WorldWideScience

Sample records for rat brain visualization

  1. Characterization and visualization of cholecystokinin receptors in rat brain using [3H]pentagastrin

    International Nuclear Information System (INIS)

    Gaudreau, P.; Quirion, R.; St Pierre, S.; Pert, C.B.

    1983-01-01

    [ 3 H]Pentagastrin binds specifically to an apparent single class of CCK receptors on slide-mounted sections of rat brain (KD . 5.6 nM; Bmax . 36.6 fmol/mg protein). This specific binding is temperature-dependent and regulated by ions and nucleotides. The relative potencies of C-terminal fragments of CCK-8(SO 3 H), benzotript and proglumide in inhibiting specific [ 3 H]pentagastrin binding to CCK brain receptors reinforce the concept of different brain and pancreas CCK receptors. CCK receptors were visualized by using tritium-sensitive LKB film analyzed by computerized densitometry. CCK receptors are highly concentrated in the cortex, dentate gyrus, granular and external plexiform layers of the olfactory bulb, anterior olfactory nuclei, olfactory tubercle, claustrum, accumbens nucleus, some nuclei of the amygdala, thalamus and hypothalamus

  2. Effect of hyperbaric oxygen on lipid peroxidation and visual development in neonatal rats with hypoxia-ischemia brain damage.

    Science.gov (United States)

    Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting

    2016-07-01

    The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.

  3. Acute Exposure to Perchlorethylene alters Rat Visual Evoked Potentials in Relation to Brain Concentration

    Science.gov (United States)

    These experiments sought to establish a dose-effect relationship between the concentration of perchloroethylene (PCE) in brain tissue and concurrent changes in visual function. A physiologically-based pharmacokinetic (PBPK) model was implemented to predict concentrations of PCE ...

  4. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    International Nuclear Information System (INIS)

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-01-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human 125 -I-IGF-II (10 pM) was incubated for 16 hrs at 4 0 C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA 1 -CA 2 and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of 125 I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning

  5. Visualization of μ1 opiate receptors in rat brain by using a computerized autoradiographic subtraction technique

    International Nuclear Information System (INIS)

    Goodman, R.R.; Pasternak, G.W.

    1985-01-01

    The authors have developed a quantitative computerized subtraction technique to demonstrate in rat brain the regional distribution of μ 1 sites, a common very-high-affinity binding site for both morphine and the enkephalins. Low concentrations of [D-Ala 2 , D-Leu 5 ]enkephalin selectively inhibit the μ 1 binding of [ 3 H]dihydromorphine, leaving μ 2 -sites, while low morphine concentrations eliminate the μ 1 binding of [ 3 H][D-Ala 2 , D-Leu 5 ]enkephalin, leaving sigma sites. Thus, quantitative differences between images of sections incubated in the presence and absence of these low concentrations of unlabeled opioid represent μ 1 binding sites. The regional distributions of μ 1 sites labeled with [ 3 H]dihydromorphine were quite similar to those determined by using [ 3 H][D-Ala 2 , D-Leu 5 ]enkephalin. High levels of μ 1 binding were observed in the periaqueductal gray, medial thalamus, and median raphe, consistent with the previously described role of μ 1 sites in analgesia. Other regions with high levels of μ 1 binding include the nucleus accumbens, the clusters and subcallosal streak of the striatum, hypothalamus, medial habenula, and the medial septum/diagonal band region. The proportion of total specific binding corresponding to μ 1 sites varied among the regions, ranging from 14% to 75% for [ 3 H][D-Ala 2 , D-Leu 5 ]enkephalin and 20% to 52% for [ 3 H]dihydromorphine

  6. The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats.

    Science.gov (United States)

    Ozsoy, Ozlem; Aras, Sinem; Ozkan, Ayse; Parlak, Hande; Aslan, Mutay; Yargicoglu, Piraye; Agar, Aysel

    2016-07-01

    Sulfite, commonly used as a preservative in foods, beverages, and pharmaceuticals, is a very reactive and potentially toxic molecule which is detoxified by sulfite oxidase (SOX). Changes induced by aging may be exacerbated by exogenous chemicals like sulfite. The aim of this study was to investigate the effects of ingested sulfite on visual evoked potentials (VEPs) and brain antioxidant statuses by measuring superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Brain lipid oxidation status was also determined via thiobarbituric acid reactive substances (TBARS) in normal- and SOX-deficient aged rats. Rats do not mimic the sulfite responses seen in humans because of their relatively high SOX activity level. Therefore this study used SOX-deficient rats since they are more appropriate models for studying sulfite toxicity. Forty male Wistar rats aged 24 months were randomly assigned to four groups: control (C), sulfite (S), SOX-deficient (D) and SOX-deficient + sulfite (DS). SOX deficiency was established by feeding rats with low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg kg(-1) day(-1)) was given by gavage. Treatment continued for 6 weeks. At the end of the experimental period, flash VEPs were recorded. Hepatic SOX activity was measured to confirm SOX deficiency. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with the normal rats. The activity of SOX in deficient rats was thus in the range of humans. There was no significant difference between control and treated groups in either latence or amplitude of VEP components. Brain SOD, CAT, and GPx activities and brain TBARS levels were similar in all experimental groups compared with the control group. Our results indicate that exogenous administration of sulfite does not affect VEP components and the antioxidant/oxidant status of aged rat brains. © The Author

  7. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  8. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-12-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  9. Brain Connectivity and Visual Attention

    Science.gov (United States)

    Parks, Emily L.

    2013-01-01

    Abstract Emerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures. PMID:23597177

  10. Characterization and autoradiographic visualization of (+)-[3H]SKF10,047 binding in rat and mouse brain: further evidence for phencyclidine/sigma opiate receptor commonality

    International Nuclear Information System (INIS)

    Sircar, R.; Nichtenhauser, R.; Ieni, J.R.; Zukin, S.R.

    1986-01-01

    The binding specificity of (+)-[ 3 H]N-allylnormetazocine, the dextrorotatory isomer of the prototypical sigma opiate SKF10,047, was determined in rat and mouse brain and the neuroanatomical distribution of its binding sites elucidated by quantitative autoradiography in sections of rat brain. Computer-assisted Scatchard analysis revealed an apparent two-site fit of the binding data in both species and in all rat brain regions examined. In whole rat brain, the Kd values were 3.6 and 153 nM and the maximum binding values were 40 fmol and 1.6 pmol/mg of protein for the apparent high- and low-affinity binding sites, respectively. (+)-SKF10,047, haloperidol and pentazocine were among the most potent inhibitors of 7 nM (+)-[ 3 H]SKF10,047 binding to the higher affinity sites; rank orders of ligand potencies at these sites differ sharply from those that have been reported for the [ 3 H]phencyclidine (PCP) site, or for eliciting PCP-like or SKF10,047-like behaviors. By contrast, rank orders of potency of sigma opiods, PCP derivatives and dioxolanes for displacement of 100 nM (+)-[ 3 H]SKF10,047 from the more numerous lower affinity sites in the presence of 100 nM haloperidol agreed closely with their potencies in the [ 3 H]PCP binding assay as well as their potencies in exerting PCP- or SKF10,047-like behavioral effects. In order to compare directly the anatomical localizations of PCP and (+)-SKF10,047 binding sites, quantitative light microscopy autoradiography utilizing tritium-labeled PCP and (+)-SKF10,047 was carried out in rat brain sections. (+)-[ 3 H]SKF10,047 binding was observed to follow the regional pattern of [3H]PCP binding but also to bind in other regions not associated with PCP receptors

  11. Fluorescent Nanoparticle Uptake for Brain Tumor Visualization

    Directory of Open Access Journals (Sweden)

    Rachel Tréhin

    2006-04-01

    Full Text Available Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP tumors, mean overestimations of 2 and 24 µm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon and primary (Gli36 glioma brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation.

  12. Autoradiographic visualization of A 1-adenosine receptors in brain and peripheral tissues of rat and guinea pig using 125I-HPIA

    International Nuclear Information System (INIS)

    Weber, R.G.; Lohse, M.J.; Jones, C.R.; Palacios, J.M.

    1988-01-01

    A 1 -adenosine receptors were identified in sections of rat brain and guinea pig kidney with the radioiodinated agonist 1 25I-N 6 -p-hydroxyphenylisopropyladenosine ( 1 25I-HPIA) using in vitro autoradiography. The affinities of adenosine receptor ligands in competing with 1 25I-HPIA binding to tissue sections were in good agreement with those found in membranes and indicate that the binding site represents an A 1 pattern of [ 3 H]N 6 -cyclohexyladenosine ([ 3 H]CHA) binding sites determined previously, with highest densities in the hippocampus and dentate gyrus, the cerebellar cortex, some thalamic nuclei and certain layers of the cerebral cortex. In the guinea pig kidney 1 25I-HPIA labelled longitudinal structures in the medulla. This study demonstrates that 1 25I-HPIA allows the autoradiographic detection of A-1 adenosine receptors in the brain and peripheral organs and has the advantage of short exposure times (author)

  13. Effect of Low Level Laser Irradiation at Wavelengths 488 and 515 nm on Glutamate Neurotransmitter in Mitochondria of Visual Brain Cortex in Albino Rat

    International Nuclear Information System (INIS)

    Omran, M.F.; El-Ahdal, M.A.; El-Kady, M.H.; Yousri, R.M.

    2004-01-01

    The presence of glutamate in the visual cortex and mitochondria could be used as a measure for the argon laser effect having wavelengths 488 and 515 nm, on the mitochondria. A comparative response for the bound and free glutamate was found. Irradiation with different energies 0.2, 0.5 and 1.0 J for both wavelengths were accomplished. This study makes us to recommend the advantage of using argon laser having wavelength 515 nm to enhance the blocking of glutamate and hence the reduction of brain toxicity. Most of the energy required for cellular functions comes from mitochondria (Shepherd, 1994). Glutamate, which is present in central nervous system at very high level is essential for brain intermediary metabolism (Frazer et al., 1994; Meldrum et al., 2000 and Blumcke et al., 2000). Glutamate is enriched in synaptic vesicles, the subcellular organelles, which are associated with the storage and release of neurotransmitters. Also, biochemical evidence for glutamate as neurotransmitter in fibers from the visual cortex to the subcortical visual relay nuclei has been indicated (Fose and Fonnum, 1987 and George, 1998)

  14. Visual word representation in the brain

    NARCIS (Netherlands)

    Ramakrishnan, K.; Groen, I.; Scholte, S.; Smeulders, A.; Ghebreab, S.

    2013-01-01

    The human visual system is thought to use features of intermediate complexity for scene representation. How the brain computationally represents intermediate features is unclear, however. To study this, we tested the Bag of Words (BoW) model in computer vision against human brain activity. This

  15. Visual agnosia and focal brain injury.

    Science.gov (United States)

    Martinaud, O

    Visual agnosia encompasses all disorders of visual recognition within a selective visual modality not due to an impairment of elementary visual processing or other cognitive deficit. Based on a sequential dichotomy between the perceptual and memory systems, two different categories of visual object agnosia are usually considered: 'apperceptive agnosia' and 'associative agnosia'. Impaired visual recognition within a single category of stimuli is also reported in: (i) visual object agnosia of the ventral pathway, such as prosopagnosia (for faces), pure alexia (for words), or topographagnosia (for landmarks); (ii) visual spatial agnosia of the dorsal pathway, such as cerebral akinetopsia (for movement), or orientation agnosia (for the placement of objects in space). Focal brain injuries provide a unique opportunity to better understand regional brain function, particularly with the use of effective statistical approaches such as voxel-based lesion-symptom mapping (VLSM). The aim of the present work was twofold: (i) to review the various agnosia categories according to the traditional visual dual-pathway model; and (ii) to better assess the anatomical network underlying visual recognition through lesion-mapping studies correlating neuroanatomical and clinical outcomes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. [Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].

    Science.gov (United States)

    Sabel, B A

    2017-02-01

    Visual field defects are considered irreversible because the retina and optic nerve do not regenerate. Nevertheless, there is some potential for recovery of the visual fields. This can be accomplished by the brain, which analyses and interprets visual information and is able to amplify residual signals through neuroplasticity. Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy. This is actually the neurobiological basis of normal learning. Plasticity is maintained throughout life and can be induced by repetitively stimulating (training) brain circuits. The question now arises as to how plasticity can be utilised to activate residual vision for the treatment of visual field loss. Just as in neurorehabilitation, visual field defects can be modulated by post-lesion plasticity to improve vision in glaucoma, diabetic retinopathy or optic neuropathy. Because almost all patients have some residual vision, the goal is to strengthen residual capacities by enhancing synaptic efficacy. New treatment paradigms have been tested in clinical studies, including vision restoration training and non-invasive alternating current stimulation. While vision training is a behavioural task to selectively stimulate "relative defects" with daily vision exercises for the duration of 6 months, treatment with alternating current stimulation (30 min. daily for 10 days) activates and synchronises the entire retina and brain. Though full restoration of vision is not possible, such treatments improve vision, both subjectively and objectively. This includes visual field enlargements, improved acuity and reaction time, improved orientation and vision related quality of life. About 70 % of the patients respond to the therapies and there are no serious adverse events. Physiological studies of the effect of alternating current stimulation using EEG and fMRI reveal massive local and global changes in the brain. These include

  17. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Marg, E.

    1988-01-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  18. Reduction of superoxide dismutase activity correlates with visualization of edema by T[sub 2]-weighted MR imaging in focal ischemic rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Shigeki; Chang, LeeHong; Cohen, Yoram; Chan, P H; Weinstein, P R; James, T L [California Univ., San Francisco, CA (United States); Yoshimoto, Takashi

    1994-01-01

    This study investigated the correlation between in vivo serial T[sub 2]-weighted magnetic resonance (MR) imaging and changes in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, and water, sodium ion (Na[sup +]), and potassium ion (K[sup +]) contents measured in vitro using rat brain following right middle cerebral artery occlusion in conjunction with bilateral common carotid artery (CCA) occlusion. One hour later the left CCA was released. Serial MR images showed edema developed from the outer cortex towards the center. The T[sub 2] signal intensity of the injured right cortex increased with time compared to that of the contralateral cortex. Increased Na[sup +] and water and decreased K[sup +] contents occurred in the injured cortex, indicating that serial T[sub 2]-weighted MR imaging reflects the changes in water content and Na[sup +] and K[sup +] concentrations determined by biochemical techniques. GSH-Px activity was little changed. Total SOD in the injured cortex decreased 1 hour after ischemia and remained low throughout the experiment. In contrast, SOD activity in the noninfarcted left cortex also decreased after 1 hour but returned to normal after 2 hours of ischemia. Our results suggest that oxygen free radicals are important in developing ischemic brain edema and cerebral infarction. (author).

  19. Reduction of superoxide dismutase activity correlates with visualization of edema by T2-weighted MR imaging in focal ischemic rat brain

    International Nuclear Information System (INIS)

    Imaizumi, Shigeki; Chang, LeeHong; Cohen, Yoram; Chan, P.H.; Weinstein, P.R.; James, T.L.; Yoshimoto, Takashi.

    1994-01-01

    This study investigated the correlation between in vivo serial T 2 -weighted magnetic resonance (MR) imaging and changes in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, and water, sodium ion (Na + ), and potassium ion (K + ) contents measured in vitro using rat brain following right middle cerebral artery occlusion in conjunction with bilateral common carotid artery (CCA) occlusion. One hour later the left CCA was released. Serial MR images showed edema developed from the outer cortex towards the center. The T 2 signal intensity of the injured right cortex increased with time compared to that of the contralateral cortex. Increased Na + and water and decreased K + contents occurred in the injured cortex, indicating that serial T 2 -weighted MR imaging reflects the changes in water content and Na + and K + concentrations determined by biochemical techniques. GSH-Px activity was little changed. Total SOD in the injured cortex decreased 1 hour after ischemia and remained low throughout the experiment. In contrast, SOD activity in the noninfarcted left cortex also decreased after 1 hour but returned to normal after 2 hours of ischemia. Our results suggest that oxygen free radicals are important in developing ischemic brain edema and cerebral infarction. (author)

  20. Visual artistic creativity and the brain.

    Science.gov (United States)

    Heilman, Kenneth M; Acosta, Lealani Mae

    2013-01-01

    Creativity is the development of a new or novel understanding--insight that leads to the expression of orderly relationships (e.g., finding and revealing the thread that unites). Visual artistic creativity plays an important role in the quality of human lives, and the goal of this chapter is to describe some of the brain mechanisms that may be important in visual artistic creativity. The initial major means of learning how the brain mediates any activity is to understand the anatomy and physiology that may support these processes. A further understanding of specific cognitive activities and behaviors may be gained by studying patients who have diseases of the brain and how these diseases influence these functions. Physiological recording such as electroencephalography and brain imaging techniques such as PET and fMRI have also allowed us to gain a better understanding of the brain mechanisms important in visual creativity. In this chapter, we discuss anatomic and physiological studies, as well as neuropsychological studies of healthy artists and patients with neurological disease that have helped us gain some insight into the brain mechanisms that mediate artistic creativity. © 2013 Elsevier B.V. All rights reserved.

  1. Conscious wireless electroretinogram and visual evoked potentials in rats.

    Directory of Open Access Journals (Sweden)

    Jason Charng

    Full Text Available The electroretinogram (ERG, retina and visual evoked potential (VEP, brain are widely used in vivo tools assaying the integrity of the visual pathway. Current recordings in preclinical models are conducted under anesthesia, which alters neural physiology and contaminates responses. We describe a conscious wireless ERG and VEP recording platform in rats. Using a novel surgical technique to chronically implant electrodes subconjunctivally on the eye and epidurally over the visual cortex, we are able to record stable and repeatable conscious ERG and VEP signals over at least 1 month. We show that the use of anaesthetics, necessary for conventional ERG and VEP measurements, alters electrophysiology recordings. Conscious visual electrophysiology improves the viability of longitudinal studies by eliminating complications associated with repeated anaesthesia. It will also enable uncontaminated assessment of drug effects, allowing the eye to be used as an effective biomarker of the central nervous system.

  2. Aluminum neurotoxicity in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S [Tokyo Univ. (Japan). Faculty of Medicine; Ohashi, H; Nagai, H; Kakimi, S; Ogawa, Y; Iwata, Y; Ishii, K

    1993-12-31

    To investigate the etiology of Alzheimer`s disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer`s disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer`s disease patients. Our results indicate that Alzheimer`s disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author).

  3. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ogawa, Y.; Iwata, Y.; Ishii, K.

    1992-01-01

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  4. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, ... Methods: Forty-eight rats (P7-pups) were randomly assigned to one of four groups: ... Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants, .... Of the 48 rats initially used in the current study, 5.

  5. Visual problems associated with traumatic brain injury.

    Science.gov (United States)

    Armstrong, Richard A

    2018-02-28

    Traumatic brain injury (TBI) and its associated concussion are major causes of disability and death. All ages can be affected but children, young adults and the elderly are particularly susceptible. A decline in mortality has resulted in many more individuals living with a disability caused by TBI including those affecting vision. This review describes: (1) the major clinical and pathological features of TBI; (2) the visual signs and symptoms associated with the disorder; and (3) discusses the assessment of quality of life and visual rehabilitation of the patient. Defects in primary vision such as visual acuity and visual fields, eye movement including vergence, saccadic and smooth pursuit movements, and in more complex aspects of vision involving visual perception, motion vision ('akinopsia'), and visuo-spatial function have all been reported in TBI. Eye movement dysfunction may be an early sign of TBI. Hence, TBI can result in a variety of visual problems, many patients exhibiting multiple visual defects in combination with a decline in overall health. Patients with chronic dysfunction following TBI may require occupational, vestibular, cognitive and other forms of physical therapy. Such patients may also benefit from visual rehabilitation, including reading-related oculomotor training and the prescribing of spectacles with a variety of tints and prism combinations. © 2018 Optometry Australia.

  6. Brain correlates of automatic visual change detection.

    Science.gov (United States)

    Cléry, H; Andersson, F; Fonlupt, P; Gomot, M

    2013-07-15

    A number of studies support the presence of visual automatic detection of change, but little is known about the brain generators involved in such processing and about the modulation of brain activity according to the salience of the stimulus. The study presented here was designed to locate the brain activity elicited by unattended visual deviant and novel stimuli using fMRI. Seventeen adult participants were presented with a passive visual oddball sequence while performing a concurrent visual task. Variations in BOLD signal were observed in the modality-specific sensory cortex, but also in non-specific areas involved in preattentional processing of changing events. A degree-of-deviance effect was observed, since novel stimuli elicited more activity in the sensory occipital regions and at the medial frontal site than small changes. These findings could be compared to those obtained in the auditory modality and might suggest a "general" change detection process operating in several sensory modalities. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Visual Categorization of Natural Movies by Rats

    Science.gov (United States)

    Vinken, Kasper; Vermaercke, Ben

    2014-01-01

    Visual categorization of complex, natural stimuli has been studied for some time in human and nonhuman primates. Recent interest in the rodent as a model for visual perception, including higher-level functional specialization, leads to the question of how rodents would perform on a categorization task using natural stimuli. To answer this question, rats were trained in a two-alternative forced choice task to discriminate movies containing rats from movies containing other objects and from scrambled movies (ordinate-level categorization). Subsequently, transfer to novel, previously unseen stimuli was tested, followed by a series of control probes. The results show that the animals are capable of acquiring a decision rule by abstracting common features from natural movies to generalize categorization to new stimuli. Control probes demonstrate that they did not use single low-level features, such as motion energy or (local) luminance. Significant generalization was even present with stationary snapshots from untrained movies. The variability within and between training and test stimuli, the complexity of natural movies, and the control experiments and analyses all suggest that a more high-level rule based on more complex stimulus features than local luminance-based cues was used to classify the novel stimuli. In conclusion, natural stimuli can be used to probe ordinate-level categorization in rats. PMID:25100598

  8. Visual categorization of natural movies by rats.

    Science.gov (United States)

    Vinken, Kasper; Vermaercke, Ben; Op de Beeck, Hans P

    2014-08-06

    Visual categorization of complex, natural stimuli has been studied for some time in human and nonhuman primates. Recent interest in the rodent as a model for visual perception, including higher-level functional specialization, leads to the question of how rodents would perform on a categorization task using natural stimuli. To answer this question, rats were trained in a two-alternative forced choice task to discriminate movies containing rats from movies containing other objects and from scrambled movies (ordinate-level categorization). Subsequently, transfer to novel, previously unseen stimuli was tested, followed by a series of control probes. The results show that the animals are capable of acquiring a decision rule by abstracting common features from natural movies to generalize categorization to new stimuli. Control probes demonstrate that they did not use single low-level features, such as motion energy or (local) luminance. Significant generalization was even present with stationary snapshots from untrained movies. The variability within and between training and test stimuli, the complexity of natural movies, and the control experiments and analyses all suggest that a more high-level rule based on more complex stimulus features than local luminance-based cues was used to classify the novel stimuli. In conclusion, natural stimuli can be used to probe ordinate-level categorization in rats. Copyright © 2014 the authors 0270-6474/14/3410645-14$15.00/0.

  9. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  10. Oxytocin biotransformation in the rat limbic brain

    NARCIS (Netherlands)

    Burbach, J.P.H.; Schotman, P.; Kloet, E.R. de

    2006-01-01

    Two peptide fragments of oxytocin were isolated by high-pressure liquid chromatography from digests of oxytocin obtained after exposure to a SPM preparation of the rat limbic brain. The structures of these peptides, being Gln-Asn-Cys(O)x-Pro-Leu-GlyNH2 and Gln-Asn-Cys(-S-S-Cys)-Pro-Leu-GlyNH2, were

  11. Regional distribution of enkephalinase in rat brain by autoradiography

    International Nuclear Information System (INIS)

    Waksman, G.; Hamel, E.; Besselievre, R.; Fournie-Zaluski, M.C.; Roques, B.P.; Bouboutou, R.

    1984-01-01

    The first visualization of enkephalinase (neutral metalloendopeptidase, E.C.3.4.24.11) in rat brain was obtained by autoradiography, using a new tritiated inhibitor: [ 3 H]N-[(R, S) 3-(N-hydroxy) carboxamido-2-benzyl propanoyl]-glycine ( 3 H-HCBP-Gly). The preliminary analysis of sections clearly showed a discrete localization of enkephalinase in enkephalin enriched regions, such as caudate nucleus, putamen, globus pallidus, and substantia nigra. Moreover 3 H-HCBP-Gly binding also occured in choroid plexus and spinal cord [fr

  12. Regulation of brain aromatase activity in rats

    International Nuclear Information System (INIS)

    Roselli, C.E.; Ellinwood, W.E.; Resko, J.A.

    1984-01-01

    The distribution and regulation of aromatase activity in the adult rat brain with a sensitive in vitro assay that measures the amount of 3 H 2 O formed during the conversion of [1 beta- 3 H]androstenedione to estrone. The rate of aromatase activity in the hypothalamus-preoptic area (HPOA) was linear with time up to 1 h, and with tissue concentrations up to 5 mgeq/200 microliters incubation mixture. The enzyme demonstrated a pH optimum of 7.4 and an apparent Michaelis-Menten constant (Km) of 0.04 microns. The greatest amount of aromatase activity was found in amygdala and HPOA from intact male rats. The hippocampus, midbrain tegmentum, cerebral cortex, cerebellum, and anterior pituitary all contained negligible enzymatic activity. Castration produced a significant decrease in aromatase activity in the HPOA, but not in the amygdala or cerebral cortex. The HPOAs of male rats contained significantly greater aromatase activity than the HPOAs of female rats. In females, this enzyme activity did not change during the estrous cycle or after ovariectomy. Administration of testosterone to gonadectomized male and female rats significantly enhanced HPOA aromatase activities to levels approximating those found in HPOA from intact males. Therefore, the results suggest that testosterone, or one of its metabolites, is a major steroidal regulator of HPOA aromatase activity in rats

  13. A visual description of the dissection of the cerebral surface vasculature and associated meninges and the choroid plexus from rat brain.

    Science.gov (United States)

    Bowyer, John F; Thomas, Monzy; Patterson, Tucker A; George, Nysia I; Runnells, Jeffrey A; Levi, Mark S

    2012-11-14

    This video presentation was created to show a method of harvesting the two most important highly vascular structures, not residing within the brain proper, that support forebrain function. They are the cerebral surface (superficial) vasculature along with associated meninges (MAV) and the choroid plexus which are necessary for cerebral blood flow and cerebrospinal fluid (CSF) homeostasis. The tissue harvested is suitable for biochemical and physiological analysis, and the MAV has been shown to be sensitive to damage produced by amphetamine and hyperthermia. As well, the major and minor cerebral vasculatures harvested in MAV are of potentially high interest when investigating concussive types of head trauma. The MAV dissected in this presentation consists of the pial and some of the arachnoid membrane (less dura) of the meninges and the major and minor cerebral surface vasculature. The choroid plexus dissected is the structure that resides in the lateral ventricles as described by Oldfield and McKinley. The methods used for harvesting these two tissues also facilitate the harvesting of regional cortical tissue devoid of meninges and larger cerebral surface vasculature, and is compatible with harvesting other brain tissues such as striatum, hypothalamus, hippocampus, etc. The dissection of the two tissues takes from 5 to 10 min total. The gene expression levels for the dissected MAV and choroid plexus, as shown and described in this presentation can be found at GSE23093 (MAV) and GSE29733 (choroid plexus) at the NCBI GEO repository. This data has been, and is being, used to help further understand the functioning of the MAV and choroid plexus and how neurotoxic events such as severe hyperthermia and AMPH adversely affect their function.

  14. Brain visual impairment in childhood: mini review

    OpenAIRE

    Kozeis, N

    2010-01-01

    Cerebral visual impairment (CVI) is one of the leading causes of severe visual impairment in childhood. This article was written to highlight any new knowledge related to cerebral visual impairment in childhood.

  15. Generalised brain edema and brain infarct in ergotamine abuse: Visualization by CT, MR and angiography

    International Nuclear Information System (INIS)

    Toedt, C.; Hoetzinger, H.; Salbeck, R.; Beyer, H.K.

    1989-01-01

    Abuse of ergotamine can release a generalised brain edema and brain infarctions. This can be visualized by CT, MR and angiography. The reason, however, can only be found in the patients history. (orig.) [de

  16. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ..... on the brain and nervous system of humans as handlers and ... environment may be at higher health risk in that their internal ...

  17. Rat Brain Biogenic Amine Levels during Acute and Sub- acute ...

    African Journals Online (AJOL)

    User

    2011-05-20

    May 20, 2011 ... substances in rat brain regions are altered during acute and sub-acute .... Different areas of the brain such as cerebral cortex (CC), cerebellum (CB), .... dopamine metabolism and differential motor behavioral tolerance.

  18. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  19. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using 14 C autoradiography to measure the uptake of 14 C 2-deoxy-D-glucose ( 14 C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14 C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14 C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10 9 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  20. Testosterone supplementation restores vasopressin innervation in the senescent rat brain

    NARCIS (Netherlands)

    Goudsmit, E.; Fliers, E.; Swaab, D. F.

    1988-01-01

    The vasopressin (AVP) innervation in the male rat brain is decreased in senescence. This decrease is particularly pronounced in brain regions where AVP fiber density is dependent on plasma levels of sex steroids. Since plasma testosterone levels decrease progressively with age in the rat, the

  1. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    OpenAIRE

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected ...

  2. Shared visual attention and memory systems in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Bruno van Swinderen

    Full Text Available BACKGROUND: Selective attention and memory seem to be related in human experience. This appears to be the case as well in simple model organisms such as the fly Drosophila melanogaster. Mutations affecting olfactory and visual memory formation in Drosophila, such as in dunce and rutabaga, also affect short-term visual processes relevant to selective attention. In particular, increased optomotor responsiveness appears to be predictive of visual attention defects in these mutants. METHODOLOGY/PRINCIPAL FINDINGS: To further explore the possible overlap between memory and visual attention systems in the fly brain, we screened a panel of 36 olfactory long term memory (LTM mutants for visual attention-like defects using an optomotor maze paradigm. Three of these mutants yielded high dunce-like optomotor responsiveness. We characterized these three strains by examining their visual distraction in the maze, their visual learning capabilities, and their brain activity responses to visual novelty. We found that one of these mutants, D0067, was almost completely identical to dunce(1 for all measures, while another, D0264, was more like wild type. Exploiting the fact that the LTM mutants are also Gal4 enhancer traps, we explored the sufficiency for the cells subserved by these elements to rescue dunce attention defects and found overlap at the level of the mushroom bodies. Finally, we demonstrate that control of synaptic function in these Gal4 expressing cells specifically modulates a 20-30 Hz local field potential associated with attention-like effects in the fly brain. CONCLUSIONS/SIGNIFICANCE: Our study uncovers genetic and neuroanatomical systems in the fly brain affecting both visual attention and odor memory phenotypes. A common component to these systems appears to be the mushroom bodies, brain structures which have been traditionally associated with odor learning but which we propose might be also involved in generating oscillatory brain activity

  3. Visual dictionaries as intermediate features in the human brain

    Directory of Open Access Journals (Sweden)

    Kandan eRamakrishnan

    2015-01-01

    Full Text Available The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2 and V3. However BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain.

  4. Visual field examination in children with brain disorders

    NARCIS (Netherlands)

    Koenraads, Y

    2016-01-01

    The aim of this thesis is to gain more insight in the diagnostic and prognostic implications of visual field (VF) examination in children with brain disorders. Several aspects of VF examination in children with brain disorders were evaluated: All VF examinations that were performed with the

  5. Researchers Find Essential Brain Circuit in Visual Development

    Science.gov (United States)

    ... 2013 Researchers find essential brain circuit in visual development NIH-funded study could lead to new treatments for amblyopia. The cartoon at left shows the connections from the eyes to the brain in a mouse. The right image shows the binocular zone of the mouse ...

  6. Visual hallucinatory syndromes and the anatomy of the visual brain.

    Science.gov (United States)

    Santhouse, A M; Howard, R J; ffytche, D H

    2000-10-01

    We have set out to identify phenomenological correlates of cerebral functional architecture within Charles Bonnet syndrome (CBS) hallucinations by looking for associations between specific hallucination categories. Thirty-four CBS patients were examined with a structured interview/questionnaire to establish the presence of 28 different pathological visual experiences. Associations between categories of pathological experience were investigated by an exploratory factor analysis. Twelve of the pathological experiences partitioned into three segregated syndromic clusters. The first cluster consisted of hallucinations of extended landscape scenes and small figures in costumes with hats; the second, hallucinations of grotesque, disembodied and distorted faces with prominent eyes and teeth; and the third, visual perseveration and delayed palinopsia. The three visual psycho-syndromes mirror the segregation of hierarchical visual pathways into streams and suggest a novel theoretical framework for future research into the pathophysiology of neuropsychiatric syndromes.

  7. Dynamic Data Visualization with Weave and Brain Choropleths.

    Directory of Open Access Journals (Sweden)

    Dianne Patterson

    Full Text Available This article introduces the neuroimaging community to the dynamic visualization workbench, Weave (https://www.oicweave.org/, and a set of enhancements to allow the visualization of brain maps. The enhancements comprise a set of brain choropleths and the ability to display these as stacked slices, accessible with a slider. For the first time, this allows the neuroimaging community to take advantage of the advanced tools already available for exploring geographic data. Our brain choropleths are modeled after widely used geographic maps but this mashup of brain choropleths with extant visualization software fills an important neuroinformatic niche. To date, most neuroinformatic tools have provided online databases and atlases of the brain, but not good ways to display the related data (e.g., behavioral, genetic, medical, etc. The extension of the choropleth to brain maps allows us to leverage general-purpose visualization tools for concurrent exploration of brain images and related data. Related data can be represented as a variety of tables, charts and graphs that are dynamically linked to each other and to the brain choropleths. We demonstrate that the simplified region-based analyses that underlay choropleths can provide insights into neuroimaging data comparable to those achieved by using more conventional methods. In addition, the interactive interface facilitates additional insights by allowing the user to filter, compare, and drill down into the visual representations of the data. This enhanced data visualization capability is useful during the initial phases of data analysis and the resulting visualizations provide a compelling way to publish data as an online supplement to journal articles.

  8. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    morphology was observed. AQP-4 expression and neuronal apoptosis were measured with immunohistochemical method and TUNEL method respectively.MATN OUTCOME MEASURES: Water content in brain tissue, neuronal morphology, the number of AQP-4positive neurons and TUNEL positive neurons in rats of two groups at each time point after injury.RESULTS: Totally 150 rats entered the stage of result analysis. ① Water content of brain tissue: The water content of brain tissue at each time point after injury in the ketamine-treated group was lower than that in the control group. There were very significant differences in water content at 12 and 24 hours after injury respectively between ketamine-treated group and control group [(77.34±2.35)% vs. (82.31 ±1.48)%;(78.01 ±2.21 ) % vs. (83.86±2.37)%,t=4.001 6,4.036 7, both P < 0.01]. ② Neuronal morphology: Pathological changes in traumatic region and peripheral region of injury in the ketamine-treated group were significantly lessened, and necrotic and apoptotic cells in the ketamine-treated group were also significantly reduced as compared with control group. ③ AQP-4 expression: AQP-4 positive neurons at each time point in the ketamine-treated group were significantly less than those in the control group. There were very significant differences in AQP-4 expression at 12 and 24 hours after injury between ketamine-treated group and control group [(34.17±4.74) /visual field vs. (43.42±5.65) /visual field;(40.83±3.17) /visual field vs.(58.88±6.23) /visual field,t=3.966 3,8.165 7, both P< 0.01]. ④ Neuronal apoptosis: TUNEL positive neurons at each time point in the ketamine-treated group were less than those in the control group. There were very significant differences in the neuronal apoptosis at 12 and 24 hours after injury between ketamine-treated group and control group [(26.25±3.04) /visual field vs. (32.75±4.39) /visual field; (29.33±4.02) /visual field vs. (39.83±5.61) /visual field,t=3.849 3,5.169 2, both P < 0

  9. BrainBrowser: distributed, web-based neurological data visualization

    Directory of Open Access Journals (Sweden)

    Tarek eSherif

    2015-01-01

    Full Text Available Recent years have seen massive, distributed datasets become the norm in neuroimaging research, and the methodologies used analyze them have, in response, become more collaborative and exploratory. Tools and infrastructure are continuously being developed and deployed to facilitate research in this context: grid computation platforms to process the data, distributed data stores to house and share them, high-speed networks to move them around and collaborative, often web-based, platforms to provide access to and sometimes manage the entire system. BrainBrowser is a lightweight, high-performance JavaScript visualization library built to provide easy-to-use, powerful, on-demand visualization of remote datasets in this new research environment. BrainBrowser leverages modern Web technologies, such as WebGL, HTML5 and Web Workers, to visualize 3D surface and volumetric neuroimaging data in any modern web browser without requiring any browser plugins. It is thus trivial to integrate BrainBrowser into any web-based platform. BrainBrowser is simple enough to produce a basic web-based visualization in a few lines of code, while at the same time being robust enough to create full-featured visualization applications. BrainBrowser can dynamically load the data required for a given visualization, so no network bandwidth needs to be waisted on data that will not be used. BrainBrowser's integration into the standardized web platform also allows users to consider using 3D data visualization in novel ways, such as for data distribution, data sharing and dynamic online publications. BrainBrowser is already being used in two major online platforms, CBRAIN and LORIS, and has been used to make the 1TB MACACC dataset openly accessible.

  10. Dynamic functional brain networks involved in simple visual discrimination learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.

    Science.gov (United States)

    Zaldivar, Andrew; Krichmar, Jeffrey L

    2014-01-01

    The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.

  12. Allen Brain Atlas-Driven Visualizations: A Web-Based Gene Expression Energy Visualization Tool

    Directory of Open Access Journals (Sweden)

    Andrew eZaldivar

    2014-05-01

    Full Text Available The Allen Brain Atlas-Driven Visualizations (ABADV is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.

  13. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  14. Extreme hypoxia tolerance of naked mole-rat brain.

    Science.gov (United States)

    Larson, John; Park, Thomas J

    2009-12-09

    Mammalian brains have extremely high levels of aerobic metabolism and typically suffer irreversible damage after brief periods of oxygen deprivation such as occur during stroke or cardiac arrest. Here we report that brain tissue from naked mole-rats, rodents that live in a chronically low-oxygen environment, is remarkably resistant to hypoxia: naked mole-rat neurons maintain synaptic transmission much longer than mouse neurons and can recover from periods of anoxia exceeding 30 min. We suggest that brain tolerance to hypoxia may result from slowed or arrested brain development in these extremely long-lived animals.

  15. [Effect of acupuncture on pattern-visual evoked potential in rats with monocular visual deprivation].

    Science.gov (United States)

    Yan, Xing-Ke; Dong, Li-Li; Liu, An-Guo; Wang, Jun-Yan; Ma, Chong-Bing; Zhu, Tian-Tian

    2013-08-01

    To explore electrophysiology mechanism of acupuncture for treatment and prevention of visual deprivation effect. Eighteen healthy 15-day Evans rats were randomly divided into a normal group, a model group and an acupuncture group, 6 rats in each one. Deprivation amblyopia model was established by monocular eyelid suture in the model group and acupuncture group. Acupuncture was applied at "Jingming" (BL 1), "Chengqi" (ST 1), "Qiuhou" (EX-HN 7) and "Cuanzhu" (BL 2) in the acupuncture group. The bilateral acupoints were selected alternately, one side for a day, and totally 14 days were required. The effect of acupuncture on visual evoked potential in different spatial frequencies was observed. Under three different kinds of spatial frequencies of 2 X 2, 4 X 4 and 8 X 8, compared with normal group, there was obvious visual deprivation effect in the model group where P1 peak latency was delayed (P0.05). Under spatial frequency of 4 X 4, N1-P1 amplitude value was maximum in the normal group and acupuncture group. With this spatial frequency the rat's eye had best resolving ability, indicating it could be the best spatial frequency for rat visual system. The visual system has obvious electrophysiology plasticity in sensitive period. Acupuncture treatment could adjust visual deprivation-induced suppression and slow of visual response in order to antagonism deprivation effect.

  16. Brain dysfunctions in Wistar rats exposed to municipal landfill leachates

    Directory of Open Access Journals (Sweden)

    Chibuisi G. Alimba

    2015-12-01

    Full Text Available Brain damage induced by Olusosun and Aba-Eku municipal landfill leachates was investigated in Wistar rats. Male rats were orally exposed to 1–25% concentrations of the leachates for 30 days. Catalase (CAT and superoxide dismutase (SOD activities, and malondialdehyde (MDA concentrations in the brain and serum of rats were evaluated; body and brain weight gain and histopathology were examined. There was significant (p < 0.05 decrease in body weight gain and SOD activity but increase in absolute and relative brain weight gain, MDA concentration and CAT activity in both brain and serum of treated rats. The biochemical parameters, which were more altered in the brain than serum, corroborated the neurologic lesions; neurodegeneration of purkinje cells with loss of dendrites, perineural vacuolations of the neuronal cytoplasm (spongiosis and neuronal necrosis in the brain. The concentrations of Cr, Cu, Pb, As, Cd, Mn, Ni, sulphates, ammonia, chloride and phosphate in the leachate samples were above standard permissible limits. The interactions of the neurotoxic constituents of the leachates induced the observed brain damage in the rats via oxidative damage. This suggests health risk in wildlife and human populations.

  17. Brain signal complexity rises with repetition suppression in visual learning.

    Science.gov (United States)

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual

  18. Altered functional brain connectivity in patients with visually induced dizziness

    Directory of Open Access Journals (Sweden)

    Angelique Van Ombergen

    2017-01-01

    Conclusions: We found alterations in the visual and vestibular cortical network in VID patients that could underlie the typical VID symptoms such as a worsening of their vestibular symptoms when being exposed to challenging visual stimuli. These preliminary findings provide the first insights into the underlying functional brain connectivity in VID patients. Future studies should extend these findings by employing larger sample sizes, by investigating specific task-based paradigms in these patients and by exploring the implications for treatment.

  19. Fractionated radiosurgery for 9L gliosarcoma in the rat brain

    International Nuclear Information System (INIS)

    Kim, Jae Ho; Khil, Mark S.; Kolozsvary, Andrew; Gutierrez, Jorge A.; Brown, Stephen L.

    1999-01-01

    Purpose: Fractionated radiosurgery is being carried out in the clinic to improve the therapeutic ratio of single-dose radiosurgery using various fractionation schemes. Because there is a paucity of experimental radiobiological data in the literature on the tumor response and late-responding normal tissue of critical intracranial structures to radiosurgery, the present animal study was designed to compare the response following a single high dose of radiation with that obtained from calculated fractionated doses of radiosurgery. Methods and Materials: Male Fischer rats with 9L gliosarcoma growing in their brains were stereotactically irradiated and assayed for the tumor control rate and brain tissue damage. The radiation dose needed for 50% tumor control (TCD 50 ) was used as the endpoint of the efficacy of radiosurgery. Normal brain damage was measured histologically following a period of time over 270 days. Histological evaluation included hematoxylin-eosin (H and E), Luxol fast blue and periodic acid Schiff (LFB/PAS) for the presence of myelin and glial fibrillary acidic protein (GFAP) for the assessment of astrocytic re-activity. The optical density of optic nerves and chiasms staining with LFB/PAS was quantitatively measured using a computer image analysis to assess the magnitude of demyelination. Results: Radiosurgery (RS) was found to be more effective in curing small tumors than large tumors. The dose required to control 50% of the tumored animals for 120 days was 24, 31, and 40 Gy for 2-, 6-, and 12-day-old tumors, respectively. Using 12-day-old brain tumors, two fractions of 23.5 Gy and three fractions of 18.5 Gy were found to be equivalent to the single dose of 35 Gy for tumor control. For normal brain damages, the visual pathways including optic nerves and chiasm were found to be highly radiosensitive structures. A single dose of 35 Gy produced 100% severe optic neuropathy. The fractionated RS regimens spared substantial optic nerve damage. Conclusion

  20. Hierarchical organization of brain functional networks during visual tasks.

    Science.gov (United States)

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  1. Visualization of monoamine oxidase in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  2. Multidimensional MRI-CT atlas of the naked mole-rat brain (Heterocephalus glaber).

    Science.gov (United States)

    Seki, Fumiko; Hikishima, Keigo; Nambu, Sanae; Okanoya, Kazuo; Okano, Hirotaka J; Sasaki, Erika; Miura, Kyoko; Okano, Hideyuki

    2013-01-01

    Naked mole-rats have a variety of distinctive features such as the organization of a hierarchical society (known as eusociality), extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI). Advanced MRI techniques such as diffusion tensor imaging (DTI), which generates high contrast images of fiber structures, can characterize unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D) images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualization of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.

  3. Opposite brain laterality in analogous auditory and visual tests.

    Science.gov (United States)

    Oltedal, Leif; Hugdahl, Kenneth

    2017-11-01

    Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.

  4. The nature of consciousness in the visually deprived brain

    DEFF Research Database (Denmark)

    Kupers, Ron; Pietrini, Pietro; Ricciardi, Emiliano

    2011-01-01

    Vision plays a central role in how we represent and interact with the world around us. The primacy of vision is structurally imbedded in cortical organization as about one-third of the cortical surface in primates is involved in visual processes. Consequently, the loss of vision, either at birth ...... blindness? We discuss findings from animal research as well from recent psychophysical and functional brain imaging studies in sighted and blind individuals that shed some new light on the answers to these questions....... or later in life, affects brain organization and the way the world is perceived and acted upon. In this paper, we address a number of issues on the nature of consciousness in people deprived of vision. Do brains from sighted and blind individuals differ, and how? How does the brain of someone who has never...... had any visual perception form an image of the external world? What is the subjective correlate of activity in the visual cortex of a subject who has never seen in life? More in general, what can we learn about the functional development of the human brain in physiological conditions by studying...

  5. Unveiling the mystery of visual information processing in human brain.

    Science.gov (United States)

    Diamant, Emanuel

    2008-08-15

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. Why was it overlooked in brain information processing research remains a conundrum. In this paper, I am trying to find a remedy for this bizarre situation. I propose an uncommon definition of "information", which can be derived from Kolmogorov's Complexity Theory and Chaitin's notion of Algorithmic Information. Embracing this new definition leads to an inevitable revision of traditional dogmas that shape the state of the art of brain information processing research. I hope this revision would better serve the challenging goal of human visual information processing modeling.

  6. The nature of consciousness in the visually-deprived brain

    Directory of Open Access Journals (Sweden)

    Ron eKupers

    2011-02-01

    Full Text Available Vision plays a central role in how we represent and interact with the world around us. The primacy of vision is structurally imbedded in cortical organization as about one third of the cortical surface in primates is involved in visual processes. Consequently, the loss of vision, either at birth or later in life, profoundly affects brain organization and the way the world is perceived and acted upon. In this paper, we address a number of issues on the nature of consciousness in people deprived of vision. Do brains from sighted and blind individuals differ, and how? How does the brain of someone who has never had any visual perception form an image of the external world? What is the subjective correlate of activity in the visual cortex of a subject who has never seen in life? More in general, what can we learn about the functional development of the human brain in physiological conditions by studying blindness? We discuss findings from animal research as well from recent psychophysical and functional brain imaging studies in sighted and blind individuals that shed some new light on the answers to these questions.

  7. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    , the ghrelin receptor, neuropeptide Y, adiponectin and proopiomelanocortin. We investigated whether the expression of these factors was affected in rats chronically treated with the antipsychotic risperidone. METHODS: Male Sprague-Dawley rats were treated with risperidone (1.0 mg/kg/day) or vehicle (20...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  8. Brain biochemistry of infant mice and rats exposed to lead

    Energy Technology Data Exchange (ETDEWEB)

    Berber, G.B.; Maes, J.; Gilliavod, N.; Casale, G.

    1978-05-01

    Brains of rats and mice exposed to lead from birth receive biochemical examinations. Mice are given drinking water with lead and are studied until they are 17 days old. Rats ae given lead in the diet and followed for more than a year. In mice a retardation in body growth and development in brain DNA is found. In rats, cathepsin is enhanced at almost all times. An important role of proteolytic processes and biogenic animes is suggested in lead encephalopathy. (33 references, 7 tables)

  9. Cholinergic Potentiation of Restoration of Visual Function after Optic Nerve Damage in Rats

    Directory of Open Access Journals (Sweden)

    Mira Chamoun

    2017-01-01

    Full Text Available Enhancing cortical plasticity and brain connectivity may improve residual vision following a visual impairment. Since acetylcholine plays an important role in attention and neuronal plasticity, we explored whether potentiation of the cholinergic transmission has an effect on the visual function restoration. To this end, we evaluated for 4 weeks the effect of the acetylcholinesterase inhibitor donepezil on brightness discrimination, visually evoked potentials, and visual cortex reactivity after a bilateral and partial optic nerve crush in adult rats. Donepezil administration enhanced brightness discrimination capacity after optic nerve crush compared to nontreated animals. The visually evoked activation of the primary visual cortex was not restored, as measured by evoked potentials, but the cortical neuronal activity measured by thallium autometallography was not significantly affected four weeks after the optic nerve crush. Altogether, the results suggest a role of the cholinergic system in postlesion cortical plasticity. This finding agrees with the view that restoration of visual function may involve mechanisms beyond the area of primary damage and opens a new perspective for improving visual rehabilitation in humans.

  10. Common and distinct brain networks underlying verbal and visual creativity.

    Science.gov (United States)

    Zhu, Wenfeng; Chen, Qunlin; Xia, Lingxiang; Beaty, Roger E; Yang, Wenjing; Tian, Fang; Sun, Jiangzhou; Cao, Guikang; Zhang, Qinglin; Chen, Xu; Qiu, Jiang

    2017-04-01

    Creativity is imperative to the progression of human civilization, prosperity, and well-being. Past creative researches tends to emphasize the default mode network (DMN) or the frontoparietal network (FPN) somewhat exclusively. However, little is known about how these networks interact to contribute to creativity and whether common or distinct brain networks are responsible for visual and verbal creativity. Here, we use functional connectivity analysis of resting-state functional magnetic resonance imaging data to investigate visual and verbal creativity-related regions and networks in 282 healthy subjects. We found that functional connectivity within the bilateral superior parietal cortex of the FPN was negatively associated with visual and verbal creativity. The strength of connectivity between the DMN and FPN was positively related to both creative domains. Visual creativity was negatively correlated with functional connectivity within the precuneus of the pDMN and right middle frontal gyrus of the FPN, and verbal creativity was negatively correlated with functional connectivity within the medial prefrontal cortex of the aDMN. Critically, the FPN mediated the relationship between the aDMN and verbal creativity, and it also mediated the relationship between the pDMN and visual creativity. Taken together, decreased within-network connectivity of the FPN and DMN may allow for flexible between-network coupling in the highly creative brain. These findings provide indirect evidence for the cooperative role of the default and executive control networks in creativity, extending past research by revealing common and distinct brain systems underlying verbal and visual creative cognition. Hum Brain Mapp 38:2094-2111, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. CNS-syndrome. Characterization of rat brain intermediate filaments

    International Nuclear Information System (INIS)

    Nedzvetskij, V.S.; Busygina, S.G.; Berezin, V.A.; Dvoretskij, A.I.

    1990-01-01

    A study was made of the effect of ionizing radiation on the content and polypeptide composition of filamentous and soluble glial fibrillary acidic protein (GFAP) in different regions of rat brain. Ionizing radiation was shown to decrease considerably the level of soluble GFAP in cerebral cortex, cerebellum, middle brain and hippocampus. Polypeptide composition of soluble GFAP detected by the immonublot-method was found to be changed considerably in different brain areas of irradiated animals

  12. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  13. In vitro comparison of rat and chicken brain neurotoxic esterase

    International Nuclear Information System (INIS)

    Novak, R.; Padilla, S.

    1986-01-01

    A systematic comparison was undertaken to characterize neurotoxic esterase (NTE) from rat and chicken brain in terms of inhibitor sensitivities, pH optima, and molecular weights. Paraoxon titration of phenyl valerate (PV)-hydrolyzing carboxylesterases showed that rat esterases were more sensitive than chicken to paraoxon inhibition at concentrations less than or equal to microM and superimposable with chicken esterases at concentrations of 2.5-1000 microM. Mipafox titration of the paraoxon-resistant esterases at a fixed paraoxon concentration of 100 microM (mipafox concentration: 0-1000 microM) resulted in a mipafox I50 of 7.3 microM for chicken brain NTE and 11.6 microM for rat brain NTE. NTE (i.e., paraoxon-resistant, mipafox-sensitive esterase activity) comprised 80% of chicken and 60% of rat brain paraoxon-resistant activity with the specific activity of chicken brain NTE approximately twice that of rat brain NTE. The pH maxima for NTE from both species was similar showing broad, slightly alkaline optima from pH 7.9 to 8.6. [ 3 H]Diisopropyl phosphorofluoridate (DFP)-labeled NTE from the brains of both species had an apparent mol wt of 160,000 measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In conclusion, NTE from both species was very similar, with the mipafox I50 for rat NTE within the range of reported values for chicken and human NTE, and the inhibitor parameters of the chicken NTE assay were applicable for the rat NTE assay

  14. Development of rat visual system after prenatal X-irradiation

    International Nuclear Information System (INIS)

    Brueckner, G.; Biesold, D.; Mares, V.

    1980-01-01

    Rats pregnant for 16 or 19 days (ED 16 or 19) were irradiated with 1 Gy and killed after 24 hrs or at age 24 or 180 days. The primary influence of X-rays consists in a lethal lesion of cells located in the periventricular zone as well as some of the more differentiated cells in the brain parenchyma. After irradiation on ED 16, the acute damage was greater in the cerebral cortex and the superior colliculus (SC) than in the lateral geniculate nucleus (LGN). Irradiation on ED 19 damaged mainly the cortical part of the visual system. In adult animals the acute radiation damage results in a deficit in packing density and the total number of neurons. Animals irradiated on ED 16 revealed more pronounced changes in deep layers of the cortex (L VI) than in the superficial layers. The deficit was smaller in the SC, and in the LGN an increase in the packing density of nerve cells was found. In animals irradiated on ED 19, the deficit in neurons density occurred mainly in more superficial layers of the cortex, with a maximum deficit in layer IV. From comparison of acute and final changes it may be concluded that the damage of preneuroblastic cell populations is compensated during later embryonic development, while the damage induced in populations already at early neuroblast stage is irreversible and leads to a permanent deficit. Glia cell population is altered in a similar way as the number of neurons in regions poor in myelin, while in regions rich in myelin the number of glia cells seems to depend on changes in the number of efferent and afferent nerve fibres. (author)

  15. Recent Visual Experience Shapes Visual Processing in Rats through Stimulus-Specific Adaptation and Response Enhancement.

    Science.gov (United States)

    Vinken, Kasper; Vogels, Rufin; Op de Beeck, Hans

    2017-03-20

    From an ecological point of view, it is generally suggested that the main goal of vision in rats and mice is navigation and (aerial) predator evasion [1-3]. The latter requires fast and accurate detection of a change in the visual environment. An outstanding question is whether there are mechanisms in the rodent visual system that would support and facilitate visual change detection. An experimental protocol frequently used to investigate change detection in humans is the oddball paradigm, in which a rare, unexpected stimulus is presented in a train of stimulus repetitions [4]. A popular "predictive coding" theory of cortical responses states that neural responses should decrease for expected sensory input and increase for unexpected input [5, 6]. Despite evidence for response suppression and enhancement in noninvasive scalp recordings in humans with this paradigm [7, 8], it has proven challenging to observe both phenomena in invasive action potential recordings in other animals [9-11]. During a visual oddball experiment, we recorded multi-unit spiking activity in rat primary visual cortex (V1) and latero-intermediate area (LI), which is a higher area of the rodent ventral visual stream. In rat V1, there was only evidence for response suppression related to stimulus-specific adaptation, and not for response enhancement. However, higher up in area LI, spiking activity showed clear surprise-based response enhancement in addition to stimulus-specific adaptation. These results show that neural responses along the rat ventral visual stream become increasingly sensitive to changes in the visual environment, suggesting a system specialized in the detection of unexpected events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Long-Term Memory Search across the Visual Brain

    Directory of Open Access Journals (Sweden)

    Milan Fedurco

    2012-01-01

    Full Text Available Signal transmission from the human retina to visual cortex and connectivity of visual brain areas are relatively well understood. How specific visual perceptions transform into corresponding long-term memories remains unknown. Here, I will review recent Blood Oxygenation Level-Dependent functional Magnetic Resonance Imaging (BOLD fMRI in humans together with molecular biology studies (animal models aiming to understand how the retinal image gets transformed into so-called visual (retinotropic maps. The broken object paradigm has been chosen in order to illustrate the complexity of multisensory perception of simple objects subject to visual —rather than semantic— type of memory encoding. The author explores how amygdala projections to the visual cortex affect the memory formation and proposes the choice of experimental techniques needed to explain our massive visual memory capacity. Maintenance of the visual long-term memories is suggested to require recycling of GluR2-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR and β2-adrenoreceptors at the postsynaptic membrane, which critically depends on the catalytic activity of the N-ethylmaleimide-sensitive factor (NSF and protein kinase PKMζ.

  17. Development of antibodies against the rat brain somatostatin receptor.

    Science.gov (United States)

    Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T

    1992-05-15

    Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

  18. Speed and accuracy of visual image discrimination by rats

    Directory of Open Access Journals (Sweden)

    Pamela eReinagel

    2013-12-01

    Full Text Available The trade-off between speed and accuracy of sensory discrimination has most often been studying using sensory stimuli that evolve over time, such as random dot motion discrimination tasks. We previously reported that when rats perform motion discrimination, correct trials have longer reaction times than errors, accuracy increases with reaction time, and reaction time increases with stimulus ambiguity. In such experiments, new sensory information is continually presented, which could partly explain interactions between reaction time and accuracy. The present study shows that a changing physical stimulus is not essential to those findings. Freely behaving rats were trained to discriminate between two static visual images in a self-paced, 2-alternative forced-choice (2AFC reaction time task. Each trial was initiated by the rat, and the two images were presented simultaneously and persisted until the rat responded, with no time limit. Reaction times were longer in correct trials than in error trials, and accuracy increased with reaction time, comparable to results previously reported for rats performing motion discrimination. In the motion task, coherence has been used to vary discrimination difficulty. Here morphs between the previously learned images were used to parametrically vary the image similarity. In randomly interleaved trials, rats took more time on average to respond in trials in which they had to discriminate more similar stimuli. For both the motion and image tasks, the dependence of reaction time on ambiguity is weak, as if rats prioritized speed over accuracy. Therefore we asked whether rats can change the priority of speed and accuracy adaptively in response to a change in reward contingencies. For two rats, the penalty delay was increased from two to six seconds. When the penalty was longer, reaction times increased, and accuracy improved. This demonstrates that rats can flexibly adjust their behavioral strategy in response to the

  19. Multidimensional MRI-CT atlas of the naked mole-rat brain

    Directory of Open Access Journals (Sweden)

    Fumiko eSeki

    2013-12-01

    Full Text Available Naked mole-rats have a variety of distinctive features such as the organisation of a hierarchical society (known as eusociality, extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI. Advanced MRI techniques such as diffusion tensor imaging (DTI, which generates high contrast images of fibre structures, can characterise unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography (CT were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualisation of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.

  20. Visual memory and visual mental imagery recruit common control and sensory regions of the brain.

    Science.gov (United States)

    Slotnick, Scott D; Thompson, William L; Kosslyn, Stephen M

    2012-01-01

    Separate lines of research have shown that visual memory and visual mental imagery are mediated by frontal-parietal control regions and can rely on occipital-temporal sensory regions of the brain. We used fMRI to assess the degree to which visual memory and visual mental imagery rely on the same neural substrates. During the familiarization/study phase, participants studied drawings of objects. During the test phase, words corresponding to old and new objects were presented. In the memory test, participants responded "remember," "know," or "new." In the imagery test, participants responded "high vividness," "moderate vividness," or "low vividness." Visual memory (old-remember) and visual imagery (old-high vividness) were commonly associated with activity in frontal-parietal control regions and occipital-temporal sensory regions. In addition, visual memory produced greater activity than visual imagery in parietal and occipital-temporal regions. The present results suggest that visual memory and visual imagery rely on highly similar--but not identical--cognitive processes.

  1. Brain networks underlying mental imagery of auditory and visual information.

    Science.gov (United States)

    Zvyagintsev, Mikhail; Clemens, Benjamin; Chechko, Natalya; Mathiak, Krystyna A; Sack, Alexander T; Mathiak, Klaus

    2013-05-01

    Mental imagery is a complex cognitive process that resembles the experience of perceiving an object when this object is not physically present to the senses. It has been shown that, depending on the sensory nature of the object, mental imagery also involves correspondent sensory neural mechanisms. However, it remains unclear which areas of the brain subserve supramodal imagery processes that are independent of the object modality, and which brain areas are involved in modality-specific imagery processes. Here, we conducted a functional magnetic resonance imaging study to reveal supramodal and modality-specific networks of mental imagery for auditory and visual information. A common supramodal brain network independent of imagery modality, two separate modality-specific networks for imagery of auditory and visual information, and a common deactivation network were identified. The supramodal network included brain areas related to attention, memory retrieval, motor preparation and semantic processing, as well as areas considered to be part of the default-mode network and multisensory integration areas. The modality-specific networks comprised brain areas involved in processing of respective modality-specific sensory information. Interestingly, we found that imagery of auditory information led to a relative deactivation within the modality-specific areas for visual imagery, and vice versa. In addition, mental imagery of both auditory and visual information widely suppressed the activity of primary sensory and motor areas, for example deactivation network. These findings have important implications for understanding the mechanisms that are involved in generation of mental imagery. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Visual short term memory related brain activity predicts mathematical abilities.

    Science.gov (United States)

    Boulet-Craig, Aubrée; Robaey, Philippe; Lacourse, Karine; Jerbi, Karim; Oswald, Victor; Krajinovic, Maja; Laverdière, Caroline; Sinnett, Daniel; Jolicoeur, Pierre; Lippé, Sarah

    2017-07-01

    Previous research suggests visual short-term memory (VSTM) capacity and mathematical abilities are significantly related. Moreover, both processes activate similar brain regions within the parietal cortex, in particular, the intraparietal sulcus; however, it is still unclear whether the neuronal underpinnings of VSTM directly correlate with mathematical operation and reasoning abilities. The main objective was to investigate the association between parieto-occipital brain activity during the retention period of a VSTM task and performance in mathematics. The authors measured mathematical abilities and VSTM capacity as well as brain activity during memory maintenance using magnetoencephalography (MEG) in 19 healthy adult participants. Event-related magnetic fields (ERFs) were computed on the MEG data. Linear regressions were used to estimate the strength of the relation between VSTM related brain activity and mathematical abilities. The amplitude of parieto-occipital cerebral activity during the retention of visual information was related to performance in 2 standardized mathematical tasks: mathematical reasoning and calculation fluency. The findings show that brain activity during retention period of a VSTM task is associated with mathematical abilities. Contributions of VSTM processes to numerical cognition should be considered in cognitive interventions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Brain glucose content in fetuses of ethanol-fed rats

    Energy Technology Data Exchange (ETDEWEB)

    Pullen, G.; Singh, S.P.; Snyder, A.K.; Hoffen, B.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4 and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.

  4. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    Directory of Open Access Journals (Sweden)

    Mark eLaing

    2015-10-01

    Full Text Available The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we use amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only or auditory-visual (AV trials in the scanner. On AV trials, the auditory and visual signal could have the same (AV congruent or different modulation rates (AV incongruent. Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for auditory-visual integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  5. Getting signals into the brain: visual prosthetics through thalamic microstimulation.

    Science.gov (United States)

    Pezaris, John S; Eskandar, Emad N

    2009-07-01

    Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmentosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a predominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface.

  6. Protection of visual functions by human neural progenitors in a rat model of retinal disease.

    Directory of Open Access Journals (Sweden)

    David M Gamm

    2007-03-01

    Full Text Available A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat.Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90-100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed.Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in

  7. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  8. BrainNetVis: analysis and visualization of brain functional networks.

    Science.gov (United States)

    Tsiaras, Vassilis; Andreou, Dimitris; Tollis, Ioannis G

    2009-01-01

    BrainNetVis is an application, written in Java, that displays and analyzes synchronization networks from brain signals. The program implements a number of network indices and visualization techniques. We demonstrate its use through a case study of left hand and foot motor imagery. The data sets were provided by the Berlin BCI group. Using this program we managed to find differences between the average left hand and foot synchronization networks by comparing them with the average idle state synchronization network.

  9. Neuropeptide Y receptors in rat brain: autoradiographic localization

    International Nuclear Information System (INIS)

    Martel, J.C.; St-Pierre, S.; Quirion, R.

    1986-01-01

    Neuropeptide Y (NPY) receptor binding sites have been characterized in rat brain using both membrane preparations and receptor autoradiography. Radiolabelled NPY binds with high affinity and specificity to an apparent single class of sites in rat brain membrane preparations. The ligand selectivity pattern reveals strong similarities between central and peripheral NPY receptors. NPY receptors are discretely distributed in rat brain with high densities found in the olfactory bulb, superficial layers of the cortex, ventral hippocampus, lateral septum, various thalamic nuclei and area postrema. The presence of high densities of NPY and NPY receptors in such areas suggests that NPY could serve important functions as a major neurotransmitter/neuromodulator in the central nervous system

  10. Visualizing the site of drug action in living human brain

    Energy Technology Data Exchange (ETDEWEB)

    Suhara, Tetsuya [National Inst. of Radiological Sciences, Chiba (Japan)

    1997-03-01

    PET is the only technique available to date to measure molecular interactions in vivo, but the basic mechanism of molecular interaction in vivo is not yet fully understood. However, PET can allow visualization of various phenomena which we can not observe with in vitro techniques. Progress in PET study will provide a new viewpoint for drug development and the study of molecular mechanism in the brain. (J.P.N.)

  11. Brain response to visual sexual stimuli in homosexual pedophiles.

    Science.gov (United States)

    Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke

    2008-01-01

    The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men.

  12. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity.

    Science.gov (United States)

    Laing, Mark; Rees, Adrian; Vuong, Quoc C

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  13. Brain perfusion in acute and chronic hyperglycemia in rats

    International Nuclear Information System (INIS)

    Kikano, G.E.; LaManna, J.C.; Harik, S.I.

    1989-01-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose

  14. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  15. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  16. Dorsal hippocampus is necessary for visual categorization in rats.

    Science.gov (United States)

    Kim, Jangjin; Castro, Leyre; Wasserman, Edward A; Freeman, John H

    2018-02-23

    The hippocampus may play a role in categorization because of the need to differentiate stimulus categories (pattern separation) and to recognize category membership of stimuli from partial information (pattern completion). We hypothesized that the hippocampus would be more crucial for categorization of low-density (few relevant features) stimuli-due to the higher demand on pattern separation and pattern completion-than for categorization of high-density (many relevant features) stimuli. Using a touchscreen apparatus, rats were trained to categorize multiple abstract stimuli into two different categories. Each stimulus was a pentagonal configuration of five visual features; some of the visual features were relevant for defining the category whereas others were irrelevant. Two groups of rats were trained with either a high (dense, n = 8) or low (sparse, n = 8) number of category-relevant features. Upon reaching criterion discrimination (≥75% correct, on 2 consecutive days), bilateral cannulas were implanted in the dorsal hippocampus. The rats were then given either vehicle or muscimol infusions into the hippocampus just prior to various testing sessions. They were tested with: the previously trained stimuli (trained), novel stimuli involving new irrelevant features (novel), stimuli involving relocated features (relocation), and a single relevant feature (singleton). In training, the dense group reached criterion faster than the sparse group, indicating that the sparse task was more difficult than the dense task. In testing, accuracy of both groups was equally high for trained and novel stimuli. However, both groups showed impaired accuracy in the relocation and singleton conditions, with a greater deficit in the sparse group. The testing data indicate that rats encode both the relevant features and the spatial locations of the features. Hippocampal inactivation impaired visual categorization regardless of the density of the category-relevant features for

  17. Visual attention modulates brain activation to angry voices.

    Science.gov (United States)

    Mothes-Lasch, Martin; Mentzel, Hans-Joachim; Miltner, Wolfgang H R; Straube, Thomas

    2011-06-29

    In accordance with influential models proposing prioritized processing of threat, previous studies have shown automatic brain responses to angry prosody in the amygdala and the auditory cortex under auditory distraction conditions. However, it is unknown whether the automatic processing of angry prosody is also observed during cross-modal distraction. The current fMRI study investigated brain responses to angry versus neutral prosodic stimuli during visual distraction. During scanning, participants were exposed to angry or neutral prosodic stimuli while visual symbols were displayed simultaneously. By means of task requirements, participants either attended to the voices or to the visual stimuli. While the auditory task revealed pronounced activation in the auditory cortex and amygdala to angry versus neutral prosody, this effect was absent during the visual task. Thus, our results show a limitation of the automaticity of the activation of the amygdala and auditory cortex to angry prosody. The activation of these areas to threat-related voices depends on modality-specific attention.

  18. Hydrophilic solute transport across the rat blood-brain barrier

    International Nuclear Information System (INIS)

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of 3 H-inulin and 14 C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients

  19. What can fish brains tell us about visual perception?

    Directory of Open Access Journals (Sweden)

    Orsola eRosa Salva

    2014-09-01

    Full Text Available Fish are a complex taxonomic group, whose diversity and distance from other vertebrates well suits the comparative investigation of brain and behavior: in fish species we observe substantial differences with respect to the telencephalic organization of other vertebrates and an astonishing variety in the development and complexity of pallial structures. We will concentrate on the contribution of research on fish behavioral biology for the understanding of the evolution of the visual system. We shall review evidence concerning perceptual effects that reflect fundamental principles of the visual system functioning, highlighting the similarities and differences between distant fish groups and with other vertebrates. We will focus on perceptual effects reflecting some of the main tasks that the visual system must attain. In particular, we will deal with subjective contours and optical illusions, invariance effects, second order motion and biological motion and, finally, perceptual binding of object properties in a unified higher level representation.

  20. Microwave hyperthermia enhancement of methotrexate absorption in rat brains

    International Nuclear Information System (INIS)

    Lin, J.C.; Yuen, M.K.; Jung, D.T.

    1987-01-01

    The author studied enhanced absorption of methotrexate (MTX) in brains of male Wistar (10 weeks old, 500g) subjected to microwave hyperthermia. The rat was anesthetized using 40 mg/kg of sodium pentobarbital, IP and was placed in a stereotaxic head holder. Microwave energy (2450 MHz, 2.6 W/cm/sup 2/, CW) were applied directly to the left side of the rat's head by a coaxial applicator for 20 min. The body temperature was kept at 37.8 0 C. The brain temperature recorded in a similar group of animals using a Vitek probe was about 45 0 C. Three different MTX dosages, 50, 100 and 200 mg/kg, were injected intravenously immediately following microwave irradiation into three groups of rats in 1.5, 3 and 6 min., respectively. MTX was allowed to circulate for five min. before brains were removed for analysis. Standard HPLC procedures were applied to samples from anterior and posterior left hemisphere of the cerebrum, and the cerebellum. Samples from the right hemisphere were used for controls. The average absorption at the posterior left hemisphere was found to be 2.4, 9.6 and 12.4μg of MTX/g of brain tissue for 50, 100 and 200 mg/kg, respectively. These results indicate that MTX absorption is significantly increased in rat brains subjected to microwave hyperthermia treatment

  1. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  2. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat.

    Science.gov (United States)

    Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire

    2014-07-01

    The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.

  3. Demonstration of endogenous imipramine like material in rat brain

    International Nuclear Information System (INIS)

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-01-01

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits [ 3 H] imipramine specific binding and mimics the inhibitory effect of imipramine on [ 3 H] serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits [ 3 H] imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum

  4. Improved apparatus for neutron capture therapy of rat brain tumors

    International Nuclear Information System (INIS)

    Liu, Hungyuan B.; Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1994-01-01

    The assembly for irradiating tumors in the rat brain at the thermal neutron beam port of the Brookhaven Medical Research Reactor was redesigned to lower the average whole-body dose from different components of concomitant radiation without changing the thermal neutron fluence at the brain tumor. At present, the tumor-bearing rat is positioned in a rat holder that functions as a whole-body radiation shield. A 2.54 cm-thick collimator with a centered conical aperture, 6 cm diameter tapering to 2 cm diameter, is used to restrict the size of the thermal neutron field. Using the present holder and collimator as a baseline design, Monte Carlo calculations and mixed-field dosimetry were used to assess new designs. The computations indicate that a 0.5 cm-thick plate, made of 6 Li 2 CO 3 dispersed in polyethylene (Li-poly), instead of the existing rat holder, will reduce the whole-body radiation dose. Other computations show that a 10.16 cm-thick (4 inches) Li-poly collimator, having a centered conical aperture of 12 cm diameter tapering to 2 cm diameter, would further reduce the whole-body dose. The proposed irradiation apparatus of tumors in the rat brain, although requiring a 2.3-fold longer irradiation time, would reduce the average whole-body dose to less than half of that from the existing irradiation assembly. 7 refs., 4 figs., 7 tabs

  5. How task demands shape brain responses to visual food cues.

    Science.gov (United States)

    Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme

    2017-06-01

    Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Brain oscillatory substrates of visual short-term memory capacity.

    Science.gov (United States)

    Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C

    2009-11-17

    The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.

  7. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  8. The effect of chemotherapy on rat brain PET: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Kim, Il Han; Yu, A Ram; Park, Ji Ae; Woo, Sang Keun; Kim, Jong Guk; Cheon, Gi Jeong; Kim, Byeong Il; Choi, Chang Woon; Lim, Sang Moo; Kim, Hee Joung; Kim, Kyeong Min [Korea Institute Radiological and Medical Science, Seoul (Korea, Republic of)

    2010-10-15

    Chemotherapy was widely used for the therapy of cancer patients. When chemotherapy was performed, transient cognitive memory problem was occurred. This cognitive problem in brain was called as chemobrain. In this study, we have developed rat model for chemobrain. Cerebral glucose metabolism after chemotherapy was assessed using animal PET and voxel based statistical analysis method

  9. Impact of aspartame consumption on neurotransmitters in rat brain ...

    African Journals Online (AJOL)

    Background: Aspartame (APM), a common artificial sweetener, has been used for diabetic subjects and body weight control for a long time. The goal of the present study was to evaluate the impact of APM consumption on neurotransmitters and oxidative stress in rat's brain. Materials and Methods: Four groups of male ...

  10. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  11. The effect of chemotherapy on rat brain PET: preliminary study

    International Nuclear Information System (INIS)

    Kim, Jin Su; Kim, Il Han; Yu, A Ram; Park, Ji Ae; Woo, Sang Keun; Kim, Jong Guk; Cheon, Gi Jeong; Kim, Byeong Il; Choi, Chang Woon; Lim, Sang Moo; Kim, Hee Joung; Kim, Kyeong Min

    2010-01-01

    Chemotherapy was widely used for the therapy of cancer patients. When chemotherapy was performed, transient cognitive memory problem was occurred. This cognitive problem in brain was called as chemobrain. In this study, we have developed rat model for chemobrain. Cerebral glucose metabolism after chemotherapy was assessed using animal PET and voxel based statistical analysis method

  12. How cortical neurons help us see: visual recognition in the human brain

    OpenAIRE

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us under...

  13. Disruption of behavior and brain metabolism in artificially reared rats.

    Science.gov (United States)

    Aguirre-Benítez, Elsa L; Porras, Mercedes G; Parra, Leticia; González-Ríos, Jacquelina; Garduño-Torres, Dafne F; Albores-García, Damaris; Avendaño, Arturo; Ávila-Rodríguez, Miguel A; Melo, Angel I; Jiménez-Estrada, Ismael; Mendoza-Garrido, Ma Eugenia; Toriz, César; Diaz, Daniel; Ibarra-Coronado, Elizabeth; Mendoza-Ángeles, Karina; Hernández-Falcón, Jesús

    2017-12-01

    Early adverse life stress has been associated to behavioral disorders that can manifest as inappropriate or aggressive responses to social challenges. In this study, we analyzed the effects of artificial rearing on the open field and burial behavioral tests and on GFAP, c-Fos immunoreactivity, and glucose metabolism measured in anxiety-related brain areas. Artificial rearing of male rats was performed by supplying artificial milk through a cheek cannula and tactile stimulation, mimicking the mother's licking to rat pups from the fourth postnatal day until weaning. Tactile stimulation was applied twice a day, at morning and at night, by means of a camel brush on the rat anogenital area. As compared to mother reared rats, greater aggressiveness, and boldness, stereotyped behavior (burial conduct) was observed in artificially reared rats which occurred in parallel to a reduction of GFAP immunoreactivity in somatosensory cortex, c-Fos immunoreactivity at the amygdala and primary somatosensory cortex, and lower metabolism in amygdala (as measured by 2-deoxi-2-[ 18 fluoro]-d-glucose uptake, assessed by microPET imaging). These results could suggest that tactile and/or chemical stimuli from the mother and littermates carry relevant information for the proper development of the central nervous system, particularly in brain areas involved with emotions and social relationships of the rat. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1413-1429, 2017. © 2017 Wiley Periodicals, Inc.

  14. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  15. Radiation therapy of 9L rat brain tumors

    International Nuclear Information System (INIS)

    Henderson, S.D.; Kimler, B.F.; Morantz, R.A.

    1981-01-01

    The effects of radiation therapy on normal rats and on rats burdened with 9L brain tumors have been studied. The heads of normal rats were x-irradiated with single exposures ranging from 1000 R to 2700 R. Following acute exposures greater than 2100 R, all animals died in 8 to 12 days. Approximately 30% of the animals survived beyond 12 days over the range of 1850 to 1950 R; following exposures less than 1850 R, all animals survived the acute radiation effects, and median survival times increased with decreasing exposure. Three fractionated radiation schedules were also studied: 2100 R or 3000 R in 10 equal fractions, and 3000 R in 6 equal fractions, each schedule being administered over a 2 week period. The first schedule produced a MST of greater than 1 1/2 years; the other schedules produced MSTs that were lower. It was determined that by applying a factor of 1.9, similar survival responses of normal rats were obtained with single as with fractionated radiation exposures. Animals burdened with 9L gliosarcoma brain tumors normally died of the disease process within 18 to 28 days ater tumor inoculation. Both single and fractionated radiation therapy resulted in a prolongation of survival of tumor-burdened rats. This prolongation was found to be linearly dependent upon the dose; but only minimally dependent upon the time after inoculation at which therapy was initiated, or upon the fractionation schedule that was used. As with normal animals, similar responses were obtained with single as with fractionated exposures when a factor (1.9) was applied. All tumor-bearing animals died prior to the time that death was observed in normal, irradiated rats. Thus, the 9L gliosarcoma rat brain tumor model can be used for the pre-clinical experimental investigation of new therapeutic schedules involving radiation therapy and adjuvant therapies

  16. Changes in brain morphology in albinism reflect reduced visual acuity.

    Science.gov (United States)

    Bridge, Holly; von dem Hagen, Elisabeth A H; Davies, George; Chambers, Claire; Gouws, Andre; Hoffmann, Michael; Morland, Antony B

    2014-07-01

    Albinism, in humans and many animal species, has a major impact on the visual system, leading to reduced acuity, lack of binocular function and nystagmus. In addition to the lack of a foveal pit, there is a disruption to the routing of the nerve fibers crossing at the optic chiasm, resulting in excessive crossing of fibers to the contralateral hemisphere. However, very little is known about the effect of this misrouting on the structure of the post-chiasmatic visual pathway, and the occipital lobes in particular. Whole-brain analyses of cortical thickness in a large cohort of subjects with albinism showed an increase in cortical thickness, relative to control subjects, particularly in posterior V1, corresponding to the foveal representation. Furthermore, mean cortical thickness across entire V1 was significantly greater in these subjects compared to controls and negatively correlated with visual acuity in albinism. Additionally, the group with albinism showed decreased gyrification in the left ventral occipital lobe. While the increase in cortical thickness in V1, also found in congenitally blind subjects, has been interpreted to reflect a lack of pruning, the decreased gyrification in the ventral extrastriate cortex may reflect the reduced input to the foveal regions of the ventral visual stream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  18. Electroencephalogram in relation to brain glycogen level in irradiated rats treated with vitamin E as a radioprotective compound

    International Nuclear Information System (INIS)

    Mahdy, A.M.

    1992-01-01

    Whole body gamma irradiation of untreated rats at the dose of 7 Gy induced severe abnormalities in the brain electrical activity, electroencephalogram (EEG), patterns of both frontal and occipital cortical areas. The visual analysis of the frontal EEG records showed a significant shift of frequencies towards faster and higher voltage activity along the experiment period (first , third, seventh and tenth days post irradiation). However, an opposite picture was prominent on the occipital EEG records after irradiation. On the other hand,the level of brain glycogen, which is considered as an important energy source for brain functions, significantly increased at all intervals of post irradiation. The treatment of rats with intraperitoneal injection of vitamin E pre-irradiation succeeded in diminishing the deleterious abnormalities in the EEG records in both frontal and occipital areas as well as the changes induced in the level of brain glycogen after whole body gamma irradiation.4 fig

  19. Visual deprivation alters dendritic bundle architecture in layer 4 of rat visual cortex.

    Science.gov (United States)

    Gabbott, P L; Stewart, M G

    2012-04-05

    The effect of visual deprivation followed by light exposure on the tangential organisation of dendritic bundles passing through layer 4 of the rat visual cortex was studied quantitatively in the light microscope. Four groups of animals were investigated: (I) rats reared in an environment illuminated normally--group 52 dL; (II) rats reared in the dark until 21 days postnatum (DPN) and subsequently light exposed for 31 days-group 21/31; (III) rats dark reared until 52 DPN and then subsequently light exposed for 3 days--group 3 dL; and (IV) rats totally dark reared until 52 DPN--group 52 DPN. Each group contained five animals. Semithin 0.5-1-μm thick resin-embedded sections were collected from tangential sampling levels through the middle of layer 4 in area 17 and stained with Toluidine Blue. These sections were used to quantitatively analyse the composition and distribution of dendritic clusters in the tangential plane. The key result of this study indicates a significant reduction in the mean number of medium- and small-sized dendritic profiles (diameter less than 2 μm) contributing to clusters in layer 4 of groups 3 dL and 52 dD compared with group 21/31. No differences were detected in the mean number of large-sized dendritic profiles composing a bundle in these experimental groups. Moreover, the mean number of clusters and their tangential distribution in layer 4 did not vary significantly between all four groups. Finally, the clustering parameters were not significantly different between groups 21/31 and the normally reared group 52 dL. This study demonstrates, for the first time, that extended periods of dark rearing followed by light exposure can alter the morphological composition of dendritic bundles in thalamorecipient layer 4 of rat visual cortex. Because these changes occur in the primary region of thalamocortical input, they may underlie specific alterations in the processing of visual information both cortically and subcortically during periods of

  20. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  1. An automatic rat brain extraction method based on a deformable surface model.

    Science.gov (United States)

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.

    Science.gov (United States)

    Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A

    2015-05-01

    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    Science.gov (United States)

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  4. Optimal brain network synchrony visualization: application in an alcoholism paradigm.

    Science.gov (United States)

    Sakkalis, Vangelis; Tsiaras, Vassilis; Zervakis, Michalis; Tollis, Ioannis

    2007-01-01

    Although Electroencephalographic (EEG) signal synchronization studies have been a topic of increasing interest lately, there is no similar effort in the visualization of such measures. In this direction a graph-theoretic approach devised to study and stress the coupling dynamics of task-performing dynamical networks is proposed. Both linear and nonlinear interdependence measures are investigated in an alcoholism paradigm during mental rehearsal of pictures, which is known to reflect synchronization impairment. More specifically, the widely used magnitude squared coherence; phase synchronization and a robust nonlinear state-space generalized synchronization assessment method are investigated. This paper mostly focuses on a signal-based technique of selecting the optimal visualization threshold using surrogate datasets to correctly identify the most significant correlation patterns. Furthermore, a graph statistical parameter attempts to capture and quantify collective motifs present in the functional brain network. The results are in accordance with previous psychophysiology studies suggesting that an alcoholic subject has impaired synchronization of brain activity and loss of lateralization during the rehearsal process, most prominently in alpha (8-12 Hz) band, as compared to a control subject. Lower beta (13-30 Hz) synchronization was also evident in the alcoholic subject.

  5. Brain-actuated gait trainer with visual and proprioceptive feedback

    Science.gov (United States)

    Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Millán, José del R.

    2017-10-01

    Objective. Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. Approach. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. Main results. (i) For real-time classification, the average accuracy was 62.33 +/- 4.95 % and 63.89 +/- 6.41 % for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback (69.45 +/- 9.95 %) was significantly better than with visual feedback (62.89 +/- 9.20 %), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. Significance. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that

  6. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  7. Functional brain imaging study on brain processes involved in visual awareness

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuo; Futakawa, Hiroyuki; Tokita, Shohko; Jung, Jiuk

    2003-01-01

    Recently, there has been great interest in visual awareness because it is thought that it may provide valuable information in understanding aspects of consciousness. An important but still controversial issue is what region in the brain is involved in visual awareness. When viewing ambiguous figures, observers can be aware of only one of multiple competing percepts at any given moment, but experience spontaneous alternations among the percepts over time. This phenomenon is known as multistable perceptions and thought to be essential in understanding the brain processes involved in visual awareness. We used functional magnetic resonance imaging to investigate the brain activities associated with multistable perceptions. Two separate experiments were performed based on two different multistable phenomena known as binocular rivalry and perceptions of ambiguous figures. Significant differential activations in the parietal and prefrontal areas were commonly observed under multistable conditions compared to monostable control conditions in the two separate experiments. These findings suggest that neural processes in the parietal and prefrontal areas may be involved in perceptual alternations in situations involving multistable phenomena. (author)

  8. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    Science.gov (United States)

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  10. Characteristic effects of heavy ion irradiation on the rat brain

    International Nuclear Information System (INIS)

    Sun, X.Z.; Takahashi, S.; Kubota, Y.; Yoshida, S.; Takeda, H.; Zhang, R.; Fukui, Y.

    2005-01-01

    Heavy ion irradiation has the feature to administer a large radiation dose in the vicinity of the endpoint in the beam range, and its irradiation system and biophysical characteristics are different from ordinary irradiation instruments like X- or gamma-rays. Using this special feature, heavy ion irradiation has been applied for cancer treatment. The safety and efficacy of heavy ion irradiator have been demonstrated to a great extent. For instance, brain tumors treated by heavy-ion beams became smaller or disappearance. However, fundamental research related to such clinical phenotypes and their underlying mechanisms are little known. In order to clarify characteristic effects of heavy ion irradiation on the brain, we developed an experimental system for irradiating a restricted region of the rat brain using heavy ion beams. The characteristics of the heavy ion beams, histological, behavioral and elemental changes were studied in the rat following heavy ion irradiation. Adult male Sprague-Dawley rats, aged 12 weeks and weighing 260-340 g (Shizuoka Laboratory Animal Center, Hamamatsu, Japan) were used. Rats were deeply anesthetized 10-15 minutes before irradiation with ketamine (40 mg/kg) and xylazine (10 mg/kg), immobilized in a specifically designed jig, and irradiated with 290 MeV/nucleon charged carbon beams in a dorsal-to ventral direction, The left cerebral hemispheres of the brain were irradiated at doses of 100 Gy charged carbon particles. The depth-dose distribution of the heavy ion beams was modified to make a spread-out bragg peak of 5 mm wide with a range modulator. The characteristics of the heavy-ion beams (field and depth of the heavy-ion beams) were examined by a measuring paraffin section of rat brain at different thickness. That extensive necrosis was observed between 2.5 mm and 7.5 mm depth from the surface of the rat head, suggesting a relatively high dose and uniform dose was delivered among designed depths and the spread-out bragg peak used here

  11. From Big Data to Big Displays High-Performance Visualization at Blue Brain

    KAUST Repository

    Eilemann, Stefan; Abdellah, Marwan; Antille, Nicolas; Bilgili, Ahmet; Chevtchenko, Grigory; Dumusc, Raphael; Favreau, Cyrille; Hernando, Juan; Nachbaur, Daniel; Podhajski, Pawel; Villafranca, Jafet; Schü rmann, Felix

    2017-01-01

    Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic

  12. Emotion processing in the visual brain: a MEG analysis.

    Science.gov (United States)

    Peyk, Peter; Schupp, Harald T; Elbert, Thomas; Junghöfer, Markus

    2008-06-01

    Recent functional magnetic resonance imaging (fMRI) and event-related brain potential (ERP) studies provide empirical support for the notion that emotional cues guide selective attention. Extending this line of research, whole head magneto-encephalogram (MEG) was measured while participants viewed in separate experimental blocks a continuous stream of either pleasant and neutral or unpleasant and neutral pictures, presented for 330 ms each. Event-related magnetic fields (ERF) were analyzed after intersubject sensor coregistration, complemented by minimum norm estimates (MNE) to explore neural generator sources. Both streams of analysis converge by demonstrating the selective emotion processing in an early (120-170 ms) and a late time interval (220-310 ms). ERF analysis revealed that the polarity of the emotion difference fields was reversed across early and late intervals suggesting distinct patterns of activation in the visual processing stream. Source analysis revealed the amplified processing of emotional pictures in visual processing areas with more pronounced occipito-parieto-temporal activation in the early time interval, and a stronger engagement of more anterior, temporal, regions in the later interval. Confirming previous ERP studies showing facilitated emotion processing, the present data suggest that MEG provides a complementary look at the spread of activation in the visual processing stream.

  13. Incidence and treatment of visual dysfunction in traumatic brain injury.

    Science.gov (United States)

    Schlageter, K; Gray, B; Hall, K; Shaw, R; Sammet, R

    1993-01-01

    The incidence of visual dysfunction and effectiveness of visual exercises in acute traumatically brain injured inpatients in a rehabilitation programme were studied. Vision evaluation norms were established on 23 hospital staff. The evaluation was then administered to 51 inpatients within days after admission. An additional 21 patients were unable to participate, usually due to decreased cognition or agitation. Thirty of 51 (59%) scored impaired in one or more of the following: pursuits, saccades, ocular posturing, stereopsis, extra-ocular movements, and near/far eso-exotropia. For patients having dysfunction in pursuits or saccades, a 2-week baseline was followed by vision exercises. During the baseline interval patients were evaluated by an optometrist to verify therapists' findings. Six patients who participated in several weeks of treatment were evaluated at 2-week intervals by an independent rater. Progress is graphically illustrated. Conclusions were that the suitability of an inpatient vision programme, from our experience, is questionable. However, an initial evaluation proved valuable for informing staff of patients' visual status and for referral to an optometrist/ophthalmologist for further treatment.

  14. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    International Nuclear Information System (INIS)

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  15. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    Science.gov (United States)

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  16. Brain and behavioral perturbations in rats following Western diet access.

    Science.gov (United States)

    Hargrave, Sara L; Davidson, Terry L; Lee, Tien-Jui; Kinzig, Kimberly P

    2015-10-01

    Energy dense "Western" diets (WD) are known to cause obesity as well as learning and memory impairments, blood-brain barrier damage, and psychological disturbances. Impaired glucose (GLUT1) and monocarboxylate (MCT1) transport may play a role in diet-induced dementia development. In contrast, ketogenic diets (KD) have been shown to be neuroprotective. We assessed the effect of 10, 40 and 90 days WD, KD and Chow maintenance on spontaneous alternation (SA) and vicarious trial and error (VTE) behaviors in male rats, then analyzed blood glucose, insulin, and ketone levels; and hippocampal GLUT1 and MCT1 mRNA. Compared to Chow and KD, rats fed WD had increased 90 day insulin levels. SA was decreased in WD rats at 10, but not 40 or 90 days. VTE was perturbed in WD-fed rats, particularly at 10 and 90 days, indicating hippocampal deficits. WD rats had lower hippocampal GLUT1 and MCT1 expression compared to Chow and KD, and KD rats had increased 90 day MCT1 expression compared to Chow and WD. These data suggest that WD reduces glucose and monocarboxylate transport at the hippocampus, which may result in learning and memory deficits. Further, KD consumption may be useful for MCT1 transporter recovery, which may benefit cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test.

  18. Extraretinal induced visual sensations during IMRT of the brain.

    Science.gov (United States)

    Wilhelm-Buchstab, Timo; Buchstab, Barbara Myrthe; Leitzen, Christina; Garbe, Stephan; Müdder, Thomas; Oberste-Beulmann, Susanne; Sprinkart, Alois Martin; Simon, Birgit; Nelles, Michael; Block, Wolfgang; Schoroth, Felix; Schild, Hans Heinz; Schüller, Heinrich

    2015-01-01

    We observed visual sensations (VSs) in patients undergoing intensity modulated radiotherapy (IMRT) of the brain without the beam passing through ocular structures. We analyzed this phenomenon especially with regards to reproducibility, and origin. Analyzed were ten consecutive patients (aged 41-71 years) with glioblastoma multiforme who received pulsed IMRT (total dose 60Gy) with helical tomotherapy (TT). A megavolt-CT (MVCT) was performed daily before treatment. VSs were reported and recorded using a triggered event recorder. The frequency of VSs was calculated and VSs were correlated with beam direction and couch position. Subjective patient perception was plotted on an 8x8 visual field (VF) matrix. Distance to the orbital roof (OR) from the first beam causing a VS was calculated from the Dicom radiation therapy data and MVCT data. During 175 treatment sessions (average 17.5 per patient) 5959 VSs were recorded and analyzed. VSs occurred only during the treatment session not during the MVCTs. Plotting events over time revealed patient-specific patterns. The average cranio-caudad extension of VS-inducing area was 63.4mm (range 43.24-92.1mm). The maximum distance between the first VS and the OR was 56.1mm so that direct interaction with the retina is unlikely. Data on subjective visual perception showed that VSs occurred mainly in the upper right and left quadrants of the VF. Within the visual pathways the highest probability for origin of VSs was seen in the optic chiasm and the optic tract (22%). There is clear evidence that interaction of photon irradiation with neuronal structures distant from the eye can lead to VSs.

  19. Extraretinal induced visual sensations during IMRT of the brain.

    Directory of Open Access Journals (Sweden)

    Timo Wilhelm-Buchstab

    Full Text Available We observed visual sensations (VSs in patients undergoing intensity modulated radiotherapy (IMRT of the brain without the beam passing through ocular structures. We analyzed this phenomenon especially with regards to reproducibility, and origin.Analyzed were ten consecutive patients (aged 41-71 years with glioblastoma multiforme who received pulsed IMRT (total dose 60Gy with helical tomotherapy (TT. A megavolt-CT (MVCT was performed daily before treatment. VSs were reported and recorded using a triggered event recorder. The frequency of VSs was calculated and VSs were correlated with beam direction and couch position. Subjective patient perception was plotted on an 8x8 visual field (VF matrix. Distance to the orbital roof (OR from the first beam causing a VS was calculated from the Dicom radiation therapy data and MVCT data. During 175 treatment sessions (average 17.5 per patient 5959 VSs were recorded and analyzed. VSs occurred only during the treatment session not during the MVCTs. Plotting events over time revealed patient-specific patterns. The average cranio-caudad extension of VS-inducing area was 63.4mm (range 43.24-92.1mm. The maximum distance between the first VS and the OR was 56.1mm so that direct interaction with the retina is unlikely. Data on subjective visual perception showed that VSs occurred mainly in the upper right and left quadrants of the VF. Within the visual pathways the highest probability for origin of VSs was seen in the optic chiasm and the optic tract (22%.There is clear evidence that interaction of photon irradiation with neuronal structures distant from the eye can lead to VSs.

  20. Identification of rat brain opioid (enkephalin) receptor by photoaffinity labeling

    International Nuclear Information System (INIS)

    Yeung, C.W.

    1986-01-01

    A photoreactive, radioactive enkephalin derivative was prepared and purified by high performance liquid chromatography. Rat brain and spinal cord plasma membranes were incubated with this radioiodinated photoprobe and were subsequently photolysed. Autoradiography of the sodium dodecyl sulfate gel electrophoresis of the solubilized and reduced membranes showed that a protein having an apparent molecular weight of 46,000 daltons was specifically labeled, suggesting that this protein may be the opioid (enkephalin) receptor

  1. Binding of tritiated corticosterone in brain sections of adrenalectomized rat

    International Nuclear Information System (INIS)

    Sarrieau, A.; Vial, M.; Dussaillant, M.; Rostene, W.; Philibert, P.

    1983-01-01

    A new technique which permits to study the specific binding of tritiated corticosterone in brain sections of adrenalectomized rats is described. Under these conditions, the specific binding of the glucocorticoid represents 60 to 70% of the initial binding. The apparent dissociation constant and the number of binding sites, determined by Scatchard analysis, are in the range of 10 -8 M and 100 fmoles/mg of protein respectively [fr

  2. Effect of histochrome on the severity of delayed effects of prenatal exposure to lead nitrate in the rat brain.

    Science.gov (United States)

    Ryzhavsky, B Ya; Lebedko, O A; Belolubskaya, D S

    2008-08-01

    The effects of histochrome on the severity of delayed effects of prenatal exposure to lead nitrate were studied in the rat brain. Exposure of pregnant rats to lead nitrate during activation of free radical oxidation reduced activity of NADH- and NADPH-dehydrogenases in cortical neurons of their 40-day-old progeny, reduced the number of neurons in a visual field, increased the number of pathologically modified neurons, and stimulated rat motor activity in an elevated plus-maze. Two intraperitoneal injections of histochrome in a dose of 0.1 mg/kg before and after lead citrate challenge attenuated the manifestations of oxidative stress and prevented the changes in some morphological and histochemical parameters of the brain, developing under the effect of lead exposure.

  3. Effects of chronic iTBS-rTMS and enriched environment on visual cortex early critical period and visual pattern discrimination in dark-reared rats.

    Science.gov (United States)

    Castillo-Padilla, Diana V; Funke, Klaus

    2016-01-01

    Early cortical critical period resembles a state of enhanced neuronal plasticity enabling the establishment of specific neuronal connections during first sensory experience. Visual performance with regard to pattern discrimination is impaired if the cortex is deprived from visual input during the critical period. We wondered how unspecific activation of the visual cortex before closure of the critical period using repetitive transcranial magnetic stimulation (rTMS) could affect the critical period and the visual performance of the experimental animals. Would it cause premature closure of the plastic state and thus worsen experience-dependent visual performance, or would it be able to preserve plasticity? Effects of intermittent theta-burst stimulation (iTBS) were compared with those of an enriched environment (EE) during dark-rearing (DR) from birth. Rats dark-reared in a standard cage showed poor improvement in a visual pattern discrimination task, while rats housed in EE or treated with iTBS showed a performance indistinguishable from rats reared in normal light/dark cycle. The behavioral effects were accompanied by correlated changes in the expression of brain-derived neurotrophic factor (BDNF) and atypical PKC (PKCζ/PKMζ), two factors controlling stabilization of synaptic potentiation. It appears that not only nonvisual sensory activity and exercise but also cortical activation induced by rTMS has the potential to alleviate the effects of DR on cortical development, most likely due to stimulation of BDNF synthesis and release. As we showed previously, iTBS reduced the expression of parvalbumin in inhibitory cortical interneurons, indicating that modulation of the activity of fast-spiking interneurons contributes to the observed effects of iTBS. © 2015 Wiley Periodicals, Inc.

  4. Estrone is neuroprotective in rats after traumatic brain injury.

    Science.gov (United States)

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (pcerebral cortical levels of TUNEL-positive staining (pprotective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  5. The significance of faint visualization of the superior sagittal sinus in brain scintigraphy for the diagnosis of brain death

    International Nuclear Information System (INIS)

    Bisset, R.; Sfakianakis, G.; Ihmedian, I.; Holzman, B.; Curless, R.; Serafini, A.

    1985-01-01

    Brain death is associated with cessation of blood flow to the brain. Tc-99m brain flow studies are used as a laboratory confirmatory test for the establishment of the diagnosis of brain death. Criteria for the diagnosis of cessation of blood flow to the brain are 1) visualization of carotid artery activity in the neck of the patient and 2) no visualization of activity in the distribution of the anterior and middle cerebral arteries. The authors noticed that in a significant number of patients, although there was no visualization of arterial blood flow to the brain the static images demonstrated faint accumulation of activity in the region of the superior sagittal sinus (SSS). In a four year period 212 brain flow studies were performed in 154 patients for diagnosis of brain death; of them 137 studies (65%) showed no evidence of arterial flow. In 103 out of the 137 studies (75%) there was no visualization of the SSS; in the remaining 34 studies (3l patients) however three patterns of faint activity attributed to partial and or faint visualization of the SSS could be recognized at the midline of the immediate anterior static view: a) linear from the cranial vault floor up b) disk shaped at the apex of the vault and c) disk shaped at the apex tailing caudad. All of the 3l patients in this group satisfied brain death criteria within four days of the last study which showed faint visualization of the superior sagittal sinus. The authors conclude that even in the presence of a faint visualization of the superior sagittal sinus on static post brain flow scintigraphy, the diagnosis of cessation of blood flow to the brain can be made if there is no evidence of arterial blood flow

  6. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  7. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D.; Morris, G.M.

    2000-01-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED 50 ) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  8. Estrogen restores brain insulin sensitivity in ovariectomized non-obese rats, but not in ovariectomized obese rats.

    Science.gov (United States)

    Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2014-06-01

    We previously demonstrated that obesity caused the reduction of peripheral and brain insulin sensitivity and that estrogen therapy improved these defects. However, the beneficial effect of estrogen on brain insulin sensitivity and oxidative stress in either ovariectomy alone or ovariectomy with obesity models has not been determined. We hypothesized that ovariectomy alone or ovariectomy with obesity reduces brain insulin sensitivity and increases brain oxidative stress, which are reversed by estrogen treatment. Thirty female rats were assigned as either sham-operated or ovariectomized. After the surgery, each group was fed either a normal diet or high-fat diet for 12 weeks. At week 13, rats in each group received either the vehicle or estradiol for 30 days. At week 16, blood and brain were collected for determining the peripheral and brain insulin sensitivity as well as brain oxidative stress. We found that ovariectomized rats and high-fat diet fed rats incurred obesity, reduced peripheral and brain insulin sensitivity, and increased brain oxidative stress. Estrogen ameliorated peripheral insulin sensitivity in these rats. However, the beneficial effect of estrogen on brain insulin sensitivity and brain oxidative stress was observed only in ovariectomized normal diet-fed rats, but not in ovariectomized high fat diet-fed rats. Our results suggested that reduced brain insulin sensitivity and increased brain oxidative stress occurred after either ovariectomy or obesity. However, the reduced brain insulin sensitivity and the increased brain oxidative stress in ovariectomy with obesity could not be ameliorated by estrogen treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. How cortical neurons help us see: visual recognition in the human brain

    Science.gov (United States)

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161

  10. Elucidation of Inflammation Processes Exacerbating Neuronal Cell Damage to the Retina and Brain Visual Centers as Quest for Therapeutic Drug Targets in Rat Model of Blast Overpressure Wave Exposure

    Science.gov (United States)

    2016-10-01

    Righting Reflex of rats following double blast exposure. 0 4 8 12 16 20 R ig ht in g Re fle x (m in ut es ) PLACEBO FISH OIL Total Lived Died...experiments. Funding Support: Geneva Foundation contractor – WRAIR Name: Joseph B. Long, Ph.D. Project Role: Co-Investigator – WRAIR Researcher...Funding Support: Clinical Research Management contractor Name: Andrew B. Batuure Project Role: Technician - WRAIR Researcher Identifier (e.g. ORCID

  11. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Over Pressure on Eye and Brain Visual Processing Centers in Rats

    Science.gov (United States)

    2015-08-01

    CD68 (immune cell infiltration) (Naskar, 2002; Nakazawa, 2006; Bailes , 2010). It would also be interesting to look at chronic time points far beyond...and cGMP-PDE) (Cao, 2001; Nakazawa, 2006; Rapoport, 2008; Bailes , 2010; Haung, 2012). Plasma collected from blasted rats could also be screened for...On 05 August 2015, we received a letter of full rejection, mainly due to minimal outcome measures, subtle neuronal injury effects, and lack of

  12. Visual performance in preterm infants with brain injuries compared with low-risk preterm infants.

    Science.gov (United States)

    Leonhardt, Merçè; Forns, Maria; Calderón, Caterina; Reinoso, Marta; Gargallo, Estrella

    2012-08-01

    Neonatal brain injuries are the main cause of visual deficit produced by damage to posterior visual pathways. While there are several studies of visual function in low-risk preterm infants or older children with brain injuries, research in children of early age is lacking. To assess several aspects of visual function in preterm infants with brain injuries and to compare them with another group of low-risk preterm infants of the same age. Forty-eight preterm infants with brain injuries and 56 low-risk preterm infants. The ML Leonhardt Battery of Optotypes was used to assess visual functions. This test was previously validated at a post-menstrual age of 40 weeks in newborns and at 30-plus weeks in preterm infants. The group of preterm infants with brain lesions showed a delayed pattern of visual functions in alertness, fixation, visual attention and tracking behavior compared to infants in the healthy preterm group. The differences between both groups, in the visual behaviors analyzed were around 30%. These visual functions could be identified from the first weeks of life. Our results confirm the importance of using a straightforward screening test with preterm infants in order to assess altered visual function, especially in infants with brain injuries. The findings also highlight the need to provide visual stimulation very early on in life. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Marrow stromal cells administrated intracisternally to rats after traumatic brain injury migrate into the brain and improve neurological function

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹

    2004-01-01

    @@ Marrow stromal cells(MSCs) have been reported to transplant into injured brain via intravenous or intraarterial or direct intracerebral administration.1-3 In the present study, we observed that MSCs migrated into the brain, survived and diffeneriated into neural cells after they were injected into the cisterna magna of rats, and that the behavior of the rats after traumatic brain injury (TBI) was improved.

  14. Fusogenic properties of Sendai virosome envelopes in rat brain preparations.

    Science.gov (United States)

    de Fiebre, C M; Bryant, S O; Notabartolo, D; Wu, P; Meyer, E M

    1993-10-01

    Sendai virosomes were characterized with respect to their ability to bind to, fuse with, and introduce substances into several rat brain preparations. Encapsulation efficiency for Sendai virosomes was enhanced but binding to cerebral cortical P2 preparations was attenuated by addition of bovine brain phosphatidylcholine during reconstitution. A higher percentage of Sendai virosomes than phosphatidylcholine liposomes appeared to bind to, fuse with and subsequently deliver [14C]sucrose into osmotically labile pools of the P2 preparation. Fusogenic activity was estimated by measuring dequenching of fluorescently labelled N-NBD-phosphatidylethanolamine. More virosomally encapsulated [14C]sucrose was bound to the P2 fraction than introduced into osmotically labile organelles, and the fraction of vesicles undergoing fusion was intermediate between these two values. Non-encapsulated [14C]sucrose did not bind to and was not taken up by the P2 fraction in a quantifiable manner. Virosomal envelopes also bound to primary cultures of rat brain neurons and glia in an apparently saturable manner. Addition of increasing amounts of the adenoassociated virus-derived vector pJDT95 increased encapsulation efficiency, and virosomes reconstituted in the presence of 60 micrograms DNA retained most of their binding activity (5.4% of total label) compared to those containing [14C]sucrose alone (8.4%). These data indicate that Sendai virosomes may be useful in the delivery of substances into brain-derived tissues, potentially for the modulation of gene expression and neurotransmission.

  15. Effects of acupuncture on tissue oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1978-04-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by smypathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture points (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible and was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase in inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes increased brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients.

  16. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    International Nuclear Information System (INIS)

    Habib, Charbel A.; Zheng Weili; Mark Haacke, E.; Webb, Sam; Nichol, Helen

    2010-01-01

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.

  17. Visualization and volumetric structures from MR images of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  18. Influence of histidine on zinc transport into rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto [Shizuoka Univ. (Japan). School of Pharmaceutical Sciences

    2000-06-01

    The brain of rats injected intravenously with {sup 65}Zn-His or {sup 65}ZnCl{sub 2} was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from {sup 65}Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from {sup 65}Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of {sup 65}Zn-His in the brain was similar to that of {sup 65}ZnCl{sub 2} group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the {sup 65}Zn-His group from the blood was higher than that of the {sup 65}ZnCl{sub 2} group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  19. Influence of histidine on zinc transport into rat brain

    International Nuclear Information System (INIS)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto

    2000-01-01

    The brain of rats injected intravenously with 65 Zn-His or 65 ZnCl 2 was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from 65 Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from 65 Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of 65 Zn-His in the brain was similar to that of 65 ZnCl 2 group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the 65 Zn-His group from the blood was higher than that of the 65 ZnCl 2 group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  20. Rapid discrimination of visual scene content in the human brain

    Science.gov (United States)

    Anokhin, Andrey P.; Golosheykin, Simon; Sirevaag, Erik; Kristjansson, Sean; Rohrbaugh, John W.; Heath, Andrew C.

    2007-01-01

    The rapid evaluation of complex visual environments is critical for an organism's adaptation and survival. Previous studies have shown that emotionally significant visual scenes, both pleasant and unpleasant, elicit a larger late positive wave in the event-related brain potential (ERP) than emotionally neutral pictures. The purpose of the present study was to examine whether neuroelectric responses elicited by complex pictures discriminate between specific, biologically relevant contents of the visual scene and to determine how early in the picture processing this discrimination occurs. Subjects (n=264) viewed 55 color slides differing in both scene content and emotional significance. No categorical judgments or responses were required. Consistent with previous studies, we found that emotionally arousing pictures, regardless of their content, produce a larger late positive wave than neutral pictures. However, when pictures were further categorized by content, anterior ERP components in a time window between 200−600 ms following stimulus onset showed a high selectivity for pictures with erotic content compared to other pictures regardless of their emotional valence (pleasant, neutral, and unpleasant) or emotional arousal. The divergence of ERPs elicited by erotic and non-erotic contents started at 185 ms post-stimulus in the fronto-central midline regions, with a later onset in parietal regions. This rapid, selective, and content-specific processing of erotic materials and its dissociation from other pictures (including emotionally positive pictures) suggests the existence of a specialized neural network for prioritized processing of a distinct category of biologically relevant stimuli with high adaptive and evolutionary significance. PMID:16712815

  1. The effect of infectious brain edema on NMDA receptor binding in rat's brain

    International Nuclear Information System (INIS)

    Cheng Guansheng; Chen Jianfang; Chen Xiang

    1997-01-01

    PURPOSE: The effect of the infectious brain edema (IBE) induced by Bordetella Pertussis (BP) on the specific binding of 3 H MK-801 in rat's brain in vivo was determined. METHODS: BP was injected via left internal carotid artery in rat model of infectious brain edema. Male SD rats were divided into three groups: 1) Group control (NS, n = 11); 2) Group IBF (BP, n = 12); 3) Group pretreatment of MK-801 + PB (MK-801, n = 4). Normal saline or BP 0.2 ml/kg was injected into left internal carotid artery in NS and BP group respectively. MK-801 0.5 mg/kg per day was injected i.p. two days before injection of BP in group MK-801. Rats were killed by decapitation at 24 hours after injection of BP. The specific binding of N-methyl-D-aspartate (NMDA) receptor were measured with 3 H-MK-801 in the neuronal membrane of cerebral cortex. The Scatchard plots were performed. RESULTS: The B max values were 0.623 +- 0.082 and 0.606 +- 0.087 pmol/mg protein in group NS and BP respectively (t = 0.48, P>0.05). The Kd values were 43.1 +- 4.2 and 30.5 +- 3.0 nmol/L in group NS and BP respectively (t = 7.8, P<0.05). The specific binding of NMDA receptor was decreased by pretreatment of MK-801. CONCLUSIONS: The total number of NMDA receptor had not changed, whereas its affinity increased significantly in the model of brain edema induced by pertussis bacilli in rat. The increase of affinity of NMDA receptor can be blockaded by MK-801 pretreatment in vivo

  2. Global Proteomic Analysis of Brain Tissues in Transient Ischemia Brain Damage in Rats

    Directory of Open Access Journals (Sweden)

    Jiann-Hwa Chen

    2015-05-01

    Full Text Available Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM and the control rats were separated using two-dimensional gel electrophoresis (2-DE to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT and cathepsin D (CATD, which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2 protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia

  3. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    Science.gov (United States)

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-05-01

    Δ 9 -Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [ 18 F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Speed and accuracy of visual motion discrimination by rats.

    Directory of Open Access Journals (Sweden)

    Pamela Reinagel

    Full Text Available Animals must continuously evaluate sensory information to select the preferable among possible actions in a given context, including the option to wait for more information before committing to another course of action. In experimental sensory decision tasks that replicate these features, reaction time distributions can be informative about the implicit rules by which animals determine when to commit and what to do. We measured reaction times of Long-Evans rats discriminating the direction of motion in a coherent random dot motion stimulus, using a self-paced two-alternative forced-choice (2-AFC reaction time task. Our main findings are: (1 When motion strength was constant across trials, the error trials had shorter reaction times than correct trials; in other words, accuracy increased with response latency. (2 When motion strength was varied in randomly interleaved trials, accuracy increased with motion strength, whereas reaction time decreased. (3 Accuracy increased with reaction time for each motion strength considered separately, and in the interleaved motion strength experiment overall. (4 When stimulus duration was limited, accuracy improved with stimulus duration, whereas reaction time decreased. (5 Accuracy decreased with response latency after stimulus offset. This was the case for each stimulus duration considered separately, and in the interleaved duration experiment overall. We conclude that rats integrate visual evidence over time, but in this task the time of their response is governed more by elapsed time than by a criterion for sufficient evidence.

  5. Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.

    Science.gov (United States)

    Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen

    2014-08-06

    Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.

  6. Visual Restoration after Cataract Surgery Promotes Functional and Structural Brain Recovery

    Directory of Open Access Journals (Sweden)

    Haotian Lin

    2018-04-01

    Full Text Available Background: Visual function and brain function decline concurrently with aging. Notably, cataract patients often present with accelerated age-related decreases in brain function, but the underlying mechanisms are still unclear. Optical structures of the anterior segment of the eyes, such as the lens and cornea, can be readily reconstructed to improve refraction and vision quality. However, the effects of visual restoration on human brain function and structure remain largely unexplored. Methods: A prospective, controlled clinical trial was conducted. Twenty-six patients with bilateral age-related cataracts (ARCs who underwent phacoemulsification and intraocular lens implantation and 26 healthy controls without ARC, matched for age, sex, and education, were recruited. Visual functions (including visual acuity, visual evoke potential, and contrast sensitivity, the Mini-Mental State Examination and functional magnetic resonance imaging (including the fractional amplitude of low-frequency fluctuations and grey matter volume variation were assessed for all the participants and reexamined for ARC patients after cataract surgery. This trial was registered with ClinicalTrials.gov (NCT02644720. Findings: Compared with the healthy controls, the ARC patients presented decreased brain functionality as well as structural alterations in visual and cognitive-related brain areas preoperatively. Three months postoperatively, significant functional improvements were observed in the visual and cognitive-related brain areas of the patients. Six months postoperatively, the patients' grey matter volumes in these areas were significantly increased. Notably, both the function and structure in the visual and cognitive-related brain areas of the patients improved significantly and became comparable to those of the healthy controls 6 months postoperatively. Interpretation: We demonstrated that ocular reconstruction can functionally and structurally reverse cataract

  7. Measurement of tritiated norepinephrine metabolism in intact rat brain

    International Nuclear Information System (INIS)

    Levitt, M.; Kowalik, S.; Barkai, A.I.

    1983-01-01

    A procedure for the study of NE metabolism in the intact rat brain is described. The method involves ventriculocisternal perfusion of the adult male rat with artificial CSF containing [ 3 H]NE. Radioactivity in the perfusate associated with NE and its metabolites 3,4-dihydroxymandelic acid (DOMA), 3,4-dihydroxphenylethyleneglycol (DHPG), 3-methoxy-4-hydroxymandelic acid (VMA), 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), and normetanephrine (NMN) is separated using high-performance liquid chromatography (HPLC). After 80 min the radioactivity in the perfusate reaches an apparent steady-state. Analysis of the steady-state samples shows higher activity in the fractions corresponding to DHPG and MHPG than in those corresponding to DOMA and VMA, confirming glycol formation as the major pathway of NE metabolism in rat brain. Pretreatment with an MAO inhibitor (tranylcypromine) results in a marked decrease in the deaminated metabolites DHPG and MHPG and a concurrent increase in NMN. The results indicate this to be a sensitive procedure for the in vivo determination of changes in NE metabolism. (Auth.)

  8. Networked neuroscience : brain scans and visual knowing at the intersection of atlases and databases

    NARCIS (Netherlands)

    Beaulieu, Anne; de Rijcke, Sarah; Coopmans, Catelijne; Woolgar, Steve

    2014-01-01

    This chapter discusses the development of authoritative collections of brain scans known as “brain atlases”, focusing in particular on how such scans are constituted as authoritative visual objects. Three dimensions are identified: first, brain scans are parts of suites of networked technologies

  9. Quantitative determination of deoxyribonucleic acid in rat brain

    Science.gov (United States)

    Penn, N. W.; Suwalski, R.

    1969-01-01

    1. A procedure is given for spectrophotometric analysis of rat brain DNA after its resolution into component bases. Amounts of tissue in the range 50–100mg. can be used. 2. The amount of DNA obtained by the present method is 80% greater than that reported for rat brain by a previous procedure specific for DNA thymine. Identity of the material is established by the base ratios of purines and pyrimidines. The features responsible for the higher yield are the presence of dioxan during alkaline hydrolysis of tissue, the determination of the optimum concentration of potassium hydroxide in this step and omission of organic washes of the initial acid-precipitated residues. 3. The requirement for dioxan during alkaline hydrolysis suggests a possible association of brain DNA with lipid. The concentration of potassium hydroxide that gives maximum yield is 0·1m, indicating that there may be internucleotide linkages in this DNA that are more sensitive to alkali than those of liver or thymus DNA. 4. This procedure gives low yields of DNA from liver. It is not suitable for analysis of the DNA from this tissue. PMID:5353529

  10. The Brain and Learning: Examining the Connection between Brain Activity, Spatial Intelligence, and Learning Outcomes in Online Visual Instruction

    Science.gov (United States)

    Lee, Hyangsook

    2013-01-01

    The purpose of the study was to compare 2D and 3D visual presentation styles, both still frame and animation, on subjects' brain activity measured by the amplitude of EEG alpha wave and on their recall to see if alpha power and recall differ significantly by depth and movement of visual presentation style and by spatial intelligence. In addition,…

  11. Hyperthyroidism differentially regulates neuropeptide S system in the rat brain.

    Science.gov (United States)

    González, Carmen R; Martínez de Morentin, Pablo B; Martínez-Sánchez, Noelia; Gómez-Díaz, Consuelo; Lage, Ricardo; Varela, Luis; Diéguez, Carlos; Nogueiras, Rubén; Castaño, Justo P; López, Miguel

    2012-04-23

    Thyroid hormones play an important role in the regulation of energy balance, sleep and emotional behaviors. Neuropeptide S (NPS) is a recently discovered neuropeptide, regulating feeding, sleep and anxiety. Here, we examined the effect of hyperthyroidism on the gene and protein expression of neuropeptide S and its receptor (NPS-R) in the hypothalamus, brainstem and amygdala of rats. Our results showed that the expression of NPS and NPS-R was differentially modulated by hyperthyroidism in the rat brain. NPS and NPS-R mRNA and protein levels were decreased in the hypothalamus of hyperthyroid rats. Conversely NPS-R expression was highly increased in the brainstem and NPS and NPS-R expression were unchanged in the amygdala of these rats. These data suggest that changes in anxiety and food intake patterns observed in hyperthyroidism could be associated with changes in the expression of NPS and NPS-R. Thus, the NPS/NPS-R system may be involved in several hyperthyroidism-associated comorbidities. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The in vivo phosphorylation sites of rat brain dynamin I

    DEFF Research Database (Denmark)

    Graham, Mark E; Anggono, Victor; Bache, Nicolai

    2007-01-01

    -824). To resolve the discrepancy and to better understand the biological roles of dynI phosphorylation, we undertook a systematic identification of all phosphorylation sites in rat brain nerve terminal dynI. Using phosphoamino acid analysis, exclusively phospho-serine residues were found. Thr(780) phosphorylation...... of their relative abundance and relative responses to depolarization. The multiple phospho-sites suggest subtle regulation of synaptic vesicle endocytosis by new protein kinases and new protein-protein interactions. The homologous dynI and dynIII phosphorylation indicates a high mechanistic similarity. The results...

  13. Neuronal Rat Brain Damage Caused by Endogenous and Exogenous Hyperthermia

    Directory of Open Access Journals (Sweden)

    Mustafa Aydın

    2012-03-01

    Full Text Available OBJECTIVE: Hyperthermia may induce pathologic alterations within body systems and organs including brain. In this study, neuronal effects of endogenous and exogenous hyperthermia (41°C were studied in rats. METHODS: The endogenous hyperthermia (41°C was induced by lipopolysaccharide and the exogenous by an (electric heater. Possible neuronal damage was evaluated by examining healthy, apoptotic and necrotic cells, and heat shock proteins (HSP 27, HSP 70 in the cerebral cortex, cerebellum and hypothalamus RESULTS: At cellular level, when all neuronal tissues are taken into account; (i a significant increase in the necrotic cells was observed in the both groups (p0.05. CONCLUSION: The neural tissue of brain can show different degree of response to hyperthermia. But we can conclude that endogenous hyperthermia is more harmful to central nervous system than exogenous hyperthermia

  14. Brain plasticity of rats exposed to prenatal immobilization stress

    Directory of Open Access Journals (Sweden)

    Badalyan B. Yu.

    2011-10-01

    Full Text Available Aim. This histochemical and immunohistochemical study was aimed at examining the brain cellular structures of newborn rats exposed to prenatal immobilization (IMO stress. Methods. Histochemical method on detection of Ca2+-dependent acid phosphatase activity and ABC immunohistochemical technique. Results. Cell structures with radial astrocytes marker GFAP, neuroepithelial stem cell marker gene nestin, stem-cells marker and the hypothalamic neuroprotective proline-rich polypeptide PRP-1 (Galarmin, a natural cytokine of a common precursor to neurophysin vasopressin associated glycoprotein have been revealed in several brain regions. Conclusions. Our findings indicate the process of generation of new neurons in response to IMO and PRP-1 involvement in this recovery mechanism, as PRP-1-Ir was detected in the above mentioned cell structures, as well as in the neurons and nerve fibers.

  15. Incidence of brain tumours in rats exposed to an aerosol of 239PuO2

    International Nuclear Information System (INIS)

    Sanders, C.L.; Dagle, G.E.; Mahaffey, J.A.

    1992-01-01

    Incidence of brain tumours was investigated in 3390 female and male Wistar rats exposed to an aerosol of 239 PuO 2 , or as sham-exposed controls. Lung doses ranged from 0.05 to 22 Gy. In females, six brain tumours were found in 1058 control rats (incidence, 0.6%) and 24 brain tumours in 2134 rats exposed to Pu (incidence, 1.1%); the survival-adjusted level of significance was p = 0.29 for comparing control with exposed females. In males, two brain tumours were found in 60 control rats (incidence, 3.3%) and seven brain tumours in 138 rats exposed to Pu (incidence, 5.1%); the survival-adjusted level of significance was p = 0.33. Brain tumour incidence was about five times greater in male than in female rats (p = 0.0001), a highly significant sex difference in brain tumour incidence. Tumour types were distributed similarly among control and Pu-exposed groups of both sexes; most were astrocytomas. Mean lifespans for rats with brain tumours were not significantly different between control and Pu-exposed rats. (author)

  16. Performance of brain-damaged, schizophrenic, and normal subjects on a visual searching task.

    Science.gov (United States)

    Goldstein, G; Kyc, F

    1978-06-01

    Goldstein, Rennick, Welch, and Shelly (1973) reported on a visual searching task that generated 94.1% correct classifications when comparing brain-damaged and normal subjects, and 79.4% correct classifications when comparing brain-damaged and psychiatric patients. In the present study, representing a partial cross-validation with some modification of the test procedure, comparisons were made between brain-damaged and schizophrenic, and brain-damaged and normal subjects. There were 92.5% correct classifications for the brain-damaged vs normal comparison, and 82.5% correct classifications for the brain-damaged vs schizophrenic comparison.

  17. Development of I-123-labeled amines for brain studies: localization of I-123 iodophenylalkyl amines in rat brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Baldwin, R.M.; Lin, T.H.

    1980-01-01

    Localization in rat brain of forty iodophenylalkyl amines labeled with I-123 was evaluated in an attempt to develop I-123-labeled amines useful for brain studies. For the amines studied, the highest activity in brain and the brain-to-blood activity ratios ranked p > m > o as related to iodine position on the benzene ring: for alkyl groups the rank order was α-methylethyl > ethyl > methyl > none; for N additions it was single lipophilic group > H > two lipophilic groups. It is suggested that introduction of a halogen into the ring structure of many amines results in greater concentration of the agent in brain than is seen with the nonhalogenated parent compound. The agent N-isopropyl-p-iodoamphetamine was chosen for further study because, in the rat, it showed high brain activity (1.57%/g) and brain-blood ratio (12.6) at 5 min

  18. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  19. Evidence for a zinc/proton antiporter in rat brain.

    Science.gov (United States)

    Colvin, R A; Davis, N; Nipper, R W; Carter, P A

    2000-05-01

    The data presented in this paper are consistent with the existence of a plasma membrane zinc/proton antiport activity in rat brain. Experiments were performed using purified plasma membrane vesicles isolated from whole rat brain. Incubating vesicles in the presence of various concentrations of 65Zn2+ resulted in a rapid accumulation of 65Zn2+. Hill plot analysis demonstrated a lack of cooperativity in zinc activation of 65Zn2+ uptake. Zinc uptake was inhibited in the presence of 1 mM Ni2+, Cd2+, or CO2+. Calcium (1 mM) was less effective at inhibiting 65Zn2+ uptake and Mg2+ and Mn2+ had no effect. The initial rate of vesicular 65Zn2+ uptake was inhibited by increasing extravesicular H+ concentration. Vesicles preloaded with 65Zn2+ could be induced to release 65Zn2+ by increasing extravesicular H+ or addition of 1 mM nonradioactive Zn2+. Hill plot analysis showed a lack of cooperativity in H+ activation of 65Zn2+ release. Based on the Hill analyses, the stoichiometry of transport may include Zn2+/Zn2+ exchange and Zn2+/H+ antiport, the latter being potentially electrogenic. Zinc/proton antiport may be an important mode of zinc uptake into neurons and contribute to the reuptake of zinc to replenish presynaptic vesicle stores after stimulation.

  20. Tartrazine induced neurobiochemical alterations in rat brain sub-regions.

    Science.gov (United States)

    Bhatt, Diksha; Vyas, Krati; Singh, Shakuntala; John, P J; Soni, Inderpal

    2018-03-01

    Tartrazine is a synthetic lemon yellow azo dye primarily used as a food coloring. The present study aimed to screen the neurobiochemical effects of Tartrazine in Wistar rats after administering the Acceptable Daily Intake (ADI) level. Tartrazine (7.5 mg/kg b.w.) was administered to 21 day old weanling rats through oral gavage once daily for 40 consecutive days. On 41st day, the animals were sacrificed and brain sub regions namely, frontal cortex, corpus striatum, hippocampus and cerebellum were used to determine activities of anti-oxidant enzymes viz. Superoxide Dismutase (SOD), Catalase (CAT), Glutathione-Stransferase (GST), Glutathione Reductase (GR) and Glutathione Peroxidase (GPx) and levels of lipid peroxides using Thio-barbituric Acid Reactive Substance (TBARS) assay. Our investigation showed a significant decrease in SOD and CAT activity, whereas there occurred a decline in GST and GR activity with an increase in GPx activity to counteract the oxidative damage caused by significantly increased levels of lipid peroxides. The possible mechanism of this oxidative damage might be attributed to the production of sulphanilc acid as a metabolite in azofission of tartrazine. It may be concluded that the ADI levels of food azo dyes adversely affect and alter biochemical markers of brain tissue and cause oxidative damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Assessment of brain damage in a geriatric population through use of a visual-searching task.

    Science.gov (United States)

    Turbiner, M; Derman, R M

    1980-04-01

    This study was designed to assess the discriminative capacity of a visual-searching task for brain damage, as described by Goldstein and Kyc (1978), for 10 hospitalized male, brain-damaged patients, 10 hospitalized male schizophrenic patients, and 10 normal subjects in a control group, all of whom were approximately 65 yr. old. The derived data indicated, at a statistically significant level, that the visual-searching task was effective in successfully classifying 80% of the brain-damaged sample when compared to the schizophrenic patients and discriminating 90% of the brain-damaged patients from normal subjects.

  2. Induction by mercury compounds of brain metallothionein in rats: Hg{sup 0} exposure induces long-lived brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira; Nakano, Atsuhiro [Biochemistry Section, National Institute for Minamata Disease, Kumamoto (Japan); Hirayama, Kimiko [Kumamoto University, College of Medical Science (Japan)

    1998-03-01

    Metallothionein (MT) is one of the stress proteins which can easily be induced by various kind of heavy metals. However, MT in the brain is difficult to induce because of blood-brain barrier impermeability to most heavy metals. In this paper, we have attempted to induce brain MT in rats by exposure to methylmercury (MeHg) or metallic mercury vapor, both of which are known to penetrate the blood-brain barrier and cause neurological damage. Rats treated with MeHg (40 {mu}mol/kg per day x 5 days, p.o.) showed brain Hg levels as high as 18 {mu}g/g with slight neurological signs 10 days after final administration, but brain MT levels remained unchanged. However, rats exposed to Hg vapor for 7 days showed 7-8 {mu}g Hg/g brain tissue 24 h after cessation of exposure. At that time brain MT levels were about twice the control levels. Although brain Hg levels fell gradually with a half-life of 26 days, MT levels induced by Hg exposure remained unchanged for >2 weeks. Gel fractionation revealed that most Hg was in the brain cytosol fraction and thus bound to MT. Hybridization analysis showed that, despite a significant increase in MT-I and -II mRNA in brain, MT-III mRNA was less affected. Although significant Hg accumulation and MT induction were observed also in kidney and liver of Hg vapor-exposed rats, these decreased more quickly than in brain. The long-lived MT in brain might at least partly be accounted for by longer half-life of Hg accumulated there. The present results showed that exposure to Hg vapor might be a suitable procedure to provide an in vivo model with enhanced brain MT. (orig.) With 4 figs., 1 tab., 27 refs.

  3. Visual spatial memory is enhanced in female rats (but inhibited in males by dietary soy phytoestrogens

    Directory of Open Access Journals (Sweden)

    Setchell Kenneth DR

    2001-12-01

    Full Text Available Abstract Background In learning and memory tasks, requiring visual spatial memory (VSM, males exhibit superior performance to females (a difference attributed to the hormonal influence of estrogen. This study examined the influence of phytoestrogens (estrogen-like plant compounds on VSM, utilizing radial arm-maze methods to examine varying aspects of memory. Additionally, brain phytoestrogen, calbindin (CALB, and cyclooxygenase-2 (COX-2 levels were determined. Results Female rats receiving lifelong exposure to a high-phytoestrogen containing diet (Phyto-600 acquired the maze faster than females fed a phytoestrogen-free diet (Phyto-free; in males the opposite diet effect was identified. In a separate experiment, at 80 days-of-age, animals fed the Phyto-600 diet lifelong either remained on the Phyto-600 or were changed to the Phyto-free diet until 120 days-of-age. Following the diet change Phyto-600 females outperformed females switched to the Phyto-free diet, while in males the opposite diet effect was identified. Furthermore, males fed the Phyto-600 diet had significantly higher phytoestrogen concentrations in a number of brain regions (frontal cortex, amygdala & cerebellum; in frontal cortex, expression of CALB (a neuroprotective calcium-binding protein decreased while COX-2 (an inducible inflammatory factor prevalent in Alzheimer's disease increased. Conclusions Results suggest that dietary phytoestrogens significantly sex-reversed the normal sexually dimorphic expression of VSM. Specifically, in tasks requiring the use of reference, but not working, memory, VSM was enhanced in females fed the Phyto-600 diet, whereas, in males VSM was inhibited by the same diet. These findings suggest that dietary soy derived phytoestrogens can influence learning and memory and alter the expression of proteins involved in neural protection and inflammation in rats.

  4. Assessment the Plasticity of Cortical Brain Theory through Visual Memory in Deaf and Normal Students

    Directory of Open Access Journals (Sweden)

    Ali Ghanaee-Chamanabad

    2012-10-01

    Full Text Available Background: The main aim of this research was to assess the differences of visual memory in deaf and normal students according to plasticity of cortical brain.Materials and Methods: This is an ex-post factor research. Benton visual test was performed by two different ways on 46 students of primary school. (22 deaf and 24 normal students. The t-student was used to analysis the data. Results: The visual memory in deaf students was significantly higher than the similar normal students (not deaf.While the action of visual memory in deaf girls was risen in comparison to normal girls in both ways, the deaf boys presented the better action in just one way of the two performances of Benton visual memory test.Conclusion: The action of plasticity of brain shows that the brain of an adult is dynamic and there are some changes in it. This brain plasticity has not limited to sensory somatic systems. Therefore according to plasticity of cortical brain theory, the deaf students due to the defect of hearing have increased the visual the visual inputs which developed the procedural visual memory.

  5. The iconic memory skills of brain injury survivors and non-brain injured controls after visual scanning training.

    Science.gov (United States)

    McClure, J T; Browning, R T; Vantrease, C M; Bittle, S T

    1994-01-01

    Previous research suggests that traumatic brain injury (TBI) results in impairment of iconic memory abilities.We would like to acknowledge the contribution of Jeffrey D. Vantrease, who wrote the software program for the Iconic Memory procedure and measurement. This raises serious implications for brain injury rehabilitation. Most cognitive rehabilitation programs do not include iconic memory training. Instead it is common for cognitive rehabilitation programs to focus on attention and concentration skills, memory skills, and visual scanning skills.This study compared the iconic memory skills of brain-injury survivors and control subjects who all reached criterion levels of visual scanning skills. This involved previous training for the brain-injury survivors using popular visual scanning programs that allowed them to visually scan with response time and accuracy within normal limits. Control subjects required only minimal training to reach normal limits criteria. This comparison allows for the dissociation of visual scanning skills and iconic memory skills.The results are discussed in terms of their implications for cognitive rehabilitation and the relationship between visual scanning training and iconic memory skills.

  6. Early inflammatory response in rat brain after peripheral thermal injury.

    Science.gov (United States)

    Reyes, Raul; Wu, Yimin; Lai, Qin; Mrizek, Michael; Berger, Jamie; Jimenez, David F; Barone, Constance M; Ding, Yuchuan

    2006-10-16

    Previous studies have shown that the cerebral complications associated with skin burn victims are correlated with brain damage. The aim of this study was to determine whether systemic thermal injury induces inflammatory responses in the brain. Sprague Dawley rats (n=28) were studied in thermal injury and control groups. Animals from the thermal injury (n=14) and control (n=14) group were anesthetized and submerged to the neck vertically in 85 degrees C water for 6 s producing a third degree burn affecting 60-70% of the animal body surface area. The controls were submerged in 37 degrees C water for 6 s. Early expression of tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), and intracellular cell adhesion molecules (ICAM-1) protein levels in serum were determined at 3 (n=7) and 7 h (n=7) by enzyme-linked immunoabsorbent assay (ELISA). mRNA of TNF-alpha, IL-1beta, and ICAM-1 in the brain was measured at the same time points with a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). An equal animal number was used for controls. Systemic inflammatory responses were demonstrated by dramatic up-regulations (5-50 fold) of TNF-alpha, IL-1beta, and ICAM-1 protein level in serum at 7 h after the thermal injury. However, as early as 3 h after peripheral thermal injury, a significant increase (3-15 fold) in mRNA expression of TNF-alpha, IL-1beta and ICAM-1 was observed in brain homogenates, with increased levels remaining at 7 h after injury. This study demonstrated an early inflammatory response in the brain after severe peripheral thermal injury. The cerebral inflammatory reaction was associated with expression of systemic cytokines and an adhesion molecule.

  7. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Bodsch, W; Huerter, T; Hossmann, K A [Max-Planck-Institut fuer Hirnforschung, Koeln (Germany, F.R.). Forschungsstelle fuer Hirnkreislauf-Forschung

    1982-10-07

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema.

  8. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    International Nuclear Information System (INIS)

    Bodsch, W.; Huerter, T.; Hossmann, K.-A.

    1982-01-01

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema. (Auth.)

  9. Reduction in brain immunoreactive corticotropin-releasing factor (CRF) in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hashimoto, K.; Hattori, T.; Murakami, K.; Suemaru, S.; Kawada, Y.; Kageyama, J.; Ota, Z.

    1985-01-01

    The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125 I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neurointermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR

  10. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Periyasamy, S.; Hoss, W. (Univ. of Toledo, OH (USA))

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  11. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    Science.gov (United States)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  12. [Measurement of the blood flow in various areas of the rat brain by means of microspheres].

    Science.gov (United States)

    Deroo, J; Gerber, G B

    1976-01-01

    A method is described to measure regional blood flow in different structures of the rat brain. Microspheres (15 micron) are injected, the brain is sectioned, stained for myeline, radioautographs are prepared and the microspheres in the different structures are counted. The values obtained for different brain structures are counted. The values obtained for different brain regions (cortex, corpus callosum, thalamus hipocampus, hypothalamic region, colliculi, cerebellum, pons, medulla) compare well with those published by others on larger animals. In rats fed 1% of lead from birth, higher blood flow is found in the cortex and a lower one in the interior part of the brain compared to controls.

  13. Object similarity affects the perceptual strategy underlying invariant visual object recognition in rats

    Directory of Open Access Journals (Sweden)

    Federica Bianca Rosselli

    2015-03-01

    Full Text Available In recent years, a number of studies have explored the possible use of rats as models of high-level visual functions. One central question at the root of such an investigation is to understand whether rat object vision relies on the processing of visual shape features or, rather, on lower-order image properties (e.g., overall brightness. In a recent study, we have shown that rats are capable of extracting multiple features of an object that are diagnostic of its identity, at least when those features are, structure-wise, distinct enough to be parsed by the rat visual system. In the present study, we have assessed the impact of object structure on rat perceptual strategy. We trained rats to discriminate between two structurally similar objects, and compared their recognition strategies with those reported in our previous study. We found that, under conditions of lower stimulus discriminability, rat visual discrimination strategy becomes more view-dependent and subject-dependent. Rats were still able to recognize the target objects, in a way that was largely tolerant (i.e., invariant to object transformation; however, the larger structural and pixel-wise similarity affected the way objects were processed. Compared to the findings of our previous study, the patterns of diagnostic features were: i smaller and more scattered; ii only partially preserved across object views; and iii only partially reproducible across rats. On the other hand, rats were still found to adopt a multi-featural processing strategy and to make use of part of the optimal discriminatory information afforded by the two objects. Our findings suggest that, as in humans, rat invariant recognition can flexibly rely on either view-invariant representations of distinctive object features or view-specific object representations, acquired through learning.

  14. Dynamics of pathomorphological changes in rat brain as a function of γ-radiation dose

    International Nuclear Information System (INIS)

    Fedorov, V.P.

    1990-01-01

    Neurohistological, histochemical, electron-microscopic and biometric techniques were used to study the response of rat brain to irradiation within a wide range of doses. Nerve cells were shown to be highly radioresistant. At the same time, synapses and blood-brain barrier structures were highly radiosensitive. The pathomorphologic changes in different brain areas followed a dose-time function

  15. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  16. A wireless beta-microprobe based on pixelated silicon for in vivo brain studies in freely moving rats

    Science.gov (United States)

    Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.

    2013-07-01

    The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.

  17. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Science.gov (United States)

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  18. Tracing Trajectories of Audio-Visual Learning in the Infant Brain

    Science.gov (United States)

    Kersey, Alyssa J.; Emberson, Lauren L.

    2017-01-01

    Although infants begin learning about their environment before they are born, little is known about how the infant brain changes during learning. Here, we take the initial steps in documenting how the neural responses in the brain change as infants learn to associate audio and visual stimuli. Using functional near-infrared spectroscopy (fNRIS) to…

  19. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation

    International Nuclear Information System (INIS)

    Akiyama, Katsuhiko; Tanaka, Ryuichi; Sato, Mitsuya; Takeda, Norio

    2001-01-01

    Cognitive dysfunction and histological changes in the brain were investigated following irradiation in 20 Fischer 344 rats aged 6 months treated with whole brain irradiation (WBR) (25 Gy/single dose), and compared with the same number of sham-irradiated rats as controls. Performance of the Morris water maze task and the passive avoidance task were examined one year after WBR. Finally, histological and immunohistochemical examinations using antibodies to myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and neurofilament (NF) were performed of the rat brains. The irradiated rats continued to gain weight 7 months after WBR whereas the control rats stopped gaining weight. Cognitive functions in both the water maze task and the passive avoidance task were lower in the irradiated rats than in the control rats. Brain damage consisting of demyelination only or with necrosis was found mainly in the body of the corpus callosum and the parietal white matter near the corpus callosum in the irradiated rats. Immunohistochemical examination of the brains without necrosis found MBP-positive fibers were markedly decreased in the affected areas by irradiation; NF-positive fibers were moderately decreased and irregularly dispersed in various shapes in the affected areas; and GFAP-positive fibers were increased, with gliosis in those areas. These findings are similar to those in clinically accelerated brain aging in conditions such as Alzheimer's disease, Binswanger's disease, and multiple sclerosis. (author)

  20. Visualization of venous vessels in cerebral arteriograms in various types of brain strokes

    International Nuclear Information System (INIS)

    Kruszewska, J.; Trzebicki, J.; Binkiewicz, M.

    1982-01-01

    1468 internal carotin angiograms including 945 performed in patients with strokes and 523 with brain tumours were analysed. Three phases were evaluated: arterial, middle and venous, directing attention to brain venous system filling in the arterial phase. Carotid arteriography carried out within 14 days after stroke onset visualizes early filling of the veins and this sign may be helpful in localizing the site brain damage. (author)

  1. Multi-signal Visualization of Physiology (MVP): a novel visualization dashboard for physiological monitoring of Traumatic Brain Injury patients.

    Science.gov (United States)

    Sebastian, Kevin; Sari, Vivian; Loy, Liang Yu; Zhang, Feng; Zhang, Zhuo; Feng, Mengling

    2012-01-01

    To prevent Traumatic Brain Injury (TBI) patients from secondary brain injuries, patients' physiological readings are continuously monitored. However, the visualization dashboards of most existing monitoring devices cannot effectively present all physiological information of TBI patients and are also ineffective in facilitating neuro-clinicians for fast and accurate diagnosis. To address these shortcomings, we proposed a new visualization dashboard, namely the Multi-signal Visualization of Physiology (MVP). MVP makes use of multi-signal polygram to collate various physiological signals, and it also utilizes colors and the concept of "safe/danger zones" to assist neuro-clinicians to achieve fast and accurate diagnosis. Moreover, MVP allows neuro-clinicians to review historical physiological statuses of TBI patients, which can guide and optimize clinicians' diagnosis and prognosis decisions. The performance of MVP is tested and justified with an actual Philips monitoring device.

  2. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  3. Decreased α1-adrenergic receptor-mediated inositide hydrolysis in neurons from hypertensive rat brain

    International Nuclear Information System (INIS)

    Feldstein, J.B.; Gonzales, R.A.; Baker, S.P.; Sumners, C.; Crews, F.T.; Raizada, M.K.

    1986-01-01

    The expression of α 1 -adrenergic receptors and norepinephrine (NE)-stimulated hydrolysis of inositol phospholipid has been studied in neuronal cultures from the brains of normotensive (Wistar-Kyoto, WKY) and spontaneously hypertensive (SH) rats. Binding of 125 I-1-[β-(4-hydroxyphenyl)-ethyl-aminomethyl] tetralone (HEAT) to neuronal membranes was 68-85% specific and was rapid. Competition-inhibition experiments with various agonists and antagonists suggested that 125 I-HEAT bound selectively to α 1 -adrenergic receptors. Specific binding of 125 I-HEAT to neuronal membranes from SH rat brain cultures was 30-45% higher compared with binding in WKY normotensive controls. This increase was attributed to an increase in the number of α 1 -adrenergic receptors on SH rat brain neurons. Incubation of neuronal cultures of rat brain from both strains with NE resulted in a concentration-dependent stimulation of release of inositol phosphates, although neurons from SH rat brains were 40% less responsive compared with WKY controls. The decrease in responsiveness of SH rat brain neurons to NE, even though the α 1 -adrenergic receptors are increased, does not appear to be due to a general defect in membrane receptors and postreceptor signal transduction mechanisms. This is because neither the number of muscarinic-cholinergic receptors nor the carbachol-stimulated release of inositol phosphates is different in neuronal cultures from the brains of SH rats compared with neuronal cultures from the brains of WKY rats. These observations suggest that the increased expression of α 1 -adrenergic receptors does not parallel the receptor-mediated inositol phosphate hydrolysis in neuronal cultures from SH rat brain

  4. Caspase Activation in Fetal Rat Brain Following Experimental Intrauterine Inflammation

    Science.gov (United States)

    Sharangpani, Aditi; Takanohashi, Asako; Bell, Michael J.

    2009-01-01

    Intrauterine inflammation has been implicated in developmental brain injuries, including the development of periventricular leukomalacia (PVL) and cerebral palsy (CP). Previous studies in our rat model of intrauterine inflammation demonstrated apoptotic cell death in fetal brains within the first 5 days after lipopolysaccharide (LPS) administration to mothers and eventual dysmyelination. Cysteine-containing, aspartate-specific proteases, or caspases, are proteins involved with apoptosis through both intracellular (intrinsic pathway) and extracellular (extrinsic pathway) mechanisms. We hypothesized that cell death in our model would occur mainly via activation of the extrinsic pathway. We further hypothesized that Fas, a member of the tumor necrosis factor receptor (TNFR) superfamily, would be increased and the death inducing signaling complex (DISC) would be detectable. Pregnant rats were injected intracervically with LPS at E15 and immunoblotting, immunohistochemical and immunoprecipitation analyses were performed. The presence of the activated form of the effector caspase (caspase-3) was observed 24 h after LPS administration. Caspase activity assays demonstrated rapid increases in (i) caspases-9 and -10 within 1 h, (ii) caspase-8 at 2 h and (iii) caspase-3 at 4 h. At 24 h after LPS, activated caspase-3+/Fas+ cells were observed within the developing white matter. Lastly, the DISC complex (caspase-8, Fas and Fas-associated Death Domain (FADD)) was observed within 30 min by immunoprecipitation. Apoptosis in our model occurs via both extrinsic and intrinsic pathways, and activation of Fas may play a role. Understanding the mechanisms of cell death in models of intrauterine inflammation may affect development of future strategies to mitigate these injuries in children. PMID:18289516

  5. Optimal spatiotemporal representation of multichannel EEG for recognition of brain states associated with distinct visual stimulus

    Science.gov (United States)

    Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2018-04-01

    In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.

  6. Impact of benzodiazepines on brain FDG-PET quantification after single-dose and chronic administration in rats

    International Nuclear Information System (INIS)

    Silva-Rodríguez, Jesús; García-Varela, Lara; López-Arias, Esteban; Domínguez-Prado, Inés; Cortés, Julia; Pardo-Montero, Juan; Fernández-Ferreiro, Anxo

    2016-01-01

    Introduction: Current guidelines for brain PET imaging advice against the injection of diazepam prior to brain FDG-PET examination in order to avoid possible interactions of benzodiazepines with the radiotracer uptake. Nevertheless, many patients undergoing PET studies are likely to be under chronic treatment with benzodiazepines, for example due to the use of different medications such as sleeping pills. Animal studies may provide an extensive and accurate estimation of the effect of benzodiazepines on brain metabolism in a well-defined and controlled framework. Aim: This study aims at evaluating the impact of benzodiazepines on brain FDG uptake after single-dose administration and chronic treatment in rats. Methods: Twelve Sprague–Dawley healthy rats were randomly divided into two groups, one treated with diazepam and the other used as control group. Both groups underwent PET/CT examinations after single-dose and chronic administration of diazepam (treated) or saline (controls) during twenty-eight days. Different atlas-based quantification methods were used to explore differences on the total uptake and uptake patterns of FDG between both groups. Results: Our analysis revealed a significant reduction of global FDG uptake after acute (−16.2%) and chronic (−23.2%) administration of diazepam. Moreover, a strong trend pointing to differences between acute and chronic administrations (p < 0.08) was also observed. Uptake levels returned to normal after interrupting the administration of diazepam. On the other hand, patterns of FDG uptake were not affected by the administration of diazepam. Conclusions: The administration of diazepam causes a progressive decrease of the FDG global uptake in the rat brain, but it does not change local patterns within the brain. Under these conditions, visual assessment and quantification methods based on regional differences such as asymmetry indexes or SPM statistical analysis would still be valid when administrating this

  7. Attention versus consciousness in the visual brain: differences in conception, phenomenology, behavior, neuroanatomy, and physiology.

    Science.gov (United States)

    Baars, B J

    1999-07-01

    A common confound between consciousness and attention makes it difficult to think clearly about recent advances in the understanding of the visual brain. Visual consciousness involves phenomenal experience of the visual world, but visual attention is more plausibly treated as a function that selects and maintains the selection of potential conscious contents, often unconsciously. In the same sense, eye movements select conscious visual events, which are not the same as conscious visual experience. According to common sense, visual experience is consciousness, and selective processes are labeled as attention. The distinction is reflected in very different behavioral measures and in very different brain anatomy and physiology. Visual consciousness tends to be associated with the "what" stream of visual feature neurons in the ventral temporal lobe. In contrast, attentional selection and maintenance are mediated by other brain regions, ranging from superior colliculi to thalamus, prefrontal cortex, and anterior cingulate. The author applied the common-sense distinction between attention and consciousness to the theoretical positions of M. I. Posner (1992, 1994) and D. LaBerge (1997, 1998) to show how it helps to clarify the evidence. He concluded that clarity of thought is served by calling a thing by its proper name.

  8. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).

    Science.gov (United States)

    Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan

    2017-01-01

    A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.

  9. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Science.gov (United States)

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  10. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats

    DEFF Research Database (Denmark)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne

    2014-01-01

    , and aspartate and incorporation of (15)NH4(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation...... of (15)NH4(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH4(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined...

  11. The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinsons disease rats

    OpenAIRE

    Chen, Yuan; Lian, Yajun; Ma, Yunqing; Wu, Chuanjie; Zheng, Yake; Xie, Nanchang

    2017-01-01

    The expression and significance of tyrosine hydroxylase (TH) in brain tissue of rats with Parkinson's disease (PD) were explored and analyzed. A total of 120 clean-grade and healthy adult Wistar rats weighing 180–240 g were randomly divided equally into four groups according to the random number table method. Rats were sacrificed before and after the model establishment for 3, 6 or 8 weeks. The number of revolutions in rats was observed and the relative expression of TH mRNA in brain tissue w...

  12. The colorful brain: Visualization of EEG background patterns

    NARCIS (Netherlands)

    van Putten, Michel Johannes Antonius Maria

    2008-01-01

    This article presents a method to transform routine clinical EEG recordings to an alternative visual domain. The method is intended to support the classic visual interpretation of the EEG background pattern and to facilitate communication about relevant EEG characteristics. In addition, it provides

  13. COSFIRE : A Brain-Inspired Approach to Visual Pattern Recognition

    NARCIS (Netherlands)

    Azzopardi, G.; Petkov, N.

    2014-01-01

    The primate visual system has an impressive ability to generalize and to discriminate between numerous objects and it is robust to many geometrical transformations as well as lighting conditions. The study of the visual system has been an active reasearch field in neuropysiology for more than half a

  14. COSFIRE : A brain-inspired approach to visual pattern recognition

    NARCIS (Netherlands)

    Azzopardi, George; Petkov, Nicolai; Grandinetti, Lucio; Lippert, Thomas; Petkov, Nicolai

    2014-01-01

    The primate visual system has an impressive ability to generalize and to discriminate between numerous objects and it is robust to many geometrical transformations as well as lighting conditions. The study of the visual system has been an active reasearch field in neuropysiology for more than half a

  15. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Therapist-Assisted Rehabilitation of Visual Function and Hemianopia after Brain Injury

    DEFF Research Database (Denmark)

    Rasmussen, Rune Skovgaard; Schaarup, Anne Marie Heltoft; Overgaard, Karsten

    2018-01-01

    to a small extent during the first month after brain damage, and therefore the time window for spontaneous improvements is limited. One month after brain injury causing visual impairment, patients usually will experience chronically impaired vision and the need for compensatory vision rehabilitation...... is substantial. OBJECTIVE: The purpose of this study is to investigate whether rehabilitation with Neuro Vision Technology will result in a significant and lasting improvement in functional capacity in persons with chronic visual impairments after brain injury. Improving eyesight is expected to increase both...... physical and mental functioning, thus improving the quality of life. METHODS: This is a prospective open label trial in which participants with chronic visual field impairments are examined before and after the intervention. Participants typically suffer from stroke or traumatic brain injury...

  17. [Expression of c-jun protein after experimental rat brain concussion].

    Science.gov (United States)

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  18. Effect of ethanol on enkephalinergic opioid system of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Belyayev, N.A.; Balakireva, N.N.; Brusov, O.S.; Panchenko, L.F.

    1983-10-13

    Specific binding of /sup 3/H-morphine and /sup 3/H-(D-Ala/sup 2/, D-Leu/sup 5/)-enkephalin (H-EN) with opiatic receptors was studied on white rats along with the content of Met- and Leu-enkephalin and the activity of enkephalinase in various brain segments after single dose (20% solution in 0.9% NaCl, IP; 1.5-4.5 g/kg body weight) and chronic injection (20% EtOH substituted for drinking water) of ethanol. The single injection of EtOH (1.5-4.5 g/kg) resulted in a depression of the specific binding of H-EN with opiate receptors. Doses of 1.5 and 2.5 g/kg led to a lower content of Leu-enkephalin in mid-brain but to an increase of Met-enkephalin; the 4.5 g/kg dose had no effect on the striatum. With chronic administration of EtOH, most of the values obtained on the experimental animals were similar to the control data. 23 references.

  19. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  20. Effects of sublethal doses of gamma radiation on the developing rat brain

    International Nuclear Information System (INIS)

    Cerda, H.; Carlsson, J.; Larsson, B.; Saefwenberg, J.O.

    1975-01-01

    Newborn rats were irradiated with 60 Co gamma rays. Doses of 0, 80 or 160 rads were given to the whole body. The whole body and brain weights, DNA and RNA contents of the brain and 3 H-thymidine or 3 H-uridine incorporated by the brain were measured at 5, 10 or 15 days after birth. A dose of 160 rads produced clear alterations in the brain but no clear effects could be detected when 80 rads were given. (author)

  1. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    Wong, K.L.; Tyce, G.M.

    1983-01-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U- 14 C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  2. The Brain as a Sensory-Motor Task Machine: What Did Visual Deprivation and Visual Substitution Studies Teach us About Brain (re-Organization

    Directory of Open Access Journals (Sweden)

    Amir Amedi

    2011-10-01

    Full Text Available About one-quarter of our brain “real estate” is devoted to the processing of vision. So what happens to this vast “vision” part of the brain when no visual input is received? We are working with novel high-tech multisensory ‘glasses’ that convert visual information from a tiny video camera into sensory signals that the blind can interpret. In this talk I will mainly highlight work done using The vOICe algorithm (Meijer et al 1992. We have devised a training program which teaches blind individuals to use such a device. Following approximately 30 hours of training, congenitally blind individuals can use this device to recognize what and where various objects are, for instance, within a room (like a chair, glass, and even people and their body posture; eg, see http://brain.huji.ac.il/press.asp. Additional training is given specifically for encouraging free “visual” orientation enabling blind individuals to walk in corridors while avoiding obstacles and applying hand-“eye” coordination (eg, playing bowling. A main focus of the project is using this unique “set-up” to study brain organization and brain flexibility. For example, we are elucidating how the subjects' brains use preserved functions on one hand and on the other hand, reorganize to enable to process this new sensory language (eg, See Amedi et al Nature Neurosience 2007; Stiem-Amit et al 2011; Reich et al 2011. I will also focus on novel spectral analysis approaches to study large-scale brain dynamics and to look into the binding problem: how we integrate information into a coherent percept, an old question in neuroscience which has relatively poor answers, especially in humans. On the rehabilitation front, we have demonstrated that visual training can create massive adult plasticity in the ‘visual’ cortex to process functions like recognizing objects and localizing where they are located, much like the original division of labor in the visual system in which the

  3. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.

    Directory of Open Access Journals (Sweden)

    Nina P Connolly

    Full Text Available Previously rodent preclinical research in gliomas frequently involved implantation of cell lines such as C6 and 9L into the rat brain. More recently, mouse models have taken over, the genetic manipulability of the mouse allowing the creation of genetically accurate models outweighed the disadvantage of its smaller brain size that limited time allowed for tumor progression. Here we illustrate a method that allows glioma formation in the rat using the replication competent avian-like sarcoma (RCAS virus / tumor virus receptor-A (tv-a transgenic system of post-natal cell type-specific gene transfer. The RCAS/tv-a model has emerged as a particularly versatile and accurate modeling technology by enabling spatial, temporal, and cell type-specific control of individual gene transformations and providing de novo formed glial tumors with distinct molecular subtypes mirroring human GBM. Nestin promoter-driven tv-a (Ntv-a transgenic Sprague-Dawley rat founder lines were created and RCAS PDGFA and p53 shRNA constructs were used to initiate intracranial brain tumor formation. Tumor formation and progression were confirmed and visualized by magnetic resonance imaging (MRI and spectroscopy. The tumors were analyzed using histopathological and immunofluorescent techniques. All experimental animals developed large, heterogeneous brain tumors that closely resembled human GBM. Median survival was 92 days from tumor initiation and 62 days from the first point of tumor visualization on MRI. Each tumor-bearing animal showed time dependent evidence of malignant progression to high-grade glioma by MRI and neurological examination. Post-mortem tumor analysis demonstrated the presence of several key characteristics of human GBM, including high levels of tumor cell proliferation, pseudopalisading necrosis, microvascular proliferation, invasion of tumor cells into surrounding tissues, peri-tumoral reactive astrogliosis, lymphocyte infiltration, presence of numerous tumor

  4. Visual image reconstruction from human brain activity: A modular decoding approach

    International Nuclear Information System (INIS)

    Miyawaki, Yoichi; Uchida, Hajime; Yamashita, Okito; Sato, Masa-aki; Kamitani, Yukiyasu; Morito, Yusuke; Tanabe, Hiroki C; Sadato, Norihiro

    2009-01-01

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2 100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  5. Coherence-based Time Series Clustering for Brain Connectivity Visualization

    KAUST Repository

    Euan, Carolina

    2017-11-19

    We develop the hierarchical cluster coherence (HCC) method for brain signals, a procedure for characterizing connectivity in a network by clustering nodes or groups of channels that display high level of coordination as measured by

  6. Miniature Brain Decision Making in Complex Visual Environments

    National Research Council Canada - National Science Library

    Dyer, Adrian

    2008-01-01

    .... In particular, the grantee investigated the problem of face invariance to understand the role that experience with stimuli can play in permitting a brain to learn how to reliably recognize target...

  7. Coherence-based Time Series Clustering for Brain Connectivity Visualization

    KAUST Repository

    Euan, Carolina; Sun, Ying; Ombao, Hernando

    2017-01-01

    We develop the hierarchical cluster coherence (HCC) method for brain signals, a procedure for characterizing connectivity in a network by clustering nodes or groups of channels that display high level of coordination as measured by

  8. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Science.gov (United States)

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  9. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    Science.gov (United States)

    Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention

  10. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks.

    Science.gov (United States)

    Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention

  11. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    Directory of Open Access Journals (Sweden)

    Adriana L. Ruiz-Rizzo

    2018-03-01

    Full Text Available Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity and selectivity functions (i.e., top-down control and spatial laterality. However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI. Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable

  12. Performance Enhancement of the RatCAP Awake Rat Brain PET System

    International Nuclear Information System (INIS)

    Vaska, P.; Woody, C.; Schlyer, D.; Radeka, V.; O'Connor, P.; Park, S.-J.; Pratte, J.-F.; Junnarkar, S.; Purschke, M.; Southekal, S.; Stoll, S.; Schiffer, W.; Lee, D.; Neill, J.; Wharton, D.; Myers, N.; Wiley, S.; Kandasamy, A.; Fried, J.; Krishnamoorthy, S.; Kriplani, A.; Maramraju, S.; Lecomte, R.; Fontaine, R.

    2011-01-01

    The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required for neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.

  13. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats.

    Science.gov (United States)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S; Simonsen, Mette; Ott, Peter; Vilstrup, Hendrik; Sørensen, Michael

    2014-03-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine, and aspartate and incorporation of (15)NH(4)(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation of (15)NH(4)(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH(4)(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined but only in brain was an increased incorporation of (15)N-ammonia into alanine observed. Liver and kidney were important for metabolizing blood-borne ammonia.

  14. Radio frequency radiation effects on protein kinase C activity in rats' brain

    International Nuclear Information System (INIS)

    Paulraj, R.; Behari, J.

    2004-01-01

    The present work describes the effect of amplitude modulated radio frequency (rf) radiation (112 MHz amplitude-modulated at 16 Hz) on calcium-dependent protein kinase C (PKC) activity on developing rat brain. Thirty-five days old Wistar rats were used for this study. The rats were exposed 2 h per day for 35 days at a power density of 1.0 mW/cm 2 (SAR=1.48 W/kg). After exposure, rats were sacrificed and PKC was determined in whole brain, hippocampus and whole brain minus hippocampus separately. A significant decrease in the enzyme level was observed in the exposed group as compared to the sham exposed group. These results indicate that this type of radiation could affect membrane bound enzymes associated with cell signaling, proliferation and differentiation. This may also suggest an affect on the behavior of chronically exposed rats

  15. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain.

    Science.gov (United States)

    Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2014-03-01

    Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

  16. Environmental Enrichment, Performance, and Brain Injury in Male and Female Rats

    National Research Council Canada - National Science Library

    Elliott, Brenda M

    2004-01-01

    ...) and physical enrichment (PE) on the cognitive performance of neurologically intact and brain-injured rats and to determine if there are gender differences in these effects. Measures of basic (i.e...

  17. Catechins decrease neurological severity score through apoptosis and neurotropic factor pathway in rat traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Retty Ratnawati

    2017-08-01

    Administration of catechins decreased NSS through inhibiting inflammation and apoptosis, as well as induced the neurotrophic factors in rat brain injury. Catechins may serve as a potential intervention for TBI.

  18. A non-equilibrium 24-hour vasopressin radioimmunoassay: development and basal levels in the rat brain

    International Nuclear Information System (INIS)

    Brinton, R.E.; Deshmukh, P.P.; Chen, A.; Davis, T.P.; Hsiao, S.; Yamamura, H.I.

    1983-01-01

    In this paper the authors report a highly-sensitive non-equilibrium RIA which can be performed within 24 h. To demonstrate the sensitivity of this RIA, brain regions from rat were examined for vasopressin content. (Auth.)

  19. From Big Data to Big Displays High-Performance Visualization at Blue Brain

    KAUST Repository

    Eilemann, Stefan

    2017-10-19

    Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic partnerships with other research institutions. We present the key elements of this HPV ecosystem, which integrates C++ visualization applications with novel collaborative display systems. We motivate how our strategy of transforming visualization engines into services enables a variety of use cases, not only for the integration with high-fidelity displays, but also to build service oriented architectures, to link into web applications and to provide remote services to Python applications.

  20. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  1. Visualization of specific binding sites of benzodiazepine in human brain

    International Nuclear Information System (INIS)

    Shinotoh, H.; Yamasaki, T.; Inoue, O.; Itoh, T.; Suzuki, K.; Hashimoto, K.; Tateno, Y.; Ikehira, H.

    1986-01-01

    Using 11C-labeled Ro15-1788 and positron emission tomography, studies of benzodiazepine binding sites in the human brain were performed on four normal volunteers. Rapid and high accumulation of 11C activity was observed in the brain after i.v. injection of [11C]Ro15-1788, the maximum of which was within 12 min. Initial distribution of 11C activity in the brain was similar to the distribution of the normal cerebral blood flow. Ten minutes after injection, however, a high uptake of 11C activity was observed in the cerebral cortex and moderate uptake was seen in the cerebellar cortex, the basal ganglia, and the thalamus. The accumulation of 11C activity was low in the brain stem. This distribution of 11C activity was approximately parallel to the known distribution of benzodiazepine receptors. Saturation experiments were performed on four volunteers with oral administration of 0.3-1.8 mg/kg of cold Ro15-1788 prior to injection. Initial distribution of 11C activity following injection peaked within 2 min and then the accumulation of 11C activity decreased rapidly and remarkably throughout the brain. The results indicated that [11C] Ro15-1788 associates and dissociates to specific and nonspecific binding sites rapidly and has a high ratio of specific receptor binding to nonspecific binding in vivo. Carbon-11 Ro15-1788 is a suitable radioligand for the study of benzodiazepine receptors in vivo in humans

  2. Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats.

    Science.gov (United States)

    Vasatkova, Anna; Krizova, Sarka; Krystofova, Olga; Adam, Vojtech; Zeman, Ladislav; Beklova, Miroslava; Kizek, Rene

    2009-01-01

    The aim of this study is to determine level of metallothioneins (MTs) in brain tissues of rats administered by feed mixtures with different content of mouldy wheat or fungi. Selected male laboratory rats of Wistar albino at age of 28 days were used in our experiments. The rats were administered by feed mixtures with different content of vitamins, naturally mouldy wheat or fungi for 28 days. At the very end of the experiment, the animals were put to death and brains were sampled. MT level was determined by differential pulse voltammetry Brdicka reaction. We found that MTs' level in brain tissues from rats administered by standard feed mixtures was significantly higher compared to the level of MTs in rats supplemented by vitamins. Further we studied the effect of supplementation of naturally mouldy wheat on MTs level in rats. In mouldy wheat we detected the presence of following fungi species: Mucor spp., Absidia spp., Penicillium spp., Aspergillus spp. and Fusarium spp. Moreover we also identified and quantified following mycotoxins - deoxynivalenol, zearalenone, T2-toxin and aflatoxins. Level of MTs determined in rats treated with 33 or 66% of mouldy wheat was significantly lower compared to control ones. On the other hand rats treated with 100% of mouldy wheat had less MTs but not significantly. Supplementation of vitamins to rats fed by mouldy wheat had adverse effect on MTs level compared to rats with no other supplementation by vitamins. Moreover vitamins supplementation has no effect on MTs level in brain tissues of rats treated or non-treated with Ganoderma lucidum L. Both mycotoxins and vitamins have considerable effect on level of MTs in brain tissues. It can be assumed that the administered substances markedly influence redox metabolism, which could negatively influence numerous biochemical pathways including those closely related with MTs.

  3. [Alterations of glial fibrillary acidic protein in rat brain after gamma knife irradiation].

    Science.gov (United States)

    Ma, Z M; Jiang, B; Ma, J R

    2001-08-28

    To study glial fibrillary acidic protein (GFAP) immunoreactivity in different time and water content of the rat brain treated with gamma knife radiotherapy and to understand the alteration course of the brain lesion after a single high dose radiosurgical treatment. In the brains of the normal rats were irradiated by gamma knife with 160 Gy-high dose. The irradiated rats were then killed on the 1st day, 7th day, 14th day, and 28th day after radiotherapy, respectively. The positive cells of GFAP in brain tissue were detected by immunostaining; the water content of the brain tissue was measured by microgravimetry. The histological study of the irradiated brain tissue was performed with H.E. and examined under light microscope. The numbers of GFAP-positive astrocytes began to increase on the 1st day after gamma knife irradiation. It was enlarged markedly in the number and size of GFAP-stained astrocytes over the irradiated areas. Up to the 28th day, circumscribed necrosis foci (4 mm in diameter) was seen in the central area of the target. In the brain tissue around the necrosis, GFAP-positive astrocytes significantly increased (P gravity in the irradiated brain tissue the 14th and 28th day after irradiation. The results suggest that GFAP can be used as a marker for the radiation-induced brain injury. The brain edema and disruption of brain-blood barrier can be occurred during the acute stage after irradiation.

  4. How the visual brain encodes and keeps track of time.

    Science.gov (United States)

    Salvioni, Paolo; Murray, Micah M; Kalmbach, Lysiann; Bueti, Domenica

    2013-07-24

    Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT come into play simultaneously and seem to be functionally linked during interval encoding, whereas they operate serially (V1 followed by V5/MT) and seem to be independent while maintaining temporal information in working memory. These data help to refine our knowledge of the functional properties of human visual cortex, highlighting the contribution and the temporal dynamics of V1 and V5/MT in the processing of the temporal aspects of visual information.

  5. The observation of blood-brain barrier of organic mercury poisoned rat

    International Nuclear Information System (INIS)

    Kuwabara, Takeo; Yuasa, Tatsuhiko; Hidaka, Kazuyuki; Igarashi, Hironaka; Kaneko, Kiyotoshi; Miyatake, Tadashi

    1989-01-01

    Permeability of the blood-brain barrier (BBB) of methymercury chrolide (MMC) intoxicated rat brain was studied in vivo by gadlinium diethylenetriamine pentaacetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI), measuring the longitudinal relaxation time (T 1 ) and the transverse relaxation time (T 2 ). MMC intoxicated rat brain showed the prolonged T 1 in the cerebral white matter and prolonged T 2 in the cerebellar cortex. After Gd-DTPA administration, T 1 of cerebral and cerebellar white matter shortened from 1.647 to 1.344 sec., and 1.290 to 1.223 sec. respectively. On the contrary, T 2 showed no change after Gd-DTPA injection. It was concluded that, although the shortening of T 1 after Gd-DTPA enhancement was rather little when compared with experimental brain ischemia, the shortening of the relaxation time of the MMC intoxicated rat brain was caused by the increased permeability of BBB. (author)

  6. Expression of annexin and Annexin-mRNA in rat brain under influence of steroid drugs

    NARCIS (Netherlands)

    Voermans, PH; Go, KG; ter Horst, GJ; Ruiters, MHJ; Solito, E; Parente, L; James, HE; Marshall, LF; Reulen, HJ; Baethmann, A; Marmarou, A; Ito, U; Hoff, JT; Kuroiwa, T; Czernicki, Z

    1997-01-01

    Brain tissue of rats pretreated with methylprednisolone or with the 21-aminosteroid U74389F, and that of untreated control rats, was assessed for the expression of Annexin-l (Anx-1) and the transcription of its mRNA. For this purpose Anx-1 cDNA was amplified and simultaneously a T7-RNA-polymerase

  7. Mitochondrial monoaminoxidase activity and serotonin content in rat brain after whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Savitskij, I.V.; Tsybul'skij, V.V.; Grivtsev, B.A.

    1985-01-01

    It is shown that γ-irradiation of albino rats with a dose of 30 Gy leads to pronounced phase changes in monoaminoxidase activity and serotonin content in rat brain at early times after whole-body exposure. These is a similar direction of changes in the activity of the enzyme and in the content of the substrate adequate to the latter

  8. Expression and Localization of TRK-Fused Gene Products in the Rat Brain and Retina

    International Nuclear Information System (INIS)

    Maebayashi, Hisae; Takeuchi, Shigako; Masuda, Chiaki; Makino, Satoshi; Fukui, Kenji; Kimura, Hiroshi; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It has been reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. However, no information regarding the localization of Tfg in rat tissues is available. In this study, we investigated the expression of Tfg mRNA in normal rat tissues using reverse transcription-polymerase chain reaction (RT-PCR). We also produced an antibody against Tfg gene products and examined the localization of TFG in the rat brain and retina. The RT-PCR experiments demonstrated that two types of Tfg mRNA were expressed in rat tissues: the conventional form of Tfg (cTfg) and a novel variant form, retinal Tfg (rTfg). RT-PCR analyses demonstrated that cTfg was ubiquitously expressed in rat tissues, while rTfg was predominantly expressed in the brain and retina. Western blot analysis demonstrated two bands with molecular weights of about 30 kDa and 50 kDa in the rat brain. Immunohistochemistry indicated that TFG proteins were predominantly expressed by neurons in the brain. In the rat retina, intense TFG-immunoreactivity was detected in the layer of rods and cones and the outer plexiform layer

  9. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  11. Images to visualize the brain. PET: Positron Emission Tomography

    International Nuclear Information System (INIS)

    1992-01-01

    Diagnosis instrument and research tool, Positron Emission Tomography permits advanced technological developments on positron camera, on molecule labelling and principally on very complex 3D image processing. Cyceron Centre in Caen-France works on brain diseases and try to understand the mechanism of observed troubles and to assess the treatment efficiency with PET. Service Hospitalier Frederic Joliot of CEA-France establishes a mapping of cognitive functions in PET as vision areas, anxiety regions, brain organization of language, different attention forms, voluntary actions and motor functions

  12. Central visual system of the naked mole-rat (Heterocephalus glaber).

    Science.gov (United States)

    Crish, Samuel D; Dengler-Crish, Christine M; Catania, Kenneth C

    2006-02-01

    Naked mole-rats are fossorial rodents native to eastern Africa that spend their lives in extensive subterranean burrows where visual cues are poor. Not surprisingly, they have a degenerated eye and optic nerve, suggesting they have poor visual abilities. However, little is known about their central visual system. To investigate the organization of their central visual system, we injected a neuronal tracer into the eyes of naked mole-rats and mice to compare the neural structures mediating vision. We found that the superior colliculus and lateral geniculate nucleus were severely atrophied in the naked mole-rat. The olivary pretectal nucleus was reduced but still retained its characteristic morphology, possibly indicating a role in light detection. In addition, the suprachiasmatic nucleus is well innervated and resembles the same structure in other rodents. The naked mole-rat appears to have selectively lost structures that mediate form vision while retaining structures needed for minimal entrainment of circadian rhythms. Similar results have been reported for other mole-rat species. Taken together, these data suggest that light detection may still play an important role in the lives of these "blind" animals: most likely for circadian entrainment or setting seasonal rhythms.

  13. Addition of visual noise boosts evoked potential-based brain-computer interface.

    Science.gov (United States)

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-05-14

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.

  14. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  15. Extended Erythropoietin Treatment Prevents Chronic Executive Functional and Microstructural Deficits Following Early Severe Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shenandoah Robinson

    2018-06-01

    Full Text Available Survivors of infant traumatic brain injury (TBI are prone to chronic neurological deficits that impose lifelong individual and societal burdens. Translation of novel interventions to clinical trials is hampered in part by the lack of truly representative preclinical tests of cognition and corresponding biomarkers of functional outcomes. To address this gap, the ability of a high-dose, extended, post-injury regimen of erythropoietin (EPO, 3000U/kg/dose × 6d to prevent chronic cognitive and imaging deficits was tested in a postnatal day 12 (P12 controlled-cortical impact (CCI model in rats, using touchscreen operant chambers and regional analysis of diffusion tensor imaging (DTI. Results indicate that EPO prevents functional injury and MRI injury after infant TBI. Specifically, subacute DTI at P30 revealed widespread microstructural damage that is prevented by EPO. Assessment of visual discrimination on a touchscreen operant chamber platform demonstrated that all groups can perform visual discrimination. However, CCI rats treated with vehicle failed to pass reversal learning, and perseverated, in contrast to sham and CCI-EPO rats. Chronic DTI at P90 showed EPO treatment prevented contralateral white matter and ipsilateral lateral prefrontal cortex damage. This DTI improvement correlated with cognitive performance. Taken together, extended EPO treatment restores executive function and prevents microstructural brain abnormalities in adult rats with cognitive deficits in a translational preclinical model of infant TBI. Sophisticated testing with touchscreen operant chambers and regional DTI analyses may expedite translation and effective yield of interventions from preclinical studies to clinical trials. Collectively, these data support the use of EPO in clinical trials for human infants with TBI.

  16. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress.

    Science.gov (United States)

    Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian

    2018-02-01

    Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen

  17. The value of rCBF brain SPECT in assessing visual function of patients with honeymoons hemianopia

    International Nuclear Information System (INIS)

    Xie Ruiman; Yao Jingli; Qing Zheng

    1995-01-01

    Comparison of 99m Tc-HMPAO brain SPECT imaging of 8 cases with honeymoons hemianopia (HH) was taken before and after a course of oriented dynamic color photic stimulation (ODCPS). It was suggested that ODCPS in patients with HH was an effective method for increasing visual field and improving visual function. Cerebral metabolic patterns reflected the mechanism of ODCPS effecting the patients with HH. The retinal midbrain-occipital visual path-way may play an important role in mediating the increase of visual field and restoration of visual function. It was also concluded that brain SPECT imaging was an useful method for the studying of brain function

  18. The riddle of style changes in the visual arts after interference with the right brain.

    Science.gov (United States)

    Blanke, Olaf; Pasqualini, Isabella

    2011-01-01

    We here analyze the paintings and films of several visual artists, who suffered from a well-defined neuropsychological deficit, visuo-spatial hemineglect, following vascular stroke to the right brain. In our analysis we focus in particular on the oeuvre of Lovis Corinth and Luchino Visconti as both major artists continued to be highly productive over many years after their right brain damage. We analyzed their post-stroke paintings and films, indicate several aspects that differ from their pre-stroke work (omissions, use of color, perseveration, deformation), and propose-although both artists come from different times, countries, genres, and styles-that their post-stroke oeuvre reveals important similarities in style. We argue that these changes may be associated with visuo-spatial hemineglect and the right brain. We discuss future avenues of how the neuropsychological investigation of visual artists with and without neglect may allow us to investigate the relationship between brain and art.

  19. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat.

    Science.gov (United States)

    Samini, Fariborz; Samarghandian, Saeed; Borji, Abasalt; Mohammadi, Gholamreza; bakaian, Mahdi

    2013-09-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow coloring principle in turmeric, is a polyphenolic and a major active constituent. Besides anti-inflammatory, thrombolytic and anti-carcinogenic activities, curcumin also possesses strong antioxidant property. The neuroprotective effects of curcumin were evaluated in a weight drop model of cortical contusion trauma in rat. Male Wistar rats (350-400 g, n=9) were anesthetized with sodium pentobarbital (60 mg/kg i.p.) and subjected to head injury. Five days before injury, animals randomly received an i.p. bolus of either curcumin (50 and 100 mg/kg/day, n=9) or vehicle (n=9). Two weeks after the injury and drug treatment, animals were sacrificed and a series of brain sections, stained with hematoxylin and eosin (H&E) were evaluated for quantitative brain lesion volume. Two weeks after the injury, oxidative stress parameter (malondialdehyde) was also measured in the brain. Curcumin (100 mg/kg) significantly reduced the size of brain injury-induced lesions (Pcurcumin (100 mg/kg). Curcumin treatment significantly improved the neurological status evaluated during 2 weeks after brain injury. The study demonstrates the protective efficacy of curcumin in rat traumatic brain injury model. © 2013 Elsevier Inc. All rights reserved.

  20. Brain atrophy in the visual cortex and thalamus induced by severe stress in animal model.

    Science.gov (United States)

    Yoshii, Takanobu; Oishi, Naoya; Ikoma, Kazuya; Nishimura, Isao; Sakai, Yuki; Matsuda, Kenichi; Yamada, Shunji; Tanaka, Masaki; Kawata, Mitsuhiro; Narumoto, Jin; Fukui, Kenji

    2017-10-06

    Psychological stress induces many diseases including post-traumatic stress disorder (PTSD); however, the causal relationship between stress and brain atrophy has not been clarified. Applying single-prolonged stress (SPS) to explore the global effect of severe stress, we performed brain magnetic resonance imaging (MRI) acquisition and Voxel-based morphometry (VBM). Significant atrophy was detected in the bilateral thalamus and right visual cortex. Fluorescent immunohistochemistry for Iba-1 as the marker of activated microglia indicates regional microglial activation as stress-reaction in these atrophic areas. These data certify the impact of severe psychological stress on the atrophy of the visual cortex and the thalamus. Unexpectedly, these results are similar to chronic neuropathic pain rather than PTSD clinical research. We believe that some sensitisation mechanism from severe stress-induced atrophy in the visual cortex and thalamus, and the functional defect of the visual system may be a potential therapeutic target for stress-related diseases.

  1. Brain and Serum Androsterone is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Richard J Servatius

    2016-08-01

    Full Text Available Exposure to lateral fluid percussion (LFP injury consistent with mild traumatic brain injury (mTBI persistently attenuates acoustic startle responses (ASRs in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM. ASRs were measured post injury days (PIDs 1, 3, 7, 14, 21 and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34, PID 35 (S35, on both days (2S, or the experimental context (CON. Levels of the neurosteroids pregnenolone (PREG, allopregnanolone (ALLO, and androsterone (ANDRO were determined for the prefrontal cortex, hippocampus and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30 and 60 min post-stressor for determination of corticosterone (CORT levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  2. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain

    DEFF Research Database (Denmark)

    Vreys, Ruth; Vande Velde, Greetje; Krylychkina, Olga

    2010-01-01

    The adult rodent brain contains neural progenitor cells (NPCs), generated in the subventricular zone (SVZ), which migrate along the rostral migratory stream (RMS) towards the olfactory bulb (OB) where they differentiate into neurons. The aim of this study was to visualize endogenous NPC migration...... by a longitudinal MRI study and validated with histology. Here, we visualized endogenous NPC migration in the mouse brain by in vivo MRI and demonstrated accumulation of MPIO-labeled NPCs in the OB over time with ex vivo MRI. Furthermore, we investigated the influence of in situ injection of MPIOs on adult...

  3. Simultaneous MRI and PET imaging of a rat brain

    International Nuclear Information System (INIS)

    Raylman, Raymond R; Majewski, Stan; Lemieux, Susan K; Velan, S Sendhil; Kross, Brian; Popov, Vladimir; Smith, Mark F; Weisenberger, Andrew G; Zorn, Carl; Marano, Gary D

    2006-01-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging

  4. Simultaneous MRI and PET imaging of a rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Lemieux, Susan K [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Velan, S Sendhil [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Weisenberger, Andrew G [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Zorn, Carl [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Marano, Gary D [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States)

    2006-12-21

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  5. (/sup 3/H)-beta-endorphin binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Houghten, R.A.; Johnson, N.; Pasternak, G.W.

    1984-10-01

    The binding of (/sup 3/H)-beta-endorphin to rat brain homogenates is complex. Although Scatchard analysis of saturation studies yields a straight line, detailed competition studies are multiphasic, suggesting that even at low concentrations of the compound, the /sup 3/H-ligand is binding to more than one class of site. A portion of (/sup 3/H)-beta-endorphin binding is sensitive to low concentrations of morphine or D-Ala2-Leu5-enkephalin (less than 5 nM). The inhibition observed with each compound alone (5 nM) is the same as that seen with both together (each at 5 nM). Thus, the binding remaining in the presence of both morphine and the enkephalin does not correspond to either mu or delta sites. The portion of (/sup 3/H)-beta-endorphin binding that is inhibited under these conditions appears to be equally sensitive to both morphine and the enkephalin and may correspond to mu1 sites. Treating membrane homogenates with naloxonazine, a mu1 selective antagonist, lowers (/sup 3/H)-beta-endorphin binding to the same degree as morphine and D-Ala2-Leu5-enkephalin alone or together. This possible binding of (/sup 3/H)-beta-endorphin to mu1 sites is consistent with the role of mu1 sites in beta-endorphin analgesia and catalepsy in vivo.

  6. Toxicological aspects of interesterified fat: Brain damages in rats.

    Science.gov (United States)

    D'avila, Lívia Ferraz; Dias, Verônica Tironi; Vey, Luciana Taschetto; Milanesi, Laura Hautrive; Roversi, Karine; Emanuelli, Tatiana; Bürger, Marilise Escobar; Trevizol, Fabíola; Maurer, H Luana

    2017-07-05

    In recent years, interesterified fat (IF) has been used to replace hydrogenated vegetable fat (HVF), rich in trans isomers, being found in processed foods. Studies involving IF have shown deleterious influences on the metabolic system, similarly to HVF, whereas no studies regarding its influence on the central nervous system (CNS) were performed. Rats from first generation born and maintained under supplementation (3g/Kg, p.o.) of soybean-oil or IF until adulthood were assessed on memory, biochemical and molecular markers in the hippocampus. IF group showed higher saturated fatty acids and linoleic acid and lower docosahexaenoic acid incorporation in the hippocampus. In addition, IF supplementation impaired short and long-term memory, which were related to increased reactive species generation and protein carbonyl levels, decreased catalase activity, BDNF and TrkB levels in the hippocampus. To the best of our knowledge, this is the first study to show that lifelong IF consumption may be related to brain oxidative damage, memory impairments and neurotrophins modifications, which collectively may be present indifferent neurological disorders. In fact, the use of IF in foods was intended to avoid damage from HVF consumption; however this substitute should be urgently reviewed, since this fat can be as harmful as trans fat. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  8. [3H]-beta-endorphin binding in rat brain

    International Nuclear Information System (INIS)

    Houghten, R.A.; Johnson, N.; Pasternak, G.W.

    1984-01-01

    The binding of [ 3 H]-beta-endorphin to rat brain homogenates is complex. Although Scatchard analysis of saturation studies yields a straight line, detailed competition studies are multiphasic, suggesting that even at low concentrations of the compound, the 3 H-ligand is binding to more than one class of site. A portion of [ 3 H]-beta-endorphin binding is sensitive to low concentrations of morphine or D-Ala2-Leu5-enkephalin (less than 5 nM). The inhibition observed with each compound alone (5 nM) is the same as that seen with both together (each at 5 nM). Thus, the binding remaining in the presence of both morphine and the enkephalin does not correspond to either mu or delta sites. The portion of [ 3 H]-beta-endorphin binding that is inhibited under these conditions appears to be equally sensitive to both morphine and the enkephalin and may correspond to mu1 sites. Treating membrane homogenates with naloxonazine, a mu1 selective antagonist, lowers [ 3 H]-beta-endorphin binding to the same degree as morphine and D-Ala2-Leu5-enkephalin alone or together. This possible binding of [ 3 H]-beta-endorphin to mu1 sites is consistent with the role of mu1 sites in beta-endorphin analgesia and catalepsy in vivo

  9. Presynaptic localization of histamine H3-receptors in rat brain

    International Nuclear Information System (INIS)

    Fujimoto, K.; Mizuguchi, H.; Fukui, H.; Wada, H.

    1991-01-01

    The localization of histamine H3-receptors in subcellular fractions from the rat brain was examined in a [3H] (R) alpha-methylhistamine binding assay and compared with those of histamine H1- and adrenaline alpha 1- and alpha 2-receptors. Major [3H](R) alpha-methylhistamine binding sites with increased specific activities ([3H]ligand binding vs. protein amount) were recovered from the P2 fraction by differential centrifugation. Minor [3H](R)alpha-methylhistamine binding sites with increased specific activities were also detected in the P3 fraction. Further subfractionation of the P2 fraction by discontinuous sucrose density gradient centrifugation showed major recoveries of [3H](R)alpha-methylhistamine binding in myelin (MYE) and synaptic plasma membrane (SPM) fractions. A further increase in specific activity was observed in the MYE fraction, but the SPM fraction showed no significant increase in specific activity. Adrenaline alpha 2-receptors, the pre-synaptic autoreceptors, in a [3H] yohimbine binding assay showed distribution patterns similar to histamine H3-receptors. On the other hand, post-synaptic histamine H1- and adrenaline alpha 1-receptors were closely localized and distributed mainly in the SPM fraction with increased specific activity. Only a negligible amount was recovered in the MYE fraction, unlike the histamine H3- and adrenaline alpha 2-receptors

  10. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain

    DEFF Research Database (Denmark)

    Skjolding, Anders Daehli; Holst, Anders Vedel; Broholm, Helle

    2013-01-01

    findings to human pathophysiology. This study compares expression of aquaporin-4 in hydrocephalic human brain with human controls and hydrocephalic rat brain. Methods:  Cortical biopsies from patients with chronic hydrocephalus (n=29) were sampled secondary to planned surgical intervention. Aquaporin-4...

  11. Differences in postmortem stability of sex steroid receptor immunoreactivity in rat brain

    NARCIS (Netherlands)

    Fodor, Mariann; van Leeuwen, Fred W.; Swaab, Dick F.

    2002-01-01

    Difficulties in demonstrating sex steroid receptors in the human brain by immunohistochemistry (IHC) may depend on postmortem delay and a long fixation time. The effect of different postmortem times was therefore studied in rat brain kept in the skull at room temperature for 0, 6, or 24 hr after

  12. Increase of Universality in Human Brain during Mental Imagery from Visual Perception

    OpenAIRE

    Bhattacharya, Joydeep

    2009-01-01

    BACKGROUND: Different complex systems behave in a similar way near their critical points of phase transitions which leads to an emergence of a universal scaling behaviour. Universality indirectly implies a long-range correlation between constituent subsystems. As the distributed correlated processing is a hallmark of higher complex cognition, I investigated a measure of universality in human brain during perception and mental imagery of complex real-life visual object like visual art. METHODO...

  13. Integration of visual and non-visual self-motion cues during voluntary head movements in the human brain.

    Science.gov (United States)

    Schindler, Andreas; Bartels, Andreas

    2018-05-15

    Our phenomenological experience of the stable world is maintained by continuous integration of visual self-motion with extra-retinal signals. However, due to conventional constraints of fMRI acquisition in humans, neural responses to visuo-vestibular integration have only been studied using artificial stimuli, in the absence of voluntary head-motion. We here circumvented these limitations and let participants to move their heads during scanning. The slow dynamics of the BOLD signal allowed us to acquire neural signal related to head motion after the observer's head was stabilized by inflatable aircushions. Visual stimuli were presented on head-fixed display goggles and updated in real time as a function of head-motion that was tracked using an external camera. Two conditions simulated forward translation of the participant. During physical head rotation, the congruent condition simulated a stable world, whereas the incongruent condition added arbitrary lateral motion. Importantly, both conditions were precisely matched in visual properties and head-rotation. By comparing congruent with incongruent conditions we found evidence consistent with the multi-modal integration of visual cues with head motion into a coherent "stable world" percept in the parietal operculum and in an anterior part of parieto-insular cortex (aPIC). In the visual motion network, human regions MST, a dorsal part of VIP, the cingulate sulcus visual area (CSv) and a region in precuneus (Pc) showed differential responses to the same contrast. The results demonstrate for the first time neural multimodal interactions between precisely matched congruent versus incongruent visual and non-visual cues during physical head-movement in the human brain. The methodological approach opens the path to a new class of fMRI studies with unprecedented temporal and spatial control over visuo-vestibular stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    Science.gov (United States)

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  15. Effects of levothyroxine on visual evoked potential impairment following local injections of lysolecithin into the rat optic chiasm

    Directory of Open Access Journals (Sweden)

    Cobra Payghani

    2018-01-01

    Full Text Available Background: Multiple sclerosis (MS is a demyelinating disease of the central nervous system which has no any known definitive treatment. Studies have shown that thyroid hormones (THs in addition to their roles in the development of the nervous system and the production of myelin have important roles in the adult's brain function. Since the only way to treat MS is the restoration of myelin, the aim of this study was to evaluate the effects of levothyroxine on visual evoked potential (VEP impairment following local injections of lysolecithin into the rat optic chiasm. Methods: To induce demyelination, lysolecithin was injected into the optic chiasm of male Wistar rats. VEP recording was used to evaluate demyelination and remyelination before and 10, 17, and 24 days after the lysolecithin injection. The rats received an intraperitoneal injection of levothyroxine with doses 20, 50, and 100 μg/kg in different experimental groups. Results: VEP latency and amplitude showed demyelination at 10 and 17 days after an induced lesion in MS group which was reversed at day 24. Levothyroxine prevented these impairments, especially in high doses. Conclusions: According to the results, lysolecithin-induced demyelination at optic chiasm and VEP impairments can be restored by administration of levothyroxine. Therefore, THs probably have positive effects in demyelinating diseases.

  16. Structural and functional brain changes beyond visual system in patients with advanced glaucoma.

    Directory of Open Access Journals (Sweden)

    Paolo Frezzotti

    Full Text Available In order to test the hypothesis that in primary open angle glaucoma (POAG, an important cause of irreversible blindness, a spreading of neurodegeneration occurs through the brain, we performed multimodal MRI and subsequent whole-brain explorative voxelwise analyses in 13 advanced POAG patients and 12 age-matched normal controls (NC. Altered integrity (decreased fractional anisotropy or increased diffusivities of white matter (WM tracts was found not only along the visual pathway of POAG but also in nonvisual WM tracts (superior longitudinal fascicle, anterior thalamic radiation, corticospinal tract, middle cerebellar peduncle. POAG patients also showed brain atrophy in both visual cortex and other distant grey matter (GM regions (frontoparietal cortex, hippocampi and cerebellar cortex, decreased functional connectivity (FC in visual, working memory and dorsal attention networks and increased FC in visual and executive networks. In POAG, abnormalities in structure and FC within and outside visual system correlated with visual field parameters in the poorer performing eyes, thus emphasizing their clinical relevance. Altogether, this represents evidence that a vision disorder such as POAG can be considered a widespread neurodegenerative condition.

  17. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    Science.gov (United States)

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  18. Effects of enriched uranium on developing brain damage of neonatal rats

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2001-01-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium 235 U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 β (IL- β), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells

  19. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    Science.gov (United States)

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  20. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  1. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    Science.gov (United States)

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  2. Brain activity related to integrative processes in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian; Aaside, C T; Humphreys, G W

    2002-01-01

    We report evidence from a PET activation study that the inferior occipital gyri (likely to include area V2) and the posterior parts of the fusiform and inferior temporal gyri are involved in the integration of visual elements into perceptual wholes (single objects). Of these areas, the fusiform a......) that perceptual and memorial processes can be dissociated on both functional and anatomical grounds. No evidence was obtained for the involvement of the parietal lobes in the integration of single objects....

  3. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Rearing rats in isolation after weaning is an environmental manipulation that leads to behavioural and neurochemical alterations that resemble what is seen in schizophrenia. The model is neurodevelopmental in origin and has been used as an animal model of schizophrenia. However, only a few studies...... Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  4. In vivo imaging of brain androgen receptors in rats: a [18F]FDHT PET study

    International Nuclear Information System (INIS)

    Khayum, M.A.; Doorduin, J.; Antunes, I.F.; Kwizera, C.; Zijlma, R.; Boer, J.A. den; Dierckx, R.A.J.O.; Vries, E.F.J. de

    2015-01-01

    Introduction: Steroid hormones like androgens play an important role in the development and maintenance of several brain functions. Androgens can act through androgen receptors (AR) in the brain. This study aims to demonstrate the feasibility of positron emission tomography (PET) with 16β-[ 18 F]fluoro-5α-dihydrotestosterone ([ 18 F]FDHT) to image AR expression in the brain. Methods: Male Wistar rats were either orchiectomized to inhibit endogenous androgen production or underwent sham-surgery. Fifteen days after surgery, rats were subjected to a 90-min dynamic [ 18 F]FDHT PET scan with arterial blood sampling. In a subset of orchiectomized rats, 1 mg/kg dihydrotestosterone was co-injected with the tracer in order to saturate the AR. Plasma samples were analyzed for the presence of radioactive metabolites by radio-TLC. Pharmacokinetic modeling was performed to quantify brain kinetics of the tracer. After the PET scan, the animals were terminated for ex-vivo biodistribution. Results: PET imaging and ex vivo biodistribution studies showed low [ 18 F]FDHT uptake in all brain regions, except pituitary. [ 18 F]FDHT uptake in the surrounding cranial bones was high and increased over time. [ 18 F]FDHT was rapidly metabolized in rats. Metabolism was significantly faster in orchiectomized rats than in sham-orchiectomized rats. Quantitative analysis of PET data indicated substantial spill-over of activity from cranial bones into peripheral brain regions, which prevented further analysis of peripheral brain regions. Logan graphical analysis and kinetic modeling using 1- and 2-tissue compartment models showed reversible and homogenously distributed tracer uptake in central brain regions. [ 18 F]FDHT uptake in the brain could not be blocked by endogenous androgens or administration of dihydrotestosterone. Conclusion: The results of this study indicate that imaging of AR availability in rat brain with [ 18 F]FDHT PET is not feasible. The low AR expression in the brain, the

  5. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats

    OpenAIRE

    Shumake, Jason; Colorado, Rene A.; Barrett, Douglas W.; Gonzalez-Lima, F.

    2010-01-01

    Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for...

  6. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression.

    Directory of Open Access Journals (Sweden)

    Tetsuya Takahashi

    Full Text Available Clinical manifestations of methylmercury (MeHg intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF, a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity.

  7. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  8. Utilization of 14C-tyrosine in brain and peripheral tissues of developmentally protein malnourished rats

    International Nuclear Information System (INIS)

    Miller, M.; Leahy, J.P.; McConville, F.; Morgane, P.J.; Resnick, O.

    1978-01-01

    Prior studies of developmentally protein malnourished rats have reported substantial changes in brain and peripheral utilization of 14 C-leucine, 14 C-phenylalanine, and 14 C-tryptophan. In the present study rats born to dams fed a low protein diet (8% casein) compared to the offspring of control rats fed a normal diet (25% casein) showed few significant differences in the uptake and incorporation of 14 C-tyrosine into brain and peripheral tissues from birth to age 21 days. At birth, the 8% casein pups exhibited significant decreases in brain and peripheral tissue incorporation of tracer only at short post-injection times (10 and 20 min), but not at longer intervals (90 and 180 min). During ontogenetic development (Days 5-21), the 8% casein rats showed significant increases in uptake of 14 C-tyrosine into the brain and peripheral tissues on Day 11 and a significantly higher percent incorporation of tracer into brain protein on Day 21 as compared to the 25% casein rats. For the most part, there were no significant changes in incorporation of radioactivity in peripheral tissues for the 2 diet groups on these post-birth days. Overall, the data indicates that developmental protein malnutrition causes relatively fewer changes in brain and peripheral utilization of the semi-essential amino acid tyrosine than those observed in previous studies with essential amino acids

  9. Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats.

    Science.gov (United States)

    Haas, Clarissa B; Kalinine, Eduardo; Zimmer, Eduardo R; Hansel, Gisele; Brochier, Andressa W; Oses, Jean P; Portela, Luis V; Muller, Alexandre P

    2016-11-01

    Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-β, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.

  10. Pattern recognition analysis of proton nuclear magnetic resonance spectra of brain tissue extracts from rats anesthetized with propofol or isoflurane.

    Directory of Open Access Journals (Sweden)

    Hiroshi Kawaguchi

    Full Text Available BACKGROUND: General anesthesia is routinely used as a surgical procedure and its safety has been endorsed by clinical outcomes; however, its effects at the molecular level have not been elucidated. General anesthetics influence glucose metabolism in the brain. However, the effects of anesthetics on brain metabolites other than those related to glucose have not been well characterized. We used a pattern recognition analysis of proton nuclear magnetic resonance spectra to visualize the changes in holistic brain metabolic phenotypes in response to the widely used intravenous anesthetic propofol and the volatile anesthetic isoflurane. METHODOLOGY/PRINCIPAL FINDINGS: Rats were randomized into five groups (n = 7 each group. Propofol and isoflurane were administered to two groups each, for 2 or 6 h. The control group received no anesthesia. Brains were removed directly after anesthesia. Hydrophilic compounds were extracted from excised whole brains and measured by proton nuclear magnetic resonance spectroscopy. All spectral data were processed and analyzed by principal component analysis for comparison of the metabolite profiles. Data were visualized by plotting principal component (PC scores. In the plots, each point represents an individual sample. The propofol and isoflurane groups were clustered separately on the plots, and this separation was especially pronounced when comparing the 6-h groups. The PC scores of the propofol group were clearly distinct from those of the control group, particularly in the 6-h group, whereas the difference in PC scores was more subtle in the isoflurane group and control groups. CONCLUSIONS/SIGNIFICANCE: The results of the present study showed that propofol and isoflurane exerted differential effects on holistic brain metabolism under anesthesia.

  11. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  12. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  13. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  14. Studies on estradiol-2/4-hydroxylase activity in rat brain and liver

    International Nuclear Information System (INIS)

    Theron, C.N.

    1985-03-01

    A sensitive and specific radio-enzymatic assay was used to study estradiol-2/4-hydroxylase activity in rat liver microsomes and in microsomes obtained from 6 discrete brain areas of the rat. Kinetic parameters were determined for these enzyme activities. The effects of different P-450 inhibitors on estradiol-2/4-hydroxylase activity in brain and liver microsomes were also studied. In both organs these enzyme activities were found to be located mainly in the microsomal fraction and were inhibited by the 3 P-450 inhibitors tested. The hepatic estradiol-2/4-hydroxylase activity in adult male rats was significantly higher than that of females, but the enzyme activity in the brain did not exhibit a similar sex difference. Furthermore, estradiol-2/4-hydroxylase activity in rat liver was strongly induced by phenobarbitone treatment, but not in the brain. The phenobarbitone-induced activity in male and female rats exhibited significant kinetic differences. In female rats sexual maturation was associated with significant changes in the apparent Km of estradiol-2/4-hydroxylases in the liver and hypothalamus. Evidence was found that the in vitro estradiol-2/4-hydroxylase activity in rat brain and liver is due to more than one form of microsomal P-450. Kinetic studies showed important differences between the estradiol-2/4-hydroxylase activities in the hippocampus and hypothalamus. Significant differences in estradiol-2/4-hydroxylase activities were observed in the 6 brain areas studied, with the hippocampus showing the highest, and the hypothalamus the lowest activity at all developmental stages in both male and female rats

  15. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... have evaluated the neuroanatomical changes in this animal model in comparison to changes seen in schizophrenia. In this study, we applied stereological volume estimates to evaluate the total brain, the ventricular system, and the pyramidal and granular cell layers of the hippocampus in male and female...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  16. Glucose metabolism of fetal rat brain in utero, measured with labeled deoxyglucose

    Energy Technology Data Exchange (ETDEWEB)

    Dyve, S [Department of General Physiology and Biophysics, Panum Institute, Copenhagen (Denmark); Gjedde, A [Positron Imaging Laboratories, McConnell Brain Imaging Center, Montreal, Quebec (Canada)

    1991-01-01

    Mammals have low cerebral metabolic rates immediately after birth and, by inference, also before birth. In this study, we extended the deoxyglucose method to the fetal rat brain in utero. Rate constants for deoxyglucose transfer across the maternal placental and fetal blood-brain barriers, and lumped constant, have not been reported. Therefore, we applied a new method of determining the lumped constant regionally to the fetal rat brain in utero. The lumped constant averaged 0.55 +- 0.15 relative to the maternal circulation. On this basis, we determined the glucose metabolic rate of the fetal rat brain to be one third of the corresponding maternal value, or 19 +- 2 {mu}mol hg{sup -1} min{sup -1}. (author).

  17. Effect of oculomotor vision rehabilitation on the visual-evoked potential and visual attention in mild traumatic brain injury.

    Science.gov (United States)

    Yadav, Naveen K; Thiagarajan, Preethi; Ciuffreda, Kenneth J

    2014-01-01

    The purpose of the experiment was to investigate the effect of oculomotor vision rehabilitation (OVR) on the visual-evoked potential (VEP) and visual attention in the mTBI population. Subjects (n = 7) were adults with a history of mild traumatic brain injury (mTBI). Each received 9 hours of OVR over a 6-week period. The effects of OVR on VEP amplitude and latency, the attention-related alpha band (8-13 Hz) power (µV(2)) and the clinical Visual Search and Attention Test (VSAT) were assessed before and after the OVR. After the OVR, the VEP amplitude increased and its variability decreased. There was no change in VEP latency, which was normal. Alpha band power increased, as did the VSAT score, following the OVR. The significant changes in most test parameters suggest that OVR affects the visual system at early visuo-cortical levels, as well as other pathways which are involved in visual attention.

  18. Intracarotid injection of 195mPt-CDDP on rat brain tumors

    International Nuclear Information System (INIS)

    Ikawa, Eishi; Kamitani, Hideki; Hori, Tomokatsu; Akaboshi, Mitsuhiko.

    1995-01-01

    We began to try intracarotid injection of 195m Pt-CDDP on transplanted rats of C6 glioma. As a control, normal rats were also treated with intracarotid injection of 195m Pt-CDDP. After injection, the tumor, the normal brain of injected site, the brain of contralateral site, and the blood were sampled for the measurement of the Pt uptake. On normal rats, the ratio of the Pt uptake of the brain to that of the blood was highest in 20 minutes after injection. The ratio of the Pt uptake of the brain of injected site to that of the blood was almost same as that of the brain of contralateral site, so it seemed that the Pt uptake was not so enhanced with intracarotid injection on the normal brain. On the other hand, the ratio of the Pt uptake of the transplanted brain tumor to that of the blood was greatly higher than that of the normal brain. So it seemed that the intracarotid injection of CDDP may have some activities against brain tumors. This study was now started, so we continue this study further more. (author)

  19. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat.

    Science.gov (United States)

    Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A

    2018-01-01

    HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain

  20. Reproducibility assessment of brain responses to visual food stimuli in adults with overweight and obesity.

    Science.gov (United States)

    Drew Sayer, R; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W

    2016-10-01

    The brain's reward system influences ingestive behavior and subsequently obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. This study sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n = 16) and men (n = 12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the two testing days. Mean fasting-state brain responses on day 2 were reduced compared with day 1 in the left insula and right amygdala, but mean day 1 and day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. © 2016 The Obesity Society.

  1. In vivo study about specific captation of 125 I-insulin by rat brain structures

    International Nuclear Information System (INIS)

    Sanvitto, G.L.

    1986-01-01

    The specific captation of 125 I-insulin was evaluated by brain structures, as olfactory bulbous, hypothalamus and cerebellum in rats, from in vivo experiences that including two different aspects: captation measure of 125 I-insulin after the intravenous injection of the labelled hormone, in fed rats and in rats with 48 h of fast or convulsion, procedure by the pentylene tetrazole; captation measure of 125 I-insulin after intra-cerebral-ventricular injection of the labelled hormone in fed rats. (C.G.C.)

  2. From motor cortex to visual cortex: the application of noninvasive brain stimulation to amblyopia.

    Science.gov (United States)

    Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F

    2012-04-01

    Noninvasive brain stimulation is a technique for inducing changes in the excitability of discrete neural populations in the human brain. A current model of the underlying pathological processes contributing to the loss of motor function after stroke has motivated a number of research groups to investigate the potential therapeutic application of brain stimulation to stroke rehabilitation. The loss of motor function is modeled as resulting from a combination of reduced excitability in the lesioned motor cortex and an increased inhibitory drive from the nonlesioned hemisphere over the lesioned hemisphere. This combination of impaired neural function and pathological suppression resonates with current views on the cause of the visual impairment in amblyopia. Here, we discuss how the rationale for using noninvasive brain stimulation in stroke rehabilitation can be applied to amblyopia, review a proof-of-principle study demonstrating that brain stimulation can temporarily improve amblyopic eye function, and propose future research avenues. Copyright © 2010 Wiley Periodicals, Inc.

  3. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    Science.gov (United States)

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    Science.gov (United States)

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  5. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    Science.gov (United States)

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  6. 11.74T fMRI of cortical and subcortical visual networks in the rat

    DEFF Research Database (Denmark)

    Bailey, Christopher; Sanganahalli, Basavaraju G.; Siefert, Alyssa

    Though a predominantly nocturnal animal, the rat has a functional visual system, albeit of low acuity, and has at least a basic form of color vision extending into the UV range. Our aim here was to develop methods to probe this system with both high field fMRI and electrophysiological techniques....

  7. The effect of ACTH analogues on motor behavior and visual evoked responses in rats

    NARCIS (Netherlands)

    Wolthuis, O.L.; Wied, D. de

    1976-01-01

    Averaged visual evoked responses (VER) in cortical area 17 were recorded one hour after the administration of 7-l-phe ACTH(4-10) or 7-d-phe ACTH(4-10) to artificially ventilated rats, paralysed with gallamine. In addition, the effects of these peptides on spontaneous motor behavior were analyzed.

  8. Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.

    Science.gov (United States)

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.

  9. Radioimmunoassay of met-enkephalin in microdissected areas of paraformaldehyde-fixed rat brain

    International Nuclear Information System (INIS)

    Correa, F.M.A.; Saavedra, J.M.

    1984-01-01

    The effects were studied of various sample preparation procedures on rat brain met-enkephalin content, measured by radioimmunoassay. Whole brain met-enkephalin content of rats killed by decapitation followed by immediate tissue freezing was similar to that of rats killed by microwave irradiation and to those of rats anesthetized with pentobarbital or halothane before killing, whether previously perfused with paraformaldehyde or not. In contrast, a decrease (up to 80%) in met-enkephalin concentrations was observed when brain samples were frozen and thawed to mimic the procedure utilized in the ''punch'' technique for analysis of discrete brain nuclei. This decrease was totally prevented by paraformaldehyde perfusion of the brain prior to sacrifice. Brain perfusion did not alter the amount of immunoassayable met-enkephalin extracted from tissue or its profile after Sephadex chromatography. Paraformaldehyde perfusion results in better morphological tissue preservation and facilitates the ''punch'' dissecting technique. Paraformaldehyde perfusion may be the procedure of choice for the measurement of neuropeptides in specific brain nuclei dissected by the ''punch'' technique

  10. The development of hand-centred visual representations in the primate brain: a computer modelling study using natural visual scenes.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Galeazzi

    2015-12-01

    Full Text Available Neurons that respond to visual targets in a hand-centred frame of reference have been found within various areas of the primate brain. We investigate how hand-centred visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organisation. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localised receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localised receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centred receptive fields decreased their shape selectivity and started responding to a localised region of hand-centred space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localised, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

  11. Stereoscopic Three-Dimensional Visualization Applied to Multimodal Brain Images: Clinical Applications and a Functional Connectivity Atlas.

    Directory of Open Access Journals (Sweden)

    Gonzalo M Rojas

    2014-11-01

    Full Text Available Effective visualization is central to the exploration and comprehension of brain imaging data. While MRI data are acquired in three-dimensional space, the methods for visualizing such data have rarely taken advantage of three-dimensional stereoscopic technologies. We present here results of stereoscopic visualization of clinical data, as well as an atlas of whole-brain functional connectivity. In comparison with traditional 3D rendering techniques, we demonstrate the utility of stereoscopic visualizations to provide an intuitive description of the exact location and the relative sizes of various brain landmarks, structures and lesions. In the case of resting state fMRI, stereoscopic 3D visualization facilitated comprehension of the anatomical position of complex large-scale functional connectivity patterns. Overall, stereoscopic visualization improves the intuitive visual comprehension of image contents, and brings increased dimensionality to visualization of traditional MRI data, as well as patterns of functional connectivity.

  12. Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.

    Science.gov (United States)

    Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E

    2018-04-21

    Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.

  13. Effects of Tianmagouteng particles on brain cognitive function in spontaneously hypertensive rats with hyperactivity of liver-yang: A [F-18] FDG micro-PET imaging study.

    Science.gov (United States)

    Zhang, Xiu-Jing; Sun, Tian-Cai; Liu, Zi-Wang; Wang, Feng-Jiao; Wang, Yong-De; Liu, Jing

    2017-11-01

    To collect visualized proof of Tianmagouteng particles (TMGTP) in alleviating cognitive dysfunction and to explore its effects on brain activity in spontaneously hypertensive rats (SHRs) with hyperactivity of liver-yang (Gan Yang Shang Kang, GYSK). Sixteen SHRs were randomized into treatment group and non-treatment. The SHR with GYSK was induced by gavaging aconite decoction (10mL/kg at 0.2g/mL). After the SHR models were prepared, the rats in the treatment group were administered TMGTP (10mL/kg) once a day for 14days.The rats in the non-treatment group or normal rats (control group) received an equivalent volume of saline. Morris water maze test was conducted before and after the treatment to observe cognitive function. Fluorine 18-deoxy glucose [F-18]FDG micro-PET brain imaging scans was performed after treatment. Data were analyzed with two-sample t-test (Pfunctions, TMGTP induced strong brain activity in the following sites: right dorsolateral nucleus and ventrolateral nucleus of thalamus, amygdala, left met thalamus, cerebellum leaflets, original crack, front cone crack, loop-shaped leaflets; but deactivation of right medial frontal gyrus, bilateral corpus callosum, hippocampus, and left dentate gyrus. TMGTP could alleviate cognitive dysfunction in SHRs with GYSK, which was possibly by inducing alteration of glucose metabolism in different brain regions with corresponding functions. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats

    Science.gov (United States)

    Kouchi, Hayet Y.; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S.; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  15. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    Directory of Open Access Journals (Sweden)

    Raafat P Fares

    Full Text Available Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage, which offers: (1 minimally stressful social interactions; (2 increased voluntary exercise; (3 multiple entertaining activities; (4 cognitive stimulation (maze exploration, and (5 novelty (maze configuration changed three times a week. The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.

  16. Relationship between catalase activity and uptake of elemental mercury by rat brain

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1983-01-01

    Uptake of mercury by brain after intravenous injection of elemental mercury was investigated in the rat. Catalase activity was inhibited by aminotriazole either by intraperitoneal affecting catalase in most tissues of the animal or by intraventricular injections affecting catalase in the brain selectively. Uptake of elemental mercury by rat brain was not influenced by intraperitoneal administration of aminotriazole resulting in 50% inhibition of brain catalase. However, when the inhibitor was injected intraventricularly in concentrations to give a 50% inhibition of brain catalase, it was shown that the mercury uptake by brain was significantly decreased. In the latter case when only brain catalase was inhibited and the supply of elemtal mercury to brain was maintained, mercury uptake by brain was proportional to the activity of catalase in brain tissue and to the injected amount of elemental mercury. Contrary to the intraventricular injection of aminotriazole, in animals recieving aminotriazole intraperitoneally prior to elemental mercury injection, we suggest that the lower activity of brain catalse is compensated by an increased supply of elemtal mercury caused by the generally lower oxidation rate in the animal. This view is supported by the finding that mercury uptake by liver increased due to aminotriazole intraperitoneally although activity of catalase was depressed. (author)

  17. Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.

    Science.gov (United States)

    Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing

    2018-03-12

    Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.

  18. Effects of Grammatical Categories on Children's Visual Language Processing: Evidence from Event-Related Brain Potentials

    Science.gov (United States)

    Weber-Fox, Christine; Hart, Laura J.; Spruill, John E., III

    2006-01-01

    This study examined how school-aged children process different grammatical categories. Event-related brain potentials elicited by words in visually presented sentences were analyzed according to seven grammatical categories with naturally varying characteristics of linguistic functions, semantic features, and quantitative attributes of length and…

  19. Visual search in school-aged children with unilateral brain lesions

    NARCIS (Netherlands)

    Netelenbos, J.B.; de Rooij, L.

    2004-01-01

    In this preliminary study, visual search for targets within and beyond the initial field of view was investigated in seven school-aged children (five females, two males; mean age at testing 8 years 10 months, SD 1 year 3 months; range 6 to 10 years) with various acquired, postnatal, focal brain

  20. Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Sharma, Pushpa; Su, Yan A; Barry, Erin S; Grunberg, Neil E; Lei, Zhang

    2012-09-01

    Mild traumatic brain injury (mTBI) represents a major health problem in civilian populations as well as among the military service members due to (1) lack of effective treatments, and (2) our incomplete understanding about the progression of secondary cell injury cascades resulting in neuronal cell death due to deficient cellular energy metabolism and damaged mitochondria. The aim of this study was to identify and delineate the mitochondrial targeted genes responsible for altered brain energy metabolism in the injured brain. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed up for 7 days. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed for 7 days. The severity of brain injury was evaluated by the neurological severity scale-revised (NSS-R) at 3 and 5 days post TBI and immunohistochemical analyses at 7 days post TBI. The expression profiles of mitochondrial-targeted genes across the hippocampus from TBI and naïe rats were also examined by oligo-DNA microarrays. NSS-R scores of TBI rats (5.4 ± 0.5) in comparison to naïe rats (3.9 ± 0.5) and H and E staining of brain sections suggested a mild brain injury. Bioinformatics and systems biology analyses showed 31 dysregulated genes, 10 affected canonical molecular pathways including a number of genes involved in mitochondrial enzymes for oxidative phosphorylation, mitogen-activated protein Kinase (MAP), peroxisome proliferator-activated protein (PPAP), apoptosis signaling, and genes responsible for long-term potentiation of Alzheimer's and Parkinson's diseases. Our results suggest that dysregulated mitochondrial-focused genes in injured brains may have a clinical utility for the development of future therapeutic strategies aimed at the treatment of TBI.

  1. Kaleido: Visualizing Big Brain Data with Automatic Color Assignment for Single-Neuron Images.

    Science.gov (United States)

    Wang, Ting-Yuan; Chen, Nan-Yow; He, Guan-Wei; Wang, Guo-Tzau; Shih, Chi-Tin; Chiang, Ann-Shyn

    2018-03-03

    Effective 3D visualization is essential for connectomics analysis, where the number of neural images easily reaches over tens of thousands. A formidable challenge is to simultaneously visualize a large number of distinguishable single-neuron images, with reasonable processing time and memory for file management and 3D rendering. In the present study, we proposed an algorithm named "Kaleido" that can visualize up to at least ten thousand single neurons from the Drosophila brain using only a fraction of the memory traditionally required, without increasing computing time. Adding more brain neurons increases memory only nominally. Importantly, Kaleido maximizes color contrast between neighboring neurons so that individual neurons can be easily distinguished. Colors can also be assigned to neurons based on biological relevance, such as gene expression, neurotransmitters, and/or development history. For cross-lab examination, the identity of every neuron is retrievable from the displayed image. To demonstrate the effectiveness and tractability of the method, we applied Kaleido to visualize the 10,000 Drosophila brain neurons obtained from the FlyCircuit database ( http://www.flycircuit.tw/modules.php?name=kaleido ). Thus, Kaleido visualization requires only sensible computer memory for manual examination of big connectomics data.

  2. Effects of propranolol and clonidine on brain edema, blood-brain barrier permeability, and endothelial glycocalyx disruption after fluid percussion brain injury in the rat

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Hansen, Morten Bagge

    2018-01-01

    clonidine would decrease brain edema, blood-brain barrier permeability, and glycocalyx disruption at 24 hours after trauma. METHODS: We subjected 53 adult male Sprague-Dawley rats to lateral fluid percussion brain injury and randomized infusion with propranolol (n = 16), propranolol + clonidine (n = 16......), vehicle (n = 16), or sham (n = 5) for 24 hours. Primary outcome was brain water content at 24 hours. Secondary outcomes were blood-brain barrier permeability and plasma levels of syndecan-1 (glycocalyx disruption), cell damage (histone-complexed DNA fragments), epinephrine, norepinephrine, and animal.......555). We found no effect of propranolol and propranolol/clonidine on blood-brain barrier permeability and animal motor scores. Unexpectedly, propranolol and propranolol/clonidine caused an increase in epinephrine and syndecan-1 levels. CONCLUSION: This study does not provide any support for unselective...

  3. Transport of cysteate by synaptosomes isolated from rat brain

    International Nuclear Information System (INIS)

    Wilson, D.F.; Pastuszko, A.

    1986-01-01

    Synaptosomes isolated from rat brain were observed to take up cysteic acid by a high affinity transport system (K/sub M = 12.3 +/- 2.1 μM; V/sub m/ = 2.5 n mole/mg protein/minute). This uptake was competitively inhibited by aspartate (K/sub i/ = 13.3 +/- 1.8 μM) and cysteine sulfinate (K/sub i/ = 13.3 +/- 3.3 μM). Addition of extrasynaptosomal cysteate, aspartate or cysteine sulfinate to synaptosomes loaded with [ 35 S] cysteate induced rapid efflux of the cysteate. This efflux was via stoichiometric exchange of amino acids with half maximal rates at 5.0 +/- 1.1 μM aspartate or 8.0 +/- 1.3 μM cysteine sulfinate. Conversely, added extrasynaptosomal cysteate exchanged for endogenous aspartate and glutamate with half maximal rates at 5.0 +/- 0.4 μM cysteate. In the steady state after maximal accumulation of cysteate, the intrasynaptosomal cysteate concentrations exceeded the extrasynaptosomal concentrations by up to 10,000 fold. The measured concentration ratios were the same, within experimental error, as those for aspartate and glutamate. Depolarization, with either high K + or veratridine, of the plasma membrane of synaptosomes loaded with cysteate caused parallel release of cysteate, aspartate and glutamate. It is concluded that neurons transport cysteate, cysteine sulfinate, aspartate and glutamate with the same transport system. This transport system catalyzes homoexchange and heteroexchange as well as net uptake and release of all these amino acids

  4. Purification and properties of adenosine kinase from rat brain.

    Science.gov (United States)

    Yamada, Y; Goto, H; Ogasawara, N

    1980-12-04

    Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to apparent homogeneity from rat brain by (NH4)2SO4 fractionation, affinity chromatography on AMP-Sepharose 4B, gel filtration with Sephadex G-100, and DE-52 cellulose column chromatography. The yield was 56% of the initial activity with a final specific activity of 7.8 mumol/min per mg protein. The molecular weight was estimated as 38 000 by gel filtration with Sephadex G-100 and 41 000 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 20% that of adenosine phosphorylation. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad pH optimum at pH 7.5-8.5. The Km value for adenosine was 0.2 microM and the maximum activity was observed at 0.5 microM. At higher concentrations of adenosine, the activity was strongly inhibited. The Km value for ATP was 0.02 mM and that for Mg2+ was 0.1 mM. GTP, dGTP, dATP and UTP were also proved to be effective phosphate donors. Co2+ was as effective as Mg2+, and Ca2+, Mn2+ or Ni2+ showed about 50% of the activity for Mg2+. The kinase is quite unstable, but stable in the presence of a high concentration of salt; e.g., 0.15 M KCl.

  5. The riddle of style changes in the visual arts after interference with the right brain

    Directory of Open Access Journals (Sweden)

    Olaf eBlanke

    2012-01-01

    Full Text Available What is visual art? What are paintings? What are films? Although innumerous answers have been proposed to these questions, we here analyze the paintings and films of several visual artists, who suffered from a well-defined neuropsychological deficit, visuo-spatial hemineglect, following vascular stroke to the right brain. We focus our analysis in particular on the oeuvre of Lovis Corinth and Luchino Visconti and point out aspects of their post-stroke paintings and films (that differ from their pre-stroke work and argue that these changes may be associated with visuo-spatial hemineglect. We discuss how the neuropsychological investigation of visual artists may allow us to investigate the relationship between brain and art.

  6. Development of visual motion perception for prospective control: Brain and behavioural studies in infants

    Directory of Open Access Journals (Sweden)

    Seth B. Agyei

    2016-02-01

    Full Text Available During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioural and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioural data when studying the neural correlates of prospective control.

  7. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    Science.gov (United States)

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    ) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18......Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP...

  9. Quantitative autoradiography of [3H]corticosterone receptors in rat brain

    International Nuclear Information System (INIS)

    Sapolsky, R.M.; McEwen, B.S.; Rainbow, T.C.

    1983-01-01

    The authors have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 μCi [ 3 H]corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradigraphic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue. (Auth.)

  10. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  11. Neuroanatomy-based matrix-guided trimming protocol for the rat brain.

    Science.gov (United States)

    Defazio, Rossella; Criado, Ana; Zantedeschi, Valentina; Scanziani, Eugenio

    2015-02-01

    Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight. In the setup phase, we identified eight channels, that is, 6, 8, 10, 12, 14, 16, 19, and 21, matching the recommended landmarks midway to the optic chiasm, frontal pole, optic chiasm, infundibulum, mamillary bodies, midbrain, middle cerebellum, and posterior cerebellum, respectively. In the validation study, we trimmed the immersion-fixed brains of 60 rats using the selected channels to determine how consistently the channels reproduced anatomical landmarks. Percentage of success (i.e., presence of expected targets for each level) ranged from 89 to 100%. Where 100% success was not achieved, it was noted that the shift in brain trimming was toward the caudal pole. In conclusion, we developed and validated a trimming protocol for the rat brain that allow comparable extensiveness, homology, and relevance of coronal sections as the landmark-guided trimming with the advantage of being quickly learned by technicians. © 2014 by The Author(s).

  12. Cloning and expression of a rat brain α2B-adrenergic receptor

    International Nuclear Information System (INIS)

    Flordellis, C.S.; Handy, D.E.; Bresnahan, M.R.; Zannis, V.I.; Gavras, H.

    1991-01-01

    The authors isolated a cDNA clone (RBα 2B ) and its homologous gene (GRα 2B ) encoding an α 2B -adrenergic receptor subtype by screening a rat brain cDNA and a rat genomic library. Nucleotide sequence analysis showed that both clones code for a protein of 458 amino acids, which is 87% homologous to the human kidney glycosylated adrenergic receptor (α 2 -C4) and divergent from the rat kidney nonglycosylated α 2B subtype (RNGα 2 ). Transient expression of RBα 2B in COS-7 cells resulted in high-affinity saturable binding for [ 3 H]rauwolscine and a high receptor number in the membranes of transfected COS-7 cells. Pharmacological analysis demonstrated that the expressed receptor bound adrenergic ligands with the following order of potency: rauwolscine > yohimbine > prazosin > oxymetazoline, with a prazosin-to-oxymetazoline K i ratio of 0.34. This profile is characteristic of the α 2B -adrenergic receptor subtype. Blotting analysis of rat brain mRNA gave one major and two minor mRNA species, and hybridization with strand-specific probes showed that both DNA strands of GRα 2B may be transcriptionally active. These findings show that rat brain expresses an α 2B -adrenergic receptor subtype that is structurally different from the rat kidney nonglycosylated α 2B subtype. Thus the rat expresses at least two divergent α 2B -adrenergic receptors

  13. Volumetric abnormalities of the brain in a rat model of recurrent headache.

    Science.gov (United States)

    Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan

    2018-01-01

    Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.

  14. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats.

    Science.gov (United States)

    Shumake, Jason; Colorado, Rene A; Barrett, Douglas W; Gonzalez-Lima, F

    2010-07-09

    Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for the treatment of affective disorders. We hypothesized that fluoxetine antidepressant effects may be mediated by decreasing metabolism in the habenula and increasing metabolism in the ventral tegmental area. We measured the effects of fluoxetine on forced swim behavior and regional brain cytochrome oxidase activity in congenitally helpless rats treated for 2 weeks with fluoxetine (5mg/kg, i.p., daily). Fluoxetine reduced immobility in the forced swim test as anticipated, but congenitally helpless rats responded in an atypical manner, i.e., increasing climbing without affecting swimming. As hypothesized, fluoxetine reduced metabolism in the habenula and increased metabolism in the ventral tegmental area. In addition, fluoxetine reduced the metabolism of the hippocampal dentate gyrus and dorsomedial prefrontal cortex. This study provided the first detailed mapping of the regional brain effects of an antidepressant drug in congenitally helpless rats. All of the effects were consistent with previous studies that have metabolically mapped the effects of serotonergic antidepressants in the normal rat brain, and were in the predicted direction of metabolic normalization of the congenitally helpless rat for all affected brain regions except the prefrontal cortex. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Effects of visual deprivation during brain development on expression of AMPA receptor subunits in rat’s hippocampus

    Directory of Open Access Journals (Sweden)

    Sayyed Alireza Talaei

    2015-06-01

    Conclusion: Dark rearing of rats during critical period of brain development changes the relative expression and also arrangement of both AMPA receptor subunits, GluR1 and GluR2 in the hippocampus, age dependently.

  16. Computed microtomography visualization and quantification of mouse ischemic brain lesion by nonionic radio contrast agents.

    Science.gov (United States)

    Dobrivojević, Marina; Bohaček, Ivan; Erjavec, Igor; Gorup, Dunja; Gajović, Srećko

    2013-02-01

    To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema.

  17. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    Science.gov (United States)

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Interactive 3D visualization of structural changes in the brain of a person with corticobasal syndrome

    Directory of Open Access Journals (Sweden)

    Claudia eHänel

    2014-05-01

    Full Text Available The visualization of the progression of brain tissue loss, which occurs in neurodegenerative diseases like corticobasal syndrome (CBS, is an important prerequisite to understand the course and the causes of this neurodegenerative disorder. Common workflows for visual analysis are often based on single 2D sections since in 3D visualizations more internally situated structures may be occluded by structures near the surface. The reduction of dimensions from 3D to 2D allows for an holistic view onto internal and external structures, but results in a loss of spatial information. Here, we present an application with two 3D visualization designs to resolve these challenges. First, in addition to the volume changes, the semi-transparent anatomy is displayed with an anatomical section and cortical areas for spatial orientation. Second, the principle of importance-driven volume rendering is adapted to give an unrestricted line-of-sight to relevant structures by means of a frustum-like cutout. To strengthen the benefits of the 3D visualization, we decided to provide the application next to standard desktop environments in immersive virtual environments with stereoscopic viewing as well. This improves the depth perception in general and in particular for the second design. Thus, the application presented in this work allows for aneasily comprehensible visual analysis of the extent of brain degeneration and the corresponding affected regions.

  19. Regional brain glucose use in unstressed rats after two days of starvation

    International Nuclear Information System (INIS)

    Mans, A.M.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Regional brain glucose use was measured in conscious, unrestrained, fed rats and after 2 days of starvation, using quantitative autoradiography and [6- 14 C]glucose. Plasma glucose, lactate, and ketone body concentrations and brain glucose and lactate content were measured in separate groups of rats. Glucose concentrations were lower in starved rats in both plasma and brain; plasma ketone body concentrations were elevated. Glucose use was found to be lower throughout the brain by about 12%. While some areas seemed to be affected more than others, statistical analysis showed that none were exceptionally different. The results could not be explained by increased loss of 14 C as lactate or pyruvate during the experimental period, because the arteriovenous differences of these species were insignificant. The calculated contribution by ketone bodies to the total energy consumption was between 3 and 9% for the brain as a whole in the starved rats and could, therefore, partially account for the depression seen in glucose use. It was concluded that glucose oxidation is slightly depressed throughout the brain after 2 days of starvation

  20. Integrated analysis and visualization of group differences in structural and functional brain connectivity: Applications in typical ageing and schizophrenia

    NARCIS (Netherlands)

    C.D. Langen (Carolyn); T.J.H. White (Tonya); M.A. Ikram (Arfan); M.W. Vernooij (Meike); W.J. Niessen (Wiro)

    2015-01-01

    textabstractStructural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uniand bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of

  1. Integrated Analysis and Visualization of Group Differences in Structural and Functional Brain Connectivity : Applications in Typical Ageing and Schizophrenia

    NARCIS (Netherlands)

    Langen, C.D.; White, T.; Ikram, M.A.; Vernooij, M.W.; Niessen, W.J.

    2015-01-01

    Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of

  2. Acute treatment with fluvoxamine elevates rat brain serotonin synthesis in some terminal regions: An autoradiographic study

    International Nuclear Information System (INIS)

    Muck-Seler, Dorotea; Pivac, Nela; Diksic, Mirko

    2012-01-01

    Introduction: A considerable body of evidence indicates the involvement of the neurotransmitter serotonin (5-HT) in the pathogenesis and treatment of depression. Methods: The acute effect of fluvoxamine, on 5-HT synthesis rates was investigated in rat brain regions, using α- 14 C-methyl-L-tryptophan as a tracer. Fluvoxamine (25 mg/kg) and saline (control) were injected intraperitoneally, one hour before the injection of the tracer (30 μCi). Results: There was no significant effect of fluvoxamine on plasma free tryptophan. After Benjamini–Hochberg False Discovery Rate correction, a significant decrease in the 5-HT synthesis rate in the fluvoxamine treated rats, was found in the raphe magnus (− 32%), but not in the median (− 14%) and dorsal (− 3%) raphe nuclei. In the regions with serotonergic axon terminals, significant increases in synthesis rates were observed in the dorsal (+ 41%) and ventral (+ 43%) hippocampus, visual (+ 38%), auditory (+ 65%) and parietal (+ 37%) cortex, and the substantia nigra pars compacta (+ 56%). There were no significant changes in the 5-HT synthesis rates in the median (+ 11%) and lateral (+ 24%) part of the caudate-putamen, nucleus accumbens (+ 5%), VTA (+ 16%) or frontal cortex (+ 6%). Conclusions: The data show that the acute administration of fluvoxamine affects 5-HT synthesis rates in a regionally specific pattern, with a general elevation of the synthesis in the terminal regions and a reduction in some cell body structures. The reasons for the regional specific effect of fluvoxamine on 5-HT synthesis are unclear, but may be mediated by the presynaptic serotonergic autoreceptors.

  3. An autoradiographic map of (3H)diprenorphine binding in rat brain: effects of social interaction

    International Nuclear Information System (INIS)

    Panksepp, J.; Bishop, P.

    1981-01-01

    (3H)Diprenorphine binding was analyzed autoradiographically in the brains of 33 day old rat pups. A photographic atlas of diprenorphine binding in the coronal plane is provided to highlight the dispersion of opioid receptor systems through the brain. To determine whether brain opioid release may be induced by social interactions, half the animals were sacrificed following a 30 min period of social interaction while the other half were sacrificed following 30 min of social isolation. Opioid binding was higher in isolate-tested animals than socially-tested ones, suggesting that social interaction may promote endogenous brain opioid release

  4. Neurotransmitter Mechanisms in the Nucleus Accumbens Septi and Related Regions in the Rat Brain.

    Science.gov (United States)

    1981-06-30

    Brain Res 77, 507-12. Palkovits XI (1973): Isolated removal of hypothalamic or other brain nuclei of the rat, Brain Res 59, 449-50. Phillipson O T...and operated animals were killed by decapitation, the lesioned animals 6-14 days after operation. The brain was rapidly removed and frozen on a... electrocoagulation with 2 mA for 20 s. This led to a the pH adjusted to 7.2 with NaOH A hocle was made lesion centered in the parafascicular and

  5. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    Science.gov (United States)

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Visual rehabilitation with Retimax Vision Trainer in patients with severe Acquired Brain Injury: report of two cases

    Directory of Open Access Journals (Sweden)

    Margherita Chiari

    2014-04-01

    Full Text Available Retimax Vision Trainer is a device that has the purpose to improve visual function by means of the detection of a visual evoked potential associated with a sound feedback. We evaluated the effectiveness of rehabilitative treatment in two patients with Acquired Brain Injury (ABI. Results, subjectively appreciated, are objectively confirmed by the improvement of visual function.

  7. Brain-computer interface based on generation of visual images.

    Directory of Open Access Journals (Sweden)

    Pavel Bobrov

    Full Text Available This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP classifier.

  8. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    Science.gov (United States)

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  9. Visualization of haemophilic arthropathy in F8(-/-) rats by ultrasonography and micro-computed tomography

    DEFF Research Database (Denmark)

    Christensen, K R; Roepstorff, K; Petersen, M

    2017-01-01

    opportunities. Recently, a F8(-/-) rat model of HA was developed. The size of the rat allows for convenient and high resolution imaging of the joints, which could enable in vivo studies of HA development. AIM: To determine whether HA in the F8(-/-) rat can be visualized using ultrasonography (US) and micro......-computed tomography (μCT). METHODS: Sixty F8(-/-) and 20 wild-type rats were subjected to a single or two induced knee bleeds. F8(-/-) rats were treated with either recombinant human FVIII (rhFVIII) or vehicle before the induction of knee bleeds. Haemophilic arthropathy was visualized using in vivo US and ex vivo μCT......, and the observations correlated with histological evaluation. RESULTS: US and μCT detected pathologies in the knee related to HA. There was a strong correlation between disease severity determined by μCT and histopathology. rhFVIII treatment reduced the pathology identified with both imaging techniques. CONCLUSION: US...

  10. Effects of anesthesia on [11C]raclopride binding in the rat brain

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Simonsen, Mette; Møller, Arne

    Background Very often rats are anesthetized prior to micro positron emission tomography (microPET) brain imaging in order to prevent head movements. Anesthesia can be administered by inhalation agents, such as isoflurane, or injection mixtures, such as fentanyl-fluanisone-midazolam. Unfortunately......, anesthesia affects a variety of physiological variables, including in the brain. Aim The aim of this study was to compare the effects of inhalation and injection anesthesia on the binding potential of the dopaminergic D2/3 tracer [11C]raclopride used for PET brain imaging in human and animal studies....... Materials & Methods Nine male Lew/Mol rats were assigned to either inhalation (isoflurane; N=4) or injection (fentanyl-fluanisone-midazolam; N=5) anesthesia. Catheters were surgically placed in femoral arteries and veins for blood sampling and tracer injection. After a short attenuation scan, the rats were...

  11. Differentiation in boron distribution in adult male and female rats' normal brain: A BNCT approach

    International Nuclear Information System (INIS)

    Goodarzi, Samereh; Pazirandeh, Ali; Jameie, Seyed Behnamedin; Baghban Khojasteh, Nasrin

    2012-01-01

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. - Highlights: ► Boron distribution in male and female rats' normal brain was studied in this research. ► Coronal sections of animal tissue samples were irradiated with thermal neutrons. ► Alpha and Lithium tracks were counted using alpha autoradiography. ► Different boron concentration was seen in brain sections of male and female rats. ► The highest boron concentration was seen in 4 h after boron compound injection.

  12. Effect of Piper betle leaf extract on alcoholic toxicity in the rat brain.

    Science.gov (United States)

    Saravanan, R; Rajendra Prasad, N; Pugalendi, K V

    2003-01-01

    The protective effect of Piper betle, a commonly used masticatory, has been examined in the brain of ethanol-administered Wistar rats. Brain of ethanol-treated rats exhibited increased levels of lipids, lipid peroxidation, and disturbances in antioxidant defense. Subsequent to the experimental induction of toxicity (i.e., the initial period of 30 days), aqueous P. betle extract was simultaneously administered in three different doses (100, 200, and 300 mg kg(-1)) for 30 days along with the daily dose of alcohol. P. betle coadministration resulted in significant reduction of lipid levels (free fatty acids, cholesterol, and phospholipids) and lipid peroxidation markers such as thiobarbituric acid reactive substances and hydroperoxides. Further, antioxidants, like reduced glutathione, vitamin C, vitamin E, superoxide dismutase, catalase, and glutathione peroxidase, were increased in P. betle-coadministered rats. The higher dose of extract (300 mg kg(-1)) was more effective, and these results indicate the neuroprotective effect of P. betle in ethanol-treated rats.

  13. Reorganization of Visual Callosal Connections Following Alterations of Retinal Input and Brain Damage

    Science.gov (United States)

    Restani, Laura; Caleo, Matteo

    2016-01-01

    Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review, we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC). The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review the essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e., monocular deprivation (MD). This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g., strabismus and amblyopia) characterized by unbalanced input from the two eyes. We will also discuss the findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital

  14. A novel brain-computer interface based on the rapid serial visual presentation paradigm.

    Science.gov (United States)

    Acqualagna, Laura; Treder, Matthias Sebastian; Schreuder, Martijn; Blankertz, Benjamin

    2010-01-01

    Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm consisting of a central rapid serial visual presentation (RSVP) of the stimuli. It has a large vocabulary and realizes a BCI system based on covert non-spatial selective visual attention. In an offline study, eight participants were presented sequences of rapid bursts of symbols. Two different speeds and two different color conditions were investigated. Robust early visual and P300 components were elicited time-locked to the presentation of the target. Offline classification revealed a mean accuracy of up to 90% for selecting the correct symbol out of 30 possibilities. The results suggest that RSVP-BCI is a promising new paradigm, also for patients with oculomotor impairments.

  15. White matter lesions of the aging brain visualized on MRI

    International Nuclear Information System (INIS)

    Tomura, Noriaki; Shindou, Masaaki; Hashimoto, Manabu; Kato, Toshio; Monma, Keiji; Segawa, Yasuhiko.

    1990-01-01

    The purpose of this report is to study the relationship between the severity of the white matter lesions (WMLs) and aging. We reviewed 215 subjects (11-88 years of age) referred for MR imaging performed between June 1988 and August 1989 on a 0.5T superconducting MR imager. The spin echo technique of image acquisition was used, with TR 1800 ms and TE 120 ms. All subjects were free from neurological abnormalities. The patterns of MR imaging of the incidental WMLs were divided into four grades; grades 0-3 (grade 0, no lesions; grade 1, lesions confined to one lobe; grade 2, lesions beyond one lobe; grade 3, confluent periventricular lesions). We investigated the relationships among the prevalence of WMLs, the grading of WMLs, age, and hypertension. Furthermore, we analyzed the grading of WMLs in relation to the degree of brain atrophy (bicaudate index) and the prevalence of basal ganglionic lesions. The mean age of grade 0 (n=90), grade 1 (n=36), grade 2 (n=58) and grade 3 (n=31) was 43.4±13.2, 57.3±7.3, 63.5±10.8 and 71.6±8.5. The statistical difference of age between grade 0 and 1 (p 160 mmHg) showed higher grading of WMLs than other subjects. There was a statistical difference in the bicaudate index between grade 0 and 2 (p<0.001), and grade 0 and 3 (p<0.001). Of the 89 subjects of grade 2 or 3, 47 (53%) had basal ganglionic and/or thalamic lesions. It was confirmed that WMLs of neurologically healthy subjects significantly correlated with aging. In addition, hypertension accelerated WMLs. (author)

  16. Control of a visual keyboard using an electrocorticographic brain-computer interface.

    Science.gov (United States)

    Krusienski, Dean J; Shih, Jerry J

    2011-05-01

    Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.

  17. Treadmill sideways gait training with visual blocking for patients with brain lesions.

    Science.gov (United States)

    Kim, Tea-Woo; Kim, Yong-Wook

    2014-09-01

    [Purpose] The aim of this study was to verify the effect of sideways treadmill training with and without visual blocking on the balance and gait function of patients with brain lesions. [Subjects] Twenty-four stroke and traumatic brain injury subjects participated in this study. They were divided into two groups: an experimental group (12 subjects) and a control group (12 subjects). [Methods] Each group executed a treadmill training session for 20 minutes, three times a week, for 6 weeks. The sideways gait training on the treadmill was performed with visual blocking by the experimental group and with normal vision by the control group. A Biodex Gait Trainer 2 was used to assess the gait function. It was used to measure walking speed, walking distance, step length, and stance time on each foot. The Five-Times-Sit-To-Stand test (FTSST) and Timed Up and Go test (TUG) were used as balance measures. [Results] The sideways gait training with visual blocking group showed significantly improved walking speed, walking distance, step length, and stance time on each foot after training; FTSST and TUG times also significantly improved after training in the experimental group. Compared to the control group, the experimental group showed significant increases in stance time on each foot. [Conclusion] Sideways gait training on a treadmill with visual blocking performed by patients with brain lesions significantly improved their balance and gait function.

  18. Imaging of aromatase distribution in rat and rhesus monkey brains with [{sup 11}C]vorozole

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kayo [Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala SE-75124 (Sweden); Uppsala Imanet, Uppsala SE-75109 (Sweden)]. E-mail: kayo.takahashi@uppsala.imanet.se; Bergstroem, Mats [Uppsala Imanet, Uppsala SE-75109 (Sweden); Department of Pharmaceutical Biosciences, Uppsala University, Uppsala SE-75124 (Sweden); Fraendberg, Pernilla [Uppsala Imanet, Uppsala SE-75109 (Sweden); Vesstroem, Eva-Lotta [Uppsala Imanet, Uppsala SE-75109 (Sweden); Watanabe, Yasuyoshi [Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585 (Japan); Langstroem, Bengt [Uppsala Imanet, Uppsala SE-75109 (Sweden)

    2006-07-15

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [{sup 11}C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K {sub d} of [{sup 11}C]vorozole binding to aromatase in MA was determined to be 0.60{+-}0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [{sup 11}C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons.

  19. Imaging of aromatase distribution in rat and rhesus monkey brains with [11C]vorozole

    International Nuclear Information System (INIS)

    Takahashi, Kayo; Bergstroem, Mats; Fraendberg, Pernilla; Vesstroem, Eva-Lotta; Watanabe, Yasuyoshi; Langstroem, Bengt

    2006-01-01

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [ 11 C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K d of [ 11 C]vorozole binding to aromatase in MA was determined to be 0.60±0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [ 11 C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons

  20. Comparison of Trazodone, Diazepame and Dibenzepine Influences on Rat Brain Beta-Endorphins Content

    Directory of Open Access Journals (Sweden)

    Radivoj Jadrić

    2007-08-01

    Full Text Available The aim of our study was to establish the extent of influence of different psychotropic drugs to brain β-endorphins in experimental animals. The study was performed on albino Wistar rats (weight 250 g, treated with different psychoactive drugs. RIA technique was employed for quantification of brain β-endorphins. Brain β-endorphins were higher in experiment group treated with trazodone (929 pg/g ± 44,43; X±SD, and dibenzepine (906,63 pg/g ± 74,06, yet with lower brain content in rats treated with diazepame (841,55 pg/g ± 68,47, compared to brain β-endorphins content of control group treated with saline solution (0,95% NaCl (873,5 pg/g ± 44,89. Significant differences were obtained comparing brain β-endorphins of trazodone vs. diaze-pame treated animals, with diazepame group having lower values (p<0,02. This study showed differences in changes of rat brain β-endorphins contents when different psy-choactive drugs are used. Therefore, we consider that β-endorphins could be used for evaluation of effects of psychoactive drugs, as a useful parameter in therapy with these psycho pharmaceuticals.

  1. The Effects on Antioxidant Enzyme Systems in Rat Brain Tissues of Lead Nitrate and Mercury Chloride

    OpenAIRE

    Baş, Hatice; Kalender, Suna; Karaboduk, Hatice; Apaydın, Fatma

    2014-01-01

    The present study was undertaken to evaluate the effects of lead nitrate and mercury chloride in brain tissues of Wistar rats. Mercury chloride (0.02 mg/kg bw) and lead nitrate (45 mg/kg bw) were administered orally for 28 days rats. The mercury chloride and lead nitrate treated animals were exhibited a significant inhibition of superoxide dismutase, catalase, glutation peroxidase and glutathione-S-transferase activities and increasing of malondialdehyde levels. In our present study mercury c...

  2. Antioxidant potential properties of mushroom extract (Agaricus bisporus) against aluminum-induced neurotoxicity in rat brain.

    Science.gov (United States)

    Waly, Mostafa I; Guizani, Nejib

    2014-09-01

    Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.

  3. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  4. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    International Nuclear Information System (INIS)

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-01-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of [ 3 H]-antagonist as well as of the labeled natural neurotransmitter, [ 3 H]-acetylcholine [( 3 H]-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of [ 3 H]-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity [ 3 H]-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with [ 3 H]-antagonist represent a loss of low-affinity agonist binding sites. In contrast, [ 3 H]-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms

  5. Relation of visual creative imagery manipulation to resting-state brain oscillations.

    Science.gov (United States)

    Cai, Yuxuan; Zhang, Delong; Liang, Bishan; Wang, Zengjian; Li, Junchao; Gao, Zhenni; Gao, Mengxia; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2018-02-01

    Visual creative imagery (VCI) manipulation is the key component of visual creativity; however, it remains largely unclear how it occurs in the brain. The present study investigated the brain neural response to VCI manipulation and its relation to intrinsic brain activity. We collected functional magnetic resonance imaging (fMRI) datasets related to a VCI task and a control task as well as pre- and post-task resting states in sequential sessions. A general linear model (GLM) was subsequently used to assess the specific activation of the VCI task compared with the control task. The changes in brain oscillation amplitudes across the pre-, on-, and post-task states were measured to investigate the modulation of the VCI task. Furthermore, we applied a Granger causal analysis (GCA) to demonstrate the dynamic neural interactions that underlie the modulation effect. We determined that the VCI task specifically activated the left inferior frontal gyrus pars triangularis (IFGtriang) and the right superior frontal gyrus (SFG), as well as the temporoparietal areas, including the left inferior temporal gyrus, right precuneus, and bilateral superior parietal gyrus. Furthermore, the VCI task modulated the intrinsic brain activity of the right IFGtriang (0.01-0.08 Hz) and the left caudate nucleus (0.2-0.25 Hz). Importantly, an inhibitory effect (negative) may exist from the left SFG to the right IFGtriang in the on-VCI task state, in the frequency of 0.01-0.08 Hz, whereas this effect shifted to an excitatory effect (positive) in the subsequent post-task resting state. Taken together, the present findings provide experimental evidence for the existence of a common mechanism that governs the brain activity of many regions at resting state and whose neural activity may engage during the VCI manipulation task, which may facilitate an understanding of the neural substrate of visual creativity.

  6. The relationship between age and brain response to visual erotic stimuli in healthy heterosexual males.

    Science.gov (United States)

    Seo, Y; Jeong, B; Kim, J-W; Choi, J

    2010-01-01

    The various changes of sexuality, including decreased sexual desire and erectile dysfunction, are also accompanied with aging. To understand the effect of aging on sexuality, we explored the relationship between age and the visual erotic stimulation-related brain response in sexually active male subjects. Twelve healthy, heterosexual male subjects (age 22-47 years) were recorded the functional magnetic resonance imaging (fMRI) signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Mixed effect analysis and correlation analysis were performed to investigate the relationship between the age and the change of brain activity elicited by erotic stimuli. Our results showed age was positively correlated with the activation of right occipital fusiform gyrus and amygdala, and negatively correlated with the activation of right insula and inferior frontal gyrus. These findings suggest age might be related with functional decline in brain regions being involved in both interoceptive sensation and prefrontal modulation while it is related with the incremental activity of the brain region for early processing of visual emotional stimuli in sexually healthy men.

  7. Imaging of water distribution in the rat brain by activation autoradiography

    International Nuclear Information System (INIS)

    Kogure, K.; Kawashima, K.; Iwata, R.; Ido, T.

    1990-01-01

    Regional water distribution in the rat brain was obtained autoradiographically by activation analysis. The autoradiogram obtained for the normal rat brain showed high accumulation of water in the areas of sensory-motor cortex, hippocampus, thalamus, and amygdaloid cortex, whereas corpus callosum and internal capsule showed low water contents as expected. The estimated values of water content were 78.6 +/- 4.9 weight % for gray matter, and 73.5 +/- 4.9 weight % for white matter, respectively. The mean values of the water content were consistent with those obtained by a conventional drying-weighing method

  8. Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients.

    Science.gov (United States)

    Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F

    2010-07-01

    Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain.

    Directory of Open Access Journals (Sweden)

    Austin J Moy

    Full Text Available The microvasculature is the network of blood vessels involved in delivering nutrients and gases necessary for tissue survival. Study of the microvasculature often involves immunohistological methods. While useful for visualizing microvasculature at the µm scale in specific regions of interest, immunohistology is not well suited to visualize the global microvascular architecture in an organ. Hence, use of immunohistology precludes visualization of the entire microvasculature of an organ, and thus impedes study of global changes in the microvasculature that occur in concert with changes in tissue due to various disease states. Therefore, there is a critical need for a simple, relatively rapid technique that will facilitate visualization of the microvascular network of an entire tissue.The systemic vasculature of a mouse is stained with the fluorescent lipophilic dye DiI using a method called "vessel painting". The brain, or other organ of interest, is harvested and fixed in 4% paraformaldehyde. The organ is then sliced into 1 mm sections and optically cleared, or made transparent, using FocusClear, a proprietary optical clearing agent. After optical clearing, the DiI-labeled tissue microvasculature is imaged using confocal fluorescence microscopy and adjacent image stacks tiled together to produce a depth-encoded map of the microvasculature in the tissue slice. We demonstrated that the use of optical clearing enhances both the tissue imaging depth and the estimate of the vascular density. Using our "optical histology" technique, we visualized microvasculature in the mouse brain to a depth of 850 µm.Presented here are maps of the microvasculature in 1 mm thick slices of mouse brain. Using combined optical clearing and optical imaging techniques, we devised a methodology to enhance the visualization of the microvasculature in thick tissues. We believe this technique could potentially be used to generate a three-dimensional map of the

  10. Asymmetrical brain activity induced by voluntary spatial attention depends on the visual hemifield: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-04-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a previous psychophysical study, namely, the attentional resources for the left and right visual hemifields are distinct. Increasing the attentional load asymmetrically increased the brain activity. Increase in attentional load produced a greater increase in brain activity in the case of the left visual hemifield than in the case of the right visual hemifield. This asymmetry was observed in all the examined brain areas, including the right and left occipital and parietal cortices. These results suggest the existence of asymmetrical inhibitory interactions between the hemispheres and the presence of an extensive inhibitory network. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. REORGANIZATION OF VISUAL CALLOSAL CONNECTIONS FOLLOWING ALTERATIONS OF RETINAL INPUT AND BRAIN DAMAGE

    Directory of Open Access Journals (Sweden)

    LAURA RESTANI

    2016-11-01

    Full Text Available Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC. The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e. monocular deprivation. This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g. strabismus and amblyopia characterized by unbalanced input from the two eyes. We will also discuss findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital

  12. Autoradiographic localization of adenosine A1 receptors in rat brain using [3H]XCC, a functionalized congener of 1,3-dipropylxanthine

    International Nuclear Information System (INIS)

    Jarvis, M.J.; Williams, M.; Jacobson, K.A.

    1987-01-01

    Quantitative autoradiography was used to visualize the anatomical distribution of adenosine receptors labeled by the carboxylic acid congener of 1,3-dipropylxanthine, [ 3 Hi](8-(p-carbonxymethyloxy) phenyl-1,3 dipropylxanthine)([ 3 H]XCC) in rat brain. [ 3 H]XCC was observed to specifically bind to rat brain sagittal sections in a heterogenous pattern. Saturation experiments revealed that [ 3 H]XCC binds with nanomolar affinity to 20μm frozen tissue sections with the highest binding densities occurring in the hippocampus and cerebellum. Both the binding characteristics and regional receptor distribution obtained with [ 3 H]XCC demonstrate the potential usefulness of this new ligand in the study of adenosine A 1 receptors. 13 refs. (Author)

  13. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    Science.gov (United States)

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  14. Aging and sex influence the permeability of the blood-brain barrier in the rat

    International Nuclear Information System (INIS)

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer [ 14 C]-α-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels

  15. Disentangling brain activity related to the processing of emotional visual information and emotional arousal.

    Science.gov (United States)

    Kuniecki, Michał; Wołoszyn, Kinga; Domagalik, Aleksandra; Pilarczyk, Joanna

    2018-05-01

    Processing of emotional visual information engages cognitive functions and induces arousal. We aimed to examine the modulatory role of emotional valence on brain activations linked to the processing of visual information and those linked to arousal. Participants were scanned and their pupil size was measured while viewing negative and neutral images. The visual noise was added to the images in various proportions to parametrically manipulate the amount of visual information. Pupil size was used as an index of physiological arousal. We show that arousal induced by the negative images, as compared to the neutral ones, is primarily related to greater amygdala activity while increasing visibility of negative content to enhanced activity in the lateral occipital complex (LOC). We argue that more intense visual processing of negative scenes can occur irrespective of the level of arousal. It may suggest that higher areas of the visual stream are fine-tuned to process emotionally relevant objects. Both arousal and processing of emotional visual information modulated activity within the ventromedial prefrontal cortex (vmPFC). Overlapping activations within the vmPFC may reflect the integration of these aspects of emotional processing. Additionally, we show that emotionally-evoked pupil dilations are related to activations in the amygdala, vmPFC, and LOC.

  16. Effects of acrylamide and acrylic acid on creatine kinase activity in the rat brain

    International Nuclear Information System (INIS)

    Kohriyama, Kazuaki; Matsuoka, Masato; Igisu, Hideki

    1994-01-01

    In vitro, both acrylamide and acrylic acid inhibited creatine kinase (CK) activity in rat brain homogenates, and acrylic acid was more potent than acrylamide. In vivo, however, when given i.p. 50 mg/kg per day for 8 days to rats, only acrylamide inhibited CK activity in the brain and caused apparent neurological signs. 14 C in the brain 24 h after the injection of 14 C-labelled chemicals was more than 7 times greater with acrylamide than with acrylic acid. The inhibition of CK activity by acrylamide varied in eight regions of the brain; from 54% in hypothalamus to 27% in cerebellar vermis. The regional difference of CK inhibition, however, did not agree well with either 14 C distribution or with the distribution in regions which appear clinically or pathologically vulnerable to acrylamide. (orig.)

  17. Adolescent fluoxetine exposure produces enduring, sex-specific alterations of visual discrimination and attention in rats.

    Science.gov (United States)

    LaRoche, Ronee B; Morgan, Russell E

    2007-01-01

    Over the past two decades the use of selective serotonin reuptake inhibitors (SSRIs) to treat behavioral disorders in children has grown rapidly, despite little evidence regarding the safety and efficacy of these drugs for use in children. Utilizing a rat model, this study investigated whether post-weaning exposure to a prototype SSRI, fluoxetine (FLX), influenced performance on visual tasks designed to measure discrimination learning, sustained attention, inhibitory control, and reaction time. Additionally, sex differences in response to varying doses of fluoxetine were examined. In Experiment 1, female rats were administered (P.O.) fluoxetine (10 mg/kg ) or vehicle (apple juice) from PND 25 thru PND 49. After a 14 day washout period, subjects were trained to perform a simultaneous visual discrimination task. Subjects were then tested for 20 sessions on a visual attention task that consisted of varied stimulus delays (0, 3, 6, or 9 s) and cue durations (200, 400, or 700 ms). In Experiment 2, both male and female Long-Evans rats (24 F, 24 M) were administered fluoxetine (0, 5, 10, or 15 mg/kg) then tested in the same visual tasks used in Experiment 1, with the addition of open-field and elevated plus-maze testing. Few FLX-related differences were seen in the visual discrimination, open field, or plus-maze tasks. However, results from the visual attention task indicated a dose-dependent reduction in the performance of fluoxetine-treated males, whereas fluoxetine-treated females tended to improve over baseline. These findings indicate that enduring, behaviorally-relevant alterations of the CNS can occur following pharmacological manipulation of the serotonin system during postnatal development.

  18. How art changes your brain: differential effects of visual art production and cognitive art evaluation on functional brain connectivity.

    Science.gov (United States)

    Bolwerk, Anne; Mack-Andrick, Jessica; Lang, Frieder R; Dörfler, Arnd; Maihöfner, Christian

    2014-01-01

    Visual art represents a powerful resource for mental and physical well-being. However, little is known about the underlying effects at a neural level. A critical question is whether visual art production and cognitive art evaluation may have different effects on the functional interplay of the brain's default mode network (DMN). We used fMRI to investigate the DMN of a non-clinical sample of 28 post-retirement adults (63.71 years ±3.52 SD) before (T0) and after (T1) weekly participation in two different 10-week-long art interventions. Participants were randomly assigned to groups stratified by gender and age. In the visual art production group 14 participants actively produced art in an art class. In the cognitive art evaluation group 14 participants cognitively evaluated artwork at a museum. The DMN of both groups was identified by using a seed voxel correlation analysis (SCA) in the posterior cingulated cortex (PCC/preCUN). An analysis of covariance (ANCOVA) was employed to relate fMRI data to psychological resilience which was measured with the brief German counterpart of the Resilience Scale (RS-11). We observed that the visual art production group showed greater spatial improvement in functional connectivity of PCC/preCUN to the frontal and parietal cortices from T0 to T1 than the cognitive art evaluation group. Moreover, the functional connectivity in the visual art production group was related to psychological resilience (i.e., stress resistance) at T1. Our findings are the first to demonstrate the neural effects of visual art production on psychological resilience in adulthood.

  19. How Art Changes Your Brain: Differential Effects of Visual Art Production and Cognitive Art Evaluation on Functional Brain Connectivity

    Science.gov (United States)

    Bolwerk, Anne; Mack-Andrick, Jessica; Lang, Frieder R.; Dörfler, Arnd; Maihöfner, Christian

    2014-01-01

    Visual art represents a powerful resource for mental and physical well-being. However, little is known about the underlying effects at a neural level. A critical question is whether visual art production and cognitive art evaluation may have different effects on the functional interplay of the brain's default mode network (DMN). We used fMRI to investigate the DMN of a non-clinical sample of 28 post-retirement adults (63.71 years ±3.52 SD) before (T0) and after (T1) weekly participation in two different 10-week-long art interventions. Participants were randomly assigned to groups stratified by gender and age. In the visual art production group 14 participants actively produced art in an art class. In the cognitive art evaluation group 14 participants cognitively evaluated artwork at a museum. The DMN of both groups was identified by using a seed voxel correlation analysis (SCA) in the posterior cingulated cortex (PCC/preCUN). An analysis of covariance (ANCOVA) was employed to relate fMRI data to psychological resilience which was measured with the brief German counterpart of the Resilience Scale (RS-11). We observed that the visual art production group showed greater spatial improvement in functional connectivity of PCC/preCUN to the frontal and parietal cortices from T0 to T1 than the cognitive art evaluation group. Moreover, the functional connectivity in the visual art production group was related to psychological resilience (i.e., stress resistance) at T1. Our findings are the first to demonstrate the neural effects of visual art production on psychological resilience in adulthood. PMID:24983951

  20. Anti-ischemic effect of curcumin in rat brain.

    Science.gov (United States)

    Shukla, Pradeep K; Khanna, Vinay K; Ali, Mohd M; Khan, Mohd Y; Srimal, Rikhab C

    2008-06-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow colouring principle in turmeric, is polyphenolic and major active constituent. Besides anti-inflammatory, thrombolytic and anticarcinogenic activities, curcumin also possesses strong antioxidant property. In view of the novel combination of properties, neuroprotective efficacy of curcumin was studied in rat middle cerebral artery occlusion (MCAO) model. Rats were subjected to 2 h of focal ischemia followed by 72 h of reperfusion. They were pre-treated with curcumin (100 mg/kg, po) for 5 days prior to MCAO and for another 3 days after MCAO. The parameters studied were behavioural, biochemical and histological. Treatment with curcumin could significantly improve neurobehavioral performance compared to untreated ischemic rats as judged by its effect on rota-rod performance and grid walking. A significant inhibition in lipid peroxidation and an increase in superoxide dismutase (SOD) activity in corpus striatum and cerebral cortex was observed following treatment with curcumin in MCAO rats as compared to MCAO group. Intracellular calcium levels were decreased following treatment with curcumin in MCAO rats. Histologically, a reduction in the infarct area from 33% to 24% was observed in MCAO rats treated with curcumin. The study demonstrates the protective efficacy of curcumin in rat MCAO model.

  1. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain

    OpenAIRE

    Morken, Tora Sund; Brekke, Eva Mari Førland; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity duri...

  2. Left Brain vs. Right Brain: Findings on Visual Spatial Capacities and the Functional Neurology of Giftedness

    Science.gov (United States)

    Kalbfleisch, M. Layne; Gillmarten, Charles

    2013-01-01

    As neuroimaging technologies increase their sensitivity to assess the function of the human brain and results from these studies draw the attention of educators, it becomes paramount to identify misconceptions about what these data illustrate and how these findings might be applied to educational contexts. Some of these "neuromyths" have…

  3. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  4. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Directory of Open Access Journals (Sweden)

    Joshua G.A Pinto

    2015-02-01

    Full Text Available Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin and found that synaptic development in human primary visual cortex continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the 4 proteins and include a stage during early development (<1 year when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the first year or two of life. A multidimensional analysis (principle component analysis showed that most of the variance was captured by the sum of the 4 synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.

  5. The Effect of Hydroxylated Fullerene Nanoparticles on Antioxidant Defense System in Brain Ischemia Rat

    Directory of Open Access Journals (Sweden)

    2017-05-01

    Full Text Available Background and Objectives: According to the previous findings, brain ischemia attenuates the brain antioxidant defense system. This study aimed to investigate the effect of hydroxylated fullerene nanoparticle on antioxidant defense system in ischemic brain rat. Methods: In this Experimental study, rats were divided into three groups (n=6 in each group: sham, ischemic control, and ischemic treatment group. Brain ischemia was induced by middle cerebral artery (MCA occlusion for 90 minutes followed by a 24-hour reperfusion. Ischemic treatment animals received fullerene nanoparticles intraperitoneally at a dose of 10mg/kg immediately after the end of MCA occlusion. After 24-h reperfusion period, brain catalase and superoxide dismutase (SOD, and glutathione activities were assessed by biochemical methods. The data were analyzed using one-way ANOVA and Tukey post-hoc test. Results: The mean glutathione level and catalase and SOD activities in sham animals were 1±0.18%, 1±0.20%, and 1±0.04%, respectively. Induction of brain ischemia decreased the value of glutathione level and catalase and SOD activities in control ischemic rats and their values were obtained to be 0.55±0.09%, 0.44±0.05%, and 0.86±0.02%, respectively. Fullerene significantly increased the activities of catalase (0.93±0.29% and SOD (1.33±0.22% in ischemic treatment group compared to ischemic control rats, but did not change the glutathione level (0.52±0.25%. Conclusion: The results of this study showed that treatment with fullerene nanoparticles improves the brain antioxidant defense system, which is weakened during brain ischemia, through increasing catalase and SOD activities.

  6. Diurnal variation of. beta. -endorphin like immunoreactivity in rat brain, pituitary gland, and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, I.A.; Perry, M.L.S.; Carrasco, M.A.; Dias, R.D. (Rio Grande do Sul Univ., Porto Alegre (Brazil). Inst. de Biociencias); Orsingher, O.A. (Universidad Nacional de Cordoba (Argentina))

    1984-09-01

    ..beta..-endorphin like immunoreactivity was measured in the brain, pituitary gland and plasma of rats at 2 A.M, 8 A.M, 2 P.M and 8 P.M. Values were higher in the brain and pituitary gland at 8 P.M and in the plasma at 8 A.M and 2 P.M. The findings suggest a circadian rhythm in the production and release of ..beta..-endorphin immunoreactive material.

  7. Diurnal variation of β-endorphin like immunoreactivity in rat brain, pituitary gland, and plasma

    International Nuclear Information System (INIS)

    Izquierdo, I.A.; Perry, M.L.S.; Carrasco, M.A.; Dias, R.D.

    1984-01-01

    β-endorphin like immunoreactivity was measured in the brain, pituitary gland and plasma of rats at 2 A.M, 8 A.M, 2 P.M and 8 P.M. Values were higher in the brain and pituitary gland at 8 P.M and in the plasma at 8 A.M and 2 P.M. The findings suggest a circadian rhythm in the production and release of β-endorphin immunoreactive material. (Author) [pt

  8. Long-term evolution of cerebral hemodynamics after brain irradiation in the rat

    International Nuclear Information System (INIS)

    Keyeux, A.; Ochrymowicz-Bemelmans, D.

    1985-01-01

    Long-term evolution of radioisotope indices, evaluating respectively the cerebral blood flow (CBF), the cerebral blood volume (CBV) and the cephalic specific distribution space of iodoantipyrine (ΔIAP) of rat, was studied after brain irradiation at 20 Gy. Radioinduced hemodynamic alterations evidenced by this approach are biphasic and support the prominent role of circulation impairment in the genesis of delayed brain radionecrosis [fr

  9. Fenbendazole treatment may influence lipopolysaccharide effects in rat brain.

    Science.gov (United States)

    Hunter, Randy L; Choi, Dong-Young; Kincer, Jeanie F; Cass, Wayne A; Bing, Guoying; Gash, Don M

    2007-10-01

    In evaluating discrepant results between experiments in our laboratory, we collected data that challenge the notion that anthelminthic drugs like FBZ do not alter inflammatory responses. We found that FBZ significantly modulates inflammation in F344 rats intrastriatally injected with LPS. FBZ treatment of LPS-injected rats significantly increased weight loss, microglial activation, and dopamine loss; in addition, FBZ attenuated the LPS-induced loss of astrocytes. Therefore, FBZ treatment altered the effects of LPS injection. Caution should be used in interpreting data collected from rats treated with LPS and FBZ.

  10. Visual food stimulus changes resting oscillatory brain activities related to appetitive motive.

    Science.gov (United States)

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Yamano, Yoko; Watanabe, Yasuyoshi

    2016-09-26

    Changes of resting brain activities after visual food stimulation might affect the feeling of pleasure in eating food in daily life and spontaneous appetitive motives. We used magnetoencephalography (MEG) to identify brain areas related to the activity changes. Fifteen healthy, right-handed males [age, 25.4 ± 5.5 years; body mass index, 22.5 ± 2.7 kg/m 2 (mean ± SD)] were enrolled. They were asked to watch food or mosaic pictures for 5 min and to close their eyes for 3 min before and after the picture presentation without thinking of anything. Resting brain activities were recorded during two eye-closed sessions. The feeling of pleasure in eating food in daily life and appetitive motives in the study setting were assessed by visual analogue scale (VAS) scores. The γ-band power of resting oscillatory brain activities was decreased after the food picture presentation in the right insula [Brodmann's area (BA) 13], the left orbitofrontal cortex (OFC) (BA11), and the left frontal pole (BA10). Significant reductions of the α-band power were observed in the dorsolateral prefrontal cortex (DLPFC) (BA46). Particularly, the feeling of pleasure in eating food was positively correlated with the power decrease in the insula and negatively with that in the DLPFC. The changes in appetitive motives were associated with the power decrease in the frontal pole. These findings suggest automatic brain mechanics whereby changes of the resting brain activity might be associated with positive feeling in dietary life and have an impact on the irresistible appetitive motives through emotional and cognitive brain functions.

  11. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats.

    Science.gov (United States)

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2012-02-01

    Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Analysis of brain activity and response during monoscopic and stereoscopic visualization

    Science.gov (United States)

    Calore, Enrico; Folgieri, Raffaella; Gadia, Davide; Marini, Daniele

    2012-03-01

    Stereoscopic visualization in cinematography and Virtual Reality (VR) creates an illusion of depth by means of two bidimensional images corresponding to different views of a scene. This perceptual trick is used to enhance the emotional response and the sense of presence and immersivity of the observers. An interesting question is if and how it is possible to measure and analyze the level of emotional involvement and attention of the observers during a stereoscopic visualization of a movie or of a virtual environment. The research aims represent a challenge, due to the large number of sensorial, physiological and cognitive stimuli involved. In this paper we begin this research by analyzing possible differences in the brain activity of subjects during the viewing of monoscopic or stereoscopic contents. To this aim, we have performed some preliminary experiments collecting electroencephalographic (EEG) data of a group of users using a Brain- Computer Interface (BCI) during the viewing of stereoscopic and monoscopic short movies in a VR immersive installation.

  13. Effects of sevoflurane on adenylate cyclase and phosphodiesterases activity in brain of rats

    International Nuclear Information System (INIS)

    Feng Changdong; Yang Jianping; Dai Tijun

    2009-01-01

    Objective: To investigate the effects of sevoflurane on c adenylate cyclase (AC) and phosphodiesterases (PDE) activity in the cerebrocortex, hippocampus and brain stem of rats, and to examine the role of cAMP in sevoflurane anesthesia. Methods: Fourty SD rats were delaminately designed and allocated randomly to 5 groups inhaling 1.5% sevoflurane i.e., no recovery (recovery group, n=8) and one hour after righting reflexrecovery (aware group, n=8). The brain tissues were rapidly dissected into cerebrocortex and hippocampus and brain stem.Then the adenylate cyclase and phosphodiesterases activity were assessed. Results: So far as the activity of AC is concerned, compared with the control group, the activity of AC in the cerebrocortex, hippocampus and brain stem brain stem of induction group and anesthesia group, the cerebrocortex, and hippocampus in the recovery group were significantly increased; compared with those in the anesthesia group, the activity of AC in the cerebrocortex, hippocampus and brain stem of aware group were significantly decreased (P<0.05); For the activity of PDE, compared with the control group, the activity of PDE in the cerebrocortex, hippocampus and brain stem in the induction group and anesthesia group was significantly decreased, compared with that in anesthesia group, the activity of PDE in the cerebrocortex, hippocampus and brain stem of recovery group and aware group was significantly increased (P<0.05). Conclusion: cAMP may play an important role in sevoflurane anesthesia. (authors)

  14. CHARACTERIZATION OF THE EFFECTS OF INHALED PERCHLOROETHYLENE ON SUSTAINED ATTENTION IN RATS PERFORMING A VISUAL SIGNAL DETECTION TASK

    Science.gov (United States)

    The aliphatic hydrocarbon perchloroethyelene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (S...

  15. Regional brain distribution of toluene in rats and in a human autopsy

    Energy Technology Data Exchange (ETDEWEB)

    Ameno, Kiyoshi; Kiriu, Takahiro; Fuke, Chiaki; Ameno, Setsuko; Shinohara, Toyohiko; Ijiri, Iwao (Kagawa Medical School (Japan). Dept. of Forensic Medicine)

    1992-02-01

    Toluene concentrations in 9 brain regions of acutely exposed rats and that in 11 brain regions of a human case who inhaled toluene prior to death are described. After exposure to toluene by inhalation (2000 or 10 000 ppm) for 0.5 h or by oral dosing (400 mg/kg.), rats were killed by decapitation 0.5 and 4 h after onset of inhalation and 2 and 10 h after oral ingestion. After each experimental condition the highest range of brain region/blood toluene concentration ratio (BBCR) was in the brain stem regions (2.85-3.22) such as the pons and medulla oblongata, the middle range (1.77-2.12) in the midbrain, thalamus, caudate-putamen, hypothalamus and cerebellum, and the lowest range (1.22-1.64) in the hippocampus and cerebral cortex. These distribution patterns were quite constant. Toluene concentration in various brain regions were unevenly distributed and directly related blood levels. In a human case who had inhaled toluene vapor, the distribution among brain regions was relatively similar to that in rats, the highest concentration ratios being in the corpus callosum (BBCR:2.66) and the lowest in the hippocampus (BBCR:1.47). (orig.).

  16. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  17. Protective effects of edaravone on the radiation response of oligodendrocyte in rats following whole brain irradiation

    International Nuclear Information System (INIS)

    Chen Yingzhu; Tian Ye; Bao Shiyao; Bao Huan; Zhan Zhilin

    2007-01-01

    Objective: To investigate the changes of the oligodendrocyte lineage cells in the cortex following whole brain irradiation and the effects of the neotype free radical scavenger, edaravone on radiation response of oligodendrocyte in rats. Methods: 120 male Sprague Dawley rats were randomly divided into sham- irradiation group, irradiation group and edaravone group. The model of whole-brain irradiation was established with exposure of the whole brain of the rats to 4 MeV X-rays with a single-dose of 10 Gy. The rats were injected intraperitoneally with edaravone at 0.3, 1.0 and 3.0 mg/kg. Tissue microarray of irradiation-induced brain injury in rats was constructed. The expression of A2BS, oligodendrocyte market 4(O4) and 2', 3'-cyclic nucleotide 3'- phosphodiesterase (CNPase) in the cortex was examined by tissue microarray technology and immunohistochemistry. The positive cells were counted. Results: Compared with the sham-irradiation group, the number of A2BS-positive cells increased and the number of O4, CNPase-positive cells decreased significantly at certain time in the irradiation group(P<0.05). Compared with irradiation group, A2BS-positive cells decreased significantly after edaravone treatment, while O4-positive cells and CNPase-positive cells increased significantly (P<0.05, or P<0.01). Conclusions: The number of oligodendrocyte precursor cells in the cortex of rats increased reactively following whole brain irradiation and changed with time. Edaravone played a protective role in oligodendrocyte ischemic reaction in a dose-dependent manner. (authors)

  18. Protective effects of edaravone on the radiation response of oligodendrocyte in rats following whole brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yingzhu, Chen; Ye, Tian; Shiyao, Bao; Huan, Bao; Zhilin, Zhan [The Second Affiliated Hospital of Suzhou Univ., Suzhou (China)

    2007-08-15

    Objective: To investigate the changes of the oligodendrocyte lineage cells in the cortex following whole brain irradiation and the effects of the neotype free radical scavenger, edaravone on radiation response of oligodendrocyte in rats. Methods: 120 male Sprague Dawley rats were randomly divided into sham- irradiation group, irradiation group and edaravone group. The model of whole-brain irradiation was established with exposure of the whole brain of the rats to 4 MeV X-rays with a single-dose of 10 Gy. The rats were injected intraperitoneally with edaravone at 0.3, 1.0 and 3.0 mg/kg. Tissue microarray of irradiation-induced brain injury in rats was constructed. The expression of A2BS, oligodendrocyte market 4(O4) and 2', 3'-cyclic nucleotide 3'- phosphodiesterase (CNPase) in the cortex was examined by tissue microarray technology and immunohistochemistry. The positive cells were counted. Results: Compared with the sham-irradiation group, the number of A2BS-positive cells increased and the number of O4, CNPase-positive cells decreased significantly at certain time in the irradiation group(P<0.05). Compared with irradiation group, A2BS-positive cells decreased significantly after edaravone treatment, while O4-positive cells and CNPase-positive cells increased significantly (P<0.05, or P<0.01). Conclusions: The number of oligodendrocyte precursor cells in the cortex of rats increased reactively following whole brain irradiation and changed with time. Edaravone played a protective role in oligodendrocyte ischemic reaction in a dose-dependent manner. (authors)

  19. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism.

    Science.gov (United States)

    Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui

    2015-11-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

  20. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Science.gov (United States)

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353

  1. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    OpenAIRE

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnove; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dua...

  2. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    OpenAIRE

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2007-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images.

  3. Brain responses to repeated visual experience among low and high sensation seekers: role of boredom susceptibility

    OpenAIRE

    Jiang, Yang; Lianekhammy, Joann; Lawson, Adam; Guo, Chunyan; ynam, Donald; Joseph, Jane E.; Gold, Brian T.; Kelly, Thomas H.

    2009-01-01

    To better understand individual differences in sensation seeking and its components, including boredom susceptibility and experience seeking, we examined brain responses of high and low sensation seekers during repeated visual experience. Individuals scoring in the top and bottom quartiles from a college-aged population on the Brief Sensation-Seeking Scale (BSSS) participated in an event-related potentials (ERPs) experiment. Line drawings of common objects were randomly intermixed and present...

  4. Three-dimensional morphologic description and visualization of brain anatomy from MR images

    International Nuclear Information System (INIS)

    Kraske, W.; George, F.W.; Zee, C.S.; Colletti, P.M.; Halls, J.M.; Boswell, W.O.

    1989-01-01

    The USC VOXAR-MRI system incorporates MR tissue classification algorithms to provide dynamic three- dimensional volumetric visualization and discrimination of brain anatomy and pathology for precision diagnosis, staging, and treatment planning. The VOXAR-MRI approach to tissue classification employs the three-dimensional reconstruction of various intracranial features from gray-scale morphologic erosion and dilation (GMED)-derived skeleton representation of the MR acquisition. Case presentations include an array of VOXAR-MRI-demonstrated tumors, abscesses, hematomas, and other lesions

  5. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    International Nuclear Information System (INIS)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-01-01

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife

  6. Dynamic Multi-Coil Technique (DYNAMITE) Shimming of the Rat Brain at 11.7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Herman, Peter; Sanganahalli, Basavaraju G.; Brown, Peter B.; McIntyre, Scott; Nixon, Terence W.; Green, Dan; Hyder, Fahmeed; de Graaf, Robin A.

    2014-01-01

    The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation, however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task due to a multitude of complex, susceptibility-induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult-to-shim subcortical structures or for the entire brain. Based on the recently introduced multi-coil approach for magnetic field modeling, the DYNAmic Multi-coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient-echo echo-planar imaging (EPI) are demonstrated. An integrated multi-coil/radio-frequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF setup is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first through third order SH shapes. The EPI signal over the rat brain increased by 31% and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, along with the achievable large brain coverage of this method will be crucial when signal pathways, cortical circuitry or the brain’s default network are studied. Along with the efficiency gains of MC-based shimming compared to SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small bore animal

  7. Loss of calretinin immunoreactive fibers in subcortical visual recipient structures of the RCS dystrophic rat.

    Science.gov (United States)

    Vugler, Anthony A; Coffey, Peter J

    2003-11-01

    The retinae of dystrophic Royal College of Surgeons (RCS) rats exhibit progressive photoreceptor degeneration accompanied by pathology of ganglion cells. To date, little work has examined the consequences of retinal degeneration for central visual structures in dystrophic rats. Here, we use immunohistochemistry for calretinin (CR) to label retinal afferents in the superior colliculus (SC), lateral geniculate nucleus, and olivary pretectal nucleus of RCS rats aged between 2 and 26 months of age. Early indications of fiber loss in the medial dystrophic SC were apparent between 9 and 13 months. Quantitative methods reveal a significant reduction in the level of CR immunoreactivity in visual layers of the medial dystrophic SC at 13 months (P animals aged 19-26 months the loss of CR fibers in SC was dramatic, with well-defined patches of fiber degeneration predominating in medial aspects of the structure. This fiber degeneration in SC was accompanied by increased detection of cells immunoreactive for CR. In several animals, regions of fiber loss were also found to contain strongly parvalbumin-immunoreactive cells. Loss of CR fibers was also observed in the lateral geniculate nucleus and olivary pretectal nucleus. Patterns of fiber loss in the dystrophic SC compliment reports of ganglion cell degeneration in these animals and the response of collicular neurons to degeneration is discussed in terms of plasticity of the dystrophic visual system and properties of calcium binding proteins.

  8. Simple and conditional visual discrimination with wheel running as reinforcement in rats.

    Science.gov (United States)

    Iversen, I H

    1998-09-01

    Three experiments explored whether access to wheel running is sufficient as reinforcement to establish and maintain simple and conditional visual discriminations in nondeprived rats. In Experiment 1, 2 rats learned to press a lit key to produce access to running; responding was virtually absent when the key was dark, but latencies to respond were longer than for customary food and water reinforcers. Increases in the intertrial interval did not improve the discrimination performance. In Experiment 2, 3 rats acquired a go-left/go-right discrimination with a trial-initiating response and reached an accuracy that exceeded 80%; when two keys showed a steady light, pressing the left key produced access to running whereas pressing the right key produced access to running when both keys showed blinking light. Latencies to respond to the lights shortened when the trial-initiation response was introduced and became much shorter than in Experiment 1. In Experiment 3, 1 rat acquired a conditional discrimination task (matching to sample) with steady versus blinking lights at an accuracy exceeding 80%. A trial-initiation response allowed self-paced trials as in Experiment 2. When the rat was exposed to the task for 19 successive 24-hr periods with access to food and water, the discrimination performance settled in a typical circadian pattern and peak accuracy exceeded 90%. When the trial-initiation response was under extinction, without access to running, the circadian activity pattern determined the time of spontaneous recovery. The experiments demonstrate that wheel-running reinforcement can be used to establish and maintain simple and conditional visual discriminations in nondeprived rats.

  9. Does age matter? Age and rehabilitation of visual field disorders after brain injury.

    Science.gov (United States)

    Schuett, Susanne; Zihl, Josef

    2013-04-01

    Homonymous visual field disorders (HVFD) are frequent and disabling consequences of acquired brain injury, particularly in older age. Their rehabilitation is therefore of great importance. Compensatory oculomotor therapy has been found to be effective in improving the associated functional impairments in reading and visual exploration. But older age is commonly considered to adversely affect practice-dependent functional plasticity and, thus, functional and rehabilitation outcome after acquired brain injury. The effect of age in the compensatory treatment of HVFD, however, has never been investigated hitherto. It remains unknown whether age determines not only patients' functional impairments but also the rehabilitation outcome and the required amount of treatment. We therefore present the first study to determine the effect of age in 38 patients with HVFD receiving compensatory oculomotor treatment for their reading and visual exploration impairments. We investigated whether older patients with HVFD (1) show more pronounced impairments and less spontaneous adaptation, (2) show lesser compensatory treatment-related improvement in reading and visual exploration, and (3) require a higher amount of treatment than younger patients. Our main finding is that older patients achieve the same treatment-induced improvements in reading and visual exploration with the same amount of treatment as younger patients; severity of functional impairment also did not differ between older and younger patients, at least in reading. Age does not seem to be a critical factor determining the functional and rehabilitation outcome in the compensatory treatment of HVFD. Older age per se is not necessarily associated with a decline in practice-dependent functional plasticity and adaptation. To the contrary, the effectiveness of compensatory treatment to reduce the functional impairments to a similar extent in younger and older patients with HVFD adds to the growing evidence for a life

  10. Electrical Guidance of Human Stem Cells in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Jun-Feng Feng

    2017-07-01

    Full Text Available Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies.

  11. Deep-brain electrical microstimulation is an effective tool to explore functional characteristics of somatosensory neurons in the rat brain.

    Directory of Open Access Journals (Sweden)

    Han-Jia Jiang

    Full Text Available In neurophysiology researches, peripheral stimulation is used along with recordings of neural activities to study the processing of somatosensory signals in the brain. However, limited precision of peripheral stimulation makes it difficult to activate the neuron with millisecond resolution and study its functional properties in this scale. Also, tissue/receptor damage that could occur in some experiments often limits the amount of responses that can be recorded and hence reduces data reproducibility. To overcome these limitations, electrical microstimulation (ES of the brain could be used to directly and more precisely evoke neural responses. For this purpose, a deep-brain ES protocol for rat somatosensory relay neurons was developed in this study. Three male Wistar rats were used in the experiment. The ES was applied to the thalamic region responsive to hindpaw tactile stimulation (TS via a theta glass microelectrode. The resulting ES-evoked cortical responses showed action potentials and thalamocortical relay latencies very similar to those evoked by TS. This result shows that the developed deep-brain ES protocol is an effective tool to bypass peripheral tissue for in vivo functional analysis of specific types of somatosensory neurons. This protocol could be readily applied in researches of nociception and other somatosensory systems to allow more extensive exploration of the neural functional networks.

  12. Brain SPECT in mesial temporal lobe epilepsy: comparison between visual analysis and SPM (Statistical Parametric Mapping)

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Barbara Juarez; Ramos, Celso Dario; Santos, Allan Oliveira dos; Lima, Mariana da Cunha Lopes de; Camargo, Edwaldo Eduardo; Etchebehere, Elba Cristina Sa de Camargo, E-mail: juarezbarbara@hotmail.co [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Radiology; Min, Li Li; Cendes, Fernando [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Neurology

    2010-04-15

    Objective: to compare the accuracy of SPM and visual analysis of brain SPECT in patients with mesial temporal lobe epilepsy (MTLE). Method: interictal and ictal SPECTs of 22 patients with MTLE were performed. Visual analysis were performed in interictal (VISUAL(inter)) and ictal (VISUAL(ictal/inter)) studies. SPM analysis consisted of comparing interictal (SPM(inter)) and ictal SPECTs (SPM(ictal)) of each patient to control group and by comparing perfusion of temporal lobes in ictal and interictal studies among themselves (SPM(ictal/inter)). Results: for detection of the epileptogenic focus, the sensitivities were as follows: VISUAL(inter)=68%; VISUAL(ictal/inter)=100%; SPM(inter)=45%; SPM(ictal)=64% and SPM(ictal/inter)=77%. SPM was able to detect more areas of hyperperfusion and hypoperfusion. Conclusion: SPM did not improve the sensitivity to detect epileptogenic focus. However, SPM detected different regions of hypoperfusion and hyperperfusion and is therefore a helpful tool for better understand pathophysiology of seizures in MTLE. (author)

  13. Brain SPECT in mesial temporal lobe epilepsy: comparison between visual analysis and SPM (Statistical Parametric Mapping)

    International Nuclear Information System (INIS)

    Amorim, Barbara Juarez; Ramos, Celso Dario; Santos, Allan Oliveira dos; Lima, Mariana da Cunha Lopes de; Camargo, Edwaldo Eduardo; Etchebehere, Elba Cristina Sa de Camargo; Min, Li Li; Cendes, Fernando

    2010-01-01

    Objective: to compare the accuracy of SPM and visual analysis of brain SPECT in patients with mesial temporal lobe epilepsy (MTLE). Method: interictal and ictal SPECTs of 22 patients with MTLE were performed. Visual analysis were performed in interictal (VISUAL(inter)) and ictal (VISUAL(ictal/inter)) studies. SPM analysis consisted of comparing interictal (SPM(inter)) and ictal SPECTs (SPM(ictal)) of each patient to control group and by comparing perfusion of temporal lobes in ictal and interictal studies among themselves (SPM(ictal/inter)). Results: for detection of the epileptogenic focus, the sensitivities were as follows: VISUAL(inter)=68%; VISUAL(ictal/inter)=100%; SPM(inter)=45%; SPM(ictal)=64% and SPM(ictal/inter)=77%. SPM was able to detect more areas of hyperperfusion and hypoperfusion. Conclusion: SPM did not improve the sensitivity to detect epileptogenic focus. However, SPM detected different regions of hypoperfusion and hyperperfusion and is therefore a helpful tool for better understand pathophysiology of seizures in MTLE. (author)

  14. Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering

    Science.gov (United States)

    2013-01-01

    Background The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. Results In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Conclusions Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship. PMID:23845024

  15. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies.

    Directory of Open Access Journals (Sweden)

    Yannick Béjot

    Full Text Available BACKGROUND: Whereas brain-derived neurotrophic factor (BDNF levels are measured in the brain in animal models of stroke, neurotrophin levels in stroke patients are measured in plasma or serum samples. The present study was designed to investigate the meaning of circulating BDNF levels in stroke patients. METHODS AND RESULTS: Unilateral ischemic stroke was induced in rats by the injection of various numbers of microspheres into the carotid circulation in order to mimic the different degrees of stroke severity observed in stroke patients. Blood was serially collected from the jugular vein before and after (4 h, 24 h and 8 d embolization and the whole brains were collected at 4, 24 h and 8 d post-embolization. Rats were then selected from their degree of embolization, so that the distribution of stroke severity in the rats at the different time points was large but similar. Using ELISA tests, BDNF levels were measured in plasma, serum and brain of selected rats. Whereas plasma and serum BDNF levels were not changed by stroke, stroke induced an increase in brain BDNF levels at 4 h and 24 h post-embolization, which was not correlated with stroke severity. Individual plasma BDNF levels did not correlate with brain levels at any time point after stroke but a positive correlation (r = 0.67 was observed between individual plasma BDNF levels and stroke severity at 4 h post-embolization. CONCLUSION: Circulating BDNF levels do not mirror brain BDNF levels after stroke, and severe stroke is associated with high plasma BDNF in the very acute stage.

  16. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  17. Consequences of cognitive impairments following traumatic brain injury: Pilot study on visual exploration while driving.

    Science.gov (United States)

    Milleville-Pennel, Isabelle; Pothier, Johanna; Hoc, Jean-Michel; Mathé, Jean-François

    2010-01-01

    The aim was to assess the visual exploration of a person suffering from traumatic brain injury (TBI). It was hypothesized that visual exploration could be modified as a result of attentional or executive function deficits that are often observed following brain injury. This study compared an analysis of eyes movements while driving with data from neuropsychological tests. Five participants suffering from TBI and six control participants took part in this study. All had good driving experience. They were invited to drive on a fixed-base driving simulator. Eye fixations were recorded using an eye tracker. Neuropsychological tests were used to assess attention, working memory, rapidity of information processing and executive functions. Participants with TBI showed a reduction in the variety of the visual zones explored and a reduction of the distance of exploration. Moreover, neuropsychological evaluation indicates that there were difficulties in terms of divided attention, anticipation and planning. There is a complementarity of the information obtained. Tests give information about cognitive deficiencies but not about their translation into a dynamic situation. Conversely, visual exploration provides information about the dynamic with which information is picked up in the environment but not about the cognitive processes involved.

  18. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  19. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    International Nuclear Information System (INIS)

    Schindler, Matthew K.; Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-01-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals

  20. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat.

    Science.gov (United States)

    Fujikawa, Takahiko; Soya, Hideaki; Tamashiro, Kellie L K; Sakai, Randall R; McEwen, Bruce S; Nakai, Naoya; Ogata, Masato; Suzuki, Ikukatsu; Nakashima, Kunio

    2004-04-01

    Stress causes hypocalcemia and ulcerogenesis in rats. In rats under stressful conditions, a rapid and transient increase in circulating prolactin (PRL) is observed, and this enhanced PRL induces PRL receptors (PRLR) in the choroid plexus of rat brain. In this study we used restraint stress in water to elucidate the mechanism by which PRLR in the rat brain mediate the protective effect of PRL against stress-induced hypocalcemia and ulcerogenesis. We show that rat PRL acts through the long form of PRLR in the hypothalamus. This is followed by an increase in the long form of PRLR mRNA expression in the choroid plexus of the brain, which provides protection against restraint stress in water-induced hypocalcemia and gastric erosions. We also show that PRL induces the expression of PRLR protein and corticotropin-releasing factor mRNA in the paraventricular nucleus. These results suggest that the PRL levels increase in response to stress, and it moves from the circulation to the cerebrospinal fluid to act on the central nervous system and thereby plays an important role in helping to protect against acute stress-induced hypocalcemia and gastric erosions.

  1. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    Science.gov (United States)

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images. Methods 3D T1-weighted brain MRIs of 41 WS subjects (age: 29.2±9.2SD years; 23F/18M) and 39 age-matched healthy controls (age: 27.5±7.4 years; 23F/16M) were fluidly registered to a minimum deformation target. Fine-scale volumetric differences were mapped between diagnostic groups. Local regions were identified where regional structure volumes were associated with diagnosis, and with intelligence quotient (IQ) scores. Brain asymmetry was also mapped and compared between diagnostic groups. Results WS subjects exhibited widely distributed brain volume reductions (~10–15% reduction; P < 0.0002, permutation test). After adjusting for total brain volume, the frontal lobes, anterior cingulate, superior temporal gyrus, amygdala, fusiform gyrus and cerebellum were found to be relatively preserved in WS, but parietal and occipital lobes, thalamus and basal ganglia, and midbrain were disproportionally decreased in volume (P < 0.0002). These regional volumes also correlated positively with performance IQ in adult WS subjects (age ≥ 30 years, P = 0.038). Conclusion TBM facilitates 3D visualization of brain volume reductions in WS. Reduced parietal/occipital volumes may be associated with visuospatial deficits in WS. By contrast, frontal lobes, amygdala, and cingulate gyrus are relatively preserved or even enlarged, consistent with unusual affect regulation and language production in WS. PMID:17512756

  2. Brain processing of visual sexual stimuli in healthy men: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Mouras, Harold; Stoléru, Serge; Bittoun, Jacques; Glutron, Dominique; Pélégrini-Issac, Mélanie; Paradis, Anne-Lise; Burnod, Yves

    2003-10-01

    The brain plays a central role in sexual motivation. To identify cerebral areas whose activation was correlated with sexual desire, eight healthy male volunteers were studied with functional magnetic resonance imaging (fMRI). Visual stimuli were sexually stimulating photographs (S condition) and emotionally neutral photographs (N condition). Subjective responses pertaining to sexual desire were recorded after each condition. To image the entire brain, separate runs focused on the upper and the lower parts of the brain. Statistical Parametric Mapping was used for data analysis. Subjective ratings confirmed that sexual pictures effectively induced sexual arousal. In the S condition compared to the N condition, a group analysis conducted on the upper part of the brain demonstrated an increased signal in the parietal lobes (superior parietal lobules, left intraparietal sulcus, left inferior parietal lobule, and right postcentral gyrus), the right parietooccipital sulcus, the left superior occipital gyrus, and the precentral gyri. In addition, a decreased signal was recorded in the right posterior cingulate gyrus and the left precuneus. In individual analyses conducted on the lower part of the brain, an increased signal was found in the right and/or left middle occipital gyrus in seven subjects, and in the right and/or left fusiform gyrus in six subjects. In conclusion, fMRI allows to identify brain responses to visual sexual stimuli. Among activated regions in the S condition, parietal areas are known to be involved in attentional processes directed toward motivationally relevant stimuli, while frontal premotor areas have been implicated in motor preparation and motor imagery. Further work is needed to identify those specific features of the neural responses that distinguish sexual desire from other emotional and motivational states.

  3. Blood-ocular and blood-brain barrier function in streptozocin-induced diabetes in rats

    International Nuclear Information System (INIS)

    Maeepea, O.; Karlsson, C.; Alm, A.

    1984-01-01

    Edetic acid labeled with chromium 51 was injected intravenously in normal rats and in rats with streptozocin-induced diabetes. One hour after the injection the animals were killed and the concentrations of edetic acid 51Cr in vitreous body, retina, and brain were determined. No significant difference was observed between the two groups for either tissue. In a second series, a mixture of tritiated 1-glucose and aminohippuric acid tagged with carbon 14 was injected instead of edetic acid. A substantial accumulation of aminohippuric acid 14C compared with tritiated 1-glucose was observed in the vitreous body and the brain of diabetic rats in comparison with the control group. It is concluded that untreated streptozocin-induced diabetes in rats for one to two weeks will not cause a generalized increase in the permeability of the blood-ocular or the blood-brain barriers, but organic acids may accumulate in the vitreous body as well as in the brain as a consequence of reduced outward transport through these barriers

  4. Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling

    DEFF Research Database (Denmark)

    Lam, Henrik Rye; Plenge, P.; Jørgensen, O.S.

    2001-01-01

    Previously, inhalation exposure to different types of white spirit (i.e. complex mixtures of aliphatic, aromatic, alkyl aromatic, and naphthenic hydrocarbons) has been shown to induce neurochemical effects in rat brains. Especially, the serotonergic system was involved at the global, regional, an...

  5. Temporal and spatial dynamics of corticosteroid receptor down-regulation in rat brain following social defeat

    NARCIS (Netherlands)

    Buwalda, B; Felszeghy, K; Horváth, K M; Nyakas, C; de Boer, S.F.; Bohus, B; Koolhaas, J M

    The experiments explored the nature and time course of changes in glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) binding in homogenates of various brain regions and pituitary of male Wistar rats following social defeat stress. One week after defeat, the binding capacity of GRs was

  6. Antidiabetic and Neuroprotective Effects of Trigonella Foenum-graecum Seed Powder in Diabetic Rat Brain

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2012-01-01

    Full Text Available Trigonella foenum-graecum seed powder (TSP has been reported to have hypoglycemic and hyperinsulinemic action. The objective of the study was to examine the antidiabetic and neuroprotective role of TSP in hyperglycemiainduced alterations in blood glucose, insulin levels and activities of membrane linked enzymes (Na+K+ATPase, Ca2+ATPase, antioxidant enzymes (superoxide dismutase, glutathione S-transferase, calcium (Ca2+ levels, lipid peroxidation, membrane fluidity and neurolipofuscin accumulation in the diabetic rat brain. Female Wistar rats weighing between 180 and 220 g were made diabetic by a single injection of alloxan monohydrate (15 mg/100 g body weight, diabetic rats were given 2 IU insulin, per day with 5% TSP in the diet for three weeks. A significant increase in lipid peroxidation was observed in diabetic brain. The increased lipid peroxidation following chronic hyperglycemia was accompanied with a significant increase in the neurolipofuscin deposition and Ca2+ levels with decreased activities of membrane linked ATPases and antioxidant enzymes in diabetic brain. A decrease in synaptosomal membrane fluidity may influence the activity of membrane linked enzymes in diabetes. The present study showed that TSP treatment can reverse the hyperglycemia induced changes to normal levels in diabetic rat brain. TSP administration amended effect of hyperglycemia on alterations in lipid peroxidation, restoring membrane fluidity, activities of membrane bound and antioxidant enzymes, thereby ameliorating the diabetic complications.

  7. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Figlewicz, D.F.; Kahn, S.E.; Baskin, D.G.; Greenwood, M.R.; Porte, D. Jr.

    1990-01-01

    In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals

  8. The Physiochemistry of Capped Nanosilver Predicts Its Biological Activity in Rat Brain Endothelial Cells (REBEC4)

    Science.gov (United States)

    The “capping” or coating of nanosilver (nanoAg) extends its potency by limiting its oxidation and aggregation and stabilizing its size and shape. The ability of such coated nanoAg to alter the permeability and activate oxidative stress pathways in rat brain endothelia...

  9. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  10. Inositol trisphosphate and thapsigargin discriminate endoplasmic reticulum stores of calcium in rat brain

    DEFF Research Database (Denmark)

    Verma, A; Hirsch, D J; Hanley, M R

    1990-01-01

    ATP dependent Ca2+ accumulation into oxalate-loaded rat brain microsomes is potently inhibited by thapsigargin with an IC50 of 2 nM and maximal inhibition at 10 nM. Approximately 15% of the total A23187-releasable microsomal calcium store is insensitive to thapsigargin concentrations up to 100 mi...

  11. PRENATAL EXPOSURE TO CHLORPYRIFOS ALTERS NEUROTROPHIN IMMUNOREACTIVITY AND APOPTOSIS IN RAT BRAIN.

    Science.gov (United States)

    In the present study, the effects of the organophosphate pesticide chlorpyrifos [CPF; O,O'diethyl O-3,5,6-trichloro-2-pyridyl) phosphorothionate] on the regional distribution of three neurotrophic factors and on levels of apoptosis in gestational rat brain were characterized. P...

  12. Differential distribution of calcineurin Aα isoenzyme mRNA's in rat brain

    NARCIS (Netherlands)

    Buttini, M.; Limonta, S.; Luyten, M.; Boddeke, H.

    1993-01-01

    Specific antisense oligonucleotide probes for the α isoforms of the catalytic subunit (A-subunit) of calcineurin were prepared and the distribution of Aα1 and Aα2 mRNA's has been studied in rat brain using in situ hybridization histochemistry. Clear regional differences have been observed for the

  13. Aging and Lateralization of the Rat Brain on a Biochemical Level

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Říčný, J.; Ort, Michael; Řípová, D.

    2010-01-01

    Roč. 35, č. 8 (2010), s. 1138-1146 ISSN 0364-3190 R&D Projects: GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat * brain * biochemistry Subject RIV: FH - Neurology Impact factor: 2.608, year: 2010

  14. Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system.

    Science.gov (United States)

    McCaughey-Chapman, Amy; Connor, Bronwen

    2017-02-01

    Organotypic brain slice cultures are a useful tool to study neurological function as they provide a more complex, 3-dimensional system than standard 2-dimensional in vitro cell cultures. Building on a previously developed mouse brain slice culture protocol, we have developed a rat sagittal brain slice culture system as an ex vivo model of dopamine cell loss. We show that rat brain organotypic slice cultures remain viable for up to 6 weeks in culture. Using Fluoro-Gold axonal tracing, we demonstrate that the slice 3-dimensional cytoarchitecture is maintained over a 4 week culturing period, with particular focus on the nigrostriatal pathway. Treatment of the cultures with 6-hydroxydopamine and desipramine induces a progressive loss of Fluoro-Gold-positive nigral cells with a sustained loss of tyrosine hydroxylase-positive nigral cells. This recapitulates the pattern of dopaminergic degeneration observed in the rat partial 6-hydroxydopamine lesion model and, most importantly, the progressive pathology of Parkinson's disease. Our slice culture platform provides an advance over other systems, as we demonstrate for the first time 3-dimensional cytoarchitecture maintenance of rat nigrostriatal sagittal slices for up to 6 weeks. Our ex vivo organotypic slice culture system provides a long term cellular platform to model Parkinson's disease, allowing for the elucidation of mechanisms involved in dopaminergic neuron degeneration and the capability to study cellular integration and plasticity ex vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. AQP4 expression and its relationship with brain edema after gamma kife radiosurgery in rats

    International Nuclear Information System (INIS)

    Shen Guangjian; Xu Minhui; Zou Yongwen; Gen Mingying; Li Feipeng; Tang Wenyuan; Sun Shanquan

    2007-01-01

    Objective: To explore AQP4 expression and its relationship with brain edema after gamma knife radiosurgery (GKRS) in rats. Methods: Wistar rats were divided into two groups-the control group and experimental group. The experimental group model was established by radiating rat left rotral caudate nucleus with GKRS (100 Gy, 4 mm), and was examinded at interval times of 1 d, 3 d, 7 d, 15 d, 30 d and 45 d. Brain water content (BWC) was determined by wet-dry weighing method. AQP4 expression on mRNA and protein were measured by immunohistochemistry (ICH) and in situ hybridization (ISH). Results: In control group, AQP4 protein and its mRNA were expressed in subpial astrocytes, choroid plexus, ependyma and perivascular astrocytes. After GKRS, AQP4 protein and its mRNA in these sites were enhanced, and became most remarkable at 30 d. The positive corrlationship was showed between AQP4 and its mRNA, and AQP4 and BWC. Conclusions: AQP4 protein and its mRNA can be induced in some brain zone after irradiating rat left rotral caudate nucleus with GKRS. The increased expression of AQP4 and its mRNA may play a role in the ocurrence or development of brain edema after GKRS. (authors)

  16. Metabolic, gastrointestinal, and CNS neuropeptide effects of brain leptin administration in the rat

    NARCIS (Netherlands)

    Van Dijk, G; Seeley, RJ; Thiele, TE; Friedman, MI; Ji, H; Wilkinson, CW; Burn, P; Campfield, LA; Tenenbaum, R; Baskin, DG; Woods, SC; Schwartz, MW; Seeley, Randy J.; Thiele, Todd E.; Friedman, Mark I.; Wilkinson, Charles W.; Baskin, Denis G.; Woods, Stephen C.; Schwartz, Michael W.

    To investigate whether brain leptin involves neuropeptidergic pathways influencing ingestion, metabolism, and gastrointestinal functioning, leptin (3.5 mu g) was infused daily into the third cerebral ventricular of rats for 3 days. To distinguish between direct leptin effects and those secondary to

  17. Combined treatment with progesterone and magnesium sulfate positively affects traumatic brain injury in immature rats.

    Science.gov (United States)

    Uysal, Nazan; Baykara, Basak; Kiray, Muge; Cetin, Ferihan; Aksu, Ilkay; Dayi, Ayfer; Gurpinar, Tugba; Ozdemir, Durgul; Arda, M Nuri

    2013-01-01

    It is well known that head trauma results in damage in hippocampal and cortical areas of the brain and impairs cognitive functions. The aim of this study is to explore the neuroprotective effect of combination therapy with magnesium sulphate (MgSO4) and progesterone in the 7-days-old rat pups subjected to contusion injury. Progesterone (8 mg/kg) and MgSO4 (150 mg/kg) were injected intraperitoneally immediately after induction of traumatic brain injury. Half of groups were evaluated 24 hours later, the remaining animals 3 weeks after trauma or sham surgery. Anxiety levels were assessed with open field activity and elevated plus maze; learning and memory performance were evaluated with Morris Water maze in postnatal 27 days. Combined therapy with progesterone and magnesium sulfate significantly attenuated trauma-induced neuronal death, increased brain VEGF levels and improved spatial memory deficits that appear later in life. Brain VEGF levels were higher in rats that received combined therapy compared to rats that received either medication alone. Moreover, rats that received combined therapy had reduced hipocampus and prefrontal cortex apoptosis in the acute period. These results demonstrate that combination of drugs with different mechanisms of action may be preferred in the treatment of head trauma.

  18. Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species

    Czech Academy of Sciences Publication Activity Database

    Wilhelm, Jiří; Vytášek, Richard; Uhlík, Jiří; Vajner, Luděk

    2016-01-01

    Roč. 2016, č. 2016 (2016), č. článku 5057610. ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP303/11/0298 Institutional support: RVO:67985823 Keywords : oxidative stress * developing rat brain * lipid peroxidation Subject RIV: ED - Physiology Impact factor: 4.593, year: 2016

  19. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.

    Science.gov (United States)

    Iyyaswamy, Ashok; Rathinasamy, Sheeladevi

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  20. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    Directory of Open Access Journals (Sweden)

    Marco Sifringer

    2015-01-01

    Full Text Available Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.

  1. Synthesis of [11C]citalopram and brain distribution studies in rats

    International Nuclear Information System (INIS)

    Ram, S.; Krishnan, K.R.R.; Bissette, G.; Knight, D.L.; Coleman, R.E.

    1990-01-01

    The study of serotonin uptake sites in the living human brain by PET with [ 11 C]citalopram may be valuable in investigating the anatomic locus and the therapeutic role of depression and prevention of suicide. For this purpose, the authors have synthesized [ 11 C]citalopram. In vivo biodistribution in rats has been determined

  2. Brain scan in cerebral ischemia. An experimental model in the rat

    International Nuclear Information System (INIS)

    Turner, J.H.

    1975-01-01

    A rapid embolic method for consistent induction of stroke in the rat is described. Brain scans were performed using a micro-pinhole collimator system, and the value of the model for studies in localization of radiopharmaceuticals in cerebral ischemia is demonstrated

  3. Neuroglobin in the rat brain (II): co-localisation with neurotransmitters

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Dewilde, Sylvia

    2008-01-01

    In an accompanying article, we found that neuroglobin (Ngb) was expressed in a few well-defined nuclei in the rat brain. Here, we show by use of immunohistochemistry and in situ hybridisation (ISH) that Ngb co-localise with several specific neurotransmitters. Ngb co-localise consistently with tyr...

  4. 60Co γ-irradiation enhances expression of GAP-43 mRNA in rat brain

    International Nuclear Information System (INIS)

    Su Bingyin; Cai Wenqin; Zhang Chenggang

    2001-01-01

    Objective: To study the relationship between the expression of GAP-43 mRNA and nerve regeneration in rat brain after 60 Co γ-irradiation. Methods: Wistar rats were subjected to whole-body irradiation with 8 Gy 60 Co γ-rays. The expression of GAP-43 was detected by in situ hybridization histochemistry using Dig-cRNA probe. Results: It was found that the expression of GAP-43 mRNA increased in the cerebral cortex, caudate, putamen, globus pallidum, thalamus and hypothalamus one week after 8 Gy 60 Co γ-irradiation. The peak of GAP-43 mRNA expression was observed in the fourth week and then began to decrease but still remained at a higher than normal level. However, it decreased to a low level after 7 weeks. Conclusion: Enhanced expression of GAP-43 mRNA after 60 Co γ-irradiation in rat brain is associated with nerve regeneration and reconstruction of synapse

  5. Effects of low doses of gamma radiation on DNA synthesis in the developing rat brain

    International Nuclear Information System (INIS)

    Cerda, H.

    1983-01-01

    Rats of one or ten days of age were irradiated with low doses of gamma radiation, and synthesis of DNA was examined by the incorporation of 3 H-thymidine in the cerebellum and the rest of the brain in vivo. DNA synthesis was depressed in both parts of the brain but the effects were larger in cerebellum. A minimum was found about 10 hours after irradiation in the older rats and later (18 h) in the younger ones. The dose response in 10 day-old rats, was biphasic and showed that cerebellum was more affected. Autoradiographs showed that fewer cells entered the cycle and those synthesizing showed a depressed rate of synthesis. These findings are discussed in relation to induction of cell death. (Auth.)

  6. Soft-food diet induces oxidative stress in the rat brain.

    Science.gov (United States)

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    Energy Technology Data Exchange (ETDEWEB)

    Netopilova, M; Drsata, J [Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 50005 Hradec Kralove (Czech Republic); Haugvicova, R; Kubova, H; Mares, P [Institute of Physiology, Czech Academy of Sciences, 14220 Prague (Czech Republic)

    1998-07-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using {sup 14}C-carboxyl-labelled glutamate and measurement of {sup 14}CO{sub 2} radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  8. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    International Nuclear Information System (INIS)

    Netopilova, M.; Drsata, J.; Haugvicova, R.; Kubova, H.; Mares, P.

    1998-01-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using 14 C-carboxyl-labelled glutamate and measurement of 14 CO 2 radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  9. Metabolic fate of 13N-labeled ammonia in rat brain

    International Nuclear Information System (INIS)

    Cooper, A.J.L.; McDonald, J.M.; Gelbard, A.S.; Gledhill, R.F.; Duffy, T.E.

    1979-01-01

    After infusion of physiological concentrations of [ 13 N]ammonia for 10 min via one internal carotid artery, the relative specific activities of glutamate, glutamine (α-amino), and glutamine (amide) in rat brain were approximately 1:5:400, respectively. Analysis of metabolites, after infusion of [ 13 N]ammonia into one lateral cerebral ventricle, indicated that ammonia entering the brain from the cerebrospinal fluid is also metabolized in a small glutamate pool. Pretreatment with methionine sulfoximine led to a decrease in the label present in brain glutamine following carotid artery infusion of [ 13 N]ammonia. 13 N activity in brain glutamate was greater than in the α-amino group of glutamine. The amount of label recovered in the right cerebral hemisphere, 5 s after a rapid bolus injection of [ 13 N]ammonia via the right common carotid artery, was independent of concentration within the bolus over a 1000-fold range indicating that ammonia enters the brain largely by diffusion. In normal rats approximately 60% of the label recovered in brain was incorporated into glutamine, indicating that the t 1 /sub// 2 for conversion of ammonia to glutamine in the small pool is in the range of 1 to 3 s or less. The data emphasize the importance of the small pool glutamine synthetase as a metabolic trap for the detoxification of blood-borne and endogenously produced brain ammonia. The possibility that the astrocytes represent the anatomical site of the small pool is considered

  10. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    Science.gov (United States)

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  11. The effect of electromagnetic radiation on the rat brain: an experimental study.

    Science.gov (United States)

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  12. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development. PMID:26848844

  13. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  14. Fetal hypothalamic transplants into brain irradiated rats: Graft morphometry and host behavioral responses

    International Nuclear Information System (INIS)

    Pearlman, S.H.; Rubin, P.; White, H.C.; Wiegand, S.J.; Gash, D.M.

    1990-01-01

    This study was designed to test the hypothesis that neural implants can ameliorate or prevent some of the long-term changes associated with CNS irradiation. Using a rat model, the initial study focused on establishing motor, regulatory, and morphological changes associated with brain radiation treatments. Secondly, fetal hypothalamic tissue grafts were placed into the third ventricle of rats which had been previously irradiated. Adult male Long Evans rats received one of three radiation doses (15, 22.5, ampersand 30 Gy) or no radiation. Three days after irradiation, 7 animals in each dose group received an embryonic day 17 hypothalamic graft into the third ventricle while the remaining 8-9 animals in each group received injections of vehicle solution (sham). Few changes were observed in the 15 and 22.5 Gy animals, however rats in the 30 Gy treatment group showed stereotypic and ambulatory behavioral hyperactivity 32 weeks after irradiation. Regulatory changes in the high dose group included decreased growth rate and decreased urine osmolalities, but these measures were extremely variable among animals. Morphological results demonstrated that 30 Gy irradiated animals showed extensive necrosis primarily in the fimbria, which extended into the internal capsule, optic nerve, hippocampus, and thalamus. Hemorrhages were found in the hippocampus, thalamus, and fimbria. Defects in the blood-brain barrier also were evident by entry of intravascularly injected horseradish peroxidase into the parenchyma of the brain. Animals in the 30 Gy grafted group showed fewer behavioral changes and less brain damage than their sham grafted counterparts. Specifically, activity measures were comparable to normal levels, and a dilute urine was not found in the 30 Gy implanted rats. Morphological changes support these behavioral results since only two 30 Gy implanted rats showed necrosis

  15. Fast and Accurate Rat Head Motion Tracking With Point Sources for Awake Brain PET.

    Science.gov (United States)

    Miranda, Alan; Staelens, Steven; Stroobants, Sigrid; Verhaeghe, Jeroen

    2017-07-01

    To avoid the confounding effects of anesthesia and immobilization stress in rat brain positron emission tomography (PET), motion tracking-based unrestrained awake rat brain imaging is being developed. In this paper, we propose a fast and accurate rat headmotion tracking method based on small PET point sources. PET point sources (3-4) attached to the rat's head are tracked in image space using 15-32-ms time frames. Our point source tracking (PST) method was validated using a manually moved microDerenzo phantom that was simultaneously tracked with an optical tracker (OT) for comparison. The PST method was further validated in three awake [ 18 F]FDG rat brain scans. Compared with the OT, the PST-based correction at the same frame rate (31.2 Hz) reduced the reconstructed FWHM by 0.39-0.66 mm for the different tested rod sizes of the microDerenzo phantom. The FWHM could be further reduced by another 0.07-0.13 mm when increasing the PST frame rate (66.7 Hz). Regional brain [ 18 F]FDG uptake in the motion corrected scan was strongly correlated ( ) with that of the anesthetized reference scan for all three cases ( ). The proposed PST method allowed excellent and reproducible motion correction in awake in vivo experiments. In addition, there is no need of specialized tracking equipment or additional calibrations to be performed, the point sources are practically imperceptible to the rat, and PST is ideally suitable for small bore scanners, where optical tracking might be challenging.

  16. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    Science.gov (United States)

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  17. Effects Of Amitryptilin Administration on Rat Sera and Brain Beta-endorphins

    Directory of Open Access Journals (Sweden)

    Radivoj Jadrić

    2006-11-01

    Full Text Available The aim of our study was to establish the influence of antidepressive drugs on serum and brain beta-endorphins in experimental animals. Experiment was performed on albino Wistar rats. Antidepressant amitryptiline was used, and for quantification of sera and brain beta-endorphins RIA technique. Our results showed difference between sera and brain beta-endorphins concentration in amitryptiline pretreated animals, vs. those in serum and brain of control group treated with 0.95% NaCl. This study shows that use of psychoactive drugs have influence on sera and brain beta-endorphins concentration. Beta-endorphins could be of great importance, used as markers for evaluation of antidepressant drug effects.

  18. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  19. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats.

    Science.gov (United States)

    Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua

    2018-06-05

    Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  1. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    Science.gov (United States)

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.

  2. Activation autoradiography: imaging and quantitative determination of endogenous and exogenous oxygen in the rat brain

    International Nuclear Information System (INIS)

    Kawashima, K.; Iwata, R.; Kogure, K.; Ohtomo, H.; Orihara, H.; Ido, T.

    1987-01-01

    Endogenous and exogenous oxygen in the rat brain were quantitatively determined using an autoradiographic technique. The oxygen images of frozen and dried rat brain sections were obtained as 18 F images by using the 16 O ( 3 He,p) 18 F reaction for endogenous 16 O images and the 18 O(p,n) 18 F reaction for endogenous and exogenous 18 O images. These autoradiograms demonstrated the different distribution of oxygen between gray and white matter. These images also allowed differentiation of the individual structures of hippocampal formation, owing to the differing water content of the various structures. Local oxygen contents were quantitatively determined from autoradiograms of brain sections and standard sections with known oxygen contents. The estimated values were 75.6 +/- 4.6 wt% in gray matter and 72.2 +/- 4.0 wt% in white matter. The systematic error in the present method was estimated to be 4.9%

  3. Radioautographic localization of somatostatin-14 and somatostatin-28 binding sites in the rat brain

    International Nuclear Information System (INIS)

    Leroux, P.; Pelletier, G.

    1984-01-01

    Somatostatin-14 (S14) and its precursor, somatostatin-28 (S28), are widely distributed throughout the rat brain, suggesting that they could act as neurotransmitter or neuromodulator in the central nervous system. The present study was undertaken to study the localization of S14 and S28 receptors in the rat brain determined by ''in vitro'' radioautography. The study performed on slide mounted frozen brain section with iodinated S14 and S28 analogs revealed an identical distribution of binding sites for the two forms of somatostatin. A good correlation could be observed between receptor distribution and immunohistologically localized neuropeptides except for striatum and hypothalamus. However, receptors were not detectable in the hypothalamus and were found in low concentration in the caudate-putamen nucleus, two regions containing high amounts of S28 and S14, suggesting a high occupancy of receptors in these areas by endogenous peptides or an inverse correlation between receptor and peptide concentrations

  4. Lifelong consumption of sodium selenite: gender differences on blood-brain barrier permeability in convulsive, hypoglycemic rats.

    Science.gov (United States)

    Seker, F Burcu; Akgul, Sibel; Oztas, Baria

    2008-07-01

    The aim of this study was to compare the effects of hypoglycemia and induced convulsions on the blood-brain barrier permeability in rats with or without lifelong administration of sodium selenite. There is a significant decrease of the blood-brain barrier permeability in three brain regions of convulsive, hypoglycemic male rats treated with sodium selenite when compared to sex-matched untreated rats (p0.05). The blood-brain barrier permeability of the left and right hemispheres of untreated, moderately hypoglycemic convulsive rats of both genders was better than their untreated counterparts (peffect against blood-brain barrier permeability during convulsions and that the effects of sodium selenite are gender-dependent.

  5. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    Directory of Open Access Journals (Sweden)

    Najmeh Kabiri

    2016-09-01

    Full Text Available The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99. Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly higher than the Sham group, although right hemispheres in all of the treated groups illustrated higher brain water content than the left ones. Brain anti-oxidant capacity elevated in the ischemic rats treated with Kombucha and in the Sham group. Brain and plasma malondialdehyde concentrations significantly decreased in both of the ischemic groups injected with Kombucha. The findings suggest that Kombucha tea could be useful for the prevention of cerebral damage.

  6. Intrinsic activity in the fly brain gates visual information during behavioral choices.

    Directory of Open Access Journals (Sweden)

    Shiming Tang

    2010-12-01

    Full Text Available The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals.

  7. Bromodeoxyuridine and methylazoxymethanol exposure during brain development affects behavior in rats : consideration for a role of nerve growth factor and brain derived neurotrophic factor

    NARCIS (Netherlands)

    Fiore, M; Aloe, L; Westenbroek, C; Amendola, T; Antonelli, A; Korf, J

    2001-01-01

    Rats prenatally exposed to the neurotoxins methylazoxymethanol (MAM) or 5-Bromo-2'-deoxyuridine (BrdU) are used as animal models of brain maldevelopment. We administered in rats MAM (20 mg/kg), or BrdU (100 mg/kg) or both at gestational day 11. Locomotion was not affected by any prenatal treatment

  8. Broad-Band Visually Evoked Potentials: Re(convolution in Brain-Computer Interfacing.

    Directory of Open Access Journals (Sweden)

    Jordy Thielen

    Full Text Available Brain-Computer Interfaces (BCIs allow users to control devices and communicate by using brain activity only. BCIs based on broad-band visual stimulation can outperform BCIs using other stimulation paradigms. Visual stimulation with pseudo-random bit-sequences evokes specific Broad-Band Visually Evoked Potentials (BBVEPs that can be reliably used in BCI for high-speed communication in speller applications. In this study, we report a novel paradigm for a BBVEP-based BCI that utilizes a generative framework to predict responses to broad-band stimulation sequences. In this study we designed a BBVEP-based BCI using modulated Gold codes to mark cells in a visual speller BCI. We defined a linear generative model that decomposes full responses into overlapping single-flash responses. These single-flash responses are used to predict responses to novel stimulation sequences, which in turn serve as templates for classification. The linear generative model explains on average 50% and up to 66% of the variance of responses to both seen and unseen sequences. In an online experiment, 12 participants tested a 6 × 6 matrix speller BCI. On average, an online accuracy of 86% was reached with trial lengths of 3.21 seconds. This corresponds to an Information Transfer Rate of 48 bits per minute (approximately 9 symbols per minute. This study indicates the potential to model and predict responses to broad-band stimulation. These predicted responses are proven to be well-suited as templates for a BBVEP-based BCI, thereby enabling communication and control by brain activity only.

  9. Mesoscale brain explorer, a flexible python-based image analysis and visualization tool.

    Science.gov (United States)

    Haupt, Dirk; Vanni, Matthieu P; Bolanos, Federico; Mitelut, Catalin; LeDue, Jeffrey M; Murphy, Tim H

    2017-07-01

    Imaging of mesoscale brain activity is used to map interactions between brain regions. This work has benefited from the pioneering studies of Grinvald et al., who employed optical methods to image brain function by exploiting the properties of intrinsic optical signals and small molecule voltage-sensitive dyes. Mesoscale interareal brain imaging techniques have been advanced by cell targeted and selective recombinant indicators of neuronal activity. Spontaneous resting state activity is often collected during mesoscale imaging to provide the basis for mapping of connectivity relationships using correlation. However, the information content of mesoscale datasets is vast and is only superficially presented in manuscripts given the need to constrain measurements to a fixed set of frequencies, regions of interest, and other parameters. We describe a new open source tool written in python, termed mesoscale brain explorer (MBE), which provides an interface to process and explore these large datasets. The platform supports automated image processing pipelines with the ability to assess multiple trials and combine data from different animals. The tool provides functions for temporal filtering, averaging, and visualization of functional connectivity relations using time-dependent correlation. Here, we describe the tool and show applications, where previously published datasets were reanalyzed using MBE.

  10. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    Science.gov (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  11. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    Science.gov (United States)

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat

  12. Impairments of learning and memory in the rats after brain irradiation

    International Nuclear Information System (INIS)

    Takai, Nobuhiko

    2002-01-01

    Clinical trials of hadrontherapy have been carried out world wide at several facilities including National Institute of Radiological Sciences (NIRS). Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumors. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We investigated and reported here the early consequences of brain damages caused by proton beam. The animals that had memorized the location of the standard position were locally irradiated to brain with either 70 MeV protons or 290 MeV carbon ions. At 24 hr after irradiation, impairment of the long-term memory was not observed in the irradiated rats compared to control. Irradiated animals, however, required substantially longer time finding out the standard position than control rats when the standard platform displaced to a position different from memorized position. This follows that a single doses of 30 Gy, either protons or carbon ions, impairs the working memory of animals. Function of muscarinic acetylcholine receptors was analyzed by an in vivo binding assay using radioligand quinuclidinyl benzilate (QNB). Irradiated rats were intravenously injected with 5.5 MBq of 3 H-QNB 24 hr after the irradiation, and decapitated 60 min after tracer injection. The autoradiographic studies showed an transitional increase of 3 H-QNB in vivo binding in the early phase after proton irradiation, even though no change in in-vitro 3 H-QNB binding was see in brain autoradiograms of irradiated rats. The cerebral blood flow and the histrogical features of brain were also changed at 3 months post-irradiation. These results indicate that the memory impairment caused by radiation is closely related to the early change of acetylcholine receptor in vivo. (author)

  13. Impairments of learning and memory in the rats after brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Nobuhiko [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-06-01

    Clinical trials of hadrontherapy have been carried out world wide at several facilities including National Institute of Radiological Sciences (NIRS). Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumors. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We investigated and reported here the early consequences of brain damages caused by proton beam. The animals that had memorized the location of the standard position were locally irradiated to brain with either 70 MeV protons or 290 MeV carbon ions. At 24 hr after irradiation, impairment of the long-term memory was not observed in the irradiated rats compared to control. Irradiated animals, however, required substantially longer time finding out the standard position than control rats when the standard platform displaced to a position different from memorized position. This follows that a single doses of 30 Gy, either protons or carbon ions, impairs the working memory of animals. Function of muscarinic acetylcholine receptors was analyzed by an in vivo binding assay using radioligand quinuclidinyl benzilate (QNB). Irradiated rats were intravenously injected with 5.5 MBq of {sup 3}H-QNB 24 hr after the irradiation, and decapitated 60 min after tracer injection. The autoradiographic studies showed an transitional increase of {sup 3}H-QNB in vivo binding in the early phase after proton irradiation, even though no change in in-vitro {sup 3}H-QNB binding was see in brain autoradiograms of irradiated rats. The cerebral blood flow and the histrogical features of brain were also changed at 3 months post-irradiation. These results indicate that the memory impairment caused by radiation is closely related to the early change of acetylcholine receptor in vivo. (author)

  14. Establishment of SHG-44 human glioma model in brain of wistar rat with stereotactic technique

    International Nuclear Information System (INIS)

    Hong Xinyu; Luo Yi'nan; Fu Shuanglin; Wang Zhanfeng; Bie Li; Cui Jiale

    2004-01-01

    Objective: To establish solid intracerebral human glioma model in Wistar rat with xenograft methods. Methods: The SHG-44 cells were injected into brain right caudate nucleus of previous immuno-inhibitory Wistar rats with stereotactic technique. The MRI scans were performed at 1 week and 2 weeks later after implantation. After 2 weeks the rats were killed and pathological examination and immunohistologic stain for human GFAP were used. Results: The MRI scan after 1 week of implantation showed the glioma was growing, pathological histochemical examination demonstrated the tumor was glioma. Human GFAP stain was positive. The growth rate of glioma model was about 60%. Conclusion: Solid intracerebral human glioma model in previous immuno-inhibitory Wistar rat is successfully established

  15. Connecting art and the brain: an artist’s perspective on visual indeterminacy

    Directory of Open Access Journals (Sweden)

    Robert ePepperell

    2011-08-01

    Full Text Available In this article I will discuss the intersection between art and neuroscience from the perspective of a practicing artist. I have collaborated on several scientific studies into the effects of art on the brain and behaviour, looking in particular at the phenomenon of ‘visual indeterminacy’. This is a perceptual state in which subjects fail to recognise objects from visual cues. I will look at the background to this phenomenon, and show how various artists have exploited its effect through the history of art. My own attempts to create indeterminate images will be discussed, including some of the technical problems I faced in trying to manipulate the viewer’s perceptual state through paintings. Visual indeterminacy is not widely studied in neuroscience, although references to it can be found in the literature on visual agnosia and object recognition. I will briefly review some of this work and show how my attempts to understand the science behind visual indeterminacy led me to collaborate with psychophysicists and neuroscientists. After reviewing this work, I will discuss the conclusions I have drawn from its findings and consider the problem of how best to integrate neuroscientific methods with artistic knowledge to create truly interdisciplinary approach.

  16. Brain activation profiles during kinesthetic and visual imagery: An fMRI study.

    Science.gov (United States)

    Kilintari, Marina; Narayana, Shalini; Babajani-Feremi, Abbas; Rezaie, Roozbeh; Papanicolaou, Andrew C

    2016-09-01

    The aim of this study was to identify brain regions involved in motor imagery and differentiate two alternative strategies in its implementation: imagining a motor act using kinesthetic or visual imagery. Fourteen adults were precisely instructed and trained on how to imagine themselves or others perform a movement sequence, with the aim of promoting kinesthetic and visual imagery, respectively, in the context of an fMRI experiment using block design. We found that neither modality of motor imagery elicits activation of the primary motor cortex and that each of the two modalities involves activation of the premotor area which is also activated during action execution and action observation conditions, as well as of the supplementary motor area. Interestingly, the visual and the posterior cingulate cortices show reduced BOLD signal during both imagery conditions. Our results indicate that the networks of regions activated in kinesthetic and visual imagery of motor sequences show a substantial, while not complete overlap, and that the two forms of motor imagery lead to a differential suppression of visual areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus (PPN Influences Visual Contrast Sensitivity in Human Observers.

    Directory of Open Access Journals (Sweden)

    Hendrik Strumpf

    Full Text Available The parapontine nucleus of the thalamus (PPN is a neuromodulatory midbrain structure with widespread connectivity to cortical and subcortical motor structures, as well as the spinal cord. The PPN also projects to the thalamus, including visual relay nuclei like the LGN and the pulvinar. Moreover, there is intense connectivity with sensory structures of the tegmentum in particular with the superior colliculus (SC. Given the existence and abundance of projections to visual sensory structures, it is likely that activity in the PPN has some modulatory influence on visual sensory selection. Here we address this possibility by measuring the visual discrimination performance (luminance contrast thresholds in a group of patients with Parkinson's Disease (PD treated with deep-brain stimulation (DBS of the PPN to control gait and postural motor deficits. In each patient we measured the luminance-contrast threshold of being able to discriminate an orientation-target (Gabor-grating as a function of stimulation frequency (high 60Hz, low 8/10, no stimulation. Thresholds were determined using a standard staircase-protocol that is based on parameter estimation by sequential