol groups, whether preadolescent trained or not. Immunohistochemical detection of hippocampal pERK1/2 revealed elevations in granule cell labeling associated with the preadolescent trained groups and reductions in CA1 labeling associated with estradiol treatment. These results show a latent beneficial effect of preadolescent estradiol treatment on adolescent spatial performance and suggest an organizational effect of prepubescent exogenously applied estradiol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Hippocampal volume is decreased in adults with hypothyroidism.

    Science.gov (United States)

    Cooke, Gillian E; Mullally, Sinead; Correia, Neuman; O'Mara, Shane M; Gibney, James

    2014-03-01

    Thyroid hormones are important for the adult brain, particularly regions of the hippocampus including the dentate gyrus and CA1 and CA3 regions. The hippocampus is a thyroid hormone receptor-rich region of the brain involved in learning and memory. Consequently, alterations in thyroid hormone levels have been reported to impair hippocampal-associated learning and memory, synaptic plasticity, and neurogenesis. While these effects have been shown primarily in developing rats, as well as in adult rats, little is known about the effects in adult humans. There are currently no data regarding structural changes in the hippocampus as a result of adult-onset hypothyroidism. We aimed to establish whether hippocampal volume was reduced in patients with untreated adult-onset hypothyroidism compared to age-matched healthy controls. High-resolution magnetization-prepared rapid acquisition with gradient echo (MPRAGE) scans were performed on 11 untreated hypothyroid adults and 9 age-matched control subjects. Hypothyroidism was diagnosed based on increased levels of thyrotropin (TSH) and reduced levels of free thyroxine (fT4). Volumetric analysis of the right and left hippocampal regions, using functional magnetic resonance imaging of the brain (FMRIB) integrated registration and segmentation tool (FIRST), demonstrated significant volume reduction in the right hippocampus in the hypothyroid patients relative to the control group. These findings provide preliminary evidence that hypothyroidism results in structural deficits in the adult human brain. Decreases in volume in the right hippocampus were evident in patients with adult-onset overt hypothyroidism, supporting some of the findings in animal models.

  16. Effects of voluntary running on plasma levels of neurotrophins, hippocampal cell proliferation and learning and memory in stressed rats.

    Science.gov (United States)

    Yau, S-Y; Lau, B W-M; Zhang, E-D; Lee, J C-D; Li, A; Lee, T M C; Ching, Y-P; Xu, A-M; So, K-F

    2012-10-11

    Previous studies have shown that a 2-week treatment with 40 mg/kg corticosterone (CORT) in rats suppresses hippocampal neurogenesis and decreases hippocampal brain-derived neurotrophic factor (BDNF) levels and impairs spatial learning, all of which could be counteracted by voluntary wheel running. BDNF and insulin-like growth factor (IGF-1) have been suggested to mediate physical exercise-enhanced hippocampal neurogenesis and cognition. Here we examined whether such running-elicited benefits were accompanied by corresponding changes of peripheral BDNF and IGF-1 levels in a rat model of stress. We examined the effects of acute (5 days) and chronic (4 weeks) treatment with CORT and/or wheel running on (1) hippocampal cell proliferation, (2) spatial learning and memory and (3) plasma levels of BDNF and IGF-1. Acute CORT treatment improved spatial learning without altered cell proliferation compared to vehicle treatment. Acute CORT-treated non-runners showed an increased trend in plasma BDNF levels together with a significant increase in hippocampal BDNF levels. Acute running showed no effect on cognition, cell proliferation and peripheral BDNF and IGF-1 levels. Conversely, chronic CORT treatment in non-runners significantly impaired spatial learning and suppressed cell proliferation in association with a decreased trend in plasma BDNF level and a significant increase in hippocampal BDNF levels. Running counteracted cognitive deficit and restored hippocampal cell proliferation following chronic CORT treatment; but without corresponding changes in plasma BDNF and IGF-1 levels. The results suggest that the beneficial effects of acute stress on cognitive improvement may be mediated by BDNF-enhanced synaptic plasticity that is hippocampal cell proliferation-independent, whereas chronic stress may impair cognition by decreasing hippocampal cell proliferation and BDNF levels. Furthermore, the results indicate a trend in changes of plasma BDNF levels associated with a

  17. Corticosterone rapidly increases thorns of CA3 neurons via synaptic/extranuclear glucocorticoid receptor in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Miyuki eYoshiya

    2013-11-01

    Full Text Available Modulation of synapses under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. We tried to test whether rapid CORT effects involve activation of essential kinases as non-genomic processes.We demonstrated rapid effects (~ 1 h of CORT on the density of thorns, by imaging Lucifer Yellow-injected neurons in adult male rat hippocampal slices. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. The application of CORT at 100, 500 and 1000 nM induced a rapid increase in the density of thorns in the stratum lucidum of CA3 pyramidal neurons. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR, abolished the effect of CORT. Blocking a single kinase, including MAPK, PKA or PKC, suppressed CORT-induced enhancement of thorn-genesis. On the other hand, GSK-3β was not involved in the signaling of thorn-genesis. Blocking AMPA receptors suppressed the CORT effect. Expression of CA3 synaptic/extranuclear GR was demonstrated by immunogold electron microscopic analysis. From these results, stress levels of CORT (100-1000 nM might drive the rapid thorn-genesis via synaptic/extranuclear GR and multiple kinase pathways, although a role of nuclear GRs cannot be completely excluded.

  18. Inhibition of NKCC1 attenuated hippocampal LTP formation and inhibitory avoidance in rat.

    Directory of Open Access Journals (Sweden)

    Meng Chang Ko

    Full Text Available The loop diuretic bumetanide (Bumex is thought to have antiepileptic properties via modulate GABAA mediated signaling through their antagonism of cation-chloride cotransporters. Given that loop diuretics may act as antiepileptic drugs that modulate GABAergic signaling, we sought to investigate whether they also affect hippocampal function. The current study was performed to evaluate the possible role of NKCC1 on the hippocampal function. Brain slice extracellular recording, inhibitory avoidance, and western blot were applied in this study. Results showed that hippocampal Long-term potentiation was attenuated by suprafusion of NKCC1 inhibitor bumetanide, in a dose dependent manner. Sequent experiment result showed that Intravenous injection of bumetanide (15.2 mg/kg 30 min prior to the training session blocked inhibitory avoidance learning significantly. Subsequent control experiment's results excluded the possible non-specific effect of bumetanide on avoidance learning. We also found the phosphorylation of hippocampal MAPK was attenuated after bumetanide administration. These results suggested that hippocampal NKCC1 may via MAPK signaling cascade to possess its function.

  19. Chronic Stress Decreases Basal Levels of Memory-Related Signaling Molecules in Area CA1 of At-Risk (Subclinical) Model of Alzheimer's Disease.

    Science.gov (United States)

    Alkadhi, Karim A; Tran, Trinh T

    2015-08-01

    An important factor that may affect the severity and time of onset of Alzheimer's disease (AD) is chronic stress. Epidemiological studies report that chronically stressed individuals are at an increased risk for developing AD. The purpose of this study was to reveal whether chronic psychosocial stress could hasten the appearance of AD symptoms including changes in basal levels of cognition-related signaling molecules in subjects who are at risk for the disease. We investigated the effect of chronic psychosocial stress on basal levels of memory-related signaling molecules in area CA1 of subclinical rat model of AD. The subclinical symptomless rat model of AD was induced by osmotic pump continuous intracerebroventricular (ICV) infusion of 160 pmol/day Aβ1-42 for 14 days. Rats were chronically stressed using the psychosocial stress intruder model. Western blot analysis of basal protein levels of important signaling molecules in hippocampal area CA1 showed no significant difference between the subclinical AD rat model and control rat. Following six weeks of psychosocial stress, molecular analysis showed that subclinical animals subjected to stress have significantly reduced basal levels of p-CaMKII and decreased p-CaMKII/t-CaMKII ratio as well as decreased basal levels of p-CREB, total CREB, and BDNF. The present results suggest that these changes in basal levels of signaling molecules may be responsible for impaired learning, memory, and LTP in this rat model, which support the proposition that chronic stress may accelerate the emergence of AD in susceptible individuals.

  20. Co-induction of p75(NTR) and the associated death executor NADE in degenerating hippocampal neurons after kainate-induced seizures in the rat.

    Science.gov (United States)

    Yi, Jung-Sun; Lee, Soon-Keum; Sato, Taka-Aki; Koh, Jae-Young

    2003-08-21

    Zinc induces in cultured cortical neurons both p75(NTR) and p75(NTR)-associated death executor (NADE), which together contribute to caspase-dependent neuronal apoptosis. Since zinc neurotoxicity may contribute to neuronal death following seizures, we examined whether p75(NTR) and NADE are co-induced also in rat hippocampal neurons degenerating after seizures. Staining of brain sections with a zinc-specific fluorescent dye (N-(6-methoxy-8-quinolyl)-p-carboxybenzoylsulphonamide) and acid fuchsin revealed zinc accumulation in degenerating neuronal cell bodies in CA1 and CA3 of hippocampus 24 h after kainate injection. Both anti-p75(NTR) and anti-NADE immunoreactivities appeared in zinc-accumulating/degenerating neurons in both areas. Intraventricular injection of CaEDTA, without altering the severity or time course of kainate-induced seizures, markedly attenuated the induction of p75(NTR)/NADE in hippocampus, which correlated with the decrease of caspase-3 activation and zinc accumulation/cell death. The present study has demonstrated that p75(NTR) and NADE are co-induced in neurons degenerating after kainate-induced seizures in rats, likely in a zinc-dependent manner.

  1. Learning and memory alterations are associated with hippocampal N-acetylaspartate in a rat model of depression as measured by 1H-MRS.

    Directory of Open Access Journals (Sweden)

    Guangjun Xi

    Full Text Available It is generally accepted that cognitive processes, such as learning and memory, are affected in depression. The present study used a rat model of depression, chronic unpredictable mild stress (CUMS, to determine whether hippocampal volume and neurochemical changes were involved in learning and memory alterations. A further aim was to determine whether these effects could be ameliorated by escitalopram treatment, as assessed with the non-invasive techniques of structural magnetic resonance imaging (MRI and magnetic resonance spectroscopy (MRS. Our results demonstrated that CUMS had a dramatic influence on spatial cognitive performance in the Morris water maze task, and CUMS reduced the concentration of neuronal marker N-acetylaspartate (NAA in the hippocampus. These effects could be significantly reversed by repeated administration of escitalopram. However, neither chronic stress nor escitalopram treatment influenced hippocampal volume. Of note, the learning and memory alterations of the rats were associated with right hippocampal NAA concentration. Our results indicate that in depression, NAA may be a more sensitive measure of cognitive function than hippocampal volume.

  2. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    Science.gov (United States)

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  3. The Effect of Dorsal Hippocampal α2-Adrenegic Receptors on WIN55,212-2 State-Dependent Memory of Passive Avoidance

    Directory of Open Access Journals (Sweden)

    Zarrindast M.R.

    2010-09-01

    Full Text Available Background and Objectives: Cannabinoids are a class of psychoactive compounds that produce a wide array of effects in a large number of species. In the present study, the effects of bilateral intra-CA1 injections of an α2-adrenergic receptor agents, on WIN55,212-2 state-dependent learning were examined in adult male Wistar rats. Methods: The animals were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus, trained in a step-down type inhibitory avoidance task, and tested 24h after training to measure step-down latency.Results: Post-training intra-CA1 injection of WIN55,212-2 (0.25 and 0.5µg/rat induced impairment of memory retention. Amnesia produced by post-training WIN55,212-2 (0.5µg/rat was reversed by pre-test administration of the same dose of WIN55,212-2 that is due to a state-dependent effect. Pre-test intra-CA1 injection of clonidine (0.5 and 0.75µg/rat, intra-CA1 improved post-training WIN55,212-2 (0.5µg/rat, intra-CA1-induced retrieval impairment, while pre-test intra-CA1 injection of yohimbine (1µg/rat, intra-CA1 2min before the administration of WIN55,212-2 (0.5µg/rat, intra-CA1 inhibited WIN55,212-2 state-dependent memory. Conclusion: These results suggest that α2-adrenergic receptors of the dorsal hippocampal CA1 regions may play an important role in Win55,212-2-induced amnesia and WIN55,212-2 state-dependent memory.

  4. The signaling mechanisms of hippocampal endoplasmic reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise.

    Science.gov (United States)

    Cai, Ming; Wang, Hong; Li, Jing-Jing; Zhang, Yun-Li; Xin, Lei; Li, Feng; Lou, Shu-Jie

    2016-10-01

    High fat diet (HFD)-induced obesity has been shown to reduce the levels of neuronal plasticity-related proteins, specifically brain-derived neurotrophic factor (BDNF) and synaptophysin (SYN), in the hippocampus. However, the underlying mechanisms are not fully clear. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating gene expression and protein production by affecting stress signaling pathways and ER functions of protein folding and post-translational modification in peripheral tissues of obese rodent models. Additionally, HFD that is associated with hyperglycemia could induce hippocampal ERS, thus impairing insulin signaling and cognitive health in HFD mice. One goal of this study was to determine whether hyperglycemia and hyperlipidemia could cause hippocampal ERS in HFD-induced obese SD rats, and explore the potential mechanisms of ERS regulating hippocampal BDNF and SYN proteins production. Additionally, although regular aerobic exercise could reduce central inflammation and elevate hippocampal BDNF and SYN levels in obese rats, the regulated mechanisms are poorly understood. Nrf2-HO-1 pathways play roles in anti-ERS, anti-inflammation and anti-apoptosis in peripheral tissues. Therefore, the other goal of this study was to determine whether aerobic exercise could activate Nrf2-HO-1 in hippocampus to alleviate obesity-induced hippocampal ERS, which would lead to increased BDNF and SYN levels. Male SD rats were fed on HFD for 8weeks to establish the obese model. Then, 8weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that HFD-induced obesity caused hyperglycemia and hyperlipidemia, and significantly promoted hippocampal glucose transporter 3 (GLUT3) and fatty acid transport protein 1 (FATP1) protein expression. These results were associated with the activation of hippocampal ERS and ERS-mediated apoptosis. At the same time, we found that excessive hippocampal ERS not only

  5. Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo.

    Science.gov (United States)

    He, Wen-Bin; Abe, Kazuho; Akaishi, Tatsuhiro

    2018-01-01

    To explore memory enhancing effect of the flavonoid fisetin, we investigated the effect of oral administration of flavonoids on the induction of long-term potentiation (LTP) at hippocampal CA1 synapses of anesthetized rats. Among four flavonoids (fisetin, quercetin, luteolin and myricetin) tested, only fisetin significantly facilitated the induction of hippocampal LTP. The effect of oral fisetin was abolished by intracerebroventricular injection of U0126, an agent that was previously found to inhibit its effect in hippocampal slices in vitro. These results suggest that orally administered fisetin crosses the blood-brain barrier and promotes synaptic functions in the hippocampus. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  6. The opposite effects of nandrolone decanoate and exercise on anxiety levels in rats may involve alterations in hippocampal parvalbumin-positive interneurons.

    Directory of Open Access Journals (Sweden)

    Dragica Selakovic

    Full Text Available The aim of this study was to evaluate the behavioral effects of chronic (six weeks nandrolone decanoate (ND, 20 mg/kg, s.c., weekly in single dose administration (in order to mimic heavy human abuse, and exercise (swimming protocol of 60 minutes a day, five days in a row/two days break, applied alone and simultaneously with ND, in male rats (n = 40. Also, we evaluated the effects of those protocols on hippocampal parvalbumin (PV content and the possible connection between the alterations in certain parts of hippocampal GABAergic system and behavioral patterns. Both ND and exercise protocols induced increase in testosterone, dihydrotestosterone and estradiol blood levels. Our results confirmed anxiogenic effects of ND observed in open field (OF test (decrease in the locomotor activity, as well as in frequency and cumulative duration in the centre zone and in elevated plus maze (EPM test (decrease in frequency and cumulative duration in open arms, and total exploratory activity, that were accompanied with a mild decrease in the number of PV interneurons in hippocampus. Chronic exercise protocol induced significant increase in hippocampal PV neurons (dentate gyrus and CA1 region, followed by anxiolytic-like behavioral changes, observed in both OF and EPM (increase in all estimated parameters, and in evoked beam-walking test (increase in time to cross the beam, compared to ND treated animals. The applied dose of ND was sufficient to attenuate beneficial effects of exercise in rats by means of decreased exercise-induced anxiolytic effect, as well as to reverse exercise-induced augmentation in number of PV immunoreactive neurons in hippocampus. Our results implicate the possibility that alterations in hippocampal PV interneurons (i.e. GABAergic system may be involved in modulation of anxiety level induced by ND abuse and/or extended exercise protocols.

  7. The opposite effects of nandrolone decanoate and exercise on anxiety levels in rats may involve alterations in hippocampal parvalbumin-positive interneurons.

    Science.gov (United States)

    Selakovic, Dragica; Joksimovic, Jovana; Zaletel, Ivan; Puskas, Nela; Matovic, Milovan; Rosic, Gvozden

    2017-01-01

    The aim of this study was to evaluate the behavioral effects of chronic (six weeks) nandrolone decanoate (ND, 20 mg/kg, s.c., weekly in single dose) administration (in order to mimic heavy human abuse), and exercise (swimming protocol of 60 minutes a day, five days in a row/two days break), applied alone and simultaneously with ND, in male rats (n = 40). Also, we evaluated the effects of those protocols on hippocampal parvalbumin (PV) content and the possible connection between the alterations in certain parts of hippocampal GABAergic system and behavioral patterns. Both ND and exercise protocols induced increase in testosterone, dihydrotestosterone and estradiol blood levels. Our results confirmed anxiogenic effects of ND observed in open field (OF) test (decrease in the locomotor activity, as well as in frequency and cumulative duration in the centre zone) and in elevated plus maze (EPM) test (decrease in frequency and cumulative duration in open arms, and total exploratory activity), that were accompanied with a mild decrease in the number of PV interneurons in hippocampus. Chronic exercise protocol induced significant increase in hippocampal PV neurons (dentate gyrus and CA1 region), followed by anxiolytic-like behavioral changes, observed in both OF and EPM (increase in all estimated parameters), and in evoked beam-walking test (increase in time to cross the beam), compared to ND treated animals. The applied dose of ND was sufficient to attenuate beneficial effects of exercise in rats by means of decreased exercise-induced anxiolytic effect, as well as to reverse exercise-induced augmentation in number of PV immunoreactive neurons in hippocampus. Our results implicate the possibility that alterations in hippocampal PV interneurons (i.e. GABAergic system) may be involved in modulation of anxiety level induced by ND abuse and/or extended exercise protocols.

  8. Hippocampal atrophy on MRI is predictive of histopathological patterns and surgical prognosis in mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Jardim, Anaclara Prada; Corso, Jeana Torres; Garcia, Maria Teresa Fernandes Castilho; Gaça, Larissa Botelho; Comper, Sandra Mara; Lancellotti, Carmen Lúcia Penteado; Centeno, Ricardo Silva; Carrete, Henrique; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2016-12-01

    To correlate hippocampal volumes obtained from brain structural imaging with histopathological patterns of hippocampal sclerosis (HS), in order to predict surgical outcome. Patients with mesial temporal lobe epilepsy (MTLE) with HS were selected. Clinical data were assessed pre-operatively and surgical outcome in the first year post surgery. One block of mid hippocampal body was selected for HS classification according to ILAE criteria. NeuN-immunoreactive cell bodies were counted within hippocampal subfields, in four randomly visual fields, and cell densities were transformed into z-score values. FreeSurfer processing of 1.5T brain structural images was used for subcortical and cortical volumetric estimation of the ipsilateral hippocampus. Univariate analysis of variance and Pearson's correlation test were applied for statistical analyses. Sixty-two cases (31 female, 32 right HS) were included. ILAE type 1 HS was identified in 48 patients, type 2 in eight, type 3 in two, and four had no-HS. Better results regarding seizure control, i.e. ILAE 1, were achieved by patients with type 1 HS (58.3%). Patients with types 1 and 2 had smaller hippocampal volumes compared to those with no-HS (p<0.001 and p=0.004, respectively). Positive correlation was encountered between hippocampal volumes and CA1, CA3, CA4, and total estimated neuronal densities. CA2 was the only sector which did not correlate its neuronal density with hippocampal volume (p=0.390). This is the first study correlating hippocampal volume on MRI submitted to FreeSurfer processing with ILAE patterns of HS and neuronal loss within each hippocampal subfield, a fundamental finding to anticipate surgical prognosis for patients with drug-resistant MTLE and HS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Lindane blocks GABAA-mediated inhibition and modulates pyramidal cell excitability in the rat hippocampal slice.

    Science.gov (United States)

    Joy, R M; Walby, W F; Stark, L G; Albertson, T E

    1995-01-01

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of lindane on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. This was done to establish simultaneous effects on a simple neural network and to develop procedures for more detailed analyses of the effects of lindane. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid. Electrodes were placed in the CA1 region to record extracellular population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural (SC/C) fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. Perfusion with lindane produced both time and dose dependent changes in a number of the responses measured. The most striking effect produced by lindane was the loss of GABAA-mediated recurrent collateral inhibition. This tended to occur rapidly, often before changes in EPSP or PS responses could be detected. With longer exposures to lindane, repetitive discharge of pyramidal cells developed resulting in multiple PSs to single stimuli. Lindane (50 microM) also completely reversed the effects of the injectable anesthetic, propofol, a compound known to potentiate GABAA-mediated inhibition via a direct action on the GABAA receptor-chloride channel complex. An analysis of input/output relationships at varying stimulus intensities showed that lindane increased EPSP and PS response amplitudes at any given stimulus intensity resulting in a leftward shift in the EPSP amplitude/stimulus intensity, PS amplitude/stimulus intensity and PS amplitude/EPSP amplitude relationships. This effect was most noticeable with low intensity stimuli and became progressively less so as stimulus intensities approached those yielding maximal responses. In addition lindane significantly increased paired pulse

  10. MORPHOLOGICAL CHANGES IN THE HIPPOCAMPUS OF RATS IN ACCELERATED AGING

    Directory of Open Access Journals (Sweden)

    K. Yu. Maksimova

    2014-01-01

    Full Text Available The aim of this work was the analysis of structural changes with age in the hippocampus of senescenceaccelerated OXYS rats when signs of accelerated brain aging are missing (age 14 days, developments (age 5 months, and active progresses (age 15 months. The study was performed on 15 OXYS rats and 15 Wistar rats (as a control. After dislocation, brains were dissected, fixed with 10% formalin, embedded in paraffin, and serially cut in coronal sections (5μm thickness. These sections were stained with Cresyl violet and examined with a photomicroscope (Carl Zeiss Axiostar plus, Germany. The total number of hippocampal pyramidal cells in the CA1, CA3 and the dentate gyrus regions were estimated in 14-dayold, 5and 15-month-old OXYS and Wistar rats (n = 5 on the 5 slices of each brain sections. The number of neurons with chromatolysis, hyperchromatic with darkly stained cytoplasm and shrunken neurons were calculated as degenerative neurons. The pictures obtained with the program Carl Zeiss Axio Vision 8.0 with increasing 10  100, determined the average area bodies and nuclei of neurons (mkm2. The significant structural changes of neurons in the CA1, CA3 and dentate gyrus regions of the hippocampus in OXYS rats at 5 month of age are revealed by light microscopy. This results indicates the early develop neurodegeneration in OXYS rats. The most pronounced morphological changes occur in the CA1 region of the hippocampus of OXYS rats and irreversible. The degenerative changes of neurons in the hippocampus increases by the age of 15 months. Morphometric analysis of the average area of bodies and the nuclei of hippocampal neurons in CA1, CA3 and the dentate gyrus regions of OXYS and Wistar rats at 14 days of age showed no significant interline differences. At 5 months of age in the CA1 region of the hippocampus of OXYS rats was determined a significantly lower average body size and nuclei of pyramidal neurons compared with Wistar rats. With age, these

  11. [Establishment of oxygen and glucose deprive model of in vitro cultured hippocampal neuron and effect of ligustrazine on intracellular Ca+ level in model neurons].

    Science.gov (United States)

    Wan, Hai-tong; Wang, Yu; Yang, Jie-hong

    2007-03-01

    To establish the oxygen and glucose deprive (OGD) model in cultured hippocampal neuron and study the effect of ligustrazine on intracellular Ca2+ level in the model neurons. The OGD model was established in cultured hippocampal neuron, and the intracellular Ca2+ level in it was detected by laser scanning confocal microscope (LSCM). The OGD model was successfully established in cultured hippocampal neurons; the intracellular Ca2+ level in the OGD model group was significantly higher than that in the blank control group (P neuron, which could be antagonized by ligustrazine, indicating that ligustrazine has a protective effect on hippocampal neuron from hypoxic-ischemic injury.

  12. Presynaptic nicotinic α7 and non-α7 receptors stimulate endogenous GABA release from rat hippocampal synaptosomes through two mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Stefania Zappettini

    Full Text Available BACKGROUND: Although converging evidence has suggested that nicotinic acetylcholine receptors (nAChR play a role in the modulation of GABA release in rat hippocampus, the specific involvement of different nAChR subtypes at presynaptic level is still a matter of debate. In the present work we investigated, using selective α7 and α4β2 nAChR agonists, the presence of different nAChR subtypes on hippocampal GABA nerve endings to assess to what extent and through which mechanisms they stimulate endogenous GABA release. METHODOLOGY/FINDINGS: All agonists elicited GABA overflow. Choline (Ch-evoked GABA overflow was dependent to external Ca(2+, but unaltered in the presence of Cd(2+, tetrodotoxin (TTX, dihydro-β-erythroidine (DHβE and 1-(4,4-Diphenyl-3-butenyl-3-piperidinecarboxylic acid hydrochloride SKF 89976A. The effect of Ch was blocked by methyllycaconitine (MLA, α-bungarotoxin (α-BTX, dantrolene, thapsigargin and xestospongin C, suggesting that GABA release might be triggered by Ca(2+ entry into synaptosomes through the α7 nAChR channel with the involvement of calcium from intracellular stores. Additionally, 5-Iodo-A-85380 dihydrochloride (5IA85380 elicited GABA overflow, which was Ca(2+ dependent, blocked by Cd(2+, and significantly inhibited by TTX and DHβE, but unaffected by MLA, SKF 89976A, thapsigargin and xestospongin C and dantrolene. These findings confirm the involvement of α4β2 nAChR in 5IA85380-induced GABA release that seems to occur following membrane depolarization and opening calcium channels. CONCLUSIONS/SIGNIFICANCE: Rat hippocampal synaptosomes possess both α7 and α4β2 nAChR subtypes, which can modulate GABA release via two distinct mechanisms of action. The finding that GABA release evoked by the mixture of sub-maximal concentration of 5IA85380 plus sub-threshold concentrations of Ch was significantly larger than that elicited by the sum of the effects of the two agonists is compatible with the possibility that

  13. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    Science.gov (United States)

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB 1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB 1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Directory of Open Access Journals (Sweden)

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  15. Repeated Acute Oral Exposure to Cannabis sativa Impaired Neurocognitive Behaviours and Cortico-hippocampal Architectonics in Wistar Rats.

    Science.gov (United States)

    Imam, A; Ajao, M S; Akinola, O B; Ajibola, M I; Ibrahim, A; Amin, A; Abdulmajeed, W I; Lawal, Z A; Ali-Oluwafuyi, A

    2017-03-06

    The most abused illicit drug in both the developing and the developed world is Cannabis disposing users to varying forms of personality disorders. However, the effects of cannabis on cortico-hippocampal architecture and cognitive behaviours still remain elusive.  The present study investigated the neuro-cognitive implications of oral cannabis use in rats. Eighteen adult Wistar rats were randomly grouped to three. Saline was administered to the control rats, cannabis (20 mg/kg) to the experimental group I, while Scopolamine (1 mg/kg. ip) was administered to the last group as a standard measure for the cannabis induced cognitive impairment. All treatments lasted for seven consecutive days. Open Field Test (OFT) was used to assess locomotor activities, Elevated Plus Maze (EPM) for anxiety-like behaviour, and Y maze paradigm for spatial memory and data subjected to ANOVA and T test respectively. Thereafter, rats were sacrificed and brains removed for histopathological studies. Cannabis significantly reduced rearing frequencies in the OFT and EPM, and increased freezing period in the OFT. It also reduced percentage alternation similar to scopolamine in the Y maze, and these effects were coupled with alterations in the cortico-hippocampal neuronal architectures. These results point to the detrimental impacts of cannabis on cortico-hippocampal neuronal architecture and morphology, and consequently cognitive deficits.

  16. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons.

    Science.gov (United States)

    Vila-Luna, S; Cabrera-Isidoro, S; Vila-Luna, L; Juárez-Díaz, I; Bata-García, J L; Alvarez-Cervera, F J; Zapata-Vázquez, R E; Arankowsky-Sandoval, G; Heredia-López, F; Flores, G; Góngora-Alfaro, J L

    2012-01-27

    Chronic caffeine consumption has been inversely associated with the risk of developing dementia and Alzheimer's disease. Here we assessed whether chronic caffeine treatment prevents the behavioral and cognitive decline that male Wistar rats experience from young (≈3 months) to middle age (≈10 months). When animals were young they were evaluated at weekly intervals in three tests: motor activity habituation in the open field (30-min sessions at the same time on consecutive days), continuous spontaneous alternation in the Y-maze (8 min), and elevated plus-maze (5 min). Afterward, rats from the same litter were randomly assigned either to a caffeine-treated group (n=13) or a control group (n=11), which received only tap water. Caffeine treatment (5 mg/kg/day) began when animals were ≈4 months old, and lasted for 6 months. Behavioral tests were repeated from day 14 to day 28 after caffeine withdrawal, a time period that is far in excess for the full excretion of a caffeine dose in this species. Thirty days after caffeine discontinuation brains were processed for Golgi-Cox staining. Compared with controls, we found that middle-aged rats that had chronically consumed low doses of caffeine (1) maintained their locomotor habituation during the second consecutive day exposure to the open field (an index of non-associative learning), (2) maintained their exploratory drive to complete the conventional minimum of nine arm visits required to calculate the alternation performance in the Y-maze in a greater proportion, (3) maintained their alternation percentage above chance level (an index of working memory), and (4) did not increase the anxiety indexes assessed by measuring the time spent in the open arms of the elevated plus maze. In addition, morphometric analysis of hippocampal neurons revealed that dendritic branching (90-140 μm from the soma), length of 4th and 5th order branches, total dendritic length, and spine density in distal dendritic branches were greater in

  17. CA V is present in rat kidney mitochondria

    International Nuclear Information System (INIS)

    Dodgson, S.J.; Contino, L.C.

    1987-01-01

    Guinea pig liver mitochondria contain the unique carbonic anhydrase isozyme, CA V. Prior to sacrifice, 15 rats and 15 guinea pigs were either fed normal lab chow (group 1), starved 48 hours (group 2) or fed normal lab chow and given to drink only water with added HCl, pH 2.5 (group 3). Mitochondria were prepared from excised livers and kidneys. CA V activity of disrupted mitochondria was measured by 18 O-mass spectrometric technique at pH 7.4, 37 0 C, 25 mM NaHCO 3 . Mass spectrometric CA assays with intact kidney mitochondria localize CA V activity to the matrix, as was found for liver mitochondria. It has been shown in hepatocytes prepared from starved guinea pigs and rats that inhibition of CA V results in decreased rate of gluconeogenesis from pyruvate. These present results are in line with the published observation that rat kidneys are much more gluconeogenic than guinea pig, and that this is increased by starvation and acidosis

  18. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat

    2017-05-01

    Inhibition of Ca 2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca 2+ -permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca 2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced

  19. Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia

    Directory of Open Access Journals (Sweden)

    Tao eZhang

    2013-04-01

    Full Text Available The theta-gamma cross-frequency coupling (CFC in hippocampus was reported to reflect memory process. In this study, we measured the CFC of hippocampal local field potentials (LFPs in a two-vessel occlusion (2VO rat model, combined with both amplitude and phase properties and associated with short and long-term plasticity indicating the memory function. Male Wistar rats were used and a 2VO model was established. STP and LTP were recorded in hippocampal CA3-CA1 pathway after LFPs were collected in both CA3 and CA1. Based on the data of relative power spectra and phase synchronization, it suggested that both the amplitude and phase coupling of either theta or gamma rhythm were involved in modulating the neural network in 2VO rats. In order to determine whether the CFC was also implicated in neural impairment in 2VO rats, the coupling of CA3 theta–CA1 gamma was measured by both phase-phase coupling (n:m phase synchronization and phase-amplitude coupling. The attenuated CFC strength in 2VO rats implied the impaired neural communication in the coordination of theta-gamma entraining process. Moreover, compared with modulation index (MI a novel algorithm named cross frequency conditional mutual information (CF-CMI, was developed to focus on the coupling between theta phase and the phase of gamma amplitude. The results suggest that the reduced CFC strength probably attributed to the disruption of the phase of CA1 gamma envelop. In conclusion, it implied that the phase coupling and CFC of hippocampal theta and gamma played an important role in supporting functions of neural network. Furthermore, synaptic plasticity on CA3-CA1 pathway was reduced in line with the decreased CFC strength from CA3 to CA1. It partly supported our hypothesis that directional CFC indicator might probably be used as a measure of synaptic plasticity.

  20. The correlation of serum S100β protein levels and hippocampal Seladin-1 gene expression in a rat model of sporadic Alzheimer\\\\\\'s disease

    Directory of Open Access Journals (Sweden)

    Soheila Hosseinzadeh

    2015-11-01

    Full Text Available Background: Seladin-1 protein protects the neural cells against amyloid beta toxicity and its expression decreased in vulnerable regions of Alzheimer's disease (AD brains. On the other hand, changes in serum levels of S100 have been considered as a marker of brain damage in neurodegenerative diseases. Furthermore, this study was carried out to determine the relation between the change profile of serum S100β protein levels and hippocampal Seladin-1 gene expression in a rat model of sporadic AD. Methods: In this experimental study that established in Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Science, from March 2011 to April 2013, 72 animals were randomly divided into control, 4, 7, 14, and 21days ICV-STZ/Saline administrated rats. Alzheimer's model was induced by intracerebroventricular (ICV injections of streptozotocin (STZ [3 mg/kg] on days 1 and 3. Serum levels of S100β and hippocampal Seladin-1 gene expression were evalu-ated in experimental groups. The initial and step-through latencies (STL were deter-mined using passive avoidance test. Results: Serum levels of S100β were significantly different between the STZ-7 day and STZ-14 day groups in comparison with the control, saline and STZ-4 day groups. As well as, there was a significant difference between the STZ-7 day group in comparison with the STZ-14 day and STZ-21 day groups (P=0.0001. Hippocampal Seladin-1 gene expression in STZ-14 day and STZ-21 day groups significantly decreased as compared to the control, saline and STZ-4 day groups (P=0.0001. However, significant correla-tion was detected between serum S100β protein decrement and Seladin-1 down regula-tion (P=0.001. Also, the STL was significantly decreased in 21 days ICV-STZ adminis-trated rats as compared to the control or saline groups (P=0.001. Conclusion: Monitoring the changes of serum S100β protein levels by relationship with changes in hippocampal Seladin-1

  1. CaMKII-dependent dendrite ramification and spine generation promote spatial training-induced memory improvement in a rat model of sporadic Alzheimer's disease.

    Science.gov (United States)

    Jiang, Xia; Chai, Gao-Shang; Wang, Zhi-Hao; Hu, Yu; Li, Xiao-Guang; Ma, Zhi-Wei; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2015-02-01

    Participation in cognitively stimulating activities can preserve memory capacities in patients with Alzheimer's disease (AD), but the mechanism is not fully understood. Here, we used a rat model with hyperhomocysteinemia, an independent risk factor of AD, to study whether spatial training could remodel the synaptic and/or dendritic plasticity and the key molecular target(s) involved. We found that spatial training in water maze remarkably improved the subsequent short-term and long-term memory performance in contextual fear conditioning and Barnes maze. The trained rats showed an enhanced dendrite ramification, spine generation and plasticity in dentate gyrus (DG) neurons, and stimulation of long-term potentiation between perforant path and DG circuit. Spatial training also increased the levels of postsynaptic GluA1, GluN2A, GluN2B, and PSD93 with selective activation of calcium/calmodulin-dependent protein kinase II (CaMKII), although inhibition of CaMKII by stereotaxic injection of KN93 into hippocampal DG, abolished the training-induced cognitive improvement, dendrite ramification, and spine generation. We conclude that spatial training can preserve the cognitive function by CaMKII-dependent remodeling of dendritic plasticity in hyperhomocysteinemia-induced sporadic AD-like rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Developmental exposure of aflatoxin B1 reversibly affects hippocampal neurogenesis targeting late-stage neural progenitor cells through suppression of cholinergic signaling in rats

    International Nuclear Information System (INIS)

    Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Onda, Nobuhiko; Sugita-Konishi, Yoshiko; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • Maternal AFB 1 exposure effect on hippocampal neurogenesis was examined in rats. • AFB 1 reversibly reduced cell proliferation and type-3 progenitor cells in the SGZ. • Suppressed cholinergic signals to GABAergic interneurons may reduce type-3 cells. • Suppressed BDNF–TRKB signaling may contribute to aberration of neurogenesis. • The NOAEL for offspring was determined to be 0.1 ppm (7.1–13.6 μg/kg BW/day). - Abstract: To elucidate the maternal exposure effects of aflatoxin B 1 (AFB 1 ) and its metabolite aflatoxin M 1 , which is transferred into milk, on postnatal hippocampal neurogenesis, pregnant Sprague-Dawley rats were provided a diet containing AFB 1 at 0, 0.1, 0.3, or 1.0 ppm from gestational day 6 to day 21 after delivery on weaning. Offspring were maintained through postnatal day (PND) 77 without AFB 1 exposure. Following exposure to 1.0 ppm AFB 1 , offspring showed no apparent systemic toxicity at weaning, whereas dams showed increased liver weight and DNA repair gene upregulation in the liver. In the hippocampal dentate gyrus of male PND 21 offspring, the number of doublecortin + progenitor cells were decreased, which was associated with decreased proliferative cell population in the subgranular zone at ≥0.3 ppm, although T-box brain 2 + cells, tubulin beta III + cells, gamma-H2A histone family, member X + cells, and cyclin-dependent kinase inhibitor 1A + cells did not fluctuate in number. AFB 1 exposure examined at 1.0 ppm also resulted in transcript downregulation of the cholinergic receptor subunit Chrna7 and dopaminergic receptor Drd2 in the dentate gyrus, although there was no change in transcript levels of DNA repair genes. In the hippocampal dentate hilus, interneurons expressing CHRNA7 or phosphorylated tropomyosin receptor kinase B (TRKB) decreased at ≥0.3 ppm. On PND 77, there were no changes in neurogenesis-related parameters. These results suggested that maternal AFB 1 exposure reversibly affects hippocampal

  3. Physiological and Pathological Roles of CaMKII-PP1 Signaling in the Brain

    Directory of Open Access Journals (Sweden)

    Norifumi Shioda

    2017-12-01

    Full Text Available Ca2+/calmodulin (CaM-dependent protein kinase II (CaMKII, a multifunctional serine (Ser/threonine (Thr protein kinase, regulates diverse activities related to Ca2+-mediated neuronal plasticity in the brain, including synaptic activity and gene expression. Among its regulators, protein phosphatase-1 (PP1, a Ser/Thr phosphatase, appears to be critical in controlling CaMKII-dependent neuronal signaling. In postsynaptic densities (PSDs, CaMKII is required for hippocampal long-term potentiation (LTP, a cellular process correlated with learning and memory. In response to Ca2+ elevation during hippocampal LTP induction, CaMKIIα, an isoform that translocates from the cytosol to PSDs, is activated through autophosphorylation at Thr286, generating autonomous kinase activity and a prolonged Ca2+/CaM-bound state. Moreover, PP1 inhibition enhances Thr286 autophosphorylation of CaMKIIα during LTP induction. By contrast, CaMKII nuclear import is regulated by Ser332 phosphorylation state. CaMKIIδ3, a nuclear isoform, is dephosphorylated at Ser332 by PP1, promoting its nuclear translocation, where it regulates transcription. In this review, we summarize physio-pathological roles of CaMKII/PP1 signaling in neurons. CaMKII and PP1 crosstalk and regulation of gene expression is important for neuronal plasticity as well as survival and/or differentiation.

  4. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  5. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.

    Science.gov (United States)

    Ghazizadeh, Vahid; Nazıroğlu, Mustafa

    2014-09-01

    Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.

  6. Effects of Estradiol on Learned Helplessness and Associated Remodeling of Hippocampal Spine Synapses in Female Rats

    Science.gov (United States)

    Hajszan, Tibor; Szigeti-Buck, Klara; Sallam, Nermin L; Bober, Jeremy; Parducz, Arpad; MacLusky, Neil J; Leranth, Csaba; Duman, Ronald S

    2009-01-01

    Background Despite the fact that women are twice as likely to develop depression as men, our understanding of depression neurobiology in females is limited. We have recently reported in male rats that development of helpless behavior is associated with a severe loss of hippocampal spine synapses, which is reversed by treatment with the antidepressant, desipramine. Considering the fact that estradiol has a hippocampal synaptogenic effect similar to those of antidepressants, the presence of estradiol during the female reproductive life may influence behavioral and synaptic responses to stress and depression. Methods Using electron microscopic stereology, we analyzed hippocampal spine synapses in association with helpless behavior in ovariectomized female rats (n=70), under different conditions of estradiol exposure. Results Stress induced an acute and persistent loss of hippocampal spine synapses, while subchronic treatment with desipramine reversed the stress-induced synaptic loss. Estradiol supplementation given either prior to stress or prior to escape testing of nonstressed animals both increased the number of hippocampal spine synapses. Correlation analysis demonstrated a statistically significant negative correlation between the severity of helpless behavior and hippocampal spine synapse numbers. Conclusions These findings suggest that hippocampal spine synapse remodeling may be a critical factor underlying learned helplessness and, possibly, the neurobiology of depression. PMID:19811775

  7. Short-term sleep deprivation stimulates hippocampal neurogenesis in rats following global cerebral ischemia/reperfusion.

    Directory of Open Access Journals (Sweden)

    Oumei Cheng

    Full Text Available Sleep deprivation (SD plays a complex role in central nervous system (CNS diseases. Recent studies indicate that short-term SD can affect the extent of ischemic damage. The aim of this study was to investigate whether short-term SD could stimulate hippocampal neurogenesis in a rat model of global cerebral ischemia/reperfusion (GCIR.One hundred Sprague-Dawley rats were randomly divided into Sham, GCIR and short-term SD groups based on different durations of SD; the short-term SD group was randomly divided into three subgroups: the GCIR+6hSD*3d-treated, GCIR+12hSD-treated and GCIR+12hSD*3d-treated groups. The GCIR rat model was induced via the bilateral occlusion of the common carotid arteries and hemorrhagic hypotension. The rats were sleep-deprived starting at 48 h following GCIR. A Morris water maze test was used to assess learning and memory ability; cell proliferation and differentiation were analyzed via 5-bromodeoxyuridine (BrdU and neuron-specific enolase (NSE, respectively, at 14 and 28 d; the expression of hippocampal BDNF was measured after 7 d.The different durations of short-term SD designed in our experiment exhibited improvement in cognitive function as well as increased hippocampal BDNF expression. Additionally, the short-term SD groups also showed an increased number of BrdU- and BrdU/NSE-positive cells compared with the GCIR group. Of the three short-term SD groups, the GCIR+12hSD*3d-treated group experienced the most substantial beneficial effects.Short-term SD, especially the GCIR+12hSD*3d-treated method, stimulates neurogenesis in the hippocampal dentate gyrus (DG of rats that undergo GCIR, and BDNF may be an underlying mechanism in this process.

  8. Announced reward counteracts the effects of chronic social stress on anticipatory behavior and hippocampal synaptic plasticity in rats.

    Science.gov (United States)

    Kamal, Amer; Van der Harst, Johanneke E; Kapteijn, Chantal M; Baars, Annemarie J M; Spruijt, Berry M; Ramakers, Geert M J

    2010-04-01

    Chronic stress causes insensitivity to rewards (anhedonia) in rats, reflected by the absence of anticipatory behavior for a sucrose-reward, which can be reversed by antidepressant treatment or repeated announced transfer to an enriched cage. It was, however, not clear whether the highly rewarding properties of the enriched cage alone caused this reversal or whether the anticipation of this reward as such had an additional effect. Therefore, the present study compared the consequences of the announcement of a reward to the mere effect of a reward alone with respect to their efficacy to counteract the consequences of chronic stress. Two forms of synaptic plasticity, long-term potentiation and long-term depression were investigated in area CA1 of the hippocampus. This was done in socially stressed rats (induced by defeat and subsequent long-term individual housing), socially stressed rats that received a reward (short-term enriched housing) and socially stressed rats to which this reward was announced by means of a stimulus that was repeatedly paired to the reward. The results were compared to corresponding control rats. We show that announcement of enriched housing appeared to have had an additional effect compared to the enriched housing per se as indicated by a significant higher amount of LTP. In conclusion, announced short-term enriched housing has a high and long-lasting counteracting efficacy on stress-induced alterations of hippocampal synaptic plasticity. This information is important for counteracting the consequences of chronic stress in both human and captive rats.

  9. Estradiol-induced increase in novel object recognition requires hippocampal NR2B-containing NMDA receptors.

    Science.gov (United States)

    Vedder, Lindsey C; Smith, Caroline C; Flannigan, Alaina E; McMahon, Lori L

    2013-01-01

    17β-estradiol (E2), at high circulating levels, enhances learning and memory in many women, making it a clinical treatment for hormone-related cognitive decline in aging. However, the mechanisms stimulated by E2, which are responsible for its cognitive enhancing effects, remain incompletely defined. Using an ovariectomized rat model, we previously reported that increasing plasma E2 enhances the magnitude of long-term potentiation (LTP) at hippocampal CA3-CA1 synapses, which is caused by a selective increase in current mediated by NR2B-containing NMDARs, leading to an increase in the NMDAR/AMPAR ratio. Whether the increase in NR2B current is causally related to the ability of E2 to enhance hippocampal dependent learning and memory has yet to be tested. Here, we find that E2 enhances performance in the novel object recognition (NOR) task with the same time course we previously showed E2 enhances the LTP magnitude, temporally linking the increase in LTP to enhanced learning and memory. Furthermore, using the selective NR2B subunit antagonist Ro25-6981, we find that the E2-enhanced NOR, like the enhanced LTP, requires hippocampal NR2B-containing NMDARs, specifically in area CA1. Finally, using whole-cell recordings and the phosphatase inhibitor orthovanadate, we investigated whether the E2-induced increase in NMDAR current is caused by an increase in the density of synaptic NMDARs and/or an increase in NMDAR subunit phosphorylation. We find that both mechanisms are responsible for the enhanced NMDAR current in E2-treated rats. Our results show that the E2-enhanced NOR requires a functional increase in NR2B-containing NMDARs, a requirement shared with the E2-enhanced LTP magnitude at CA3-CA1 synapses, supporting the hypothesis that the increase in LTP likely contributes to the enhanced learning and memory following an increase in plasma E2 levels. Copyright © 2012 Wiley Periodicals, Inc.

  10. Hypothyroidism Causes Endoplasmic Reticulum Stress in Adult Rat Hippocampus: A Mechanism Associated with Hippocampal Damage

    Directory of Open Access Journals (Sweden)

    Alejandra Paola Torres-Manzo

    2018-01-01

    Full Text Available Thyroid hormones (TH are essential for hippocampal neuronal viability in adulthood, and their deficiency causes hypothyroidism, which is related to oxidative stress events and neuronal damage. Also, it has been hypothesized that hypothyroidism causes a glucose deprivation in the neuron. This study is aimed at evaluating the temporal participation of the endoplasmic reticulum stress (ERE in hippocampal neurons of adult hypothyroid rats and its association with the oxidative stress events. Adult Wistar male rats were divided into euthyroid and hypothyroid groups. Thyroidectomy with parathyroid gland reimplementation caused hypothyroidism at three weeks postsurgery. Oxidative stress, redox environment, and antioxidant enzyme markers, as well as the expression of the ERE through the pathways of PERK, ATF6, and IRE1, were evaluated at the 3rd and 4th weeks postsurgery. We found a rise in ROS and nitrite production; also, catalase increased and glutathione peroxidase diminished their activities. These events promote an enhancement of the lipoperoxidation, as well as of γ-GT, myeloperoxidase, and caspase 3 activities. With respect to ERE, there were ATF6, IRE1, and GADD153 overexpressions with a reduction in mitochondrial activity and GSH2/GSSG ratio. We conclude that the endoplasmic reticulum stress might play a pivotal role in the activation of hypothyroidism-induced hippocampal cell death.

  11. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus

    Directory of Open Access Journals (Sweden)

    Marina D Jovanovic

    2014-01-01

    Full Text Available Background & objectives: Aluminum (Al toxicity is closely linked to the pathogenesis of Alzheimer′s disease (AD. This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx, hippocampus and basal forebrain (BF. Methods: Seven days after intra-hippocampal (CA1 sector injection of AlCl 3 into adult male Wistar rats they were subjected to two-way active avoidance (AA tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE and glucose-6-phosphate dehydrogenase (G6PDH were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid β and tau protein. Results: The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl 3 treatment. G6PDH administered prior to AlCl 3 resulted in a reversal of the effects of AlCl 3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid β staining was detected bilaterally in all structures in AlCl 3 -treated rats but was moderate in G6PDH/AlCl 3 -treated rats. Strong tau staining was noted bilaterally in AlCl 3 -treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl 3 -treated rats. Interpretation & conclusions: Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl 3 -treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential

  12. Spatial memory impairment is associated with hippocampal insulin signals in ovariectomized rats.

    Science.gov (United States)

    Wang, Fang; Song, Yan-Feng; Yin, Jie; Liu, Zi-Hua; Mo, Xiao-Dan; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Estrogen influences memory formation and insulin sensitivity. Meanwhile, glucose utilization directly affects learning and memory, which are modulated by insulin signals. Therefore, this study investigated whether or not the effect of estrogen on memory is associated with the regulatory effect of this hormone on glucose metabolism. The relative expression of estrogen receptor β (ERβ) and glucose transporter type 4 (GLUT4) in the hippocampus of rats were evaluated by western blot. Insulin level was assessed by ELISA and quantitative RT-PCR, and spatial memory was tested by the Morris water maze. Glucose utilization in the hippocampus was measured by 2-NBDG uptake analysis. Results showed that ovariectomy impaired the spatial memory of rats. These impairments are similar as the female rats treated with the ERβ antagonist tamoxifen (TAM). Estrogen blockade by ovariectomy or TAM treatment obviously decreased glucose utilization. This phenomenon was accompanied by decreased insulin level and GLUT4 expression in the hippocampus. The female rats were neutralized with hippocampal insulin with insulin antibody, which also impaired memory and local glucose consumption. These results indicated that estrogen blockade impaired the spatial memory of the female rats. The mechanisms by which estrogen blockade impaired memory partially contributed to the decline in hippocampal insulin signals, which diminished glucose consumption.

  13. Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats.

    Science.gov (United States)

    Oosthuizen, M K; Amrein, I

    2016-06-02

    Diversity in social structures, from solitary to eusocial, is a prominent feature of subterranean African mole-rat species. Damaraland mole-rats are eusocial, they live in colonies that are characterized by a reproductive division of labor and a subdivision into castes based on physiology and behavior. Damaraland mole-rats are exceptionally long lived and reproductive animals show delayed aging compared to non-reproductive animals. In the present study, we described the hippocampal architecture and the rate of hippocampal neurogenesis of wild-derived, adult Damaraland mole-rats in relation to sex, relative age and social status or caste. Overall, Damaraland mole-rats were found to have a small hippocampus and low rates of neurogenesis. We found no correlation between neurogenesis and sex or relative age. Social status or caste was the most prominent modulator of neurogenesis. An inverse relationship between neurogenesis and social status was apparent, with queens displaying the lowest neurogenesis while the worker mole-rats had the most. As there is no natural progression from one caste to another, social status within a colony was relatively stable and is reflected in the level of neurogenesis. Our results correspond to those found in the naked mole-rat, and may reflect an evolutionary and environmentally conserved trait within social mole-rat species. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Rearing-environment-dependent hippocampal local field potential differences in wild-type and inositol trisphosphate receptor type 2 knockout mice.

    Science.gov (United States)

    Tanaka, Mika; Wang, Xiaowen; Mikoshiba, Katsuhiko; Hirase, Hajime; Shinohara, Yoshiaki

    2017-10-15

    Mice reared in an enriched environment are demonstrated to have larger hippocampal gamma oscillations than those reared in isolation, thereby confirming previous observations in rats. To test whether astrocytic Ca 2+ surges are involved in this experience-dependent LFP pattern modulation, we used inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which IP 3 /Ca 2+ signalling in astrocytes is largely diminished. We found that this experience-dependent gamma power alteration persists in the KO mice. Interestingly, hippocampal ripple events, the synchronized events critical for memory consolidation, are reduced in magnitude and frequency by both isolated rearing and IP 3 R2 deficiency. Rearing in an enriched environment (ENR) is known to enhance cognitive and memory abilities in rodents, whereas social isolation (ISO) induces depression-like behaviour. The hippocampus has been documented to undergo morphological and functional changes depending on these rearing environments. For example, rearing condition during juvenility alters CA1 stratum radiatum gamma oscillation power in rats. In the present study, hippocampal CA1 local field potentials (LFP) were recorded from bilateral CA1 in urethane-anaesthetized mice that were reared in either an ENR or ISO condition. Similar to previous findings in rats, gamma oscillation power during theta states was higher in the ENR group. Ripple events that occur during non-theta periods in the CA1 stratum pyramidale also had longer intervals in ISO mice. Because astrocytic Ca 2+ elevations play a key role in synaptic plasticity, we next tested whether these changes in LFP are also expressed in inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which astrocytic Ca 2+ elevations are largely diminished. We found that the gamma power was also higher in IP 3 R2-KO-ENR mice compared to IP 3 R2-KO-ISO mice, suggesting that the rearing-environment-dependent gamma power alteration does not necessarily

  15. Palmitoylethanolamide Ameliorates Hippocampal Damage and Behavioral Dysfunction After Perinatal Asphyxia in the Immature Rat Brain

    Directory of Open Access Journals (Sweden)

    María I. Herrera

    2018-03-01

    Full Text Available Perinatal asphyxia (PA is an obstetric complication associated with an impaired gas exchange. This health problem continues to be a determinant of neonatal mortality and neurodevelopmental disorders. Palmitoylethanolamide (PEA has exerted neuroprotection in several models of brain injury and neurodegeneration. We aimed at evaluating the potential neuroprotective role of PEA in an experimental model, which induces PA in the immature rat brain. PA was induced by placing Sprague Dawley newborn rats in a water bath at 37°C for 19 min. Once their physiological conditions improved, they were given to surrogate mothers that had delivered normally within the last 24 h. The control group was represented by non-fostered vaginally delivered pups, mimicking the clinical situation. Treatment with PEA (10 mg/kg was administered within the first hour of life. Modifications in the hippocampus were analyzed with conventional electron microscopy, immunohistochemistry (for NeuN, pNF-H/M, MAP-2, and GFAP and western blot (for pNF H/M, MAP-2, and GFAP. Behavior was also studied throughout Open Field (OF Test, Passive Avoidance (PA Task and Elevated Plus Maze (EPM Test. After 1 month of the PA insult, we observed neuronal nucleus degeneration in CA1 using electron microscopy. Immunohistochemistry revealed a significant increase in pNF-H/M and decrease in MAP-2 in CA1 reactive area. These changes were also observed when analyzing the level of expression of these markers by western blot. Vertical exploration impairments and anxiety-related behaviors were encountered in the OF and EPM tests. PEA treatment attenuated PA-induced hippocampal damage and its corresponding behavioral alterations. These results contribute to the elucidation of PEA neuroprotective role after PA and the future establishment of therapeutic strategies for the developing brain.

  16. Caffeine Increases Hippocampal Sharp Waves in Vitro.

    Science.gov (United States)

    Watanabe, Yusuke; Ikegaya, Yuji

    2017-01-01

    Caffeine promotes memory consolidation. Memory consolidation is thought to depend at least in part on hippocampal sharp waves (SWs). In the present study, we investigated the effect of bath-application of caffeine in spontaneously occurring SWs in mouse acute hippocampal slices. Caffeine induced an about 100% increase in the event frequency of SWs at concentrations of 60 and 200 µM. The effect of caffeine was reversible after washout of caffeine and was mimicked by an adenosine A 1 receptor antagonist, but not by an A 2A receptor antagonist. Caffeine increased SWs even in dentate-CA3 mini-slices without the CA2 regions, in which adenosine A 1 receptors are abundantly expressed in the hippocampus. Thus, caffeine facilitates SWs by inhibiting adenosine A 1 receptors in the hippocampal CA3 region or the dentate gyrus.

  17. Neonatal seizures alter NMDA glutamate receptor GluN2A and 3A subunit expression and function in hippocampal CA1 neurons

    Science.gov (United States)

    Zhou, Chengwen; Sun, Hongyu; Klein, Peter M.; Jensen, Frances E.

    2015-01-01

    Neonatal seizures are commonly caused by hypoxic and/or ischemic injury during birth and can lead to long-term epilepsy and cognitive deficits. In a rodent hypoxic seizure (HS) model, we have previously demonstrated a critical role for seizure-induced enhancement of the AMPA subtype of glutamate receptor (GluA) in epileptogenesis and cognitive consequences, in part due to GluA maturational upregulation of expression. Similarly, as the expression and function of the N-Methyl-D-aspartate (NMDA) subtype of glutamate receptor (GluN) is also developmentally controlled, we examined how early life seizures during the critical period of synaptogenesis could modify GluN development and function. In a postnatal day (P)10 rat model of neonatal seizures, we found that seizures could alter GluN2/3 subunit composition of GluNs and physiological function of synaptic GluNs. In hippocampal slices removed from rats within 48–96 h following seizures, the amplitudes of synaptic GluN-mediated evoked excitatory postsynaptic currents (eEPSCs) were elevated in CA1 pyramidal neurons. Moreover, GluN eEPSCs showed a decreased sensitivity to GluN2B selective antagonists and decreased Mg2+ sensitivity at negative holding potentials, indicating a higher proportion of GluN2A and GluN3A subunit function, respectively. These physiological findings were accompanied by a concurrent increase in GluN2A phosphorylation and GluN3A protein. These results suggest that altered GluN function and expression could potentially contribute to future epileptogenesis following neonatal seizures, and may represent potential therapeutic targets for the blockade of future epileptogenesis in the developing brain. PMID:26441533

  18. Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus

    NARCIS (Netherlands)

    Bagot, R.C.; van Hasselt, F.N.; Champagne, D.L.; Meaney, M.J.; Krugers, H.J.; Joëls, M.

    2009-01-01

    Maternal care in the rat influences hippocampal development, synaptic plasticity and cognition. Previous studies, however, have examined animals under minimally stressful conditions. Here we tested the hypothesis that maternal care influences hippocampal function differently when this structure is

  19. Decreased intracellular [Ca2+ ] coincides with reduced expression of Dhprα1s, RyR1, and diaphragmatic dysfunction in a rat model of sepsis.

    Science.gov (United States)

    Wang, Meng-Meng; Hao, Li-Ying; Guo, Feng; Zhong, Bin; Zhong, Xiao-Mei; Yuan, Jing; Hao, Yi-Fei; Zhao, Shuang; Sun, Xue-Fei; Lei, Ming; Jiao, Guang-Yu

    2017-12-01

    Sepsis can cause decreased diaphragmatic contractility. Intracellular calcium as a second messenger is central to diaphragmatic contractility. However, changes in intracellular calcium concentration ([Ca 2+ ]) and the distribution and co-localization of relevant calcium channels [dihydropyridine receptors, (DHPRα1s) and ryanodine receptors (RyR1)] remain unclear during sepsis. In this study we investigated the effect of changed intracellular [Ca 2+ ] and expression and distribution of DHPRα1s and RyR1 on diaphragm function during sepsis. We measured diaphragm contractility and isolated diaphragm muscle cells in a rat model of sepsis. The distribution and co-localization of DHPRα1s and RyR1 were determined using immunohistochemistry and immunofluorescence, whereas intracellular [Ca 2+ ] was measured by confocal microscopy and fluorescence spectrophotometry. Septic rat diaphragm contractility, expression of DHPRα1s and RyR1, and intracellular [Ca 2+ ] were significantly decreased in the rat sepsis model compared with controls. Decreased intracellular [Ca 2+ ] coincides with diaphragmatic contractility and decreased expression of DHPRα1s and RyR1 in sepsis. Muscle Nerve 56: 1128-1136, 2017. © 2017 Wiley Periodicals, Inc.

  20. A three-plane architectonic atlas of the rat hippocampal region.

    Science.gov (United States)

    Boccara, Charlotte N; Kjonigsen, Lisa J; Hammer, Ingvild M; Bjaalie, Jan G; Leergaard, Trygve B; Witter, Menno P

    2015-07-01

    The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource. © 2014 Wiley Periodicals, Inc.

  1. Stimulus Intensity-dependent Modulations of Hippocampal Long-term Potentiation by Basolateral Amygdala Priming

    Directory of Open Access Journals (Sweden)

    Zexuan eLi

    2012-05-01

    Full Text Available There is growing realization that the relationship between memory and stress/emotionality is complicated, and may include both memory enhancing and memory impairing aspects. It has been suggested that the underlying mechanisms involve amygdalar modulation of hippocampal synaptic plasticity, such as long-term potentiation (LTP. We recently reported that while in CA1 basolateral amygdala (BLA priming impaired theta stimulation induced LTP, it enhanced LTP in the dentate gyrus (DG. However, emotional and stressfull experiences were found to activate synaptic plasticity within the BLA, rasing the possibility that BLA modulation of other brain regions may be altered as well, as it may depend on the way the BLA is activated or is responding. In previous studies BLA priming stimulation was relatively weak (1V, 50 µs pulse duration. In the present study we assessed the effects of two stronger levels of BLA priming stimulation (1V or 2V, 100 µs pulse duration on LTP induction in hippocampal DG and CA1, in anesthetized rats. Results show that 1V-BLA priming stimulation enhanced but 2V-BLA priming stimulation impaired DG LTP; however, both levels of BLA priming stimulation impaired CA1 LTP, suggesting that modulation of hippocampal synaptic plasticity by amygdala is dependent on the degree of amygdala activation. These findings suggest that plasticity induced within the amygdala, by stressful experiences induces a form of metaplasticity that would alter the way the amygdala may modulate memory-related processes in other brain areas, such as the hippocampus.

  2. Novel encoding and updating of positional, or directional, spatial cues are processed by distinct hippocampal subfields: Evidence for parallel information processing and the "what" stream.

    Science.gov (United States)

    Hoang, Thu-Huong; Aliane, Verena; Manahan-Vaughan, Denise

    2018-05-01

    The specific roles of hippocampal subfields in spatial information processing and encoding are, as yet, unclear. The parallel map theory postulates that whereas the CA1 processes discrete environmental features (positional cues used to generate a "sketch map"), the dentate gyrus (DG) processes large navigation-relevant landmarks (directional cues used to generate a "bearing map"). Additionally, the two-streams hypothesis suggests that hippocampal subfields engage in differentiated processing of information from the "where" and the "what" streams. We investigated these hypotheses by analyzing the effect of exploration of discrete "positional" features and large "directional" spatial landmarks on hippocampal neuronal activity in rats. As an indicator of neuronal activity we measured the mRNA induction of the immediate early genes (IEGs), Arc and Homer1a. We observed an increase of this IEG mRNA in CA1 neurons of the distal neuronal compartment and in proximal CA3, after novel spatial exploration of discrete positional cues, whereas novel exploration of directional cues led to increases in IEG mRNA in the lower blade of the DG and in proximal CA3. Strikingly, the CA1 did not respond to directional cues and the DG did not respond to positional cues. Our data provide evidence for both the parallel map theory and the two-streams hypothesis and suggest a precise compartmentalization of the encoding and processing of "what" and "where" information occurs within the hippocampal subfields. © 2018 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  3. Hippocampal NMDA receptors are involved in rats' spontaneous object recognition only under high memory load condition.

    Science.gov (United States)

    Sugita, Manami; Yamada, Kazuo; Iguchi, Natsumi; Ichitani, Yukio

    2015-10-22

    The possible involvement of hippocampal N-methyl-D-aspartate (NMDA) receptors in spontaneous object recognition was investigated in rats under different memory load conditions. We first estimated rats' object memory span using 3-5 objects in "Different Objects Task (DOT)" in order to confirm the highest memory load condition in object recognition memory. Rats were allowed to explore a field in which 3 (3-DOT), 4 (4-DOT), or 5 (5-DOT) different objects were presented. After a delay period, they were placed again in the same field in which one of the sample objects was replaced by another object, and their object exploration behavior was analyzed. Rats could differentiate the novel object from the familiar ones in 3-DOT and 4-DOT but not in 5-DOT, suggesting that rats' object memory span was about 4. Then, we examined the effects of hippocampal AP5 infusion on performance in both 2-DOT (2 different objects were used) and 4-DOT. The drug treatment before the sample phase impaired performance only in 4-DOT. These results suggest that hippocampal NMDA receptors play a critical role in spontaneous object recognition only when the memory load is high. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Schaffer collateral inputs to CA1 excitatory and inhibitory neurons follow different connectivity rules.

    Science.gov (United States)

    Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun

    2018-05-04

    Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3-CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' Rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow

  5. Kainate toxicity in energy-compromised rat hippocampal slices: differences between oxygen and glucose deprivation.

    Science.gov (United States)

    Schurr, A; Rigor, B M

    1993-06-18

    The effects of kainate (KA) on the recovery of neuronal function in rat hippocampal slices after hypoxia or glucose deprivation (GD) were investigated and compared to those of (R,S)-alpha-amino-3-hydroxy-5-methyl-4- isoxazoleproprionate (AMPA). KA and AMPA were found to be more toxic than either N-methyl-D-aspartate (NMDA), quinolinate, or glutamate, both under normal conditions and under states of energy deprivation. Doses as low as 1 microM KA or AMPA were sufficient to significantly reduce the recovery rate of neuronal function in slices after a standardized period of hypoxia or GD. The enhancement of hypoxic neuronal damage by both agonists could be partially blocked by the antagonist kynurenate, by the NMDA competitive antagonist AP5, and by elevating [Mg2+] in or by omitting Ca2+ from the perfusion medium. The AMPA antagonist glutamic acid diethyl ester was ineffective in preventing the enhanced hypoxic neuronal damage by either KA or AMPA. The antagonist of the glycine modulatory site on the NMDA receptor, 7-chlorokynurenate, did not block the KA toxicity but was able to block the toxicity of AMPA. 2,3-Dihydroxyquinoxaline completely blocked the KA- and AMPA-enhanced hypoxic neuronal damage. The KA-enhanced, GD-induced neuronal damage was prevented by Ca2+ depletion and partially antagonized by kynurenate but not by AP5 or elevated [Mg2+]. The results of the present study indicate that the KA receptor is involved in the mechanism of neuronal damage induced by hypoxia and GD, probably allowing Ca2+ influx and subsequent intracellular Ca2+ overload.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Involvement of hippocampal NMDA receptors in retrieval of spontaneous object recognition memory in rats.

    Science.gov (United States)

    Iwamura, Etsushi; Yamada, Kazuo; Ichitani, Yukio

    2016-07-01

    The involvement of hippocampal N-methyl-d-aspartate (NMDA) receptors in the retrieval process of spontaneous object recognition memory was investigated. The spontaneous object recognition test consisted of three phases. In the sample phase, rats were exposed to two identical objects several (2-5) times in the arena. After the sample phase, various lengths of delay intervals (24h-6 weeks) were inserted (delay phase). In the test phase in which both the familiar and the novel objects were placed in the arena, rats' novel object exploration behavior under the hippocampal treatment of NMDA receptor antagonist, AP5, or vehicle was observed. With 5 exposure sessions in the sample phase (experiment 1), AP5 treatment in the test phase significantly decreased discrimination ratio when the delay was 3 weeks but not when it was one week. On the other hand, with 2 exposure sessions in the sample phase (experiment 2) in which even vehicle-injected control animals could not discriminate the novel object from the familiar one with a 3 week delay, AP5 treatment significantly decreased discrimination ratio when the delay was one week, but not when it was 24h. Additional experiment (experiment 3) showed that the hippocampal treatment of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, NBQX, decreased discrimination ratio with all delay intervals tested (24h-3 weeks). Results suggest that hippocampal NMDA receptors play an important role in the retrieval of spontaneous object recognition memory especially when the memory trace weakens. Copyright © 2016. Published by Elsevier B.V.

  7. Acute running stimulates hippocampal dopaminergic neurotransmission in rats, but has no influence on brain-derived neurotrophic factor

    OpenAIRE

    Goekint, Maaike; Bos, Inge; Heyman, Elsa; Meeusen, Romain; Michotte, Yvette; Sarre, Sophie

    2011-01-01

    Hippocampal brain-derived neurotrophic factor (BDNF) protein is increased with exercise in rats. Monoamines seem to play a role in the regulation of BDNF, and monoamine neurotransmission is known to increase with exercise. The purpose of this study was to examine the influence of acute exercise on monoaminergic neurotransmission and BDNF protein concentrations. Hippocampal microdialysis was performed in rats that were subjected to 60 min of treadmill running at 20 m/min or rest. Two hours pos...

  8. Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI

    Directory of Open Access Journals (Sweden)

    Anna E. Blanken

    2017-01-01

    Full Text Available Hippocampal atrophy, amyloid plaques, and neurofibrillary tangles are established pathologic markers of Alzheimer's disease. We analyzed the temporal lobes of 9 Alzheimer's dementia (AD and 7 cognitively normal (NC subjects. Brains were scanned post-mortem at 7 Tesla. We extracted hippocampal volumes and radial distances using automated segmentation techniques. Hippocampal slices were stained for amyloid beta (Aβ, tau, and cresyl violet to evaluate neuronal counts. The hippocampal subfields, CA1, CA2, CA3, CA4, and subiculum were manually traced so that the neuronal counts, Aβ, and tau burden could be obtained for each region. We used linear regression to detect associations between hippocampal atrophy in 3D, clinical diagnosis and total as well as subfield pathology burden measures. As expected, we found significant correlations between hippocampal radial distance and mean neuronal count, as well as diagnosis. There were subfield specific associations between hippocampal radial distance and tau in CA2, and cresyl violet neuronal counts in CA1 and subiculum. These results provide further validation for the European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP.

  9. Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices.

    Science.gov (United States)

    Bruno, Alessandra Nejar; Diniz, Gabriela Placoná; Ricachenevsky, Felipe Klein; Pochmann, Daniela; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Sarkis, João José Freitas

    2005-05-01

    The presence of severe neurological symptoms in thyroid diseases has highlighted the importance of thyroid hormones in the normal functioning of the mature brain. Since, ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system (CNS), the ectonucleotidase cascade that hydrolyzes ATP to adenosine, is also involved in the control of brain functions. Thus, we investigated the influence of hyper-and hypothyroidism on the ATP, ADP and AMP hydrolysis in hippocampal and cortical slices from adult rats. Hyperthyroidism was induced by daily injections of l-thyroxine (T4) 25 microg/100 g body weight, for 14 days. Hypothyroidism was induced by thyroidectomy and methimazole (0.05%) added to their drinking water for 14 days. Hypothyroid rats were hormonally replaced by daily injections of T4 (5 microg/100 g body weight, i.p.) for 5 days. Hyperthyroidism significantly inhibited the ATP, ADP and AMP hydrolysis in hippocampal slices. In brain cortical slices, hyperthyroidism inhibited the AMP hydrolysis. In contrast, hypothyroidism increased the ATP, ADP and AMP hydrolysis in both hippocampal and cortical slices and these effects were reverted by T4 replacement. Furthermore, hypothyroidism increased the expression of NTPDase1 and 5'-nucleotidase, whereas hyperthyroidism decreased the expression of 5'-nucleotidase in hippocampus of adult rats. These findings demonstrate that thyroid disorders may influence the enzymes involved in the complete degradation of ATP to adenosine and possibly affects the responses mediated by adenine nucleotides in the CNS of adult rats.

  10. Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; de la Casa-Resino, Irene; Martinez-Ruiz, Antonio; Perez-Lopez, Marcos; Portilla, Juan C; Salido, Gines M; Gonzalez, Antonio

    2016-05-16

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. Because of its properties, it may be protective against injury to the nervous tissue. However, evidence suggests that its glutathione peroxidase activity could underlie certain deleterious actions on cell physiology. In this study we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular oxidative status, cytosolic free-Ca(2+) concentration ([Ca(2+)]c), setting of endoplasmic reticulum stress and phosphorylation of glial fibrillary acidic protein and major mitogen-activated protein kinases were analyzed. Our results show that ebselen induced a concentration-dependent increase in the generation of reactive oxygen species in the mitochondria. We observed a concentration-dependent increase in global cysteine oxidation and in the level of malondialdehyde in the presence of ebselen. We also detected increases in catalase, glutathione S-transferase and glutathione reductase activity. Ebselen also evoked a concentration-dependent increase in [Ca(2+)]c. Moreover, we observed a concentration-dependent increase in the phosphorylation of the unfolded protein response markers, eukaryotic translation initiation factor 2α and X-box binding protein 1. Finally, ebselen also induced an increase in the phosphorylation of glial fibrillary acidic protein, SAPK/JNK, p38 MAPK and p44/42 MAPK. Our results provide strong evidence that implicate endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in an oxidative damage of cells in the presence of ebselen. The compound thus might exert deleterious actions on astrocyte physiology that could compromise their function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Influx of extracellular Zn(2+) into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation.

    Science.gov (United States)

    Takeda, A; Suzuki, M; Tempaku, M; Ohashi, K; Tamano, H

    2015-09-24

    Physiological significance of synaptic Zn(2+) signaling was examined in the CA1 of young rats. In vivo CA1 long-term potentiation (LTP) was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. In vivo CA1 LTP was inhibited under perfusion with CaEDTA and ZnAF-2DA, extracellular and intracellular Zn(2+) chelators, respectively, suggesting that the influx of extracellular Zn(2+) is required for in vivo CA1 LTP induction. The increase in intracellular Zn(2+) was chelated with intracellular ZnAF-2 in the CA1 1h after local injection of ZnAF-2DA into the CA1, suggesting that intracellular Zn(2+) signaling induced during learning is blocked with intracellular ZnAF-2 when the learning was performed 1h after ZnAF-2DA injection. Object recognition was affected when training of object recognition test was performed 1h after ZnAF-2DA injection. These data suggest that intracellular Zn(2+) signaling in the CA1 is required for object recognition memory via LTP. Surprisingly, in vivo CA1 LTP was affected under perfusion with 0.1-1μM ZnCl2, unlike the previous data that in vitro CA1 LTP was enhanced in the presence of 1-5μM ZnCl2. The influx of extracellular Zn(2+) into CA1 pyramidal cells has bidirectional action in CA1 LTP. The present study indicates that the degree of extracellular Zn(2+) influx into CA1 neurons is critical for LTP and cognitive performance. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. 12-lipoxygenase regulates hippocampal long-term potentiation by modulating L-type Ca2+ channels

    Science.gov (United States)

    DeCostanzo, Anthony J.; Voloshyna, Iryna; Rosen, Zev B.; Feinmark, Steven J.; Siegelbaum, Steven A.

    2010-01-01

    Although long-term potentiation (LTP) has been intensely studied, there is disagreement as to which molecules mediate and modulate LTP. This is partly due to the presence of mechanistically distinct forms of LTP that are induced by different patterns of stimulation and that depend on distinct Ca2+ sources. Here we report a novel role for the arachidonic acid-metabolizing enzyme 12-lipoxygenase (12-LO) in LTP at CA3-CA1 hippocampal synapses that is dependent on the pattern of tetanic stimulation. We find that 12-LO activity is required for the induction of LTP in response to a theta-burst stimulation (TBS) protocol, which depends on Ca2+ influx through both NMDA receptors and L-type voltage-gated Ca2+ channels. In contrast, LTP induced by 100 Hz tetanic stimulation, which requires Ca2+ influx through NMDA receptors but not L-type channels, does not require 12-LO. We find that 12-LO regulates LTP by enhancing postsynaptic somatodendritic Ca2+ influx through L-type channels during theta burst stimulation, an action exerted via 12(S)-HPETE, a downstream metabolite of 12-LO. These results help define the role of a long-disputed signaling enzyme in LTP. PMID:20130191

  13. Complex plastic changes in the neuropeptide Y system during ethanol intoxication and withdrawal in the rat brain

    DEFF Research Database (Denmark)

    Olling, J D; Ulrichsen, J; Christensen, D Z

    2009-01-01

    and NPY-stimulated [(35)S]GTPgammaS functional binding. Rats received intragastric ethanol repeatedly for 4 days, and the NPY system was studied in the hippocampal dentate gyrus (DG), CA3, CA1, and piriform cortex (PirCx) and neocortex (NeoCx) during intoxication, peak withdrawal (16 hr), late withdrawal...

  14. Cannabis-related hippocampal volumetric abnormalities specific to subregions in dependent users.

    Science.gov (United States)

    Chye, Yann; Suo, Chao; Yücel, Murat; den Ouden, Lauren; Solowij, Nadia; Lorenzetti, Valentina

    2017-07-01

    Cannabis use is associated with neuroanatomical alterations in the hippocampus. While the hippocampus is composed of multiple subregions, their differential vulnerability to cannabis dependence remains unknown. The objective of the study is to investigate gray matter alteration in each of the hippocampal subregions (presubiculum, subiculum, cornu ammonis (CA) subfields CA1-4, and dentate gyrus (DG)) as associated with cannabis use and dependence. A total of 35 healthy controls (HC), 22 non-dependent (CB-nondep), and 39 dependent (CB-dep) cannabis users were recruited. We investigated group differences in hippocampal subregion volumes between HC, CB-nondep, and CB-dep users. We further explored the association between CB use variables (age of onset of regular use, monthly use, lifetime use) and hippocampal subregions in CB-nondep and CB-dep users separately. The CA1, CA2/3, CA4/DG, as well as total hippocampal gray matter were reduced in volume in CB-dep but not in CB-nondep users, relative to HC. The right CA2/3 and CA4/DG volumes were also negatively associated with lifetime cannabis use in CB-dep users. Our results suggest a regionally and dependence-specific influence of cannabis use on the hippocampus. Hippocampal alteration in cannabis users was specific to the CA and DG regions and confined to dependent users.

  15. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress

    NARCIS (Netherlands)

    Kole, MHP; Czeh, B; Fuchs, E

    2004-01-01

    The experience of chronic stress induces a reversible regression of hippocampal CA3 apical neuron dendrites. Although such postsynaptic membrane reduction will obviously diminish the possibility of synaptic input, the consequences for the functional membrane properties of these cells are not well

  16. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1

    Directory of Open Access Journals (Sweden)

    Chun-Lei Wang

    2012-10-01

    VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE11-secretase and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.

  17. [Effects of Total Alkaloids of Harmaline on Learning and Memory in Vascular Dementia Rats].

    Science.gov (United States)

    Zhang, Xiao-shuang; Sun, Jian-ning; Yu, Hui-ling

    2015-11-01

    To investigate the effects of total alkaloids of harmaline on learning and memory in vascular dementia rats, and its mechanism. The model rats of vascular dementia were established with bilateral carotid artery ligation. After 30 days, the model rats were randomly divided into six groups: sham group, model group, nicergoline tablets 7 mg/kg group, and 25, 12.5 and 6.25 mg/kg dose groups of total alkaloids of harmaline, the rats were given medicine for 30 days. Learning and memory abilities were tested by Morris water maze, histomorphology in hippocampal CA1 area were observed by HE staining, BAX and BCL-2 protein expression in hippocampal CA1 area were detected by immunohistochemistry. Compared with model group, 25 mg/kg group of total alkaloids of harmaline shortened the incubation period in the third and fourth day significantly, 12.5 mg/kg group of total alkaloids of harmaline shortened the incubation period in the fourth day. 25 and 12.5 mg/kg groups of total alkaloids of harmaline significantly increased the times crossing the target. Total alkaloids of harmaline improved the neurons pathological changes of rat in the hippocampus CA1 area, 25 and 12.5 mg/kg of total alkaloids of harmaline downregulated the expression of apoptosis proteins BAX, upregulated the protein expression of BCL-2. Total alkaloids of harmaline can improve the learning and memory abilities in vascular dementia rats, which probably is related to inhibiting apoptosis of hippocampus cell.

  18. Effects of neonatal. gamma. -ray irradiation on rat hippocampus: Pt. 1; Postnatal maturation of hippocampal cells

    Energy Technology Data Exchange (ETDEWEB)

    Represa, A; Dessi, F; Beaudoin, M; Ben-Ari, Y [Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France)

    1991-01-01

    The axons of dentate granule cells, the mossy fibres, establish synaptic contacts with the thorny excrescences of the apical dendrite of CA3 pyramidal neurons. Dentate granule cells develop postnatally in rats, whereas the CA3 pyramidal cells are generated before birth. In the present studies, using unilateral neonatal {gamma}-ray irradiation to destroy the granule cells in one hemisphere, we have studied the effect of mossy fibre deprivation on the development of their targets. We show that such ''degranulation'' prevents the normal development of giant thorny excrescences, suggesting that the development of thorny excrescences in CA3 pyramidal neurons is under the control of mossy fibres. In contrast, irradiation of the hippocampus of the neonatal rat does not affect the development of the dendritic arborization of CA3 pyramidal cells and their non-mossy dendritic spines. (author).

  19. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area.

    Science.gov (United States)

    Racca, C; Stephenson, F A; Streit, P; Roberts, J D; Somogyi, P

    2000-04-01

    Glutamate receptors activated by NMDA (NMDARs) or AMPA (AMPARs) are clustered on dendritic spines of pyramidal cells. Both the AMPAR-mediated postsynaptic responses and the synaptic AMPAR immunoreactivity show a large intersynapse variability. Postsynaptic responses mediated by NMDARs show less variability. To assess the variability in NMDAR content and the extent of their coexistence with AMPARs in Schaffer collateral-commissural synapses of adult rat CA1 pyramidal cells, electron microscopic immunogold localization of receptors has been used. Immunoreactivity of NMDARs was detected in virtually all synapses on spines, but AMPARs were undetectable, on average, in 12% of synapses. A proportion of synapses had a very high AMPAR content relative to the mean content, resulting in a distribution more skewed toward larger values than that of NMDARs. The variability of synaptic NMDAR content [coefficient of variation (CV), 0.64-0.70] was much lower than that of the AMPAR content (CV, 1.17-1.45). Unlike the AMPAR content, the NMDAR content showed only a weak correlation with synapse size. As reported previously for AMPARs, the immunoreactivity of NMDARs was also associated with the spine apparatus within spines. The results demonstrate that the majority of the synapses made by CA3 pyramidal cells onto spines of CA1 pyramids express both NMDARs and AMPARs, but with variable ratios. A less-variable NMDAR content is accompanied by a wide variability of AMPAR content, indicating that the regulation of expression of the two receptors is not closely linked. These findings support reports that fast excitatory transmission at some of these synapses is mediated by activation mainly of NMDARs.

  20. Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats.

    Science.gov (United States)

    Iwata, Masaaki; Shirayama, Yukihiko; Ishida, Hisahito; Hazama, Gen-i; Nakagome, Kazuyuki

    2011-08-01

    The astrocyte is a major component of the neural network and plays a role in brain function. Previous studies demonstrated changes in the number of astrocytes in depression. In this study, we examined alterations in the number of astrocytes in the learned helplessness (LH) rat, an animal model of depression. The numbers of activated and nonactivated astrocytes in the dentate gyrus (molecular layer, subgranular zone, and hilus), and CA1 and CA3 regions of the hippocampus were significantly increased 2 and 8 days after attainment of LH. Subchronic treatment with imipramine showed a tendency (although not statistically significant) to decrease the LH-induced increment of activated astrocytes in the CA3 region and dentate gyrus. Furthermore, subchronic treatment of naïve rats with imipramine did not alter the numbers of activated and nonactivated astrocytes. However, the antidepressant-like effects of imipramine in the LH paradigm were blocked when fluorocitrate (a reversible inhibitor of astrocyte function) was injected into the dentate gyrus or CA3 region. Injection of fluorocitrate into naive rats failed to induce behavioral deficits in the conditioned avoidance test. These results indicate that astrocytes are responsive to the antidepressant-like effect of imipramine in the dentate gyrus and CA3 region of the hippocampus. Copyright © 2010 Wiley-Liss, Inc.

  1. Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3

    DEFF Research Database (Denmark)

    Benveniste, H; Jørgensen, M B; Sandberg, M

    1989-01-01

    The removal of glutamatergic afferents to CA1 by destruction of the CA3 region is known to protect CA1 pyramidal cells against 10 min of transient global ischemia. To investigate further the pathogenetic significance of glutamate, we measured the release of glutamate in intact and CA3-lesioned CA...

  2. Sepsis-induced alteration in T-cell Ca(2+) signaling in neonatal rats.

    Science.gov (United States)

    Alattar, M H; Ravindranath, T M; Choudhry, M A; Muraskas, J K; Namak, S Y; Dallal, O; Sayeed, M M

    2001-01-01

    Sepsis-induced suppression in T-cell proliferation follows deranged Ca(2+) signaling in adult rats. In preliminary studies, we observed suppression in T-cell proliferation in septic neonatal rats as well. In this study, we assessed splenic T-cell cytosolic Ca(2+) concentration, [Ca(2+)](i), as its elevation plays an important role in T-cell proliferation. Also, we investigated the role of PGE(2) in sepsis-related changes in T-cell [Ca(2+)](i) in animals pretreated with cyclooxygenase-1 (COX-1) inhibitor (resveratrol) and cyclooxygenase-2 (COX-2) inhibitor (NS-398). Sepsis was induced in 15-day-old rat pups by intraperitoneal implantation of fecal pellets containing Escherichia coli and Bacteroides fragilis. The sham group consisted of pups implanted with sterile fecal pellets. Septic and sham pups were sacrificed 24 h after implantation and their spleens were removed. The spleens from sham and septic pups, along with spleens from unoperated control pups, were processed for single cell suspensions, and T cells were isolated using nylon wool columns. Fura-2 fluorophotometry was employed for the measurement of [Ca(2+)](i) (in nM units) in T cells stimulated with concanavalin A (ConA). Our results show that ConA-mediated T-cell [Ca(2+)](i) response is significantly suppressed in septic neonatal rats. Pretreatment of pups with COX-2, but not COX-1 inhibitor, prevented the decrease in the [Ca(2+)](i) response. These findings suggest that PGE(2) might induce the attenuation in T-cell Ca(2+) signaling during sepsis in neonatal rats. Copyright 2001 S. Karger AG, Basel

  3. Regeneration of 5-HT fibers in hippocampal heterotopia of methylazoxymethanol-induced micrencephalic rats after neonatal 5,7-DHT injection.

    Science.gov (United States)

    Nakamura, Arata; Kadowaki, Taro; Sakakibara, Shin-ichi; Yoshimoto, Kanji; Hirata, Koichi; Ueda, Shuichi

    2010-03-01

    In order to elucidate the regeneration properties of serotonergic fibers in the hippocampus of methylazoxymethanol acetate (MAM)-induced micrencephalic rats (MAM rats), we examined serotonergic regeneration in the hippocampus following neonatal intracisternal 5,7-dihydroxytryptamine (5,7-DHT) injection. Prenatal exposure to MAM resulted in the formation of hippocampal heterotopia in the dorsal hippocampus. Immunohistochemical and neurochemical analyses revealed hyperinnervation of serotonergic fibers in the hippocampus of MAM rats. After neonatal 5,7-DHT injection, most serotonergic fibers in the hippocampus of 2-week-old MAM rats had degenerated, while a small number of serotonergic fibers in the stratum lacunosum-moleculare (SLM) of the hippocampus and in the hilus adjacent to the granular cell layer of the dentate gyrus (DG) had not. Regenerating serotonergic fibers from the SLM first extended terminals into the hippocampal heterotopia, then fibers from the hilus reinnervated the DG and some fibers extended to the heterotopia. These findings suggest that the hippocampal heterotopia exerts trophic target effects for regenerating serotonergic fibers in the developmental period in micrencephalic rats.

  4. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species.

    Science.gov (United States)

    Amrein, Irmgard; Becker, Anton S; Engler, Stefanie; Huang, Shih-Hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents.

  5. The effects of lindane and long-term potentiation (LTP) on pyramidal cell excitability in the rat hippocampal slice.

    Science.gov (United States)

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1997-01-01

    An in vitro orthodromic stimulation technique was used to examine the effects of lindane and long-term potentiation (LTP) inducing stimuli, alone or in combination, on the excitatory afferent terminal of CA1 pyramidal cells and on recurrent collateral evoked inhibition using the rat hippocampal slice model. Hippocampal slices of 400 microns thickness were perfused with oxygenated artificial cerebrospinal fluid. Stimulation of Schaffer collateral/commissural fibers produced extracellular excitatory postsynaptic potential (EPSP) and/or populations spike (PS) responses recorded from electrodes in the CA1 region. A paired-pulse technique was used to measure gamma-aminobutyric acid (GABAA)-mediated recurrent inhibition before and after treatments. After both lindane and LTP, larger PS amplitudes for a given stimulus intensity were seen. The resulting leftward shift in the curve of the PS amplitude versus stimulus intensity was larger after LTP than after 25 microM lindane. Both lindane and LTP treatments reduced PS thresholds and reduced or eliminated recurrent inhibition as measured by paired-pulse stimulation at the 15 msec interval. The reduction of recurrent inhibition after both treatments was more pronounced at lower stimulus intensities. When LTP stimuli were applied after lindane exposure a further large shift to the left was seen in the PS amplitude versus stimulus intensity curve. A smaller shift to the left was seen in the PS amplitude versus stimulus intensity curve only at the higher stimuli when lindane exposure occurred after LTP. Only at low stimulus intensities were further argumentations seen in PS amplitudes when the LTP stimuli was followed by a second LTP stimuli. Previous exposure to 25 microM lindane stimuli does not block the development of a further robust LTP in this in vitro model.

  6. Neuroprotective effects of oxysophocarpine on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion.

    Science.gov (United States)

    Zhu, Qing-Luan; Li, Yu-Xiang; Zhou, Ru; Ma, Ning-Tian; Chang, Ren-Yuan; Wang, Teng-Fei; Zhang, Yi; Chen, Xiao-Ping; Hao, Yin-Ju; Jin, Shao-Ju; Ma, Lin; Du, Juan; Sun, Tao; Yu, Jian-Qiang

    2014-08-01

    Oxysophocarpine (OSC), a quinolizidine alkaloid extracted from leguminous plants of the genus Robinia, is traditionally used for various diseases including neuronal disorders. This study investigated the protective effects of OSC on neonatal rat primary-cultured hippocampal neurons were injured by oxygen-glucose deprivation and reperfusion (OGD/RP). Cultured hippocampal neurons were exposed to OGD for 2 h followed by a 24 h RP. OSC (1, 2, and 5 μmol/L) and nimodipine (Nim) (12 μmol/L) were added to the culture after OGD but before RP. The cultures of the control group were not exposed to OGD/RP. MTT and LDH assay were used to evaluate the protective effects of OSC. The concentration of intracellular-free calcium [Ca(2+)]i and mitochondrial membrane potential (MMP) were determined to evaluate the degree of neuronal damage. Morphologic changes of neurons following OGD/RP were observed with a microscope. The expression of caspase-3 and caspase-12 mRNA was examined by real-time quantitative PCR. The IC50 of OSC was found to be 100 μmol/L. Treatment with OSC (1, 2, and 5 μmol/L) attenuated neuronal damage (p < 0.001), with evidence of increased cell viability (p < 0.001) and decreased cell morphologic impairment. Furthermore, OSC increased MMP (p < 0.001), but it inhibited [Ca(2+)]i (p < 0.001) elevation in a dose-dependent manner at OGD/RP. OSC (5 μmol/L) also decreased the expression of caspase-3 (p < 0.05) and caspase-12 (p < 0.05). The results suggested that OSC has significant neuroprotective effects that can be attributed to inhibiting endoplasmic reticulum (ER) stress-induced apoptosis.

  7. Minocycline attenuates cognitive impairment induced by isoflurane anesthesia in aged rats.

    Directory of Open Access Journals (Sweden)

    Feijuan Kong

    Full Text Available Postoperative cognitive dysfunction (POCD is a clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery, especially in geriatric surgical patients. Although it has been documented that isoflurane exposure impaired cognitive function in several aged animal models, there are few clinical interventions and treatments available to prevent this disorder. Minocycline has been well established to exert neuroprotective effects in various experimental animal models and neurodegenerative diseases. Therefore, we hypothesized that pretreatment with minocycline attenuates isoflurane-induced cognitive decline in aged rats. In the present study, twenty-month-old rats were administered minocycline or an equal volume of saline by intraperitoneal injection 12 h before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Two weeks later, spatial learning and memory of the rats were examined using the Morris Water Maze. We found that pretreatment with minocycline mitigated isoflurane-induced cognitive deficits and suppressed the isoflurane-induced excessive release of IL-1β and caspase-3 in the hippocampal CA1 region at 4 h after isoflurane exposure, as well as the number of TUNEL-positive nuclei. In addition, minocycline treatment also prevented the changes of synaptic ultrastructure in the hippocampal CA1 region induced by isoflurane. In conclusion, pretreatment with minocycline attenuated isoflurane-induced cognitive impairment in aged rats.

  8. Intermittent fasting promotes prolonged associative interactions during synaptic tagging/capture by altering the metaplastic properties of the CA1 hippocampal neurons.

    Science.gov (United States)

    Dasgupta, Ananya; Kim, Joonki; Manakkadan, Anoop; Arumugam, Thiruma V; Sajikumar, Sreedharan

    2017-12-19

    Metaplasticity is the inherent property of a neuron or neuronal population to undergo activity-dependent changes in neural function that modulate subsequent synaptic plasticity. Here we studied the effect of intermittent fasting (IF) in governing the interactions of associative plasticity mechanisms in the pyramidal neurons of rat hippocampal area CA1. Late long-term potentiation and its associative mechanisms such as synaptic tagging and capture at an interval of 120 min were evaluated in four groups of animals, AL (Ad libitum), IF12 (daily IF for 12 h), IF16 (daily IF for 16 h) and EOD (every other day IF for 24 h). IF had no visible effect on the early or late plasticity but it manifested a critical role in prolonging the associative interactions between weak and strong synapses at an interval of 120 min in IF16 and EOD animals. However, both IF12 and AL did not show associativity at 120 min. Plasticity genes such as Bdnf and Prkcz, which are well known for their expressions in late plasticity and synaptic tagging and capture, were significantly upregulated in IF16 and EOD in comparison to AL. Specific inhibition of brain derived neurotropic factor (BDNF) prevented the prolonged associativity expressed in EOD. Thus, daily IF for 16 h or more can be considered to enhance the metaplastic properties of synapses by improving their associative interactions that might translate into animprovedmemoryformation. Copyright © 2017. Published by Elsevier Inc.

  9. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    Science.gov (United States)

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity.

    Science.gov (United States)

    Unal, Gunes; Crump, Michael G; Viney, Tim J; Éltes, Tímea; Katona, Linda; Klausberger, Thomas; Somogyi, Peter

    2018-03-03

    Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.

  11. Extremely weak magnetic field exposure may inhibit hippocampal neurogenesis of Sprague Dawley rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Xu, H.; Pan, Y.

    2016-12-01

    Hippocampal neurogenesis occurs throughout life in mammals brains and can be influenced by animals' age as well as environmental factors. Lines of evidences have shown that the magnetic field is an important physics environmental factor influencing many animals' growth and development, and extremely weak magnetic field exposures have been proved having serious adverse effects on the metabolism and behaviors in some animals, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we experimentally examined the extremely weak magnetic field effects on neurogenesis of the dentate gyrus (DG) of hippocampus of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, an extremely weak magnetic field (≤ 0.5μT) and the geomagnetic fields (strength 31-58μT) as controls. Thirty-two SD rats (3-weeks old) were used in this study. New cell survival in hippocampus was assessed at 0, 14, 28, and 42 days after a 7-day intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Meanwhile, the amounts of immature neurons and mature neurons which are both related to hippocampal neurogenesis, as documented by labeling with doublecortin (DCX) and neuron (NeuN), respectively, were also analyzed at 0, 14, 28, and 42 days. Compared with geomagnetic field exposure groups, numbers of BrdU-, DCX-positive cells of DG of hippocampus in tested rats reduces monotonously and more rapidly after 14 days, and NeuN-positive cells significantly decreases after 28days when exposed in the extremely weak magnetic field condition. Our data suggest that the exposure to an extremely weak magnetic field may suppress the neurogenesis in DG of SD rats.

  12. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism.

    Science.gov (United States)

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Akahori, Yumi; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    We previously found that developmental hypothyroidism changed the expression of genes in the rat hippocampal dentate gyrus, a brain region where adult neurogenesis is known to occur. In the present study, we performed brain region-specific global gene expression profiling in an adult rat hypothyroidism model to see if it reflected the developmental neurotoxicity we saw in the developmental hypothyroidism model. Starting when male rats were 5 weeks old, we administered 6-propyl-2-thiouracil at a doses of 0, 0.1 and 10 mg kg(-1) body weight by gavage for 28 days. We selected four brain regions to represent both cerebral and cerebellar tissues: hippocampal dentate gyrus, cerebral cortex, corpus callosum and cerebellar vermis. We observed significant alterations in the expression of genes related to neural development (Eph family genes and Robo3) in the cerebral cortex and hippocampal dentate gyrus and in the expression of genes related to myelination (Plp1 and Mbp) in the hippocampal dentate gyrus. We observed only minor changes in the expression of these genes in the corpus callosum and cerebellar vermis. We used real-time reverse-transcription polymerase chain reaction to confirm Chrdl1, Hes5, Mbp, Plp1, Slit1, Robo3 and the Eph family transcript expression changes. The most significant changes in gene expression were found in the dentate gyrus. Considering that the gene expression profile of the adult dentate gyrus closely related to neurogenesis, 28-day toxicity studies looking at gene expression changes in adult hippocampal dentate gyrus may also detect possible developmental neurotoxic effects. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Tris-(2,3-Dibromopropyl Isocyanurate, a New Emerging Pollutant, Impairs Cognition and Provokes Depression-Like Behaviors in Adult Rats.

    Directory of Open Access Journals (Sweden)

    Liang Ye

    Full Text Available Tris-(2,3-dibromopropyl isocyanurate (TDBP-TAZTO, an emerging brominated flame retardant, possesses the characteristics of candidate persistent organic pollutants and has displayed toxicity to fish and rodents. TDBP-TAZTO can pass through the blood brain barrier and accumulate in brain. However, the neurotoxicity of TDBP-TAZTO has not yet studied in rodents. We hypothesize that TDBP-TAZTO could induce the neurotoxicity in rat hippocampal neurons. The male adult rats were exposed to TDBP-TAZTO of 5 and 50 mg/kg by gavage, daily for 6 months. TDBP-TAZTO resulted in cognitive impairment and depression-like behaviors, which may be related with TDBP-TAZTO-induced hypothalamic-pituitary-adrenal axis hyperactivation, upregulation of inflammatory and oxidative stress markers, overexpression of pro-apoptotic proteins, downexpression of neurogenesis-related proteins in hippocampus, and hippocampal neurons damage in DG, CA1 and CA3 areas. Our findings suggested that TDBP-TAZTO induces significant hippocampal neurotoxicity, which provokes cognitive impairment and depression-like behaviors in adult rats. Therefore, this research will contribute to evaluate the neurotoxic effects of TDBP-TAZTO in human.

  14. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  15. Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia.

    Science.gov (United States)

    La Joie, Renaud; Perrotin, Audrey; de La Sayette, Vincent; Egret, Stéphanie; Doeuvre, Loïc; Belliard, Serge; Eustache, Francis; Desgranges, Béatrice; Chételat, Gaël

    2013-01-01

    Hippocampal atrophy is a well-known feature of Alzheimer's disease (AD), but sensitivity and specificity of hippocampal volumetry are limited. Neuropathological studies have shown that hippocampal subfields are differentially vulnerable to AD; hippocampal subfield volumetry may thus prove to be more accurate than global hippocampal volumetry to detect AD. CA1, subiculum and other subfields were manually delineated from 40 healthy controls, 18 AD, 17 amnestic Mild Cognitive Impairment (aMCI), and 8 semantic dementia (SD) patients using a previously developed high resolution MRI procedure. Non-parametric group comparisons and receiver operating characteristic (ROC) analyses were conducted. Complementary analyses were conducted to evaluate differences of hemispheric asymmetry and anterior-predominance between AD and SD patients and to distinguish aMCI patients with or without β-amyloid deposition as assessed by Florbetapir-TEP. Global hippocampi were atrophied in all three patient groups and volume decreases were maximal in the CA1 subfield (22% loss in aMCI, 27% in both AD and SD; all p volumetry was more accurate than global hippocampal measurement to distinguish patients from controls (areas under the ROC curve = 0.88 and 0.76, respectively; p = 0.05) and preliminary analyses suggest that it was independent from the presence of β-amyloid deposition. In patients with SD, whereas the degree of CA1 and subiculum atrophy was similar to that found in AD patients, hemispheric and anterior-posterior asymmetry were significantly more marked than in AD with greater involvement of the left and anterior hippocampal subfields. The findings suggest that CA1 measurement is more sensitive than global hippocampal volumetry to detect structural changes at the pre-dementia stage, although the predominance of CA1 atrophy does not appear to be specific to AD pathophysiological processes.

  16. Hippocampal low-frequency stimulation inhibits afterdischarge and increases GABA (A) receptor expression in amygdala-kindled pharmacoresistant epileptic rats.

    Science.gov (United States)

    Wu, Guofeng; Wang, Likun; Hong, Zhen; Ren, Siying; Zhou, Feng

    2017-08-01

    The purpose of the present study was to observe the effects of hippocampal low-frequency stimulation (Hip-LFS) on amygdala afterdischarge and GABA (A) receptor expression in pharmacoresistant epileptic (PRE) rats. A total of 110 healthy adult male Wistar rats were used to generate a model of epilepsy by chronic stimulation of the amygdala. Sixteen PRE rats were selected from 70 amygdala-kindled rats by testing their response to Phenytoin and Phenobarbital, and they were randomly assigned to a pharmacoresistant stimulation group (PRS group, 8 rats) or a pharmacoresistant control group (PRC group, 8 rats). A stimulation electrode was implanted into the hippocampus of all of the rats. Hip-LFS was administered twice per day in the PRS group for two weeks. Simultaneously, amygdala stimulus-induced seizures and afterdischarge were recorded. After the hippocampal stimulation was terminated, the brain tissues were obtained to determine the GABA (A) receptors by a method of immumohistochemistry and a real-time polymerase chain reaction. The stages and duration of the amygdala stimulus-induced epileptic seizures were decreased in the PRS group. The afterdischarge threshold was increased and the duration as well as the afterdischarge frequency was decreased. Simultaneously, the GABA (A) expression was significantly increased in the PRS group. Hip-LFS may inhibit amygdala stimulus-induced epileptic seizures and up-regulate GABA (A) receptor expression in PRE rats. The antiepileptic effects of hippocampal stimulation may be partly achieved by increasing the GABA (A) receptor.

  17. Exogenous galanin attenuates spatial memory impairment and decreases hippocampal β-amyloid levels in rat model of Alzheimer's disease.

    Science.gov (United States)

    Li, Lei; Yu, Liling; Kong, Qingxia

    2013-11-01

    One of the major pathological characteristics of Alzheimer's disease (AD) is the presence of enhanced deposits of beta-amyloid peptide (Aβ). The neuropeptide galanin (GAL) and its receptors are overexpressed in degenerating brain regions in AD. The functional consequences of galaninergic systems plasticity in AD are unclear. The objective of the present study was to investigate whether exogenous galanin could attenuate spatial memory impairment and hippocampal Aβ aggregation in rat model of AD. The effects of Aβ, galanin, galanin receptor 1 agonist M617 and galanin receptor 2 agonist AR-M1896 on spatial memory were tested by Morris water maze. The effects of Aβ, galanin, M617 and AR-M1896 on hippocampal Aβ protein expression were evaluated by western blot assay. The expression of galanin, galanin receptors 1 and 2 in rats' hippocampus were detected by real time PCR and western blot assay. The results showed that (1) Galanin administration was effective in improving the spatial memory and decreasing hippocampal Aβ levels after intracerebroventricular injection of Aβ; (2) AR-M1896 rather than M617 could imitate these effects of galanin; (3) GAL and GALR2 mRNA and protein levels increased significantly in hippocampus after Aβ administration, while GALR1 mRNA and protein levels did not change; (4) GAL, AR-M1896 and M617 administration did not show significant effect on GAL, GalR1 and GalR2 mRNA and protein levels in hippocampus after Aβ administration. These results implied that galanin receptor 2, but not receptor 1 was involved in the protective effects against spatial memory impairment and hippocampal Aβ aggregation.

  18. Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment

    Directory of Open Access Journals (Sweden)

    Sonntag William E

    2011-10-01

    Full Text Available Abstract Background Age-related cognitive dysfunction, including impairment of hippocampus-dependent spatial learning and memory, affects approximately half of the aged population. Induction of a variety of neuroinflammatory measures has been reported with brain aging but the relationship between neuroinflammation and cognitive decline with non-neurodegenerative, normative aging remains largely unexplored. This study sought to comprehensively investigate expression of the MHC II immune response pathway and glial activation in the hippocampus in the context of both aging and age-related cognitive decline. Methods Three independent cohorts of adult (12-13 months and aged (26-28 months F344xBN rats were behaviorally characterized by Morris water maze testing. Expression of MHC II pathway-associated genes identified by transcriptomic analysis as upregulated with advanced aging was quantified by qPCR in synaptosomal fractions derived from whole hippocampus and in hippocampal subregion dissections (CA1, CA3, and DG. Activation of astrocytes and microglia was assessed by GFAP and Iba1 protein expression, and by immunohistochemical visualization of GFAP and both CD74 (Ox6 and Iba1. Results We report a marked age-related induction of neuroinflammatory signaling transcripts (i.e., MHC II components, toll-like receptors, complement, and downstream signaling factors throughout the hippocampus in all aged rats regardless of cognitive status. Astrocyte and microglial activation was evident in CA1, CA3 and DG of intact and impaired aged rat groups, in the absence of differences in total numbers of GFAP+ astrocytes or Iba1+ microglia. Both mild and moderate microglial activation was significantly increased in all three hippocampal subregions in aged cognitively intact and cognitively impaired rats compared to adults. Neither induction of MHCII pathway gene expression nor glial activation correlated to cognitive performance. Conclusions These data demonstrate a

  19. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats.

    Science.gov (United States)

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2017-01-27

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.

  20. Attenuating brain edema, hippocampal oxidative stress, and cognitive dysfunction in rats using hyperbaric oxygen preconditioning during simulated high-altitude exposure.

    Science.gov (United States)

    Lin, Hung; Chang, Ching-Ping; Lin, Hung-Jung; Lin, Mao-Tsun; Tsai, Cheng-Chia

    2012-05-01

    We assessed whether hyperbaric oxygen preconditioning (HBO2P) in rats induced heat shock protein (HSP)-70 and whether HSP-70 antibody (Ab) preconditioning attenuates high altitude exposure (HAE)-induced brain edema, hippocampal oxidative stress, and cognitive dysfunction. Rats were randomly divided into five groups: the non-HBO2P + non-HAE group, the HBO2P + non-HAE group, the non-HBO2P + HAE group, the HBO2P + HAE group, and the HBO2P + HSP-70 Abs + HAE group. The HBO2P groups were given 100% O2 at 2.0 absolute atmospheres for 1 hour per day for 5 consecutive days. The HAE groups were exposed to simulated HAE (9.7% O2 at 0.47 absolute atmospheres of 6,000 m) in a hypobaric chamber for 3 days. Polyclonal rabbit anti-mouse HSP-70-neutralizing Abs were intravenously injected 24 hours before the HAE experiments. Immediately after returning to normal atmosphere, the rats were given cognitive performance tests, overdosed with a general anesthetic, and then their brains were excised en bloc for water content measurements and biochemical evaluation and analysis. Non-HBO2P group rats displayed cognitive deficits, brain edema, and hippocampal oxidative stress (evidenced by increased toxic oxidizing radicals [e.g., nitric oxide metabolites and hydroxyl radicals], increased pro-oxidant enzymes [e.g., malondialdehyde and oxidized glutathione] but decreased antioxidant enzymes [e.g., reduced glutathione, glutathione peroxide, glutathione reductase, and superoxide dismutase]) in HAE. HBO2P induced HSP-70 overexpression in the hippocampus and significantly attenuated HAE-induced brain edema, cognitive deficits, and hippocampal oxidative stress. The beneficial effects of HBO2P were significantly reduced by HSP-70 Ab preconditioning. Our results suggest that high-altitude cerebral edema, cognitive deficit, and hippocampal oxidative stress can be prevented by HSP-70-mediated HBO2P in rats.

  1. Loss of FMRP Impaired Hippocampal Long-Term Plasticity and Spatial Learning in Rats

    Directory of Open Access Journals (Sweden)

    Yonglu Tian

    2017-08-01

    Full Text Available Fragile X syndrome (FXS is a neurodevelopmental disorder caused by mutations in the FMR1 gene that inactivate expression of the gene product, the fragile X mental retardation 1 protein (FMRP. In this study, we used clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 (Cas9 technology to generate Fmr1 knockout (KO rats by disruption of the fourth exon of the Fmr1 gene. Western blotting analysis confirmed that the FMRP was absent from the brains of the Fmr1 KO rats (Fmr1exon4-KO. Electrophysiological analysis revealed that the theta-burst stimulation (TBS–induced long-term potentiation (LTP and the low-frequency stimulus (LFS–induced long-term depression (LTD were decreased in the hippocampal Schaffer collateral pathway of the Fmr1exon4-KO rats. Short-term plasticity, measured as the paired-pulse ratio, remained normal in the KO rats. The synaptic strength mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR was also impaired. Consistent with previous reports, the Fmr1exon4-KO rats demonstrated an enhanced 3,5-dihydroxyphenylglycine (DHPG–induced LTD in the present study, and this enhancement is insensitive to protein translation. In addition, the Fmr1exon4-KO rats showed deficits in the probe trial in the Morris water maze test. These results demonstrate that deletion of the Fmr1 gene in rats specifically impairs long-term synaptic plasticity and hippocampus-dependent learning in a manner resembling the key symptoms of FXS. Furthermore, the Fmr1exon4-KO rats displayed impaired social interaction and macroorchidism, the results consistent with those observed in patients with FXS. Thus, Fmr1exon4-KO rats constitute a novel rat model of FXS that complements existing mouse models.

  2. α1-Adrenoceptors in the hippocampal dentate gyrus involved in learning-dependent long-term potentiation during active-avoidance learning in rats.

    Science.gov (United States)

    Lv, Jing; Zhan, Su-Yang; Li, Guang-Xie; Wang, Dan; Li, Ying-Shun; Jin, Qing-Hua

    2016-11-09

    The hippocampus is the key structure for learning and memory in mammals and long-term potentiation (LTP) is an important cellular mechanism responsible for learning and memory. The influences of norepinephrine (NE) on the modulation of learning and memory, as well as LTP, through β-adrenoceptors are well documented, whereas the role of α1-adrenoceptors in learning-dependent LTP is not yet clear. In the present study, we measured extracellular concentrations of NE in the hippocampal dentate gyrus (DG) region using an in-vivo brain microdialysis and high-performance liquid chromatography techniques during the acquisition and extinction of active-avoidance behavior in freely moving conscious rats. Next, the effects of prazosin (an antagonist of α1-adrenoceptor) and phenylephrine (an agonist of the α1-adrenoceptor) on amplitudes of field excitatory postsynaptic potential were measured in the DG region during the active-avoidance behavior. Our results showed that the extracellular concentration of NE in the DG was significantly increased during the acquisition of active-avoidance behavior and gradually returned to the baseline level following extinction training. A local microinjection of prazosin into the DG significantly accelerated the acquisition of the active-avoidance behavior, whereas a local microinjection of phenylephrine retarded the acquisition of the active-avoidance behavior. Furthermore, in all groups, the changes in field excitatory postsynaptic potential amplitude were accompanied by corresponding changes in active-avoidance behavior. Our results suggest that NE activation of α1-adrenoceptors in the hippocampal DG inhibits active-avoidance learning by modulation of synaptic efficiency in rats.

  3. Up-regulation of Ca2+/CaMKII/CREB signaling in salicylate-induced tinnitus in rats.

    Science.gov (United States)

    Zhao, Jiuhan; Wang, Biao; Wang, Xiaohong; Shang, Xiuli

    2018-02-09

    The purpose of the study was to investigate the changes of Ca 2+ /calmodulin-dependent protein kinases II (CaMKII)/cAMP response element-binding protein (CREB) signaling pathway in a rat tinnitus model. Eighteen Wistar rats were randomly divided into three groups: normal control (NC), normal saline (NS), and tinnitus model (TM) groups. Tinnitus model was induced by intraperitoneal injection of salicylate. The concentration of intracellular calcium level in auditory cortex cells was determined using Fura-2 acetoxymethyl ester (Fura-2 AM) method with fluorospectrophotometer. Expressions of calmodulin (CaM), N-methyl-D-aspartate receptor 2B subunit (NR2B), calcium-calmodulin kinase II (CaMKII), and cAMP response element-binding protein (CREB) were detected with Western blot. Tinnitus model was successfully established by the intraperitoneal administration of salicylate in rats. Compared with rats in NC and NS groups, salicylate administration significantly elevated CaM, NR2B, phospho-CaMKII and phospho-CREB expression in auditory cortex from tinnitus model group (p salicylate administration causes tinnitus symptoms and elevates Ca 2+ /CaMKII/CREB signaling pathway in auditory cortex cells. Our study likely provides a new understanding of the development of tinnitus.

  4. Insomnia severity is associated with a decreased volume of the CA3/Dentate Gyrus Hippocampal Subfield

    Science.gov (United States)

    Neylan, Thomas C.; Mueller, Susanne G.; Wang, Zhen; Metzler, Thomas J.; Lenoci, Maryann; Truran, Diana; Marmar, Charles R.; Weiner, Michael W.; Schuff, Norbert

    2010-01-01

    Background Prolonged disruption of sleep in animal studies is associated with decreased neurogenesis in the dentate gyrus. Our objective was to determine if insomnia severity in a sample of PTSD and controls was associated with decreased volume in the CA3/dentate hippocampal subfield. Methods Volumes of hippocampal subfields in seventeen veteran males positive for PTSD (41 ±12 years) and nineteen age-matched male veterans negative for PTSD were measured using 4 Tesla MRI. Subjective sleep quality was measured by the Insomnia Severity Index (ISI) and the Pittsburgh Sleep Quality Index (PSQI). Results Higher scores on the ISI, indicating worse insomnia, were associated with smaller volumes of the CA3/dentate subfields (r= −.48, p < 0.01) in the combined sample. Adding the ISI score as a predictor for CA3/dentate volume to a hierarchical linear regression model after first controlling for age and PTSD symptoms accounted for a 13 % increase in incremental variance (t= −2.47, p= 0.02). Conclusions The findings indicate for the first time in humans that insomnia severity is associated with volume loss of the CA3/dentate subfields. This is consistent with animal studies showing that chronic sleep disruption is associated with decreased neurogenesis and dendritic branching in these structures. PMID:20598672

  5. Cerebrolysin Ameloriates Cognitive Deficits in Type III Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Gehan S Georgy

    Full Text Available Cerebrolysin (CBL, a mixture of several active peptide fragments and neurotrophic factors including brain-derived neurotrophic factor (BDNF, is currently used in the management of cognitive alterations in patients with dementia. Since Cognitive decline as well as increased dementia are strongly associated with diabetes and previous studies addressed the protective effect of BDNF in metabolic syndrome and type 2 diabetes; hence this work aimed to evaluate the potential neuroprotective effect of CBL in modulating the complications of hyperglycaemia experimentally induced by streptozotocin (STZ on the rat brain hippocampus. To this end, male adult Sprague Dawley rats were divided into (i vehicle- (ii CBL- and (iii STZ diabetic-control as well as (iv STZ+CBL groups. Diabetes was confirmed by hyperglycemia and elevated glycated haemoglobin (HbA1c%, which were associated by weight loss, elevated tumor necrosis factor (TNF-α and decreased insulin growth factor (IGF-1β in the serum. Uncontrolled hyperglycemia caused learning and memory impairments that corroborated degenerative changes, neuronal loss and expression of caspase (Casp-3 in the hippocampal area of STZ-diabetic rats. Behavioral deficits were associated by decreased hippocampal glutamate (GLU, glycine, serotonin (5-HT and dopamine. Moreover, diabetic rats showed an increase in hippocampal nitric oxide and thiobarbituric acid reactive substances versus decreased non-protein sulfhydryls. Though CBL did not affect STZ-induced hyperglycemia, it partly improved body weight as well as HbA1c%. Such effects were associated by enhancement in both learning and memory as well as apparent normal cellularity in CA1and CA3 areas and reduced Casp-3 expression. CBL improved serum TNF-α and IGF-1β, GLU and 5-HT as well as hampering oxidative biomarkers. In conclusion, CBL possesses neuroprotection against diabetes-associated cerebral neurodegeneration and cognitive decline via anti

  6. Development of vicarious trial-and-error behavior in odor discrimination learning in the rat: relation to hippocampal function?

    Science.gov (United States)

    Hu, D; Griesbach, G; Amsel, A

    1997-06-01

    Previous work from our laboratory has suggested that hippocampal electrolytic lesions result in a deficit in simultaneous, black-white discrimination learning and reduce the frequency of vicarious trial-and-error (VTE) at a choice-point. VTE is a term Tolman used to describe the rat's conflict-like behavior, moving its head from one stimulus to the other at a choice point, and has been proposed as a major nonspatial feature of hippocampal function in both visual and olfactory discrimination learning. Simultaneous odor discrimination and VTE behavior were examined at three different ages. The results were that 16-day-old pups made fewer VTEs and learned much more slowly than 30- and 60-day-olds, a finding in accord with levels of hippocampal maturity in the rat.

  7. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model.

    Science.gov (United States)

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. CaV3.1 isoform of T-type calcium channels supports excitability of rat and mouse ventral tegmental area neurons.

    Science.gov (United States)

    Tracy, Matthew E; Tesic, Vesna; Stamenic, Tamara Timic; Joksimovic, Srdjan M; Busquet, Nicolas; Jevtovic-Todorovic, Vesna; Todorovic, Slobodan M

    2018-03-23

    Recent data have implicated voltage-gated calcium channels in the regulation of the excitability of neurons within the mesolimbic reward system. While the attention of most research has centered on high voltage L-type calcium channel activity, the presence and role of the low voltage-gated T-type calcium channel (T-channels) has not been well explored. Hence, we investigated T-channel properties in the neurons of the ventral tegmental area (VTA) utilizing wild-type (WT) rats and mice, Ca V 3.1 knock-out (KO) mice, and TH-eGFP knock-in (KI) rats in acute horizontal brain slices of adolescent animals. In voltage-clamp experiments, we first assessed T-channel activity in WT rats with characteristic properties of voltage-dependent activation and inactivation, as well as characteristic crisscrossing patterns of macroscopic current kinetics. T-current kinetics were similar in WT mice and WT rats but T-currents were abolished in Ca V 3.1 KO mice. In ensuing current-clamp experiments, we observed the presence of hyperpolarization-induced rebound burst firing in a subset of neurons in WT rats, as well as dopaminergic and non-dopaminergic neurons in TH-eGFP KI rats. Following the application of a pan-selective T-channel blocker TTA-P2, rebound bursting was significantly inhibited in all tested cells. In a behavioral assessment, the acute locomotor increase induced by a MK-801 (Dizocilpine) injection in WT mice was abolished in Ca V 3.1 KO mice, suggesting a tangible role for 3.1 T-type channels in drug response. We conclude that pharmacological targeting of Ca V 3.1 isoform of T-channels may be a novel approach for the treatment of disorders of mesolimbic reward system. Copyright © 2018. Published by Elsevier Ltd.

  9. Low-frequency electrical stimulation enhances the effectiveness of phenobarbital on GABAergic currents in hippocampal slices of kindled rats.

    Science.gov (United States)

    Asgari, Azam; Semnanian, Saeed; Atapour, Nafiseh; Shojaei, Amir; Moradi-Chameh, Homeira; Ghafouri, Samireh; Sheibani, Vahid; Mirnajafi-Zadeh, Javad

    2016-08-25

    Low frequency stimulation (LFS) has been proposed as a new approach in the treatment of epilepsy. The anticonvulsant mechanism of LFS may be through its effect on GABAA receptors, which are the main target of phenobarbital anticonvulsant action. We supposed that co-application of LFS and phenobarbital may increase the efficacy of phenobarbital. Therefore, the interaction of LFS and phenobarbital on GABAergic inhibitory post-synaptic currents (IPSCs) in kindled and control rats was investigated. Animals were kindled by electrical stimulation of basolateral amygdala in a semi rapid manner (12 stimulations/day). The effect of phenobarbital, LFS and phenobarbital+LFS was investigated on GABAA-mediated evoked and miniature IPSCs in the hippocampal brain slices in control and fully kindled animals. Phenobarbital and LFS had positive interaction on GABAergic currents. In vitro co-application of an ineffective pattern of LFS (100 pulses at afterdischarge threshold intensity) and a sub-threshold dose of phenobarbital (100μM) which had no significant effect on GABAergic currents alone, increased the amplitude and area under curve of GABAergic currents in CA1 pyramidal neurons of hippocampal slices significantly. Interestingly, the sub-threshold dose of phenobarbital potentiated the GABAergic currents when applied on the hippocampal slices of kindled animals which received LFS in vivo. Post-synaptic mechanisms may be involved in observed interactions. Obtained results implied a positive interaction between LFS and phenobarbital through GABAA currents. It may be suggested that a combined therapy of phenobarbital and LFS may be a useful manner for reinforcing the anticonvulsant action of phenobarbital. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Electrical coupling between hippocampal astrocytes in rat brain slices.

    Science.gov (United States)

    Meme, William; Vandecasteele, Marie; Giaume, Christian; Venance, Laurent

    2009-04-01

    Gap junctions in astrocytes play a crucial role in intercellular communication by supporting both biochemical and electrical coupling between adjacent cells. Despite the critical role of electrical coupling in the network organization of these glial cells, the electrophysiological properties of gap junctions have been characterized in cultures while no direct evidence has been sought in situ. In the present study, gap-junctional currents were investigated using simultaneous dual whole-cell patch-clamp recordings between astrocytes from rat hippocampal slices. Bidirectional electrotonic coupling was observed in 82% of the cell pairs with an average coupling coefficient of 5.1%. Double patch-clamp analysis indicated that junctional currents were independent of the transjunctional voltage over a range from -100 to +110 mV. Interestingly, astrocytic electrical coupling displayed weak low-pass filtering properties compared to neuronal electrical synapses. Finally, during uncoupling processes triggered by either the gap-junction inhibitor carbenoxolone or endothelin-1, an increase in the input resistance in the injected cell paralleled the decrease in the coupling coefficient. Altogether, these results demonstrate that hippocampal astrocytes are electrically coupled through gap-junction channels characterized by properties that are distinct from those of electrical synapses between neurons. In addition, gap-junctional communication is efficiently regulated by endogenous compounds. This is taken to represent a mode of communication that may have important implications for the functional role of astrocyte networks in situ.

  11. Development of a histologically validated segmentation protocol for the hippocampal body.

    Science.gov (United States)

    Steve, Trevor A; Yasuda, Clarissa L; Coras, Roland; Lail, Mohjevan; Blumcke, Ingmar; Livy, Daniel J; Malykhin, Nikolai; Gross, Donald W

    2017-08-15

    Recent findings have demonstrated that hippocampal subfields can be selectively affected in different disease states, which has led to efforts to segment the human hippocampus with in vivo magnetic resonance imaging (MRI). However, no studies have examined the histological accuracy of subfield segmentation protocols. The presence of MRI-visible anatomical landmarks with known correspondence to histology represents a fundamental prerequisite for in vivo hippocampal subfield segmentation. In the present study, we aimed to: 1) develop a novel method for hippocampal body segmentation, based on two MRI-visible anatomical landmarks (stratum lacunosum moleculare [SLM] & dentate gyrus [DG]), and assess its accuracy in comparison to the gold standard direct histological measurements; 2) quantify the accuracy of two published segmentation strategies in comparison to the histological gold standard; and 3) apply the novel method to ex vivo MRI and correlate the results with histology. Ultra-high resolution ex vivo MRI was performed on six whole cadaveric hippocampal specimens, which were then divided into 22 blocks and histologically processed. The hippocampal bodies were segmented into subfields based on histological criteria and subfield boundaries and areas were directly measured. A novel method was developed using mean percentage of the total SLM distance to define subfield boundaries. Boundary distances and subfield areas on histology were then determined using the novel method and compared to the gold standard histological measurements. The novel method was then used to determine ex vivo MRI measures of subfield boundaries and areas, which were compared to histological measurements. For direct histological measurements, the mean percentages of total SLM distance were: Subiculum/CA1 = 9.7%, CA1/CA2 = 78.4%, CA2/CA3 = 97.5%. When applied to histology, the novel method provided accurate measures for CA1/CA2 (ICC = 0.93) and CA2/CA3 (ICC = 0.97) boundaries, but not for the

  12. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Hashemi, Hajar; Gholami, Mina

    2017-03-01

    Alcohol abuse causes severe damage to the brain neurons. Studies have reported the neuroprotective effects of curcumin against alcohol-induced neurodegeneration. However, the precise mechanism of action remains unclear. Seventy rats were equally divided into 7 groups (10 rats per group). Group 1 received normal saline (0.7ml/rat) and group 2 received alcohol (2g/kg/day) for 21days. Groups 3, 4, 5 and 6 concurrently received alcohol (2g/kg/day) and curcumin (10, 20, 40 and 60mg/kg, respectively) for 21days. Animals in group 7 self- administered alcohol for 21days. Group 8 treated with curcumin (60mg/kg, i.p.) alone for 21days. Open Field Test (OFT) was used to investigate motor activity in rats. Hippocampal oxidative, antioxidative and inflammatory factors were evaluated. Furthermore, brain cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene level by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, protein expression for BDNF, CREB, phosphorylated CREB (CREB-P), Bax and Bcl-2 was determined by western blotting. Voluntary and involuntary administration of alcohol altered motor activity in OFT, and curcumin treatment inhibited this alcohol-induced motor disturbance. Also, alcohol administration augmented lipid peroxidation, mitochondrial oxidized glutathione (GSSG), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and Bax levels in isolated hippocampal tissues. Furthermore, alcohol-induced significant reduction were observed in reduced form of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and CREB, BDNF and Bcl-2 levels. Also curcumin alone did not change the behavior and biochemical and molecular parameters. Curcumin can act as a neuroprotective agent against neurodegenerative effects of alcohol abuse, probably via activation of CREB-BDNF signaling pathway

  13. Neuroprotective effects of curcumin on endothelin-1 mediated cell death in hippocampal neurons.

    Science.gov (United States)

    Stankowska, Dorota L; Krishnamoorthy, Vignesh R; Ellis, Dorette Z; Krishnamoorthy, Raghu R

    2017-06-01

    Alzheimer's disease is a progressive neurodegenerative disease characterized by loss of hippocampal neurons leading to memory deficits and cognitive decline. Studies suggest that levels of the vasoactive peptide endothelin-1 (ET-1) are increased in the brain tissue of Alzheimer's patients. Curcumin, the main ingredient of the spice turmeric, has been shown to have anti-inflammatory, anti-cancer, and neuroprotective effects. However, the mechanisms underlying some of these beneficial effects are not completely understood. The objective of this study was to determine if curcumin could protect hippocampal neurons from ET-1 mediated cell death and examine the involvement of c-Jun in this pathway. Primary hippocampal neurons from rat pups were isolated using a previously published protocol. Viability of the cells was measured by the live/dead assay. Immunoblot and immunohistochemical analyses were performed to analyze c-Jun levels in hippocampal neurons treated with either ET-1 or a combination of ET-1 and curcumin. Apoptotic changes were evaluated by immunoblot detection of cleaved caspase-3, cleaved fodrin, and a caspase 3/7 activation assay. ET-1 treatment produced a 2-fold increase in the levels of c-Jun as determined by an immunoblot analysis in hippocampal neurons. Co-treatment with curcumin significantly attenuated the ET-1 mediated increase in c-Jun levels. ET-1 caused increased neuronal cell death of hippocampal neurons indicated by elevation of cleaved caspase-3, cleaved fodrin and an increased activity of caspases 3 and 7 which was attenuated by co-treatment with curcumin. Blockade of JNK, an upstream effector of c-Jun by specific inhibitor SP600125 did not fully protect from ET-1 mediated activation of pro-apoptotic enzymes in primary hippocampal cells. Our data suggests that one mechanism by which curcumin protects against ET-1-mediated cell death is through blocking an increase in c-Jun levels. Other possible mechanisms include decreasing pro

  14. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats

    Science.gov (United States)

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-01-01

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals. PMID:26218751

  15. Electrophysiological characterization of activation state-dependent Ca(v)2 channel antagonist TROX-1 in spinal nerve injured rats.

    Science.gov (United States)

    Patel, R; Rutten, K; Valdor, M; Schiene, K; Wigge, S; Schunk, S; Damann, N; Christoph, T; Dickenson, A H

    2015-06-25

    Prialt, a synthetic version of Ca(v)2.2 antagonist ω-conotoxin MVIIA derived from Conus magus, is the first clinically approved voltage-gated calcium channel blocker for refractory chronic pain. However, due to the narrow therapeutic window and considerable side effects associated with systemic dosing, Prialt is only administered intrathecally. N-triazole oxindole (TROX-1) is a novel use-dependent and activation state-selective small-molecule inhibitor of Ca(v)2.1, 2.2 and 2.3 calcium channels designed to overcome the limitations of Prialt. We have examined the neurophysiological and behavioral effects of blocking calcium channels with TROX-1. In vitro, TROX-1, in contrast to state-independent antagonist Prialt, preferentially inhibits Ca(v)2.2 currents in rat dorsal root ganglia (DRG) neurons under depolarized conditions. In vivo electrophysiology was performed to record from deep dorsal horn lamina V/VI wide dynamic range neurons in non-sentient spinal nerve-ligated (SNL) and sham-operated rats. In SNL rats, spinal neurons exhibited reduced responses to innocuous and noxious punctate mechanical stimulation of the receptive field following subcutaneous administration of TROX-1, an effect that was absent in sham-operated animals. No effect was observed on neuronal responses evoked by dynamic brushing, heat or cold stimulation in SNL or sham rats. The wind-up response of spinal neurons following repeated electrical stimulation of the receptive field was also unaffected. Spinally applied TROX-1 dose dependently inhibited mechanically evoked neuronal responses in SNL but not sham-operated rats, consistent with behavioral observations. This study confirms the pathological state-dependent actions of TROX-1 through a likely spinal mechanism and reveals a modality selective change in calcium channel function following nerve injury. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats.

    Science.gov (United States)

    Li, Ying; Ji, Yong-juan; Jiang, Hong; Liu, De-xiang; Zhang, Qian; Fan, Shu-jian; Pan, Fang

    2009-07-05

    Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Age and stress had different effects on the behavior of different aged animals (age: F = 6.173, P BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress in both age groups (P BDNF (F = 9.408, P BDNF expression compared to the young stressed group at every testing time point. Stress has age-dependent effects on behavioral responses and hippocampal BDNF expression in rats.

  17. Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage.

    Directory of Open Access Journals (Sweden)

    Francesco Matrisciano

    Full Text Available The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1, an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central

  18. Evaluation of the Ca2+ distribution in aortic tissue of spontaneously hypertensive and normotensive rats

    International Nuclear Information System (INIS)

    Spieker, C.; Zidek, W.; von Bassewitz, D.B.; Heck, D.; Rahn, K.H.

    1991-01-01

    In the present study, particle-induced X-ray emission (PIXE) was used to get information on the spatial distribution of Ca 2+ in aortas of spontaneously hypertensive rats (SHR) and normotensive controls aged 1 week, 4 weeks, and 12 weeks. To differentiate changes in Ca 2+ metabolism in hypertensive arteries from secondary phenomena due to the arteriosclerosis, the animals were examined in the earliest stage of hypertension. It was found that the Ca 2+ content was not elevated in the aortic smooth muscle of SHR aged 1 week (n = 11), as compared to normotensive controls (n = 10) (186.8 +/- 89.9 micrograms Ca 2+ /g tissue v 254.0 +/- 173.3 micrograms Ca 2+ /g). The Ca 2+ content was raised (P less than .05) in the aortic smooth muscle of SHR aged 4 weeks (n = 13), as compared to 12 WKY rats (4 weeks) (726.0 +/- 130.4 micrograms Ca 2+ /g tissue v 440.3 +/- 214.4 micrograms Ca 2+ /g) and in 17 SHR (3 months), as compared to 13 WKY rats, respectively (3390.1 +/- 729.9 micrograms Ca 2+ /g tissue v 1632.1 +/- 569.5 micrograms Ca 2+ /g). The results confirm the age-related increase in the arterial Ca 2+ content in normotensive rats and demonstrate additionally that this age-related rise in arterial Ca 2+ content is accelerated in SHR

  19. Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melamine-treated rats.

    Directory of Open Access Journals (Sweden)

    Xiaxia Xu

    Full Text Available Changes of neural oscillations at a variety of physiological rhythms are effectively associated with cognitive performance. The present study investigated whether the directional indices of neural information flow (NIF could be used to symbolize the synaptic plasticity impairment in hippocampal CA3-CA1 network in a rat model of melamine. Male Wistar rats were employed while melamine was administered at a dose of 300 mg/kg/day for 4 weeks. Behavior was measured by the Morris water maze(MWMtest. Local field potentials (LFPs were recorded before long-term potentiation (LTP induction. Generalized partial directed coherence (gPDC and phase-amplitude coupling conditional mutual information (PAC_CMI were used to measure the unidirectional indices in both theta and low gamma oscillations (LG, ~ 30-50 Hz. Our results showed that melamine induced the cognition deficits consistent with the reduced LTP in CA1 area. Phase locking values (PLVs showed that the synchronization between CA3 and CA1 in both theta and LG rhythms was reduced by melamine. In both theta and LG rhythms, unidirectional indices were significantly decreased in melamine treated rats while a similar variation trend was observed in LTP reduction, implying that the effects of melamine on cognitive impairment were possibly mediated via profound alterations of NIF on CA3-CA1 pathway in hippocampus. The results suggested that LFPs activities at these rhythms were most likely involved in determining the alterations of information flow in the hippocampal CA3-CA1 network, which might be associated with the alteration of synaptic transmission to some extent.

  20. The relationship between hippocampal EEG theta activity and locomotr behaviour in freely moving rats: effects of vigabatrin

    NARCIS (Netherlands)

    Bouwman, B.M.; Lier, H. van; Nitert, H.E.J.; Drinkenburg, W.H.I.M.; Coenen, A.M.L.; Rijn, C.M. van

    2005-01-01

    The relationship between hippocampal electroencephalogram (EEG) theta activity and locomotor speed in both spontaneous and forced walking conditions was studied in rats after vigabatrin injection (500 mg/kg i.p.). Vigabatrin increased the percentage of time that rats spent being immobile. During

  1. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    Directory of Open Access Journals (Sweden)

    Irmgard eAmrein

    2014-05-01

    Full Text Available African mole-rats (family Bathyergidae are small to medium sized, long-lived and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of one year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin. Solitary Cape mole-rats (Georychus capensis, social highveld mole-rats (Cryptomys hottentotus pretoriae, and eusocial naked mole-rats (Heterocephalus glaber were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean

  2. Effect of dorsal hippocampal lesion compared to dorsal hippocampal blockade by atropine on reference memory in vision deprived rats.

    Science.gov (United States)

    Dhume, R A; Noronha, A; Nagwekar, M D; Mascarenhas, J F

    1989-10-01

    In order to study the primacy of the hippocampus in place learning function 24 male adult albino rats were hippocampally-lesioned in dorsal hippocampus involving fornical damage (group I); sham operated for comparison with group I (group II); cannulated for instillation of atropine sulphate in the same loci as group I (group III); and cannulated for instillation of saline which served as control for group III (group IV). All the animals were enucleated and their reference memory (long-term memory) was tested, using open 4-arm radial maze. There was loss of reference memory in groups I and III. However, hippocampally-lesioned animals, showed recovery of reference memory deficit within a short period of 10 days or so. Whereas atropinized animals showed persistent reference memory deficit as long as the instillation effect continued. The mechanism involved in the recovery of reference memory in hippocampally-lesioned animals and persistent deficit of reference memory in atropinized animals has been postulated to explain the primacy of hippocampus in the place learning function under normal conditions.

  3. Role of silent information regulator 1 in the protective effect of hydrogen sulfide on homocysteine-induced cognitive dysfunction: Involving reduction of hippocampal ER stress.

    Science.gov (United States)

    Tang, Yi-Yun; Wang, Ai-Ping; Wei, Hai-Jun; Li, Man-Hong; Zou, Wei; Li, Xiang; Wang, Chun-Yan; Zhang, Ping; Tang, Xiao-Qing

    2018-04-16

    Homocysteine (Hcy) causes cognitive deficits and hippocampal endoplasmic reticulum (ER) stress. Our previous study has confirmed that Hydrogen sulfide (H 2 S) attenuates Hcy-induced cognitive dysfunction and hippocampal ER stress. Silent information regulator 1 (Sirt-1) is indispensable in the formation of learning and memory. Therefore, the aim of this study was to explore the role of Sirt-1 in the protective effect of H 2 S against Hcy-induced cognitive dysfunction. We found that NaHS (a donor of H 2 S) markedly up-regulated the expression of Sirt-1 in the hippocampus of Hcy-exposed rats. Sirtinol, a specific inhibitor of Sirt-1, reversed the improving role of NaHS in the cognitive function of Hcy-exposed rats, as evidenced by that sirtinol increased the escape latency and the swim distance in the acquisition trial of morris water maze (MWM) test, decreased the times crossed through and the time spent in the target quadrant in the probe trail of MWM test, and reduced the discrimination index in the novel object recognition test (NORT) in the rats cotreated with NaHS and Hcy. We also found that sirtinol reversed the protection of NaHS against Hcy-induced hippocampal ER-stress, as evidenced by up-regulating the expressions of GRP78, CHOP, and cleaved caspase-12 in the hippocampus of rats cotreated with NaHS and Hcy. These results suggested the contribution of upregulation of hippocampal Sirt-1 to the improving role of H 2 S in the cognitive function of Hcy-exposed rats, which involves suppression of hippocampal ER stress. Our finding provides a new insight into the mechanism underlying the inhibitory role of H 2 S in Hcy-induced cognitive dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane exposure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan); Department of Toxicology, Guangdong Prevention and Treatment Center for Occupational Diseases, Guangzhou 510‐300 (China); Ichihara, Sahoko [Graduate School of Regional Innovation Studies, Mie University, Tsu 514‐8507 (Japan); Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514‐8507 (Japan); Chang, Jie; Zhang, Lingyi; Subramanian, Kaviarasan; Mohideen, Sahabudeen Sheik [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan); Ichihara, Gaku, E-mail: gak@med.nagoya-u.ac.jp [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan)

    2012-08-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and humans. Previous proteomic analysis of rat hippocampus implicated alteration of protein expression in oxidative stress, suggesting that oxidative stress plays a role in 1-BP-induced neurotoxicity. To understand this role at the protein level, we exposed male F344 rats to 1-BP at 0, 400, or 1000 ppm for 8 h/day for 1 week or 4 weeks by inhalation and quantitated changes in hippocampal protein carbonyl using a protein carbonyl assay, two-dimensional gel electrophoresis (2-DE), immunoblotting, and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). Hippocampal reactive oxygen species and protein carbonyl were significantly increased, demonstrating 1-BP-associated induction of oxidative stress and protein damage. MALDI-TOF-TOF/MS identified 10 individual proteins with increased carbonyl modification (p < 0.05; fold-change ≥ 1.5). The identified proteins were involved in diverse biological processes including glycolysis, ATP production, tyrosine catabolism, GTP binding, guanine degradation, and neuronal metabolism of dopamine. Hippocampal triosephosphate isomerase (TPI) activity was significantly reduced and negatively correlated with TPI carbonylation (p < 0.001; r = 0.83). Advanced glycation end-product (AGE) levels were significantly elevated both in the hippocampus and plasma, and hippocampal AGEs correlated negatively with TPI activity (p < 0.001; r = 0.71). In conclusion, 1-BP-induced neurotoxicity in the rat hippocampus seems to involve oxidative damage of cellular proteins, decreased TPI activity, and elevated AGEs. -- Highlights: ► 1-BP increases hippocampal ROS levels and hippocampal and plasma protein carbonyls. ► 1-BP increases TPI carbonylation and decreases TPI activity in the hippocampus. ► 1-BP increases hippocampal and plasma AGE levels.

  5. Resveratrol Ameliorates Tau Hyperphosphorylation at Ser396 Site and Oxidative Damage in Rat Hippocampal Slices Exposed to Vanadate: Implication of ERK1/2 and GSK-3β Signaling Cascades.

    Science.gov (United States)

    Jhang, Kyoung A; Park, Jin-Sun; Kim, Hee-Sun; Chong, Young Hae

    2017-11-08

    The objective of this study was to investigate the effect of resveratrol (a natural polyphenolic phytostilbene) on tau hyperphosphorylation and oxidative damage induced by sodium orthovanadate (Na 3 VO 4 ), the prevalent species of vanadium (vanadate), in rat hippocampal slices. Our results showed that resveratrol significantly inhibited Na 3 VO 4 -induced hyperphosphorylation of tau at the Ser396 (p-S396-tau) site, which is upregulated in the hippocampus of Alzheimer's disease (AD) brains and principally linked to AD-associated cognitive dysfunction. Subsequent mechanistic studies revealed that reduction of ERK1/2 activation was involved in the inhibitory effect of resveratrol by inhibiting the ERK1/2 pathway with SL327 mimicking the aforementioned effect of resveratrol. Moreover, resveratrol potently induced GSK-3β Ser9 phosphorylation and reduced Na 3 VO 4 -induced p-S396-tau levels, which were markedly replicated by pharmacologic inhibition of GSK-3β with LiCl. These results indicate that resveratrol could suppress Na 3 VO 4 -induced p-S396-tau levels via downregulating ERK1/2 and GSK-3β signaling cascades in rat hippocampal slices. In addition, resveratrol diminished the increased extracellular reactive oxygen species generation and hippocampal toxicity upon long-term exposure to Na 3 VO 4 or FeCl 2 . Our findings strongly support the notion that resveratrol may serve as a potential nutraceutical agent for AD.

  6. Region-specific roles of the prelimbic cortex, the dorsal CA1, the ventral DG and ventral CA1 of the hippocampus in the fear return evoked by a sub-conditioning procedure in rats.

    Science.gov (United States)

    Fu, Juan; Xing, Xiaoli; Han, Mengfi; Xu, Na; Piao, Chengji; Zhang, Yue; Zheng, Xigeng

    2016-02-01

    The return of learned fear is an important issue in anxiety disorder research since an analogous process may contribute to long-term fear maintenance or clinical relapse. A number of studies demonstrate that mPFC and hippocampus are important in the modulation of post-extinction re-expression of fear memory. However, the region-specific role of these structures in the fear return evoked by a sub-threshold conditioning (SC) is not known. In the present experiments, we first examined specific roles of the prelimbic cortex (PL), the dorsal hippocampus (DH, the dorsal CA1 area in particular), the ventral hippocampus (the ventral dentate gyrus (vDG) and the ventral CA1 area in particular) in this fear return process. Then we examined the role of connections between PL and vCA1 with this behavioral approach. Rats were subjected to five tone-shock pairings (1.0-mA shock) to induce conditioned fear (freezing), followed by three fear extinction sessions (25 tone-alone trials each session). After a post-test for extinction memory, some rats were retrained with the SC procedure to reinstate tone-evoked freezing. Rat groups were injected with low doses of the GABAA agonist muscimol to selectively inactivate PL, DH, vDG, or vCA1 120 min before the fear return test. A disconnection paradigm with ipsilateral or contralateral muscimol injection of the PL and the vCA1 was used to examine the role of this pathway in the fear return. We found that transient inactivation of these areas significantly impaired fear return (freezing): inactivation of the prelimbic cortex blocked SC-evoked fear return in particular but did not influence fear expression in general; inactivation of the DH area impaired fear return, but had no effect on the extinction retrieval process; both ventral DG and ventral CA1 are required for the return of extinguished fear whereas only ventral DG is required for the extinction retrieval. These findings suggest that PL, DH, vDG, and vCA1 all contribute to the fear

  7. A High-Fructose-High-Coconut Oil Diet Induces Dysregulating Expressions of Hippocampal Leptin and Stearoyl-CoA Desaturase, and Spatial Memory Deficits in Rats.

    Science.gov (United States)

    Lin, Ching-I; Shen, Chu-Fu; Hsu, Tsui-Han; Lin, Shyh-Hsiang

    2017-06-16

    We investigated the effects of high-fructose-high-fat diets with different fat compositions on metabolic parameters, hippocampal-dependent cognitive function, and brain leptin (as well as stearoyl-CoA desaturase (SCD1) mRNA expressions). Thirty-two male Wistar rats were divided into 3 groups, a control group ( n = 8), a high-fructose soybean oil group (37.5% of fat calories, n = 12), and a high-fructose coconut oil group (37.5% of fat calories, n = 12) for 20 weeks. By the end of the study, the coconut oil group exhibited significantly higher serum fasting glucose, fructosamine, insulin, leptin, and triglyceride levels compared to those of the control and soybean oil groups. However, hippocampal leptin expression and leptin receptor mRNA levels were significantly lower, while SCD1 mRNA was significantly higher in rats fed the high-fructose-high-coconut oil diet than in rats fed the other experimental diets. In addition, the coconut oil group spent significantly less time in the target quadrant on the probe test in the Morris water maze (MWM) task. Rats fed the high-fructose-high-coconut oil diet for 20 weeks were prone to develop hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia. These metabolic consequences may contribute to hippocampal-dependent memory impairment, accompanied by a lower central leptin level, and a higher SCD1 gene expression in the brain.

  8. Blood pressure regulation and 45Ca flux in aging Zucker rats

    International Nuclear Information System (INIS)

    Zemel, M.B.; Shehin, S.E.; Chiou, S.Y.; Sowers, J.R.

    1990-01-01

    The authors have previously reported that Zucker obese rats exhibit significant hypertension associated with an impairment in vascular smooth muscle Ca 2+ efflux compared to their lean controls. To further investigate this phenomenon, the authors measured direct intra-arterial blood pressure in previously cannulated, unrestrained, conscious Zucker lean and obese rats at 10 weeks of age and 60 weeks of age. The animals were sacrificed and replicate aortic strips from each were loaded with 45 Ca and 45 Ca efflux was evaluated. Results show that both young and old obese rats exhibit systolic and diastolic hypertension and impaired Ca 2+ efflux, and these defects were exaggerated in the old animals. Further, the old lean animals exhibited diastolic hypertension and impaired Ca 2+ efflux comparable to that found in the young obese animals. This suggests that old Zucker lean rats exhibit the same defects in Ca 2+ efflux comparable to that found in the young obese animals. This suggests that old Zucker lean rats exhibit the same defects in Ca 2+ metabolism previously observed in young Zucker obese rats, possibly due to latent gene expression of the Fa gene in heterozygous lean rats

  9. Comparison between basal and apical dendritic spines in estrogen-induced rapid spinogenesis of CA1 principal neurons in the adult hippocampus

    International Nuclear Information System (INIS)

    Murakami, Gen; Tsurugizawa, Tomokazu; Hatanaka, Yusuke; Komatsuzaki, Yoshimasa; Tanabe, Nobuaki; Mukai, Hideo; Hojo, Yasushi; Kominami, Shiro; Yamazaki, Takeshi; Kimoto, Tetsuya; Kawato, Suguru

    2006-01-01

    Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Here, we demonstrated the rapid effect of 17β-estradiol on the density and morphology of spines in the stratum oriens (s.o., basal side) and in the stratum lacunosum-moleculare (s.l.m., apical side) by imaging Lucifer Yellow-injected CA1 neurons in adult male rat hippocampal slices, because spines in s.o. and s.l.m. have been poorly understood as compared with spines in the stratum radiatum. The application of 1 nM estradiol-induced a rapid increase in the density of spines of pyramidal neurons within 2 h. This increase by estradiol was blocked by Erk MAP kinase inhibitor and estrogen receptor inhibitor in both regions. Effect of blockade by agonists of AMPA receptors and NMDA receptors was different between s.o. and s.l.m. In both regions, ERα agonist PPT induced the same enhancing effect of spinogenesis as that induced by estradiol

  10. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.

    Science.gov (United States)

    Sukiasyan, N; Hultborn, H; Zhang, M

    2009-03-03

    The function of local networks in the CNS depends upon both the connectivity between neurons and their intrinsic properties. An intrinsic property of spinal motoneurons is the presence of persistent inward currents (PICs), which are mediated by non-inactivating calcium (mainly Ca(V)1.3) and/or sodium channels and serve to amplify neuronal input signals. It is of fundamental importance for the prediction of network function to determine the distribution of neurons possessing the ion channels that produce PICs. Although the distribution pattern of Ca(V)1.3 immunoreactivity (Ca(V)1.3-IR) has been studied in some specific central nervous regions in some species, so far no systematic investigations have been performed in both the rat spinal cord and brain stem. In the present study this issue was investigated by immunohistochemistry. The results indicated that the Ca(V)1.3-IR neurons were widely distributed across different parts of the spinal cord and the brain stem although with variable labeling intensities. In the spinal gray matter large neurons in the ventral horn (presumably motoneurons) tended to display higher levels of immunoreactivity than smaller neurons in the dorsal horn. In the white matter, a subset of glial cells labeled by an oligodendrocyte marker was also Ca(V)1.3-positive. In the brain stem, neurons in the motor nuclei appeared to have higher levels of immunoreactivity than those in the sensory nuclei. Moreover, a number of nuclei containing monoaminergic cells, for example the locus coeruleus, were also strongly immunoreactive. Ca(V)1.3-IR was consistently detected in the neuronal perikarya regardless of the neuronal type. However, in the large neurons in the spinal ventral horn and the cranial motor nuclei the Ca(V)1.3-IR was clearly detectable in first and second order dendrites. These results indicate that in the rat spinal cord and brain stem Ca(V)1.3 is probably a common calcium channel used by many kinds of neurons to facilitate the neuronal

  11. High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus.

    Science.gov (United States)

    Lemos, C; Rial, D; Gonçalves, F Q; Pires, J; Silva, H B; Matheus, F C; da Silva, A C; Marques, J M; Rodrigues, R J; Jarak, I; Prediger, R D; Reis, F; Carvalho, R A; Pereira, F C; Cunha, R A

    2016-02-19

    High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. Male Wistar rats were submitted for 9 weeks to a sucrose-rich diet (35% sucrose solution) and subsequently to a battery of behavioral tests; after sacrifice, their hippocampi were collected for ex vivo high-resolution magic angle spinning (HRMAS) metabolic characterization and electrophysiological extracellular recordings in slices. HSu rats displayed a decreased memory performance (object displacement and novel object recognition tasks) and helpless behavior (forced swimming test), without altered locomotion (open field). HRMAS analysis indicated a similar hippocampal metabolic profile of HSu and control rats. HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    Science.gov (United States)

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT 3 receptor in the development of PTSD, even though 5-HT 3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT 3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT 3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT 3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT 3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT 3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  13. Effects of GABA-B receptor positive modulator on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in freely moving rats.

    Science.gov (United States)

    Ma, Jingyi; Stan Leung, L

    2017-10-01

    Decreased GABA B receptor function is proposed to mediate some symptoms of schizophrenia. In this study, we tested the effect of CGP7930, a GABA B receptor positive allosteric modulator, on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in behaving rats. Electrodes were bilaterally implanted into the hippocampus, and cannulae were placed into the lateral ventricles of Long-Evans rats. CGP7930 or vehicle was injected intraperitoneally (i.p.) or intracerebroventricularly (i.c.v.), alone or 15 min prior to ketamine (3 mg/kg, subcutaneous) injection. Paired click auditory evoked potentials in the hippocampus (AEP), prepulse inhibition (PPI), and locomotor activity were recorded before and after drug injection. CGP7930 at doses of 1 mg/kg (i.p.) prevented ketamine-induced deficit of PPI. CGP7930 (1 mg/kg i.p.) also prevented the decrease in gating of hippocampal AEP and the increase in hippocampal gamma (65-100 Hz) waves induced by ketamine. Unilateral i.c.v. infusion of CGP7930 (0.3 mM/1 μL) also prevented the decrease in gating of hippocampal AEP induced by ketamine. Ketamine-induced behavioral hyperlocomotion was suppressed by 5 mg/kg i.p. CGP7930. CGP7930 alone, without ketamine, did not significantly affect integrated PPI, locomotion, gating of hippocampal AEP, or gamma waves. CGP7930 (1 mg/kg i.p.) increased heterosynaptically mediated paired pulse depression in the hippocampus, a measure of GABA B receptor function in vivo. CGP7930 reduces the behavioral and electrophysiological disruptions induced by ketamine in animals, and the hippocampus may be one of the neural targets where CGP7930 exerts its actions.

  14. Roles of hippocampal subfields in verbal and visual episodic memory.

    Science.gov (United States)

    Zammit, Andrea R; Ezzati, Ali; Zimmerman, Molly E; Lipton, Richard B; Lipton, Michael L; Katz, Mindy J

    2017-01-15

    Selective hippocampal (HC) subfield atrophy has been reported in older adults with mild cognitive impairment and Alzheimer's disease. The goal of this study was to investigate the associations between the volume of hippocampal subfields and visual and verbal episodic memory in cognitively normal older adults. This study was conducted on a subset of 133 participants from the Einstein Aging Study (EAS), a community-based study of non-demented older adults systematically recruited from the Bronx, N.Y. All participants completed comprehensive EAS neuropsychological assessment. Visual episodic memory was assessed using the Complex Figure Delayed Recall subtest from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Verbal episodic memory was assessed using Delayed Recall from the Free and Cued Selective Reminding Test (FCSRT). All participants underwent 3T MRI brain scanning with subsequent automatic measurement of the hemispheric hippocampal subfield volumes (CA1, CA2-CA3, CA4-dente gyrus, presubiculum, and subiculum). We used linear regressions to model the association between hippocampal subfield volumes and visual and verbal episodic memory tests while adjusting for age, sex, education, and total intracranial volume. Participants had a mean age of 78.9 (SD=5.1) and 60.2% were female. Total hippocampal volume was associated with Complex Figure Delayed Recall (β=0.31, p=0.001) and FCSRT Delayed Recall (β=0.27, p=0.007); subiculum volume was associated with Complex Figure Delayed Recall (β=0.27, p=0.002) and FCSRT Delayed Recall (β=0.24, p=0.010); CA1 was associated with Complex Figure Delayed Recall (β=0.26, pepisodic memory. Our results suggest that hippocampal subfields have sensitive roles in the process of visual and verbal episodic memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    Science.gov (United States)

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J.; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca2+ fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca2+-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα+/calbindin+ cells were closely surrounded by NAPE-PLD+ fiber varicosities. No pyramidal PPARα+/calbindin+ cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD+/calretinin+ cells were specifically detected in CA3. NAPE-PLD+ puncta surrounded the calretinin+ cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions. PMID:24672435

  16. Cytokines effects on radio-induced apoptosis in cortical and hippocampal rat cells in culture

    International Nuclear Information System (INIS)

    Coffigny, H.; Briot, D.; Le Nin, I.

    2000-01-01

    In the central nervous system in development the radio-induced cell death occurs mainly by apoptosis. The effects of modulating factors like cytokines were studied on this kind of death. To handle more easily parameters implicated in nerve cell apoptosis, we studied the effects of radiation with a in vitro system. Cells were isolated from rat foetal cortex and hippocampus, two of the major structures implicated in human mental retardation observed after exposition in utero at Hiroshima and Nagasaki. Cortical or hippocampal cells were isolated from 17 day-old rat foetuses by enzymatic and mechanical treatments and irradiated with 0.50 or 1 Gy. The cells from both structures were cultured 1 or 3 days in serum free medium. Cytokines like βNGF, NT3, EGF, βTGF, α and βFGF, IGF I and II, interleukines like Il 1β, Il 2 and IL 6 were added to the medium. In 3 days cortical cell culture, only βFGF increased cell survival with as little as 10 ng/ml. This effect was dose dependent. In hippocampal cell culture, no significant increase of cell survival occurred with 10 ng/ml of any cytokines. In the same system culture with 1 Gy irradiation, the positive or negative effect of the association of βFGF with another cytokine was tested on cell survival. Only the association with EGF induced higher cell survival in cortical cell culture. In hippocampal cell culture where βFGF alone had no effect, the cell survival was not modified by the association. In the same system, the triple association of βFGF-EGF with another cytokine was tested on hippocampal and cortical cell cultures. No significant effect was observed in both cultures but cell survival trented to decrease with βTGF. In order to avoid the mitotic effect of cytokines in the 3 day-old culture, experiments were carried out on 20 hours cell culture, before the end of the first round of the cell cycle, with the selected cytokines (βFGF or βFGF-EGF). Without irradiation, the percentage of cortical cell survival

  17. Effects of pilocarpine and kainate-induced seizures on N-methyl-d-aspartate receptor gene expression in the rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Przewlocka, B.; Labuz, D.; Machelska, H.; Przewlocki, R.; Turchan, J.; Lason, W. [Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow (Poland)

    1997-04-14

    The effects of pilocarpine- and kainate-induced seizures on N-methyl-d-aspartate receptor subunit-1 messenger RNA and [{sup 3}H]dizocilpine maleate binding were studied in the rat hippocampal formation. Pilocarpine- but not kainate-induced seizures decreased N-methyl-d-aspartate receptor subunit-1 messenger RNA level in dentate gyrus at 24 and 72 h after drug injection. Both convulsants decreased the messenger RNA level in CA1 pyramidal cells at 24 and 72 h, the effects of kainate being more profound. Kainate also decreased the N-methyl-d-aspartate receptor subunit-1 messenger RNA level in CA3 region after 24 and 72 h, whereas pilocarpine decreased the messenger RNA level at 72 h only. At 3 h after kainate, but not pilocarpine, an increased binding of [{sup 3}H]dizocilpine maleate in several apical dendritic fields of pyramidal cells was found. Pilocarpine reduced the [{sup 3}H]dizocilpine maleate binding in stratum lucidum only at 3 and 24 h after the drug injection. Pilocarpine but not kainate induced prolonged decrease in N-methyl-d-aspartate receptor subunit-1 gene expression in dentate gyrus. However, at the latest time measured, kainate had the stronger effect in decreasing both messenger RNA N-methyl-d-aspartate receptor subunit-1 and [{sup 3}H]dizocilpine maleate binding in CA1 and CA3 hippocampal pyramidal cells. The latter changes corresponded, however, to neuronal loss and may reflect higher neurotoxic potency of kainate.These data point to some differences in hippocampal N-methyl-d-aspartate receptor regulation in pilocarpine and kainate models of limbic seizures. Moreover, our results suggest that the N-methyl-d-aspartate receptor subunit-1 messenger RNA level is more susceptible to limbic seizures than is [{sup 3}H]dizocilpine maleate binding in the rat hippocampal formation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Effects of pilocarpine and kainate-induced seizures on N-methyl-d-aspartate receptor gene expression in the rat hippocampus

    International Nuclear Information System (INIS)

    Przewlocka, B.; Labuz, D.; Machelska, H.; Przewlocki, R.; Turchan, J.; Lason, W.

    1997-01-01

    The effects of pilocarpine- and kainate-induced seizures on N-methyl-d-aspartate receptor subunit-1 messenger RNA and [ 3 H]dizocilpine maleate binding were studied in the rat hippocampal formation. Pilocarpine- but not kainate-induced seizures decreased N-methyl-d-aspartate receptor subunit-1 messenger RNA level in dentate gyrus at 24 and 72 h after drug injection. Both convulsants decreased the messenger RNA level in CA1 pyramidal cells at 24 and 72 h, the effects of kainate being more profound. Kainate also decreased the N-methyl-d-aspartate receptor subunit-1 messenger RNA level in CA3 region after 24 and 72 h, whereas pilocarpine decreased the messenger RNA level at 72 h only. At 3 h after kainate, but not pilocarpine, an increased binding of [ 3 H]dizocilpine maleate in several apical dendritic fields of pyramidal cells was found. Pilocarpine reduced the [ 3 H]dizocilpine maleate binding in stratum lucidum only at 3 and 24 h after the drug injection. Pilocarpine but not kainate induced prolonged decrease in N-methyl-d-aspartate receptor subunit-1 gene expression in dentate gyrus. However, at the latest time measured, kainate had the stronger effect in decreasing both messenger RNA N-methyl-d-aspartate receptor subunit-1 and [ 3 H]dizocilpine maleate binding in CA1 and CA3 hippocampal pyramidal cells. The latter changes corresponded, however, to neuronal loss and may reflect higher neurotoxic potency of kainate.These data point to some differences in hippocampal N-methyl-d-aspartate receptor regulation in pilocarpine and kainate models of limbic seizures. Moreover, our results suggest that the N-methyl-d-aspartate receptor subunit-1 messenger RNA level is more susceptible to limbic seizures than is [ 3 H]dizocilpine maleate binding in the rat hippocampal formation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Hippocampal oscillations in the rodent model of schizophrenia induced by amygdala GABA receptor blockade

    Directory of Open Access Journals (Sweden)

    Tope eLanre-Amos

    2010-09-01

    Full Text Available Brain oscillations are critical for cognitive processes, and their alterations in schizophrenia have been proposed to contribute to cognitive impairments. Network oscillations rely upon GABAergic interneurons, which also show characteristic changes in schizophrenia. The aim of this study was to examine the capability of hippocampal networks to generate oscillations in a rat model previously shown to reproduce the stereotypic structural alterations of the hippocampal interneuron circuit seen in schizophrenic patients. This model uses injection of GABA-A receptor antagonist picrotoxin into the basolateral amygdala which causes cell-type specific disruption of interneuron signaling in the hippocampus. We found that after such treatment, hippocampal theta rhythm was still present during REM sleep, locomotion, and exploration of novel environment and could be elicited under urethane anesthesia. Subtle changes in theta and gamma parameters were observed in both preparations; specifically in the stimulus intensity—theta frequency relationship under urethane and in divergent reactions of oscillations at the two major theta dipoles in freely moving rats. Thus, theta power in the CA1 region was generally enhanced as compared with deep theta dipole which decreased or did not change. The results indicate that pathologic reorganization of interneurons that follows the over-activation of the amygdala-hippocampal pathway, as shown for this model of schizophrenia, does not lead to destruction of the oscillatory circuit but changes the normal balance of rhythmic activity in its various compartments.

  20. Long-term potentiation protects rat hippocampal slices from the effects of acute hypoxia.

    Science.gov (United States)

    Youssef, F F; Addae, J I; McRae, A; Stone, T W

    2001-07-13

    We have previously shown that long-term potentiation (LTP) decreases the sensitivity of glutamate receptors in the rat hippocampal CA1 region to exogenously applied glutamate agonists. Since the pathophysiology of hypoxia/ischemia involves increased concentration of endogenous glutamate, we tested the hypothesis that LTP could reduce the effects of hypoxia in the hippocampal slice. The effects of LTP on hypoxia were measured by the changes in population spike potentials (PS) or field excitatory post-synaptic potentials (fepsps). Hypoxia was induced by perfusing the slice with (i) artificial CSF which had been pre-gassed with 95%N2/5% CO2; (ii) artificial CSF which had not been pre-gassed with 95% O2/5% CO2; or (iii) an oxygen-glucose deprived (OGD) medium which was similar to (ii) and in which the glucose had been replaced with sucrose. Exposure of a slice to a hypoxic medium for 1.5-3.0 min led to a decrease in the PS or fepsps; the potentials recovered to control levels within 3-5 min. Repeat exposure, 45 min later, of the same slice to the same hypoxic medium for the same duration as the first exposure caused a reduction in the potentials again; there were no significant differences between the degree of reduction caused by the first or second exposure for all three types of hypoxic media (P>0.05; paired t-test). In some of the slices, two episodes of LTP were induced 25 and 35 min after the first hypoxic exposure; this caused inhibition of reduction in potentials caused by the second hypoxic insult which was given at 45 min after the first; the differences in reduction in potentials were highly significant for all the hypoxic media used (Peffects of LTP were not prevented by cyclothiazide or inhibitors of NO synthetase compounds that have been shown to be effective in blocking the effects of LTP on the actions of exogenously applied AMPA and NMDA, respectively. The neuroprotective effects of LTP were similar to those of propentofylline, a known neuroprotective

  1. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD.

    Science.gov (United States)

    Han, Jing; Kesner, Philip; Metna-Laurent, Mathilde; Duan, Tingting; Xu, Lin; Georges, Francois; Koehl, Muriel; Abrous, Djoher Nora; Mendizabal-Zubiaga, Juan; Grandes, Pedro; Liu, Qingsong; Bai, Guang; Wang, Wei; Xiong, Lize; Ren, Wei; Marsicano, Giovanni; Zhang, Xia

    2012-03-02

    Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Regulation of hippocampus-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons.

    Science.gov (United States)

    Ren, Anjing; Zhang, Huan; Xie, Zhifang; Ma, Xianhua; Ji, Wenli; He, David Z Z; Yuan, Wenjun; Ding, Yu-Qiang; Zhang, Xiao-Hui; Zhang, Weiping J

    2012-10-01

    The mammalian hippocampus harbours neural circuitry that is crucial for associative learning and memory. The mechanisms that underlie the development and regulation of this complex circuitry are not fully understood. Our previous study established an essential role for the zinc finger protein Zbtb20 in the specification of CA1 field identity in the developing hippocampus. Here, we show that conditionally deleting Zbtb20 specifically in mature CA1 pyramidal neurons impaired hippocampus-dependent memory formation, without affecting hippocampal architecture or the survival, identity and basal excitatory synaptic activity of CA1 pyramidal neurons. We demonstrate that mature CA1-specific Zbtb20 knockout mice exhibited reductions in long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated excitatory post-synaptic currents. Furthermore, we show that activity-induced phosphorylation of ERK and CREB is impaired in the hippocampal CA1 of Zbtb20 mutant mice. Collectively, these results indicate that Zbtb20 in mature CA1 plays an important role in LTP and memory by regulating NMDAR activity, and activation of ERK and CREB.

  3. Sex specific recruitment of a medial prefrontal cortex-hippocampal-thalamic system during context-dependent renewal of responding to food cues in rats.

    Science.gov (United States)

    Anderson, Lauren C; Petrovich, Gorica D

    2017-03-01

    Renewal, or reinstatement, of responding to food cues after extinction may explain the inability to resist palatable foods and change maladaptive eating habits. Previously, we found sex differences in context-dependent renewal of extinguished Pavlovian conditioned responding to food cues. Context-induced renewal involves cue-food conditioning and extinction in different contexts and the renewal of conditioned behavior is induced by return to the conditioning context (ABA renewal). Male rats showed renewal of responding while females did not. In the current study we sought to identify recruitment of key neural systems underlying context-mediated renewal and sex differences. We examined Fos induction within the ventromedial prefrontal cortex (vmPFC), hippocampal formation, thalamus and amygdala in male and female rats during the test for renewal. We found sex differences in vmPFC recruitment during renewal. Male rats in the experimental condition showed renewal of responding and had more Fos induction within the infralimbic and prelimbic vmPFC areas compared to controls that remained in the same context throughout training and testing. Females in the experimental condition did not show renewal or an increase in Fos induction. Additionally, Fos expression differed between experimental and control groups and between the sexes in the hippocampal formation, thalamus and amygdala. Within the ventral subiculum, the experimental groups of both sexes had more Fos compared to control groups. Within the dorsal CA1 and the anterior region of the paraventricular nucleus of the thalamus, in males, the experimental group had higher Fos induction, while both females groups had similar number of Fos-positive neurons. Within the capsular part of the central amygdalar nucleus, females in the experimental group had higher Fos induction, while males groups had similar amounts. The differential recruitment corresponded to the behavioral differences between males and females and suggests

  4. Regulation of Blood Pressure by Targeting CaV1.2-Galectin-1 Protein Interaction.

    Science.gov (United States)

    Hu, Zhenyu; Li, Guang; Wang, Jiong-Wei; Chong, Suet Yen; Yu, Dejie; Wang, Xiaoyuan; Soon, Jia Lin; Liang, Mui Cheng; Wong, Yuk Peng; Huang, Na; Colecraft, Henry M; Liao, Ping; Soong, Tuck Wah

    2018-04-12

    Background -L-type Ca V 1.2 channels play crucial roles in regulation of blood pressure. Galectin-1 (Gal-1), has been reported to bind to the I-II loop of Ca V 1.2 channels to reduce their current density. However, the mechanistic understanding for the down-regulation of Ca V 1.2 channels by Gal-1, and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. Methods - In vitro experiments involving co-IP, western blot, patch-clamp recordings, immunohistochemistry and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 down-regulates Ca V 1.2 channel in transfected HEK 293 cells, smooth muscle cells, arteries from Lgasl1 -/- mice, rat and human patients. In vivo experiments involving delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting Ca V 1.2-Gal-1 interaction on blood pressure monitored by tail cuff or telemetry methods. Results -Our study reveals that Gal-1 is a key regulator for proteasomal degradation of Ca V 1.2 channels. Gal-1 competed allosterically with Ca V β subunit for binding to the I-II loop of Ca V 1.2 channel. This competitive disruption of Ca V β binding led to Ca V 1.2 degradation by exposing the channels to poly-ubiquitination. Notably, we demonstrated that the inverse relationship of reduced Gal-1 and increased Ca V 1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice due to up-regulated Ca V 1.2 protein level in arteries. To directly regulate blood pressure by targeting the Ca V 1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1, by a mini-osmotic pump and this specific disruption of Ca V 1.2-Gal-1 coupling increased smooth muscle Ca V 1.2 currents, induced larger arterial contraction and caused hypertension in rats. In contrasting experiments, over-expression of Gal-1 in smooth muscle by a

  5. Ghrelin-induced hippocampal neurogenesis and enhancement of cognitive function are mediated independently of GH/IGF-1 axis: lessons from the spontaneous dwarf rats.

    Science.gov (United States)

    Li, Endan; Kim, Yumi; Kim, Sehee; Park, Seungjoon

    2013-01-01

    We recently have reported that ghrelin modulates adult hippocampal neurogenesis. However, there is a possibility that the action of ghrelin on hippocampal neurogenesis could be, in part, due to the ability of ghrelin to stimulate the GH/insulin-like growth factor (IGF)-1 axis, where both GH and IGF-1 infusions are known to increase hippocampal neurogenesis. To explore this possibility, we assessed the impact of ghrelin on progenitor cell proliferation and differentiation in the dentate gyrus (DG) of spontaneous dwarf rats (SDRs), a dwarf strain with a mutation of the GH gene resulting in total loss of GH. Double immunohistochemical staining revealed that Ki-67-positive progenitor cells and doublecortin (DCX)-positive neuroblasts in the DG of the SDRs expressed ghrelin receptors. We found that ghrelin treatment in the SDRs significantly increased the number of proliferating cell nuclear antigen- and BrdU-labeled cells in the DG. The number of DCX-labeled cells in the DG of ghrelin-treated SDRs was also significantly increased compared with the vehicle-treated controls. To test whether ghrelin has a direct effect on cognitive performance independently of somatotropic axis, hippocampus-dependent learning and memory were assessed using the Y-maze and novel object recognition (NOR) test in the SDRs. Ghrelin treatment for 4 weeks by subcutaneous osmotic pump significantly increased alternation rates in the Y-maze and exploration time for novel object in the NOR test compared to vehicle-treated controls. Our results indicate that ghrelin-induced adult hippocampal neurogenesis and enhancement of cognitive function are mediated independently of somatotropic axis.

  6. Treatment planning and 3D dose verification of whole brain radiation therapy with hippocampal avoidance in rats

    International Nuclear Information System (INIS)

    Yoon, S W; Miles, D; Reinsvold, M; Kirsch, D; Oldham, M; Cramer, C

    2017-01-01

    Despite increasing use of stereotactic radiosurgery, whole brain radiotherapy (WBRT) continues to have a therapeutic role in a selected subset of patients. Selectively avoiding the hippocampus during such treatment (HA-WBRT) emerged as a strategy to reduce the cognitive morbidity associated with WBRT and gave rise to a recently published the phase II trial (RTOG 0933) and now multiple ongoing clinical trials. While conceptually hippocampal avoidance is supported by pre-clinical evidence showing that the hippocampus plays a vital role in memory, there is minimal pre-clinic data showing that selectively avoiding the hippocampus will reduce radiation-induced cognitive decline. Largely the lack of pre-clinical evidence can be attributed to the technical hurdles associated with delivering precise conformal treatment the rat brain. In this work we develop a novel conformal HA-WBRT technique for Wistar rats, utilizing a 225kVp micro-irradiator with precise 3D-printed radiation blocks designed to spare hippocampus while delivering whole brain dose. The technique was verified on rodent-morphic Presage ® 3D dosimeters created from micro-CT scans of Wistar rats with Duke Large Field-of-View Optical Scanner (DLOS) at 1mm isotropic voxel resolution. A 4-field box with parallel opposed AP-PA and two lateral opposed fields was explored with conformal hippocampal sparing aided by 3D-printed radiation blocks. The measured DVH aligned reasonably well with that calculated from SmART Plan Monte Carlo simulations with simulated blocks for 4-field HA-WBRT with both demonstrating hippocampal sparing of 20% volume receiving less than 30% the prescription dose. (paper)

  7. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    ) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux into the culture medium, (c) cellular cobalt uptake as an index of calcium influx, (d) ordinary Nissl cell staining, and (e) immunohistochemical staining for microtubule-associated protein 2 (MAP-2). Cellular degeneration as assessed...... to in vivo cell stain observations of rats acutely exposed to TMT. The mean PI uptake of the cultures and the LDH efflux into the medium were highly correlated. The combined results obtained by the different markers indicate that the hippocampal slice culture method is a feasible model for further studies...

  8. The selective alpha7 nicotinic acetylcholine receptor agonist PNU-282987 [N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats.

    Science.gov (United States)

    Hajós, M; Hurst, R S; Hoffmann, W E; Krause, M; Wall, T M; Higdon, N R; Groppi, V E

    2005-03-01

    Schizophrenic patients are thought to have an impaired ability to process sensory information. This deficit leads to disrupted auditory gating measured electrophysiologically as a reduced suppression of the second of paired auditoryevoked responses (P50) and is proposed to be associated with decreased function and/or expression of the homomeric alpha7 nicotinic acetylcholine receptor (nAChR). Here, we provide evidence that N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987), a novel selective agonist of the alpha7 nAChR, evoked whole-cell currents from cultured rat hippocampal neurons that were sensitive to the selective alpha7 nAChR antagonist methyllycaconitine (MLA) and enhanced GABAergic synaptic activity when applied to hippocampal slices. Amphetamine-induced sensory gating deficit, determined by auditory-evoked potentials in hippocampal CA3 region, was restored by systemic administration of PNU-282987 in chloral hydrate-anesthetized rats. Auditory gating of rat reticular thalamic neurons was also disrupted by amphetamine; however, PNU-282987 normalized gating deficit only in a subset of tested neurons (6 of 11). Furthermore, PNU-282987 improved the inherent hippocampal gating deficit occurring in a subpopulation of anesthetized rats, and enhanced amphetamine-induced hippocampal oscillation. We propose that the alpha7 nAChR agonist PNU-282987, via modulating/enhancing hippocampal GABAergic neurotransmission, improves auditory gating and enhances hippocampal oscillatory activity. These results provide further support for the concept that drugs that selectively activate alpha7 nAChRs may offer a novel, potential pharmacotherapy in treatment of schizophrenia.

  9. CA1 Pyramidal Cell Theta-Burst Firing Triggers Endocannabinoid-Mediated Long-Term Depression at Both Somatic and Dendritic Inhibitory Synapses

    Science.gov (United States)

    Younts, Thomas J.; Chevaleyre, Vivien

    2013-01-01

    Endocannabinoids (eCBs) are retrograde lipid messengers that, by targeting presynaptic type 1 cannabinoid receptors (CB1Rs), mediate short- and long-term synaptic depression of neurotransmitter release throughout the brain. Short-term depression is typically triggered by postsynaptic, depolarization-induced calcium rises, whereas long-term depression is induced by synaptic activation of Gq/11 protein-coupled receptors. Here we report that a physiologically relevant pattern of postsynaptic activity, in the form of theta-burst firing (TBF) of hippocampal CA1 pyramidal neurons, can trigger long-term depression of inhibitory transmission (iLTD) in rat hippocampal slices. Paired recordings between CA1 interneurons and pyramidal cells, followed by post hoc morphological reconstructions of the interneurons' axon, revealed that somatic and dendritic inhibitory synaptic inputs equally expressed TBF-induced iLTD. Simultaneous recordings from neighboring pyramidal cells demonstrated that eCB signaling triggered by TBF was highly restricted to only a single, active cell. Furthermore, pairing submaximal endogenous activation of metabotropic glutamate or muscarinic acetylcholine receptors with submaximal TBF unmasked associative iLTD. Although CB1Rs are also expressed at Schaffer-collateral excitatory terminals, long-term plasticity under various recording conditions was spared at these synapses. Consistent with this observation, TBF also shifted the balance of excitation and inhibition in favor of excitatory throughput, thereby altering information flow through the CA1 circuit. Given the near ubiquity of burst-firing activity patterns and CB1R expression in the brain, the properties described here may be a general means by which neurons fine tune the strength of their inputs in a cell-wide and cell-specific manner. PMID:23966696

  10. Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Directory of Open Access Journals (Sweden)

    Vinet Jonathan

    2012-01-01

    Full Text Available Abstract Background Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration. Methods Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia. Results Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA. Conclusions Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

  11. A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Le, Vivian; Morris, Margaret J

    2016-06-01

    Stress exposure during early development is known to produce long-term mental health deficits. Stress promotes poor lifestyle choices such as poor diet. Early life adversity and diets high in fat and sugar (HFHS) are known to affect anxiety and memory. However additive effects of HFHS and stress during early development are less explored. Here, we examined whether early life stress (ELS) simulated by limited nesting (LN) induces anxiety-like behaviour and cognitive deficits that are modulated by HFHS diet. We examined key hippocampal markers involved in anxiety and cognition, testing the hypothesis that post-weaning HFHS following ELS would ameliorate anxiety-like behaviour but worsen memory and associated hippocampal changes. Sprague-Dawley rats were exposed to LN, postnatal days 2-9, and at weaning, male siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, LN-HFHS, n=11-15/group). Anxiety-like behaviour was assessed by Elevated Plus Maze (EPM) at 10 weeks and spatial and object recognition tested at 11 weeks of age. Rats were culled at 13 weeks. Hippocampal mRNA expression was measured using TaqMan(®) Array Micro Fluidic cards (Life Technologies). As expected HFHS diet increased body weight; LN and control rats had similar weights at 13 weeks, energy intake was also similar across groups. LN-Chow rats showed increased anxiety-like behaviour relative to control rats, but this was reversed by HFHS diet. Spatial and object recognition memory were unaltered by LN exposure or consumption of HFHS diet. Hippocampal glucocorticoid receptor (GR) protein was not affected by LN exposure in chow rats, but was increased by 45% in HFHS rats relative to controls. Hippocampal genes involved in plasticity and mood regulation, GSKα and GSKβ were affected, with reductions in GSKβ under both diet conditions, and reduced GSKα only in LN-HFHS versus Con-HFHS. Interestingly, HFHS diet and LN exposure independently reduced expression of

  12. Correlation between oxytocin neuronal sensitivity and oxytocin receptor binding: An electrophysiological and autoradiographical study comparing rat and guinea pig hippocampus

    International Nuclear Information System (INIS)

    Raggenbass, M.; Tribollet, E.; Dubois-Dauphin, M.; Dreifuss, J.J.

    1989-01-01

    In transverse hippocampal slices from rat and guinea pig brains, the authors obtained unitary extracellular recordings from nonpyramidal neurones located in or near the stratum pyramidale in the CA1 field and in the transition region between the CA1 and the subiculum. In rats, these neurones responded to oxytocin at 50-1,000 nM by a reversible increase in firing rate. The oxytocin-induced excitation was suppressed by a synthetic structural analogue that acts as a potent, selective antioxytocic on peripheral receptors. Nonpyramidal neurones were also excited by carbachol at 0.5-10 μM. The effect of this compound was postsynaptic and was blocked by the muscarinic antagonist atropine. In guinea pigs, by contrast, nonpyramidal neurones were unaffected by oxytocin, although they were excited by carbachol. Light microscopic autoradiography, carried out using a radioiodinated selective antioxytocic as a ligand, revealed labeling in the subiculum and in the CA1 area of the hippocampus of rats, whereas no oxytocin-binding sites were detected in the hippocampus of guinea pigs. The results indicate (i) that a hippocampal action of oxytocin is species-dependent and (ii) that a positive correlation exists between neuronal responsiveness to oxytocin and the presence in the hippocampus of high-affinity binding sites for this peptide

  13. Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats

    Science.gov (United States)

    Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.

    2012-01-01

    The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca2+ signaling. These

  14. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: involvement of HPA axis and hippocampal neurogenesis.

    Science.gov (United States)

    Li, Hong-Yan; Zhao, Ying-Hua; Zeng, Min-Jie; Fang, Fang; Li, Min; Qin, Ting-Ting; Ye, Lu-Yu; Li, Hong-Wei; Qu, Rong; Ma, Shi-Ping

    2017-11-01

    Saikosaponin D (SSD), a major bioactive component isolated from Radix Bupleuri, has been reported to exert neuroprotective properties. The present study was designed to investigate the anti-depressant-like effects and the potential mechanisms of SSD. Behavioural tests including sucrose preference test (SPT), open field test (OFT) and forced swim test (FST) were performed to study the antidepressant-like effects of SSD. In addition, we examined corticosterone and glucocorticoid receptor (GR) levels to evaluate hypothalamic-pituitary-adrenal (HPA) axis function. Furthermore, hippocampal neurogenesis was assessed by testing doublecortin (DCX) levels, and neurotrophic molecule levels were also investigated in the hippocampus of rats. We found that unpredictable chronic mild stress (UCMS) rats displayed lost body weight, decreased sucrose consumption in SPT, reduced locomotive activity in OFT, and increased immobility time in FST. Chronic treatment with SSD (0.75, 1.50 mg/kg) remarkably ameliorated the behavioral deficiency induced by UCMS procedure. SSD administration downregulated elevated serum corticosterone levels, as well as alleviated the suppression of GR expression and nuclear translocation caused by UCMS, suggesting that SSD is able to remit the dysfunction of HPA axis. In addition, Western blot and immunohistochemistry analysis showed that SSD treatment significantly increased the generation of neurons in the hippocampus of UCMS rats indicated by elevated DCX levels. Moreover, hippocampal neurotrophic molecule levels of UCMS rats such as phosphorylated cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) were raised after SSD treatment. Together, Our results suggest that SSD opposed UCMS-induced depressive behaviors in rats, which was mediated, partially, by the enhancement of HPA axis function and consolidation of hippocampal neurogenesis.

  15. Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation

    International Nuclear Information System (INIS)

    Tass, P. A.; Barnikol, U. B.; Silchenko, A. N.; Hauptmann, C.; Speckmann, E.-J.

    2009-01-01

    In computational models it has been shown that appropriate stimulation protocols may reshape the connectivity pattern of neural or oscillator networks with synaptic plasticity in a way that the network learns or unlearns strong synchronization. The underlying mechanism is that a network is shifted from one attractor to another, so that long-lasting stimulation effects are caused which persist after the cessation of stimulation. Here we study long-lasting effects of multisite electrical stimulation in a rat hippocampal slice rendered epileptic by magnesium withdrawal. We show that desynchronizing coordinated reset stimulation causes a long-lasting desynchronization between hippocampal neuronal populations together with a widespread decrease in the amplitude of the epileptiform activity. In contrast, periodic stimulation induces a long-lasting increase in both synchronization and amplitude.

  16. Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse☆

    Science.gov (United States)

    Kerrigan, T.L.; Brown, J.T.; Randall, A.D.

    2014-01-01

    Transgenic mice that accumulate Aβ peptides in the CNS are commonly used to interrogate functional consequences of Alzheimer's disease-associated amyloidopathy. In addition to changes to synaptic function, there is also growing evidence that changes to intrinsic excitability of neurones can arise in these models of amyloidopathy. Furthermore, some of these alterations to intrinsic properties may occur relatively early within the age-related progression of experimental amyloidopathy. Here we report a detailed comparison between the intrinsic excitability properties of hippocampal CA1 pyramidal neurones in wild-type (WT) and PDAPP mice. The latter is a well-established model of Aβ accumulation which expresses human APP harbouring the Indiana (V717F) mutation. At the age employed in this study (9–10 months) CNS Abeta was elevated in PDAPP mice but significant plaque pathology was absent. PDAPP mice exhibited no differences in subthreshold intrinsic properties including resting potential, input resistance, membrane time constant and sag. When CA1 cells of PDAPP mice were given depolarizing stimuli of various amplitudes they initially fired at a higher frequency than WT cells. Commensurate with this, PDAPP cells exhibited a larger fast afterdepolarizing potential. PDAPP mice had narrower spikes but action potential threshold, rate of rise and peak were not different. Thus not all changes seen in our previous studies of amyloidopathy models were present in PDAPP mice; however, narrower spikes, larger ADPs and the propensity to fire at higher frequencies were consistent with our prior work and thus may represent robust, cross-model, indices of amyloidopathy. This article is part of a Special Issue entitled ‘Neurodevelopment Disorder’. PMID:24055500

  17. Perceived Stress Is Differentially Related to Hippocampal Subfield Volumes among Older Adults.

    Directory of Open Access Journals (Sweden)

    Molly E Zimmerman

    Full Text Available Chronic exposure to stress has been shown to impact a wide range of health-related outcomes in older adults. Despite extensive animal literature revealing deleterious effects of biological markers of stress on the dentate gyrus subfield of the hippocampus, links between hippocampal subfields and psychological stress have not been studied in humans. This study examined the relationship between perceived stress and hippocampal subfield volumes among racially/ethnically diverse older adults.Between July 2011 and March 2014, 116 nondemented participants were consecutively drawn from the Einstein Aging Study, an ongoing community-based sample of individuals over the age of 70 residing in Bronx, New York. All participants completed the Perceived Stress Scale, Geriatric Depression Scale, and underwent 3.0 T MRI. FreeSurfer was used to derive total hippocampal volume, hippocampal subfield volumes (CA1, CA2/CA3, CA4/Dentate Gyrus (CA4/DG, and subiculum, entorhinal cortex volume, whole brain volume, and total intracranial volume.Linear regression analyses revealed that higher levels of perceived stress were associated with smaller total hippocampal volume (β = -0.20, t = -2.40, p = 0.02, smaller CA2/CA3 volumes (β = -0.18, t = -2.24, p = 0.03 and smaller CA4/DG volumes (β = -0.19, t = -2.28, p = 0.03 after controlling for total intracranial volume, age, gender, and race. These findings remained unchanged after removal of individuals with clinically significant symptoms of depression.Our findings provide evidence of a relationship between a direct indicator of psychological stress and specific hippocampal subfield volumes in elderly individuals. These results highlight the importance of clinical screening for chronic stress in otherwise healthy older adults.

  18. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide.

    Directory of Open Access Journals (Sweden)

    Nicola J Corbett

    Full Text Available Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL, a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35 injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35 injection. NeuN, a neuronal marker (for nuclear staining was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β and to determine the effects of amyloid-beta(25-35 and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.

  19. Tiagabine improves hippocampal long-term depression in rat pups subjected to prenatal inflammation.

    Directory of Open Access Journals (Sweden)

    Aline Rideau Batista Novais

    Full Text Available Maternal inflammation during pregnancy is associated with the later development of cognitive and behavioral impairment in the offspring, reminiscent of the traits of schizophrenia or autism spectrum disorders. Hippocampal long-term potentiation and long-term depression of glutamatergic synapses are respectively involved in memory formation and consolidation. In male rats, maternal inflammation with lipopolysaccharide (LPS led to a premature loss of long-term depression, occurring between 12 and 25 postnatal days instead of after the first postnatal month, and aberrant occurrence of long-term potentiation. We hypothesized this would be related to GABAergic system impairment. Sprague Dawley rats received either LPS or isotonic saline ip on gestational day 19. Male offspring's hippocampus was studied between 12 and 25 postnatal days. Morphological and functional analyses demonstrated that prenatal LPS triggered a deficit of hippocampal GABAergic interneurons, associated with presynaptic GABAergic transmission deficiency in male offspring. Increasing ambient GABA by impairing GABA reuptake with tiagabine did not interact with the low frequency-induced long-term depression in control animals but fully prevented its impairment in male offspring of LPS-challenged dams. Tiagabine furthermore prevented the aberrant occurrence of paired-pulse triggered long-term potentiation in these rats. Deficiency in GABA seems to be central to the dysregulation of synaptic plasticity observed in juvenile in utero LPS-challenged rats. Modulating GABAergic tone may be a possible therapeutic strategy at this developmental stage.

  20. Phosphoinositide-3-kinase activation controls synaptogenesis and spinogenesis in hippocampal neurons.

    Science.gov (United States)

    Cuesto, Germán; Enriquez-Barreto, Lilian; Caramés, Cristina; Cantarero, Marta; Gasull, Xavier; Sandi, Carmen; Ferrús, Alberto; Acebes, Ángel; Morales, Miguel

    2011-02-23

    The possibility of changing the number of synapses may be an important asset in the treatment of neurological diseases. In this context, the synaptogenic role of the phosphoinositide-3-kinase (PI3K) signaling cascade has been previously demonstrated in Drosophila. This study shows that treatment with a PI3K-activating transduction peptide is able to promote synaptogenesis and spinogenesis in primary cultures of rat hippocampal neurons, as well as in CA1 hippocampal neurons in vivo. In culture, the peptide increases synapse density independently of cell density, culture age, dendritic complexity, or synapse type. The induced synapses also increase neurotransmitter release from cultured neurons. The synaptogenic signaling pathway includes PI3K-Akt. Furthermore, the treatment is effective on adult neurons, where it induces spinogenesis and enhances the cognitive behavior of treated animals in a fear-conditioning assay. These findings demonstrate that functional synaptogenesis can be induced in mature mammalian brains through PI3K activation.

  1. Alterations in the Interplay between Neurons, Astrocytes and Microglia in the Rat Dentate Gyrus in Experimental Models of Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Daniele Lana

    2017-09-01

    Full Text Available The hippocampus is negatively affected by aging and neurodegenerative diseases leading to impaired learning and memory abilities. A diverse series of progressive modifications in the intercellular communication among neurons, astrocytes and microglia occur in the hippocampus during aging or inflammation. A detailed understanding of the neurobiological modifications that contribute to hippocampal dysfunction may reveal new targets for therapeutic intervention. The current study focussed on the interplay between neurons and astroglia in the Granule Layer (GL and the Polymorphic Layer (PL of the Dentate Gyrus (DG of adult, aged and LPS-treated rats. In GL and PL of aged and LPS-treated rats, astrocytes were less numerous than in adult rats. In GL of LPS-treated rats, astrocytes acquired morphological features of reactive astrocytes, such as longer branches than was observed in adult rats. Total and activated microglia increased in the aged and LPS-treated rats, as compared to adult rats. In the GL of aged and LPS-treated rats many neurons were apoptotic. Neurons decreased significantly in GL and PL of aged but not in rats treated with LPS. In PL of aged and LPS-treated rats many damaged neurons were embraced by microglia cells and were infiltrated by branches of astrocyte, which appeared to be bisecting the cell body, forming triads. Reactive microglia had a scavenging activity of dying neurons, as shown by the presence of neuronal debris within their cytoplasm. The levels of the chemokine fractalkine (CX3CL1 increased in hippocampal homogenates of aged rats and rats treated with LPS, and CX3CL1 immunoreactivity colocalized with activated microglia cells. Here we demonstrated that in the DG of aged and LPS-treated rats, astrocytes and microglia cooperate and participate in phagocytosis/phagoptosis of apoptotic granular neurons. The differential expression/activation of astroglia and the alteration of their intercommunication may be responsible for

  2. Computational modelling and analysis of hippocampal-prefrontal information coding during a spatial decision-making task

    Directory of Open Access Journals (Sweden)

    Thomas eJahans-Price

    2014-03-01

    Full Text Available We introduce a computational model describing rat behaviour and the interactions of neural populations processing spatial and mnemonic information during a maze-based, decision-making task. The model integrates sensory input and implements a working memory to inform decisions at a choice point, reproducing rat behavioural data and predicting the occurrence of turn- and memory-dependent activity in neuronal networks supporting task performance. We tested these model predictions using a new software toolbox (Maze Query Language, MQL to analyse activity of medial prefrontal cortical (mPFC and dorsal hippocampal (dCA1 neurons recorded from 6 adult rats during task performance. The firing rates of dCA1 neurons discriminated context (i.e. the direction of the previous turn, whilst a subset of mPFC neurons was selective for current turn direction or context, with some conjunctively encoding both. mPFC turn-selective neurons displayed a ramping of activity on approach to the decision turn and turn-selectivity in mPFC was significantly reduced during error trials. These analyses complement data from neurophysiological recordings in non-human primates indicating that firing rates of cortical neurons correlate with integration of sensory evidence used to inform decision-making.

  3. The effects of benzodiazepine (triazolam), cyclopyrrolone (zopiclone) and imidazopyridine (zolpidem) hypnotics on the frequency of hippocampal theta activity and sleep structure in rats.

    Science.gov (United States)

    Yoshimoto, M; Higuchi, H; Kamata, M; Yoshida, K; Shimizu, T; Hishikawa, Y

    1999-01-01

    In order to investigate the relative efficacy and safety of zopiclone and zolpidem, we compared the effects of higher doses of zopiclone and zolpidem on the frequency of hippocampal theta activity and sleep structure with that of triazolam. Rats were divided into triazolam treatment group (1 mg/kg, 5 mg/kg), zopiclone treatment group (20 mg/kg, 100 mg/kg) and zolpidem treatment group (20 mg/kg, 100 mg/kg). Rats were injected intraperitoneally with these drugs or their vehicle. Polygraphic sleep recording and visual frequency analysis of the hippocampal EEG activity in REM sleep were carried out for 6 h after each injection. Zolpidem, unlike triazolam and zopiclone, had a much milder reducing-effect on the frequency of hippocampal theta activity and suppressing-effect on REM sleep. These results suggest that zolpidem may prove to be a safer hypnotic drug which has fewer or milder side effects than are benzodiazepine and cyclopyrrolone hypnotics.

  4. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Alterations of in vivo CA1 network activity in Dp(16)1Yey Down syndrome model mice.

    Science.gov (United States)

    Raveau, Matthieu; Polygalov, Denis; Boehringer, Roman; Amano, Kenji; Yamakawa, Kazuhiro; McHugh, Thomas J

    2018-02-27

    Down syndrome, the leading genetic cause of intellectual disability, results from an extra-copy of chromosome 21. Mice engineered to model this aneuploidy exhibit Down syndrome-like memory deficits in spatial and contextual tasks. While abnormal neuronal function has been identified in these models, most studies have relied on in vitro measures. Here, using in vivo recording in the Dp(16)1Yey model, we find alterations in the organization of spiking of hippocampal CA1 pyramidal neurons, including deficits in the generation of complex spikes. These changes lead to poorer spatial coding during exploration and less coordinated activity during sharp-wave ripples, events involved in memory consolidation. Further, the density of CA1 inhibitory neurons expressing neuropeptide Y, a population key for the generation of pyramidal cell bursts, were significantly increased in Dp(16)1Yey mice. Our data refine the 'over-suppression' theory of Down syndrome pathophysiology and suggest specific neuronal subtypes involved in hippocampal dysfunction in these model mice. © 2018, Raveau et al.

  6. Decreased Hippocampal 5-HT and DA Levels Following Sub-Chronic Exposure to Noise Stress: Impairment in both Spatial and Recognition Memory in Male Rats.

    Science.gov (United States)

    Haider, Saida; Naqvi, Fizza; Batool, Zehra; Tabassum, Saiqa; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Mankind is exposed to a number of stressors, and among them noise is one which can cause intense stress. High levels of background noise can severely impair one's ability to concentrate. The present study was aimed to investigate the effect of sub-chronic noise stress on cognitive behavior and hippocampal monoamine levels in male rats. The study was performed on 12 male Wistar rats, divided into two groups; the control and noise-exposed. The rats in the test group were subjected to noise stress, 4h daily for 15 days. Cognitive testing was performed by the Elevated Plus Maze test (EPM) and Novel Object Recognition test (NOR). HPLC-EC was used to determine hippocampal monoamine levels and their metabolites. The data obtained revealed a significant decrease in hippocampal serotonin (5-hydroxytryptamine; 5-HT) and dopamine (DA) levels, whereas turnover ratios of 5-HT and DA were significantly increased compared to the controls. Rats exposed to noise exhibited a significant decrement in spatial memory. A significantly decreased recognition index of rats exposed to noise as compared to the control was also observed in the NOR test. Results of the present findings suggest the role of decreased hippocampal 5-HT and DA in the impairment of cognitive function following noise exposure.

  7. Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.

    Science.gov (United States)

    Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia

    2018-05-14

    EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.

  8. Leptin attenuates the detrimental effects of β-amyloid on spatial memory and hippocampal later-phase long term potentiation in rats.

    Science.gov (United States)

    Tong, Jia-Qing; Zhang, Jun; Hao, Ming; Yang, Ju; Han, Yu-Fei; Liu, Xiao-Jie; Shi, Hui; Wu, Mei-Na; Liu, Qing-Song; Qi, Jin-Shun

    2015-07-01

    β-Amyloid (Aβ) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aβ in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aβ-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1μg) effectively alleviated Aβ1-42 (20μg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aβ1-42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aβ-induced deficits in learning and memory and the maintenance of L-LTP. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Quines, Caroline Brandão; Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2016-03-01

    Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The influence of high fat diets with different ketogenic ratios on the hippocampal accumulation of creatine - FTIR microspectroscopy study

    Science.gov (United States)

    Skoczen, A.; Setkowicz, Z.; Janeczko, K.; Sandt, Ch.; Borondics, F.; Chwiej, J.

    2017-09-01

    The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm- 1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm- 1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.

  11. Curcumin improves synaptic plasticity impairment induced by HIV-1gp120 V3 loop

    Directory of Open Access Journals (Sweden)

    Ling-ling Shen

    2015-01-01

    Full Text Available Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techniques, this study confirmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca 2+ concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gp120 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug.

  12. Differential effects of centrally-active antihypertensives on 5-HT1A receptors in rat dorso-lateral septum, rat hippocampus and guinea-pig hippocampus.

    Science.gov (United States)

    Leishman, D J; Boeijinga, P H; Galvan, M

    1994-01-01

    1. The electrophysiological responses elicited by 5-hydroxytryptamine1A-(5-HT1A) receptor agonists in rat and guinea-pig CA1 pyramidal neurones and rat dorso-lateral septal neurones were compared in vitro by use of conventional intracellular recording techniques. 2. In the presence of 1 microM tetrodotoxin (TTX), to prevent indirect effects, 5-HT, N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT) and 8-hydroxy-2(di-n-propylamino) tetralin (8-OH-DPAT) hyperpolarized the neurones from rat and guinea-pig brain. 3. The hypotensive drug flesinoxan, a selective 5-HT1A receptor agonist, hyperpolarized neurones in all three areas tested; however, another hypotensive agent with high affinity at 5-HT1A-receptors, 5-methyl-urapidil, hyperpolarized only the neurones in rat hippocampus and septum. 4. In guinea-pig hippocampal neurones, 5-methyl-urapidil behaved as a 5-HT1A-receptor antagonist. 5. The relative efficacies (5-HT = 1) of DP-5-CT, 8-OH-DPAT, flesinoxan and 5-methyl-urapidil at the three sites were: rat hippocampus, 1.09, 0.7, 0.5 and 0.24; rat septum, 0.88, 0.69, 0.82 and 0.7; guinea-pig hippocampus, 1.0, 0.69, 0.89 and 0, respectively. 6. It is concluded that the hypotensive agents flesinoxan and 5-methyl-urapidil appear to have different efficacies at 5-HT1A receptors located in different regions of the rodent brain. Whether these regional and species differences arise from receptor plurality or variability in intracellular transduction mechanisms remains to be elucidated.

  13. Differential Atrophy of Hippocampal Subfields: A Comparative Study of Dementia with Lewy Bodies and Alzheimer Disease.

    Science.gov (United States)

    Mak, Elijah; Su, Li; Williams, Guy B; Watson, Rosie; Firbank, Michael; Blamire, Andrew; O'Brien, John

    2016-02-01

    Dementia with Lewy bodies (DLB) is characterized by relative preservation of the medial temporal lobe compared with Alzheimer disease (AD). The differential involvement of the hippocampal subfields in both diseases has not been clearly established, however. We aim to investigate hippocampal subfield differences in vivo in a clinical cohort of DLB and AD subjects. 104 participants (35 DLBs, 36 ADs, and 35 healthy comparison [HC] subjects) underwent clinical assessment and 3T T1-weighted imaging. A Bayesian model implemented in Freesurfer was used to automatically segment the hippocampus and its subfields. We also examined associations between hippocampal subfields and tests of memory function. Both the AD and DLB groups demonstrated significant atrophy of the total hippocampus relative to HC but the DLB group was characterized by preservation of the cornu ammonis 1 (CA1), fimbria, and fissure. In contrast, all the hippocampal subfields except the fissure were significantly atrophied in AD compared with both DLB and HC groups. Among DLB subjects, CA1 was correlated with the Recent Memory score of the CAMCOG and Delayed Recall subscores of the HVLT. DLB is characterized by milder hippocampal atrophy that was accompanied by preservation of the CA1. The CA1 was also associated with memory function in DLB. Our findings highlight the promising role of hippocampal subfield volumetry, particularly that of the CA1, as a biomarker for the distinction between AD and DLB. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Store-operated Ca2+ Entry Mediated by Orai1 and TRPC1 Participates to Insulin Secretion in Rat β-Cells*

    Science.gov (United States)

    Sabourin, Jessica; Le Gal, Loïc; Saurwein, Lisa; Haefliger, Jacques-Antoine; Raddatz, Eric; Allagnat, Florent

    2015-01-01

    Store-operated Ca2+ channels (SOCs) are voltage-independent Ca2+ channels activated upon depletion of the endoplasmic reticulum Ca2+ stores. Early studies suggest the contribution of such channels to Ca2+ homeostasis in insulin-secreting pancreatic β-cells. However, their composition and contribution to glucose-stimulated insulin secretion (GSIS) remains unclear. In this study, endoplasmic reticulum Ca2+ depletion triggered by acetylcholine (ACh) or thapsigargin stimulated the formation of a ternary complex composed of Orai1, TRPC1, and STIM1, the key proteins involved in the formation of SOCs. Ca2+ imaging further revealed that Orai1 and TRPC1 are required to form functional SOCs and that these channels are activated by STIM1 in response to thapsigargin or ACh. Pharmacological SOCs inhibition or dominant negative blockade of Orai1 or TRPC1 using the specific pore mutants Orai1-E106D and TRPC1-F562A impaired GSIS in rat β-cells and fully blocked the potentiating effect of ACh on secretion. In contrast, pharmacological or dominant negative blockade of TRPC3 had no effect on extracellular Ca2+ entry and GSIS. Finally, we observed that prolonged exposure to supraphysiological glucose concentration impaired SOCs function without altering the expression levels of STIM1, Orai1, and TRPC1. We conclude that Orai1 and TRPC1, which form SOCs regulated by STIM1, play a key role in the effect of ACh on GSIS, a process that may be impaired in type 2 diabetes. PMID:26494622

  15. Effects of low-level sarin and cyclosarin exposure on hippocampal subfields in Gulf War Veterans.

    Science.gov (United States)

    Chao, Linda L; Kriger, Stephen; Buckley, Shannon; Ng, Peter; Mueller, Susanne G

    2014-09-01

    More than 100,000 US troops were potentially exposed to chemical warfare agents sarin (GB) and cyclosarin (GF) when an ammunition dump at Khamisiyah, Iraq was destroyed during the 1991 Gulf War (GW). We previously reported reduced hippocampal volume in GW veterans with suspected GB/GF exposure relative to matched, unexposed GW veterans estimated from 1.5T magnetic resonance images (MRI). Here we investigate, in a different cohort of GW veterans, whether low-level GB/GF exposure is associated with structural alterations in specific hippocampal subfields, estimated from 4T MRI. The Automatic Segmentation of Hippocampal Subfields (ASHS) technique was used to quantify CA1, CA2, CA3 and dentate gyrus (DG), and subiculum (SUB) subfields volumes from high-resolution T2-weighted images acquired on a 4T MR scanner in 56 GW veterans with suspected GB/GF exposure and 56 "matched" unexposed GW veterans (mean age 49±7 years). GB/GF exposed veterans had smaller CA2 (p=0.003) and CA3/DG (p=0.01) subfield volumes compared to matched, unexposed GW veterans. There were no group difference in total hippocampal volume, quantified with FreeSurfer, and no dose-response relationship between estimated levels of GB/GF exposure and total hippocampal or subfield volume. These findings extend our previous report of structural alterations in the hippocampi of GW veterans with suspected GB/GF exposure to volume changes in the CA2, CA3, and DG hippocampal subfields in a different cohort of GW veterans with suspected GB/GF exposure. Published by Elsevier B.V.

  16. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat.

    Science.gov (United States)

    Villette, Vincent; Poindessous-Jazat, Frédérique; Simon, Axelle; Léna, Clément; Roullot, Elodie; Bellessort, Brice; Epelbaum, Jacques; Dutar, Patrick; Stéphan, Aline

    2010-08-18

    The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.

  17. The Regulation of Cytokine Networks in Hippocampal CA1 Differentiates Extinction from Those Required for the Maintenance of Contextual Fear Memory after Recall

    Science.gov (United States)

    Scholz, Birger; Doidge, Amie N.; Barnes, Philip; Hall, Jeremy; Wilkinson, Lawrence S.; Thomas, Kerrie L.

    2016-01-01

    We investigated the distinctiveness of gene regulatory networks in CA1 associated with the extinction of contextual fear memory (CFM) after recall using Affymetrix GeneChip Rat Genome 230 2.0 Arrays. These data were compared to previously published retrieval and reconsolidation-attributed, and consolidation datasets. A stringent dual normalization and pareto-scaled orthogonal partial least-square discriminant multivariate analysis together with a jack-knifing-based cross-validation approach was used on all datasets to reduce false positives. Consolidation, retrieval and extinction were correlated with distinct patterns of gene expression 2 hours later. Extinction-related gene expression was most distinct from the profile accompanying consolidation. A highly specific feature was the discrete regulation of neuroimmunological gene expression associated with retrieval and extinction. Immunity–associated genes of the tyrosine kinase receptor TGFβ and PDGF, and TNF families’ characterized extinction. Cytokines and proinflammatory interleukins of the IL-1 and IL-6 families were enriched with the no-extinction retrieval condition. We used comparative genomics to predict transcription factor binding sites in proximal promoter regions of the retrieval-regulated genes. Retrieval that does not lead to extinction was associated with NF-κB-mediated gene expression. We confirmed differential NF-κBp65 expression, and activity in all of a representative sample of our candidate genes in the no-extinction condition. The differential regulation of cytokine networks after the acquisition and retrieval of CFM identifies the important contribution that neuroimmune signalling plays in normal hippocampal function. Further, targeting cytokine signalling upon retrieval offers a therapeutic strategy to promote extinction mechanisms in human disorders characterised by dysregulation of associative memory. PMID:27224427

  18. NO involvement in the inhibition of ghrelin on voltage-dependent potassium currents in rat hippocampal cells.

    Science.gov (United States)

    Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui

    2018-01-01

    Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus.

    Science.gov (United States)

    Liagkouras, Ioannis; Michaloudi, Helen; Batzios, Christos; Psaroulis, Dimitrios; Georgiadis, Marios; Künzle, Heinz; Papadopoulos, Georgios C

    2008-07-07

    The present study examines comparatively the cellular density of disector-counted/Nissl-stained CA1 pyramidal neurons and the morphometric characteristics (dendritic number/length, spine number/density and Sholl-counted dendritic branch points/20 microm) of the basal and apical dendritic systems of Golgi-impregnated CA1 neurons, in the septal and temporal hippocampus of the human and hedgehog tenrec brain. The obtained results indicate that in both hippocampal parts the cellular density of the CA1 pyramidal neurons is lower in human than in tenrec. However, while the human pyramidal cell density is higher in the septal hippocampal part than in the temporal one, in the tenrec the density of these cells is higher in the temporal part. The dendritic tree of the CA1 pyramidal cells, more developed in the septal than in temporal hippocampus in both species studied, is in general more complex in the human hippocampus. The basal and the apical dendritic systems exhibit species related morphometric differences, while dendrites of different orders exhibit differences in their number and length, and in their spine density. Finally, in both species, as well as hippocampal parts and dendritic systems, changes of dendritic morphometric features along ascending dendritic orders fluctuate in a similar way, as do the number of dendritic branch points in relation to the distance from the neuron soma.

  20. Hypoxia-Induced neonatal seizures diminish silent synapses and long-term potentiation in hippocampal CA1 neurons

    Science.gov (United States)

    Zhou, Chengwen; Bell, Jocelyn J. Lippman; Sun, Hongyu; Jensen, Frances E.

    2012-01-01

    Neonatal seizures can lead to epilepsy and long-term cognitive deficits in adulthood. Using a rodent model of the most common form of human neonatal seizures, hypoxia-induced seizures (HS), we aimed to determine whether these seizures modify long-term potentiation (LTP) and “silent” N-methyl-D-aspartate receptor (NMDAR)-only synapses in hippocampal CA1. At 48-72 hours (hrs) post-HS, electrophysiology and immunofluorescent confocal microscopy revealed a significant decrease in the incidence of silent synapses, and an increase in amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at the synapses. Coincident with this decrease in silent synapses, there was an attenuation of LTP elicited by either tetanic stimulation of Schaffer collaterals or a pairing protocol, and persistent attenuation of LTP in slices removed in later adulthood after P10 HS. Furthermore, post-seizure treatment in vivo with the AMPAR antagonist 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline (NBQX) protected against the HS-induced depletion of silent synapses and preserved LTP. Thus, this study demonstrates a novel mechanism by which early-life seizures could impair synaptic plasticity, suggesting a potential target for therapeutic strategies to prevent long-term cognitive deficits. PMID:22171027

  1. Modulation of sphingosine 1-phosphate (S1P) attenuates spatial learning and memory impairments in the valproic acid rat model of autism.

    Science.gov (United States)

    Wu, Hongmei; Zhang, Quanzhi; Gao, Jingquan; Sun, Caihong; Wang, Jia; Xia, Wei; Cao, Yonggang; Hao, Yanqiu; Wu, Lijie

    2018-03-01

    Autism spectrum disorders (ASD) are a set of pervasive neurodevelopmental disorders that manifest in early childhood, and it is growing up to be a major cause of disability in children. However, the etiology and treatment of ASD are not well understood. In our previous study, we found that serum levels of sphingosine 1-phosphate (S1P) were increased significantly in children with autism, indicating that S1P levels may be involved in ASD. The objective of this study was to identify a link between increased levels of S1P and neurobehavioral changes in autism. We utilized a valproic acid (VPA) -induced rat model of autism to evaluate the levels of S1P and the expression of sphingosine kinase (SphK), a key enzyme for S1P production, in serum and hippocampal tissue. Furthermore, we assessed cognitive functional changes and histopathological and neurochemical alterations in VPA-exposed rats after SphK blockade to explore the possible link between increased levels of S1P and neurobehavioral changes in autism. We found that SphK2 and S1P are upregulated in hippocampal tissue from VPA-exposed rats, while pharmacological inhibition of SphK reduced S1P levels, attenuated spatial learning and memory impairments, increased the expression of phosphorylated CaMKII and CREB and autophagy-related proteins, inhibited cytochrome c release, decreased the expression of apoptosis related proteins, and protected against neuronal loss in the hippocampus. We have demonstrated that an increased level of SphK2/S1P is involved in the spatial learning and memory impairments of autism, and this signaling pathway represents a novel therapeutic target and direction for future studies.

  2. Alkaloid fraction of Uncaria rhynchophylla protects against N-methyl-D-aspartate-induced apoptosis in rat hippocampal slices.

    Science.gov (United States)

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Sun-Yeou; Kim, Hocheol; Kim, Chang-Ju; Lim, Eunhee

    2003-09-04

    Uncaria rhynchophylla is a medicinal herb which has sedative and anticonvulsive effects and has been applied in the treatment of epilepsy in Oriental medicine. In this study, the effect of alkaloid fraction of U. rhynchophylla against N-methyl-D-aspartate (NMDA)-induced neuronal cell death was investigated. Pretreatment with an alkaloid fraction of U. rhynchophylla for 1 h decreased the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices and also inhibited NMDA-induced enhanced expressions of apoptosis-related genes such as c-jun, p53, and bax. In the present study, the alkaloid fraction of U. rhynchophylla was shown to have a protective property against NMDA-induced cytotoxicity by suppressing the NMDA-induced apoptosis in rat hippocampal slices.

  3. Separate elements of episodic memory subserved by distinct hippocampal-prefrontal connections.

    Science.gov (United States)

    Barker, Gareth R I; Banks, Paul J; Scott, Hannah; Ralph, G Scott; Mitrophanous, Kyriacos A; Wong, Liang-Fong; Bashir, Zafar I; Uney, James B; Warburton, E Clea

    2017-02-01

    Episodic memory formation depends on information about a stimulus being integrated within a precise spatial and temporal context, a process dependent on the hippocampus and prefrontal cortex. Investigations of putative functional interactions between these regions are complicated by multiple direct and indirect hippocampal-prefrontal connections. Here application of a pharmacogenetic deactivation technique enabled us to investigate the mnemonic contributions of two direct hippocampal-medial prefrontal cortex (mPFC) pathways, one arising in the dorsal CA1 (dCA1) and the other in the intermediate CA1 (iCA1). While deactivation of either pathway impaired episodic memory, the resulting pattern of mnemonic deficits was different: deactivation of the dCA1→mPFC pathway selectively disrupted temporal order judgments while iCA1→mPFC pathway deactivation disrupted spatial memory. These findings reveal a previously unsuspected division of function among CA1 neurons that project directly to the mPFC. Such subnetworks may enable the distinctiveness of contextual information to be maintained in an episodic memory circuit.

  4. Atorvastatin prevents Aβ oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage

    Science.gov (United States)

    Sui, Hai-juan; Zhang, Ling-ling; Liu, Zhou; Jin, Ying

    2015-01-01

    Aim: The proteolytic cleavage of Tau is involved in Aβ-induced neuronal dysfunction and cell death. In this study, we investigated whether atorvastatin could prevent Tau cleavage and hence prevent Aβ1–42 oligomer (AβO)-induced neurotoxicity in cultured cortical neurons. Methods: Cultured rat hippocampal neurons were incubated in the presence of AβOs (1.25 μmol/L) with or without atorvastatin pretreatment. ATP content and LDH in the culture medium were measured to assess the neuronal viability. Caspase-3/7 and calpain protease activities were detected. The levels of phospho-Akt, phospho-Erk1/2, phospho-GSK3β, p35 and Tau proteins were measured using Western blotting. Results: Treatment of the neurons with AβO significantly decreased the neuronal viability, induced rapid activation of calpain and caspase-3/7 proteases, accompanied by Tau degradation and relatively stable fragments generated in the neurons. AβO also suppressed Akt and Erk1/2 kinase activity, while increased GSK3β and Cdk5 activity in the neurons. Pretreatment with atorvastatin (0.5, 1, 2.5 μmol/L) dose-dependently inhibited AβO-induced activation of calpain and caspase-3/7 proteases, and effectively diminished the generation of Tau fragments, attenuated synaptic damage and increased neuronal survival. Atorvastatin pretreatment also prevented AβO-induced decreases in Akt and Erk1/2 kinase activity and the increases in GSK3β and Cdk5 kinase activity. Conclusion: Atorvastatin prevents AβO-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting calpain- and caspase-mediated Tau cleavage. PMID:25891085

  5. Music exposure improves spatial cognition by enhancing the BDNF level of dorsal hippocampal subregions in the developing rats.

    Science.gov (United States)

    Xing, Yingshou; Chen, Wenxi; Wang, Yanran; Jing, Wei; Gao, Shan; Guo, Daqing; Xia, Yang; Yao, Dezhong

    2016-03-01

    Previous research has shown that dorsal hippocampus plays an important role in spatial memory process. Music exposure can enhance brain-derived neurotrophic factor (BDNF) expression level in dorsal hippocampus (DH) and thus enhance spatial cognition ability. But whether music experience may affect different subregions of DH in the same degree remains unclear. Here, we studied the effects of exposure to Mozart K.448 on learning behavior in developing rats using the classical Morris water maze task. The results showed that early music exposure could enhance significantly learning performance of the rats in the water maze test. Meanwhile, the BDNF/TrkB level of dorsal hippocampus CA3 (dCA3) and dentate gyrus (dDG) was significantly enhanced in rats exposed to Mozart music as compared to those without music exposure. In contrast, the BDNF/TrkB level of dorsal hippocampus CA1 (dCA1) was not affected. The results suggest that the spatial memory improvement by music exposure in rats may be associated with the enhanced BDNF/TrkB level of dCA3 and dDG. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Local inhibition of hippocampal nitric oxide synthase does not impair place learning in the Morris water escape task in rats.

    Science.gov (United States)

    Blokland, A; de Vente, J; Prickaerts, J; Honig, W; Markerink-van Ittersum, M; Steinbusch, H

    1999-01-01

    Recent studies have provided evidence that nitric oxide (NO) has a role in certain forms of memory formation. Spatial learning is one of the cognitive abilities that has been found to be impaired after systemic administration of an NO-synthase inhibitor. As the hippocampus has a pivotal role in spatial orientation, the present study examined the role of hippocampal NO in spatial learning and reversal learning in a Morris task in adult rats. It was found that N omega-nitro-L-arginine infusions into the dorsal hippocampus affected the manner in which the rats were searching the submerged platform during training, but did not affect the efficiency to find the spatial location of the escape platform. Hippocampal NO-synthase inhibition did not affect the learning of a new platform position in the same water tank (i.e. reversal learning). Moreover, no treatment effects were observed in the probe trials (i.e. after acquisition and after reversal learning), indicating that the rats treated with N omega-nitro-L-arginine had learned the spatial location of the platform. These findings were obtained under conditions where the NO synthesis in the dorsal hippocampus was completely inhibited. On the basis of the present data it was concluded that hippocampal NO is not critically involved in place learning in rats.

  7. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    Science.gov (United States)

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood. © 2014 Society for the Study of Addiction.

  8. 45Ca2+movements induced by Ca2+chloride in isolated rat aorta under K+-free conditions

    NARCIS (Netherlands)

    Wermelskirchen, D.; Nebel, U.; Wirth, A.; Wilffert, B.

    1991-01-01

    Increasing the extracellular Ca2+concentration induced a dihydropyridine-insensitive contraction in the isolated rat aorta bathed in K+-free solution. To obtained further insight into the mechanisms of this contraction45Ca2+uptake measurements were carried out with isolated rat aorta. Increasing the

  9. CA-45(2+) MOVEMENTS INDUCED BY CA2+ CHLORIDE IN ISOLATED RAT AORTA UNDER K+-FREE CONDITIONS

    NARCIS (Netherlands)

    WERMELSKIRCHEN, D; NEBEL, U; WIRTH, A; WILFFERT, B

    1991-01-01

    Increasing the extracellular Ca2+ concentration induced a dihydropyridine-insensitive contraction in the isolated rat aorta bathed in K+-free solution. To obtain further insight into the mechanism of this contraction Ca-45(2+) uptake measurements were carried out with isolated rat aorta. Increasing

  10. Negative regulation of TLX by IL-1β correlates with an inhibition of adult hippocampal neural precursor cell proliferation.

    Science.gov (United States)

    Ryan, Sinead M; O'Keeffe, Gerard W; O'Connor, Caitriona; Keeshan, Karen; Nolan, Yvonne M

    2013-10-01

    Adult hippocampal neurogenesis is modulated by a number of intrinsic and extrinsic factors including local signalling molecules, exercise, aging and inflammation. Inflammation is also a major contributor to several hippocampal-associated disorders. Interleukin-1beta (IL-1β) is the most predominant pro-inflammatory cytokine in the brain, and an increase in its concentration is known to decrease the proliferation of both embryonic and adult hippocampal neural precursor cells (NPCs). Recent research has focused on the role of nuclear receptors as intrinsic regulators of neurogenesis, and it is now established that the orphan nuclear receptor TLX is crucial in maintaining the NPC pool in neurogenic brain regions. To better understand the involvement of TLX in IL-1β-mediated effects on hippocampal NPC proliferation, we examined hippocampal NPC proliferation and TLX expression in response to IL-1β treatment in an adult rat hippocampal neurosphere culture system. We demonstrate that IL-1β reduced the proliferation of hippocampal NPCs and TLX expression in a dose and time-dependent manner and that co-treatment with IL-1β receptor antagonist or IL-1 receptor siRNA prevented these effects. We also report a dose-dependent effect of IL-1β on the composition of cell phenotypes in the culture and on expression of TLX in these cells. This study thus provides evidence of an involvement of TLX in IL-1β-induced changes in adult hippocampal neurogenesis, and offers mechanistic insight into disorders in which neuroinflammation and alterations in neurogenesis are characteristic features. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  12. Effect of tibolone on dendritic spine density in the rat hippocampus.

    Science.gov (United States)

    Beltrán-Campos, V; Díaz-Ruiz, A; Padilla-Gómez, E; Aguilar Zavala, H; Ríos, C; Díaz Cintra, S

    2015-09-01

    Oestrogen deficiency produces oxidative stress (OS) and changes in hippocampal neurons and also reduces the density of dendritic spines (DS). These alterations affect the plastic response of the hippocampus. Oestrogen replacement therapy reverses these effects, but it remains to be seen whether the same changes are produced by tibolone (TB). The aim of this study was to test the neuroprotective effects of long-term oral TB treatment and its ability to reverse DS pruning in pyramidal neurons (PN) of hippocampal area CA1. Young Sprague Dawley rats were distributed in 3 groups: a control group in proestrus (Pro) and two ovariectomised groups (Ovx), of which one was provided with a daily TB dose (1mg/kg), OvxTB and the other with vehicle (OvxV), for 40 days in both cases. We analysed lipid peroxidation and DS density in 3 segments of apical dendrites from PNs in hippocampal area CA1. TB did not reduce lipid peroxidation but it did reverse the spine pruning in CA1 pyramidal neurons of the hippocampus which had been caused by ovariectomy. Oestrogen replacement therapy for ovariectomy-induced oestrogen deficiency has a protective effect on synaptic plasticity in the hippocampus. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Neuronal response of the hippocampal formation to injury: blood flow, glucose metabolism, and protein synthesis

    International Nuclear Information System (INIS)

    Kameyama, M.; Wasterlain, C.G.; Ackermann, R.F.; Finch, D.; Lear, J.; Kuhl, D.E.

    1983-01-01

    The reaction of the hippocampal formation to entorhinal lesions was studied from the viewpoints of cerebral blood flow ([ 123 I]isopropyl-iodoamphetamine[IMP])-glucose utilization ([ 14 C]2-deoxyglucose), and protein synthesis ([ 14 C]leucine), using single- and double-label autoradiography. Researchers' studies showed decreased glucose utilization in the inner part, and increased glucose utilization in the outer part of the molecular layer of the dentate gyrus, starting 3 days after the lesion; increased uptake of [ 123 I]IMP around the lesion from 1 to 3 days postlesion; and starting 3 days after the lesion, marked decrease in [ 14 C]leucine incorporation into proteins and cell loss in the dorsal CA1 and dorsal subiculum in about one-half of the rats. These changes were present only in animals with lesions which invaded the ventral hippocampal formation in which axons of CA1 cells travel. By contrast, transsection of the 3rd and 4th cranial nerves resulted, 3 to 9 days after injury, in a striking increase in protein synthesis in the oculomotor and trochlear nuclei. These results raise the possibility that in some neurons the failure of central regeneration may result from the cell's inability to increase its rate of protein synthesis in response to axonal injury

  14. D-aspartate and NMDA, but not L-aspartate, block AMPA receptors in rat hippocampal neurons

    DEFF Research Database (Denmark)

    Gong, Xiang-Qun; Frandsen, Anne; Lu, Wei-Yang

    2005-01-01

    1 The amino acid, D-aspartate, exists in the mammalian brain and is an agonist at the N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors. Here, for the first time, we studied the actions of D-aspartate on alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptors (AMPARs......) in acutely isolated rat hippocampal neurons. 2 In the presence of the NMDA receptor channel blocker, MK801, D-aspartate inhibited kainate-induced AMPAR current in hippocampal neurons. The inhibitory action of D-aspartate on kainate-induced AMPAR current was concentration-dependent and was voltage......-independent in the tested voltage range (-80 to +60 mV). 3 The estimated EC50 of the L-glutamate-induced AMPAR current was increased in the presence of D-aspartate, while the estimated maximum L-glutamate-induced AMPAR current was not changed. D-aspartate concentration-dependently shifted the dose-response curve of kainate...

  15. Regional hippocampal volumes and development predict learning and memory.

    Science.gov (United States)

    Tamnes, Christian K; Walhovd, Kristine B; Engvig, Andreas; Grydeland, Håkon; Krogsrud, Stine K; Østby, Ylva; Holland, Dominic; Dale, Anders M; Fjell, Anders M

    2014-01-01

    The hippocampus is an anatomically and functionally heterogeneous structure, but longitudinal studies of its regional development are scarce and it is not known whether protracted maturation of the hippocampus in adolescence is related to memory development. First, we investigated hippocampal subfield development using 170 longitudinally acquired brain magnetic resonance imaging scans from 85 participants aged 8-21 years. Hippocampal subfield volumes were estimated by the use of automated segmentation of 7 subfields, including the cornu ammonis (CA) sectors and the dentate gyrus (DG), while longitudinal subfield volumetric change was quantified using a nonlinear registration procedure. Second, associations between subfield volumes and change and verbal learning/memory across multiple retention intervals (5 min, 30 min and 1 week) were tested. It was hypothesized that short and intermediate memory would be more closely related to CA2-3/CA4-DG and extended, remote memory to CA1. Change rates were significantly different across hippocampal subfields, but nearly all subfields showed significant volume decreases over time throughout adolescence. Several subfield volumes were larger in the right hemisphere and in males, while for change rates there were no hemisphere or sex differences. Partly in support of the hypotheses, greater volume of CA1 and CA2-3 was related to recall and retention after an extended delay, while longitudinal reduction of CA2-3 and CA4-DG was related to learning. This suggests continued regional development of the hippocampus across adolescence and that volume and volume change in specific subfields differentially predict verbal learning and memory over different retention intervals, but future high-resolution studies are called for. © 2014 S. Karger AG, Basel.

  16. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression.

    Science.gov (United States)

    Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Hsieh, Ching-Liang

    2012-01-01

    Uncaria rhynchophylla (UR), which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA-) induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABA(A)) receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus.

  17. Temperature dependence of intracellular Ca2+ homeostasis in rat meiotic and postmeiotic spermatogenic cells.

    Science.gov (United States)

    Herrera, E; Salas, K; Lagos, N; Benos, D J; Reyes, J G

    2001-10-01

    The hypothesis that intracellular [Ca2+] is a cell parameter responsive to extreme temperatures in rat meiotic and postmeiotic spermatogenic cells was tested using intracellular fluorescent probes for Ca2+ and pH. In agreement with this hypothesis, extreme temperatures induced a rapid increase of cytosolic [Ca2+] in rat pachytene spermatocytes and round spermatids. Oscillatory changes in temperature can induce oscillations in cytosolic [Ca2+] in these cells. Intracellular [Ca2+] homeostasis in round spermatids was more sensitive to high temperatures compared with pachytene spermatocytes. The calculated activation energies for SERCA ATPase-mediated fluxes in pachytene spermatocytes and round spermatids were 62 and 75 kJ mol(-1), respectively. The activation energies for leak fluxes from intracellular Ca2+ stores were 55 and 68 kJ mol(-1) for pachytene spermatocytes and round spermatids, respectively. Together with changes in cytosolic [Ca2+], round spermatids undergo a decrease in pH(i) at high temperatures. This temperature-induced decrease in pH(i) appears to be partially responsible for the increase in cytosolic [Ca2+] of round spermatids induced by high temperatures. This characteristic of rat meiotic and postmeiotic spermatogenic cells to undergo an increment in cytosolic Ca2+ at temperatures > 33 degrees C can be related to the induction of programmed cell death by high temperatures in these cells.

  18. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity.......Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...

  19. Study on 41Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats

    International Nuclear Information System (INIS)

    Shen, Hongtao; Pang, Fangfang; Jiang, Shan; He, Ming; Dong, Kejun; Dou, Liang; Pang, Yijun; Yang, Xianlin; Ruan, Xiangdong; Liu, Manjun; Xia, Chunbo

    2015-01-01

    The annual incidence of new cancer patients in China is about 2 million, 30–40% of which will end up with bone metastasis. Profound study on the preclinical model and early diagnosis of cancer bone metastasis in rats are very significant for the drug development, better understanding and treatment of bone metastases. In order to monitor the process of bone metabolism and early detection of bone metastasis of cancer cells, a technique of 41 Ca isotope tracer combined with AMS has been developed and applied in the study on the bone metastasis of cancer cells by rat model. In this work, 3-month-old female Sprague–Dawley (SD) rats were randomly divided into different groups, and tumor cells injected respectively into the tail vein, femoral artery, femoral cavity and the thigh muscle to establish the rat models for bone metastases. The most appropriate model, i.e., the thigh muscle group, was finally adopted in our real metastases experiment. Each rat in this group was intramuscularly (i.m.) injected with 250 μl CaCl 2 solution (containing 1.4 mg Ca and 5nCi 41 Ca). About 40 days later, the rat mammary gland carcinoma cells (Walker 256) were injected into these rats following the established protocol. After bone metastasis, medicine interventions were performed. The sequential urine and blood samples were collected and analyzed for 41 Ca (by AMS) and N-terminal telopeptide (Ntx), respectively. Bone Mineral Density (BMD) values in the femur and the tibia were measured by CT scan. The results of 41 Ca/Ca in longitudinal urinary samples can sensitively reveal the skeletal perturbations caused by bone metastasis of rats, suggests that 41 Ca might be similarly developed for human use and improve clinical management through the assessment of the curative effect and non-invasive detection of the earliest stages of cancer growth in bone.

  20. Desipramine inhibits histamine H1 receptor-induced Ca2+ signaling in rat hypothalamic cells.

    Directory of Open Access Journals (Sweden)

    Ji-Ah Kang

    Full Text Available The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca(2+ evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca(2+ increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca(2+ increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants.

  1. Ablation of CaV2.1 Voltage-Gated Ca2+ Channels in Mouse Forebrain Generates Multiple Cognitive Impairments

    Science.gov (United States)

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels located at the presynaptic membrane are known to control a multitude of Ca2+-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic CaV2.1 mouse models. Global CaV2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of CaV2.1 Ca2+ channels for complex behaviour in adult mice. Consequently we established a forebrain specific CaV2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of CaV2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific CaV2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional CaV2.1 knock-out model that is most suitable for analysing the in vivo functions of CaV2.1 in the adult murine forebrain. PMID:24205277

  2. GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.

    Science.gov (United States)

    Cutsuridis, Vassilis; Hasselmo, Michael

    2012-07-01

    Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories

  3. Hippocampal kindling alters the concentration of glial fibrillary acidic protein and other marker proteins in rat brain

    DEFF Research Database (Denmark)

    Hansen, A; Jørgensen, Ole Steen; Bolwig, T G

    1990-01-01

    The effect of hippocampal kindling on neuronal and glial marker proteins was studied in the rat by immunochemical methods. In hippocampus, pyriform cortex and amygdala there was an increase in glial fibrillary acidic protein (GFAP), indicating reactive gliosis, and an increase in the glycolytic...... enzyme NSE, suggesting increased anaerobic metabolism. Neuronal cell adhesion molecule (NCAM) decreased in pyriform cortex and amygdala of kindled rats, indicating neuronal degeneration....

  4. Higher-order conditioning is impaired by hippocampal lesions.

    Science.gov (United States)

    Gilboa, Asaf; Sekeres, Melanie; Moscovitch, Morris; Winocur, Gordon

    2014-09-22

    Behavior in the real world is rarely motivated by primary conditioned stimuli that have been directly associated with potent unconditioned reinforcers. Instead, motivation and choice behavior are driven by complex chains of higher-order associations that are only indirectly linked to intrinsic reward and often exert their influence outside awareness. Second-order conditioning (SOC) [1] is a basic associative-learning mechanism whereby stimuli acquire motivational salience by proxy, in the absence of primary incentives [2, 3]. Memory-systems theories consider first-order conditioning (FOC) and SOC to be prime examples of hippocampal-independent nondeclarative memory [4, 5]. Accordingly, neurobiological models of SOC focus almost exclusively on nondeclarative neural systems that support motivational salience and reward value. Transfer of value from a conditioned stimulus to a neutral stimulus is thought to require the basolateral amygdala [6, 7] and the ventral striatum [2, 3], but not the hippocampus. We developed a new paradigm to measure appetitive SOC of tones in rats. Hippocampal lesions severely impaired both acquisition and expression of SOC despite normal FOC. Unlike controls, rats with hippocampal lesions could not discriminate between positive and negative secondary conditioned tones, although they exhibited general familiarity with previously presented tones compared with new tones. Importantly, normal rats' behavior, in contrast to that of hippocampal groups, also revealed different confidence levels as indexed by effort, a central characteristic of hippocampal relational memory. The results indicate, contrary to current systems models, that representations of intrinsic relationships between reward value, stimulus identity, and motivation require hippocampal mediation when these relationships are of a higher order. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of 1,25(OH)2 vitamin D3 and ionized Ca2+ on 45Ca uptake by primary cultures of aortic myocytes of spontaneously hypertensive and Wistar Kyoto normotensive rats

    International Nuclear Information System (INIS)

    Bukoski, R.D.; Xue, H.; McCarron, D.A.

    1987-01-01

    The effect of several regulators of whole animal Ca 2+ homeostasis on 45 Ca uptake by primary cultures of aortic myocytes isolated from spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats was examined. Exposure of confluent cells to 1.0, 1.25 or 1.50 mM ionized Ca 2+ in serum-free medium for seven days resulted in increased 45 Ca uptake at the higher concentrations of Ca 2+ in cells of the SHR but not the WKY. 1,25 (OH)2 vitamin D3 (1 ng/ml) for 7 days caused enhanced influx in cells from both the SHR and WKY while parathyroid hormone (1-34) (1 ng/ml) was without effect. The data indicate that humoral factors that serve to regulate whole animal Ca 2+ homeostasis may also play a role in the regulation of Ca 2+ metabolism of the vascular smooth muscle cell

  6. Episodic autobiographical memory is associated with variation in the size of hippocampal subregions.

    Science.gov (United States)

    Palombo, Daniela J; Bacopulos, Agnes; Amaral, Robert S C; Olsen, Rosanna K; Todd, Rebecca M; Anderson, Adam K; Levine, Brian

    2018-02-01

    Striking individual differences exist in the human capacity to recollect past events, yet, little is known about the neural correlates of such individual differences. Studies investigating hippocampal volume in relation to individual differences in laboratory measures of episodic memory in young adults suggest that whole hippocampal volume is unrelated (or even negatively associated) with episodic memory. However, anatomical and functional specialization across hippocampal subregions suggests that individual differences in episodic memory may be linked to particular hippocampal subregions, as opposed to whole hippocampal volume. Given that the DG/CA 2/3 circuitry is thought to be especially critical for supporting episodic memory in humans, we predicted that the volume of this region would be associated with individual variability in episodic memory. This prediction was supported using high-resolution MRI of the hippocampal subfields and measures of real-world (autobiographical) episodic memory. In addition to the association with DG/CA 2/3 , we further observed a relationship between episodic autobiographical memory and subiculum volume, whereas no association was observed with CA 1 or with whole hippocampal volume. These findings provide insight into the possible neural substrates that mediate individual differences in real-world episodic remembering in humans. © 2017 Wiley Periodicals, Inc.

  7. Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task.

    Science.gov (United States)

    Martig, Adria K; Mizumori, Sheri J Y

    2011-02-01

    Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicate DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N = 9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win-shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N = 167) and CA3 (N = 94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations "rescued" performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps by maintaining place field stability selectively in CA1/CA2. Copyright © 2009 Wiley-Liss, Inc.

  8. Distinctive hippocampal zinc distribution patterns following stress exposure in an animal model of PTSD.

    Science.gov (United States)

    Sela, Hagit; Cohen, Hagit; Karpas, Zeev; Zeiri, Yehuda

    2017-03-22

    Emerging evidence suggests that zinc (Zn) deficiency is associated with depression and anxiety in both human and animal studies. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of Zn distribution. The work has focused on one case study, the association between an animal model of posttraumatic stress disorder (PTSD) and the Zn distribution in the rat hippocampus. Behaviors were assessed with the elevated plus-maze and acoustic startle response tests 7 days later. Preset cut-off criteria classified exposed animals according to their individual behavioral responses. To further characterize the distribution of Zn that occurs in the hippocampus 8 days after the exposure, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging was used. It has been found that Zn distribution in the dentate gyrus (DG) sub-region in the hippocampus is clearly more widely spread for rats that belong to the extreme behavioral response (EBR) group as compared to the control group. Comparison of the Zn concentration changes in the cornu ammonis 1 (CA1) and the DG sub-regions of the hippocampus shows that the concentration changes are statistically significantly higher in the EBR rats compared to the rats in the control and minimal behavioral response (MBR) groups. In order to understand the mechanism of stress-induced hippocampal Zn dyshomeostasis, relative quantitative analyses of metallothionein (MT), B-cell lymphoma 2 (Bcl-2) and caspase 3 immunoreactivity were performed. Significant differences in the number of caspase-ir and Bcl-2 cells were found in the hippocampal DG sub-region between the EBR group and the control and MBR groups. The results of this study demonstrate a statistically significant association between the degree of behavioral disruption resulting from stress exposure and the patterns of Zn distribution and concentration changes in the various hippocampal regions

  9. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test.

    Science.gov (United States)

    Yang, Chun; Hu, Yi-Min; Zhou, Zhi-Qiang; Zhang, Guang-Fen; Yang, Jian-Jun

    2013-03-01

    Previous studies have shown that a single sub-anesthetic dose of ketamine exerts fast-acting antidepressant effects in patients and in animal models of depression. However, the underlying mechanisms are not totally understood. This study aims to investigate the effects of acute administration of different doses of ketamine on the immobility time of rats in the forced swimming test (FST) and to determine levels of hippocampal brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR). Forty male Wistar rats weighing 180-220 g were randomly divided into four groups (n = 10 each): group saline and groups ketamine 5, 10, and 15 mg/kg. On the first day, all animals were forced to swim for 15 min. On the second day ketamine (5, 10, and 15 mg/kg, respectively) was given intraperitoneally, at 30 min before the second episode of the forced swimming test. Immobility times of the rats during the forced swimming test were recorded. The animals were then decapitated. The hippocampus was harvested for determination of BDNF and mTOR levels. Compared with group saline, administration of ketamine at a dose of 5, 10, and 15 mg/kg decreased the duration of immobility (P < 0.05 for all doses). Ketamine at doses of both 10 and 15 mg/kg showed a significant increase in the expression of hippocampal BDNF (P < 0.05 for both doses). Ketamine given at doses of 5, 10, and 15 mg/kg showed significant increases in relative levels of hippocampal p-mTOR (P < 0.05 for all doses) The antidepressant effect of ketamine might be related to the increased expression of BDNF and mTOR in the hippocampus of rats.

  10. Response of hippocampal mossy fiber zinc to excessive glutamate release.

    Science.gov (United States)

    Takeda, Atsushi; Minami, Akira; Sakurada, Naomi; Nakajima, Satoko; Oku, Naoto

    2007-01-01

    The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.

  11. Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition.

    Science.gov (United States)

    Basu, Jayeeta; Zaremba, Jeffrey D; Cheung, Stephanie K; Hitti, Frederick L; Zemelman, Boris V; Losonczy, Attila; Siegelbaum, Steven A

    2016-01-08

    The cortico-hippocampal circuit is critical for storage of associational memories. Most studies have focused on the role in memory storage of the excitatory projections from entorhinal cortex to hippocampus. However, entorhinal cortex also sends inhibitory projections, whose role in memory storage and cortico-hippocampal activity remains largely unexplored. We found that these long-range inhibitory projections enhance the specificity of contextual and object memory encoding. At the circuit level, these γ-aminobutyric acid (GABA)-releasing projections target hippocampal inhibitory neurons and thus act as a disinhibitory gate that transiently promotes the excitation of hippocampal CA1 pyramidal neurons by suppressing feedforward inhibition. This enhances the ability of CA1 pyramidal neurons to fire synaptically evoked dendritic spikes and to generate a temporally precise form of heterosynaptic plasticity. Long-range inhibition from entorhinal cortex may thus increase the precision of hippocampal-based long-term memory associations by assessing the salience of mnemonormation to the immediate sensory input. Copyright © 2016, American Association for the Advancement of Science.

  12. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits.

    Science.gov (United States)

    Bhagya, Venkanna Rao; Srikumar, Bettadapura N; Veena, Jayagopalan; Shankaranarayana Rao, Byrathnahalli S

    2017-08-01

    Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long-term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety-like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short-term EE for 10 days can overcome restraint stress-induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short-term EE on chronic stress-induced impaired LTP, working memory, and anxiety-like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1-LTP, increased anxiety-like symptoms in elevated plus maze, and impaired working memory in T-maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats

    Science.gov (United States)

    Zheng, Chenguang; Bieri, Kevin Wood; Trettel, Sean Gregory; Colgin, Laura Lee

    2015-01-01

    In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (~25–55 Hz) and fast (~60–100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds. PMID:25601003

  14. Regulation of the Na+/Ca2+ exchanger in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Ankorina-Stark, I; Amstrup, J; Novak, I

    2002-01-01

    by hormones/agonists affecting pancreatic secretion. Whole pancreas, pure pancreatic acini and ducts were obtained from rats and used for RT-PCR and Western blot analysis, immunohistochemistry and intracellular Ca2+ measurements using Fura-2. RT-PCR analysis indicated Na+/Ca2+-exchanger isoforms NCX1.......3 and NCX1.7 in acini and pancreas. Western blot with NCX1 antibody identified bands of 70, 120 and 150 kDa in isolated ducts, acini and pancreas. Immunofluorescence experiments showed the Na+/Ca2+ exchanger on the basolateral membrane of acini and small intercalated/intralobular ducts, but in larger...

  15. Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2017-05-01

    Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκ

  16. Effects of hypergravic fields on serotonergic neuromodulation in the rat hippocampus.

    Science.gov (United States)

    Horrigan, D J; Fuller, C A; Horowitz, J M

    1997-10-01

    The effects of 7 day exposure to 2G fields on serotonergic modulation at two synapses on a hippocampal pathway were examined by recording dentate gyrus and CA1 pyramidal cell layer electrical activity. Serotonin decreased the amplitude of the population spike (synchronous action potentials in hundreds of neurons) in both the dentate gyrus and CA1 regions of rats exposed to 2G fields for 7 days. The inhibition, averaging 26 +/- 4% (mean +/- SEM) in the dentate gyrus and 80 +/- 5% in the CA1 region, was not significantly different from inhibitory responses observed in 1G controls. The 5-HT1A agonist 8-OH-DPAT mimicked this inhibition in the dentate and CA1 regions of 1G rats. 8-OH-DPAT responses were not affected by exposure to 2G fields. We conclude that the hippocampus contains surplus 5-HT receptors so that decreases in receptor density reported in receptor binding studies do not result in a decrease in modulatory capability. A model to account for the physiological pathway that relates gravitational field strength to 5-HT receptor density without changing the effectiveness of 5-HT neuromodulation is discussed.

  17. Intracellular [Ca2+] and Vo2 after manipulation of the free-energy of the Na+/Ca(2+)-exchanger in isolated rat ventricular myocytes

    NARCIS (Netherlands)

    Fiolet, J. W.; Baartscheer, A.; Schumacher, C. A.

    1995-01-01

    We have investigated whether the Na+/Ca(2+)-exchanger has a functional regulatory role in the control of oxidative metabolism in suspensions of isolated rat ventricular myocytes. Therefore we simultaneously measured intracellular [Ca2+] ([Ca2+]i) with Indo-1 and respiratory rate (Vo2) after abrupt

  18. Localisation of selected Ca2+-transport systems in rat's heart and kidney and their modulation by stress

    International Nuclear Information System (INIS)

    Zacikova, L.

    2000-01-01

    This thesis deals with the identification of selected calcium transport systems and their modulation by immobilization stress in rat heart and kidney. In our experiments we used normotensive (Sprague-Dawley, Wistar-Kyoto) and hypertensive (SHR) strains. We compared mRNA levels, protein expression and activity of the Na + /Ca 2+ exchanger from hearts of control animals, animals subjected to a single (once) or repeated (seven times) immobilization stress and from animals treated continually with cortisol. We have observed that immobilization stress increased both, gene expression and protein message of the Na + /Ca 2 + exchanger in rat cardiac left, but not right ventricle. This effect is not mediated through the glucocorticoid responsive element. We have found that cortisol decreased activity of the N a +/Ca 2+ exchanger without changing expression and protein amount of this transport system. IP3 receptor of type I and 2 was detected on mRNA levels in rat cardiac atria. Very small amounts of these receptors were observed in rat cardiac ventricles. Since it was difficult to detect these amounts in ventricles, we used 'seminested' PCR to verify expression of IP 3 R1 and 2 in cardiac ventricles. The highest levels of IP 3 R1 and 2 were expressed in left atria. Immobilization stress significantly increased mRNA IP 3 R1 and 2 in rat cardiac atria. We observed both, mRNA and type 1 IP 3 receptor's protein in renal medulla, but not in renal cortex. We have found that this receptor was approximately twice as abundant in normotensive as in genetically hypertensive rat kidney. Immobilization stress significantly down-regulated IP 3 R1 in renal medulla, but not in renal cortex. To investigate the role of NAADP in signaling we measured 45 Ca 2+ release from rat cardiac microsomes. We examined concentration and time dependence of 45 Ca 2+ release from rat cardiac microsomes. All these results could contribute to the understanding of Ca 2+ modulation in cardiac and kidney under

  19. [Curcumin improves learning and memory function through decreasing hippocampal TNF-α and iNOS levels after subarachnoid hemorrhage in rats].

    Science.gov (United States)

    Qiu, Zhenwei; Yue, Shuangzhu

    2016-03-01

    To investigate the effect of curcumin on learning and memory function of rats with subarachnoid hemorrhage (SAH) and the possible mechanism. A total of 30 male Sprague-Dawley rats were randomly divided into three groups: Sham group, SAH group and curcumin (Cur) therapy group. Experimental SAH rat models were established by injecting autologous blood into the cisterna magna. Neurological deficits of rats were examined at different time points. Spatial learning and memory abilities were tested by Morris water maze test. The hippocampal tumor necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) were detected by ELISA. RESULTS Experimental SAH rat models were established successfully. Neurological scores of the SAH rats were significantly lower than those of the sham group. Curcumin therapy obviously improved the neurological deficits of rats compared with the SAH rats. Morris water maze test showed that SAH caused significant cognitive impairment with longer escape latency compared with the sham group. After treatment with curcumin for 4 weeks, the escape latency decreased significantly. The levels of TNF-α and iNOS in the curcumin-treated group were significantly lower than those of the SAH group. SAH can cause learning and memory impairment in rats. Curcumin can recover learning and memory function through down-regulating hippocampal TNF-α and iNOS levels.

  20. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression

    Directory of Open Access Journals (Sweden)

    Chung-Hsiang Liu

    2012-01-01

    Full Text Available Uncaria rhynchophylla (UR, which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA- induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABAA receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus

  1. Effect of Repeated Electroacupuncture Intervention on Hippocampal ERK and p38MAPK Signaling in Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Jun-ying Wang

    2015-01-01

    Full Text Available Results of our past studies showed that hippocampal muscarinic acetylcholine receptor (mAChR-1 mRNA and differentially expressed proteins participating in MAPK signaling were involved in electroacupuncture (EA induced cumulative analgesia in neuropathic pain rats, but the underlying intracellular mechanism remains unknown. The present study was designed to observe the effect of EA stimulation (EAS on hippocampal extracellular signal-regulated kinases (ERK and p38 MAPK signaling in rats with chronic constrictive injury (CCI of the sciatic nerve, so as to reveal its related intracellular targets in pain relief. After CCI, the thermal pain thresholds of the affected hind were significantly decreased compared with the control group (P<0.05. Following one and two weeks’ EAS of ST 36-GB34, the pain thresholds were significantly upregulated (P<0.05, and the effect of EA2W was remarkably superior to that of EA2D and EA1W (P<0.05. Correspondingly, CCI-induced decreased expression levels of Ras, c-Raf, ERK1 and p-ERK1/2 proteins, and p38 MAPK mRNA and p-p38MAPK protein in the hippocampus tissues were reversed by EA2W (P<0.05. The above mentioned results indicated that EA2W induced cumulative analgesic effect may be closely associated with its function in removing neuropathic pain induced suppression of intracellular ERK and p38MAPK signaling in the hippocampus.

  2. Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus

    Directory of Open Access Journals (Sweden)

    Eun Joo Bae

    2015-01-01

    Full Text Available The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1- 3 between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults.

  3. Effects of thyroxine on the migration of hippocampal neurons in newborn rat exposed to HTO

    International Nuclear Information System (INIS)

    Cai Erpeng; Qiu Jun; Wang Yongsheng; Wu Cuiping; Yao Xiaobo; Wang Mingming

    2012-01-01

    Objective: To explore the effect of thyroxine (TH) on the migration of hippocampal neurons in newborn rat exposed to tritiated water (HTO). Methods: The hippocampal neurons from neonatal rats were primarily cultured, 7 days later, randomly divided into control group, HTO group, TH group and HTO + TH group (3.7 × 10 5 Bq/ml HTO and 0.3 μg/ml TH were simultaneously added). After 24 h, the distance of neuronal migration was measured with Leica AF 6000, the expressions of BDNF and Reelin mRNA in neurons were analyzed with reverse transcription polymerase chain reaction (RT-PCR), the expression of β-tubulin protein in neurons was assayed with Western blot and immunocytochemical staining. Results: Compared with control group, the expression of Reelin mRNA, BDNF mRNA and β-tubulin in HTO group were significantly reduced (t=5.80, 5.48, 5.47, P<0.01), but those in HTO + TH group and TH group were obviously increased (t=7.75, 12.06, 13.65, P<0.01; t=4.34, 5.47, 5.65, P<0.01) and higher than that in HTO group (t=2.92, 10.32, 8.76, P<0.01; t=18.07, 20.55, 40.13, P<0.01). Accordingly, the neuronal migration distance in HTO group was much shorter than that in control (t=8.62, P<0.01), and in HTO + TH group and TH group was far longer than that in control (t=7.64, 4.93, P<0.01). Moreover, the neuronal migration distance in HTO + TH group was notably elongated in comparison with that in HTO group (t=11.32, 12.31, P<0.01). Conclusions: Thyroxine may promote the migration of hippocampal neurons in newborn rat exposed to HTO. (authors)

  4. Oxidative stress evoked damages leading to attenuated memory and inhibition of NMDAR–CaMKII–ERK/CREB signalling on consumption of aspartame in rat model

    Directory of Open Access Journals (Sweden)

    Ashok Iyaswamy

    2018-04-01

    Full Text Available Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposes to investigate whether long term (90 days aspartame (40 mg/kg b.wt administration could induce oxidative stress and alter the memory in Wistar strain male albino rats. To mimic the human methanol metabolism, methotrexate (MTX-treated rats were included as a model to study the effects of aspartame. Wistar strain albino rats were administered with aspartame (40 mg/kg b.wt orally and studied along with controls and MTX-treated controls. Aspartame interfered in the body weight and corticosterone levels in the rats. A marked increase in the mRNA and protein expression of neuronal nitric oxide synthase (nNOS and induced nitric oxide synthase (iNOS which resulted in the increased nitric oxide radical's level indicating that aspartame is a stressor. These reactive nitrogen species could be responsible for the altered cell membrane integrity and even cause death of neurons by necrosis or apoptosis. The animals showed a marked decrease in learning, spatial working and spatial recognition memory deficit in the Morris water maze and Y-maze performance task which could have resulted due to reduced hippocampal acetylcholine esterase (AChE activity. The animal brain homogenate also revealed the decrease in the phosphorylation of NMDAR1CaMKII–ERK/CREB signalling pathway, which well documents the inhibition of phosphorylation leads to the excitotoxicity of the neurons and memory decline. This effect may be due to methanol which may also activate the NOS levels, microglia and astrocytes, inducing neurodegeneration in brain. Neuronal shrinkage of hippocampal layer due to degeneration of pyramidal cells revealed the abnormal neuronal morphology of pyramidal cell layers in the aspartame treated animals. These findings demonstrate that aspartame metabolites could be a contributing factor for the

  5. Early postischemic 45Ca accumulation in rat dentate hilus

    International Nuclear Information System (INIS)

    Benveniste, H.; Diemer, N.H.

    1988-01-01

    Several studies have found postischemic regional accumulation of calcium to be time-dependent and coincident with the progression of ischemic cell change. In the most vulnerable cells in the hippocampus one would therefore expect to find a primary and specific early uptake of calcium after ischemia. Autoradiograms of 45 Ca and 3 H-inulin distribution were investigated before and 1 h after 20 min ischemia in the rat hippocampus. Two different methodological approaches were used for administration of 45 Ca: (a) administration via microdialysis probes, (b) intraventricular injection. During control conditions the 45 Ca autoradiograms showed variations in distribution volume in accordance with 3 H-inulin determination of extracellular space size. One hour after ischemia a massive accumulation of 45 Ca was found in the dentate hilus. No change in the distribution pattern of 3 H-inulin could be demonstrated 1 h after ischemia. We suggest that 45 Ca accumulation in dentate hilus 1 h after ischemia is a result of increased Ca 2+ uptake before irreversible cell damage occurs and is not due to passive influx of calcium across a leaky plasma membrane

  6. Glutamate reduces glucose utilization while concomitantly enhancing AQP9 and MCT2 expression in cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Fabio eTescarollo

    2014-08-01

    Full Text Available The excitatory neurotransmitter glutamate has been reported to have a major impact on brain energy metabolism. Using primary cultures of rat hippocampal neurons, we observed that glutamate reduces glucose utilization in this cell type, suggesting alteration in mitochondrial oxidative metabolism. The aquaglyceroporin AQP9 and the monocarboxylate transporter MCT2, two transporters for oxidative energy substrates, appear to be present in mitochondria of these neurons. Moreover, they not only co-localize but they interact with each other as they were found to co-immunoprecipitate from hippocampal neuron homogenates. Exposure of cultured hippocampal neurons to glutamate 100 µM for 1 hour led to enhanced expression of both AQP9 and MCT2 at the protein level without any significant change at the mRNA level. In parallel, a similar increase in the protein expression of LDHA was evidenced without an effect on the mRNA level. These data suggest that glutamate exerts an influence on neuronal energy metabolism likely through a regulation of the expression of some key mitochondrial proteins.

  7. Sulforaphane Prevents Neuronal Apoptosis and Memory Impairment in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Gengyin Wang

    2016-08-01

    Full Text Available Background/Aims: To explore the effects of sulforaphane (SFN on neuronal apoptosis in hippocampus and memory impairment in diabetic rats. Methods: Thirty male rats were randomly divided into normal control, diabetic model and SFN treatment groups (N = 10 in each group. Streptozotocin (STZ was applied to establish diabetic model. Water Morris maze task was applied to test learning and memory. Tunel assaying was used to detect apoptosis in hippocampus. The expressions of Caspase-3 and myeloid cell leukemia 1(MCL-1 were detected by western blotting. Neurotrophic factor levels and AKT/GSK3β pathway were also detected. Results: Compared with normal control, learning and memory were apparently impaired, with up-regulation of Caspase-3 and down-regulation of MCL-1 in diabetic rats. Apoptotic neurons were also found in CA1 region after diabetic modeling. By contrast, SFN treatment prevented the memory impairment, decreased the apoptosis of hippocampal neurons. SFN also attenuated the abnormal expression of Caspase-3 and MCL-1 in diabetic model. Mechanically, SFN treatment reversed diabetic modeling-induced decrease of p-Akt, p-GSK3β, NGF and BDNF expressions. Conclusion: SFN could prevent the memory impairment and apoptosis of hippocampal neurons in diabetic rat. The possible mechanism was related to the regulation of neurotropic factors and Akt/GSK3β pathway.

  8. Nifedipine-activated Ca(2+) permeability in newborn rat cortical collecting duct cells in primary culture.

    Science.gov (United States)

    Valencia, L; Bidet, M; Martial, S; Sanchez, E; Melendez, E; Tauc, M; Poujeol, C; Martin, D; Namorado, M D; Reyes, J L; Poujeol, P

    2001-05-01

    To characterize Ca(2+) transport in newborn rat cortical collecting duct (CCD) cells, we used nifedipine, which in adult rat distal tubules inhibits the intracellular Ca(2+) concentration ([Ca(2+)](i)) increase in response to hormonal activation. We found that the dihydropyridine (DHP) nifedipine (20 microM) produced an increase in [Ca(2+)](i) from 87.6 +/- 3.3 nM to 389.9 +/- 29.0 nM in 65% of the cells. Similar effects of other DHP (BAY K 8644, isradipine) were also observed. Conversely, DHPs did not induce any increase in [Ca(2+)](i) in cells obtained from proximal convoluted tubule. In CCD cells, neither verapamil nor diltiazem induced any rise in [Ca(2+)](i). Experiments in the presence of EGTA showed that external Ca(2+) was required for the nifedipine effect, while lanthanum (20 microM), gadolinium (100 microM), and diltiazem (20 microM) inhibited the effect. Experiments done in the presence of valinomycin resulted in the same nifedipine effect, showing that K(+) channels were not involved in the nifedipine-induced [Ca(2+)](i) rise. H(2)O(2) also triggered [Ca(2+)](i) rise. However, nifedipine-induced [Ca(2+)](i) increase was not affected by protamine. In conclusion, the present results indicate that 1) primary cultures of cells from terminal nephron of newborn rats are a useful tool for investigating Ca(2+) transport mechanisms during growth, and 2) newborn rat CCD cells in primary culture exhibit a new apical nifedipine-activated Ca(2+) channel of capacitive type (either transient receptor potential or leak channel).

  9. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Pelin Cengiz

    Full Text Available Hypoxia ischemia (HI-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+/H(+ exchanger isoform 1 (NHE1 protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX. 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+ and Ca(2+ overload. The latter was mediated by reversal of Na(+/Ca(2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+ and Ca(2+ homeostasis, which reduces Na(+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.

  10. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS.

    Science.gov (United States)

    Longoni, Giulia; Rocca, Maria A; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2015-01-01

    The hippocampus has a critical role in episodic memory and visuospatial learning and consolidation. We assessed the patterns of whole and regional hippocampal atrophy in a large group of multiple sclerosis (MS) patients, and their correlations with neuropsychological impairment. From 103 MS patients and 28 healthy controls (HC), brain dual-echo and high-resolution 3D T1-weighted images were acquired using a 3.0-Tesla scanner. All patients underwent a neuropsychological assessment of hippocampal-related cognitive functions, including Paired Associate Word Learning, Short Story, delayed recall of Rey-Osterrieth Complex Figure and Paced Auditory Serial Attention tests. The hippocampi were manually segmented and volumes derived. Regional atrophy distribution was assessed using a radial mapping analysis. Correlations between hippocampal atrophy and clinical, neuropsychological and MRI metrics were also evaluated. Hippocampal volume was reduced in MS patients vs HC (p right and hippocampus). In MS patients, radial atrophy affected CA1 subfield and subiculum of posterior hippocampus, bilaterally. The dentate hilus (DG:H) of the right hippocampal head was also affected. Regional hippocampal atrophy correlated with brain T2 and T1 lesion volumes, while no correlation was found with disability. Damage to the CA1 and subiculum was significantly correlated to the performances at hippocampal-targeted neuropsychological tests. These results show that hippocampal subregions have a different vulnerability to MS-related damage, with a relative sparing of the head of the left hippocampus. The assessment of regional hippocampal atrophy may help explain deficits of specific cognitive functions in MS patients, including memory and visuospatial abilities.

  11. Hippocampal sharp wave/ripples during sleep for consolidation of associative memory.

    Directory of Open Access Journals (Sweden)

    Wiâm Ramadan

    Full Text Available The beneficial effect of sleep on memory has been well-established by extensive research on humans, but the neurophysiological mechanisms remain a matter of speculation. This study addresses the hypothesis that the fast oscillations known as ripples recorded in the CA1 region of the hippocampus during slow wave sleep (SWS may provide a physiological substrate for long term memory consolidation. We trained rats in a spatial discrimination task to retrieve palatable reward in three fixed locations. Hippocampal local field potentials and cortical EEG were recorded for 2 h after each daily training session. There was an increase in ripple density during SWS after early training sessions, in both trained rats and in rats randomly rewarded for exploring the maze. In rats learning the place -reward association, there was a striking further significant increase in ripple density correlated with subsequent improvements in behavioral performance as the rat learned the spatial discrimination aspect of the task. The results corroborate others showing an experience-dependent increase in ripple activity and associated ensemble replay after exploratory activity, but in addition, for the first time, reveal a clear further increase in ripple activity related to associative learning based on spatial discrimination.

  12. Anticonvulsant Effects of Memantine and MK-801 in Guinea Pig Hippocampal Neurons.

    Science.gov (United States)

    investigation we compared the anticonvulsant properties of Mem to those of MK-801 in guinea pig hippocampal slices. Extracellular recordings were...obtained from area CA1 of guinea pig hippocampal slices in a total submersion chamber at 32 deg C in normal oxygenated artificial cerebrospinal fluid (ACSF

  13. Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling

    International Nuclear Information System (INIS)

    Inestrosa, Nibaldo C.; Godoy, Juan A.; Quintanilla, Rodrigo A.; Koenig, Cecilia S.; Bronfman, Miguel

    2005-01-01

    The molecular pathogenesis of Alzheimer's disease (AD) involves the participation of the amyloid-β-peptide (Aβ), which plays a critical role in the neurodegeneration that triggers the disease. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which are members of the nuclear receptor family. We report here that (1) PPARγ is present in rat hippocampal neurons in culture. (2) Activation of PPARγ by troglitazone and rosiglitazone protects rat hippocampal neurons against Aβ-induced neurodegeneration, as shown by the 3-[4,5 -2yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay, immunofluorescence using an anti-heavy neurofilament antibody, and quantitative electron microscopy. (3) Hippocampal neurons treated with several PPARγ agonists, including troglitazone, rosiglitazone, and ciglitazone, prevent the excitotoxic Aβ-induced rise in bulk-free Ca 2+ . (4) PPARγ activation results in the modulation of Wnt signaling components, including the inhibition of glycogen synthase kinase-3β (GSK-3β) and an increase of the cytoplasmic and nuclear β-catenin levels. We conclude that the activation of PPARγ prevents Aβ-induced neurodegeneration by a mechanism that may involve a cross talk between neuronal PPARγ and the Wnt signaling pathway. More important, the fact that the activation of PPARγ attenuated Aβ-dependent neurodegeneration opens the possibility to fight AD from a new therapeutic perspective

  14. Evidence for a Na+-Ca2+ exchanger in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Hug, M; Pahl, C; Novak, I

    1996-01-01

    Only recently has it been recognized that intracellular Ca2+ is an important cellular mediator in pancreatic ducts. The aim of the present study was to characterize the Ca2+ efflux pathway in ducts freshly prepared from rat pancreas. Lowering of extracellular Na+ concentration resulted in a signi......Only recently has it been recognized that intracellular Ca2+ is an important cellular mediator in pancreatic ducts. The aim of the present study was to characterize the Ca2+ efflux pathway in ducts freshly prepared from rat pancreas. Lowering of extracellular Na+ concentration resulted...

  15. Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: an animal model of dual diagnosis schizophrenia.

    Science.gov (United States)

    Chambers, R Andrew; Self, David W

    2002-12-01

    The high prevalence of substance use disorders in schizophrenia relative to the general population and other psychiatric diagnoses could result from developmental neuropathology in hippocampal and cortical structures that underlie schizophrenia. In this study, we tested the effects of neonatal ventral hippocampal lesions on instrumental behavior reinforced by sucrose pellets and intravenous cocaine injections. Lesioned rats acquired sucrose self-administration faster than sham-lesioned rats, but rates of extinction were not altered. Lesioned rats also responded at higher rates during acquisition of cocaine self-administration, and tended to acquire self-administration faster. Higher response rates reflected perseveration of responding during the post-injection "time-out" periods, and a greater incidence of binge-like cocaine intake, which persisted even after cocaine self-administration stabilized. In contrast to sucrose, extinction from cocaine self-administration was prolonged in lesioned rats, and reinstatement of cocaine seeking induced by cocaine priming increased compared with shams. These results suggest that neonatal ventral hippocampal lesions facilitate instrumental learning for both natural and drug rewards, and reduce inhibitory control over cocaine taking while promoting cocaine seeking and relapse after withdrawal. The findings are discussed in terms of possible developmental or direct effects of the lesions, and both positive reinforcement (substance use vulnerability as a primary disease symptom) and negative reinforcement (self-medication) theories of substance use comorbidity in schizophrenia.

  16. Impact of hippocampal subfield histopathology in episodic memory impairment in mesial temporal lobe epilepsy and hippocampal sclerosis.

    Science.gov (United States)

    Comper, Sandra Mara; Jardim, Anaclara Prada; Corso, Jeana Torres; Gaça, Larissa Botelho; Noffs, Maria Helena Silva; Lancellotti, Carmen Lúcia Penteado; Cavalheiro, Esper Abrão; Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas

    2017-10-01

    The objective of the study was to analyze preoperative visual and verbal episodic memories in a homogeneous series of patients with mesial temporal lobe epilepsy (MTLE) and unilateral hippocampal sclerosis (HS) submitted to corticoamygdalohippocampectomy and its association with neuronal cell density of each hippocampal subfield. The hippocampi of 72 right-handed patients were collected and prepared for histopathological examination. Hippocampal sclerosis patterns were determined, and neuronal cell density was calculated. Preoperatively, two verbal and two visual memory tests (immediate and delayed recalls) were applied, and patients were divided into two groups, left and right MTLE (36/36). There were no statistical differences between groups regarding demographic and clinical data. Cornu Ammonis 4 (CA4) neuronal density was significantly lower in the right hippocampus compared with the left (p=0.048). The groups with HS presented different memory performance - the right HS were worse in visual memory test [Complex Rey Figure, immediate (p=0.001) and delayed (p=0.009)], but better in one verbal task [RAVLT delayed (p=0.005)]. Multiple regression analysis suggested that the verbal memory performance of the group with left HS was explained by CA1 neuronal density since both tasks were significantly influenced by CA1 [Logical Memory immediate recall (p=0.050) and Logical Memory and RAVLT delayed recalls (p=0.004 and p=0.001, respectively)]. For patients with right HS, both CA1 subfield integrity (p=0.006) and epilepsy duration (p=0.012) explained Complex Rey Figure immediate recall performance. Ultimately, epilepsy duration also explained the performance in the Complex Rey Figure delayed recall (pepilepsy duration were associated with visual memory performance in patients with right HS. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Vascular mechanism of action of endothelin-1: Effect of Ca2+ antagonists

    International Nuclear Information System (INIS)

    Chabrier, P.E.; Auguet, M.; Roubert, P.; Lonchampt, M.O.; Gillard, V.; Guillon, J.M.; Delaflotte, S.; Braquet, P.

    1989-01-01

    The vasoconstrictive properties of the endothelium-derived peptide, endothelin-1 (ET-1), were investigated on rat isolated aorta and on cultured rat aortic smooth muscle cells. In rat isolated aorta, endothelin-1 induced a slow and sustained contraction in a Ca2+-free medium; after calcium readmission, an additional sustained contraction was elicited. In vascular smooth muscle cells, endothelin-1 provoked a dose-dependent Ca2+ influx that was not inhibited by calcium entry blockers (nifedipine, D 600, or diltiazem). In these cells, [ 125 I]-endothelin-1 bound to a specific, saturable, and high affinity recognition site (Kd about 10(-9) M and Bmax = 52 +/- 2 fmol/10(6) cells). The binding was not reversible and not affected by calcium antagonists. These data do not support the hypothesis that endothelin-1 acts as an endogenous agonist of the voltage-dependent Ca2+ channels. The action of endothelin-1 can be separated into two components: one dependent on Ca2+ influx but insensitive to calcium antagonists and another independent of extracellular Ca2+. The irreversible binding of endothelin-1 may reflect an internalization of the ligand inside the cell membrane, leading to multiple contractile events

  18. Vagus nerve stimulation ameliorated deficits in one-way active avoidance learning and stimulated hippocampal neurogenesis in bulbectomized rats.

    Science.gov (United States)

    Gebhardt, Nils; Bär, Karl-Jürgen; Boettger, Michael K; Grecksch, Gisela; Keilhoff, Gerburg; Reichart, Rupert; Becker, Axel

    2013-01-01

    Vagus nerve stimulation (VNS) has been introduced as a therapeutic option for treatment-resistant depression. The neural and chemical mechanisms responsible for the effects of VNS are largely unclear. Bilateral removal of the olfactory bulbs (OBX) is a validated animal model in depression research. We studied the effects of vagus nerve stimulation (VNS) on disturbed one-way active avoidance learning and neurogenesis in the hippocampal dentate gyrus of rats. After a stimulation period of 3 weeks, OBX rats acquired the learning task as controls. In addition, the OBX-related decrease of neuronal differentiated BrdU positive cells in the dentate gyrus was prevented by VNS. This suggests that chronic VNS and changes in hippocampal neurogenesis induced by VNS may also account for the amelioration of behavioral deficits in OBX rats. To the best of our knowledge, this is the first report on the restorative effects of VNS on behavioral function in an animal model of depression that can be compared with the effects of antidepressants. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice.

    Science.gov (United States)

    Zhu, G; Wang, Y; Li, J; Wang, J

    2015-04-30

    Ginseng serves as a potential candidate for the treatment of aging-related memory decline or memory loss. However, the related mechanism is not fully understood. In this study, we applied an intraperitoneal injection of ginsenoside Rg1, an active compound from ginseng in middle-aged mice and detected memory improvement and the underlying mechanisms. Our results showed that a period of 30-day administration of ginsenoside Rg1 enhanced long-term memory in the middle-aged animals. Consistent with the memory improvement, ginsenoside Rg1 administration facilitated weak theta-burst stimulation (TBS)-induced long-term potentiation (LTP) in acute hippocampal slices from middle-aged animals. Ginsenoside Rg1 administration increased the dendritic apical spine numbers and area in the CA1 region. In addition, ginsenoside Rg1 administration up-regulated the expression of hippocampal p-AKT, brain-derived neurotrophic factor (BDNF), proBDNF and glutamate receptor 1 (GluR1), but not p-ERK. Interestingly, the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor (bpV) mimicked the ginsenoside Rg1 effects, including increasing p-AKT expression, promoting hippocampal basal synaptic transmission, LTP and memory. Taken together, our data suggest that ginsenoside Rg1 treatment improves memory in middle-aged mice possibly through regulating the PI3K/AKT pathway, altering apical spines and facilitating hippocampal LTP. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Ablation of Ca(V)2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    Science.gov (United States)

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated Ca(V)2.1 (P/Q-type) Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V)2.1 mouse models. Global Ca(V)2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V)2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V)2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V)2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V)2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V)2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V)2.1 in the adult murine forebrain.