WorldWideScience

Sample records for rat brain protein

  1. [Expression of c-jun protein after experimental rat brain concussion].

    Science.gov (United States)

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  2. Utilization of 14C-tyrosine in brain and peripheral tissues of developmentally protein malnourished rats

    International Nuclear Information System (INIS)

    Miller, M.; Leahy, J.P.; McConville, F.; Morgane, P.J.; Resnick, O.

    1978-01-01

    Prior studies of developmentally protein malnourished rats have reported substantial changes in brain and peripheral utilization of 14 C-leucine, 14 C-phenylalanine, and 14 C-tryptophan. In the present study rats born to dams fed a low protein diet (8% casein) compared to the offspring of control rats fed a normal diet (25% casein) showed few significant differences in the uptake and incorporation of 14 C-tyrosine into brain and peripheral tissues from birth to age 21 days. At birth, the 8% casein pups exhibited significant decreases in brain and peripheral tissue incorporation of tracer only at short post-injection times (10 and 20 min), but not at longer intervals (90 and 180 min). During ontogenetic development (Days 5-21), the 8% casein rats showed significant increases in uptake of 14 C-tyrosine into the brain and peripheral tissues on Day 11 and a significantly higher percent incorporation of tracer into brain protein on Day 21 as compared to the 25% casein rats. For the most part, there were no significant changes in incorporation of radioactivity in peripheral tissues for the 2 diet groups on these post-birth days. Overall, the data indicates that developmental protein malnutrition causes relatively fewer changes in brain and peripheral utilization of the semi-essential amino acid tyrosine than those observed in previous studies with essential amino acids

  3. Radio frequency radiation effects on protein kinase C activity in rats' brain

    International Nuclear Information System (INIS)

    Paulraj, R.; Behari, J.

    2004-01-01

    The present work describes the effect of amplitude modulated radio frequency (rf) radiation (112 MHz amplitude-modulated at 16 Hz) on calcium-dependent protein kinase C (PKC) activity on developing rat brain. Thirty-five days old Wistar rats were used for this study. The rats were exposed 2 h per day for 35 days at a power density of 1.0 mW/cm 2 (SAR=1.48 W/kg). After exposure, rats were sacrificed and PKC was determined in whole brain, hippocampus and whole brain minus hippocampus separately. A significant decrease in the enzyme level was observed in the exposed group as compared to the sham exposed group. These results indicate that this type of radiation could affect membrane bound enzymes associated with cell signaling, proliferation and differentiation. This may also suggest an affect on the behavior of chronically exposed rats

  4. Response of rat brain protein synthesis to ethanol and sodium barbital

    International Nuclear Information System (INIS)

    Tewari, S.; Greenberg, S.A.; Do, K.; Grey, P.A.

    1987-01-01

    Central nervous system (CNS) depressants such as ethanol and barbiturates under acute or chronic conditions can induce changes in rat brain protein synthesis. While these data demonstrate the individual effects of drugs on protein synthesis, the response of brain protein synthesis to alcohol-drug interactions is not known. The goal of the present study was to determine the individual and combined effects of ethanol and sodium barbital on brain protein synthesis and gain an understanding of the mechanisms by which these alterations in protein synthesis are produced. Specifically, the in vivo and in vitro effects of sodium barbital (one class of barbiturates which is not metabolized by the hepatic tissue) were examined on brain protein synthesis in rats made physically dependent upon ethanol. Using cell free brain polysomal systems isolated from Control, Ethanol and 24 h Ethanol Withdrawn rats, data show that sodium barbital, when intubated intragastrically, inhibited the time dependent incorporation of 14 C) leucine into protein by all three groups of ribosomes. Under these conditions, the Ethanol Withdrawn group displayed the largest inhibition of the 14 C) leucine incorporation into protein when compared to the Control and Ethanol groups. In addition, sodium barbital when added at various concentrations in vitro to the incubation medium inhibited the incorporation of 14 C) leucine into protein by Control and Ethanol polysomes. The inhibitory effects were also obtained following preincubation of ribosomes in the presence of barbital but not cycloheximide. Data suggest that brain protein synthesis, specifically brain polysomes, through interaction with ethanol or barbital are involved in the functional development of tolerance. These interactions may occur through proteins or polypeptide chains or alterations in messenger RNA components associated with the ribosomal units

  5. [Alterations of glial fibrillary acidic protein in rat brain after gamma knife irradiation].

    Science.gov (United States)

    Ma, Z M; Jiang, B; Ma, J R

    2001-08-28

    To study glial fibrillary acidic protein (GFAP) immunoreactivity in different time and water content of the rat brain treated with gamma knife radiotherapy and to understand the alteration course of the brain lesion after a single high dose radiosurgical treatment. In the brains of the normal rats were irradiated by gamma knife with 160 Gy-high dose. The irradiated rats were then killed on the 1st day, 7th day, 14th day, and 28th day after radiotherapy, respectively. The positive cells of GFAP in brain tissue were detected by immunostaining; the water content of the brain tissue was measured by microgravimetry. The histological study of the irradiated brain tissue was performed with H.E. and examined under light microscope. The numbers of GFAP-positive astrocytes began to increase on the 1st day after gamma knife irradiation. It was enlarged markedly in the number and size of GFAP-stained astrocytes over the irradiated areas. Up to the 28th day, circumscribed necrosis foci (4 mm in diameter) was seen in the central area of the target. In the brain tissue around the necrosis, GFAP-positive astrocytes significantly increased (P gravity in the irradiated brain tissue the 14th and 28th day after irradiation. The results suggest that GFAP can be used as a marker for the radiation-induced brain injury. The brain edema and disruption of brain-blood barrier can be occurred during the acute stage after irradiation.

  6. Effect of 60Co-irradiation on normal and low protein diet fed rat brain

    International Nuclear Information System (INIS)

    Hasan, S.S.; Habibullah, M.

    1980-01-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain. (orig.) [de

  7. Effect of /sup 60/Co-irradiation on normal and low protein diet fed rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S S [Garhwal Univ., Srinagar, Uttar Pradesh (India). Dept. of Zoology; Habibullah, M [Jawaharlal Nehru Univ., New Delhi (India). Neurobiology Lab.

    1980-06-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain.

  8. Effects of Biotin Deficiency on Biotinylated Proteins and Biotin-Related Genes in the Rat Brain.

    Science.gov (United States)

    Yuasa, Masahiro; Aoyama, Yuki; Shimada, Ryoko; Sawamura, Hiromi; Ebara, Shuhei; Negoro, Munetaka; Fukui, Toru; Watanabe, Toshiaki

    2016-01-01

    Biotin is a water-soluble vitamin that functions as a cofactor for biotin-dependent carboxylases. The biochemical and physiological roles of biotin in brain regions have not yet been investigated sufficiently in vivo. Thus, in order to clarify the function of biotin in the brain, we herein examined biotin contents, biotinylated protein expression (e.g. holocarboxylases), and biotin-related gene expression in the brain of biotin-deficient rats. Three-week-old male Wistar rats were divided into a control group, biotin-deficient group, and pair-fed group. Rats were fed experimental diets from 3 wk old for 8 wk, and the cortex, hippocampus, striatum, hypothalamus, and cerebellum were then collected. In the biotin-deficient group, the maintenance of total biotin and holocarboxylases, increases in the bound form of biotin and biotinidase activity, and the expression of an unknown biotinylated protein were observed in the cortex. In other regions, total and free biotin contents decreased, holocarboxylase expression was maintained, and bound biotin and biotinidase activity remained unchanged. Biotin-related gene (pyruvate carboxylase, sodium-dependent multivitamin transporter, holocarboxylase synthetase, and biotinidase) expression in the cortex and hippocampus also remained unchanged among the dietary groups. These results suggest that biotin may be related to cortex functions by binding protein, and the effects of a biotin deficiency and the importance of biotin differ among the different brain regions.

  9. Whey protein concentrate supplementation protects rat brain against aging-induced oxidative stress and neurodegeneration.

    Science.gov (United States)

    Garg, Geetika; Singh, Sandeep; Singh, Abhishek Kumar; Rizvi, Syed Ibrahim

    2018-05-01

    Whey protein concentrate (WPC) is a rich source of sulfur-containing amino acids and is consumed as a functional food, incorporating a wide range of nutritional attributes. The purpose of this study is to evaluate the neuroprotective effect of WPC on rat brain during aging. Young (4 months) and old (24 months) male Wistar rats were supplemented with WPC (300 mg/kg body weight) for 28 days. Biomarkers of oxidative stress and antioxidant capacity in terms of ferric reducing antioxidant potential (FRAP), lipid hydroperoxide (LHP), total thiol (T-SH), protein carbonyl (PC), reactive oxygen species (ROS), nitric oxide (NO), and acetylcholinesterase (AChE) activity were measured in brain of control and experimental (WPC supplemented) groups. In addition, gene expression and histopathological studies were also performed. The results indicate that WPC augmented the level of FRAP, T-SH, and AChE in old rats as compared with the old control. Furthermore, WPC-treated groups exhibited significant reduction in LHP, PC, ROS, and NO levels in aged rats. WPC supplementation also downregulated the expression of inflammatory markers (tumor necrosis factor alpha, interleukin (IL)-1β, IL-6), and upregulated the expression of marker genes associated with autophagy (Atg3, Beclin-1, LC3B) and neurodegeneration (neuron specific enolase, Synapsin-I, MBP-2). The findings suggested WPC to be a potential functional nutritional food supplement that prevents the progression of age-related oxidative damage in Wistar rats.

  10. Fragmentation of Protein Kinase N (PKN) in the Hydrocephalic Rat Brain

    International Nuclear Information System (INIS)

    Okii, Norifumi; Amano, Taku; Seki, Takahiro; Matsubayashi, Hiroaki; Mukai, Hideyuki; Ono, Yoshitaka; Kurisu, Kaoru; Sakai, Norio

    2007-01-01

    PKN (protein kinase N; also called protein kinase C-related kinase (PRK-1)), is a serine/threonine protein kinase that is ubiquitously expressed in several organs, including the brain. PKN has a molecular mass of 120 kDa and has two domains, a regulatory and a catalytic domain, in its amino-terminals and carboxyl-terminus, respectively. Although the role of PKN has not been fully elucidated, previous studies have revealed that PKN is cleaved to a constitutively active catalytic fragment of 55 kDa in response to apoptotic signals. Hydrocephalus is a pathological condition caused by insufficient cerebrospinal fluid (CSF) circulation and subsequent excess of CSF in the brain. In this study, in order to elucidate the role of PKN in the pathophysiology of hydrocephalus, we examined PKN fragmentation in hydrocephalic model rats. Hydrocephalus was induced in rats by injecting kaolin into the cisterna magna. Kaolin-induced rats (n=60) were divided into three groups according to the observation period after treatment (group 1: 3–6 weeks, group 2: 7–12 weeks, and group 3: 13–18 weeks). Sham-treated control rats, injected with sterile saline (n=20), were similarly divided into three groups. Spatial learning ability was estimated by a modified water maze test. Thereafter, brains were cut into slices and ventricular dilatation was estimated. Fragmentation of PKN was observed by Western blotting in samples collected from the parietal cortex, striatum, septal nucleus, hippocampus, and periaqueductal gray matter. All kaolin-induced rats showed ventricular dilatation. Most of them showed less spatial learning ability than those of sham-treated controls. In most regions, fragmentation of PKN had occurred in a biphasic manner more frequently than that in controls. The appearance of PKN fragmentation in periaqueductal gray matter was correlated with the extent of ventricular dilation and spatial learning disability. These results revealed that PKN fragmentation was observed in

  11. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  12. Myelin basic protein in brains of rats with low dose lead encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Sundstroem, R; Karlsson, B

    1987-02-01

    In the present study control rats and lead exposed rats which did not have any retardation of growth were examined by radioimmunological assay of myelin basic protein (MBP) of homogenates of cerebrum and cerebellum at 30, 60 and 120 days of age. Lead was administered on postnatal days 1-15 by daily intraperitoneal injections of 10 mg lead nitrate/kg body weight. This lead dose results in light microscopically discernible hemorrhagic encephalopathy in the cerebellum of 15-day old rats, but does not induce growth retardation. The controls were injected with vehicle only. The amount of lead in the blood and brain homogenates of lead-exposed and control rats 15-200 days old was estimated by atomic absorption spectrophotometry. Significant differences between the lead-exposed and control rats were not found in the cerebral or cerebellar content of MBP. Considering the results of previous investigations, the findings do not exclude a hypo-myelinating effect of lead, but they suggest that exposure to lead without concomitant malnutrition does not cause hypo-myelination in the cerebrum and cerebellum of the developing rat.

  13. Protein profiling in serum after traumatic brain injury in rats reveals potential injury markers.

    Science.gov (United States)

    Thelin, Eric Peter; Just, David; Frostell, Arvid; Häggmark-Månberg, Anna; Risling, Mårten; Svensson, Mikael; Nilsson, Peter; Bellander, Bo-Michael

    2018-03-15

    The serum proteome following traumatic brain injury (TBI) could provide information for outcome prediction and injury monitoring. The aim with this affinity proteomic study was to identify serum proteins over time and between normoxic and hypoxic conditions in focal TBI. Sprague Dawley rats (n=73) received a 3mm deep controlled cortical impact ("severe injury"). Following injury, the rats inhaled either a normoxic (22% O 2 ) or hypoxic (11% O 2 ) air mixture for 30min before resuscitation. The rats were sacrificed at day 1, 3, 7, 14 and 28 after trauma. A total of 204 antibodies targeting 143 unique proteins of interest in TBI research, were selected. The sample proteome was analyzed in a suspension bead array set-up. Comparative statistics and factor analysis were used to detect differences as well as variance in the data. We found that complement factor 9 (C9), complement factor B (CFB) and aldolase c (ALDOC) were detected at higher levels the first days after trauma. In contrast, hypoxia inducing factor (HIF)1α, amyloid precursor protein (APP) and WBSCR17 increased over the subsequent weeks. S100A9 levels were higher in hypoxic-compared to normoxic rats, together with a majority of the analyzed proteins, albeit few reached statistical significance. The principal component analysis revealed a variance in the data, highlighting clusters of proteins. Protein profiling of serum following TBI using an antibody based microarray revealed temporal changes of several proteins over an extended period of up to four weeks. Further studies are warranted to confirm our findings. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    DEFF Research Database (Denmark)

    Naik, M U; Benedikz, Eirikur; Hernandez, I

    2000-01-01

    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region...

  15. Analysis of SiO2 nanoparticles binding proteins in rat blood and brain homogenate

    Directory of Open Access Journals (Sweden)

    Shim KH

    2014-12-01

    Full Text Available Kyu Hwan Shim,1 John Hulme,1 Eun Ho Maeng,2 Meyoung-Kon Kim,3 Seong Soo A An1 1Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Sungnam-si, 2Department of Analysis, KTR, Kimpo, Gyeonggi-do, 3Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea Abstract: A multitude of nanoparticles, such as titanium oxide (TiO2, zinc oxide, aluminum oxide, gold oxide, silver oxide, iron oxide, and silica oxide, are found in many chemical, cosmetic, pharmaceutical, and electronic products. Recently, SiO2 nanoparticles were shown to have an inert toxicity profile and no association with an irreversible toxicological change in animal models. Hence, exposure to SiO2 nanoparticles is on the increase. SiO2 nanoparticles are routinely used in numerous materials, from strengthening filler for concrete and other construction composites, to nontoxic platforms for biomedical application, such as drug delivery and theragnostics. On the other hand, recent in vitro experiments indicated that SiO2 nanoparticles were cytotoxic. Therefore, we investigated these nanoparticles to identify potentially toxic pathways by analyzing the adsorbed protein corona on the surface of SiO2 nanoparticles in the blood and brain of the rat. Four types of SiO2 nanoparticles were chosen for investigation, and the protein corona of each type was analyzed using liquid chromatography-tandem mass spectrometry technology. In total, 115 and 48 plasma proteins from the rat were identified as being bound to negatively charged 20 nm and 100 nm SiO2 nanoparticles, respectively, and 50 and 36 proteins were found for 20 nm and 100 nm arginine-coated SiO2 nanoparticles, respectively. Higher numbers of proteins were adsorbed onto the 20 nm sized SiO2 nanoparticles than onto the 100 nm sized nanoparticles regardless of charge. When proteins were compared between the two charges, higher numbers of proteins were

  16. Protein synthesis in the rat brain: a comparative in vivo and in vitro study in immature and adult animals

    International Nuclear Information System (INIS)

    Shahbazian, F.M.

    1985-01-01

    Rates of protein synthesis of CNS and other organs were compared in immature and adult rats by in vivo and slice techniques with administration of flooding doses of labeled precursor. The relationship between synthesis and brain region, cell type, subcellular fraction, or MW was examined. Incorporation of [ 14 C]valine into protein of CNS regions in vivo was about 1.2% per hour for immature rats and 0.6% for adults. For slices, the rates decreased significantly more in adults. In adult organs, the highest synthesis rate in vivo was found in liver (2.2% per hour) followed by kidney, spleen, lung, heart, brain, and muscle (0.5% per hour). In immature animals synthesis was highest in liver and spleen (2.5% per hour) and lowest in muscle (0.9% per hour). Slices all showed lower rates than in vivo, especially in adults. In vivo, protein synthesis rates of immature neurons and astrocytes and adult neurons exceeded those of whole brain, while that in adult astrocytes was the same. These results demonstrate a developmental difference of protein synthesis (about double in immature animals) in all brain cells, cell fractions and most brain protein. Similarly the decreased synthesis in brain slices - especially in adults, affects most proteins and structural elements

  17. Strain differences in the response to morphine on incorporation of 3H-lysine into rat brain protein

    International Nuclear Information System (INIS)

    Ford, D.H.; Rhines, R.K.; Levi, M.A.

    1977-01-01

    The effect of morphine on the specific activity (SA) of lysine in the plasma free amino acid (FFA) fraction and in the cerebral cortical FAA and protein fractions, as well as on the specific accumulation and incorporation, was determined in male Sprague-Dawley and Wistar rats at various time intervals after intravenous injection of drug and amino acid into unanesthetized animals. The lysine SA was higher in Sprague-Dawley than in Wistar rats in the plasma and brain FAA fraction and in the protein fraction. In the SD strain, morphine decreased the SA of plasma FAA significantly, but had only slight effects in the Wistar strain. In the cortical gray matter, morphine elevated the SA of lysine significantly in both strains. SA of the lysine in cerebral cortical protein increased in both strains with time. When the data for the free amino acids were expressed in terms of specific accumulation, the observed rates were higher in the Sprague-Dawley animals and reached a point of maximal concentration, which was not observed in animals of the Wistar strain. Morphine elevated the levels of specific accumulation of lysine into the cortical free amino acid pool in both strains of rat. It is concluded that Sprague-Dawley and Wistar rats are not equivalent in relation to the accumulation of an amino acid in the brain FAA pool from the plasma and that the effect of morphine on specific incorporation of lysine into brain protein is greater in Wistar rats. (author)

  18. Corvitin restores metallothionein and glial fibrillary acidic protein levels in rat brain affected by pituitrin-izadrin

    OpenAIRE

    H. N. Shiyntum; O. O. Dovban; Y. P. Kovalchuk; T. Ya. Yaroshenko2; G. A. Ushakova1

    2017-01-01

    In this research, we investigated the effect of pituitrin-izadrin induced injury on the levels of metallothionein (MT) and soluble and filament forms of glial fibrillary acidic protein (GFAP) in the hippocampus, cerebellum, thalamus, and the cerebral cortex, and examined the effect of corvitin on the brain under the noted changes. Our results showed oppositely directed changes – a decrease in the level of MT and an increase in GFAP in the rat brain, with a tendency to astrogliosis development...

  19. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    International Nuclear Information System (INIS)

    MacDonald, P.N.; Ong, D.E.; Bok, D.

    1990-01-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur

  20. Effect of naloxone hydrochloride on c-fos protein expression in brain and plasma beta-endorphin level in rats with diffuse brain injury and secondary brain insult

    Directory of Open Access Journals (Sweden)

    Jun-jie JING

    2012-09-01

    Full Text Available Objective To observe the changes of c-fos protein expression in brain and beta-endorphin (β-EP level in blood plasma in rats with diffuse brain injury (DBI and secondary brain insult (SBI after intraperitoneal injection of naloxone hydrochloride, and explore the role of c-fos andβ-EP in development of SBI in rats. Methods Seventy health male SD rats were enrolled in the present study and randomly divided into group A (intraperitoneally injected with 0.9% saline after DBI and SBI model was reproduced, group B (injected intraperitoneally with 1.0mg/kg naloxone hydrochloride after DBI and SBI model was reproduced, and group C (intraperitoneally injected with 1.0mg/kg naloxone hydrochloride after DBI and before SBI model was reproduced. The animals were sacrificed 3, 24 and 48 hours after injury, and the number of c-fos positive cells in brain and content of β-EP in blood plasma were determined by immunohistochemistry and radioimmunoassay respectively, the water content and number of injured neurons in brain tissue were measured by pathomorphological observation of the brain tissue. Results No significant difference was observed between group B and C for all the detection parameters. In group B and C, the water content in brain tissue at 3h and 24h was found to be decreased, while the number of injured neurons at 24h and 48h increased, number of c-fos positive cells in brain at 3h, 24h and 48h decreased, and content of β-EP in blood plasma at 3h and 24h decreased when compared with group A(P < 0.05. Conclusion Naloxone hydrochloride could decrease the c-fos expression in brain and β-EP level in blood plasma, alleviate the nerve injury, and protect neural function. The therapeutic effect of naloxone administered either after DBI and SBI or after DBI and before SBI was similar.

  1. Region-specific differences in bioenergetic proteins and protein response to acute high fat diet in brains of low and high capacity runner rats.

    Science.gov (United States)

    Gan, Li; Ma, Delin; Li, Min; Yang, Fu-Chen; Rogers, Robert S; Wheatley, Joshua L; Koch, Lauren G; Britton, Steven L; Thyfault, John P; Geiger, Paige C; Stanford, John A

    2018-05-01

    Aerobic capacity is a strong predictor of mortality. Low capacity runner (LCR) rats exhibit reduced mitochondrial function in peripheral organs. A high fat diet (HFD) can worsen metabolic phenotype in LCR rats. Little is known about metabolic changes in the brains of these rats, however. This study examined protein markers of mitochondrial function and metabolism as a function of aerobic running capacity and an acute HFD in four brain regions: the striatum, hippocampus, hypothalamus, and substantia nigra. After 3 days HFD or chow diets, we measured peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1-α), nuclear respiratory factors 1 (Nrf-1), mitochondrial transcription factor A (TFAM), and phosphorylated (activated) AMP-activated protein kinase (p-AMPK) protein levels in the four brain regions. LCR rats exhibited lower levels of mitochondrial proteins (PGC1-α, Nrf-1, TFAM), and greater p-AMPK, in striatum, but not in the other brain regions. Mitochondrial protein levels were greater in HFD LCR striatum, while p-AMPK was lower in this group. Markers of lower mitochondrial biogenesis and increased metabolic demand were limited to the LCR striatum, which nevertheless maintained the capacity to respond to an acute HFD challenge. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effects of protein restriction, melatonin administration, and short daylength on brain benzodiazepine receptors in prepubertal male rats

    International Nuclear Information System (INIS)

    Kennaway, D.J.; Royles, P.; Webb, H.; Carbone, F.

    1988-01-01

    The possibility that there are changes in brain benzodiazepine binding sites controlled by photoperiod was investigated in two strains of male rats. The hypothesis was tested by 3H-diazepam binding studies in various brain regions of prepubertal rats maintained in 14 or 10 h of light or treated with late-afternoon injections of melatonin (50 micrograms/day). Protein restriction was applied during the experiment to sensitize the animals to the treatments. Under the conditions employed, rats kept in short daylength throughout or kept on long photoperiod and given late-afternoon melatonin injections showed evidence of delayed puberty (seminal vesicle, ventral prostate, and testis weight decreased by 45%, 55%, and 60% respectively, compared to control rats). Binding measurements were made 1 h before and 2 and 5 h after the onset of darkness in the pubertal (42-day-old) or experimentally prepubertal rats. In the rats of the Porton strain (for which protein restriction was obligatory for the gonadal response) there was no consistent treatment or time effects on specific binding of 3H-diazepam to washed membranes of the hypothalamus, midbrain, or striatum. Similarly, there were no differences in the stimulation of 3H-diazepam binding by 100 microM GABA or the inhibition of binding by 50 microM N-acetyl 5 methoxy kynurenamine. By contrast, in Wistar rats, specific binding to midbrain membranes was reduced 5 h after dark compared to 2 h (37% saline; 20% melatonin) and the extent of stimulation by GABA in the hypothalamus was increased 5 h after darkness (35.6% to 46.7% saline; 37.4% to 50% melatonin). Melatonin treatment resulted in significantly higher specific binding in the hypothalamus 2 h after dark (10%, control fed; 20%, protein restricted) but reduced the GABA induced stimulation of binding in the midbrain (35.5% to 25%, control fed; 33.7% to 23.5%, protein restricted)

  3. Blood-brain barrier transport and protein binding of flumazenil and iomazenil in the rat: implications for neuroreceptor studies

    DEFF Research Database (Denmark)

    Videbaek, C; Ott, P; Paulson, O B

    1999-01-01

    The calculated fraction of receptor ligands available for blood-brain barrier passage in vivo (f(avail)) may differ from in vitro (f(eq)) measurements. This study evaluates the protein-ligand interaction for iomazenil and flumazenil in rats by comparing f(eq) and f(avail). Repeated measurements...... of blood-brain barrier permeability for two benzodiazepine antagonists were performed in 44 rats by the double-indicator technique. Cerebral blood flow was measured by intracarotid Xe-injection. The apparent permeability-surface product (PSapp) was measured while CBF or bolus composition was changed...... and flumazenil increased significantly by 89% and 161% after relative CBF increases of 259% and 201%, respectively. The results demonstrate that application of f(eq) in neuroreceptor studies underestimates the plasma input function to the brain. Model simulations render possible that the differences between f...

  4. Effects of secretagogues on ATP levels and protein carboxyl methylation in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Bjorndahl, J.M.; Rutledge, C.O.

    1986-01-01

    The influence of various substances which are known to alter free intracellular calcium concentrations on protein carboxyl methyltransferase (PCM) activity was investigated in rat brain synaptosomes. The synaptosomes were labeled with L-[ 3 H]methionine and the 3 H-methyl esters of proteins were formed from the methyl donor S-[ 3 H]adenosyl-L-methionine ([ 3 H]AdoMet). The calcium ionophore A23187 and ouabain decreased PCM activity and the decrease produced by A23187 was antagonized by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid and MnCl 2 . On the other hand, ruthenium red, an inhibitor of calcium uptake, stimulated PCM activity. These data suggest that PCM activity is inversely related to the free cytoplasmic calcium concentration. Veratridine, A23187 and elevated potassium ions decreased the levels of ATP and [ 3 H]AdoMet. The A23187-mediated decrease in ATP levels and the reduced [ 3 H]AdoMet formation was antagonized by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid and MnCl 2 . Inhibition of metabolic activity of the synaptosomes by NaCN led to: decreased ATP levels; inhibition of [3H]AdoMet formation; and inhibition of PCM activity. These data suggest that the decrease in protein methylation produced by secretagogues is associated with an increase in the concentration of free intracellular calcium which results in a decrease in the metabolically active pool of ATP. This leads to a decreased rate of AdoMet formation, a cosubstrate for PCM and a resultant decrease in PCM activity

  5. The effect of ZMS on the coupling of muscarinic receptor to G-proteins activation in rat brain

    International Nuclear Information System (INIS)

    Fang Cailong; Hu Yaer; Gao Ruxue; Xia Zongqin

    1999-01-01

    The carbachol-stimulated [ 35 S]GTP γ S binding method was used to observe the effect of ZMS, an active component from Zhimu, on the coupling of M-receptor to G-protein. the effect of ZMS on the ability of learning and memory in aged rats was also observed. It was shown that the carbachol-stimulated elevation of [ 35 S]GTPγS binding was significantly decreased in aged rats as compared with young rats. The carbachol-induced [ 35 S]STPγS binding showed that administration of ZMS at median or high dose have a definite elevation effect on the coupling activity of M-receptors to G-protein in brain, and this elevation was accompanied by an improvement of learning and memory ability

  6. Hippocampal kindling alters the concentration of glial fibrillary acidic protein and other marker proteins in rat brain

    DEFF Research Database (Denmark)

    Hansen, A; Jørgensen, Ole Steen; Bolwig, T G

    1990-01-01

    The effect of hippocampal kindling on neuronal and glial marker proteins was studied in the rat by immunochemical methods. In hippocampus, pyriform cortex and amygdala there was an increase in glial fibrillary acidic protein (GFAP), indicating reactive gliosis, and an increase in the glycolytic...... enzyme NSE, suggesting increased anaerobic metabolism. Neuronal cell adhesion molecule (NCAM) decreased in pyriform cortex and amygdala of kindled rats, indicating neuronal degeneration....

  7. Naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor?

    Science.gov (United States)

    Tsao, L I; Su, T P

    1997-02-01

    A naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein was partially purified from rat liver and rat brain membranes in an affinity chromatography originally designed to purify sigma receptors. Detergent-solubilized extracts from membranes were adsorbed to Sephadex G-25 resin containing an affinity ligand for sigma receptors: N-(2- 3,4-dichlorophenyl]ethyl)-N-(6-aminohexyl)-(2-[1-pyrrolidinyl]) ethylamine (DAPE). After eluting the resin with haloperidol, a protein that bound [3H](+)SKF-10047 was detected in the eluates. However, the protein was not the sigma receptor. [3H](+)SKF-10047 binding to the protein was inhibited by the following compounds in the order of decreasing potency: (+)pentazocine > (-) pentazocine > (+/-)cyclazocine > (-)morphine > (-)naloxone > haloperidol > (+)SKF-10047 > DADLE > (-)SKF-10047. Further, the prototypic sigma receptor ligands, such as 1,3-di-o-tolylguanidine (DTG), (+)3-PPP, and progesterone, bound poorly to the protein. Tryptic digestion and heat treatment of the affinity-purified protein abolished radioligand binding. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of the partially-purified protein from the liver revealed a major diffuse band with a molecular mass of 31 kDa, a polypeptide of 65 kDa, and another polypeptide of > 97 kDa. This study demonstrates the existence of a novel protein in the rat liver and rat brain which binds opioids, benzomorphans, and haloperidol with namomolar affinity. The protein resembles the opioid/sigma receptor originally proposed by Martin et al. [(1976): J. Pharmacol. Exp. Ther., 197:517-532.]. A high degree of purification of this protein has been achieved in the present study.

  8. Blood-brain barrier transport and protein binding of flumazenil and iomazenil in the rat: implications for neuroreceptor studies

    DEFF Research Database (Denmark)

    Videbaek, C; Ott, P; Paulson, O B

    1999-01-01

    of blood-brain barrier permeability for two benzodiazepine antagonists were performed in 44 rats by the double-indicator technique. Cerebral blood flow was measured by intracarotid Xe-injection. The apparent permeability-surface product (PSapp) was measured while CBF or bolus composition was changed......The calculated fraction of receptor ligands available for blood-brain barrier passage in vivo (f(avail)) may differ from in vitro (f(eq)) measurements. This study evaluates the protein-ligand interaction for iomazenil and flumazenil in rats by comparing f(eq) and f(avail). Repeated measurements......(avail) and f(eq) as well as the effect of CBF on PSapp can be caused by capillary heterogeneity....

  9. Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development.

    Science.gov (United States)

    Ibarrola, N; Rodríguez-Peña, A

    1997-03-28

    To assess the role of thyroid hormone on myelin gene expression, we have studied the effect of hypothyroidism on the mRNA steady state levels for the major myelin protein genes: myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG) and 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNP) in different rat brain regions, during the first postnatal month. We found that hypothyroidism reduces the levels of every myelin protein transcript, with striking differences between the different brain regions. Thus, in the more caudal regions, the effect of hypothyroidism was extremely modest, being only evident at the earlier stages of myelination. In contrast, in the striatum and the cerebral cortex the important decrease in the myelin protein transcripts is maintained beyond the first postnatal month. Therefore, thyroid hormone modulates in a synchronous fashion the expression of the myelin genes and the length of its effect depends on the brain region. On the other hand, hyperthyroidism leads to an increase of the major myelin protein transcripts above control values. Finally, lack of thyroid hormone does not change the expression of the oligodendrocyte progenitor-specific gene, the platelet derived growth factor receptor alpha.

  10. Effect of ethanol in utero on higher nervous activity and protein and lipid metabolism in the rat brain

    International Nuclear Information System (INIS)

    Zabbudovskii, A.L.; Zhulin, V.V.

    1985-01-01

    The authors study parameters of protein phosphorylation and glycoprotein and phospholipid synthesis in the neocortex and hippocampus of adult rats and compare the findings with the results of an investigation of formation and preservation of defensive conditioned reflexes. The pattern of changes in these metabolic parameters are studied in response to stress. For the biochemical tests, the animals were lightly anesthetized with ether and injected with a mixture of (P 32)-orthophosphate and (H 3)-fucose. Phospholipids were identified with molybdate reagent and radioactivity of the protein digest and lipids was measured in Bray's scintillator. The study shows that the use of stress brought metabolic differences between the brain of the experimental and control rats more clearly to light

  11. Corvitin restores metallothionein and glial fibrillary acidic protein levels in rat brain affected by pituitrin-izadrin

    Directory of Open Access Journals (Sweden)

    H. N. Shiyntum

    2017-06-01

    Full Text Available In this research, we investigated the effect of pituitrin-izadrin induced injury on the levels of metallothionein (MT and soluble and filament forms of glial fibrillary acidic protein (GFAP in the hippocampus, cerebellum, thalamus, and the cerebral cortex, and examined the effect of corvitin on the brain under the noted changes. Our results showed oppositely directed changes – a decrease in the level of MT and an increase in GFAP in the rat brain, with a tendency to astrogliosis development, under the influence of systemic deficiencies in myocardial function. The use of corvitin at a dose of 42 mg/kg for five days after a cardiac attack caused by pituitary-izadrin leads to recovery in the balance of the studied proteins.

  12. Effects of a high protein diet on cognition and brain metabolism in cirrhotic rats.

    Science.gov (United States)

    Méndez-López, M; Méndez, M; Arias, J; Arias, J L

    2015-10-01

    Hepatic encephalopathy (HE) is a neurological complication observed in patients with liver disease. Patients who suffer from HE present neuropsychiatric, neuromuscular and behavioral symptoms. Animal models proposed to study HE resulting from cirrhosis mimic the clinical characteristics of cirrhosis and portal hypertension, and require the administration of hepatotoxins such as thioacetamide (TAA). The aim of this study was to assess the effects of a high protein diet on motor function, anxiety and memory processes in a model of cirrhosis induced by TAA administration. In addition, we used cytochrome c-oxidase (COx) histochemistry to assess the metabolic activity of the limbic system regions. Male rats were distributed into groups: control, animals with cirrhosis, Control rats receiving a high protein diet, and animals with cirrhosis receiving a high protein diet. Results showed preserved motor function and normal anxiety levels in all the groups. The animals with cirrhosis showed an impairment in active avoidance behavior and spatial memory, regardless of the diet they received. However, the animals with cirrhosis and a high protein diet showed longer escape latencies on the spatial memory task. The model of cirrhosis presented an under-activation of the dentate gyrus and CA3 hippocampal subfields and the medial part of the medial mammillary nucleus. The results suggest that a high protein intake worsens spatial memory deficits shown by the TAA-induced model of cirrhosis. However, high protein ingestion has no influence on the COx hypoactivity associated with the model. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate

    Directory of Open Access Journals (Sweden)

    Shim KH

    2014-12-01

    Full Text Available Kyu Hwan Shim,1 John Hulme,1 Eun Ho Maeng,2 Meyoung-Kon Kim,3 Seong Soo A An1 1Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Sungnam-si, Gyeonggi-do, South Korea; 2Department of Analysis, KTR, Kimpo, Gyeonggi-do, South Korea; 3Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea Abstract: Nanoparticles (NPs are currently used in chemical, cosmetic, pharmaceutical, and electronic products. Nevertheless, limited safety information is available for many NPs, especially in terms of their interactions with various binding proteins, leading to potential toxic effects. Zinc oxide (ZnO NPs are included in the formulation of new products, such as adhesives, batteries, ceramics, cosmetics, cement, glass, ointments, paints, pigments, and supplementary foods, resulting in increased human exposures to ZnO. Hence, we investigated the potential ZnO nanotoxic pathways by analyzing the adsorbed proteins, called protein corona, from blood and brain from four ZnO NPs, ZnOSM20(-, ZnOSM20(+, ZnOAE100(-, and ZnOAE100(+, in order to understand their potential mechanisms in vivo. Through this study, liquid chromatography–mass spectroscopy/mass spectroscopy technology was employed to identify all bound proteins. Totals of 52 and 58 plasma proteins were identified as being bound to ZnOSM20(- and ZnOSM20(+, respectively. For ZnOAE100(- and ZnOAE100(+, 58 and 44 proteins were bound, respectively. Similar numbers of proteins were adsorbed onto ZnO irrespective of size or surface charge of the nanoparticle. These proteins were further analyzed with ClueGO, a Cytoscape plugin, which provided gene ontology and the biological interaction processes of identified proteins. Interactions between diverse proteins and ZnO nanoparticles could result in an alteration of their functions, conformation, and clearance, eventually affecting many biological processes. Keywords: brain

  14. Moderate Ethanol Preconditioning of Rat Brain Cultures Engenders Neuroprotection Against Dementia-Inducing Neuroinflammatory Proteins: Possible Signaling Mechanisms

    Science.gov (United States)

    Neafsey, Edward J.; Wang, Kewei; Achille, Nicholas J.; Mitchell, Robert M.; Sivaswamy, Sreevidya

    2010-01-01

    There is no question that chronic alcohol (ethanol) abuse, a leading worldwide problem, causes neuronal dysfunction and brain damage. However, various epidemiologic studies in recent years have indicated that in comparisons with abstainers or never-drinkers, light/moderate alcohol consumers have lower risks of age-dependent cognitive decline and/or dementia, including Alzheimer’s disease (AD). Such reduced risks have been variously attributed to favorable circulatory and/or cerebrovascular effects of moderate ethanol intake, but they could also involve ethanol “preconditioning” phenomena in brain glia and neurons. Here we summarize our experimental studies showing that moderate ethanol preconditioning (MEP; 20–30 mM ethanol) of rat brain cultures prevents neurodegeneration due to β-amyloid, an important protein implicated in AD, and to other neuroinflammatory proteins such as gp120, the human immunodeficiency virus 1 envelope protein linked to AIDS dementia. The MEP neuroprotection is associated with suppression of neurotoxic protein-evoked initial increases in [Ca+2]i and proinflammatory mediators—e.g., superoxide anion, arachidonic acid, and glutamate. Applying a sensor → transducer → effector model to MEP, we find that onset of neuroprotection correlates temporally with elevations in “effector” heat shock proteins (HSP70, HSP27, and phospho-HSP27). The effector status of HSPs is supported by the fact that inhibiting HSP elevations due to MEP largely restores gp120-induced superoxide potentiation and subsequent neurotoxicity. As upstream mediators, synaptic N-methyl-d-aspartate receptors may be initial prosurvival sensors of ethanol, and protein kinase C epsilon and focal adhesion kinase are likely transducers during MEP that are essential for protective HSP elevations. Regarding human consumption, we speculate that moderate ethanol intake might counter incipient cognitive deterioration during advanced aging or AD by exerting preconditioning

  15. Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: possible signaling mechanisms.

    Science.gov (United States)

    Collins, Michael A; Neafsey, Edward J; Wang, Kewei; Achille, Nicholas J; Mitchell, Robert M; Sivaswamy, Sreevidya

    2010-06-01

    There is no question that chronic alcohol (ethanol) abuse, a leading worldwide problem, causes neuronal dysfunction and brain damage. However, various epidemiologic studies in recent years have indicated that in comparisons with abstainers or never-drinkers, light/moderate alcohol consumers have lower risks of age-dependent cognitive decline and/or dementia, including Alzheimer's disease (AD). Such reduced risks have been variously attributed to favorable circulatory and/or cerebrovascular effects of moderate ethanol intake, but they could also involve ethanol "preconditioning" phenomena in brain glia and neurons. Here we summarize our experimental studies showing that moderate ethanol preconditioning (MEP; 20-30 mM ethanol) of rat brain cultures prevents neurodegeneration due to beta-amyloid, an important protein implicated in AD, and to other neuroinflammatory proteins such as gp120, the human immunodeficiency virus 1 envelope protein linked to AIDS dementia. The MEP neuroprotection is associated with suppression of neurotoxic protein-evoked initial increases in [Ca(+2)](i) and proinflammatory mediators--e.g., superoxide anion, arachidonic acid, and glutamate. Applying a sensor --> transducer --> effector model to MEP, we find that onset of neuroprotection correlates temporally with elevations in "effector" heat shock proteins (HSP70, HSP27, and phospho-HSP27). The effector status of HSPs is supported by the fact that inhibiting HSP elevations due to MEP largely restores gp120-induced superoxide potentiation and subsequent neurotoxicity. As upstream mediators, synaptic N-methyl-d-aspartate receptors may be initial prosurvival sensors of ethanol, and protein kinase C epsilon and focal adhesion kinase are likely transducers during MEP that are essential for protective HSP elevations. Regarding human consumption, we speculate that moderate ethanol intake might counter incipient cognitive deterioration during advanced aging or AD by exerting preconditioning

  16. A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion

    Science.gov (United States)

    Mitsios, Nick; Saka, Mohamad; Krupinski, Jerzy; Pennucci, Roberta; Sanfeliu, Coral; Wang, Qiuyu; Rubio, Francisco; Gaffney, John; Kumar, Pat; Kumar, Shant; Sullivan, Matthew; Slevin, Mark

    2007-01-01

    Background Altered gene expression is an important feature of ischemic cerebral injury and affects proteins of many functional classes. We have used microarrays to investigate the changes in gene expression at various times after middle cerebral artery occlusion in human and rat brain. Results Our results demonstrated a significant difference in the number of genes affected and the time-course of expression between the two cases. The total number of deregulated genes in the rat was 335 versus 126 in the human, while, of 393 overlapping genes between the two array sets, 184 were changed only in the rat and 36 in the human with a total of 41 genes deregulated in both cases. Interestingly, the mean fold changes were much higher in the human. The expression of novel genes, including p21-activated kinase 1 (PAK1), matrix metalloproteinase 11 (MMP11) and integrase interactor 1, was further analyzed by RT-PCR, Western blotting and immunohistochemistry. Strong neuronal staining was seen for PAK1 and MMP11. Conclusion Our findings confirmed previous studies reporting that gene expression screening can detect known and unknown transcriptional features of stroke and highlight the importance of research using human brain tissue in the search for novel therapeutic agents. PMID:17997827

  17. Cytoskeletal protein translation and expression in the rat brain are stressor-dependent and region-specific.

    Directory of Open Access Journals (Sweden)

    Petra Sántha

    Full Text Available Stress is an integral component of life that can sometimes cause a critical overload, depending on the qualitative and quantitative natures of the stressors. The involvement of actin, the predominant component of dendritic integrity, is a plausible candidate factor in stress-induced neuronal cytoskeletal changes. The major aim of this study was to compare the effects of three different stress conditions on the transcription and translation of actin-related cytoskeletal genes in the rat brain. Male Wistar rats were exposed to one or other of the frequently used models of physical stress, i.e. electric foot shock stress (EFSS, forced swimming stress (FSS, or psychosocial stress (PSS for periods of 3, 7, 14, or 21 days. The relative mRNA and protein expressions of β-actin, cofilin and mitogen-activated protein kinase 1 (MAPK-1 were determined by qRT- PCR and western blotting from hippocampus and frontal cortex samples. Stressor-specific alterations in both β-actin and cofilin expression levels were seen after stress. These alterations were most pronounced in response to EFSS, and exhibited a U-shaped time course. FSS led to a significant β-actin mRNA expression elevation in the hippocampus and the frontal cortex after 3 and 7 days, respectively, without any subsequent change. PSS did not cause any change in β-actin or cofilin mRNA or protein expression in the examined brain regions. EFSS, FSS and PSS had no effect on the expression of MAPK-1 mRNA at any tested time point. These findings indicate a very delicate, stress type-dependent regulation of neuronal cytoskeletal components in the rat hippocampus and frontal cortex.

  18. Expression of S100 protein and protective effect of arundic acid on the rat brain in chronic cerebral hypoperfusion.

    Science.gov (United States)

    Ohtani, Ryo; Tomimoto, Hidekazu; Wakita, Hideaki; Kitaguchi, Hiroshi; Nakaji, Kayoko; Takahashi, Ryosuke

    2007-03-02

    S100 protein is expressed primarily by astroglia in the brain, and accumulates in and around the ischemic lesions. Arundic acid, a novel astroglia-modulating agent, is neuroprotective in acute cerebral infarction, whereas the protective effects remain unknown during chronic cerebral hypoperfusion. Rats undergoing chronic cerebral hypoperfusion were subjected to a bilateral ligation of the common carotid arteries, and were allowed to survive for 3, 7 and 14 days. The animals received a daily intraperitoneal injection of 5.0, 10.0 or 20.0 mg/kg of arundic acid, or vehicle, for 14 days. Alternatively, other groups of rats received a delayed intraperitoneal injection of 20.0 mg/kg of arundic acid or vehicle, which started from 1, 3 or 7 days after ligation and continued to 14 days. The degree of white matter (WM) lesions and the numerical density of S100 protein-immunoreactive astroglia were estimated. In the WM of rats with vehicle injections, the number of S100 protein-immunoreactive astroglia increased significantly after chronic cerebral hypoperfusion as compared to the sham-operation. A dosage of 10.0 and 20.0 mg/kg of arundic acid suppressed the numerical increase in S100 protein-immunoreactive astroglia and the WM lesions. These pathological changes were suppressed with delayed treatment up to 7 days in terms of astroglial activation, and up to 3 days in terms of the WM lesions. The protective effects of arundic acid against WM lesions were demonstrated in a dose-dependent manner, and even after postischemic treatments. These results suggest the potential usefulness of arundic acid in the treatment of cerebrovascular WM lesions.

  19. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    Science.gov (United States)

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Opposite effect of phencyclidine on activity-regulated cytoskeleton-associated protein (Arc) in juvenile and adult limbic rat brain regions

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    -regulated cytoskeleton-associated protein (Arc) and parvalbumin mRNA expression in juvenile and adult rats. Arc is a marker for excitatory neurotransmission. Parvalbumin is a marker for GABAergic neurotransmission, known to be reduced in postmortem brains of schizophrenics. PCP reduced parvalbumin mRNA expression...

  1. Effects of an overload of animal protein on the rat: brain DNA alterations and tissue morphological modifications during fetal and post-natal stage.

    Science.gov (United States)

    Greco, A M; Sticchi, R; Boschi, G; Vetrani, A; Salvatore, G

    1985-01-01

    On account of many literature reports about the definite correlation between high animal protein intake and cardiovascular diseases, we have studied the effect of a hyperproteic purified diet (casein 40%, lactalbumin 20%) on fetal and post-natal (not further than 40th day) stage of the rat, when cell subdivision process is faster and therefore damage by nutritional imbalance is certainly more serious. Litters of rats were grouped according to mother's (either hyperproteic or common basic) and rat's (after lactation) diet. Brain DNA and histology of various organs were studied. Hyperproteic diet during fetal stage and lactation would inhibit brain cell subdivision since overall content of brain DNA would be decreased on autoptic finding. Structural changes were also shown in liver, heart, kidney and adrenal cortex, especially when hyperproteic diet was continued even after lactation.

  2. Mapping the brain pathways of traumatic memory: inactivation of protein kinase M zeta in different brain regions disrupts traumatic memory processes and attenuates traumatic stress responses in rats.

    Science.gov (United States)

    Cohen, Hagit; Kozlovsky, Nitsan; Matar, Michael A; Kaplan, Zeev; Zohar, Joseph

    2010-04-01

    Protein kinase M zeta (PKMzeta), a constitutively active isoform of protein kinase C, has been implicated in protein synthesis-dependent maintenance of long-term potentiation and memory storage in the brain. Recent studies reported that local application of ZIP, a membrane-permeant PKMzeta inhibitor, into the insular cortex (IC) of behaving rats abolished long-term memory of taste associations. This study assessed the long-term effects of local applications of ZIP microinjected immediately (1 h) or 10 days after predator scent stress exposure, in a controlled prospectively designed animal model for PTSD. Four brain structures known to be involved in memory processes and in anxiety were investigated: lateral ventricle (LV), dorsal hippocampus (DH), basolateral amygdala and IC. The outcome measures included behavior in an elevated plus maze and acoustic startle response 7 days after microinjection, and freezing behavior upon exposure to trauma-related cue 8 days after microinjection. Previously acquired/encoded memories associated with the IC were also assessed. Inactivation of PKMzeta in the LV or DH within 1h of exposure effectively reduced PTSD-like behavioral disruption and trauma cue response 8 days later. Inactivation of PKMzeta 10 days after exposure had equivalent effects only when administered in the IC. The effect was demonstrated to be specific for trauma memories, whereas previously acquired data were unaffected by the procedure. Predator scent related memories are located in different brain areas at different times beginning with an initial hippocampus-dependent consolidation process, and are eventually stored in the IC. These bring the IC to the forefront as a potential region of significance in processes related to traumatic stress-induced disorders. 2010 Elsevier B.V. and ECNP. All rights reserved.

  3. Carnitine congener mildronate protects against stress- and haloperidol-induced impairment in memory and brain protein expression in rats.

    Science.gov (United States)

    Beitnere, Ulrika; Dzirkale, Zane; Isajevs, Sergejs; Rumaks, Juris; Svirskis, Simons; Klusa, Vija

    2014-12-15

    The present study investigates the efficacy of mildronate, a carnitine congener, to protect stress and haloperidol-induced impairment of memory in rats and the expression of brain protein biomarkers involved in synaptic plasticity, such as brain-derived neurotrophic factor (BDNF), acetylcholine esterase and glutamate decarboxylase 67 (GAD67). Two amnesia models were used: 2h immobilization stress and 3-week haloperidol treatment. Stress caused memory impairment in the passive avoidance test and induced a significant 2-fold BDNF elevation in hippocampal and striatal tissues that was completely inhibited by mildronate. Mildronate decreased the level of GAD67 (but not acetylcholine esterase) expression by stress. Haloperidol decrease by a third hippocampal BDNF and acetylcholine esterase (but not GAD67) expression, which was normalized by mildronate; it also reversed the haloperidol-induced memory impairment in Barnes test. The results suggest the usefulness of mildronate as protector against neuronal disturbances caused by stress or haloperidol. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effects of glucose, insulin, and supernatant from pancreatic beta-cells on brain-pancreas relative protein in rat hippocampus

    NARCIS (Netherlands)

    Lin, Yan-Hua; Westenbroek, Christel; Tie, Lu; Liu, Ai-Hua; Yu, He-Ming; Ter Horst, Gert J.; Li, Xue-Jun

    2006-01-01

    Brain-pancreas relative protein (BPRP) is a novel protein that mainly expresses in brain and pancreas. In our previous study, we found that various stressors significantly decreased the expression of BPRP in pancreas in vivo, accompanied by changes in insulin and glucose levels, and that expression

  5. Proteomic analysis of proteins expressing in regions of rat brain by a combination of SDS-PAGE with nano-liquid chromatography-quadrupole-time of flight tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Maekawa Tsuyoshi

    2010-07-01

    Full Text Available Abstract Background Most biological functions controlled by the brain and their related disorders are closely associated with activation in specific regions of the brain. Neuroproteomics has been applied to the analysis of whole brain, and the general pattern of protein expression in all regions has been elucidated. However, the comprehensive proteome of each brain region remains unclear. Results In this study, we carried out comparative proteomics of six regions of the adult rat brain: thalamus, hippocampus, frontal cortex, parietal cortex, occipital cortex, and amygdala using semi-quantitative analysis by Mascot Score of the identified proteins. In order to identify efficiently the proteins that are present in the brain, the proteins were separated by a combination of SDS-PAGE on a C18 column-equipped nano-liquid chromatograph, and analyzed by quadrupole-time of flight-tandem-mass spectrometry. The proteomic data show 2,909 peptides in the rat brain, with more than 200 identified as region-abundant proteins by semi-quantitative analysis. The regions containing the identified proteins are membrane (20.0%, cytoplasm (19.5%, mitochondrion (17.1%, cytoskeleton (8.2%, nucleus (4.7%, extracellular region (3.3%, and other (18.0%. Of the identified proteins, the expressions of glial fibrillary acidic protein, GABA transporter 3, Septin 5, heat shock protein 90, synaptotagmin, heat shock protein 70, and pyruvate kinase were confirmed by immunoblotting. We examined the distributions in rat brain of GABA transporter 3, glial fibrillary acidic protein, and heat shock protein 70 by immunohistochemistry, and found that the proteins are localized around the regions observed by proteomic analysis and immunoblotting. IPA analysis indicates that pathways closely related to the biological functions of each region may be activated in rat brain. Conclusions These observations indicate that proteomics in each region of adult rat brain may provide a novel way to

  6. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain

    Czech Academy of Sciences Publication Activity Database

    Raha-Chowdhury, R.; Raha, A.A.; Forostyak, Serhiy; Zhao, J.W.; Stott, S.R.W.; Bomford, A.

    2015-01-01

    Roč. 16, APR 21 (2015), s. 24 ISSN 1471-2202 Institutional support: RVO:68378041 Keywords : hepcidin * ferroportin * defensin * inflammatory cytokines * brain iron homeostasis * blood brain barrier * pericytes * sub-ventricular zone * neurogenesis Subject RIV: FH - Neurology Impact factor: 2.304, year: 2015

  7. Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection.

    Science.gov (United States)

    da Silva, Vanessa Kappel; de Freitas, Betânia Souza; da Silva Dornelles, Arethuza; Nery, Laura Roesler; Falavigna, Lucio; Ferreira, Rafael Dal Ponte; Bogo, Maurício Reis; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Crippa, José Alexandre S; Schröder, Nadja

    2014-02-01

    We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's and Alzheimer's, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.

  8. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    OpenAIRE

    Peluffo, Hugo; Acarin, Laia; Arís, Anna; González, Pau; Villaverde, Antoni; Castellano, Bernardo; González, Berta

    2006-01-01

    Abstract Background Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD) after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn S...

  9. [Free radical modification of proteins in brain structure of Sprague-Dawley rats and some behaviour indicators after prenatal stress].

    Science.gov (United States)

    V'iushina, A V; Pritvorova, A V; Flerov, M A

    2012-08-01

    We studied the influence of late prenatal stress on free radical oxidation processes in Sprague-Dawley rats cortex, striatum, hippocampus, hypothalamus proteins. It was shown that after prenatal stress most changes were observed in hypothalamus and hippocampus. It was shown that in hypothalamus spontaneous oxidation level increased, but level of induced oxidation decreased, the opposite changes were found in hippocampus. Simultaneously minor changes of protein modification were observed in cortex and striatum. It was shown that prenatal stress changed both correlation of proteins free radical oxidation in studied structures and values of these data regarding to control. In test of "open field" motor activity in rats after prenatal stress decreased and time of freezing and grooming increased; opposite, in T-labyrinth motor activity and time of grooming in rats after prenatal stress increased, but time of freezing decreased.

  10. Functional activity of Gi alpha protein in detergent resistant membrane domains from rat brain cortex

    Czech Academy of Sciences Publication Activity Database

    Stöhr, Jiří; Rudajev, Vladimír; Bouřová, Lenka; Lisý, Václav; Novotný, Jiří; Svoboda, Petr

    2007-01-01

    Roč. 101, Suppl.1 (2007), s. 52-52 ISSN 0022-3042. [European Society for Neurochemistry Meeting /17./. 19.05.2007-22.05.2007, Salamanca] Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * GABAB receptor * Gi protein * membrane domains Subject RIV: ED - Physiology

  11. Quantitative assessment of the synergistic and independent effects of estradiol and progesterone on ventromedial hypothalamic and preoptic-area proteins in female rat brain

    International Nuclear Information System (INIS)

    Jones, K.J.; McEwen, B.S.; Pfaff, D.W.

    1987-01-01

    In this study, quantitative assessment of the synergistic and independent effects of estradiol and progesterone on protein synthesis in the ventromedial hypothalamus (VMN) and the preoptic area (POA) was accomplished using in vitro 35S-methionine and 35S-cystein labeling, two-dimensional gel electrophoresis, and computerized densitometry. Ovariectomized (OVX) rats were divided into four groups. Group 1 was implanted with estradiol (E) capsules for 6 hr and injected with progesterone (P; 0.1 ml, 5 mg/ml propylene glycol) at 20 hr. Group 3 was sham-implanted for 6 hr and injected with 0.01 ml P at 20 hr. Group 4 was sham-planted for 6 hr and injected with vehicle alone at 20 hr. All animals were sacrificed at 24 hr. A number of proteins in both VMN and POA were found to be increased or decreased in labeling by E plus P, E alone, and P alone. Two important synergistic effects of the hormones were found. First, the effects of E on labeling of several proteins in both brain regions were countered by P, and conversely, the effects of P on labeling of several proteins in both brain regions were countered by E. Second, E priming increased the number of proteins affected in labeling by P in both brain regions. Comparison of the effects of E and P on proteins in the VMN and POA indicated that the populations of proteins affected in labeling were markedly different. These results begin to clarify the mechanism in which E and P affect neuronal functioning in two regions involved in the control of reproduction and lend support to the hypothesis that gonadal steroids accomplished their action on brain tissue via a mechanism that is partly unique to the brain region

  12. A Ketone Ester Diet Increases Brain Malonyl-CoA and Uncoupling Proteins 4 and 5 while Decreasing Food Intake in the Normal Wistar Rat*

    Science.gov (United States)

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M. Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L.

    2010-01-01

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD+]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain l-glutamate by 15–20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain. PMID:20529850

  13. A ketone ester diet increases brain malonyl-CoA and Uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar Rat.

    Science.gov (United States)

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L

    2010-08-20

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.

  14. C1q/Tumor Necrosis Factor-related Protein-3 Attenuates Brain Injury after Intracerebral Hemorrhage via AMPK-dependent pathway in Rat

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-10-01

    Full Text Available C1q/tumor necrosis factor-related protein-3 (CTRP3 is a recently discovered adiponectin paralog with established metabolic regulatory properties. However, the role of CTRP3 in intracerebral hemorrhage (ICH is still mostly unresolved. The aim of the present report was to explore the possible neuroprotective effect of CTRP3 in an ICH rat model and to elucidate the fundamental mechanisms. ICH was induced in rats by intracerebral infusion of autologous arterial blood. The effects of exogenous CTRP3 (recombinant or lentivirus CTRP3 on brain injury were explored on day 7. Treatment with CTRP3 reduced brain edema, protected against disruption of the blood-brain barrier, improved neurological functions, and promoted angiogenesis. Furthermore, CTRP3 greatly intensified phosphorylation of AMP-activated protein kinase (AMPK in addition to expression of hypoxia inducing factor-1α (HIF-1α and vascular endothelial growth factor (VEGF. Finally, the protective effects of CTRP3 could be blocked by either AMPK or VEGF inhibitors. Our findings give the first evidence that CTRP3 is a new proangiogenic and neuroprotective adipokine, which may exert its protective effects at least partly through an AMPK/HIF-1α/ VEGF-dependent pathway, and suggest that CTRP3 may provide a new therapeutic strategy for ICH.

  15. Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: differences across development and with different DHA brain status.

    Science.gov (United States)

    Pélerin, Hélène; Jouin, Mélanie; Lallemand, Marie-Sylvie; Alessandri, Jean-Marc; Cunnane, Stephen C; Langelier, Bénédicte; Guesnet, Philippe

    2014-11-01

    Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Identification of snake bradykinin-potentiating peptides (BPPs)-simile sequences in rat brain--Potential BPP-like precursor protein?

    Science.gov (United States)

    Campeiro, Joana D'Arc; Neshich, Izabella P; Sant'Anna, Osvaldo A; Lopes, Robson; Ianzer, Danielle; Assakura, Marina T; Neshich, Goran; Hayashi, Mirian A F

    2015-08-01

    Bradykinin-potentiating peptides (BPPs) from the South American pit viper snake venom were the first natural inhibitors of the human angiotensin I-converting enzyme (ACE) described. The pioneer characterization of the BPPs precursor from the snake venom glands by our group showed for the first time the presence of the C-type natriuretic peptide (CNP) in this same viper precursor protein. The confirmation of the BPP/CNP expression in snake brain regions correlated with neuroendocrine functions stimulated us to pursue the physiological correlates of these vasoactive peptides in mammals. Notably, several snake toxins were shown to have endogenous physiological correlates in mammals. In the present work, we expressed in bacteria the BPPs domain of the snake venom gland precursor protein, and this purified recombinant protein was used to raise specific polyclonal anti-BPPs antibodies. The correspondent single protein band immune-recognized in adult rat brain cytosol was isolated by 2D-SDS/PAGE and/or HPLC, before characterization by MS fingerprint analysis, which identified this protein as superoxide dismutase (SOD, EC 1.15.1.1), a classically known enzyme with antioxidant activity and important roles in the blood pressure modulation. In silico analysis showed the exposition of the BPP-like peptide sequences on the surface of the 3D structure of rat SOD. These peptides were chemically synthesized to show the BPP-like biological activities in ex vivo and in vivo pharmacological bioassays. Taken together, our data suggest that SOD protein have the potential to be a source for putative BPP-like bioactive peptides, which once released may contribute to the blood pressure control in mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Distribution of the insecticide 14 C-fen valerate and its effect on protein and amino acid content in different brain areas of the rat

    International Nuclear Information System (INIS)

    Aly, M.A.S.

    1998-01-01

    Intragastric administration of fenvalerate (45 mg/kg) to male rats induced symptoms associated with gamma-cyano pyrethroids (type II syndrome). Fenvalerate crossed blood brain barrier and reached different brain areas. The highest concentration of fenvalerate was found in striatum (18.7+2.5 Mou/g) followed by pons + medulla oblongata (10.4+ 0.91Moug/g) after 24 h of the insecticide administration. A decrease in the protein content in different brain areas was recorded at 24 h. However, it was observed that there was a tendency for the protein level to recover at 48 h although it was still lower than corresponding controlgroup. Excitatory neurotransmitter amino acids, glutamic and aspartic, in the pons + medulla oblongata showed a prominent decrease (-9.9 and 7.0%, respectively). Inhibitory neurotransmitter amino acids, glycine and alanine, showed a slight decrease. On the other hand, the amino acids in the striatum revealed fluctuating changes. Amino acids acting as a precursor of neurotransmitter were also affected in the selected brain areas. The data obtained revealed that fenvalerate caused subtle disruption in the integrity of the CNS and there is a possibility that such disruption might result in physiological and behavioural alteration which may affect the organism ability to interact with environment

  18. Effects of maternal exposure to trichloroethylene on glucose uptake and nucleic acid and protein levels in the brains of developing rat pups

    International Nuclear Information System (INIS)

    Gerbec, E.A.N.

    1985-01-01

    Trichloroethylene (TCE) is a widespread contaminant of drinking water sources. This study examined several biochemical aspects of the hippocampus and cerebellum of rat pups that were exposed prenatally (gestational) and postnatally (lactational) to TCE via their dams' drinking water. The effects of TCE on glucose uptake, and on nucleic and protein levels in brain tissue were examined in these pups. Glucose uptake in the cerebellum, hippocampus and whole brain of the pups during the first 21 days of life was measured using the tritium-labeled 2-deoxy-D-glucose (2-DG) dissection/scintillation counting technique. The author determined that 312 mg TCE/I in drinking water (total dam exposure was 684 mg) significantly depressed 2-DG uptake in the whole brains and cerebella of 7- to 21-day old pups. This concentration also reduced 2-DG uptake in the hippocampus of exposed pups at 7, 11, and 16 days, but the uptake returned to control levels by 21 days. No overt toxicity, such as lower body or brain weight, was observed at this exposure level. This decrease in 2-DG uptake is a reflection of a decreased relative glucose uptake in the TCE exposed animals. Total DNA and RNA were extracted and measured using a modification of the Schmidt-Thannhauser procedure and Schneider technique, respectively. Proteins were determined based on the method of Bradford (1976)

  19. Antagonism of brain insulin-like growth factor-1 receptors blocks estradiol effects on memory and levels of hippocampal synaptic proteins in ovariectomized rats

    Science.gov (United States)

    Nelson, Britta S.; Springer, Rachel C.; Daniel, Jill M.

    2013-01-01

    Rationale Treatment with estradiol, the primary estrogen produced by the ovaries, enhances hippocampus-dependent spatial memory and increases levels of hippocampal synaptic proteins in ovariectomized rats. Increasing evidence indicates that the ability of estradiol to impact the brain and behavior is dependent upon its interaction with insulin-like growth factor-1 (IGF-1). Objectives The goal of the current experiment was to test the hypothesis that the ability of estradiol to impact hippocampus-dependent memory and levels of hippocampal synaptic proteins is dependent on its interaction with IGF-1. Methods Adult rats were ovariectomized and implanted with estradiol or control capsules and trained on a radial-maze spatial memory task. After training, rats were implanted with intracerebroventricular cannulae attached to osmotic minipumps (flow rate 0.15 μl/hr). Half of each hormone treatment group received continuous delivery of JB1 (300 μg/ml), an IGF-1 receptor antagonist, and half received delivery of aCSF vehicle. Rats were tested on trials in the radial-arm maze during which delays were imposed between the 4th and 5th arm choices. Hippocampal levels of synaptic proteins were measured by western blotting. Results Estradiol treatment resulted in significantly enhanced memory. JB1 blocked that enhancement. Estradiol treatment resulted in significantly increased hippocampal levels of postsynaptic density protein 95 (PSD-95), spinophilin, and synaptophysin. JB1 blocked the estradiol-induced increase of PSD-95 and spinophilin and attenuated the increase of synaptophysin. Conclusions Results support a role for IGF-1 receptor activity in estradiol-induced enhancement of spatial memory that may be dependent on changes in synapse structure in the hippocampus brought upon by estradiol/IGF-1 interactions. PMID:24146138

  20. High-protein diet improves sensitivity to cholecystokinin and shifts the cecal microbiome without altering brain inflammation in diet-induced obesity in rats.

    Science.gov (United States)

    Wang, Lixin; Jacobs, Jonathan P; Lagishetty, Venu; Yuan, Pu-Qing; Wu, Shuping V; Million, Mulugeta; Reeve, Joseph R; Pisegna, Joseph R; Taché, Yvette

    2017-10-01

    High-protein diet (HPD) curtails obesity and/or fat mass, but it is unknown whether it reverses neuroinflammation or alters glucose levels, CCK sensitivity, and gut microbiome in rats fed a Western diet (WD)-induced obesity (DIO). Male rats fed a WD (high fat and sugar) for 12 wk were switched to a HPD for 6 wk. Body composition, food intake, meal pattern, sensitivity to intraperitoneal CCK-8S, blood glucose, brain signaling, and cecal microbiota were assessed. When compared with a normal diet, WD increased body weight (9.3%) and fat mass (73.4%). CCK-8S (1.8 or 5.2 nmol/kg) did not alter food intake and meal pattern in DIO rats. Switching to a HPD for 6 wk reduced fat mass (15.7%) with a nonsignificantly reduced body weight gain, normalized blood glucose, and decreased feeding after CCK-8S. DIO rats on the WD or switched to a HPD showed comparable microbial diversity. However, in HPD versus WD rats, there was enrichment of 114 operational taxonomic units (OTUs) and depletion of 188 OTUs. Of those, Akkermansia muciniphila (enriched on a HPD), an unclassified Clostridiales, a member of the RF39 order, and a Phascolarctobacterium were significantly associated with fat mass. The WD increased cytokine expression in the hypothalamus and dorsal medulla that was unchanged by switching to HPD. These data indicate that HPD reduces body fat and restores glucose homeostasis and CCK sensitivity, while not modifying brain inflammation. In addition, expansion of cecal Akkermansia muciniphila correlated to fat mass loss may represent a potential peripheral mechanism of HPD beneficial effects.

  1. Novel G Protein-Coupled Oestrogen Receptor GPR30 Shows Changes in mRNA Expression in the Rat Brain over the Oestrous Cycle

    Directory of Open Access Journals (Sweden)

    Emma J. Spary

    2012-02-01

    Full Text Available Oestrogen influences autonomic function via actions at classical nuclear oestrogen receptors α and β in the brain, and recent evidence suggests the orphan G protein-coupled receptor GPR30 may also function as a cytoplasmic oestrogen receptor. We investigated the expression of GPR30 in female rat brains throughout the oestrous cycle and after ovariectomy to determine whether GPR30 expression in central autonomic nuclei is correlated with circulating oestrogen levels. In the nucleus of the solitary tract (NTS, ventrolateral medulla (VLM and periaqueductal gray (PAG GPR30 mRNA, quantified by real-time PCR, was increased in proestrus and oestrus. In ovariectomised (OVX rats, expression in NTS and VLM appeared increased compared to metoestrus, but in the hypothalamic paraventricular nucleus and PAG lower mRNA levels were seen in OVX. GPR30-like immunoreactivity (GPR30-LI colocalised with Golgi in neurones in many brain areas associated with autonomic pathways, and analysis of numbers of immunoreactive neurones showed differences consistent with the PCR data. GPR30-LI was found in a variety of transmitter phenotypes, including cholinergic, serotonergic, catecholaminergic and nitrergic neurones in different neuronal groups. These observations support the view that GPR30 could act as a rapid transducer responding to oestrogen levels and thus modulate the activity of central autonomic pathways.

  2. Changes in antioxidant status, protein concentration, acetylcholinesterase, (Na+,K+)-, and Mg2+ -ATPase activities in the brain of hyper- and hypothyroid adult rats.

    Science.gov (United States)

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Mourouzis, Iordanis; Varonos, Dennis; Cokkinos, Dennis; Tsakiris, Stylianos

    2005-06-01

    It is a common knowledge that metabolic reactions increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how the metabolic reactions could affect the total antioxidant status (TAS), protein concentration (PC) and the activities of acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+ -ATPase in the brain of hyper- and hypothyroid adult male rats. Hyperthyroidism was induced in rats by subcutaneous administration of thyroxine (25 microg/l00 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. TAS, PC, and enzyme activities were evaluated spectrophotometrically in the homogenated brain of each animal. TAS, PC, and Mg2+ -ATPase activity were found unaffected in hyperthyroidism, while AChE and Na+,K+ -ATPase activities were reduced by 25% (p activities were found to be increased (approx. 23-30%, p activity and PC were shown to be inhibited (approx. 23-30%, p activities may reflect the different metabolic effects of hyper- and hypothyroidism. Such changes of the enzyme activities may differentially modulate the brain intracellular Mg2+, neural excitability, as well as the uptake and release of biogenic amines.

  3. Autoradiographic studies of the protein metabolism and histochemical demonstration of the zinc content of the brain in diabetic rats. 1

    International Nuclear Information System (INIS)

    Gatzke, H.D.; Wildmeister, W.

    1979-01-01

    Diabetes mellitus was induced in rats by application of streptozotocin: 40 mg/kg body weight streptozotocin produced a fairly serious diabetes with minimal ketosis, 125 mg/kg body weight streptozotocin caused a severe diabetic keto-acidosis. After 72 hours these animals and also a group of control animals received 308 MBq/animal 3 H-leucine intraperitoneally. By means of stripping film autoradiograms the rates of uptake of 3 H-leucine in different areas of the rat brain were measured. The values of the control animals were compared with those of a fairly serious diabetes and those of a severe diabetic keto-acidosis. In the regions of the neocortex parietalis and of the thalamus the 3 H-leucine values of the diabetic animals were considerably lower in comparison with the controls, and that irrespective of the degree of severity of the diabetic disease. Compared with the control animals the 3 H-leucine values as well as the zinc content of diabetic animals decreased according to the degree of severity of the disease within the Ammon's horn and the dentate fascia. The particular significance of the Ammon's horn and the dentate fascia concerning diabetic metabolic conditions was discussed. (author)

  4. Identification, characterization, and purification of a 65,000 dalton protein in rat brain is photolabeled by nitro-containing benzodiazepines

    Energy Technology Data Exchange (ETDEWEB)

    Bowling, A.C.

    1988-01-01

    Benzodiazepines bind to two well-characterized classes of nanomolar-affinity binding sites, the central and the peripheral types. Although these sites appear to mediate many of the effects of these compounds, they cannot account for all of the biochemical and physiologic effects of the benzodiazepines. In this investigation, a protein that is photolabeled by NO{sub 2}-containing benzodiazepines was identified and characterized in rat brain by performing photaffinity labeling experiments with ({sup 3}H)-clonazepam and ({sup 3}H)-flunitrazepam. These experiments demonstrate that this photolabeled protein has a molecular weight of 65,000 daltons. Photolabeling of the protein was saturable, inhibited in a stereoselective manner by benzodiazepine enantiomers, inhibited by therapeutically-relevant concentrations of many different NO{sub 2}-containing benzodiazepines, and was not inhibited by more than 70 non-benzodiazepine compounds. The photolabeled protein is distinct from the central and peripheral sites on the basis of molecular weight, benzodiazepine inhibitory potencies, subcellular localization, and tissue distribution.

  5. CNS-syndrome. Characterization of rat brain intermediate filaments

    International Nuclear Information System (INIS)

    Nedzvetskij, V.S.; Busygina, S.G.; Berezin, V.A.; Dvoretskij, A.I.

    1990-01-01

    A study was made of the effect of ionizing radiation on the content and polypeptide composition of filamentous and soluble glial fibrillary acidic protein (GFAP) in different regions of rat brain. Ionizing radiation was shown to decrease considerably the level of soluble GFAP in cerebral cortex, cerebellum, middle brain and hippocampus. Polypeptide composition of soluble GFAP detected by the immonublot-method was found to be changed considerably in different brain areas of irradiated animals

  6. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    Science.gov (United States)

    Peluffo, Hugo; Acarin, Laia; Arís, Anna; González, Pau; Villaverde, Antoni; Castellano, Bernardo; González, Berta

    2006-01-01

    Background Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD) after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA) administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated. Results Overexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced. Conclusion When the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene. PMID:16638118

  7. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    Directory of Open Access Journals (Sweden)

    Castellano Bernardo

    2006-04-01

    Full Text Available Abstract Background Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated. Results Overexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced. Conclusion When the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene.

  8. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  9. Postnatal Development of Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Protein Kinase B (TrkB) Receptor Immunoreactivity in Multiple Brain Stem Respiratory-Related Nuclei of the Rat

    Science.gov (United States)

    Liu, Qiuli; Wong-Riley, Margaret T.T.

    2013-01-01

    Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12–13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmission, and BDNF is essential for respiratory development. We hypothesized that the excitation-inhibition imbalance during the critical period stemmed from a reduced expression of BDNF and TrkB at that time within respiratory-related nuclei of the brain stem. An in-depth, semiquantitative immunohistochemical study was undertaken in seven respiratory-related brain stem nuclei and one nonrespiratory nucleus in P0–21 rats. The results indicate that the expressions of BDNF and TrkB: 1) in the pre-Bötzinger complex, nucleus ambiguus, commissural and ventrolateral subnuclei of solitary tract nucleus, and retrotrapezoid nucleus/parafacial respiratory group were significantly reduced at P12, but returned to P11 levels by P14; 2) in the lateral paragigantocellular nucleus and parapyramidal region were increased from P0 to P7, but were strikingly reduced at P10 and plateaued thereafter; and 3) in the nonrespiratory cuneate nucleus showed a gentle plateau throughout the first 3 post-natal weeks, with only a slight decline of BDNF expression after P11. Thus, the significant downregulation of both BDNF and TrkB in respiratory-related nuclei during the critical period may form the basis of, or at least contribute to, the inhibitory-excitatory imbalance within the respiratory network during this time. PMID:22678720

  10. Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Cinar, Betül; Jensen, Majbrit Myrup

    2014-01-01

    regarding the distribution and developmental regulation of these proteins in the brain. We use protein cross-linking and synaptosomal fractions to demonstrate that the Ly-6 proteins Lynx1 and Ly6H are membrane-bound proteins in the brain, which are present on the cell surface and localize to synaptic...... demonstrate that Lynx1 and Ly6H are expressed in cultured neurons, but not cultured micro- or astroglial cultures. In addition, Lynx1, but not Ly6H was detected in the CSF. Finally, we show that the Ly-6 proteins Lynx1, Lynx2, Ly6H, and PSCA, display distinct expression patterns during postnatal development...

  11. Brain-Derived Neurotrophic Factor Increases Synaptic Protein Levels via the MAPK/Erk Signaling Pathway and Nrf2/Trx Axis Following the Transplantation of Neural Stem Cells in a Rat Model of Traumatic Brain Injury.

    Science.gov (United States)

    Chen, Tao; Wu, Yu; Wang, Yuzi; Zhu, Jigao; Chu, Haiying; Kong, Li; Yin, Liangwei; Ma, Haiying

    2017-11-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in promoting the growth, differentiation, survival and synaptic stability of neurons. Presently, the transplantation of neural stem cells (NSCs) is known to induce neural repair to some extent after injury or disease. In this study, to investigate whether NSCs genetically modified to encode the BDNF gene (BDNF/NSCs) would further enhance synaptogenesis, BDNF/NSCs or naive NSCs were directly engrafted into lesions in a rat model of traumatic brain injury (TBI). Immunohistochemistry, western blotting and RT-PCR were performed to detect synaptic proteins, BDNF-TrkB and its downstream signaling pathways, at 1, 2, 3 or 4 weeks after transplantation. Our results showed that BDNF significantly increased the expression levels of the TrkB receptor gene and the phosphorylation of the TrkB protein in the lesions. The expression levels of Ras, phosphorylated Erk1/2 and postsynaptic density protein-95 were elevated in the BDNF/NSCs-transplanted groups compared with those in the NSCs-transplanted groups throughout the experimental period. Moreover, the nuclear factor (erythroid-derived 2)-like 2/Thioredoxin (Nrf2/Trx) axis, which is a specific therapeutic target for the treatment of injury or cell death, was upregulated by BDNF overexpression. Therefore, we determined that the increased synaptic proteins level implicated in synaptogenesis might be associated with the activation of the MAPK/Erk1/2 signaling pathway and the upregulation of the antioxidant agent Trx modified by BDNF-TrkB following the BDNF/NSCs transplantation after TBI.

  12. Plasma Membrane Density of GABA(B)-R1a, GABA(B)-R1b, GABA-R2 and Trimeric G-proteins in the Course of Postnatal Development of Rat Brain Cortex

    Czech Academy of Sciences Publication Activity Database

    Dlouhá, Kateřina; Kagan, Dmytro; Roubalová, Lenka; Ujčíková, Hana; Svoboda, Petr

    2013-01-01

    Roč. 62, č. 5 (2013), s. 547-559 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : GABAB-receptors * postnatal development * rat brain cortex * G-proteins * Na, K- ATPase Subject RIV: CE - Biochemistry Impact factor: 1.487, year: 2013

  13. A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL-18

    Directory of Open Access Journals (Sweden)

    Bossù Paola

    2012-05-01

    Full Text Available Abstract Background Systemic inflammation might cause neuronal damage and sustain neurodegenerative diseases and behavior impairment, with the participation of pro-inflammatory cytokines, like tumor necrosis factor (TNF-α and interleukin (IL-18. However, the potential contribution of these cytokines to behavioral impairment in the long-term period has not been fully investigated. Methods Wistar rats were treated with a single intraperitoneal injection of LPS (5 mg/kg or vehicle. After 7 days and 10 months, the animal behavior was evaluated by testing specific cognitive functions, as mnesic, discriminative, and attentional functions, as well as anxiety levels. Contextually, TNF-α and IL-18 protein levels were measured by ELISA in defined brain regions (that is, frontal cortex, hippocampus, striatum, cerebellum, and hypothalamus. Results Behavioral testing demonstrated a specific and persistent cognitive impairment characterized by marked deficits in reacting to environment modifications, possibly linked to reduced motivational or attentional deficits. Concomitantly, LPS induced a TNF-α increase in the hippocampus and frontal cortex (from 7 days onward and cerebellum (only at 10 months. Interestingly, LPS treatment enhanced IL-18 expression in these same areas only at 10 months after injection. Conclusions Overall, these results indicate that the chronic neuroinflammatory network elicited by systemic inflammation involves a persistent participation of TNF-α accompanied by a differently regulated contribution of IL-18. This leads to speculation that, though with still unclear mechanisms, both cytokines might take part in long-lasting modifications of brain functions, including behavioral alteration.

  14. Development of antibodies against the rat brain somatostatin receptor.

    Science.gov (United States)

    Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T

    1992-05-15

    Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

  15. Aluminum neurotoxicity in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S [Tokyo Univ. (Japan). Faculty of Medicine; Ohashi, H; Nagai, H; Kakimi, S; Ogawa, Y; Iwata, Y; Ishii, K

    1993-12-31

    To investigate the etiology of Alzheimer`s disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer`s disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer`s disease patients. Our results indicate that Alzheimer`s disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author).

  16. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ogawa, Y.; Iwata, Y.; Ishii, K.

    1992-01-01

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  17. Brain glucose content in fetuses of ethanol-fed rats

    Energy Technology Data Exchange (ETDEWEB)

    Pullen, G.; Singh, S.P.; Snyder, A.K.; Hoffen, B.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4 and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.

  18. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, ... Methods: Forty-eight rats (P7-pups) were randomly assigned to one of four groups: ... Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants, .... Of the 48 rats initially used in the current study, 5.

  19. Identification of rat brain opioid (enkephalin) receptor by photoaffinity labeling

    International Nuclear Information System (INIS)

    Yeung, C.W.

    1986-01-01

    A photoreactive, radioactive enkephalin derivative was prepared and purified by high performance liquid chromatography. Rat brain and spinal cord plasma membranes were incubated with this radioiodinated photoprobe and were subsequently photolysed. Autoradiography of the sodium dodecyl sulfate gel electrophoresis of the solubilized and reduced membranes showed that a protein having an apparent molecular weight of 46,000 daltons was specifically labeled, suggesting that this protein may be the opioid (enkephalin) receptor

  20. Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats

    Directory of Open Access Journals (Sweden)

    Marwa E. Elsherbiny

    2015-10-01

    Full Text Available Arachidonic (AA and docosahexaenoic acid (DHA brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7, a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains.

  1. Fos Protein Expression in Olfactory-Related Brain Areas after Learning and after Reactivation of a Slowly Acquired Olfactory Discrimination Task in the Rat

    Science.gov (United States)

    Roullet, Florence; Lienard, Fabienne; Datiche, Frederique; Cattarelli, Martine

    2005-01-01

    Fos protein immunodetection was used to investigate the neuronal activation elicited in some olfactory-related areas after either learning of an olfactory discrimination task or its reactivation 10 d later. Trained rats (T) progressively acquired the association between one odor of a pair and water-reward in a four-arm maze. Two groups of…

  2. Global Proteomic Analysis of Brain Tissues in Transient Ischemia Brain Damage in Rats

    Directory of Open Access Journals (Sweden)

    Jiann-Hwa Chen

    2015-05-01

    Full Text Available Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM and the control rats were separated using two-dimensional gel electrophoresis (2-DE to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT and cathepsin D (CATD, which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2 protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia

  3. Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats.

    Science.gov (United States)

    Naert, Gaëlle; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2007-01-01

    Depression is characterized by hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. In this major mood disorder, neurosteroids and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), seem to be implicated and have some antidepressant effects. BDNF is highly involved in regulation of the HPA axis, whereas neurosteroids effects have never been clearly established. In this systematic in vivo study, we showed that the principal neuroactive steroids, namely dehydroepiandrosterone (DHEA), pregnenolone (PREG) and their sulfate esters (DHEA-S and PREG-S), along with allopregnanolone (ALLO), stimulated HPA axis activity, while also modulating central BDNF contents. In detail, DHEA, DHEA-S, PREG, PREG-S and ALLO induced corticotropin-releasing hormone (CRH) and/or arginine vasopressin (AVP) synthesis and release at the hypothalamic level, thus enhancing plasma adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations. This stimulation of the HPA axis occurred concomitantly with BDNF modifications at the hippocampus, amygdala and hypothalamus levels. We showed that these neurosteroids induced rapid effects, probably via neurotransmitter receptors and delayed effects perhaps after metabolization in other neuroactive steroids. We highlighted that they had peripheral effects directly at the adrenal level by inducing CORT release, certainly after estrogenic metabolization. In addition, we showed that, at the dose used, only DHEA, DHEA-S and PREG-S had antidepressant effects. In conclusion, these results highly suggest that part of the HPA axis and antidepressant effects of neuroactive steroids could be mediated by BDNF, particularly at the amygdala level. They also suggest that neurosteroids effects on central BDNF could partially explain the trophic properties of these molecules.

  4. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  5. Localization of macrophage inflammatory protein : Macrophage inflammatory PROTEIN-1 expression in rat brain after peripheral administration of lipopolysaccharide and focal cerebral ischemia

    NARCIS (Netherlands)

    Gourmala, NG; Limonta, S; Bochelen, D; Sauter, A; Boddeke, HWGM

    Macrophage inflammatory protein is a member of the C-C subfamily of chemokines, which exhibits, in addition to proinflammatory activities, a potent endogenous pyrogen activity. In this study, we analysed the time-course of expression and cellular source of macrophage inflammatory protein-1 alpha and

  6. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  7. The in vivo phosphorylation sites of rat brain dynamin I

    DEFF Research Database (Denmark)

    Graham, Mark E; Anggono, Victor; Bache, Nicolai

    2007-01-01

    -824). To resolve the discrepancy and to better understand the biological roles of dynI phosphorylation, we undertook a systematic identification of all phosphorylation sites in rat brain nerve terminal dynI. Using phosphoamino acid analysis, exclusively phospho-serine residues were found. Thr(780) phosphorylation...... of their relative abundance and relative responses to depolarization. The multiple phospho-sites suggest subtle regulation of synaptic vesicle endocytosis by new protein kinases and new protein-protein interactions. The homologous dynI and dynIII phosphorylation indicates a high mechanistic similarity. The results...

  8. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  9. Whole body X-irradiation and impact of dietary factors on brain and testes of albino rats

    International Nuclear Information System (INIS)

    Hasan, S.S.; Chaturvedi, P.K.

    1988-01-01

    The study was undertaken to investigate the radioprotective effect of protein diet on the irradiated brain and testes. The study indicated that the less availability of protein in the diet caused a marked reduction in the protein and nucleic acid (DNA and RNA) contents of brain after irradiation. Further, the protein deficiency in diet brought about an increased deamination of protein in the brain of irradiated rats. It was noted that in response to irradiation the testes of protein deficient diet fed rats got adversely affected as compared to high protein diet fed animals. This paper gives evidence that feeding of protein enriched diet provides protection against ionizing radiation. (orig.) [de

  10. Binding of tritiated corticosterone in brain sections of adrenalectomized rat

    International Nuclear Information System (INIS)

    Sarrieau, A.; Vial, M.; Dussaillant, M.; Rostene, W.; Philibert, P.

    1983-01-01

    A new technique which permits to study the specific binding of tritiated corticosterone in brain sections of adrenalectomized rats is described. Under these conditions, the specific binding of the glucocorticoid represents 60 to 70% of the initial binding. The apparent dissociation constant and the number of binding sites, determined by Scatchard analysis, are in the range of 10 -8 M and 100 fmoles/mg of protein respectively [fr

  11. Oxidative stress and expression of insulin signaling proteins in the brain of diabetic rats: Role of Nigella sativa oil and antidiabetic drugs.

    Science.gov (United States)

    Balbaa, Mahmoud; Abdulmalek, Shaymaa A; Khalil, Sofia

    2017-01-01

    Insulin resistance of the brain is a specific form of type2-diabetes mellitus (T2DM) and the active insulin-signaling pathway plays a neuroprotective role against damaging conditions and Alzheimer's progression. The present study identifies the mediated emerging effects of the Nigella sativa oil (NSO) on the memory enhancing process, its anti-oxidative, acetylcholinestrase (AChE) inhibition, anti-brain insulin resistance and anti-amyloidogenic activities. In addition, the possible role of some anti-diabetic drugs in the neuro-protection processes and their effect in combination with NSO and/or the insulin receptor inhibitor IOMe-AG538 were investigated. T2DM-induced rats were orally and daily administrated 2.0 ml NSO, 100 mg metformin (MT), 0.8 mg glimepiride (GI) and different combinations (100 mg MT & 2.0 ml NSO, 0.8 mg GI & 2.0 ml NSO and 2.0 ml NSO & intraperitoneal injection of 1/100 LD50 of IOMe-AG538) per kg body weight for 21 days. A significant increase in the brain lipid peroxidation and decrease in the antioxidant status with peripheral and central production of pro-inflammatory mediators were observed in diabetes-induced rats. The brain AChE was activated and associated with diminished brain glucose level and cholinergic function. In addition, the brain insulin resistance and the attenuated insulin signaling pathway (p-IRS/ p-AKT/p-GSK-3β) were accompanied by an augmentation in GSK-3β level, which in turn may contribute in the extensive alterations of Tau phosphorylation along with changes in PP2A level. Furthermore, neuronal loss and elevation in Aβ-42 plaque formation were observed due to a low IDE formation and an increased expression of p53, BACE1 and APP with diminished ADAM10, SIRT1 and BDNF levels. The expression profile of AD-related miRNAs in sera and brain tissues displayed its neuro-protection role. The treatment of diabetes-induced rats with NSO and the anti-diabetic drugs alone and/or in combination have the potential to suppress the

  12. Peculiarities of reaction of HIF-1α protein of the hippocampus neurons in rats with experimental diabetes mellitus in the dynamics of ischemic-reperfusion damage of the brain

    Directory of Open Access Journals (Sweden)

    T. M. Boychuk

    2016-12-01

    Higher State Educational Establishment of Ukraine “Bukovinian State medical University”, Chernivtsi, Ukraine   Abstract Introduction. The role of the transcriptional factor Hif-1α in pathogenesis of hypoxic damages and diabetes mellitus (DM is proved, although molecular mechanisms underlying the basis of this factor dysfunction in association with DM with ischemic-reperfusion damage of the brain remain unknown. Objective. The objective of this investigation was to study the content of Hif-1α protein in the hippocampus neurons of rats with experimental DM in the dynamics of ischemic-reperfusion damage of the brain. Results. In rats without DM 20 minute ischemia with one hour reperfusion increases the content of Hif-1α protein in all the fields of the hippocampus. On the 12th day of ischemic-reperfusion period in the hippocampus CA2-CA4 fields the values of certain examined indices of the activity of Hif-1α transcriptional factor continue to increase, and in СА1field they normalize or approach to the values of animals in the control group.  In rats with DM during early post-ischemic period there are no changes of Hif-1α protein content in CA1 field, in CA2 field there are signs of its reduced activity, in CA3 field they are limited by the reaction of one index, in CA4 field they are of a similar character with those of the control rats under experimental conditions.  On the 12th day of ischemic-reperfusion period in CA1 field all the indices of activity of Hif-1α transcriptional factor increase exceeding corresponding indices by absolute values in animals of the control group under the same experimental conditions, in СА2 and СА3 fields changes of the examined parameters are limited as compared to the same ones in animals from the control group, in CA4 field values that were increased in the control group decrease. Conclusions. Diabetes mellitus restricts reaction of Hif-1α protein on ischemia-reperfusion inn the neurons of СА1-СА3 fields in

  13. Oxytocin biotransformation in the rat limbic brain

    NARCIS (Netherlands)

    Burbach, J.P.H.; Schotman, P.; Kloet, E.R. de

    2006-01-01

    Two peptide fragments of oxytocin were isolated by high-pressure liquid chromatography from digests of oxytocin obtained after exposure to a SPM preparation of the rat limbic brain. The structures of these peptides, being Gln-Asn-Cys(O)x-Pro-Leu-GlyNH2 and Gln-Asn-Cys(-S-S-Cys)-Pro-Leu-GlyNH2, were

  14. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  15. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Bodsch, W; Huerter, T; Hossmann, K A [Max-Planck-Institut fuer Hirnforschung, Koeln (Germany, F.R.). Forschungsstelle fuer Hirnkreislauf-Forschung

    1982-10-07

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema.

  16. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    International Nuclear Information System (INIS)

    Bodsch, W.; Huerter, T.; Hossmann, K.-A.

    1982-01-01

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema. (Auth.)

  17. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation

    International Nuclear Information System (INIS)

    Akiyama, Katsuhiko; Tanaka, Ryuichi; Sato, Mitsuya; Takeda, Norio

    2001-01-01

    Cognitive dysfunction and histological changes in the brain were investigated following irradiation in 20 Fischer 344 rats aged 6 months treated with whole brain irradiation (WBR) (25 Gy/single dose), and compared with the same number of sham-irradiated rats as controls. Performance of the Morris water maze task and the passive avoidance task were examined one year after WBR. Finally, histological and immunohistochemical examinations using antibodies to myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and neurofilament (NF) were performed of the rat brains. The irradiated rats continued to gain weight 7 months after WBR whereas the control rats stopped gaining weight. Cognitive functions in both the water maze task and the passive avoidance task were lower in the irradiated rats than in the control rats. Brain damage consisting of demyelination only or with necrosis was found mainly in the body of the corpus callosum and the parietal white matter near the corpus callosum in the irradiated rats. Immunohistochemical examination of the brains without necrosis found MBP-positive fibers were markedly decreased in the affected areas by irradiation; NF-positive fibers were moderately decreased and irregularly dispersed in various shapes in the affected areas; and GFAP-positive fibers were increased, with gliosis in those areas. These findings are similar to those in clinically accelerated brain aging in conditions such as Alzheimer's disease, Binswanger's disease, and multiple sclerosis. (author)

  18. Differential effects of stress and amphetamine administration on Fos-like protein expression in corticotropin releasing factor-neurons of the rat brain.

    Science.gov (United States)

    Rotllant, David; Nadal, Roser; Armario, Antonio

    2007-05-01

    Corticotropin releasing factor (CRF) appears to be critical for the control of important aspects of the behavioral and physiological response to stressors and drugs of abuse. However, the extent to which the different brain CRF neuronal populations are similarly activated after stress and drug administration is not known. We then studied, using double immunohistochemistry for CRF and Fos protein, stress and amphetamine-induced activation of CRF neurons in cortex, central amygdala (CeA), medial parvocellular dorsal, and submagnocellular parvocellular regions of the paraventricular nucleus of the hypothalamus (PVNmpd and PVNsm, respectively) and Barrington nucleus (Bar). Neither exposure to a novel environment (hole-board, HB) nor immobilization (IMO) increased Fos-like immunoreactivity (FLI) in the CeA, but they did to the same extent in cortical regions. In other regions only IMO increased FLI. HB and IMO both failed to activate CRF+ neurons in cortical areas, but after IMO, some neurons expressing FLI in the PVNsm and most of them in the PVNmpd and Bar were CRF+. Amphetamine administration increased FLI in cortical areas and CeA (with some CRF+ neurons expressing FLI), whereas the number of CRF+ neurons increased only in the PVNsm, in contrast to the effects of IMO. The present results indicate that stress and amphetamine elicited a distinct pattern of brain Fos-like protein expression and differentially activated some of the brain CRF neuronal populations, despite similar levels of overall FLI in the case of IMO and amphetamine.

  19. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain.

    Science.gov (United States)

    Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2014-03-01

    Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

  20. Autoradiographic studies of the protein metabolism and histochemical demonstration of the zinc content of the brain in diabetic rats. 1. Streptozotocin-induced diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Gatzke, H D [Freie Univ. Berlin (Germany, F.R.); Wildmeister, W [Krankenhaus Kempen (Germany, F.R.). Innere Klinik

    1979-11-01

    Diabetes mellitus was induced in rats by application of streptozotocin: 40 mg/kg body weight streptozotocin produced a fairly serious diabetes with minimal ketosis, 125 mg/kg body weight streptozotocin caused a severe diabetic keto-acidosis. After 72 hours these animals and also a group of control animals received 308 MBq/animal /sup 3/H-leucine intraperitoneally. By means of stripping film autoradiograms the rates of uptake of /sup 3/H-leucine in different areas of the rat brain were measured. The values of the control animals were compared with those of a fairly serious diabetes and those of a severe diabetic keto-acidosis. In the regions of the neocortex parietalis and of the thalamus the /sup 3/H-leucine values of the diabetic animals were considerably lower in comparison with the controls, and that irrespective of the degree of severity of the diabetic disease. Compared with the control animals the /sup 3/H-leucine values as well as the zinc content of diabetic animals decreased according to the degree of severity of the disease within the Ammon's horn and the dentate fascia. The particular significance of the Ammon's horn and the dentate fascia concerning diabetic metabolic conditions was discussed.

  1. [Alternation of proteins in brain of Parkinson's disease model rats after the transplantation of TH-NTN gene modified bone marrow mesenchymal stem cells].

    Science.gov (United States)

    Huang, Yue; Chang, Cheng; Zhang, Jie-wen; Gao, Xiao-qun

    2012-09-04

    To explore the effects of tyrosine hydroxylase-neurturin (TH-NTN) gene modified bone marrow mesenchymal stem cell (BMSC) transplantation in Parkinson's disease (PD) model rats and the alternations of correlated proteins. The PD rat model was established by the 2-point injection of 6-hydroxydopamine (6-OHDA) into unilateral (right) striatum. Successful modeling rats were separated into PD, BMSC and TH-NTN-BMSC groups. BMSC and TH-NTN-BMSC groups were transplanted into BMSCs and TH-NTN gene modified BMSC cells separately into right striatum. After transplantation, ethology detection in all groups was made with an intraperitoneal injection of apomorphine (APO). Dopamine (DA) and Dihydroxyphenylacetic Acid (DOPAC) in striatum were detected by high performance liquid electrochemical analysis. TH and NTN proteins in right striatum were also analyzed by immunohistochemistry and Western blot. Finally the density of dopamine receptors in post synaptic density of dopaminergic synapses of corpus striatum were compared between each group by post-embedding immunogold electron microscopy. After an injection of APO, rotation frequency decreased in TH-NTN-BMSC group, i.e. (5.7 ± 1.3) circles/min versus (10.8 ± 2.2), (9.9 ± 1.2) circles/min in PD and BMSC groups (P TH-NTN-BMSC group versus (923 ± 132)/µm(2) in PD and (860 ± 116)/µm(2) in BMSC groups was also found. The combined therapy of TH and NTN genes increases the synthesis of DA and also protects the dopaminergic neurons to achieve double therapeutic effects. It may provide potential innovations of PD genetic therapy.

  2. Effect of GSM-1800 and U.M.T.S. exposures on micro-glial activation and heat shock proteins induction in brain: a study on young adult and elderly rats

    Energy Technology Data Exchange (ETDEWEB)

    Laclau, M; Billaudel, B; Taxil, M; Haro, E; Ruffie, G; Sanchez, S; Poulletier De Gannes, F; Lagroye, I; Veyret, B [PIOM/Bioelecromagnetics Lab., ENSCPB/EPHE, 33 - Pessac (France)

    2006-07-01

    Contradictory results have emerged from recent studies describing low -level radiofrequency radiation (R.F.R.) as a hazardous factor for the central nervous system while others described such type of exposure as totally safe. In the brain, heat shock proteins (H.s.p.) are often induced under harmful conditions such as ischemia, traumatic injury, epilepsy, hyperthermia, drug administration, and neuro-degenerative diseases. Under those conditions, activation of the micro-glial cell population is often observed. In this work we studied the effect of two types of mobile phone signals, GSM-1800 and U.M.T.S. on the expression of two major H.s.p., induced in the brain under harmful conditions, H.s.p. 70 and H.s.p. 25. We also studied micro-glial activation in young adult (8 weeks) and elderly (17 months) Wistar rats. Height animals by group were exposed. Exposures were performed using a brain-averaged S.A.R. of 2 W/kg following two types of protocols: an acute exposure, with exposure lasting only two hours, and a sub chronic exposure in which the animals were exposed for two hours per day, five days per week, during four weeks. In all cases, rats were progressively habituated to the exposure setup (rockets) over two weeks to avoid stress and a sham group was exposed for each condition. Positive controls were performed by induction of a status epilepticus using a subcutaneous injection kainic acid (10 mg/kg). At the end of exposure, rats were anesthetized with isofluran and perfused from the heart with P.B.S. then paraformaldehyde prior to removing of the brain. Sections (10 m m thick) were prepared on slides for immunohistochemistry. Brain samples were coded and the analysis was performed in a blind manner. The sections were immuno-histo-chemically stained with antibodies raised in rabbits against H.s.p.25 and against the inducible form of H.s.p.70. The whole glial cell population was detected by its common cell surface glyco conjugates, which bind the plant Griffonia

  3. Effect of GSM-1800 and U.M.T.S. exposures on micro-glial activation and heat shock proteins induction in brain: a study on young adult and elderly rats

    International Nuclear Information System (INIS)

    Laclau, M.; Billaudel, B.; Taxil, M.; Haro, E.; Ruffie, G.; Sanchez, S.; Poulletier De Gannes, F.; Lagroye, I.; Veyret, B.

    2006-01-01

    Contradictory results have emerged from recent studies describing low -level radiofrequency radiation (R.F.R.) as a hazardous factor for the central nervous system while others described such type of exposure as totally safe. In the brain, heat shock proteins (H.s.p.) are often induced under harmful conditions such as ischemia, traumatic injury, epilepsy, hyperthermia, drug administration, and neuro-degenerative diseases. Under those conditions, activation of the micro-glial cell population is often observed. In this work we studied the effect of two types of mobile phone signals, GSM-1800 and U.M.T.S. on the expression of two major H.s.p., induced in the brain under harmful conditions, H.s.p. 70 and H.s.p. 25. We also studied micro-glial activation in young adult (8 weeks) and elderly (17 months) Wistar rats. Height animals by group were exposed. Exposures were performed using a brain-averaged S.A.R. of 2 W/kg following two types of protocols: an acute exposure, with exposure lasting only two hours, and a sub chronic exposure in which the animals were exposed for two hours per day, five days per week, during four weeks. In all cases, rats were progressively habituated to the exposure setup (rockets) over two weeks to avoid stress and a sham group was exposed for each condition. Positive controls were performed by induction of a status epilepticus using a subcutaneous injection kainic acid (10 mg/kg). At the end of exposure, rats were anesthetized with isofluran and perfused from the heart with P.B.S. then paraformaldehyde prior to removing of the brain. Sections (10 m m thick) were prepared on slides for immunohistochemistry. Brain samples were coded and the analysis was performed in a blind manner. The sections were immuno-histo-chemically stained with antibodies raised in rabbits against H.s.p.25 and against the inducible form of H.s.p.70. The whole glial cell population was detected by its common cell surface glyco conjugates, which bind the plant Griffonia

  4. Regulation of brain aromatase activity in rats

    International Nuclear Information System (INIS)

    Roselli, C.E.; Ellinwood, W.E.; Resko, J.A.

    1984-01-01

    The distribution and regulation of aromatase activity in the adult rat brain with a sensitive in vitro assay that measures the amount of 3 H 2 O formed during the conversion of [1 beta- 3 H]androstenedione to estrone. The rate of aromatase activity in the hypothalamus-preoptic area (HPOA) was linear with time up to 1 h, and with tissue concentrations up to 5 mgeq/200 microliters incubation mixture. The enzyme demonstrated a pH optimum of 7.4 and an apparent Michaelis-Menten constant (Km) of 0.04 microns. The greatest amount of aromatase activity was found in amygdala and HPOA from intact male rats. The hippocampus, midbrain tegmentum, cerebral cortex, cerebellum, and anterior pituitary all contained negligible enzymatic activity. Castration produced a significant decrease in aromatase activity in the HPOA, but not in the amygdala or cerebral cortex. The HPOAs of male rats contained significantly greater aromatase activity than the HPOAs of female rats. In females, this enzyme activity did not change during the estrous cycle or after ovariectomy. Administration of testosterone to gonadectomized male and female rats significantly enhanced HPOA aromatase activities to levels approximating those found in HPOA from intact males. Therefore, the results suggest that testosterone, or one of its metabolites, is a major steroidal regulator of HPOA aromatase activity in rats

  5. Immunochemical characterization of the brain glutamate binding protein

    International Nuclear Information System (INIS)

    Roy, S.

    1986-01-01

    A glutamate binding protein (GBP) was purified from bovine and rat brain to near homogeneity. Polyclonal antibodies were raised against this protein. An enzyme-linked-immunosorbent-assay was used to quantify and determine the specificity of the antibody response. The antibodies were shown to strongly react with bovine brain GBP and the analogous protein from rat brain. The antibodies did not show any crossreactivity with the glutamate metabolizing enzymes, glutamate dehydrogenase, glutamine synthetase and glutamyl transpeptidase, however it crossreacted moderately with glutamate decarboxylase. The antibodies were also used to define the possible physiologic activity of GBP in synaptic membranes. The antibodies were shown: (i) to inhibit the excitatory amino-acid stimulation of thiocyanate (SCN)flux, (ii) had no effect on transport of L-Glutamic acid across the synaptic membrane, and (iii) had no effect on the depolarization-induced release of L-glutamate. When the anti-GBP antibodies were used to localize and quantify the GBP distribution in various subcellular fractions and in brain tissue samples, it was found that the hippocampus had the highest immunoreactivity followed by the cerebral cortex, cerebellar cortex and caudate-putamen. The distribution of immunoreactivity in the subcellular fraction were as follows: synaptic membranes > crude mitochondrial fraction > homogenate > myelin. In conclusion these studies suggest that: (a) the rat brain GBP and the bovine brain GBP are immunologically homologous protein, (b) there are no structural similarities between the GBP and the glutamate metabolizing enzymes with the exception of glutamate decarboxylase and (c) the subcellular and regional distribution of the GBP immunoreactivity followed a similar pattern as observed for L-[ 3 H]-binding

  6. Protein phosphorylation systems in postmortem human brain

    International Nuclear Information System (INIS)

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P.

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders

  7. Induction by mercury compounds of brain metallothionein in rats: Hg{sup 0} exposure induces long-lived brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira; Nakano, Atsuhiro [Biochemistry Section, National Institute for Minamata Disease, Kumamoto (Japan); Hirayama, Kimiko [Kumamoto University, College of Medical Science (Japan)

    1998-03-01

    Metallothionein (MT) is one of the stress proteins which can easily be induced by various kind of heavy metals. However, MT in the brain is difficult to induce because of blood-brain barrier impermeability to most heavy metals. In this paper, we have attempted to induce brain MT in rats by exposure to methylmercury (MeHg) or metallic mercury vapor, both of which are known to penetrate the blood-brain barrier and cause neurological damage. Rats treated with MeHg (40 {mu}mol/kg per day x 5 days, p.o.) showed brain Hg levels as high as 18 {mu}g/g with slight neurological signs 10 days after final administration, but brain MT levels remained unchanged. However, rats exposed to Hg vapor for 7 days showed 7-8 {mu}g Hg/g brain tissue 24 h after cessation of exposure. At that time brain MT levels were about twice the control levels. Although brain Hg levels fell gradually with a half-life of 26 days, MT levels induced by Hg exposure remained unchanged for >2 weeks. Gel fractionation revealed that most Hg was in the brain cytosol fraction and thus bound to MT. Hybridization analysis showed that, despite a significant increase in MT-I and -II mRNA in brain, MT-III mRNA was less affected. Although significant Hg accumulation and MT induction were observed also in kidney and liver of Hg vapor-exposed rats, these decreased more quickly than in brain. The long-lived MT in brain might at least partly be accounted for by longer half-life of Hg accumulated there. The present results showed that exposure to Hg vapor might be a suitable procedure to provide an in vivo model with enhanced brain MT. (orig.) With 4 figs., 1 tab., 27 refs.

  8. The effect of infectious brain edema on NMDA receptor binding in rat's brain

    International Nuclear Information System (INIS)

    Cheng Guansheng; Chen Jianfang; Chen Xiang

    1997-01-01

    PURPOSE: The effect of the infectious brain edema (IBE) induced by Bordetella Pertussis (BP) on the specific binding of 3 H MK-801 in rat's brain in vivo was determined. METHODS: BP was injected via left internal carotid artery in rat model of infectious brain edema. Male SD rats were divided into three groups: 1) Group control (NS, n = 11); 2) Group IBF (BP, n = 12); 3) Group pretreatment of MK-801 + PB (MK-801, n = 4). Normal saline or BP 0.2 ml/kg was injected into left internal carotid artery in NS and BP group respectively. MK-801 0.5 mg/kg per day was injected i.p. two days before injection of BP in group MK-801. Rats were killed by decapitation at 24 hours after injection of BP. The specific binding of N-methyl-D-aspartate (NMDA) receptor were measured with 3 H-MK-801 in the neuronal membrane of cerebral cortex. The Scatchard plots were performed. RESULTS: The B max values were 0.623 +- 0.082 and 0.606 +- 0.087 pmol/mg protein in group NS and BP respectively (t = 0.48, P>0.05). The Kd values were 43.1 +- 4.2 and 30.5 +- 3.0 nmol/L in group NS and BP respectively (t = 7.8, P<0.05). The specific binding of NMDA receptor was decreased by pretreatment of MK-801. CONCLUSIONS: The total number of NMDA receptor had not changed, whereas its affinity increased significantly in the model of brain edema induced by pertussis bacilli in rat. The increase of affinity of NMDA receptor can be blockaded by MK-801 pretreatment in vivo

  9. Hyperthyroidism differentially regulates neuropeptide S system in the rat brain.

    Science.gov (United States)

    González, Carmen R; Martínez de Morentin, Pablo B; Martínez-Sánchez, Noelia; Gómez-Díaz, Consuelo; Lage, Ricardo; Varela, Luis; Diéguez, Carlos; Nogueiras, Rubén; Castaño, Justo P; López, Miguel

    2012-04-23

    Thyroid hormones play an important role in the regulation of energy balance, sleep and emotional behaviors. Neuropeptide S (NPS) is a recently discovered neuropeptide, regulating feeding, sleep and anxiety. Here, we examined the effect of hyperthyroidism on the gene and protein expression of neuropeptide S and its receptor (NPS-R) in the hypothalamus, brainstem and amygdala of rats. Our results showed that the expression of NPS and NPS-R was differentially modulated by hyperthyroidism in the rat brain. NPS and NPS-R mRNA and protein levels were decreased in the hypothalamus of hyperthyroid rats. Conversely NPS-R expression was highly increased in the brainstem and NPS and NPS-R expression were unchanged in the amygdala of these rats. These data suggest that changes in anxiety and food intake patterns observed in hyperthyroidism could be associated with changes in the expression of NPS and NPS-R. Thus, the NPS/NPS-R system may be involved in several hyperthyroidism-associated comorbidities. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ..... on the brain and nervous system of humans as handlers and ... environment may be at higher health risk in that their internal ...

  11. Rat Brain Biogenic Amine Levels during Acute and Sub- acute ...

    African Journals Online (AJOL)

    User

    2011-05-20

    May 20, 2011 ... substances in rat brain regions are altered during acute and sub-acute .... Different areas of the brain such as cerebral cortex (CC), cerebellum (CB), .... dopamine metabolism and differential motor behavioral tolerance.

  12. Expression of brain derived neurotrophic factor, activity-regulated cytoskeleton protein mRNA, and enhancement of adult hippocampal neurogenesis in rats after sub-chronic and chronic treatment with the triple monoamine re-uptake inhibitor tesofensine

    DEFF Research Database (Denmark)

    Larsen, Marianne Hald; Rosenbrock, Holger; Sams-Dodd, Frank

    2007-01-01

    The changes of gene expression resulting from long-term exposure to monoamine antidepressant drugs in experimental animals are key to understanding the mechanisms of action of this class of drugs in man. Many of these genes and their products are either relevant biomarkers or directly involved...... in structural changes that are perhaps necessary for the antidepressant effect. Tesofensine is a novel triple monoamine reuptake inhibitor that acts to increase noradrenaline, serotonin, and dopamine neurotransmission. This study was undertaken to examine the effect of sub-chronic (5 days) and chronic (14 days......) administration of Tesofensine on the expression of brain derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton protein (Arc) in the rat hippocampus. Furthermore, hippocampi from the same animals were used to investigate the effect on cell proliferation by means of Ki-67- and Neuro...

  13. The influence of feeding linoleic, gamma-linolenic and docosahexaenoic acid rich oils on rat brain tumor fatty acids composition and fatty acid binding protein 7 mRNA expression

    Directory of Open Access Journals (Sweden)

    Abdi Khosro

    2008-11-01

    Full Text Available Abstract Background Experimental studies indicate that gamma linolenic acid (GLA and docosahexaenoic acid (DHA may inhibit glioma cells growth but effects of oral consumption of these fatty acids on brain tumor fatty acid composition have not been determined in vivo. Methods GLA oil (GLAO; 72% GLA, DHA oil (DHAO; 73% DHA were fed to adult wistar rats (1 mL/rat/day starting one week prior to C6 glioma cells implantation and continued for two weeks after implantation. Control group were fed same amount of high linoleic acid safflower oil (74–77% linoleic acid. Fatty acid composition of tumor samples was determined in a set of 8–12 animals in each group and serum fatty acid in 6 animals per each group. Gene expression of tumor fatty acid binding protein 7 (FABP7, epidermal growth factor receptor (EGFR, peroxisome proliferator activated receptor γ (PPAR-γ and retinoid × receptor-α (RXR-α were determined in a set of 18 animals per group. Results DHAO feeding increased EPA of brain tumors and decreased ratio of n-6/n-3 fatty acids. Serum levels of EPA were also increased in DHAO group. A similar trend in serum and tumor levels of DHA were observed in DHAO group but it did not achieve statistical significance. GLAO increased serum concentration of GLA but had no significant effect on tumor GLA or dihomo-gamma linolenic acid (DGLA concentrations. Gene expression of FABP7 was up-regulated in tumors of DHAO group but no other significant effects were observed on EGFR, PPAR-γ or RXR-α expression, and expression of these genes in tumors of GLAO were not different from SFO group. Conclusion Dietary supplementation of DHA containing oil could be an effective way to increase levels of long chain n-3 fatty acids in brain tumors and this increase may be mediated partly by up-regulation of FABP7 expression.

  14. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  15. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using 14 C autoradiography to measure the uptake of 14 C 2-deoxy-D-glucose ( 14 C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14 C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14 C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10 9 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  16. Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats.

    Science.gov (United States)

    Haas, Clarissa B; Kalinine, Eduardo; Zimmer, Eduardo R; Hansel, Gisele; Brochier, Andressa W; Oses, Jean P; Portela, Luis V; Muller, Alexandre P

    2016-11-01

    Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-β, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.

  17. Neuronal Rat Brain Damage Caused by Endogenous and Exogenous Hyperthermia

    Directory of Open Access Journals (Sweden)

    Mustafa Aydın

    2012-03-01

    Full Text Available OBJECTIVE: Hyperthermia may induce pathologic alterations within body systems and organs including brain. In this study, neuronal effects of endogenous and exogenous hyperthermia (41°C were studied in rats. METHODS: The endogenous hyperthermia (41°C was induced by lipopolysaccharide and the exogenous by an (electric heater. Possible neuronal damage was evaluated by examining healthy, apoptotic and necrotic cells, and heat shock proteins (HSP 27, HSP 70 in the cerebral cortex, cerebellum and hypothalamus RESULTS: At cellular level, when all neuronal tissues are taken into account; (i a significant increase in the necrotic cells was observed in the both groups (p0.05. CONCLUSION: The neural tissue of brain can show different degree of response to hyperthermia. But we can conclude that endogenous hyperthermia is more harmful to central nervous system than exogenous hyperthermia

  18. Testosterone supplementation restores vasopressin innervation in the senescent rat brain

    NARCIS (Netherlands)

    Goudsmit, E.; Fliers, E.; Swaab, D. F.

    1988-01-01

    The vasopressin (AVP) innervation in the male rat brain is decreased in senescence. This decrease is particularly pronounced in brain regions where AVP fiber density is dependent on plasma levels of sex steroids. Since plasma testosterone levels decrease progressively with age in the rat, the

  19. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    OpenAIRE

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected ...

  20. Expression and Localization of TRK-Fused Gene Products in the Rat Brain and Retina

    International Nuclear Information System (INIS)

    Maebayashi, Hisae; Takeuchi, Shigako; Masuda, Chiaki; Makino, Satoshi; Fukui, Kenji; Kimura, Hiroshi; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It has been reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. However, no information regarding the localization of Tfg in rat tissues is available. In this study, we investigated the expression of Tfg mRNA in normal rat tissues using reverse transcription-polymerase chain reaction (RT-PCR). We also produced an antibody against Tfg gene products and examined the localization of TFG in the rat brain and retina. The RT-PCR experiments demonstrated that two types of Tfg mRNA were expressed in rat tissues: the conventional form of Tfg (cTfg) and a novel variant form, retinal Tfg (rTfg). RT-PCR analyses demonstrated that cTfg was ubiquitously expressed in rat tissues, while rTfg was predominantly expressed in the brain and retina. Western blot analysis demonstrated two bands with molecular weights of about 30 kDa and 50 kDa in the rat brain. Immunohistochemistry indicated that TFG proteins were predominantly expressed by neurons in the brain. In the rat retina, intense TFG-immunoreactivity was detected in the layer of rods and cones and the outer plexiform layer

  1. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  2. Protein synthesis in the growing rat lung

    International Nuclear Information System (INIS)

    Kelley, J.; Chrin, L.

    1986-01-01

    Developmental control of protein synthesis in the postnatal growth of the lung has not been systematically studied. In male Fischer 344 rats, lung growth continues linearly as a function of body weight (from 75 to 450 g body weight). To study total protein synthesis in lungs of growing rats, we used the technique of constant intravenous infusion of tritiated leucine, an essential amino acid. Lungs of sacrificed animals were used to determine the leucine incorporation rate into newly synthesized protein. The specific radioactivity of the leucine associated with tRNA extracted from the same lungs served as an absolute index of the precursor leucine pool used for lung protein synthesis. On the basis of these measurements, we were able to calculate the fractional synthesis rate (the proportion of total protein destroyed and replaced each day) of pulmonary proteins for each rat. Under the conditions of isotope infusion, leucyl-tRNA very rapidly equilibrates with free leucine of the plasma and of the extracellular space of the lung. Infusions lasting 30 minutes or less yielded linear rates of protein synthesis without evidence of contamination of lung proteins by newly labeled intravascular albumin. The fractional synthesis rate is considerably higher in juvenile animals (55% per day) than in adult rats (20% per day). After approximately 12 weeks of age, the fractional synthesis rate remains extremely constant in spite of continued slow growth of the lung. It is apparent from these data that in both young and adult rats the bulk of total protein synthesis is devoted to rapidly turning over proteins and that less than 4 percent of newly made protein is committed to tissue growth

  3. Early inflammatory response in rat brain after peripheral thermal injury.

    Science.gov (United States)

    Reyes, Raul; Wu, Yimin; Lai, Qin; Mrizek, Michael; Berger, Jamie; Jimenez, David F; Barone, Constance M; Ding, Yuchuan

    2006-10-16

    Previous studies have shown that the cerebral complications associated with skin burn victims are correlated with brain damage. The aim of this study was to determine whether systemic thermal injury induces inflammatory responses in the brain. Sprague Dawley rats (n=28) were studied in thermal injury and control groups. Animals from the thermal injury (n=14) and control (n=14) group were anesthetized and submerged to the neck vertically in 85 degrees C water for 6 s producing a third degree burn affecting 60-70% of the animal body surface area. The controls were submerged in 37 degrees C water for 6 s. Early expression of tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), and intracellular cell adhesion molecules (ICAM-1) protein levels in serum were determined at 3 (n=7) and 7 h (n=7) by enzyme-linked immunoabsorbent assay (ELISA). mRNA of TNF-alpha, IL-1beta, and ICAM-1 in the brain was measured at the same time points with a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). An equal animal number was used for controls. Systemic inflammatory responses were demonstrated by dramatic up-regulations (5-50 fold) of TNF-alpha, IL-1beta, and ICAM-1 protein level in serum at 7 h after the thermal injury. However, as early as 3 h after peripheral thermal injury, a significant increase (3-15 fold) in mRNA expression of TNF-alpha, IL-1beta and ICAM-1 was observed in brain homogenates, with increased levels remaining at 7 h after injury. This study demonstrated an early inflammatory response in the brain after severe peripheral thermal injury. The cerebral inflammatory reaction was associated with expression of systemic cytokines and an adhesion molecule.

  4. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    Science.gov (United States)

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  5. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    Science.gov (United States)

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  6. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    Science.gov (United States)

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  7. Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Sharma, Pushpa; Su, Yan A; Barry, Erin S; Grunberg, Neil E; Lei, Zhang

    2012-09-01

    Mild traumatic brain injury (mTBI) represents a major health problem in civilian populations as well as among the military service members due to (1) lack of effective treatments, and (2) our incomplete understanding about the progression of secondary cell injury cascades resulting in neuronal cell death due to deficient cellular energy metabolism and damaged mitochondria. The aim of this study was to identify and delineate the mitochondrial targeted genes responsible for altered brain energy metabolism in the injured brain. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed up for 7 days. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed for 7 days. The severity of brain injury was evaluated by the neurological severity scale-revised (NSS-R) at 3 and 5 days post TBI and immunohistochemical analyses at 7 days post TBI. The expression profiles of mitochondrial-targeted genes across the hippocampus from TBI and naïe rats were also examined by oligo-DNA microarrays. NSS-R scores of TBI rats (5.4 ± 0.5) in comparison to naïe rats (3.9 ± 0.5) and H and E staining of brain sections suggested a mild brain injury. Bioinformatics and systems biology analyses showed 31 dysregulated genes, 10 affected canonical molecular pathways including a number of genes involved in mitochondrial enzymes for oxidative phosphorylation, mitogen-activated protein Kinase (MAP), peroxisome proliferator-activated protein (PPAP), apoptosis signaling, and genes responsible for long-term potentiation of Alzheimer's and Parkinson's diseases. Our results suggest that dysregulated mitochondrial-focused genes in injured brains may have a clinical utility for the development of future therapeutic strategies aimed at the treatment of TBI.

  8. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  9. AQP4 expression and its relationship with brain edema after gamma kife radiosurgery in rats

    International Nuclear Information System (INIS)

    Shen Guangjian; Xu Minhui; Zou Yongwen; Gen Mingying; Li Feipeng; Tang Wenyuan; Sun Shanquan

    2007-01-01

    Objective: To explore AQP4 expression and its relationship with brain edema after gamma knife radiosurgery (GKRS) in rats. Methods: Wistar rats were divided into two groups-the control group and experimental group. The experimental group model was established by radiating rat left rotral caudate nucleus with GKRS (100 Gy, 4 mm), and was examinded at interval times of 1 d, 3 d, 7 d, 15 d, 30 d and 45 d. Brain water content (BWC) was determined by wet-dry weighing method. AQP4 expression on mRNA and protein were measured by immunohistochemistry (ICH) and in situ hybridization (ISH). Results: In control group, AQP4 protein and its mRNA were expressed in subpial astrocytes, choroid plexus, ependyma and perivascular astrocytes. After GKRS, AQP4 protein and its mRNA in these sites were enhanced, and became most remarkable at 30 d. The positive corrlationship was showed between AQP4 and its mRNA, and AQP4 and BWC. Conclusions: AQP4 protein and its mRNA can be induced in some brain zone after irradiating rat left rotral caudate nucleus with GKRS. The increased expression of AQP4 and its mRNA may play a role in the ocurrence or development of brain edema after GKRS. (authors)

  10. Chronological protein synthesis in regenerating rat liver.

    Science.gov (United States)

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extreme hypoxia tolerance of naked mole-rat brain.

    Science.gov (United States)

    Larson, John; Park, Thomas J

    2009-12-09

    Mammalian brains have extremely high levels of aerobic metabolism and typically suffer irreversible damage after brief periods of oxygen deprivation such as occur during stroke or cardiac arrest. Here we report that brain tissue from naked mole-rats, rodents that live in a chronically low-oxygen environment, is remarkably resistant to hypoxia: naked mole-rat neurons maintain synaptic transmission much longer than mouse neurons and can recover from periods of anoxia exceeding 30 min. We suggest that brain tolerance to hypoxia may result from slowed or arrested brain development in these extremely long-lived animals.

  12. Effects of high-fat diets with different carbohydrate-to-protein ratios on energy homeostasis in rats with impaired brain melanocortin receptor activity

    NARCIS (Netherlands)

    Morens, C.; Keijzer, M.; de Vries, K.; Scheurink, A; van Dijk, G

    Changes in dietary macronutrient composition and/or central nervous system neuronal activity can underlie obesity and disturbed fuel homeostasis. We examined whether switching rats from a diet with high carbohydrate content (HC; i.e., regular chow) to diets with either high fat (HF) or high fat/high

  13. Brain dysfunctions in Wistar rats exposed to municipal landfill leachates

    Directory of Open Access Journals (Sweden)

    Chibuisi G. Alimba

    2015-12-01

    Full Text Available Brain damage induced by Olusosun and Aba-Eku municipal landfill leachates was investigated in Wistar rats. Male rats were orally exposed to 1–25% concentrations of the leachates for 30 days. Catalase (CAT and superoxide dismutase (SOD activities, and malondialdehyde (MDA concentrations in the brain and serum of rats were evaluated; body and brain weight gain and histopathology were examined. There was significant (p < 0.05 decrease in body weight gain and SOD activity but increase in absolute and relative brain weight gain, MDA concentration and CAT activity in both brain and serum of treated rats. The biochemical parameters, which were more altered in the brain than serum, corroborated the neurologic lesions; neurodegeneration of purkinje cells with loss of dendrites, perineural vacuolations of the neuronal cytoplasm (spongiosis and neuronal necrosis in the brain. The concentrations of Cr, Cu, Pb, As, Cd, Mn, Ni, sulphates, ammonia, chloride and phosphate in the leachate samples were above standard permissible limits. The interactions of the neurotoxic constituents of the leachates induced the observed brain damage in the rats via oxidative damage. This suggests health risk in wildlife and human populations.

  14. Cloning and expression of a rat brain α2B-adrenergic receptor

    International Nuclear Information System (INIS)

    Flordellis, C.S.; Handy, D.E.; Bresnahan, M.R.; Zannis, V.I.; Gavras, H.

    1991-01-01

    The authors isolated a cDNA clone (RBα 2B ) and its homologous gene (GRα 2B ) encoding an α 2B -adrenergic receptor subtype by screening a rat brain cDNA and a rat genomic library. Nucleotide sequence analysis showed that both clones code for a protein of 458 amino acids, which is 87% homologous to the human kidney glycosylated adrenergic receptor (α 2 -C4) and divergent from the rat kidney nonglycosylated α 2B subtype (RNGα 2 ). Transient expression of RBα 2B in COS-7 cells resulted in high-affinity saturable binding for [ 3 H]rauwolscine and a high receptor number in the membranes of transfected COS-7 cells. Pharmacological analysis demonstrated that the expressed receptor bound adrenergic ligands with the following order of potency: rauwolscine > yohimbine > prazosin > oxymetazoline, with a prazosin-to-oxymetazoline K i ratio of 0.34. This profile is characteristic of the α 2B -adrenergic receptor subtype. Blotting analysis of rat brain mRNA gave one major and two minor mRNA species, and hybridization with strand-specific probes showed that both DNA strands of GRα 2B may be transcriptionally active. These findings show that rat brain expresses an α 2B -adrenergic receptor subtype that is structurally different from the rat kidney nonglycosylated α 2B subtype. Thus the rat expresses at least two divergent α 2B -adrenergic receptors

  15. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain

    DEFF Research Database (Denmark)

    Burkhart, Annette; Andresen, Thomas Lars; Aigner, Achim

    2017-01-01

    , as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion...... of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various......-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB....

  16. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  17. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  18. Gene delivery of therapeutic polypeptides to brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    . Results: mRNA expression of proteins with neuroprotective potential in RBEC were enabled. Their expression patters were compared with those of RBE4 and HeLa cells using RT-qPCR analyzes. The evidence for protein synthesis and secretion was obtained by detection of FLAG-tagged to the C-terminal of any......Background: The potential for treatment of chronic disorders affecting the CNS is complicated by the inability of several drugs to cross the blood-brain barrier (BBB). None-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints...... in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion into the brain. Aim: The aim of the present study was to investigate the possibility of transfection to primary rat brain capillary endothelial cells (RBEC) for recombinant protein synthesis...

  19. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    , the ghrelin receptor, neuropeptide Y, adiponectin and proopiomelanocortin. We investigated whether the expression of these factors was affected in rats chronically treated with the antipsychotic risperidone. METHODS: Male Sprague-Dawley rats were treated with risperidone (1.0 mg/kg/day) or vehicle (20...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  20. Brain biochemistry of infant mice and rats exposed to lead

    Energy Technology Data Exchange (ETDEWEB)

    Berber, G.B.; Maes, J.; Gilliavod, N.; Casale, G.

    1978-05-01

    Brains of rats and mice exposed to lead from birth receive biochemical examinations. Mice are given drinking water with lead and are studied until they are 17 days old. Rats ae given lead in the diet and followed for more than a year. In mice a retardation in body growth and development in brain DNA is found. In rats, cathepsin is enhanced at almost all times. An important role of proteolytic processes and biogenic animes is suggested in lead encephalopathy. (33 references, 7 tables)

  1. Valine entry into rat brain after diet-induced changes in plasma amino acids

    International Nuclear Information System (INIS)

    Tews, J.K.; Greenwood, J.; Pratt, O.E.; Harper, A.E.

    1987-01-01

    Passage of amino acids across the blood-brain barrier is assumed to be modified by amino acid composition of the blood. To gain a better understanding of the effects of protein intake on brain amino acid uptake, the authors examined associations among diet, plasma amino acid patterns, and the rate of entry of valine into the brain. Rats were fed diets containing 6, 18, or 50% casein before receiving one meal of a diet containing 0, 6, 18, or 50% casein. After 4-7 h, they were anesthetized and infused intravenously with [ 14 C]valine for 5 min before plasma and brain samples were taken for determination of radioactivity and content of individual amino acids. As protein content of the meal was increased from 0 to 50% casein, plasma and brain concentrations of valine and most other large neutral amino acid (LNAA) increased severalfold; also the ratio of [ 14 C]valine in brain to that in plasma decreased by >50%, and the rate of valine entry into the brain increased 3.5-fold. The increase in valine flux slowed as plasma levels of LNAA, competitors for valine transport, increased. The results were far more dependent on protein content of the final meal than on that of the adaptation diet; thus changes in protein intake, as reflected in altered plasma amino acid patterns, markedly altered valine entry into the brain

  2. Electroacupuncture improves neurobehavioral function and brain injury in rat model of intracerebral hemorrhage.

    Science.gov (United States)

    Zhu, Yan; Deng, Li; Tang, Huajun; Gao, Xiaoqing; Wang, Youhua; Guo, Kan; Kong, Jiming; Yang, Chaoxian

    2017-05-01

    Acupuncture has been widely used as a treatment for stroke in China for a long time. Recently, studies have demonstrated that electroacupuncture (EA) can accelerate intracerebral hemorrhage (ICH)-induced angiogenesis in rats. In the present study, we investigated the effect of EA on neurobehavioral function and brain injury in ICH rats. ICH was induced by stereotactic injection of collagenase type I and heparin into the right caudate putamen. Adult ICH rats were randomly divided into the following three groups: model control group (MC), EA at non-acupoint points group (non-acupoint EA) and EA at Baihui and Dazhui acupoints group (EA). The neurobehavioral deficits of ICH rats were assessed by modified neurological severity score (mNSS) and gait analysis. The hemorrhage volume and glucose metabolism of hemorrhagic foci were detected by PET/CT. The expression levels of MBP, NSE and S100-B proteins in serum were tested by ELISA. The histopathological features were examined by haematoxylin-eosin (H&E) staining. Apoptosis-associated proteins in the perihematomal region were observed by immunohistochemistry. EA treatment significantly promoted the recovery of neurobehavioral function in ICH rats. Hemorrhage volume reduced in EA group at day 14 when compared with MC and non-acupoint EA groups. ELISA showed that the levels of MBP, NSE and S100-B in serum were all down-regulated by EA treatment. The brain tissue of ICH rat in the EA group was more intact and compact than that in the MC and non-acupoint groups. In the perihematomal regions, the expression of Bcl-2 protein increased and expressions of Caspase-3 and Bax proteins decreased in the EA group vs MC and non-acupoint EA groups. Our data suggest that EA treatment can improve neurobehavioral function and brain injury, which were likely connected with the absorption of hematoma and regulation of apoptosis-related proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Acute running stimulates hippocampal dopaminergic neurotransmission in rats, but has no influence on brain-derived neurotrophic factor

    OpenAIRE

    Goekint, Maaike; Bos, Inge; Heyman, Elsa; Meeusen, Romain; Michotte, Yvette; Sarre, Sophie

    2011-01-01

    Hippocampal brain-derived neurotrophic factor (BDNF) protein is increased with exercise in rats. Monoamines seem to play a role in the regulation of BDNF, and monoamine neurotransmission is known to increase with exercise. The purpose of this study was to examine the influence of acute exercise on monoaminergic neurotransmission and BDNF protein concentrations. Hippocampal microdialysis was performed in rats that were subjected to 60 min of treadmill running at 20 m/min or rest. Two hours pos...

  4. Proteomics analysis after traumatic brain injury in rats: the search for potential biomarkers

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-04-01

    Full Text Available Many studies of protein expression after traumatic brain injury (TBI have identified biomarkers for diagnosing or determining the prognosis of TBI. In this study, we searched for additional protein markers of TBI using a fluid perfusion impact device to model TBI in S-D rats. Two-dimensional gel electrophoresis and mass spectrometry were used to identify differentially expressed proteins. After proteomic analysis, we detected 405 and 371 protein spots within a pH range of 3-10 from sham-treated and contused brain cortex, respectively. Eighty protein spots were differentially expressed in the two groups and 20 of these proteins were identified. This study validated the established biomarkers of TBI and identified potential biomarkers that could be examined in future work.

  5. Opposite effect of phencyclidine on activity-regulated cytoskeleton-associated protein (Arc) in juvenile and adult limbic rat brain regions

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    The psychotomimetic effect of NMDA antagonists such as phencyclidine (PCP) in humans spurred the hypoglutamatergic theory of schizophrenia. This theory is supported by animal studies demonstrating schizophrenia-like behavioral and molecular changes following PCP administration to adult or neonatal...... animals. However, schizophrenia is believed to develop in part due to neurodevelopmental dysfunction during adolescence. Therefore, the effects of PCP in juvenile animals may better reflect the pathophysiology of schizophrenia. Here, we compare the effect of PCP (5mg/kg/day for 5 days) on activity......RNA in juvenile rats corresponds best with the proposed "hypofrontality" in schizophrenia, suggesting the merits of using PCP in juvenile animals as a model for schizophrenia, as this would relate better to the typical onset and clinical features of schizophrenia....

  6. In vitro comparison of rat and chicken brain neurotoxic esterase

    International Nuclear Information System (INIS)

    Novak, R.; Padilla, S.

    1986-01-01

    A systematic comparison was undertaken to characterize neurotoxic esterase (NTE) from rat and chicken brain in terms of inhibitor sensitivities, pH optima, and molecular weights. Paraoxon titration of phenyl valerate (PV)-hydrolyzing carboxylesterases showed that rat esterases were more sensitive than chicken to paraoxon inhibition at concentrations less than or equal to microM and superimposable with chicken esterases at concentrations of 2.5-1000 microM. Mipafox titration of the paraoxon-resistant esterases at a fixed paraoxon concentration of 100 microM (mipafox concentration: 0-1000 microM) resulted in a mipafox I50 of 7.3 microM for chicken brain NTE and 11.6 microM for rat brain NTE. NTE (i.e., paraoxon-resistant, mipafox-sensitive esterase activity) comprised 80% of chicken and 60% of rat brain paraoxon-resistant activity with the specific activity of chicken brain NTE approximately twice that of rat brain NTE. The pH maxima for NTE from both species was similar showing broad, slightly alkaline optima from pH 7.9 to 8.6. [ 3 H]Diisopropyl phosphorofluoridate (DFP)-labeled NTE from the brains of both species had an apparent mol wt of 160,000 measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In conclusion, NTE from both species was very similar, with the mipafox I50 for rat NTE within the range of reported values for chicken and human NTE, and the inhibitor parameters of the chicken NTE assay were applicable for the rat NTE assay

  7. Behavioral and Neurochemical Studies in Stressed and Unstressed Rats Fed on Protein, Carbohydrate and Fat Rich Diet

    Directory of Open Access Journals (Sweden)

    Samia Moin§, Saida Haider*, Saima Khaliq1, Saiqa Tabassum and Darakhshan J. Haleem

    2012-05-01

    Full Text Available Stress produces behavioral and neurochemical deficits. To study the relationship between adaptation to stress and macronutrient intake, the present study was designed to monitor the effects of different diets on feed intake, growth rate and serotonin (5-Hydroxytryptamine, 5-HT metabolism following exposure to restraint stress in rats. Rats were divided into four groups (n=12 as control, sugar, protein and fat rich diet fed rats. After 5 weeks of treatment animals of each group were divided into unrestrained and restrained animals (n=6. Rats of restrained group were given immobilization stress for 2 hours/day for 5 days. Food intake and growth rates of unrestrained and restrained rats were monitored daily. Rats were decapitated on 6th day to collect brain samples for neurochemical estimation. Results show that sugar diet fed rats produced adaptation to stress early as compared to normal diet fed rats. Food intake and growth rates of unrestrained and restrained rats were comparable on 3rd day in sugar diet fed rats and on 4th day in normal diet fed rats. Stress decreased food intake and growth rates of protein and fat treated rats. Repeated stress did not alter brain 5-HT and 5-HIAA levels of normal diet fed rats and sugar diet fed rats. Protein diet fed restrained rats showed elevated brain 5-HT levels. Fat diet fed restrained rats significantly decreased brain TRP and 5-HIAA levels. Finding suggested that carbohydrate diet might protect against stressful conditions. Study also showed that nutritional status could alter different behaviors in response to a stressful environment.

  8. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.

    Science.gov (United States)

    Iyyaswamy, Ashok; Rathinasamy, Sheeladevi

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  9. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  10. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    Science.gov (United States)

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats.

    Science.gov (United States)

    Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua

    2018-06-05

    Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Caspase Activation in Fetal Rat Brain Following Experimental Intrauterine Inflammation

    Science.gov (United States)

    Sharangpani, Aditi; Takanohashi, Asako; Bell, Michael J.

    2009-01-01

    Intrauterine inflammation has been implicated in developmental brain injuries, including the development of periventricular leukomalacia (PVL) and cerebral palsy (CP). Previous studies in our rat model of intrauterine inflammation demonstrated apoptotic cell death in fetal brains within the first 5 days after lipopolysaccharide (LPS) administration to mothers and eventual dysmyelination. Cysteine-containing, aspartate-specific proteases, or caspases, are proteins involved with apoptosis through both intracellular (intrinsic pathway) and extracellular (extrinsic pathway) mechanisms. We hypothesized that cell death in our model would occur mainly via activation of the extrinsic pathway. We further hypothesized that Fas, a member of the tumor necrosis factor receptor (TNFR) superfamily, would be increased and the death inducing signaling complex (DISC) would be detectable. Pregnant rats were injected intracervically with LPS at E15 and immunoblotting, immunohistochemical and immunoprecipitation analyses were performed. The presence of the activated form of the effector caspase (caspase-3) was observed 24 h after LPS administration. Caspase activity assays demonstrated rapid increases in (i) caspases-9 and -10 within 1 h, (ii) caspase-8 at 2 h and (iii) caspase-3 at 4 h. At 24 h after LPS, activated caspase-3+/Fas+ cells were observed within the developing white matter. Lastly, the DISC complex (caspase-8, Fas and Fas-associated Death Domain (FADD)) was observed within 30 min by immunoprecipitation. Apoptosis in our model occurs via both extrinsic and intrinsic pathways, and activation of Fas may play a role. Understanding the mechanisms of cell death in models of intrauterine inflammation may affect development of future strategies to mitigate these injuries in children. PMID:18289516

  13. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats.

    Science.gov (United States)

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2012-02-01

    Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Urea utilization in protein deficient rats

    International Nuclear Information System (INIS)

    Tanaka, Noriko

    1982-01-01

    Three experiments were performed to investigate the mechanism of urea utilization and the nutritional roles of intestinal flora on the utilization of urea by rats fed with a protein deficient diet. Ammonia content in the small intestine in LPD(low protein diet) group fed with a low protein diet for 2 or 5 weeks was about three of five times higher than that of control group fed with SPD(standard protein diet) after administration of urea (0.2gN/100gB.W.). The 15 N incorporation into plasma protein of LPD group was significantly higher than that of the control group two hours after the administration of 15 N-urea (10 mg/100gB.W.) and higher level of 15 N concentration in plasma protein in LPD group was maintained thereafter. The 15 N incorporation into the amino acids of plasma protein was higher in LPD group than in control group. The 15 N incorporation into the amino acids in portal plasma seemed to be higher in LPD group than in control group one hour after the administration of 15 N-urea (10mg/100gB.W.). However, the 15 N incorporation into each free amino acids was suppressed considerably by the administration of antibiotic mixture. it follows that amino acids may be synthesized from urea in the intestine by intestinal-bacterial action and absorbed from portal vein. From these results, it may be concluded that the ammonia nitrogen converted from urea by the action of intestinal-bacterial urease in the intestine is utilized for the synthesis of essential and nonessential amino acids in protein deficient rats and transfered to the liver through portal vein and utilized for protein synthesis. (J.P.N.)

  15. Urea utilization in protein deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, N [Hyogo College of Medicine, Nishinomiya, Hyogo (Japan)

    1982-06-01

    Three experiments were performed to investigate the mechanism of urea utilization and the nutritional roles of intestinal flora on the utilization of urea by rats fed with a protein deficient diet. Ammonia content in the small intestine in LPD(low protein diet) group fed with a low protein diet for 2 or 5 weeks was about three of five times higher than that of control group fed with SPD(standard protein diet) after administration of urea (0.2gN/100gB.W.). The /sup 15/N incorporation into plasma protein of LPD group was significantly higher than that of the control group two hours after the administration of /sup 15/N-urea (10 mg/100gB.W.) and higher level of /sup 15/N concentration in plasma protein in LPD group was maintained thereafter. The /sup 15/N incorporation into the amino acids of plasma protein was higher in LPD group than in control group. The /sup 15/N incorporation into the amino acids in portal plasma seemed to be higher in LPD group than in control group one hour after the administration of /sup 15/N-urea (10mg/100gB.W.). However, the /sup 15/N incorporation into each free amino acids was suppressed considerably by the administration of antibiotic mixture. it follows that amino acids may be synthesized from urea in the intestine by intestinal-bacterial action and absorbed from portal vein. From these results, it may be concluded that the ammonia nitrogen converted from urea by the action of intestinal-bacterial urease in the intestine is utilized for the synthesis of essential and nonessential amino acids in protein deficient rats and transfered to the liver through portal vein and utilized for protein synthesis.

  16. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  17. Neuropeptide Y receptors in rat brain: autoradiographic localization

    International Nuclear Information System (INIS)

    Martel, J.C.; St-Pierre, S.; Quirion, R.

    1986-01-01

    Neuropeptide Y (NPY) receptor binding sites have been characterized in rat brain using both membrane preparations and receptor autoradiography. Radiolabelled NPY binds with high affinity and specificity to an apparent single class of sites in rat brain membrane preparations. The ligand selectivity pattern reveals strong similarities between central and peripheral NPY receptors. NPY receptors are discretely distributed in rat brain with high densities found in the olfactory bulb, superficial layers of the cortex, ventral hippocampus, lateral septum, various thalamic nuclei and area postrema. The presence of high densities of NPY and NPY receptors in such areas suggests that NPY could serve important functions as a major neurotransmitter/neuromodulator in the central nervous system

  18. Brain perfusion in acute and chronic hyperglycemia in rats

    International Nuclear Information System (INIS)

    Kikano, G.E.; LaManna, J.C.; Harik, S.I.

    1989-01-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose

  19. Effects of Junk Foods on Brain Neurotransmitters (Dopamine and Serotonin) and some Biochemical Parameters in Albino Rats

    International Nuclear Information System (INIS)

    Abd Elmonem, H.A.; Ali, E.A.

    2011-01-01

    Nutritional Habits have changed significantly and junk foods have become widely popular, in recent years. The present study aimed to shed the light on the effect of potato chips and / or ketchup consumption on some biochemical parameters. Sixty four male and female albino rats were used in the study. Animals were maintained on 0.25 g potato chips/ rat and / or 0.125 g ketchup / rat, 5 days a week for 4 weeks. Potato chips showed the lowest body wt gain in the male rats after 4 weeks but, ketchup modulated this negative effect of the potato chips in the group of male animals fed on potato chips plus ketchup. Potato chips significantly decreased brain serotonin, liver glutathione (GSH) and catalase (CAT) in both sexes; brain dopamine, serum total proteins, albumin, total globulins, α 2 - and β 1 -globulins in the females and serum thyroxine (T 4 ) in the male rats. Ketchup apparently affected serum T 4 and A / G ratio in both sexes, brain dopamine and liver GSH in the males in addition to brain serotonin, serum total globulins and ?1-globulin in the female rats. Potato chips plus ketchup significantly changed T 4 , dopamine, GSH, CAT, α 1 and α 2 -globulins in both sexes; serotonin and β 1 -globulin in the male rats, total proteins and albumin in the females. It could be concluded that potato chips consumption might induce numerous adverse effects in various body organs

  20. Fractionated radiosurgery for 9L gliosarcoma in the rat brain

    International Nuclear Information System (INIS)

    Kim, Jae Ho; Khil, Mark S.; Kolozsvary, Andrew; Gutierrez, Jorge A.; Brown, Stephen L.

    1999-01-01

    Purpose: Fractionated radiosurgery is being carried out in the clinic to improve the therapeutic ratio of single-dose radiosurgery using various fractionation schemes. Because there is a paucity of experimental radiobiological data in the literature on the tumor response and late-responding normal tissue of critical intracranial structures to radiosurgery, the present animal study was designed to compare the response following a single high dose of radiation with that obtained from calculated fractionated doses of radiosurgery. Methods and Materials: Male Fischer rats with 9L gliosarcoma growing in their brains were stereotactically irradiated and assayed for the tumor control rate and brain tissue damage. The radiation dose needed for 50% tumor control (TCD 50 ) was used as the endpoint of the efficacy of radiosurgery. Normal brain damage was measured histologically following a period of time over 270 days. Histological evaluation included hematoxylin-eosin (H and E), Luxol fast blue and periodic acid Schiff (LFB/PAS) for the presence of myelin and glial fibrillary acidic protein (GFAP) for the assessment of astrocytic re-activity. The optical density of optic nerves and chiasms staining with LFB/PAS was quantitatively measured using a computer image analysis to assess the magnitude of demyelination. Results: Radiosurgery (RS) was found to be more effective in curing small tumors than large tumors. The dose required to control 50% of the tumored animals for 120 days was 24, 31, and 40 Gy for 2-, 6-, and 12-day-old tumors, respectively. Using 12-day-old brain tumors, two fractions of 23.5 Gy and three fractions of 18.5 Gy were found to be equivalent to the single dose of 35 Gy for tumor control. For normal brain damages, the visual pathways including optic nerves and chiasm were found to be highly radiosensitive structures. A single dose of 35 Gy produced 100% severe optic neuropathy. The fractionated RS regimens spared substantial optic nerve damage. Conclusion

  1. Hydrophilic solute transport across the rat blood-brain barrier

    International Nuclear Information System (INIS)

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of 3 H-inulin and 14 C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients

  2. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism.

    Science.gov (United States)

    Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui

    2015-11-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

  3. [11C]befloxatone brain kinetics is not influenced by Bcrp function at the blood-brain barrier: A PET study using Bcrp TGEM knockout rats

    International Nuclear Information System (INIS)

    Hosten, Benoit; Jacob, Aude; Saubamea, Bruno; Scherrmann, Jean-Michel; Boisgard, Raphael; Goutal, Sebastien; Dolle, Frederic; Tournier, Nicolas; Cisternino, Salvatore

    2013-01-01

    Knockout (KO) animals are useful tools with which to assess the interplay between P-glycoprotein (P-gp; Abcb1) and the breast cancer resistance protein (Bcrp, Abcg2), two major ABC-transporters expressed at the blood-brain barrier (BBB). However, one major drawback of such deficient models is the possible involvement of compensation between transporters. In the present study, P-gp and Bcrp distribution in the brain as well as P-gp expression levels at the BBB were compared between the Bcrp TGEM KO rat model and the wild-type (WT) strain. Therefore, we used confocal microscopy of brain slices and western blot analysis of the isolated brain microvessels forming the BBB. This deficient rat model was used to assess the influence of Bcrp on the brain and peripheral kinetics of its substrate [ 11 C]befloxatone using positron emission tomography (PET). The influence of additional P-gp inhibition was tested using elacridar (GF120918) 2 mg/kg in Bcrp KO rats. The distribution pattern of P-gp in the brain as well as P-gp expression levels at the BBB was similar in Bcrp-deficient and WT rats. Brain and peripheral kinetics of [ 11 C]befloxatone were not influenced by the lack of Bcrp. Neither was the brain uptake of [ 11 C]befloxatone in Bcrp-deficient rats influenced by the inhibition of P-gp. In conclusion, the Bcrp-deficient rat strain, in which we detected no compensatory mechanism or modification of P-gp expression as compared to WT rats, is a suitable model to study Bcrp function separately from that of P-gp at the BBB. However, although selectively transported by BCRP in vitro, our results suggest that [ 11 C]befloxatone PET imaging might not be biased by impaired function of this transporter in vivo. (authors)

  4. Implanting Glioblastoma Spheroids into Rat Brains and Monitoring Tumor Growth by MRI Volumetry.

    Science.gov (United States)

    Löhr, Mario; Linsenmann, Thomas; Jawork, Anna; Kessler, Almuth F; Timmermann, Nils; Homola, György A; Ernestus, Ralf-Ingo; Hagemann, Carsten

    2017-01-01

    The outcome of patients suffering from glioblastoma multiforme (GBM) remains poor with a median survival of less than 15 months. To establish innovative therapeutical approaches or to analyze the effect of protein overexpression or protein knockdown by RNA interference in vivo, animal models are mandatory. Here, we describe the implantation of C6 glioma spheroids into the rats' brain and how to follow tumor growth by MRI scans. We show that C6 cells grown in Sprague-Dawley rats share several morphologic features of human glioblastoma like pleomorphic cells, areas of necrosis, vascular proliferation, and tumor cell invasion into the surrounding brain tissue. In addition, we describe a method for tumor volumetry utilizing the CISS 3D- or contrast-enhanced T1-weighted 3D sequence and freely available post-processing software.

  5. Microwave hyperthermia enhancement of methotrexate absorption in rat brains

    International Nuclear Information System (INIS)

    Lin, J.C.; Yuen, M.K.; Jung, D.T.

    1987-01-01

    The author studied enhanced absorption of methotrexate (MTX) in brains of male Wistar (10 weeks old, 500g) subjected to microwave hyperthermia. The rat was anesthetized using 40 mg/kg of sodium pentobarbital, IP and was placed in a stereotaxic head holder. Microwave energy (2450 MHz, 2.6 W/cm/sup 2/, CW) were applied directly to the left side of the rat's head by a coaxial applicator for 20 min. The body temperature was kept at 37.8 0 C. The brain temperature recorded in a similar group of animals using a Vitek probe was about 45 0 C. Three different MTX dosages, 50, 100 and 200 mg/kg, were injected intravenously immediately following microwave irradiation into three groups of rats in 1.5, 3 and 6 min., respectively. MTX was allowed to circulate for five min. before brains were removed for analysis. Standard HPLC procedures were applied to samples from anterior and posterior left hemisphere of the cerebrum, and the cerebellum. Samples from the right hemisphere were used for controls. The average absorption at the posterior left hemisphere was found to be 2.4, 9.6 and 12.4μg of MTX/g of brain tissue for 50, 100 and 200 mg/kg, respectively. These results indicate that MTX absorption is significantly increased in rat brains subjected to microwave hyperthermia treatment

  6. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat.

    Science.gov (United States)

    Fujikawa, Takahiko; Soya, Hideaki; Tamashiro, Kellie L K; Sakai, Randall R; McEwen, Bruce S; Nakai, Naoya; Ogata, Masato; Suzuki, Ikukatsu; Nakashima, Kunio

    2004-04-01

    Stress causes hypocalcemia and ulcerogenesis in rats. In rats under stressful conditions, a rapid and transient increase in circulating prolactin (PRL) is observed, and this enhanced PRL induces PRL receptors (PRLR) in the choroid plexus of rat brain. In this study we used restraint stress in water to elucidate the mechanism by which PRLR in the rat brain mediate the protective effect of PRL against stress-induced hypocalcemia and ulcerogenesis. We show that rat PRL acts through the long form of PRLR in the hypothalamus. This is followed by an increase in the long form of PRLR mRNA expression in the choroid plexus of the brain, which provides protection against restraint stress in water-induced hypocalcemia and gastric erosions. We also show that PRL induces the expression of PRLR protein and corticotropin-releasing factor mRNA in the paraventricular nucleus. These results suggest that the PRL levels increase in response to stress, and it moves from the circulation to the cerebrospinal fluid to act on the central nervous system and thereby plays an important role in helping to protect against acute stress-induced hypocalcemia and gastric erosions.

  7. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    Directory of Open Access Journals (Sweden)

    Marco Sifringer

    2015-01-01

    Full Text Available Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.

  8. Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA.

    Science.gov (United States)

    Ons, Sheila; Martí, Octavi; Armario, Antonio

    2004-06-01

    Arc is an effector immediate early gene whose expression is induced in situations of increased neuronal activity. However, there is no report on the influence of stress on Arc expression. Here, we compared the induction of both c-fos and Arc mRNAs in the brain of rats exposed to one of three different stressful situations: novel environment, forced swimming and immobilization. An absent or weak c-fos mRNA signal was observed in control rats, whereas those exposed to one of three stressors showed enhanced c-fos expression in a wide range of brain areas. Constitutive Arc expression was observed in some areas such as cortex, striatum, hippocampus, reticular thalamic nucleus and cerebellar cortex. In response to stressors, a strong induction of Arc was observed, but the pattern was different from that of c-fos. For instance, activation of Arc but not c-fos was observed in the nucleus accumbens after immobilization and in the hippocampus after novel environment. No Arc induction was observed in diencephalic and brainstem areas. The present data show that Arc has a neuroanatomically restricted pattern of induction in the brain after emotional stress. Telencephalic activation suggests that a more intense induction of synaptic plasticity is occurring in this area after exposure to emotional stressors.

  9. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  10. Changes in Binding of [123I]CLINDE, a High-Affinity Translocator Protein 18 kDa (TSPO) Selective Radioligand in a Rat Model of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Donat, Cornelius K; Gaber, Khaled; Meixensberger, Jürgen

    2016-01-01

    , somatosensory and parietal cortex, as well as in the hippocampus and thalamus. Interestingly, binding was also significantly elevated in the contralateral M1 motor cortex following TBI. Craniotomy without TBI caused a less marked increase in [(123)I]CLINDE binding, restricted to the ipsilateral hemisphere...... studies using single-photon emission computed tomography to image the neuroinflammatory response after stroke. In this study, we used the same tracer in a rat model of TBI to determine changes in TSPO expression. Adult Sprague-Dawley rats were subjected to moderate controlled cortical impact injury...... and sacrificed at 6, 24, 72 h and 28 days post surgery. TSPO expression was assessed in brain sections employing [(123)I]CLINDE in vitro autoradiography. From 24 h to 28 days post surgery, injured animals exhibited a marked and time-dependent increase in [(123)I]CLINDE binding in the ipsilateral motor...

  11. Demonstration of endogenous imipramine like material in rat brain

    International Nuclear Information System (INIS)

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-01-01

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits [ 3 H] imipramine specific binding and mimics the inhibitory effect of imipramine on [ 3 H] serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits [ 3 H] imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum

  12. Improved apparatus for neutron capture therapy of rat brain tumors

    International Nuclear Information System (INIS)

    Liu, Hungyuan B.; Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1994-01-01

    The assembly for irradiating tumors in the rat brain at the thermal neutron beam port of the Brookhaven Medical Research Reactor was redesigned to lower the average whole-body dose from different components of concomitant radiation without changing the thermal neutron fluence at the brain tumor. At present, the tumor-bearing rat is positioned in a rat holder that functions as a whole-body radiation shield. A 2.54 cm-thick collimator with a centered conical aperture, 6 cm diameter tapering to 2 cm diameter, is used to restrict the size of the thermal neutron field. Using the present holder and collimator as a baseline design, Monte Carlo calculations and mixed-field dosimetry were used to assess new designs. The computations indicate that a 0.5 cm-thick plate, made of 6 Li 2 CO 3 dispersed in polyethylene (Li-poly), instead of the existing rat holder, will reduce the whole-body radiation dose. Other computations show that a 10.16 cm-thick (4 inches) Li-poly collimator, having a centered conical aperture of 12 cm diameter tapering to 2 cm diameter, would further reduce the whole-body dose. The proposed irradiation apparatus of tumors in the rat brain, although requiring a 2.3-fold longer irradiation time, would reduce the average whole-body dose to less than half of that from the existing irradiation assembly. 7 refs., 4 figs., 7 tabs

  13. The effect of chemotherapy on rat brain PET: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Kim, Il Han; Yu, A Ram; Park, Ji Ae; Woo, Sang Keun; Kim, Jong Guk; Cheon, Gi Jeong; Kim, Byeong Il; Choi, Chang Woon; Lim, Sang Moo; Kim, Hee Joung; Kim, Kyeong Min [Korea Institute Radiological and Medical Science, Seoul (Korea, Republic of)

    2010-10-15

    Chemotherapy was widely used for the therapy of cancer patients. When chemotherapy was performed, transient cognitive memory problem was occurred. This cognitive problem in brain was called as chemobrain. In this study, we have developed rat model for chemobrain. Cerebral glucose metabolism after chemotherapy was assessed using animal PET and voxel based statistical analysis method

  14. Impact of aspartame consumption on neurotransmitters in rat brain ...

    African Journals Online (AJOL)

    Background: Aspartame (APM), a common artificial sweetener, has been used for diabetic subjects and body weight control for a long time. The goal of the present study was to evaluate the impact of APM consumption on neurotransmitters and oxidative stress in rat's brain. Materials and Methods: Four groups of male ...

  15. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  16. The effect of chemotherapy on rat brain PET: preliminary study

    International Nuclear Information System (INIS)

    Kim, Jin Su; Kim, Il Han; Yu, A Ram; Park, Ji Ae; Woo, Sang Keun; Kim, Jong Guk; Cheon, Gi Jeong; Kim, Byeong Il; Choi, Chang Woon; Lim, Sang Moo; Kim, Hee Joung; Kim, Kyeong Min

    2010-01-01

    Chemotherapy was widely used for the therapy of cancer patients. When chemotherapy was performed, transient cognitive memory problem was occurred. This cognitive problem in brain was called as chemobrain. In this study, we have developed rat model for chemobrain. Cerebral glucose metabolism after chemotherapy was assessed using animal PET and voxel based statistical analysis method

  17. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Valeria Hansberg-Pastor

    2015-01-01

    Full Text Available The CCAAT/enhancer-binding protein beta (C/EBPβ is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle.

  18. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    Science.gov (United States)

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  19. Toxicological aspects of interesterified fat: Brain damages in rats.

    Science.gov (United States)

    D'avila, Lívia Ferraz; Dias, Verônica Tironi; Vey, Luciana Taschetto; Milanesi, Laura Hautrive; Roversi, Karine; Emanuelli, Tatiana; Bürger, Marilise Escobar; Trevizol, Fabíola; Maurer, H Luana

    2017-07-05

    In recent years, interesterified fat (IF) has been used to replace hydrogenated vegetable fat (HVF), rich in trans isomers, being found in processed foods. Studies involving IF have shown deleterious influences on the metabolic system, similarly to HVF, whereas no studies regarding its influence on the central nervous system (CNS) were performed. Rats from first generation born and maintained under supplementation (3g/Kg, p.o.) of soybean-oil or IF until adulthood were assessed on memory, biochemical and molecular markers in the hippocampus. IF group showed higher saturated fatty acids and linoleic acid and lower docosahexaenoic acid incorporation in the hippocampus. In addition, IF supplementation impaired short and long-term memory, which were related to increased reactive species generation and protein carbonyl levels, decreased catalase activity, BDNF and TrkB levels in the hippocampus. To the best of our knowledge, this is the first study to show that lifelong IF consumption may be related to brain oxidative damage, memory impairments and neurotrophins modifications, which collectively may be present indifferent neurological disorders. In fact, the use of IF in foods was intended to avoid damage from HVF consumption; however this substitute should be urgently reviewed, since this fat can be as harmful as trans fat. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Presynaptic localization of histamine H3-receptors in rat brain

    International Nuclear Information System (INIS)

    Fujimoto, K.; Mizuguchi, H.; Fukui, H.; Wada, H.

    1991-01-01

    The localization of histamine H3-receptors in subcellular fractions from the rat brain was examined in a [3H] (R) alpha-methylhistamine binding assay and compared with those of histamine H1- and adrenaline alpha 1- and alpha 2-receptors. Major [3H](R) alpha-methylhistamine binding sites with increased specific activities ([3H]ligand binding vs. protein amount) were recovered from the P2 fraction by differential centrifugation. Minor [3H](R)alpha-methylhistamine binding sites with increased specific activities were also detected in the P3 fraction. Further subfractionation of the P2 fraction by discontinuous sucrose density gradient centrifugation showed major recoveries of [3H](R)alpha-methylhistamine binding in myelin (MYE) and synaptic plasma membrane (SPM) fractions. A further increase in specific activity was observed in the MYE fraction, but the SPM fraction showed no significant increase in specific activity. Adrenaline alpha 2-receptors, the pre-synaptic autoreceptors, in a [3H] yohimbine binding assay showed distribution patterns similar to histamine H3-receptors. On the other hand, post-synaptic histamine H1- and adrenaline alpha 1-receptors were closely localized and distributed mainly in the SPM fraction with increased specific activity. Only a negligible amount was recovered in the MYE fraction, unlike the histamine H3- and adrenaline alpha 2-receptors

  1. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    Science.gov (United States)

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.

  2. Disruption of behavior and brain metabolism in artificially reared rats.

    Science.gov (United States)

    Aguirre-Benítez, Elsa L; Porras, Mercedes G; Parra, Leticia; González-Ríos, Jacquelina; Garduño-Torres, Dafne F; Albores-García, Damaris; Avendaño, Arturo; Ávila-Rodríguez, Miguel A; Melo, Angel I; Jiménez-Estrada, Ismael; Mendoza-Garrido, Ma Eugenia; Toriz, César; Diaz, Daniel; Ibarra-Coronado, Elizabeth; Mendoza-Ángeles, Karina; Hernández-Falcón, Jesús

    2017-12-01

    Early adverse life stress has been associated to behavioral disorders that can manifest as inappropriate or aggressive responses to social challenges. In this study, we analyzed the effects of artificial rearing on the open field and burial behavioral tests and on GFAP, c-Fos immunoreactivity, and glucose metabolism measured in anxiety-related brain areas. Artificial rearing of male rats was performed by supplying artificial milk through a cheek cannula and tactile stimulation, mimicking the mother's licking to rat pups from the fourth postnatal day until weaning. Tactile stimulation was applied twice a day, at morning and at night, by means of a camel brush on the rat anogenital area. As compared to mother reared rats, greater aggressiveness, and boldness, stereotyped behavior (burial conduct) was observed in artificially reared rats which occurred in parallel to a reduction of GFAP immunoreactivity in somatosensory cortex, c-Fos immunoreactivity at the amygdala and primary somatosensory cortex, and lower metabolism in amygdala (as measured by 2-deoxi-2-[ 18 fluoro]-d-glucose uptake, assessed by microPET imaging). These results could suggest that tactile and/or chemical stimuli from the mother and littermates carry relevant information for the proper development of the central nervous system, particularly in brain areas involved with emotions and social relationships of the rat. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1413-1429, 2017. © 2017 Wiley Periodicals, Inc.

  3. Functional coupling between adenosine A1 receptors and G-proteins in rat and postmortem human brain membranes determined with conventional guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding or [35S]GTPγS/immunoprecipitation assay.

    Science.gov (United States)

    Odagaki, Yuji; Kinoshita, Masakazu; Ota, Toshio; Meana, J Javier; Callado, Luis F; Matsuoka, Isao; García-Sevilla, Jesús A

    2018-06-01

    Adenosine signaling plays a complex role in multiple physiological processes in the brain, and its dysfunction has been implicated in pathophysiology of neuropsychiatric diseases such as schizophrenia and affective disorders. In the present study, the coupling between adenosine A 1 receptor and G-protein was assessed by means of two [ 35 S]GTPγS binding assays, i.e., conventional filtration method and [ 35 S]GTPγS binding/immunoprecipitation in rat and human brain membranes. The latter method provides information about adenosine A 1 receptor-mediated Gα i-3 activation in rat as well as human brain membranes. On the other hand, adenosine-stimulated [ 35 S]GTPγS binding determined with conventional assay derives from functional activation of Gα i/o proteins (not restricted only to Gα i-3 ) coupled to adenosine A 1 receptors. The determination of adenosine concentrations in the samples used in the present study indicates the possibility that the assay mixture under our experimental conditions contains residual endogenous adenosine at nanomolar concentrations, which was also suggested by the results on the effects of adenosine receptor antagonists on basal [ 35 S]GTPγS binding level. The effects of adenosine deaminase (ADA) on basal binding also support the presence of adenosine. Nevertheless, the varied patterns of ADA discouraged us from adding ADA into assay medium routinely. The concentration-dependent increases elicited by adenosine were determined in 40 subjects without any neuropsychiatric disorders. The increases in %E max values determined by conventional assay according to aging and postmortem delay should be taken into account in future studies focusing on the effects of psychiatric disorders on adenosine A 1 receptor/G-protein interaction in postmortem human brain tissue.

  4. Radiation therapy of 9L rat brain tumors

    International Nuclear Information System (INIS)

    Henderson, S.D.; Kimler, B.F.; Morantz, R.A.

    1981-01-01

    The effects of radiation therapy on normal rats and on rats burdened with 9L brain tumors have been studied. The heads of normal rats were x-irradiated with single exposures ranging from 1000 R to 2700 R. Following acute exposures greater than 2100 R, all animals died in 8 to 12 days. Approximately 30% of the animals survived beyond 12 days over the range of 1850 to 1950 R; following exposures less than 1850 R, all animals survived the acute radiation effects, and median survival times increased with decreasing exposure. Three fractionated radiation schedules were also studied: 2100 R or 3000 R in 10 equal fractions, and 3000 R in 6 equal fractions, each schedule being administered over a 2 week period. The first schedule produced a MST of greater than 1 1/2 years; the other schedules produced MSTs that were lower. It was determined that by applying a factor of 1.9, similar survival responses of normal rats were obtained with single as with fractionated radiation exposures. Animals burdened with 9L gliosarcoma brain tumors normally died of the disease process within 18 to 28 days ater tumor inoculation. Both single and fractionated radiation therapy resulted in a prolongation of survival of tumor-burdened rats. This prolongation was found to be linearly dependent upon the dose; but only minimally dependent upon the time after inoculation at which therapy was initiated, or upon the fractionation schedule that was used. As with normal animals, similar responses were obtained with single as with fractionated exposures when a factor (1.9) was applied. All tumor-bearing animals died prior to the time that death was observed in normal, irradiated rats. Thus, the 9L gliosarcoma rat brain tumor model can be used for the pre-clinical experimental investigation of new therapeutic schedules involving radiation therapy and adjuvant therapies

  5. Epileptic rat brain tissue analyzed by 2D correlation Raman spectroscopy

    Science.gov (United States)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Lewandowski, Marian H.; Kowalski, Rafał; Palus, Katarzyna; Chrobok, Łukasz; Moskal, Paulina; Birczyńska, Malwina; Sozańska, Agnieszka

    2018-01-01

    Absence epilepsy is the neurological disorder characterized by the pathological spike-and wave discharges present in the electroencephalogram, accompanying a sudden loss of consciousness. Experiments were performed on brain slices obtained from young male WAG/Rij rats (2-3 weeks old), so that they were sampled before the appearance of brain-damaging seizures symptoms. Two differing brain areas of the rats' brain tissue were studied: the somatosensory cortex (Sc) and the dorsal lateral geniculate nucleus of the thalamus (DLG). The Raman spectra of the fresh brain scraps, kept during measurements in artificial cerebrospinal fluid, were collected using as an excitation source 442 nm, 514.5 nm, 785 nm and 1064 nm laser line. The average spectra were analyzed by 2D correlation method regarding laser line as an external perturbation. In 2D synchronous spectra positive auto-peaks corresponding to the Cdbnd C stretching and amide I band vibrations show maxima at 1660 cm- 1 and 1662 cm- 1 for Sc and DLG, respectively. The prominent auto-peak at 2937 cm- 1, originated from the CH3 mode in DLG brain area, seems to indicate the importance of methylation, considered to be significant in epileptogenesis. Synchronous and asynchronous correlations peaks, glutamic acid and gamma-aminobutyric acid (GABA), appear in Sc and DLG, respectively. In the 1730-1600 cm- 1 range occur cross-peaks which appearance might be triggered by glial fibrillary acidic protein (GFAP) activation.

  6. Blockade of MK-801-induced heat shock protein 72/73 in rat brain by antipsychotic and monoaminergic agents targeting D2, 5-HT1A, 5-HT2A and α1-adrenergic receptors.

    Science.gov (United States)

    Romón, Tamara; Planas, Anna M; Adell, Albert

    2014-02-01

    Noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists can produce positive and negative symptomatology as well as impairment of cognitive function that closely resemble those present in schizophrenia. In rats, these drugs induce a behavioral syndrome (characterized by hyperlocomotion and stereotypies), an enhanced glutamatergic transmission in the medial prefrontal cortex, and damage to retrosplenial cortical neurons in adult rats, which was measured as the induction of the stress protein 72/73 kDa heat shock protein (Hsp72/73). In the present work, we have examined the existence of possible differences among different antipsychotic drugs in their capacity to block immunolabeling of Hsp72/73 in the retrosplenial cortex of the rat induced by the potent NMDA receptor antagonist, MK- 801. In addition, the effects of selective monoaminergic agents were also studied to delineate the particular receptors responsible for the actions of antipsychotic drugs. Pretreatment with clozapine, chlorpromazine, olanzapine, ziprasidone--and to a lesser extent haloperidol-reduced the formation of Hsp72/73 protein in the rat retrosplenial cortex after the administration of MK-801. In addition, antagonism at dopamine D2 (raclopride), 5-HT2 (M100907) and α1- adrenoceptors (prazosin) as well as agonism at 5-HT1A receptors (BAY x 3702) also diminished the MK-801-induced number of cells labeled with Hsp72/73. Each of these effects may contribute to antipsychotic action. The results suggest that the efficacy of atypical antipsychotic drugs in the clinic may result from a combined effect on 5-HT2, 5-HT1A and α1-adrenergic receptors added to the classical dopamine D2 receptor antagonism.

  7. Protein-energy malnutrition alters thermoregulatory homeostasis and the response to brain ischemia.

    Science.gov (United States)

    Smith, Shari E; Prosser-Loose, Erin J; Colbourne, Frederick; Paterson, Phyllis G

    2011-02-01

    Co-existing protein-energy malnutrition (PEM), characterized by deficits in both protein and energy status, impairs functional outcome following global ischemia and has been associated with increased reactive gliosis. Since temperature is a key determinant of brain damage following an ischemic insult, the objective was to investigate whether alterations in post-ischemic temperature regulation contribute to PEM-induced reactive gliosis following ischemia. Male Sprague-Dawley rats (190-280 g) were assigned to either control diet (18% protein) or PEM induced by feeding a low protein diet (2% protein) for 7 days prior to either global ischemia or sham surgery. There was a rapid disruption in thermoregulatory function in rats fed the low protein diet as assessed by continuous recording of core temperature with bio-electrical sensor transmitters. Both daily temperature fluctuation and mean temperature increased within the first 24 hours, and these remained significantly elevated throughout the 7 day pre-ischemic period (p protein diet rapidly impairs the ability to maintain thermoregulatory homeostasis, and the resultant PEM also diminishes the ability to thermoregulate in response to a challenge. Since temperature regulation is a key determinant of brain injury following ischemia, these findings suggest that the pathophysiology of brain injury could be altered in stroke victims with coexisting PEM.

  8. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  9. An automatic rat brain extraction method based on a deformable surface model.

    Science.gov (United States)

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Immunologic differentiation of two high-affinity neurotensin receptor isoforms in the developing rat brain.

    Science.gov (United States)

    Boudin, H; Lazaroff, B; Bachelet, C M; Pélaprat, D; Rostène, W; Beaudet, A

    2000-09-11

    Earlier studies have demonstrated overexpression of NT1 neurotensin receptors in rat brain during the first 2 weeks of life. To gain insight into this phenomenon, we investigated the identity and distribution of NT1 receptor proteins in the brain of 10-day-old rats by using two different NT1 antibodies: one (Abi3) directed against the third intracellular loop and the other (Abi4) against the C-terminus of the receptor. Immunoblot experiments that used Abi3 revealed the presence of two differentially glycosylated forms of the NT1 receptor in developing rat brain: one migrating at 54 and the other at 52 kDa. Whereas the 54-kDa form was expressed from birth to adulthood, the 52-kDa form was detected only at 10 and 15 days postnatal. Only the 52-kDa isoform was recognized by Abi4. By immunohistochemistry, both forms of the receptor were found to be predominantly expressed in cerebral cortex and dorsal hippocampus, in keeping with earlier radioligand binding and in situ hybridization data. However, whereas Abi4 immunoreactivity was mainly concentrated within nerve cell bodies and extensively colocalized with the Golgi marker alpha-mannosidase II, Abi3 immunoreactivity was predominantly located along neuronal processes. These results suggest that the transitorily expressed 52-kDa protein corresponds to an immature, incompletely glycosylated and largely intracellular form of the NT1 receptor and that the 54-kDa protein corresponds to a mature, fully glycosylated, and largely membrane-associated form. They also indicate that antibodies directed against different sequences of G-protein-coupled receptors may yield isoform-specific immunohistochemical labeling patterns in mammalian brain. Finally, the selective expression of the short form of the NT1 receptor early in development suggests that it may play a specific role in the establishment of neuronal circuitry. Copyright 2000 Wiley-Liss, Inc.

  11. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level.

    Science.gov (United States)

    Yang, Yan; Ma, Delin; Xu, Weijie; Chen, Fuqiong; Du, Tingting; Yue, Wenzhu; Shao, Shiying; Yuan, Gang

    2016-01-01

    Type 2 diabetes (T2D) is a high risk factor for Alzheimer's disease (AD). Our previous study identified that hyperphosphorylation of tau protein, which is one of the pathophysiologic hallmarks of AD, also occurred in T2D rats' brain; while glucagon-like peptide-1 (GLP-1) mimetics, a type of drug used in T2D, could decrease the phosphorylation of tau, probably via augmenting insulin signaling pathway. The purpose of this study was to further explore the mechanisms that underlie the effect of exendin-4 (ex-4, a GLP-1 receptor agonist) in reducing tau phosphorylation. We found that peripheral ex-4 injection in T2D rats reduced hyperphosphorylation of tau protein in rat hippocampus, probably via increasing hippocampal insulin which activated insulin signaling. Furthermore, we found that ex-4 could neither activate insulin signaling, nor reduce tau phosphorylation in HT22 neuronal cells in the absence of insulin. These results suggested that insulin is required in reduction of tau hyperphosphorylation by ex-4 in brain rats with T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Disruption of the blood-brain interface in neonatal rat neocortex induces a transient expression of metallothionein in reactive astrocytes

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T

    1995-01-01

    rats were subjected to a localized freeze lesion of the neocortex of the right temporal cortex. This lesion results in a disrupted blood-brain interface, leading to extravasation of plasma proteins. From 16 h, reactive astrocytosis, defined as an increase in the number and size of cells expressing GFAP...

  13. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Pari, Leelavinothan; Murugavel, Ponnusamy

    2007-01-01

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P + K + -ATPase, Mg 2+ -ATPase and Ca 2+ -ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  14. Inhibition of calmodulin - regulated calcium pump activity in rat brain by toxaphene

    International Nuclear Information System (INIS)

    Trottman, C.H.; Moorthy, K.S.

    1986-01-01

    In vivo effects of toxaphene on calcium pump activity in rat brain synaptosomes was studied. Male Sprague-Dawley rats were dosed with toxaphene at 0,25,50, and 100 mg/kg/day for 3 days and sacrificed 24 h after last dose. Ca 2+ -ATPase activity and 45 Ca uptake were determined in brain P 2 fraction. Toxaphene inhibited both Ca 2+ -ATPase activity and 45 Ca 2+ uptake and the inhibition was dose dependent. Both substrate and Ca 2+ activation kinetics of Ca 2+ -ATPase indicated non-competitive type of inhibition as evidenced by decreased catalytic velocity but not enzyme-substrate affinity. The inhibited Ca 2+ -ATPase activity and Ca 2+ uptake were restored to normal level by exogenously added calmodulin which increased both velocity and affinity. The inhibition of Ca 2+ -ATPase activity and Ca 2+ uptake and restoration by calmodulin suggests that toxaphene may impair active calcium transport mechanisms by decreasing regulator protein calmodulin levels

  15. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    Science.gov (United States)

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  16. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  17. Some positive effects of pine oil on brain tissue in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Demir, E.; Keser, S.; Yilmiz, O.

    2016-01-01

    Pine oil has antiseptic, expectorant and antioxidant properties and has been used for treatment of rheumatism, respiratory and urinary system and skin diseases. We aimed to determine protective effects of pine oil (PO) on the lipid-soluble vitamins, cholesterol, GSH, total protein, MDA, fatty acid levels of brain tissue of the streptozotocin-induced diabetic rats. Rats were randomly divided into three groups: Control (C), streptozotocin (STZ), streptozotocin+pine oil (PO) groups. Streptozotocin was injected intraperitoneally single dose (65 mg/kg) to the STZ and PO groups for inducing of diabetes. To the PO group 1 mg/kg dose pine oil was intraperitoneally injected every next day. While the GSH and total protein were significantly decreased in the Streptozotocin (STZ) group, their levels were protected in PO group. MDA level was significantly increased in STZ group, its level significantly decreased in the PO group. Our results showed that PO has a positive effect on the GSH, total protein, and MDA levels in the brain tissue of diabetic rats. The PO and STZ administrations were affected by levels of some important fatty acids. The decrease in the MDA level and observed protecting effects can be attributed to PO extract, because it contains some important phytochemical constituents. (author)

  18. Ontogeny of phorbol ester receptors in rat brain studied by in vitro autoradiography

    International Nuclear Information System (INIS)

    Miyoshi, R.; Kito, S.

    1990-01-01

    The ontogeny of phorbol ester receptors, which have been considered to correspond to protein kinase C, in the rat brain was studied through in vitro autoradiography with 3 H-phorbol 12,13-dibutyrate ( 3 H-PDBu). The distribution of 3 H-PDBu binding sites in the adult rat brain was similar to the previous reports by other researchers. The developmental pattern of 3 H-PDBu binding sites varried with brain region. 3 H-PDBu binding sites in the amygdala, thalamus, stratum pyramidale of CA 1 of the hippocampus, dentate gyrus, superior colliculus, substantia nigra, interpeduncular nucleus and cerebellar molecular layer were postnatally increased to adult levels and after that they remained constant. On the other hand, in the stratum oriens and stratum radiatum of CA 1 of the hippocampus, and in the lateral and medial geniculate bodies, 3 H-PDBu binding sites reached peaks at 21 or 28 days of postnatal age and after that they declined to adult levels. The cerebellar granular layer showed a low level of 3 H-PDBu binding sites throughout all the ontogenetic stages. A distinct ontogenetic pattern of phorbol ester receptors in various regions of the brain may reflect a role of protein kinase C in the neural development of each discrete area. (Authors)

  19. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    Science.gov (United States)

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  1. Characteristic effects of heavy ion irradiation on the rat brain

    International Nuclear Information System (INIS)

    Sun, X.Z.; Takahashi, S.; Kubota, Y.; Yoshida, S.; Takeda, H.; Zhang, R.; Fukui, Y.

    2005-01-01

    Heavy ion irradiation has the feature to administer a large radiation dose in the vicinity of the endpoint in the beam range, and its irradiation system and biophysical characteristics are different from ordinary irradiation instruments like X- or gamma-rays. Using this special feature, heavy ion irradiation has been applied for cancer treatment. The safety and efficacy of heavy ion irradiator have been demonstrated to a great extent. For instance, brain tumors treated by heavy-ion beams became smaller or disappearance. However, fundamental research related to such clinical phenotypes and their underlying mechanisms are little known. In order to clarify characteristic effects of heavy ion irradiation on the brain, we developed an experimental system for irradiating a restricted region of the rat brain using heavy ion beams. The characteristics of the heavy ion beams, histological, behavioral and elemental changes were studied in the rat following heavy ion irradiation. Adult male Sprague-Dawley rats, aged 12 weeks and weighing 260-340 g (Shizuoka Laboratory Animal Center, Hamamatsu, Japan) were used. Rats were deeply anesthetized 10-15 minutes before irradiation with ketamine (40 mg/kg) and xylazine (10 mg/kg), immobilized in a specifically designed jig, and irradiated with 290 MeV/nucleon charged carbon beams in a dorsal-to ventral direction, The left cerebral hemispheres of the brain were irradiated at doses of 100 Gy charged carbon particles. The depth-dose distribution of the heavy ion beams was modified to make a spread-out bragg peak of 5 mm wide with a range modulator. The characteristics of the heavy-ion beams (field and depth of the heavy-ion beams) were examined by a measuring paraffin section of rat brain at different thickness. That extensive necrosis was observed between 2.5 mm and 7.5 mm depth from the surface of the rat head, suggesting a relatively high dose and uniform dose was delivered among designed depths and the spread-out bragg peak used here

  2. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain

    Science.gov (United States)

    Zhu, Meng-Yang; Wang, Wei-Ping; Cai, Zheng-Wei; Regunathan, Soundar; Ordway, Gregory

    2009-01-01

    Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with β-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress. PMID:18364017

  3. [Changes of the Expression of Brain Derived Neurotrophic Factors in Rats Trachea Induced by Acrolein Exposure].

    Science.gov (United States)

    Yuan, Bing; Yang, Rui-an; Zhao, Wei; Xu, Yan-yan; Dan, Qi-qin; Zhang, Yun-hui

    2015-07-01

    To investigate expressional changes of brain derived neurotrophic factor (BDNF) in the trachea of rats with acrolein inhalation. Twenty two SD rats were divided into 2 groups: the rats in experimental group were subjected to acrolein inhalation for the induce of trachea inflammatory injury, while the rats with saline (NS) inhalation were as control. All the rats were sacrificed in 1,3,6 weeks after acrolein (n = 11 at each time point) or saline inhalation (n = 11 at each time point), the samples of trachea epithelium were harvested. The immunohistochemistry and in situ hybridization was performed to detect the location of BDNF protein and mRNA in trachea. The expression of BDNF mRNA in the trachea tissues were determined by RT-PCR. There are positive cells in epithelium of trachea for BDNF protein and mRNA, with cytoplasm staining. The expression of BDNF mRNA in the trachea was increased at 1 week after acrolein inhalation (P 0.05). The inflammatory injury in trachea induced by acrolein exposure could be associated with the increased expression of BDNF. BDNF may be one of the crucial inflammatory factors in the process of inflammatory reaction in trachea with acrolein stimulation.

  4. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    International Nuclear Information System (INIS)

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  5. Effects of protein-deficient nutrition during rat pregnancy and development on developmental hindlimb crossing due to methylmercury intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, S.K.; Bai, Chengjiang [Montreal Univ., Quebec (Canada). Dept. de Medecine du Travail et Hygiene du Milieu

    2000-07-01

    Pregnant rats were fed either a control (20% protein) or low (3.5%) protein diet during gestation and lactation. The pups were separated from their mothers on postnatal day 21, and were given the same dient as their corresponding mothers. The groups of pups from each diet group were treated on either postnatal day 21 or postnatal day 60 with 7.5 mg methylmercury chloride (MeHgCl) per kg b.w. once daily by gavage for 10 consecutive days, and the development of ataxia (hind-limb corossing) was monitored. The offspring from mothers on the protein-deficient diet were found to be more sensitive to MeHg-induced ataxia than those on the protein-sufficient diet. The former accumulated more mercury in different brain regions than the latter. The rates of protein synthesis in different brain regions of the offspring fed the protein-deficient diet were significantly reduced compared with the rates in those fed the protein-sufficient diet. However, MeHg treatment did not significantly modify the rates of such protein synthesis further in protein-deficient rats. Thus, a significantly much higher inhibition of the intrinsic rates of protein synthesis in different brain regions due to severe protein deficiency, as observed in this study, may be partly responsible for the increased susceptibility of developing rats fed a protein-deficient diet to MeHg-induced ataxia, or hindlimb crossing, although other factor(s) might also be involved. (orig.)

  6. Effects of post mortem interval and gender in DNA base excision repair activities in rat brains

    Energy Technology Data Exchange (ETDEWEB)

    Soltys, Daniela Tathiana; Pereira, Carolina Parga Martins; Ishibe, Gabriela Naomi; Souza-Pinto, Nadja Cristhina de, E-mail: nadja@iq.usp.br

    2015-06-15

    Most human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities. To investigate these effects, in a controlled genetic background, base excision repair (BER) activities were measured in protein extracts obtained from Wistar rat brains from different genders and defined PMI up to 24 hours, using a novel fluorescent-based in vitro incision assay. Uracil and AP-site incision activity in nuclear and mitochondrial extracts were similar in all groups included in this study. Our results show that gender and PMI up to 24 hours have no influence in the activities of the BER proteins UDG and APE1 in rat brains. These findings demonstrate that these variables do not interfere on the BER activities included in these study, and provide a security window to work with UDG and APE1 proteins in samples of post mortem origin.

  7. Effects of post mortem interval and gender in DNA base excision repair activities in rat brains

    International Nuclear Information System (INIS)

    Soltys, Daniela Tathiana; Pereira, Carolina Parga Martins; Ishibe, Gabriela Naomi; Souza-Pinto, Nadja Cristhina de

    2015-01-01

    Most human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities. To investigate these effects, in a controlled genetic background, base excision repair (BER) activities were measured in protein extracts obtained from Wistar rat brains from different genders and defined PMI up to 24 hours, using a novel fluorescent-based in vitro incision assay. Uracil and AP-site incision activity in nuclear and mitochondrial extracts were similar in all groups included in this study. Our results show that gender and PMI up to 24 hours have no influence in the activities of the BER proteins UDG and APE1 in rat brains. These findings demonstrate that these variables do not interfere on the BER activities included in these study, and provide a security window to work with UDG and APE1 proteins in samples of post mortem origin

  8. Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.

    Science.gov (United States)

    Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława

    2016-02-01

    Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain.

    Science.gov (United States)

    Burkhart, Annette; Andresen, Thomas Lars; Aigner, Achim; Thomsen, Louiza Bohn; Moos, Torben

    2017-07-01

    Treatment of chronic disorders affecting the central nervous system (CNS) is complicated by the inability of drugs to cross the blood-brain barrier (BBB). Non-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various transfection vectors, with regard to increasing the transfection efficiency without disrupting the BBB integrity. Lipofectamine 3000™ was the most potent vector compared to polyethylenimine (PEI) and Turbofect. When co-cultured with astrocytes, the genetically modified RBECs secreted recombinant EPO into the cell culture medium both luminally and abluminally, and despite lower levels of EPO reaching the abluminal chamber, the amount of recombinant EPO was sufficient to evolve a biological effect on astrocytes cultured at the abluminal side in terms of upregulated gene expression of brain-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB.

  10. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    Science.gov (United States)

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  11. Brain and behavioral perturbations in rats following Western diet access.

    Science.gov (United States)

    Hargrave, Sara L; Davidson, Terry L; Lee, Tien-Jui; Kinzig, Kimberly P

    2015-10-01

    Energy dense "Western" diets (WD) are known to cause obesity as well as learning and memory impairments, blood-brain barrier damage, and psychological disturbances. Impaired glucose (GLUT1) and monocarboxylate (MCT1) transport may play a role in diet-induced dementia development. In contrast, ketogenic diets (KD) have been shown to be neuroprotective. We assessed the effect of 10, 40 and 90 days WD, KD and Chow maintenance on spontaneous alternation (SA) and vicarious trial and error (VTE) behaviors in male rats, then analyzed blood glucose, insulin, and ketone levels; and hippocampal GLUT1 and MCT1 mRNA. Compared to Chow and KD, rats fed WD had increased 90 day insulin levels. SA was decreased in WD rats at 10, but not 40 or 90 days. VTE was perturbed in WD-fed rats, particularly at 10 and 90 days, indicating hippocampal deficits. WD rats had lower hippocampal GLUT1 and MCT1 expression compared to Chow and KD, and KD rats had increased 90 day MCT1 expression compared to Chow and WD. These data suggest that WD reduces glucose and monocarboxylate transport at the hippocampus, which may result in learning and memory deficits. Further, KD consumption may be useful for MCT1 transporter recovery, which may benefit cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test.

  13. Effects of insulin combined with idebenone on blood-brain barrier permeability in diabetic rats.

    Science.gov (United States)

    Sun, Yan-Na; Liu, Li-Bo; Xue, Yi-Xue; Wang, Ping

    2015-04-01

    This study investigates the effect of insulin combined with idebenone on blood-brain barrier (BBB) permeability in experimental streptozotocin-induced diabetic rats as well as the underlying mechanisms. With a diabetic rat model, we show that insulin and idebenone normalize body weight and water intake and restore BBB permeability and that their combination displays a synergistic effect. The results from transmission electron microscopy show that the combination of insulin and idebenone significantly closed the tight junction (TJ) in diabetic rats. The results from Western blotting in diabetic rats show that the upregulation of TJ-associated proteins occludin, and zonula occludens (ZO)-1 caused by the combination of insulin and idebenone is more remarkable than that with either agent alone. In addition, the activations of reactive oxygen species (ROS) and advanced glycation end products (AGEs) and the expression levels of receptors for advanced glycation end-products (RAGE) and nuclear factor-κB (NF-κB) were significantly decreased after treatment with insulin and idebenone in diabetic rats. These results suggest that the combination of insulin and idebenone could decrease the BBB permeability in diabetic rats by upregulating the expression of occludin, claudin-5, and ZO-1 and that the ROS/AGE/RAGE/NF-κB signal pathway might be involved in the process. © 2014 Wiley Periodicals, Inc.

  14. Antioxidant effect of sericin in brain and peripheral tissues of oxidative stress induced hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Meetali Deori

    2016-09-01

    Full Text Available This study evaluated the antioxidant effect of crude sericin extract (CSE from Antheraea assamenisis (Aa in high cholesterol fed rats. Investigation was conducted by administering graded oral dose of 0.25 and 0.5 gm/kg body weight (b.w./day of CSE for a period of 28 days. Experiments were conducted in 30 rats and were divided into five groups: normal control (NC, high cholesterol fed (HCF, HCF + 0.065 gm/kg b.w./day fenofibrate (FF, HCF + sericin 0.25 gm/kg b.w./day (LSD and HCF + sericin 0.5 gm/kg b.w./day (HSD. In brain, heart, liver, serum and kidney homogenates nitric oxide (NO, thiobarbituric acid reactive substances (TBARS, protein carbonyl content (PCC, superoxide dismutase (SOD, reduced glutathione (GSH was measured. LSD treatment prevented the alterations in GSH and PCC levels in hypercholesterolemic (HyC brain tissue homogenates of rats. CSE lowers the serum total cholesterol level in HyC rats by promoting fecal cholesterol (FC excretion. CSE increases FC level by promoting inhibition of cholesterol absorption in intestine. The endogenous antioxidant reduced significantly and the oxidative stress (OS marker TBARS level increases significantly in the peripheral tissue of HCF rats. However, the administration of LSD and HSD exhibited a good antioxidant activity by reducing the TBARS level and increasing the endogenous antioxidant in peripheral tissue. In addition, a histological examination revealed loss of normal liver and kidney architecture in cholesterol fed rats which were retained in sericin treated groups. The findings of this study suggested that CSE improves hypercholesterolemia in rats fed a HyC diet. Clinical relevance of this effect of CSE seems worthy of further studies.

  15. Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.

    Science.gov (United States)

    Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2017-08-01

    Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

  16. Transport of cysteate by synaptosomes isolated from rat brain

    International Nuclear Information System (INIS)

    Wilson, D.F.; Pastuszko, A.

    1986-01-01

    Synaptosomes isolated from rat brain were observed to take up cysteic acid by a high affinity transport system (K/sub M = 12.3 +/- 2.1 μM; V/sub m/ = 2.5 n mole/mg protein/minute). This uptake was competitively inhibited by aspartate (K/sub i/ = 13.3 +/- 1.8 μM) and cysteine sulfinate (K/sub i/ = 13.3 +/- 3.3 μM). Addition of extrasynaptosomal cysteate, aspartate or cysteine sulfinate to synaptosomes loaded with [ 35 S] cysteate induced rapid efflux of the cysteate. This efflux was via stoichiometric exchange of amino acids with half maximal rates at 5.0 +/- 1.1 μM aspartate or 8.0 +/- 1.3 μM cysteine sulfinate. Conversely, added extrasynaptosomal cysteate exchanged for endogenous aspartate and glutamate with half maximal rates at 5.0 +/- 0.4 μM cysteate. In the steady state after maximal accumulation of cysteate, the intrasynaptosomal cysteate concentrations exceeded the extrasynaptosomal concentrations by up to 10,000 fold. The measured concentration ratios were the same, within experimental error, as those for aspartate and glutamate. Depolarization, with either high K + or veratridine, of the plasma membrane of synaptosomes loaded with cysteate caused parallel release of cysteate, aspartate and glutamate. It is concluded that neurons transport cysteate, cysteine sulfinate, aspartate and glutamate with the same transport system. This transport system catalyzes homoexchange and heteroexchange as well as net uptake and release of all these amino acids

  17. Purification and properties of adenosine kinase from rat brain.

    Science.gov (United States)

    Yamada, Y; Goto, H; Ogasawara, N

    1980-12-04

    Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to apparent homogeneity from rat brain by (NH4)2SO4 fractionation, affinity chromatography on AMP-Sepharose 4B, gel filtration with Sephadex G-100, and DE-52 cellulose column chromatography. The yield was 56% of the initial activity with a final specific activity of 7.8 mumol/min per mg protein. The molecular weight was estimated as 38 000 by gel filtration with Sephadex G-100 and 41 000 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 20% that of adenosine phosphorylation. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad pH optimum at pH 7.5-8.5. The Km value for adenosine was 0.2 microM and the maximum activity was observed at 0.5 microM. At higher concentrations of adenosine, the activity was strongly inhibited. The Km value for ATP was 0.02 mM and that for Mg2+ was 0.1 mM. GTP, dGTP, dATP and UTP were also proved to be effective phosphate donors. Co2+ was as effective as Mg2+, and Ca2+, Mn2+ or Ni2+ showed about 50% of the activity for Mg2+. The kinase is quite unstable, but stable in the presence of a high concentration of salt; e.g., 0.15 M KCl.

  18. Estrone is neuroprotective in rats after traumatic brain injury.

    Science.gov (United States)

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (pcerebral cortical levels of TUNEL-positive staining (pprotective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  19. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs.

    Science.gov (United States)

    Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu

    2017-01-01

    Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.

  20. Characterization and visualization of cholecystokinin receptors in rat brain using [3H]pentagastrin

    International Nuclear Information System (INIS)

    Gaudreau, P.; Quirion, R.; St Pierre, S.; Pert, C.B.

    1983-01-01

    [ 3 H]Pentagastrin binds specifically to an apparent single class of CCK receptors on slide-mounted sections of rat brain (KD . 5.6 nM; Bmax . 36.6 fmol/mg protein). This specific binding is temperature-dependent and regulated by ions and nucleotides. The relative potencies of C-terminal fragments of CCK-8(SO 3 H), benzotript and proglumide in inhibiting specific [ 3 H]pentagastrin binding to CCK brain receptors reinforce the concept of different brain and pancreas CCK receptors. CCK receptors were visualized by using tritium-sensitive LKB film analyzed by computerized densitometry. CCK receptors are highly concentrated in the cortex, dentate gyrus, granular and external plexiform layers of the olfactory bulb, anterior olfactory nuclei, olfactory tubercle, claustrum, accumbens nucleus, some nuclei of the amygdala, thalamus and hypothalamus

  1. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D.; Morris, G.M.

    2000-01-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED 50 ) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  2. Estrogen restores brain insulin sensitivity in ovariectomized non-obese rats, but not in ovariectomized obese rats.

    Science.gov (United States)

    Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2014-06-01

    We previously demonstrated that obesity caused the reduction of peripheral and brain insulin sensitivity and that estrogen therapy improved these defects. However, the beneficial effect of estrogen on brain insulin sensitivity and oxidative stress in either ovariectomy alone or ovariectomy with obesity models has not been determined. We hypothesized that ovariectomy alone or ovariectomy with obesity reduces brain insulin sensitivity and increases brain oxidative stress, which are reversed by estrogen treatment. Thirty female rats were assigned as either sham-operated or ovariectomized. After the surgery, each group was fed either a normal diet or high-fat diet for 12 weeks. At week 13, rats in each group received either the vehicle or estradiol for 30 days. At week 16, blood and brain were collected for determining the peripheral and brain insulin sensitivity as well as brain oxidative stress. We found that ovariectomized rats and high-fat diet fed rats incurred obesity, reduced peripheral and brain insulin sensitivity, and increased brain oxidative stress. Estrogen ameliorated peripheral insulin sensitivity in these rats. However, the beneficial effect of estrogen on brain insulin sensitivity and brain oxidative stress was observed only in ovariectomized normal diet-fed rats, but not in ovariectomized high fat diet-fed rats. Our results suggested that reduced brain insulin sensitivity and increased brain oxidative stress occurred after either ovariectomy or obesity. However, the reduced brain insulin sensitivity and the increased brain oxidative stress in ovariectomy with obesity could not be ameliorated by estrogen treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature

    Directory of Open Access Journals (Sweden)

    Qing-quan Li

    2015-01-01

    Full Text Available The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  4. Prenatal Protein Malnutrition Decreases KCNJ3 and 2DG Activity in Rat Prefrontal Cortex

    Science.gov (United States)

    Amaral, A.C.; Jakovcevski, M.; McGaughy, J.A.; Calderwood, S.K.; Mokler, D.J.; Rushmore, R.J.; Galler, J.R.; Akbarian, S.A.; Rosene, D.L.

    2014-01-01

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with 14C-2-deoxyglucose. Results showed decreased activation in PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  5. Molecular cloning of cDNA for rat brain metallothionein-2 and regulation of its gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Saijoh, Kiyofumi; Sumino, Kimiaki [Department of Public Health, Kobe University School of Medicine (Japan); Kuno, Takayoshi; Shuntoh, Hisato; Tanaka, Chikako [Department of Pharmacology, Kobe University of Medicine (Japan)

    1989-01-01

    A rat brain metallothionein-II (MT-II) complementary DNA (cDNA) clone was isolated from a cDNA plasmid library, which was prepared from non-treated rat brain mRNA, by a colony screening procedure using /sup 32/P-labeled synthetic oligonucleotide probes. It is deduced that the clone encodes for a protein of 61 amino acids comprising 20 cysteines, which is highly homologous to MT-IIs in other species. Northern blot analysis demonstrated major mRNA species in the brain, liver and kidneys (approximately 350 b in size), which is induced in response to dexamethasone, zinc, cadmium and mercury but not to methyl mercury. These findings confirm that MT-II genes are expressed and regulated both by steroid and heavy metals in the brain as well as in peripheral organs. (author).

  6. Molecular cloning of cDNA for rat brain metallothionein-2 and regulation of its gene expression

    International Nuclear Information System (INIS)

    Saijoh, Kiyofumi; Sumino, Kimiaki; Kuno, Takayoshi; Shuntoh, Hisato; Tanaka, Chikako

    1989-01-01

    A rat brain metallothionein-II (MT-II) complementary DNA (cDNA) clone was isolated from a cDNA plasmid library, which was prepared from non-treated rat brain mRNA, by a colony screening procedure using 32 P-labeled synthetic oligonucleotide probes. It is deduced that the clone encodes for a protein of 61 amino acids comprising 20 cysteines, which is highly homologous to MT-IIs in other species. Northern blot analysis demonstrated major mRNA species in the brain, liver and kidneys (approximately 350 b in size), which is induced in response to dexamethasone, zinc, cadmium and mercury but not to methyl mercury. These findings confirm that MT-II genes are expressed and regulated both by steroid and heavy metals in the brain as well as in peripheral organs. (author)

  7. Marrow stromal cells administrated intracisternally to rats after traumatic brain injury migrate into the brain and improve neurological function

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹

    2004-01-01

    @@ Marrow stromal cells(MSCs) have been reported to transplant into injured brain via intravenous or intraarterial or direct intracerebral administration.1-3 In the present study, we observed that MSCs migrated into the brain, survived and diffeneriated into neural cells after they were injected into the cisterna magna of rats, and that the behavior of the rats after traumatic brain injury (TBI) was improved.

  8. Fusogenic properties of Sendai virosome envelopes in rat brain preparations.

    Science.gov (United States)

    de Fiebre, C M; Bryant, S O; Notabartolo, D; Wu, P; Meyer, E M

    1993-10-01

    Sendai virosomes were characterized with respect to their ability to bind to, fuse with, and introduce substances into several rat brain preparations. Encapsulation efficiency for Sendai virosomes was enhanced but binding to cerebral cortical P2 preparations was attenuated by addition of bovine brain phosphatidylcholine during reconstitution. A higher percentage of Sendai virosomes than phosphatidylcholine liposomes appeared to bind to, fuse with and subsequently deliver [14C]sucrose into osmotically labile pools of the P2 preparation. Fusogenic activity was estimated by measuring dequenching of fluorescently labelled N-NBD-phosphatidylethanolamine. More virosomally encapsulated [14C]sucrose was bound to the P2 fraction than introduced into osmotically labile organelles, and the fraction of vesicles undergoing fusion was intermediate between these two values. Non-encapsulated [14C]sucrose did not bind to and was not taken up by the P2 fraction in a quantifiable manner. Virosomal envelopes also bound to primary cultures of rat brain neurons and glia in an apparently saturable manner. Addition of increasing amounts of the adenoassociated virus-derived vector pJDT95 increased encapsulation efficiency, and virosomes reconstituted in the presence of 60 micrograms DNA retained most of their binding activity (5.4% of total label) compared to those containing [14C]sucrose alone (8.4%). These data indicate that Sendai virosomes may be useful in the delivery of substances into brain-derived tissues, potentially for the modulation of gene expression and neurotransmission.

  9. Effects of acupuncture on tissue oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1978-04-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by smypathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture points (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible and was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase in inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes increased brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients.

  10. Proteomic Analysis of Parkin Isoforms Expression in Different Rat Brain Areas.

    Science.gov (United States)

    D'Amico, Agata Grazia; Maugeri, Grazia; Reitano, Rita; Cavallaro, Sebastiano; D'Agata, Velia

    2016-10-01

    PARK2 gene's mutations are related to the familial form of juvenile Parkinsonism, also known as the autosomic recessive juvenile Parkinsonism. This gene encodes for parkin, a 465-amino acid protein. To date, a large number of parkin isoforms, generated by an alternative splicing mechanism, have been described. Currently, Gene Bank lists 27 rat PARK2 transcripts, which matches to 20 exclusive parkin alternative splice variants. Despite the existence of these isoforms, most of the studies carried out so far, have been focused only on the originally cloned parkin. In this work we have analyzed the expression profile of parkin isoforms in some rat brain areas including prefrontal cortex, hippocampus, substantia nigra and cerebellum. To discriminate among these isoforms, we detected their localization through the use of two antibodies that are able to identify different domains of the parkin canonical sequence. Our analysis has revealed that at least fourteen parkin isoforms are expressed in rat brain with a various distribution in the regions analyzed. Our study might help to elucidate the pathophysiological role of these proteins in the central nervous system.

  11. Minocycline restores cognitive-relative altered proteins in young bile duct-ligated rat prefrontal cortex.

    Science.gov (United States)

    Li, Shih-Wen; Chen, Yu-Chieh; Sheen, Jiunn-Ming; Hsu, Mei-Hsin; Tain, You-Lin; Chang, Kow-Aung; Huang, Li-Tung

    2017-07-01

    Bile duct ligation (BDL) model is used to study hepatic encephalopathy accompanied by cognitive impairment. We employed the proteomic analysis approach to evaluate cognition-related proteins in the prefrontal cortex of young BDL rats and analyzed the effect of minocycline on these proteins and spatial memory. BDL was induced in young rats at postnatal day 17. Minocycline as a slow-release pellet was implanted into the peritoneum. Morris water maze test and two-dimensional liquid chromatography-tandem mass spectrometry were used to evaluate spatial memory and prefrontal cortex protein expression, respectively. We used 2D/LC-MS/MS to analyze for affected proteins in the prefrontal cortex of young BDL rats. Results were verified with Western blotting, immunohistochemistry, and quantitative real-time PCR. The effect of minocycline in BDL rats was assessed. BDL induced spatial deficits, while minocycline rescued it. Collapsin response mediator protein 2 (CRMP2) and manganese-dependent superoxide dismutase (MnSOD) were upregulated and nucleoside diphosphate kinase B (NME2) was downregulated in young BDL rats. BDL rats exhibited decreased levels of brain-derived neurotrophic factor (BDNF) mRNA as compared with those by the control. However, minocycline treatment restored CRMP2 and NME2 protein expression, BDNF mRNA level, and MnSOD activity to control levels. We demonstrated that BDL altered the expression of CRMP2, NME2, MnSOD, and BDNF in the prefrontal cortex of young BDL rats. However, minocycline treatment restored the expression of the affected mediators that are implicated in cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Influence of histidine on zinc transport into rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto [Shizuoka Univ. (Japan). School of Pharmaceutical Sciences

    2000-06-01

    The brain of rats injected intravenously with {sup 65}Zn-His or {sup 65}ZnCl{sub 2} was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from {sup 65}Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from {sup 65}Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of {sup 65}Zn-His in the brain was similar to that of {sup 65}ZnCl{sub 2} group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the {sup 65}Zn-His group from the blood was higher than that of the {sup 65}ZnCl{sub 2} group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  13. Influence of histidine on zinc transport into rat brain

    International Nuclear Information System (INIS)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto

    2000-01-01

    The brain of rats injected intravenously with 65 Zn-His or 65 ZnCl 2 was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from 65 Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from 65 Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of 65 Zn-His in the brain was similar to that of 65 ZnCl 2 group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the 65 Zn-His group from the blood was higher than that of the 65 ZnCl 2 group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  14. Antioxidant Role of Pomegranates on Liver and Brain Tissues of Rats Exposed to an Organophosphorus Insecticide

    International Nuclear Information System (INIS)

    Abd Elmonem, H.A.

    2014-01-01

    Toxicities of organophosphorus insecticides cause oxidative damage on many organs such as the liver and brain due to generation of reactive oxygen species. Pomegranate is among the richest fruit in poly - phenols. The aim of this study was to compare between the antioxidant strength of pomegranate juice (PJ) and pomegranate molasses (PM) and their effects on alanine transferase (ALT), aspartate aminotransferase (AST), Alkaline phosphatase (ALP) and total protein (TP) in liver and levels of malondialdehyde (MAD), reduced glutathione (GSH) and nitric oxide (NO) in rat liver and brain tissues exposed to 1/10 LD 50 diazinon (DI). Six groups each of 6 male albino rats were used comprising control, DI, PJ, PM, PJ + DI and PM + DI for 15 days. The activities of ALT, AST, and TP concentration in liver have been increased due to treatment of rats with DI. These increases restored to normalcy when rats were supplemented with PJ or PM with DI. The results demonstrate that treatment with DI induced significant increase in MDA and NO concentrations and significant decrease in GSH levels of liver and brain tissues. The administration of PJ or PM along with DI significant decrease in MDA and NO levels and significant increase in GSH level compared to DI-group. The present study suggest that PJ or PM has a potential protective effect as it can elevate antioxidant defense system, lessens induced oxidative dam - ages and protect the brain and liver tissue against DI-induced toxicity. In addition, comaring PJ with PM it was noticed that PJ had higher antioxidant activity as evidenced by increased GSH content and decreased NO level in the liver by greater extend than PM.

  15. Extended postnatal brain development in the longest-lived rodent: prolonged maintenance of neotenous traits in the naked mole-rat brain

    Directory of Open Access Journals (Sweden)

    Miranda E. Orr

    2016-11-01

    Full Text Available The naked mole-rat (NMR is the longest-lived rodent with a maximum lifespan >31 years. Intriguingly, fully-grown naked mole-rats (NMRs exhibit many traits typical of neonatal rodents. However, little is known about NMR growth and maturation, and we question whether sustained neotenous features when compared to mice, reflect an extended developmental period, commensurate with their exceptionally long life. We tracked development from birth to three years of age in the slowest maturing organ, the brain, by measuring mass, neural stem cell proliferation, axonal and dendritic maturation, synaptogenesis and myelination. NMR brain maturation was compared to data from similar sized rodents, mice, and to that of long-lived mammals, humans and non-human primates. We found that at birth, NMR brains are significantly more developed than mice, and rather are more similar to those of newborn primates, with clearly laminated hippocampi and myelinated white matter tracts. Despite this more mature brain at birth than mice, postnatal NMR brain maturation occurs at a far slower rate than mice, taking four-times longer than required for mice to fully complete brain development. At four months of age, NMR brains reach 90% of adult size with stable neuronal cytostructural protein expression whereas myelin protein expression does not plateau until nine months of age in NMRs, and synaptic protein expression continues to change throughout the first three years of life. Intriguingly, NMR axonal composition is more similar to humans than mice whereby NMRs maintain expression of three-repeat (3R tau even after brain growth is complete; mice experience an abrupt downregulation of 3R tau by postnatal day 8 which continues to diminish through six weeks of age. We have identified key ages in NMR cerebral development and suggest that the long-lived NMR may provide neurobiologists an exceptional model to study brain developmental processes that are compressed in common short

  16. Extended Postnatal Brain Development in the Longest-Lived Rodent: Prolonged Maintenance of Neotenous Traits in the Naked Mole-Rat Brain.

    Science.gov (United States)

    Orr, Miranda E; Garbarino, Valentina R; Salinas, Angelica; Buffenstein, Rochelle

    2016-01-01

    The naked mole-rat (NMR) is the longest-lived rodent with a maximum lifespan >31 years. Intriguingly, fully-grown naked mole-rats (NMRs) exhibit many traits typical of neonatal rodents. However, little is known about NMR growth and maturation, and we question whether sustained neotenous features when compared to mice, reflect an extended developmental period, commensurate with their exceptionally long life. We tracked development from birth to 3 years of age in the slowest maturing organ, the brain, by measuring mass, neural stem cell proliferation, axonal, and dendritic maturation, synaptogenesis and myelination. NMR brain maturation was compared to data from similar sized rodents, mice, and to that of long-lived mammals, humans, and non-human primates. We found that at birth, NMR brains are significantly more developed than mice, and rather are more similar to those of newborn primates, with clearly laminated hippocampi and myelinated white matter tracts. Despite this more mature brain at birth than mice, postnatal NMR brain maturation occurs at a far slower rate than mice, taking four-times longer than required for mice to fully complete brain development. At 4 months of age, NMR brains reach 90% of adult size with stable neuronal cytostructural protein expression whereas myelin protein expression does not plateau until 9 months of age in NMRs, and synaptic protein expression continues to change throughout the first 3 years of life. Intriguingly, NMR axonal composition is more similar to humans than mice whereby NMRs maintain expression of three-repeat (3R) tau even after brain growth is complete; mice experience an abrupt downregulation of 3R tau by postnatal day 8 which continues to diminish through 6 weeks of age. We have identified key ages in NMR cerebral development and suggest that the long-lived NMR may provide neurobiologists an exceptional model to study brain developmental processes that are compressed in common short-lived laboratory animal models.

  17. Brain Metabolism Alterations Induced by Pregnancy Swimming Decreases Neurological Impairments Following Neonatal Hypoxia-Ischemia in Very Immature Rats

    Directory of Open Access Journals (Sweden)

    Eduardo F. Sanches

    2018-06-01

    Full Text Available Introduction: Prematurity, through brain injury and altered development is a major cause of neurological impairments and can result in motor, cognitive and behavioral deficits later in life. Presently, there are no well-established effective therapies for preterm brain injury and the search for new strategies is needed. Intra-uterine environment plays a decisive role in brain maturation and interventions using the gestational window have been shown to influence long-term health in the offspring. In this study, we investigated whether pregnancy swimming can prevent the neurochemical metabolic alterations and damage that result from postnatal hypoxic-ischemic brain injury (HI in very immature rats.Methods: Female pregnant Wistar rats were divided into swimming (SW or sedentary (SE groups. Following a period of adaptation before mating, swimming was performed during the entire gestation. At postnatal day (PND3, rat pups from SW and SE dams had right common carotid artery occluded, followed by systemic hypoxia. At PND4 (24 h after HI, the early neurochemical profile was measured by 1H-magnetic resonance spectroscopy. Astrogliosis, apoptosis and neurotrophins protein expression were assessed in the cortex and hippocampus. From PND45, behavioral testing was performed. Diffusion tensor imaging and neurite orientation dispersion and density imaging were used to evaluate brain microstructure and the levels of proteins were quantified.Results: Pregnancy swimming was able to prevent early metabolic changes induced by HI preserving the energetic balance, decreasing apoptotic cell death and astrogliosis as well as maintaining the levels of neurotrophins. At adult age, swimming preserved brain microstructure and improved the performance in the behavioral tests.Conclusion: Our study points out that swimming during gestation in rats could prevent prematurity related brain damage in progeny with high translational potential and possibly interesting cost

  18. Structures and Interactions of Proteins in the Brain

    DEFF Research Database (Denmark)

    Nielsen, Lau Dalby

    The protein low density lipoprotein receptor related protein 1 (LRP1) plays multiple roles in the biology of amyloid β peptide (Aβ) and Alzheimer’s disease. LRP1 is very important for clearance of Aβ both in the brain and by facilitating Aβ export over the blood brain barrier. In spite of the app......The protein low density lipoprotein receptor related protein 1 (LRP1) plays multiple roles in the biology of amyloid β peptide (Aβ) and Alzheimer’s disease. LRP1 is very important for clearance of Aβ both in the brain and by facilitating Aβ export over the blood brain barrier. In spite...... coding for Arc protein has been domesticated from the same branch of genes that has given rise to retroviruses. We show that even despite the large evolutional distance between Arc and retroviruses. Despite large evolutionary distance Arc still self-assemble into higher order structures that resembles...

  19. The Neuroprotective Effect of Cornus mas on Brain Tissue of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Renata Francik

    2014-01-01

    Full Text Available Cornelian cherry (Cornus mas is a valuable source of phenolic antioxidants. Flavonoid derivatives as nonenzymatic antioxidants are important in the pathophysiology of many diseases including neurological disorders (e.g., Alzheimer’s disease or heart disease. In this study, we examined the effect of an addition of freeze-dried fruit of cornelian cherry on three types of diets: control diet, fructose diet, and diet enriched in fats (high-fat diet. This effect was studied by determining the following antioxidant parameters in both brain tissue and plasma in rats: catalase, ferric reducing ability of plasma, paraoxonase, protein carbonyl groups, and free thiol groups. Results indicate that both fructose diet and high-fat diet affect the antioxidant capacity of the organism. Furthermore, an addition of cornelian cherry resulted in increased activity of catalase in brain tissue, while in plasma it caused the opposite effect. In turn, with regard to paraoxonase activity in both brain tissue and plasma, it had a stimulating effect. Adding cornelian cherry to the tested diets increased the activity of PON in both tested tissues. Moreover, protective effect of fruits of this plant was observed in the process of oxidation of proteins by decreasing levels of protein carbonyl groups and thiol groups in brain tissue as well as in plasma.

  20. Impaired mitochondrial respiration and protein nitration in the rat hippocampus after acute inhalation of combustion smoke

    International Nuclear Information System (INIS)

    Lee, Heung M.; Reed, Jason; Greeley, George H.; Englander, Ella W.

    2009-01-01

    Survivors of massive inhalation of combustion smoke endure critical injuries, including lasting neurological complications. We have previously reported that acute inhalation of combustion smoke disrupts the nitric oxide homeostasis in the rat brain. In this study, we extend our findings and report that a 30-minute exposure of awake rats to ambient wood combustion smoke induces protein nitration in the rat hippocampus and that mitochondrial proteins are a sensitive nitration target in this setting. Mitochondria are central to energy metabolism and cellular signaling and are critical to proper cell function. Here, analyses of the mitochondrial proteome showed elevated protein nitration in the course of a 24-hour recovery following exposure to smoke. Mass spectrometry identification of several significantly nitrated mitochondrial proteins revealed diverse functions and involvement in central aspects of mitochondrial physiology. The nitrated proteins include the ubiquitous mitochondrial creatine kinase, F1-ATP synthase α subunit, dihydrolipoamide dehydrogenase (E3), succinate dehydrogenase Fp subunit, and voltage-dependent anion channel (VDAC1) protein. Furthermore, acute exposure to combustion smoke significantly compromised the respiratory capacity of hippocampal mitochondria. Importantly, elevated protein nitration and reduced mitochondrial respiration in the hippocampus persisted beyond the time required for restoration of normal oxygen and carboxyhemoglobin blood levels after the cessation of exposure to smoke. Thus, the time frame for intensification of the various smoke-induced effects differs between blood and brain tissues. Taken together, our findings suggest that nitration of essential mitochondrial proteins may contribute to the reduction in mitochondrial respiratory capacity and underlie, in part, the brain pathophysiology after acute inhalation of combustion smoke

  1. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Abdolreza Babaee

    2015-09-01

    Full Text Available Objective(s:Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis, as well as inhibition of apoptosis in brain tissue of male rats after TBI. Materials and Methods: The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg. All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. Results: The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P

  2. The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain.

    Science.gov (United States)

    Grissa, Intissar; Guezguez, Sabrine; Ezzi, Lobna; Chakroun, Sana; Sallem, Amira; Kerkeni, Emna; Elghoul, Jaber; El Mir, Lassaad; Mehdi, Meriem; Cheikh, Hassen Ben; Haouas, Zohra

    2016-10-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used for their whiteness and opacity in several applications such as food colorants, drug additives, biomedical ceramic, and implanted biomaterials. Research on the neurobiological response to orally administered TiO 2 NPs is still limited. In our study, we investigate the effects of anatase TiO 2 NPs on the brain of Wistar rats after oral intake. After daily intragastric administration of anatase TiO 2 NPs (5-10 nm) at 0, 50, 100, and 200 mg/kg body weight (BW) for 60 days, the coefficient of the brain, acethylcholinesterase (AChE) activities, the level of interleukin 6 (IL-6), and the expression of glial fibrillary acidic protein (GFAP) were assessed to quantify the brain damage. The results showed that high-dose anatase TiO 2 NPs could induce a downregulated level of AChE activities and showed an increase in plasmatic IL-6 level as compared to the control group accompanied by a dose-dependent decrease inter-doses, associated to an increase in the cerebral IL-6 level as a response to a local inflammation in brain. Furthermore, we observed elevated levels of immunoreactivity to GFAP in rat cerebral cortex. We concluded that oral intake of anatase TiO 2 NPs can induce neuroinflammation and could be neurotoxic and hazardous to health.

  3. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    International Nuclear Information System (INIS)

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-01-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of 125 I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of 125 I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of 125 I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence [ 3 H] norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors

  4. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    Science.gov (United States)

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-05-01

    Δ 9 -Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [ 18 F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cobalamin and its binding protein in rat milk

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1989-01-01

    Cobalamin and its binding protein, haptocorrin, are present in rat milk throughout the lactation period. The concentration of cobalamin is approximately 0.3-times the concentration of the unsaturated binding protein. The concentration of the unsaturated cobalamin-binding protein varies between 18...

  6. Specific binding of 125I-salmon calcitonin to rat brain

    International Nuclear Information System (INIS)

    Nakamuta, Hiromichi; Furukawa, Shinichi; Koida, Masao; Yajima, Haruaki; Orlowski, R.C.

    1981-01-01

    Rat brain particulate fraction was found to contain binding sites for 125 I-Salmon Calcitonin-I ( 125 I-SCT). Maximum binding occurred in the physiological pH range of 7.25 - 7.5. The binding reaction proceeded in a temperature-dependent manner. Binding sites were broadly distributed among the various rat brain regions and considerable regional differences existed in the affinity and density as detected by Scatchard analysis. The highest affinity was recorded in the case of the hypothalamus and the lowest in the case of the cerebellum. The KD (nM) and Bmax (pmole/mg protein) estimated for the binding to four regions were as follows: hypothalamus: 1.4 and 0.19, midbrain, hippocampus plus striatum: 1.5 and 0.08, pon plus medulla oblongata: 3.0 and 0.15 and cerebellum: 8.3 and 0.20. Using a particulate fraction of rat brain void of cerebellum and cortices, a binding assay for calcitonins was developed. Binding of 125 I-SCT was inhibited by unlabeled salmon, [Asu sup(1,7)]-eel and porcine calcitonins in a dose-dependent manner and the IC50s were 2.0, 8.0 and 30 nM, respectively. The IC50s were comparable to those estimated using a kidney particulate fraction. Human calcitonin, β-endorphin and substance P were weak inhibitors of the binding. Other peptides, drugs and putative neurotransmitters tested (totally 23 substances) failed to inhibit the binding at concentrations of 1.0 μM. The physiological significance of brain binding sites for calcitonin, with the possibility that the brain may possess endogenous ligands for these sites are discussed. (author)

  7. Imatinib preserves blood-brain barrier integrity following experimental subarachnoid hemorrhage in rats.

    Science.gov (United States)

    Zhan, Yan; Krafft, Paul R; Lekic, Tim; Ma, Qingyi; Souvenir, Rhonda; Zhang, John H; Tang, Jiping

    2015-01-01

    Blood-brain barrier (BBB) disruption and consequent edema formation contribute to the development of early brain injury following subarachnoid hemorrhage (SAH). Various cerebrovascular insults result in increased platelet-derived growth factor receptor (PDGFR)-α stimulation, which has been linked to BBB breakdown and edema formation. This study examines whether imatinib, a PDGFR inhibitor, can preserve BBB integrity in a rat endovascular perforation SAH model. Imatinib (40 or 120 mg/kg) or a vehicle was administered intraperitoneally at 1 hr after SAH induction. BBB leakage, brain edema, and neurological deficits were evaluated. Total and phosphorylated protein expressions of PDGFR-α, c-Src, c-Jun N-terminal kinase (JNK), and c-Jun were measured, and enzymatic activities of matrix metalloproteinase (MMP)-2 and MMP-9 were determined in the injured brain. Imatinib treatment significantly ameliorated BBB leakage and edema formation 24 hr after SAH, which was paralleled by improved neurological functions. Decreased brain expressions of phosphorylated PDGFR-α, c-Src, JNK, and c-Jun as well as reduced MMP-9 activities were found in treated animals. PDGFR-α inhibition preserved BBB integrity following experimental SAH; however, the protective mechanisms remain to be elucidated. Targeting PDGFR-α signaling might be advantageous to ameliorate early brain injury following SAH. © 2014 Wiley Periodicals, Inc.

  8. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    Science.gov (United States)

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  9. Measurement of tritiated norepinephrine metabolism in intact rat brain

    International Nuclear Information System (INIS)

    Levitt, M.; Kowalik, S.; Barkai, A.I.

    1983-01-01

    A procedure for the study of NE metabolism in the intact rat brain is described. The method involves ventriculocisternal perfusion of the adult male rat with artificial CSF containing [ 3 H]NE. Radioactivity in the perfusate associated with NE and its metabolites 3,4-dihydroxymandelic acid (DOMA), 3,4-dihydroxphenylethyleneglycol (DHPG), 3-methoxy-4-hydroxymandelic acid (VMA), 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), and normetanephrine (NMN) is separated using high-performance liquid chromatography (HPLC). After 80 min the radioactivity in the perfusate reaches an apparent steady-state. Analysis of the steady-state samples shows higher activity in the fractions corresponding to DHPG and MHPG than in those corresponding to DOMA and VMA, confirming glycol formation as the major pathway of NE metabolism in rat brain. Pretreatment with an MAO inhibitor (tranylcypromine) results in a marked decrease in the deaminated metabolites DHPG and MHPG and a concurrent increase in NMN. The results indicate this to be a sensitive procedure for the in vivo determination of changes in NE metabolism. (Auth.)

  10. Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway.

    Science.gov (United States)

    Abdel-Aleem, Ghada A; Khaleel, Eman F; Mostafa, Dalia G; Elberier, Lydia K

    2016-10-01

    In the current study, we aimed to investigate the mechanistic role of DJ-1/PI3K/Akt survival pathway in ischemia/reperfusion (I/R) induced cerebral damage and to investigate if the resveratrol (RES) mediates its ischemic neuroptotection through this pathway. RES administration to Sham rats boosted glutathione level and superoxide dismutase activity and downregulated inducible nitric oxide synthase expression without affecting redox levels of DJ-1 forms or components of PI3K/Akt pathway including PTEN, p-Akt or p/p-GSK3b. However, RES pre-administration to I/R rats reduced infarction area, oxidative stress, inflammation and apoptosis. Concomitantly, RES ameliorated the decreased levels of oxidized forms of DJ-1 and enhancing its reduction, increased the nuclear protein expression of Nfr-2 and led to activation of PI3K/Akt survival pathway. In conclusion, overoxidation of DJ-1 is a major factor that contributes to post-I/R cerebral damage and its reduction by RES could explain the neuroprotection offered by RES.

  11. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  12. Quantitative determination of deoxyribonucleic acid in rat brain

    Science.gov (United States)

    Penn, N. W.; Suwalski, R.

    1969-01-01

    1. A procedure is given for spectrophotometric analysis of rat brain DNA after its resolution into component bases. Amounts of tissue in the range 50–100mg. can be used. 2. The amount of DNA obtained by the present method is 80% greater than that reported for rat brain by a previous procedure specific for DNA thymine. Identity of the material is established by the base ratios of purines and pyrimidines. The features responsible for the higher yield are the presence of dioxan during alkaline hydrolysis of tissue, the determination of the optimum concentration of potassium hydroxide in this step and omission of organic washes of the initial acid-precipitated residues. 3. The requirement for dioxan during alkaline hydrolysis suggests a possible association of brain DNA with lipid. The concentration of potassium hydroxide that gives maximum yield is 0·1m, indicating that there may be internucleotide linkages in this DNA that are more sensitive to alkali than those of liver or thymus DNA. 4. This procedure gives low yields of DNA from liver. It is not suitable for analysis of the DNA from this tissue. PMID:5353529

  13. Bexarotene reduces blood-brain barrier permeability in cerebral ischemia-reperfusion injured rats.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available Matrix metalloproteinase-9 (MMP-9 over-expression disrupts the blood-brain barrier (BBB in the ischemic brain. The retinoid X receptor agonist bexarotene suppresses MMP-9 expression in endothelial cells and displays neuroprotective effects. Therefore, we hypothesized that bexarotene may have a beneficial effect on I/R-induced BBB dysfunction.A total of 180 rats were randomized into three groups (n = 60 each: (i a sham-operation group, (ii a cerebral ischemia-reperfusion (I/R group, and (iii an I/R+bexarotene group. Brain water content was measured by the dry wet weight method. BBB permeability was analyzed by Evans Blue staining and the magnetic resonance imaging contrast agent Omniscan. MMP-9 mRNA expression, protein expression, and activity were assessed by reverse transcription polymerase chain reaction, Western blotting, and gelatin zymography, respectively. Apolipoprotein E (apoE, claudin-5, and occludin expression were analyzed by Western blotting.After 24 h, 48 h, and 72 h post-I/R, several effects were observed with bexarotene administration: (i brain water content and BBB permeability were significantly reduced; (ii MMP-9 mRNA and protein expression as well as activity were significantly decreased; (iii claudin-5 and occludin expression were significantly increased; and (iv apoE expression was significantly increased.Bexarotene decreases BBB permeability in rats with cerebral I/R injury. This effect may be due in part to bexarotene's upregulation of apoE expression, which has been previously shown to reduce BBB permeability through suppressing MMP-9-mediated degradation of the tight junction proteins claudin-5 and occludin. This work offers insight to aid future development of therapeutic agents for cerebral I/R injury in human patients.

  14. Quantitation of glial fibrillary acidic protein in human brain tumours

    DEFF Research Database (Denmark)

    Rasmussen, S; Bock, E; Warecka, K

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...

  15. Finasteride inhibited brain dopaminergic system and open-field behaviors in adolescent male rats.

    Science.gov (United States)

    Li, Li; Kang, Yun-Xiao; Ji, Xiao-Ming; Li, Ying-Kun; Li, Shuang-Cheng; Zhang, Xiang-Jian; Cui, Hui-Xian; Shi, Ge-Ming

    2018-02-01

    Finasteride inhibits the conversion of testosterone to dihydrotestosterone. Because androgen regulates dopaminergic system in the brain, it could be hypothesized that finasteride may inhibit dopaminergic system. The present study therefore investigates the effects of finasteride in adolescent and early developmental rats on dopaminergic system, including contents of dopamine and its metabolites (dihydroxy phenyl acetic acid and homovanillic acid) and tyrosine hydroxylase expressions both at gene and protein levels. Meanwhile, open-field behaviors of the rats are examined because of the regulatory effect of dopaminergic system on the behaviors. Open-field behaviors were evaluated by exploratory and motor behaviors. Dopamine and its metabolites were assayed by liquid chromatography-mass spectrometry. Tyrosine hydroxylase mRNA and protein expressions were determined by real-time qRT-PCR and western blot, respectively. It was found that in adolescent male rats, administration of finasteride at doses of 25 and 50 mg/kg for 14 days dose dependently inhibited open-field behaviors, reduced contents of dopamine and its metabolites in frontal cortex, hippocampus, caudate putamen, nucleus accumbens, and down-regulated tyrosine hydroxylase mRNA and protein expressions in substantia nigra and ventral tegmental area. However, there was no significant change of these parameters in early developmental rats after finasteride treatment. These results suggest that finasteride inhibits dopaminergic system and open-field behaviors in adolescent male rats by inhibiting the conversion of testosterone to dihydrotestosterone, and imply finasteride as a potential therapeutic option for neuropsychiatric disorders associated with hyperactivities of dopaminergic system and androgen. © 2017 John Wiley & Sons Ltd.

  16. A Study on Neuroprotective Effects of Curcumin on the Diabetic Rat Brain.

    Science.gov (United States)

    Zhang, L; Kong, X-J; Wang, Z-Q; Xu, F-S; Zhu, Y-T

    2016-01-01

    The present study was aimed to study the neuroprotective therapeutic effect of curcumin on the male albino rat brain. Subarachnoid hemorrhage leads to severe mortality rate and morbidity, and oxidative stress is a crucial factor in subarachnoid hemorrhage. Therefore, we investigated the effect of curcumin on oxidative stress and glutamate and glutamate transporter-1 on a subarachnoid hemorrhage-induced male albino rats. The curcumin commonly used for the treatment and saline used for the control. Curcumin (10 mg/kg bwt) dissolved in saline and administered orally to the rats for one week. Glutamate, glutamate transporter-1, malondialdehyde (MDA), superoxide dismutase (SOD), catalase, glutathione reductase and lactate dehydrogenase (LDH) activities were determined. Glutamate level was lower in the curcumin-treated rats compared to their respective controls. Glutamate transporter-1 did not alter in the curcumin-treated rats compared to their controls. Glutamate transporter-1 protein expression is significantly reduced in the curcumin-treated rats. MDA levels decreased 18 and 29 % in the hippocampus and the cortex region respectively. SOD (17% and 32%), and catalase (19% and 24%) activities were increased in the curcumin-treated hippocampus and the cortex region respectively. Glutathione reductase (13% and 19%) and LDH (21% and 30%) activities were increased in the treated hippocampus and the cortex region respectively. The mRNA expression of NK-kB and TLR4 was significantly reduced following curcumin treatment. Taking all these data together, the curcumin found to be effective against oxidative stress and glutamate neurotoxicity in the male albino rats.

  17. Rodent malaria in rats exacerbated by milk protein, attenuated by low-protein vegetable diet

    NARCIS (Netherlands)

    Doorne, C.W. van; Eling, W.M.C.; Luyken, R.

    1998-01-01

    Young male Wistar rats were fed a purified, vegetable, low-protein diet containing 6% protein from maize gluten and 2% from soy protein isolate, or comparable diets in which maize gluten was replaced partly or completely by the equivalent amount of a milk protein concentrate. Diets with adequate

  18. Regional distribution of enkephalinase in rat brain by autoradiography

    International Nuclear Information System (INIS)

    Waksman, G.; Hamel, E.; Besselievre, R.; Fournie-Zaluski, M.C.; Roques, B.P.; Bouboutou, R.

    1984-01-01

    The first visualization of enkephalinase (neutral metalloendopeptidase, E.C.3.4.24.11) in rat brain was obtained by autoradiography, using a new tritiated inhibitor: [ 3 H]N-[(R, S) 3-(N-hydroxy) carboxamido-2-benzyl propanoyl]-glycine ( 3 H-HCBP-Gly). The preliminary analysis of sections clearly showed a discrete localization of enkephalinase in enkephalin enriched regions, such as caudate nucleus, putamen, globus pallidus, and substantia nigra. Moreover 3 H-HCBP-Gly binding also occured in choroid plexus and spinal cord [fr

  19. Muscle and liver glycogen, protein, and triglyceride in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Sonne, Bente; Joensen Mikines, Kari

    1984-01-01

    in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho......-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...... not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did...

  20. Brain plasticity of rats exposed to prenatal immobilization stress

    Directory of Open Access Journals (Sweden)

    Badalyan B. Yu.

    2011-10-01

    Full Text Available Aim. This histochemical and immunohistochemical study was aimed at examining the brain cellular structures of newborn rats exposed to prenatal immobilization (IMO stress. Methods. Histochemical method on detection of Ca2+-dependent acid phosphatase activity and ABC immunohistochemical technique. Results. Cell structures with radial astrocytes marker GFAP, neuroepithelial stem cell marker gene nestin, stem-cells marker and the hypothalamic neuroprotective proline-rich polypeptide PRP-1 (Galarmin, a natural cytokine of a common precursor to neurophysin vasopressin associated glycoprotein have been revealed in several brain regions. Conclusions. Our findings indicate the process of generation of new neurons in response to IMO and PRP-1 involvement in this recovery mechanism, as PRP-1-Ir was detected in the above mentioned cell structures, as well as in the neurons and nerve fibers.

  1. 2D correlation Raman microspectroscopy of chosen parts of rat's brain tissue

    Science.gov (United States)

    Zięba-Palus, J.; Wesełucha-Birczyńska, A.; Sacharz, J.; Lewandowski, M. H.; Palus, K.; Chrobok, Ł.; Kowalski, R.; Moskal, P.; Birczyńska, M.; Sozańska, Agnieszka

    2017-11-01

    Raman spectra of two areas of Wistar rat brain tissue, tissue that are linked functionally to one another -the somatosensory cortex (Sc) and the dorsolateral geniculate nucleus of the thalamus (DLG)- excited with 442 nm, 514.5 nm, 785 nm and 1064 nm laser lines- were studied. No fixation method was used to preserve samples taken from the precisely defined anatomical areas of the brain. The brain slides were kept in artificial cerebrospinal fluid during the measurements. Averaged spectra were analyzed using the 2D correlation method. The varying wavelength/energy of the excitation laser was regarded as an external stimulus. 2D correlation analysis resolved differences between Sc and DLG in the range of 1800-1000 cm-1 and also in the hetero-spectral regions of about 1800-1200 cm-1 and 3100-2500 cm-1. Auto-peaks at 1659 cm-1 and 1666 cm-1 characterize the phase of the constituent lipid clusters with proteins and cholesterol in Sc and cholesterol in DLG, respectively. Appearing cross-peaks indicate the correlations with different phospholipids structures and protein bands and also cholesterol for Sc and DLG, respectively. Asynchronous spectra distinguish between areas of the brain due to the presence of neurotransmitters.

  2. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Low intensity ultrasound promotes the sensitivity of rat brain glioma to Doxorubicin by down-regulating the expressions of p-glucoprotein and multidrug resistance protein 1 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available The overall prognosis for malignant glioma is extremely poor, and treatment options are limited in part because of multidrug resistant proteins. Our previous findings suggest low intensity ultrasound (LIUS can induce apoptosis of glioma cells. Given this finding, we were interested in determining if LIUS could help treat glioma by inhibiting multidrug resistant proteins, and if so, which pathways are involved. In this study, the toxicity sensitivity and multidrug resistance proteins of glioma induced by LIUS were investigated using CCK-8, immunohistochemistry, immunofluorency, and RT-PCR in tissue samples and cultured cells. LIUS inhibited increase of C6 cells in an intensity- and time-dependent manner. The toxicity sensitivity of C6 cells increased significantly after LIUS sonication (intensity of 142.0 mW/cm(2 or Doxorubicin (DOX at different concentration, particularly by the combination of LIUS sonication and DOX. The expressions of P-gp and MRP1 decreased significantly post-sonication at intensity of 142.0 mW/cm(2 both in vitro and in vivo. The expressions of p110 delta (PI3K, NF-κB-p65, Akt/PKB, and p-Akt/PKB were downregulated by LIUS sonication and DOX treatment separately or in combination at the same parameters in rat glioma. These results indicate that LIUS could increase the toxicity sensitivity of glioma by down-regulating the expressions of P-gp and MRP1, which might be mediated by the PI3K/Akt/NF-κB pathway.

  4. Callus formation in bone fractures combined with brain injury in rat

    Directory of Open Access Journals (Sweden)

    Yu-Ping Chen

    2017-01-01

    Full Text Available Objective: The objective of this study was to determine the speed of bony union and the serum levels of biomarkers in the setting of bone fractures combined with brain injury. Materials and Methods: In this study, Sprague–Dawley rats were randomized into four groups: sham, brain injury, bone fracture, and bone fracture plus brain injury groups. The serum levels of biochemical markers, namely, nerve growth factor (NGF, Wnt-3a, Dickkopf-related protein-1, receptor-activator of NF-κB ligand, and adrenocorticotropic hormone (ACTH, were measured on the days 1, 3, 7, and 14 following injury. Bony union was evaluated using radiographs every week for 6 weeks. Results: Compared with the brain injury group and bone fracture group, the radiographs of the bone fracture plus brain injury group revealed enhanced callus formations in week 2. From week 3, the callus formation did not differ significantly among the groups. The serum levels of the biomarkers varied at different time points. The serum levels of NGF on days 1 and 3, Wnt-3a on days 3 and 14, and ACTH on days 1, 3, and 7 were significantly higher in the bone fracture plus brain injury group than in the bone fracture group. Conclusions: Brain injury increases callus formation in simultaneous bone fracture. Considering the time point, early NGF, Wnt-3a, and ACTH elevation might be associated with early callus formation enhancement. The results indicate that these brain injury-induced biomarkers might play crucial role in accelerating bone healing.

  5. Protective effect of crocin on acrolein-induced tau phosphorylation in the rat brain.

    Science.gov (United States)

    Rashedinia, Marzieh; Lari, Parisa; Abnous, Khalil; Hosseinzadeh, Hossein

    2015-01-01

    Acrolein, as a by-product of lipid peroxidation, is implicated in brain aging and in the pathogenesis of oxidative stressmediated neurodegenerative disorders such as Alzheimer's disease (AD). Widespread human exposure to the toxic environmental pollutant that is acrolein renders it necessary to evaluate the effects of exogenous acrolein on the brain. This study investigated the toxic effects of oral administration of 3 mg/kg/day acrolein on the rat cerebral cortex. Moreover, the neuroprotective effects of crocin, the main constituent of saffron, against acrolein toxicity were evaluated. We showed that acrolein decreased concentration of glutathione (GSH) and increased levels of malondialdehyde (MDA), Amyloid-beta (Abeta) and phospho-tau in the brain. Simultaneously, acrolein activated Mitogen-Activated Protein Kinases (MAPKs) signalling pathways. Co-administration of crocin significantly attenuated MDA, Abeta and p-tau levels by modulating MAPKs signalling pathways. Our data demonstrated that environmental exposure to acrolein triggers some molecular events which contribute to brain aging and neurodisorders. Additionally, crocin as an antioxidant is a promising candidate for treatment of neurodegenerative disorders, such as brain aging and AD.

  6. Incidence of brain tumours in rats exposed to an aerosol of 239PuO2

    International Nuclear Information System (INIS)

    Sanders, C.L.; Dagle, G.E.; Mahaffey, J.A.

    1992-01-01

    Incidence of brain tumours was investigated in 3390 female and male Wistar rats exposed to an aerosol of 239 PuO 2 , or as sham-exposed controls. Lung doses ranged from 0.05 to 22 Gy. In females, six brain tumours were found in 1058 control rats (incidence, 0.6%) and 24 brain tumours in 2134 rats exposed to Pu (incidence, 1.1%); the survival-adjusted level of significance was p = 0.29 for comparing control with exposed females. In males, two brain tumours were found in 60 control rats (incidence, 3.3%) and seven brain tumours in 138 rats exposed to Pu (incidence, 5.1%); the survival-adjusted level of significance was p = 0.33. Brain tumour incidence was about five times greater in male than in female rats (p = 0.0001), a highly significant sex difference in brain tumour incidence. Tumour types were distributed similarly among control and Pu-exposed groups of both sexes; most were astrocytomas. Mean lifespans for rats with brain tumours were not significantly different between control and Pu-exposed rats. (author)

  7. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    Science.gov (United States)

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Autoradiographic localization of (125I-Tyr4)bombesin-binding sites in rat brain

    International Nuclear Information System (INIS)

    Zarbin, M.A.; Kuhar, M.J.; O'Donohue, T.L.; Wolf, S.S.; Moody, T.W.

    1985-01-01

    The binding of ( 125 I-Tyr 4 )bombesin to rat brain slices was investigated. Radiolabeled (Tyr 4 )bombesin bound with high affinity (K/sub d/ . 4 nM) to a single class of sites (B/sub max/ . 130 fmol/mg of protein); the ratio of specific to nonspecific binding was 6/1. Also, pharmacology studies indicated that the C-terminal of bombesin was important for the high affinity binding activity. Autoradiographic studies indicated that the ( 125 I-Tyr4)bombesin-binding sites were discretely distributed in certain gray but not white matter regions of rat brain. Highest grain densities were present in the olfactory bulb and tubercle, nucleus accumbens, suprachiasmatic and periventricular nuclei of the hypothalamus, central medial thalamic nucleus, medial amygdaloid nucleus, hippocampus, dentate gyrus, subiculum, nucleus of the solitary tract, and substantia gelatinosa. Moderate grain densities were present in the parietal cortex, deep layers of the neocortex, rhinal cortex, caudate putamen, stria terminalis, locus ceruleus, parabrachial nucleus, and facial nucleus. Low grain densities were present in the globus pallidus, lateral thalamus, and midbrain. Negligible grain densities were present in the cerebellum, corpus callosum, and all regions treated with 1 microM unlabeled bombesin. The discrete regional distribution of binding suggests that endogenous bombesin-like peptides may function as important regulatory agents in certain brain loci

  9. Thymoquinone Attenuates Brain Injury via an Anti-oxidative Pathway in a Status Epilepticus Rat Model.

    Science.gov (United States)

    Shao, Yi-Ye; Li, Bing; Huang, Yong-Mei; Luo, Qiong; Xie, Yang-Mei; Chen, Ying-Hui

    2017-01-01

    Status epilepticus (SE) results in the generation of reactive oxygen species (ROS), which contribute to seizure-induced brain injury. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Thymoquinone (TQ) is a bioactive monomer extracted from black cumin (Nigella sativa) seed oil that has anti-inflammatory, anti-cancer, and antioxidant activity in various diseases. This study evaluated the protective effects of TQ on brain injury in a lithium-pilocarpine rat model of SE and investigated the underlying mechanism related to antioxidative pathway. Electroencephalogram and Racine scale were used to value seizure severity. Passive-avoidance test was used to determine learning and memory function. Moreover, anti-oxidative activity of TQ was observed using Western blot and super oxide dismutase (SOD) activity assay. Latency to SE increased in the TQ-pretreated group compared with rats in the model group, while the total power was significantly lower. Seizure severity measured on the Racine scale was significantly lower in the TQ group compared with the model group. Results of behavioral experiments suggest that TQ may also have a protective effect on learning and memory function. Investigation of the protective mechanism of TQ showed that TQ-pretreatment significantly increased the expression of Nrf2, HO-1 proteins and SOD in the hippocampus. These findings showed that TQ attenuated brain injury induced by SE via an anti-oxidative pathway.

  10. Expression of S100A6 in Rat Hippocampus after Traumatic Brain Injury Due to Lateral Head Acceleration

    Directory of Open Access Journals (Sweden)

    Bo Fang

    2014-04-01

    Full Text Available In a rat model of traumatic brain injury (TBI, we investigated changes in cognitive function and S100A6 expression in the hippocampus. TBI-associated changes in this protein have not previously been reported. Rat S100A6 was studied via immunohistochemical staining, Western blot, and reverse transcription-polymerase chain reaction (RT-PCR after either lateral head acceleration or sham. Reduced levels of S100A6 protein and mRNA were observed 1 h after TBI, followed by gradual increases over 6, 12, 24, and 72 h, and then a return to sham level at 14 day. Morris water maze (MWM test was used to evaluate animal spatial cognition. TBI- and sham-rats showed an apparent learning curve, expressed as escape latency. Although TBI-rats displayed a relatively poorer cognitive ability than sham-rats, the disparity was not significant early post-injury. Marked cognitive deficits in TBI-rats were observed at 72 h post-injury compared with sham animals. TBI-rats showed decreased times in platform crossing in the daily MWM test; the performance at 72 h post-injury was the worst. In conclusion, a reduction in S100A6 may be one of the early events that lead to secondary cognitive decline after TBI, and its subsequent elevation is tightly linked with cognitive improvement. S100A6 may play important roles in neuronal degeneration and regeneration in TBI.

  11. Differentiating the Influences of Aging and Adiposity on Brain Weights, Levels of Serum and Brain Cytokines, Gastrointestinal Hormones, and Amyloid Precursor Protein.

    Science.gov (United States)

    Banks, William A; Abrass, Christine K; Hansen, Kim M

    2016-01-01

    Aging and obesity exert important effects on disease. Differentiating these effects is difficult, however, because weight gain often accompanies aging. Here, we used a nested design of aged, calorically restricted, and refed rats to measure changes in brain and blood levels of cytokines and gastrointestinal hormones, brain amyloid precursor protein levels, and brain and body weights. By comparing groups and using path analysis, we found divergent influences of chronological aging versus body weight, our main findings being (i) changes in whole brain weight and serum macrophage colony-stimulating factor levels correlated better with body weight than with chronological aging, (ii) a decrease in brain cytokines and brain plasminogen activator inhibitor levels correlated better with chronological aging than with body weight, (iii) serum erythropoietin levels were influenced by both body weight and aging, (iv) serum plasminogen activator inhibitor, serum cytokines, and brain tumor necrosis factor were not influenced by aging or body weight, and (v) brain amyloid precursor protein more closely related to body weight and serum levels of gastrointestinal hormones than to brain weight, chronological aging, or cytokines. These findings show that although aging and body weight interact, their influences are distinct not only among various cytokines and hormones but also between the central nervous system and the peripheral tissue compartments. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  12. Distribution of 14C-morphine and macromolecules in the brain and liver and their nuclei in pregnant rats and their foetuses after infusion of morphine into pregnant rats at near-term

    International Nuclear Information System (INIS)

    Steele, W.J.; Johannesson, T.

    1975-01-01

    Timed-pregnant (day 21 or 22) Sprague-Dawley rats were administered 14 C-morphine (2.85 mci/mmol) 5 mg/kg/hr, or saline in equivalent volumes, by continuous intravenous infusion for periods of up to 4hrs. The brains and livers of the maternal rats and of their foetuses were collected and their nuclei were isolated. The tissues and nuclei isolated from them were analyzed for DNA, RNA, protein content and radioactivity. Morphine infused maternal rats exhibited no significant difference in the total amount of DNA, RNA and protein in the brain or in the concentration of these constituents in brain nuclei. The concentration of nuclear RNA in foetal brain of morphine infused mothers was significantly lower at 4 hrs than that of saline infused controls. It was concluded that RNA synthesis in the foetal brain must be much more sensitive to the inhibitory effect of morphine on macromolecular synthesis than that in maternal brain. The change in nuclear RNA concentration in foetal brain became significantly different when morphine reached its highest level in foetal brain nuclei. The morphine concentration (pmol 14 C-morphine equivalents per mg DNA) in the brain of foetal and maternal rats was the same at each time period, whereas the maternal liver levels were at least eight times greater than those in foetal liver. The concentrations in foetal brain nuclei were 2-14 times greater than those in maternal brain nuclei, whereas levels in the latter were found to be low and virtually constant at all time periods tested. It was concluded that foetal brain nuclei have a greater capacity to bind or retain morphine than maternal brain nuclei. (author)

  13. Distribution of /sup 14/C-morphine and macromolecules in the brain and liver and their nuclei in pregnant rats and their foetuses after infusion of morphine into pregnant rats at near-term

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W J; Johannesson, T [Iowa Univ., Iowa City (USA)

    1975-01-01

    Timed-pregnant (day 21 or 22) Sprague-Dawley rats were administered /sup 14/C-morphine (2.85 mci/mmol) 5 mg/kg/hr, or saline in equivalent volumes, by continuous intravenous infusion for periods of up to 4hrs. The brains and livers of the maternal rats and of their foetuses were collected and their nuclei were isolated. The tissues and nuclei isolated from them were analyzed for DNA, RNA, protein content and radioactivity. Morphine infused maternal rats exhibited no significant difference in the total amount of DNA, RNA and protein in the brain or in the concentration of these constituents in brain nuclei. The concentration of nuclear RNA in foetal brain of morphine infused mothers was significantly lower at 4 hrs than that of saline infused controls. It was concluded that RNA synthesis in the foetal brain must be much more sensitive to the inhibitory effect of morphine on macromolecular synthesis than that in maternal brain. The change in nuclear RNA concentration in foetal brain became significantly different when morphine reached its highest level in foetal brain nuclei. The morphine concentration (pmol /sup 14/C-morphine equivalents per mg DNA) in the brain of foetal and maternal rats was the same at each time period, whereas the maternal liver levels were at least eight times greater than those in foetal liver. The concentrations in foetal brain nuclei were 2-14 times greater than those in maternal brain nuclei, whereas levels in the latter were found to be low and virtually constant at all time periods tested. It was concluded that foetal brain nuclei have a greater capacity to bind or retain morphine than maternal brain nuclei.

  14. Development of I-123-labeled amines for brain studies: localization of I-123 iodophenylalkyl amines in rat brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Baldwin, R.M.; Lin, T.H.

    1980-01-01

    Localization in rat brain of forty iodophenylalkyl amines labeled with I-123 was evaluated in an attempt to develop I-123-labeled amines useful for brain studies. For the amines studied, the highest activity in brain and the brain-to-blood activity ratios ranked p > m > o as related to iodine position on the benzene ring: for alkyl groups the rank order was α-methylethyl > ethyl > methyl > none; for N additions it was single lipophilic group > H > two lipophilic groups. It is suggested that introduction of a halogen into the ring structure of many amines results in greater concentration of the agent in brain than is seen with the nonhalogenated parent compound. The agent N-isopropyl-p-iodoamphetamine was chosen for further study because, in the rat, it showed high brain activity (1.57%/g) and brain-blood ratio (12.6) at 5 min

  15. Sex difference in mecp2 expression during a critical period of rat brain development.

    Science.gov (United States)

    Kurian, Joseph R; Forbes-Lorman, Robin M; Auger, Anthony P

    2007-09-01

    Pervasive developmental disorder is a classification covering five related conditions including the neurodevelopmental disorder Rett syndrome (RTT) and autism. Of these five conditions, only RTT has a known genetic cause with mutations in Methyl-CpG-binding protein 2 (MeCP2), a global repressor of gene expression, responsible for the majority of RTT cases. However, recent evidence indicates that reduced MeCP2 expression or activity is also found in autism and other disorders with overlapping phenotypes. Considering the sex difference in autism diagnosis, with males diagnosed four times more often than females, we questioned if a sex difference existed in the expression of MeCP2, in particular within the amygdala, a region that develops atypically in autism. We found that male rats express significantly less mecp2 mRNA and protein than females within the amygdala, as well as the ventromedial hypothalamus (VMH), but not within the preoptic area (POA) on post-natal day 1 (PN1). At PN10 these differences were gone; however, on this day males had more mecp2 mRNA than females within the POA. The transient sex difference of mecp2 expression during the steroid-sensitive period of brain development suggests that mecp2 may participate in normal sexual differentiation of the rat brain. Considering the strong link between MeCP2 and neurodevelopmental disorders, the lower levels of mecp2 expression in males may also underlie a biological risk for mecp2-related neural disorders.

  16. Effect of triiodothyronine on rat liver chromatin protein kinase

    International Nuclear Information System (INIS)

    Kruh, J.; Tichonicky, L.

    1976-01-01

    1) Injection of triiodothyronine to rats stimulates protein kinase activity in liver chromatin nonhistone proteins. A significant increase was found after two daily injections. A 4-fold increase was observed with the purified enzyme after eight daily injections of the hormone. No variations were observed in cytosol protein kinase activity. Electrophoretic pattern, effect of heat denaturation, effect of p-hydroxymercuribenzoate seem to indicate that the enzyme present in treated rats is not identical to the enzyme in control animals, which suggests that thyroid hormone has induced nuclear protein kinase. Diiodothyronine, 3, 3', 5'-triiodothyronine have no effect on protein kinase. 2) Chromatin non-histone proteins isolated from rats injected with triiodothyronine incorporated more 32 P when incubated with [γ- 32 P]ATP than the chromatin proteins from untreated rats. Thyroidectomy reduced the in vitro 32 P incorporation. It is suggested that some of the biological activity of thyroid hormone could be mediated through its effect on chromatin non-histone proteins. (orig.) [de

  17. Evidence for a zinc/proton antiporter in rat brain.

    Science.gov (United States)

    Colvin, R A; Davis, N; Nipper, R W; Carter, P A

    2000-05-01

    The data presented in this paper are consistent with the existence of a plasma membrane zinc/proton antiport activity in rat brain. Experiments were performed using purified plasma membrane vesicles isolated from whole rat brain. Incubating vesicles in the presence of various concentrations of 65Zn2+ resulted in a rapid accumulation of 65Zn2+. Hill plot analysis demonstrated a lack of cooperativity in zinc activation of 65Zn2+ uptake. Zinc uptake was inhibited in the presence of 1 mM Ni2+, Cd2+, or CO2+. Calcium (1 mM) was less effective at inhibiting 65Zn2+ uptake and Mg2+ and Mn2+ had no effect. The initial rate of vesicular 65Zn2+ uptake was inhibited by increasing extravesicular H+ concentration. Vesicles preloaded with 65Zn2+ could be induced to release 65Zn2+ by increasing extravesicular H+ or addition of 1 mM nonradioactive Zn2+. Hill plot analysis showed a lack of cooperativity in H+ activation of 65Zn2+ release. Based on the Hill analyses, the stoichiometry of transport may include Zn2+/Zn2+ exchange and Zn2+/H+ antiport, the latter being potentially electrogenic. Zinc/proton antiport may be an important mode of zinc uptake into neurons and contribute to the reuptake of zinc to replenish presynaptic vesicle stores after stimulation.

  18. Tartrazine induced neurobiochemical alterations in rat brain sub-regions.

    Science.gov (United States)

    Bhatt, Diksha; Vyas, Krati; Singh, Shakuntala; John, P J; Soni, Inderpal

    2018-03-01

    Tartrazine is a synthetic lemon yellow azo dye primarily used as a food coloring. The present study aimed to screen the neurobiochemical effects of Tartrazine in Wistar rats after administering the Acceptable Daily Intake (ADI) level. Tartrazine (7.5 mg/kg b.w.) was administered to 21 day old weanling rats through oral gavage once daily for 40 consecutive days. On 41st day, the animals were sacrificed and brain sub regions namely, frontal cortex, corpus striatum, hippocampus and cerebellum were used to determine activities of anti-oxidant enzymes viz. Superoxide Dismutase (SOD), Catalase (CAT), Glutathione-Stransferase (GST), Glutathione Reductase (GR) and Glutathione Peroxidase (GPx) and levels of lipid peroxides using Thio-barbituric Acid Reactive Substance (TBARS) assay. Our investigation showed a significant decrease in SOD and CAT activity, whereas there occurred a decline in GST and GR activity with an increase in GPx activity to counteract the oxidative damage caused by significantly increased levels of lipid peroxides. The possible mechanism of this oxidative damage might be attributed to the production of sulphanilc acid as a metabolite in azofission of tartrazine. It may be concluded that the ADI levels of food azo dyes adversely affect and alter biochemical markers of brain tissue and cause oxidative damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats.

    Science.gov (United States)

    Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon

    2017-08-05

    Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Poly-Ub-substrate-degradative activity of 26S proteasome is not impaired in the aging rat brain.

    Directory of Open Access Journals (Sweden)

    Carolin Giannini

    Full Text Available Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young and 24 month old (aged rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process.

  1. Effect of diet protein quality on growth and protein synthesis in rats

    International Nuclear Information System (INIS)

    Chinchalkar, D.V.; Mehta, S.L.

    1978-01-01

    The effect of diet protein quality on albino rats was studied by feeding normal and opaque-2 maize. The weight gain in rats was 60 percent higher on opaque-2 maize as compared to those fed on normal maize. Rats converted 1.0 g of dietary opaque-2 maize to 0.226 g weight gain as compared to 0.131 g for normal maize. The protein content per liver was higher with opaque-2 maize diet suggesting a higher net protein synthesis in opaque-2 maize fed rat livers. In vitro 14 C-phenylalanine incorporation showed that polysomes from opaque-2 maize fed rat livers were more efficient in protein synthesis than those from normal maize fed rat livers. Addition of poly-U resulted in more enhanced amino acid incorporation with polysomes from normal maize fed rats as compared to other group indicating greater limitation of mRNA in polysomes from normal maize fed rats. The total yield of liver polysomes from opaque-2 maize fed rats was substantially higher. (author)

  2. Vitamin D-dependent rat renal calcium-binding protein: development of a radioimmunoassay, tissue distribution, and immunologic identification

    International Nuclear Information System (INIS)

    Sonnenberg, J.; Pansini, A.R.; Christakos, S.

    1984-01-01

    A sensitive double antibody RIA has been developed for the 28,000 mol wt rat renal vitamin D-dependent calcium-binding protein. Using this assay, concentrations of calcium-binding protein (CaBP) as low as 30 ng can be measured. The assay is precise (intraassay variability, 5.0%) and reproductible (interassay variability, 8.2%). Measurements of renal CaBP by RIA showed a good correlation with measurements of CaBP by the chelex resin assay and by polyacrylamide gel analysis by densitometric tracing using a purified CaBP marker. The concentration of CaBP in the vitamin D-replete rat kidney is 7.3 +/- 1.0 (mean +/- SEM) micrograms/mg protein. In vitamin D-deficient rats the level of renal CaBP is 2.6 +/- 0.3 micrograms/mg protein. Tissue distribution of immunoreactive rat renal CaBP showed the highest concentration of CaBP in the rat cerebellum (38.3 +/- 5.1 micrograms/mg protein). Lower concentrations of immunoreactive CaBP were detected in several other rat tissues. No immunoreactive CaBP was detected in rat or human serum. In necropsy human kidney and cerebellum, high levels of immunoreactive CaBP were also detected (1.5 +/- 0.1 and 27.3 +/- 2.1 micrograms/mg protein, respectively). When extracts of rat kidney and brain and human cerebellum and kidney were assayed at several dilutions, immunodisplacement curves parallel to that of pure renal CaBP were observed, indicating immunochemical similarity. Fractionation of extracts of rat cerebellum, human kidney, and human cerebellum on Sephadex G-100 revealed immunoreactivity and calcium-binding activity in the 28,000 mol wt region similar to rat kidney

  3. Molecular and functional characterization of riboflavin specific transport system in rat brain capillary endothelial cells

    Science.gov (United States)

    Patel, Mitesh; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K.

    2012-01-01

    Riboflavin is an important water soluble vitamin (B2) required for metabolic reactions, normal cellular growth, differentiation and function. Mammalian brain cells cannot synthesize riboflavin and must import from systemic circulation. However, the uptake mechanism, cellular translocation and intracellular trafficking of riboflavin in brain capillary endothelial cells are poorly understood. The primary objective of this study is to investigate the existence of riboflavin-specific transport system and delineate the uptake and intracellular regulation of riboflavin in immortalized rat brain capillary endothelial cells (RBE4). The uptake of [3H]-Riboflavin is sodium, temperature and energy dependent but pH independent. [3H]-Riboflavin uptake is saturable with Km and Vmax values of 19 ± 3 µM and 0.235 ± 0.012 picomoles/min/mg protein, respectively. The uptake process is inhibited by unlabelled structural analogs (lumiflavin, lumichrome) but not by structurally unrelated vitamins. Ca++/calmodulin and protein kinase A (PKA) pathways are found to play an important role in the intracellular regulation of [3H]-Riboflavin. Apical and baso-lateral uptake of [3H]-Riboflavin clearly indicate that riboflavin specific transport system is predominantly localized on the apical side of RBE4 cells. A 628 bp band corresponding to riboflavin transporter is revealed in RT-PCR analysis. These findings, for the first time report the existence of a specialized and high affinity transport system for riboflavin in RBE4 cells. Blood-brain barrier (BBB) is a major obstacle limiting drug transport inside the brain as it regulates drug permeation from systemic circulation. This transporter can be utilized for targeted delivery in enhancing brain permeation of highly potent drugs on systemic administration. PMID:22683359

  4. Cigarette smoking accelerated brain aging and induced pre-Alzheimer-like neuropathology in rats.

    Directory of Open Access Journals (Sweden)

    Yuen-Shan Ho

    Full Text Available Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD. To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP processing by increasing the production of sAPPβ and accumulation of β-amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia.

  5. Cigarette Smoking Accelerated Brain Aging and Induced Pre-Alzheimer-Like Neuropathology in Rats

    Science.gov (United States)

    Ho, Yuen-Shan; Yang, Xifei; Yeung, Sze-Chun; Chiu, Kin; Lau, Chi-Fai; Tsang, Andrea Wing-Ting; Mak, Judith Choi-Wo; Chang, Raymond Chuen-Chung

    2012-01-01

    Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD). To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD) rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP) processing by increasing the production of sAPPβ and accumulation of β–amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia. PMID:22606286

  6. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    Directory of Open Access Journals (Sweden)

    R.L. Figueira

    2016-01-01

    Full Text Available Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC. This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group: 1 preterm control (PTC, 2 preterm ventilated (PTV, 3 preterm asphyxiated (PTA, 4 preterm asphyxiated and ventilated (PTAV, 5 term control (TC, 6 term ventilated (TV, 7 term asphyxiated (TA, and 8 term asphyxiated and ventilated (TAV. We measured body, brain, and intestine weights and respective ratios [(BW, (BrW, (IW, (BrW/BW and (IW/BW]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus and intestine (jejunum/ileum tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP. IW was lower in the TA than in the other terms (P<0.05, and the IW/BW ratio was lower in the TA than in the TAV (P<0.005. PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex and TA (cortex/hippocampus (P<0.005. I-FABP was higher in PTAV (P<0.005 and TA (ileum (P<0.05. I-FABP expression was increased in PTAV subgroup (P<0.0001. Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.

  7. Chronic Hyperinsulinaemic Hypoglycaemia in Rats Is Accompanied by Increased Body Weight, Hyperleptinaemia, and Decreased Neuronal Glucose Transporter Levels in the Brain

    DEFF Research Database (Denmark)

    Jensen, Vivi F. H.; Molck, Anne-Marie; Chapman, Melissa

    2017-01-01

    of cerebral glucose transporters. Compensatory measures in the brain during chronic insulin-induced hypoglycaemia are less well understood. The present study investigated how the brain of nondiabetic rats copes with chronic insulin-induced hypoglycaemia for up to eight weeks. Brain level of different...... substrate transporters and redox homeostasis was evaluated. Hyperinsulinaemia for 8 weeks consistently lowered blood glucose levels by 30–50% (4–6 mM versus 7–9 mM in controls). The animals had increased food consumption, body weights, and hyperleptinaemia. During infusion, protein levels of the brain......The brain is vulnerable to hypoglycaemia due to a continuous need of energy substrates to meet its high metabolic demands. Studies have shown that severe acute insulin-induced hypoglycaemia results in oxidative stress in the rat brain, when neuroglycopenia cannot be evaded despite increased levels...

  8. A Simple and Reproducible Method to Prepare Membrane Samples from Freshly Isolated Rat Brain Microvessels.

    Science.gov (United States)

    Brzica, Hrvoje; Abdullahi, Wazir; Reilly, Bianca G; Ronaldson, Patrick T

    2018-05-07

    The blood-brain barrier (BBB) is a dynamic barrier tissue that responds to various pathophysiological and pharmacological stimuli. Such changes resulting from these stimuli can greatly modulate drug delivery to the brain and, by extension, cause considerable challenges in the treatment of central nervous system (CNS) diseases. Many BBB changes that affect pharmacotherapy, involve proteins that are localized and expressed at the level of endothelial cells. Indeed, such knowledge on BBB physiology in health and disease has sparked considerable interest in the study of these membrane proteins. From a basic science research standpoint, this implies a requirement for a simple but robust and reproducible method for isolation of microvessels from brain tissue harvested from experimental animals. In order to prepare membrane samples from freshly isolated microvessels, it is essential that sample preparations be enriched in endothelial cells but limited in the presence of other cell types of the neurovascular unit (i.e., astrocytes, microglia, neurons, pericytes). An added benefit is the ability to prepare samples from individual animals in order to capture the true variability of protein expression in an experimental population. In this manuscript, details regarding a method that is utilized for isolation of rat brain microvessels and preparation of membrane samples are provided. Microvessel enrichment, from samples derived, is achieved by using four centrifugation steps where dextran is included in the sample buffer. This protocol can easily be adapted by other laboratories for their own specific applications. Samples generated from this protocol have been shown to yield robust experimental data from protein analysis experiments that can greatly aid the understanding of BBB responses to physiological, pathophysiological, and pharmacological stimuli.

  9. Reactive Protein Synthesis in Pregnant Rats

    African Journals Online (AJOL)

    olayemitoyin

    Department of Physiology, College of Medicine, University of Lagos, Nigeria. Summary: Genistein ... Oral exposure of pregnant rats to genistein precipitated hypothyroidism, altered some metabolic hormones with a ... consumption. Exposure to ...

  10. THE ROLE OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN (MRP) IN THE BLOOD-BRAIN BARRIER AND OPIOID ANALGESIA

    Science.gov (United States)

    Su, Wendy; Pasternak, Gavril W.

    2013-01-01

    The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been implicated in the blood brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in ratsand can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids. PMID:23508590

  11. Protein phosphorylation in isolated hepatocytes of septic and endotoxemic rats

    International Nuclear Information System (INIS)

    Deaciuc, I.V.; Spitzer, J.A.

    1989-01-01

    The purpose of this study was to investigate possible alterations induced by sepsis and endotoxicosis in the late phase of Ca2+-dependent signaling in rat liver. Hepatocytes isolated from septic or chronically endotoxin (ET)-treated rats were labeled with [32P]H3PO4 and stimulated with various agents. Proteins were resolved by one-dimensional polyacrylamide gel electrophoresis and autoradiographed. Vasopressin (VP)- and phenylephrine (PE)-induced responses were attenuated in both septic and ET-treated rats for cytosolic and membrane proteins compared with their respective controls. Glucagon and 12-O-myristate phorbol-13-acetate (TPA) affected only the phosphorylation of membrane proteins. Glucagon-induced changes in the phosphorylation of membrane proteins were affected by both sepsis and endotoxicosis, whereas TPA-stimulated phosphorylation was lowered only in endotoxicosis. Response to the Ca2+ ionophore A23187 was depressed in septic rats for cytosolic proteins. The phosphorylation of two cytosolic proteins, i.e., 93 and 61 kDa (previously identified as glycogen phosphorylase and pyruvate kinase, respectively), in response to VP, PE, and A23187 was severely impaired by endotoxicosis and sepsis. TPA did not affect the phosphorylation state of these two proteins. The results show that sepsis and endotoxicosis produce perturbations of the phosphorylation step in Ca2+ transmembrane signaling. Such changes can explain alterations of glycogenolysis and gluconeogenesis associated with sepsis and endotoxicosis

  12. Dietary protein effects on irradiated rat kidney function

    International Nuclear Information System (INIS)

    Mahler, P.A.; Yatuin, M.B.

    1984-01-01

    The authors have previously reported that unilaterally nephrectomized, kidney irradiated young male S-D rats have an increased median survival when placed on a low (4%) protein diet, as compared to a normal (20%) or high (50%) protein diet (200, 103, and 59 days respectively for 14 Gy irradiation). They have expanded these studies to examine the effects of irradiation and dietary protein levels on kidney function, by examining the parameters of blood urea nitrogen, serum creatinine, urine urea nitrogen, urine creatinine, urine osmolarity, urine volume, and water consumption. Irradiated 20% protein diet animals show an increase in water consumption and urine production and also a decrease in urine osmolarity, urine urea concentration and urine creatinine concentration. These changes all support the hypothesis the kidney irradiated rats fed a normal protein diet have a reduced capability to concentrate urine compared to nonirradiated control rats. Evaluation of the same parameters in irradiated rats fed a 4% protein diet does not indicate a similar loss of concentrating capability. Whether this protection is due to the growth inhibition of the 4% protein diet or some other phenomena remains to be determined

  13. High fat diet and inflammation - modulation of Haptoglobin level in rat brain

    Directory of Open Access Journals (Sweden)

    Maria Stefania eSpagnuolo

    2015-12-01

    Full Text Available Obesity and dietary fats are well known risk factors for the pathogenesis of neurodegenerative diseases. The analysis of specific markers, whose brain level can be affected by diet, might contribute to unveil the intersection between inflammation/obesity and neurodegeneration. Haptoglobin (Hpt is an acute phase protein, which acts as antioxidant by binding free Haemoglobin (Hb, thus neutralizing its pro-oxidative action. We previously demonstrated that Hpt plays critical functions in brain, modulating cholesterol trafficking in neuroblastoma cell lines, beta-amyloid (Aβ uptake by astrocyte, and limiting Aβ toxicity on these cells. A major aim of this study was to evaluate whether a long term (12 or 24 weeks high-fat diet (HFD influences Hpt and Hb expression in rat hippocampus. We also assessed the development of obesity-induced inflammation by measuring hippocampal level of TNF-alpha, and the extent of protein oxidation by titrating nitro-tyrosine (N-Tyr. Hpt concentration was lower (p<0.001 in hippocampus of HFD rats than in control animals, both in the 12 and in the 24 weeks fed groups. HFD was also associated in hippocampus with the increase of Hb level (p<0.01, inflammation and protein oxidative modification, as evidenced by the increase in the concentration of TNF-alpha and nitro-tyrosine. In fact, TNF-alpha concentration was higher in rats receiving HFD for 12 (p<0.01 or 24 weeks (p<0.001 compared to those receiving the control diet. N-Tyr concentration was more elevated in hippocampus of HFD than in control rats in both 12 weeks (p=0.04 and 24 weeks groups (p=0.01, and a positive correlation between Hb and N-Tyr concentration was found in each group. Finally, we found that the treatment of the human glioblastoma-astrocytoma cell line U-87 MG with cholesterol and fatty acids, such as palmitic and linoleic acid, significantly impairs (p<0.001 Hpt secretion in the extracellular compartment.We hypothesize that the HFD-dependent decrease of

  14. Determination of phospholipid transfer proteins in rat tissues by immunoassays

    International Nuclear Information System (INIS)

    Teerlink, T.

    1983-01-01

    Several quantitative immunoassays have been developed for two phospholipid transfer proteins from rat liver, i.e. the phosphatidylcholine transfer protein and the non-specific lipid transfer protein. The development of a double-antibody radioimmunoassay for the phosphatidylcholine transfer protein is described. The transfer protein was labelled with iodine-125 by the mild glucose oxidase-lactoperoxidase method. Although less than one tyrosine residue per molecule of transfer protein was labelled, only 20% of the labelled transfer protein was immunoprecipitable. This value could be increased to 80% by purifying the labelled protein by affinity chromatography on a column of anti-phosphatidylcholine transfer protein-IgG coupled to Sepharose 4B. The radioimmunoassay was used to determine the levels of phosphatidylcholine transfer protein in homogenates and 105 000 xg supernatants from various rat tissues as well as several Morris hepatomas. An enzyme immunoassay for the non-specific lipid transfer protein is also described. The antiserum that was raised especially by the author was cross-reactive with the non-specific lipid transfer protein present in 105 000 xg supernatants from human, mouse and bovine liver. The non-specific lipid transfer protein lost its immunoreactivity upon labelling with iodine-125 using different labelling techniques. Therefore, a regular radioimmunoassay could not be developed. The results of these different assays were compared. (Auth.)

  15. Total proteins and protein fractions levels in pregnant rats subjected to whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Mansour, M.A.; Roushdy, H.M.; Mazhar, F.M.; Abu-Gabal, H.A.

    1986-01-01

    A total number of 180 mature rats (120 females and 60 males) weighing from 120-140 g were used to study the effect of two doses (2 and 4 Gy) whole-body gamma irradiation on the level of total protein and protein fractions in serum of pregnant rats during the period of organogenesis. It was found that the levels of total protein, albumin and gamma globulins significantly decreased according to the doses of exposure. The levels of alpha and beta globulins significantly increased more in the serum of rats exposed to 2 Gy than in rats exposed to 4 Gy. The level of A/G ratio significantly decreased more in the serum of rats exposed to 2Gy than in those exposed to 4 Gy

  16. Influence of protein deficiency on cadmium toxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, P C; Jain, V K; Ashquin, M; Tandon, S K

    1986-07-01

    The effects of a low protein diet on the body uptake and retention of cadmium, levels of essential trace elements, and cadmium-induced biochemical alterations in liver and kidneys of the rat were investigated. Low dietary protein disturbs cadmium induced alterations in carbohydrate metabolism, essential trace elements metabolism and offsets the hepatic and renal process of cadmium detoxification. Protein malnutrition enhances the susceptibility to cadmium intoxication.

  17. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain

    Directory of Open Access Journals (Sweden)

    Debora Coimbra-Costa

    2017-08-01

    Full Text Available Acute hypoxia increases the formation of reactive oxygen species (ROS in the brain. However, the effect of reoxygenation, unavoidable to achieve full recovery of the hypoxic organ, has not been clearly established. The aim of the present study was to evaluate the effects of exposition to acute severe respiratory hypoxia followed by reoxygenation on the evolution of oxidative stress and apoptosis in the brain. We investigated the effect of in vivo acute severe normobaric hypoxia (rats exposed to 7% O2 for 6 h and reoxygenation in normoxia (21% O2 for 24 h or 48 h on oxidative stress markers, the antioxidant system and apoptosis in the brain. After respiratory hypoxia we found increased levels of HIF-1α expression, lipid peroxidation, protein oxidation and nitric oxide in brain extracts. Antioxidant defence systems such as superoxide dismutase (SOD, reduced glutathione (GSH and glutathione peroxidase (GPx and the reduced/oxidized glutathione (GSH/GSSG ratio were significantly decreased in the brain. After 24 h of reoxygenation, oxidative stress parameters and the anti-oxidant system returned to control values. Regarding the apoptosis parameters, acute hypoxia increased cytochrome c, AIF and caspase 3 activity in the brain. The apoptotic effect is greatest after 24 h of reoxygenation. Immunohistochemistry suggests that CA3 and dentate gyrus in the hippocampus seem more susceptible to hypoxia than the cortex. Severe acute hypoxia increases oxidative damage, which in turn could activate apoptotic mechanisms. Our work is the first to demonstrate that after 24 h of reoxygenation oxidative stress is attenuated, while apoptosis is maintained mainly in the hippocampus, which may, in fact, be the cause of impaired brain function. Keywords: Antioxidants, Apoptosis, Normobaric hypoxia, Oxidative stress, Reoxygenation

  18. Uptake of [3H]colchicine into brain and liver of mouse, rat, and chick

    International Nuclear Information System (INIS)

    Bennett, E.L.; Alberti, M.H.; Flood, J.F.

    1981-01-01

    The uptake of [ring A-4- 3 H] colchicine and [ring C-methoxy- 3 H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy- 3 H] and [ring A- 3 H]colchicine was also studied in rats. The general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkaloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments, support the hypotheses that structural alterations in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation

  19. UPTAKE OF [3H]-COLCHICINE INTO BRAIN AND LIVER OF MOUSE, RAT, AND CHICK

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Edward L.; Alberti, Marie Hebert; Flood, James F.

    1980-07-01

    The uptake of [ring A-4-{sup 3}H] colchicine and [ring C-methoxy-{sup 3}H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy-{sup 3}H] and [ring A-{sup 3}H]colchicine was also studied in rats. the general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkoloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments [7], support the hypotheses that structural alteration in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  20. Polychlorinated biphenyls alter expression of alpha-synuclein, synaptophysin and parkin in the rat brain

    DEFF Research Database (Denmark)

    Malkiewicz, Katarzyna; Mohammed, Roma; Folkesson, Ronnie

    2006-01-01

    Polychlorinated Biphenyls (PCBs)-induced changes in synaptic transmission are one of the effects of their neurotoxicity but the mechanism remains unknown. We assessed the in vivo effects of the PCBs mixture, Aroclor 1254 on the expression of neuronal proteins that are involved in the synaptic...... function and/or are associated with neurodegeneration. Wistar rats were treated orally with repeated doses of Aroclor 1254 and the levels of soluble alpha-synuclein, parkin, synaptophysin and amyloid precursor protein (APP) in the brain were determined by Western blotting. The results showed that Aroclor...... did not cause changes in the expression and processing of APP but at a dose 100 microg/g/day repeated for 6 days caused a decrease in the expression of alpha-synuclein in the cerebellum, cortex, hippocampus and hypothalamus of the animals sacrificed 2 days after treatment. The decrease in alpha...

  1. Reduction in brain immunoreactive corticotropin-releasing factor (CRF) in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hashimoto, K.; Hattori, T.; Murakami, K.; Suemaru, S.; Kawada, Y.; Kageyama, J.; Ota, Z.

    1985-01-01

    The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125 I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neurointermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR

  2. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Periyasamy, S.; Hoss, W. (Univ. of Toledo, OH (USA))

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  3. Changes in Rat Brain MicroRNA Expression Profiles Following Sevoflurane and Propofol Anesthesia

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2015-01-01

    Full Text Available Background: Sevoflurane and propofol are widely used anesthetics for surgery. Studies on the mechanisms of general anesthesia have focused on changes in protein expression properties and membrane lipid. MicroRNAs (miRNAs regulate neural function by altering protein expression. We hypothesize that sevoflurane and propofol affect miRNA expression profiles in the brain, expect to understand the mechanism of anesthetic agents. Methods: Rats were randomly assigned to a 2% sevoflurane group, 600 μg·kg − 1·min − 1 propofol group, and a control group without anesthesia (n = 4, respectively. Treatment group was under anesthesia for 6 h, and all rats breathed spontaneously with continuous monitoring of respiration and blood gases. Changes in rat cortex miRNA expression profiles were analyzed by miRNA microarrays and validated by quantitative real-time polymerase chain reaction (qRT-PCR. Differential expression of miRNA using qRT-PCR among the control, sevoflurane, and propofol groups were compared using one-way analysis of variance (ANOVA. Results: Of 677 preloaded rat miRNAs, the microarray detected the expression of 277 miRNAs in rat cortex (40.9%, of which 9 were regulated by propofol and (or sevoflurane. Expression levels of three miRNAs (rno-miR-339-3p, rno-miR-448, rno-miR-466b-1FNx01 were significantly increased following sevoflurane and six (rno-miR-339-3p, rno-miR-347, rno-miR-378FNx01, rno-miR-412FNx01, rno-miR-702-3p, and rno-miR-7a-2FNx01 following propofol. Three miRNAs (rno-miR-466b-1FNx01, rno-miR-3584-5p and rno-miR-702-3p were differentially expressed by the two anesthetic treatment groups. Conclusions: Sevoflurane and propofol anesthesia induced distinct changes in brain miRNA expression patterns, suggesting differential regulation of protein expression. Determining the targets of these differentially expressed miRNAs may help reveal both the common and agent-specific actions of anesthetics on neurological and physiological

  4. Immuno-localization of galanin receptor-1 (GALR1) in rat brain

    International Nuclear Information System (INIS)

    Larm, J.M.; Gundlach, A.L.

    2002-01-01

    Full text: Galanin is expressed in discrete areas throughout the central nervous system and has several putative physiological actions including effects on hormone secretion, reproduction and cognition, via actions at multiple G-protein-coupled receptors. Currently, three galanin receptors - GalR1, -R2, -R3 - have been identified that differ in pharmacology, signalling and distribution. The distribution of [ 125 I]-galanin binding sites presumably represents multiple receptors and so the precise regional and cellular localization of each receptor subtype is unknown. This study examined the distribution in rat brain of GalR1 receptors by immunohistochemistry, using polyclonal antibodies raised against short peptide sequences from the third intracellular loop and the proximal C-terminal. Adult rats were deeply anaesthetized (pentobarbitone 60 mg/kg, ip.) and perfusion-fixed with 4% paraformaldehyde. Specific GalR1 immunoreactivity (IR) was detected in neurons in various brain regions including cells within the olfactory bulb, piriform cortex, dorsomedial thalamus, hypothalamus (PVN, SON, ARC), midbrain/pons (intense staining in ventrolateral/medial PAG) and medulla. The localization pattern was qualitatively similar with both antisera and was consistent with that observed for GalR1 mRNA in normal rat brain. Recent evidence also reveals that GalR1- mRNA and -IR levels are coordinately altered after neuronal stimulation. These studies demonstrate a method for the identification of GalR1-containing cells that should assist in better differentiating the phenotype of galanin-receptive neurons. Copyright (2002) Australian Neuroscience Society

  5. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    Science.gov (United States)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  6. [Measurement of the blood flow in various areas of the rat brain by means of microspheres].

    Science.gov (United States)

    Deroo, J; Gerber, G B

    1976-01-01

    A method is described to measure regional blood flow in different structures of the rat brain. Microspheres (15 micron) are injected, the brain is sectioned, stained for myeline, radioautographs are prepared and the microspheres in the different structures are counted. The values obtained for different brain structures are counted. The values obtained for different brain regions (cortex, corpus callosum, thalamus hipocampus, hypothalamic region, colliculi, cerebellum, pons, medulla) compare well with those published by others on larger animals. In rats fed 1% of lead from birth, higher blood flow is found in the cortex and a lower one in the interior part of the brain compared to controls.

  7. Differential effect of NMDA and AMPA receptor blockade on protein synthesis in the rat infarct borderzone

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Frank, L

    1996-01-01

    treated with either saline, MK-801 (5 mg/kg i.p.) or NBQX (30 mg/kg i.p. x 3) were subjected to permanent MCAO. Regional CPSR and volumes of gray matter structures displaying normal CPSR were measured in coronal cryosections of the brain by quantitative autoradiography following an i.v. bolus injection....... Treatment with MK-801 significantly increased the volume of tissue with normal CPSR in the ischemic hemisphere compared to controls, whereas this was not seen with NBQX treatment. The results suggest that MK-801 and NBQX have different effects on peri-infarct protein synthesis after MCAO. Since both......We investigated whether the known neuroprotective effects of two selective glutamate receptor antagonists, the NMDA antagonist MK-801 and the AMPA antagonist NBQX, are reflected in the regional cerebral protein synthesis rates (CPSR) in rats with middle cerebral artery occlusion (MCAO). Rats...

  8. The multiple roles of Fatty Acid Handling Proteins in brain

    Directory of Open Access Journals (Sweden)

    Valentine SF Moullé

    2012-09-01

    Full Text Available Lipids are essential components of a living organism as energy source but also as constituent of the membrane lipid bilayer. In addition fatty acid (FA derivatives interact with many signaling pathways. FAs have amphipathic properties and therefore require being associated to protein for both transport and intracellular trafficking. Here we will focus on several fatty acid handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36, members of fatty acid transport proteins (FATPs, and lipid chaperones fatty acid-binding proteins (FABPs. A decade of extensive studies has helped decipher the mechanism of action of these proteins in peripheral tissue with high lipid metabolism. However, considerably less information is available regarding their role in the brain, despite the high lipid content of this tissue. This review will primarily focus on the recent studies that have highlighted the crucial role of lipid handling proteins in brain FA transport, neuronal differentiation and development, cognitive processes and brain diseases. Finally a special focus will be made on the recent studies that have revealed the role of FAT/CD36 in brain lipid sensing and nervous control of energy balance.

  9. Stress response in rat brain after different durations of noise exposure.

    Science.gov (United States)

    Samson, James; Sheeladevi, Rathinasamy; Ravindran, Rajan; Senthilvelan, Manohar

    2007-01-01

    The alteration in the levels of plasma corticosterone, brain norepinephrine (NE), and expression of brain heat shock proteins (Hsp70) after different durations of noise exposure (acute, 1 day; sub-acute, 15 days; chronic, 30 days) has been studied to analyze their role in combating time-dependent stress effects of noise. Broadband white noise (100dB) exposure to male Wistar albino rats significantly increased the levels of plasma corticosterone and NE in all three durations of noise exposure. The sustained increase observed in their levels in the chronic group suggests that animals are not getting adapted to noise even after 30 days of exposure. The important role of Hsp70 in combating noise induced stress is evident from the significant increase in its expression after chronic exposure, while there was a reciprocal decrease in the NE and corticosterone when compared with their levels after acute and sub-acute noise exposure. This clearly indicates that the time-dependent stress response to noise exposure is a complex mechanism involving highly interconnected systems such as hypothalamo-pituitary-adrenal (HPA) axis, heat shock proteins and may have serious implications in vital organs, particularly in the brain when there is a prolonged noise exposure.

  10. Mechanisms of dendritic spine remodeling in a rat model of traumatic brain injury.

    Science.gov (United States)

    Campbell, John N; Low, Brian; Kurz, Jonathan E; Patel, Sagar S; Young, Matt T; Churn, Severn B

    2012-01-20

    Traumatic brain injury (TBI), a leading cause of death and disability in the United States, causes potentially preventable damage in part through the dysregulation of neural calcium levels. Calcium dysregulation could affect the activity of the calcium-sensitive phosphatase calcineurin (CaN), with serious implications for neural function. The present study used both an in vitro enzymatic assay and Western blot analyses to characterize the effects of lateral fluid percussion injury on CaN activity and CaN-dependent signaling in the rat forebrain. TBI resulted in an acute alteration of CaN phosphatase activity and long-lasting alterations of its downstream effector, cofilin, an actin-depolymerizing protein. These changes occurred bilaterally in the neocortex and hippocampus, appeared to persist for hours after injury, and coincided with synapse degeneration, as suggested by a loss of the excitatory post-synaptic protein PSD-95. Interestingly, the effect of TBI on cofilin in some brain regions was blocked by a single bolus of the CaN inhibitor FK506, given 1 h post-TBI. Overall, these findings suggest a loss of synapse stability in both hemispheres of the laterally-injured brain, and offer evidence for region-specific, CaN-dependent mechanisms.

  11. Dynamics of pathomorphological changes in rat brain as a function of γ-radiation dose

    International Nuclear Information System (INIS)

    Fedorov, V.P.

    1990-01-01

    Neurohistological, histochemical, electron-microscopic and biometric techniques were used to study the response of rat brain to irradiation within a wide range of doses. Nerve cells were shown to be highly radioresistant. At the same time, synapses and blood-brain barrier structures were highly radiosensitive. The pathomorphologic changes in different brain areas followed a dose-time function

  12. Selective labelling of 5-HT{sub 7} receptor recognition sites in rat brain using [{sup 3}H]5-carboxamidotryptamine

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, R.L.; Barnes, N.M. [Department of Pharmacology, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    1998-12-01

    The aim of the present study was to establish a radioligand binding assay to selectively label the native 5-HT{sub 7} receptor expressed in rat brain. In rat whole brain (minus cerebellum and striatum) homogenate, ({+-})-pindolol (10 {mu}M)-insensitive [{sup 3}H]5-CT ([{sup 3}H]5-carboxamidotryptamine; 0.5 nM) specific binding (defined by 5-HT, 10 {mu}M) displayed a pharmacological profile similar to the recombinant 5-HT{sub 7} receptor, although the Hill coefficients for competition curves generated by methiothepin, ritanserin, sumatriptan, clozapine and pimozide were significantly less than unity. In homogenates of rat hypothalamus, ({+-})-pindolol (10 {mu}M)-insensitive [{sup 3}H]5-CT recognition sites also resembled, pharmacologically, the 5-HT{sub 7} receptor, although pimozide still generated Hill coefficients significantly less than unity. Subsequent studies were performed in the additional presence of WAY100635 (100 nM) to prevent [{sup 3}H]5-CT binding to residual, possibly, 5-HT{sub 1A} sites. Competition for this [{sup 3}H]5-CT binding indicated the labelling in whole rat brain homogenate of a homogenous population of sites with the pharmacological profile of the 5-HT{sub 7} receptor. Saturation studies also indicated that ({+-})-pindolol (10 {mu}M)/WAY 100635 (100 nM)-insensitive [{sup 3}H]5-CT binding to homogenates of whole rat brain was saturable and to an apparently homogenous population of sites which were labelled with nanomolar affinity (B{sub max}=33.2{+-}0.7 fmol mg{sup -1} protein, pK{sub d}=8.78{+-}0.05, mean{+-}S.E.M., n=3). The development of this 5-HT{sub 7} receptor binding assay will aid investigation of the rat native 5-HT{sub 7} receptor. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Selective labelling of 5-HT7 receptor recognition sites in rat brain using [3H]5-carboxamidotryptamine

    International Nuclear Information System (INIS)

    Stowe, R.L.; Barnes, N.M.

    1998-01-01

    The aim of the present study was to establish a radioligand binding assay to selectively label the native 5-HT 7 receptor expressed in rat brain. In rat whole brain (minus cerebellum and striatum) homogenate, (±)-pindolol (10 μM)-insensitive [ 3 H]5-CT ([ 3 H]5-carboxamidotryptamine; 0.5 nM) specific binding (defined by 5-HT, 10 μM) displayed a pharmacological profile similar to the recombinant 5-HT 7 receptor, although the Hill coefficients for competition curves generated by methiothepin, ritanserin, sumatriptan, clozapine and pimozide were significantly less than unity. In homogenates of rat hypothalamus, (±)-pindolol (10 μM)-insensitive [ 3 H]5-CT recognition sites also resembled, pharmacologically, the 5-HT 7 receptor, although pimozide still generated Hill coefficients significantly less than unity. Subsequent studies were performed in the additional presence of WAY100635 (100 nM) to prevent [ 3 H]5-CT binding to residual, possibly, 5-HT 1A sites. Competition for this [ 3 H]5-CT binding indicated the labelling in whole rat brain homogenate of a homogenous population of sites with the pharmacological profile of the 5-HT 7 receptor. Saturation studies also indicated that (±)-pindolol (10 μM)/WAY 100635 (100 nM)-insensitive [ 3 H]5-CT binding to homogenates of whole rat brain was saturable and to an apparently homogenous population of sites which were labelled with nanomolar affinity (B max =33.2±0.7 fmol mg -1 protein, pK d =8.78±0.05, mean±S.E.M., n=3). The development of this 5-HT 7 receptor binding assay will aid investigation of the rat native 5-HT 7 receptor. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    El-Akabawy, Gehan; El-Kholy, Wael

    2014-05-01

    Diabetes mellitus results in neuronal damage caused by increased intracellular glucose leading to oxidative stress. Recent evidence revealed the potential of ginger for reducing diabetes-induced oxidative stress markers. The aim of this study is to investigate, for the first time, whether the antioxidant properties of ginger has beneficial effects on the structural brain damage associated with diabetes. We investigated the observable neurodegenerative changes in the frontal cortex, dentate gyrus, and cerebellum after 4, 6, and 8 weeks of streptozotocin (STZ)-induced diabetes in rats and the effect(s) of ginger (500 mg/kg/day). Sections of frontal cortex, dentate gyrus, and cerebellum were stained with hematoxylin and eosin and examined using light microscopy. In addition, quantitative immunohistochemical assessments of the expression of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, caspase-3, glial fibrillary acidic protein (GFAP), acetylcholinesterase (AChE), and Ki67 were performed. Our results revealed a protective role of ginger on the diabetic brain via reducing oxidative stress, apoptosis, and inflammation. In addition, this study revealed that the beneficial effect of ginger was also mediated by modulating the astroglial response to the injury, reducing AChE expression, and improving neurogenesis. These results represent a new insight into the beneficial effects of ginger on the structural alterations of diabetic brain and suggest that ginger might be a potential therapeutic strategy for the treatment of diabetic-induced damage in brain. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation.

    Science.gov (United States)

    Burlaka, A P; Druzhyna, M O; Vovk, A V; Lukin, S М

    2016-12-01

    To investigate the changes of redox-state of mammalian brain cells as the critical factor of initiation and formation of radiation damage of biological structures in setting of continuous exposure to low doses of ionizing radiation or fractionated ultra high frequency electromagnetic radiation (UHF EMR) at non-thermal levels. The influence of low-intensity ionizing radiation was studied on outbred female rats kept for 1.5 years in the Chernobyl accident zone. The effects of total EMR in the UHF band of non-thermal spectrum were investigated on Wistar rats. The rate of formation of superoxide radicals and the rate of NO synthesis in mitochondria were determined by the EPR. After exposure to ionizing or UHF radiation, the levels of ubisemiquinone in brain tissue of rats decreased by 3 and 1.8 times, respectively. The content of NO-FeS-protein complexes in both groups increased significantly (р < 0.05). In the conditions of ionizing or EMR the rates of superoxide radical generation in electron-transport chain of brain cell mitochondria increased by 1.5- and 2-fold, respectively (р < 0.05). In brain tissue of rats kept in the Chernobyl zone, significant increase of NO content was registered; similar effect was observed in rats treated with UHFR (р < 0.05). The detected changes in the electron transport chain of mitochondria of brain cells upon low-intensity irradiation or UHF EMR cause the metabolic reprogramming of cell mitochondria that increases the rate of superoxide radical generation and nitric oxide, which may initiate the development of neurodegenerative diseases and cancer. This article is part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  16. Effects of Acute Systemic Hypoxia and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia.

    Directory of Open Access Journals (Sweden)

    Wanchao Yang

    Full Text Available Therapeutic hypercapnia has the potential for neuroprotection after global cerebral ischemia. Here we further investigated the effects of different degrees of acute systemic hypoxia in combination with hypercapnia on brain damage in a rat model of hypoxia and ischemia. Adult wistar rats underwent unilateral common carotid artery (CCA ligation for 60 min followed by ventilation with normoxic or systemic hypoxic gas containing 11%O2,13%O2,15%O2 and 18%O2 (targeted to PaO2 30-39 mmHg, 40-49 mmHg, 50-59 mmHg, and 60-69 mmHg, respectively or systemic hypoxic gas containing 8% carbon dioxide (targeted to PaCO2 60-80 mmHg for 180 min. The mean artery pressure (MAP, blood gas, and cerebral blood flow (CBF were evaluated. The cortical vascular permeability and brain edema were examined. The ipsilateral cortex damage and the percentage of hippocampal apoptotic neurons were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL assay as well as flow cytometry, respectively. Immunofluorescence and western blotting were performed to determine aquaporin-4 (AQP4 expression. In rats treated with severe hypoxia (PaO2 50 mmHg, hypercapnia protected against these pathophysiological changes. Moreover, hypercapnia treatment significantly reduced brain damage in the ischemic ipsilateral cortex and decreased the percentage of apoptotic neurons in the hippocampus after the CCA ligated rats were exposed to mild or moderate hypoxemia (PaO2 > 50 mmHg; especially under mild hypoxemia (PaO2 > 60 mmHg, hypercapnia significantly attenuated the expression of AQP4 protein with brain edema (p < 0.05. Hypercapnia exerts beneficial effects under mild to moderate hypoxemia and augments detrimental effects under severe hypoxemia on brain damage in a rat model of hypoxia-ischemia.

  17. Long-term streptozotocin-induced diabetes in rats leads to severe damage of brain blood vessels and neurons via enhanced oxidative stress.

    Science.gov (United States)

    Yang, Hongying; Fan, Shourui; Song, Dianping; Wang, Zhuo; Ma, Shungao; Li, Shuqing; Li, Xiaohong; Xu, Mian; Xu, Min; Wang, Xianmo

    2013-02-01

    The aim of this study was to investigate pathophysiological alterations and oxidative stress in various stages of streptozotocin (STZ)‑induced diabetes mellitus (DM) in rats. Male Sprague-Dawley rats (120) were randomized into DM and control groups. Body mass, plasma glucose, glycated hemoglobin (HbA1c), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels, as well as aldose reductase (AR) activities, in brain tissue and serum were determined. Electron microscopy was used to observe neuron and vessel changes in the brain. In STZ‑treated rats, blood glucose, low density lipoproteins, triglycerides and total cholesterol levels increased 1.43‑3.0‑fold and high density lipoprotein, HbA1c and insulin sensitivity index increased 1.1‑1.23‑fold compared with control. At week 16 following treatment, DM rat serum H2O2 concentration was increased, indicating oxidative stress and mRNA levels of GPx and SOD were 2‑fold higher than the control. Protein GPx and SOD levels were reduced (PNeuron cells and blood vessels in the DM rat brains became increasingly abnormal over time with altered Golgi bodies, mitochondria and endoplasmic reticulum cisterns, concurrent with SOD inactivation and AR protein accumulation. Disease progression in rats with STZ‑induced DM included brain pathologies with vascular and neuron cell abnormalities, associated with the reduction of SOD, CAT and GPx activities and also AR accumulation.

  18. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Science.gov (United States)

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  19. Relationship of mechanical impact magnitude to neurologic dysfunction severity in a rat traumatic brain injury model.

    Directory of Open Access Journals (Sweden)

    Tsung-Hsun Hsieh

    Full Text Available Traumatic brain injury (TBI is a major brain injury type commonly caused by traffic accidents, falls, violence, or sports injuries. To obtain mechanistic insights about TBI, experimental animal models such as weight-drop-induced TBI in rats have been developed to mimic closed-head injury in humans. However, the relationship between the mechanical impact level and neurological severity following weight-drop-induced TBI remains uncertain. In this study, we comprehensively investigated the relationship between physical impact and graded severity at various weight-drop heights.The acceleration, impact force, and displacement during the impact were accurately measured using an accelerometer, a pressure sensor, and a high-speed camera, respectively. In addition, the longitudinal changes in neurological deficits and balance function were investigated at 1, 4, and 7 days post TBI lesion. The inflammatory expression markers tested by Western blot analysis, including glial fibrillary acidic protein, beta-amyloid precursor protein, and bone marrow tyrosine kinase gene in chromosome X, in the frontal cortex, hippocampus, and corpus callosum were investigated at 1 and 7 days post-lesion.Gradations in impact pressure produced progressive degrees of injury severity in the neurological score and balance function. Western blot analysis demonstrated that all inflammatory expression markers were increased at 1 and 7 days post-impact injury when compared to the sham control rats. The severity of neurologic dysfunction and induction in inflammatory markers strongly correlated with the graded mechanical impact levels.We conclude that the weight-drop-induced TBI model can produce graded brain injury and induction of neurobehavioral deficits and may have translational relevance to developing therapeutic strategies for TBI.

  20. Aluminium and Gamma Irradiation Induced Oxidative Damage in Brain Tissue of Male Rats - Protective Role of Ferulic Acid

    International Nuclear Information System (INIS)

    Mansour, S.Z.; Hanafi, N.; Noaman, E.

    2011-01-01

    The current study was carried out to investigate the potential role of ferulic acid (FA) against Aluminium chloride (AlCl 3 ), γ- radiation either alone or combination induced oxidative stress in brain tissue of Wistar rats. The period of the experiment was eight weeks. Animals were administrated by aluminium chloride at a dose of 8.5 mg/kg/day and exposed to a single dose (4 Gy) of γ-radiation. FA was administered orally (50 mg/Kg body weight)/day. Histopathological observations and myeloid protein distribution were recorded in brain tissue. Induction of oxidative stress was recorded after all exposures. Brain tissue of AlCl 3 and γ- irradiation treatments either alone or combined revealed many altered changes and myeloid protein distribution. Also a decrease in serotonin concentration was recorded. An increase in Malonaldialdahyde (MDA) and acetylcholinesterase activity and percentage of saturated fatty acids in plasma and brain tissue was recorded. Reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) in blood and brain showed a significant decrease. Treatment of AlCl 3 loaded animals by FA showed simple atrophy as shrunken morphology saw in amyotrophic lateral sclerosis and a decrease in myeloid protein deposition. FA treatment of AlCl 3 loaded or irradiated animals represented a significant increase in serotonin concentration and ameliorated affects on oxidative stress markers, acetylcholinesterase activity and percentage of saturated fatty acids in plasma and brain tissue. In conclusion FA has a role in reducing the oxidative stress of AlCl 3 and γ- irradiation on brain tissue of rats

  1. High-protein diets and renal status in rats

    OpenAIRE

    Aparicio, V. A.; Nebot, E.; García-del Moral, R.; Machado-Vílchez, M.; Porres, J. M.; Sánchez, C.; Aranda, P.

    2013-01-01

    Introduction: High-protein (HP) diets might affect renal status. We aimed to examine the effects of a HP diet on plasma, urinary and morphological renal parameters in rats. Material and methods: Twenty Wistar rats were randomly distributed in 2 experimental groups with HP or normal-protein (NP) diets over 12 weeks. Results and discussion: Final body weight was a 10% lower in the HP group (p < 0.05) whereas we have not observed differences on food intake, carcass weight and muscle ashes conten...

  2. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    International Nuclear Information System (INIS)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie

    2016-01-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  3. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie, E-mail: ettieg@iibr.gov.il

    2016-11-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  4. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  5. Assessment of MRI Parameters as Imaging Biomarkers for Radiation Necrosis in the Rat Brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang Silun [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tryggestad, Erik [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Zhou Tingting [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Armour, Michael [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Wen Zhibo [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong (China); Fu Dexue [Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Ford, Eric [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Zijl, Peter C.M. van [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland (United States); Zhou Jinyuan, E-mail: jzhou@mri.jhu.edu [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland (United States)

    2012-07-01

    Purpose: Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T{sub 1}, T{sub 2}, apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Methods and Materials: Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 Multiplication-Sign 10 mm{sup 2}) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at {approx}25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. Results: ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T{sub 1}, T{sub 2}, MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T{sub 1}, T{sub 2}, MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. Conclusion: ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores.

  6. A rat model of smoke inhalation injury: Influence of combustion smoke on gene expression in the brain

    International Nuclear Information System (INIS)

    Lee, Heung M.; Greeley, George H.; Herndon, David N.; Sinha, Mala; Luxon, Bruce A.; Englander, Ella W.

    2005-01-01

    Acute smoke inhalation causes death and injury in victims of home and industrial fires as well as victims of combat situations. The lethal factors in combustion smoke inhalation are toxic gases and oxygen deficiency, with carbon monoxide (CO) as a primary cause of death. In survivors, inhalation of smoke can result in severe immediate and delayed neuropathologies. To gain insight into the progression of molecular events contributing to smoke inhalation sequelae in the brain, we developed a smoke inhalation rat model and conducted a genome-wide analysis of gene expression. Microarray analysis revealed a modified brain transcriptome with changes peaking at 24 h and subsiding within 7 days post-smoke. Overall, smoke inhalation downregulated genes associated with synaptic function, neurotransmission, and neurotrophic support, and upregulated genes associated with stress responses, including nitric oxide synthesis, antioxidant defenses, proteolysis, inflammatory response, and glial activation. Notably, among the affected genes, many have been previously implicated in other types of brain injury, demonstrating the usefulness of microarrays for analysis of changes in gene expression in complex insults. In accord with previously described modulations of nitric oxide homeostasis in CO poisoning, microarray analysis revealed increased brain expression of nitric oxide synthase (NOS) and NOS ligand after inhalation of smoke. Furthermore, immunostaining showed significant elevations in perivascular NOS and in protein nitration, corroborating the involvement of nitric oxide perturbations in post-smoke sequelae in the brain. Thus, the new rat model, in combination with microarray analyses, affords insight into the complex molecular pathophysiology of smoke inhalation in the brain

  7. Decreased α1-adrenergic receptor-mediated inositide hydrolysis in neurons from hypertensive rat brain

    International Nuclear Information System (INIS)

    Feldstein, J.B.; Gonzales, R.A.; Baker, S.P.; Sumners, C.; Crews, F.T.; Raizada, M.K.

    1986-01-01

    The expression of α 1 -adrenergic receptors and norepinephrine (NE)-stimulated hydrolysis of inositol phospholipid has been studied in neuronal cultures from the brains of normotensive (Wistar-Kyoto, WKY) and spontaneously hypertensive (SH) rats. Binding of 125 I-1-[β-(4-hydroxyphenyl)-ethyl-aminomethyl] tetralone (HEAT) to neuronal membranes was 68-85% specific and was rapid. Competition-inhibition experiments with various agonists and antagonists suggested that 125 I-HEAT bound selectively to α 1 -adrenergic receptors. Specific binding of 125 I-HEAT to neuronal membranes from SH rat brain cultures was 30-45% higher compared with binding in WKY normotensive controls. This increase was attributed to an increase in the number of α 1 -adrenergic receptors on SH rat brain neurons. Incubation of neuronal cultures of rat brain from both strains with NE resulted in a concentration-dependent stimulation of release of inositol phosphates, although neurons from SH rat brains were 40% less responsive compared with WKY controls. The decrease in responsiveness of SH rat brain neurons to NE, even though the α 1 -adrenergic receptors are increased, does not appear to be due to a general defect in membrane receptors and postreceptor signal transduction mechanisms. This is because neither the number of muscarinic-cholinergic receptors nor the carbachol-stimulated release of inositol phosphates is different in neuronal cultures from the brains of SH rats compared with neuronal cultures from the brains of WKY rats. These observations suggest that the increased expression of α 1 -adrenergic receptors does not parallel the receptor-mediated inositol phosphate hydrolysis in neuronal cultures from SH rat brain

  8. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Luciane B. Ceretta

    2012-01-01

    Full Text Available Diabetes Mellitus (DM is associated with pathological changes in the central nervous system (SNC as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg, and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD, and catalase (CAT were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals’ recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes.

  9. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    Science.gov (United States)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  10. Dendritic protein synthesis in the normal and diseased brain

    Science.gov (United States)

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  11. Content of NCAM in the brain and pancreas of rats in response to endointoxication under conditions of experimental chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    V. A. Makarchuk

    2014-08-01

    Full Text Available The study was undertaken to examine the influence of chronic pancreatitis on the distribution of neuronal cell adhesion molecule (NCAM in the pancreas and various brain regions of rats under the conditions of endogenous intoxication. The study was conducted using 36 white nonlinear male rats (6 months old, 190–220 g. To develop the state of chronic pancreatitis, animals were subjected tolaparotomy under general anesthesia and prolonged occlusion of the pancreatic duct. The morphological examination of pancreatic tissue hasbeen performed to confirm the chronic pancreatitis development in animals. Biochemical evaluation of the pancreatic fibrosis has been performed by measuring plasma levels of hyaluronic acid, hydroxyproline and protein-free hydroxyproline. The intensity of free radical oxidation has been assessed by the change in the concentration of TBA-active products in plasma. The level of endotoxemia has been determinedby the content of average weight molecules in plasma. Protein fractions were extracted from the pancreas and various parts of the rat brain and the levels of soluble (sNCAM and membrane (mNCAM proteins were studied with the use of the competitive ELISA. Total protein in the obtained fractions was measured by the Bradford assay. Occlusion of the pancreatic duct resultedin significant atrophy of acinar tissue, fibrosis and disfunction of the pancreas along with the decreasing in the antioxidant defense of animals. The present study shows developing of endointoxication in experimentalrats, signified by considerable increase of molecules with average weight in plasma due to the activation of lipid peroxidation. It was established that, as a result of the experimental pancreas dysfunction, significant redistribution of soluble and membrane forms of NCAM took place, more especially in the cerebellum and thalamus of rats; it caused changing of cell-cell adhesion in these brain regions. Multidirectional NCAM distribution in the

  12. Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome.

    Directory of Open Access Journals (Sweden)

    Tanja Karen

    Full Text Available BACKGROUND: Propofol is commonly used as sedative in newborns and children. Recent experimental studies led to contradictory results, revealing neurodegenerative or neuroprotective properties of propofol on the developing brain. We investigated neurodevelopmental short- and long-term effects of neonatal propofol treatment. METHODS: 6-day-old Wistar rats (P6, randomised in two groups, received repeated intraperitoneal injections (0, 90, 180 min of 30 mg/kg propofol or normal saline and sacrificed 6, 12 and 24 hrs following the first injection. Cortical and thalamic areas were analysed by Western blot and quantitative real-time PCR (qRT-PCR for expression of apoptotic and neurotrophin-dependent signalling pathways. Long-term effects were assessed by Open-field and Novel-Object-Recognition at P30 and P120. RESULTS: Western blot analyses revealed a transient increase of activated caspase-3 in cortical, and a reduction of active mitogen-activated protein kinases (ERK1/2, AKT in cortical and thalamic areas. qRT-PCR analyses showed a down-regulation of neurotrophic factors (BDNF, NGF, NT-3 in cortical and thalamic regions. Minor impairment in locomotive activity was observed in propofol treated adolescent animals at P30. Memory or anxiety were not impaired at any time point. CONCLUSION: Exposing the neonatal rat brain to propofol induces acute neurotrophic imbalance and neuroapoptosis in a region- and time-specific manner and minor behavioural changes in adolescent animals.

  13. Changes in calcium and iron levels in the brains of rats during kainate induced epilepsy

    Science.gov (United States)

    Ren, Min-Qin; Ong, Wei-Yi; Makjanic, Jagoda; Watt, Frank

    1999-10-01

    Epilepsy is a recurrent disorder of cerebral function characterised by sudden brief attacks of altered consciousness, motor activity or sensory phenomena, and affects approximately 1% of the population. Kainic acid injection induces neuronal degeneration in rats, is associated with glial hypertrophy and proliferation in the CA3-CA4 fields of hippocampal complex, and is a model for temporal lobe epilepsy. In this study we have applied Nuclear Microscopy to the investigation of the elemental changes within the hippocampus and the cortex areas of the rat brain following kainate injection. Analyses of unstained freeze dried tissue sections taken at 1 day and 1, 2, 3 and 4 weeks following injection were carried out using the Nuclear Microscopy facility at the Research Centre for Nuclear Microscopy, National University of Singapore. Quantitative analysis and elemental mapping indicates that there are significant changes in the calcium levels and distributions in the hippocampus as early as 1 day following injection. Preliminary results indicate a rapid increase in cellular calcium. High levels of calcium can activate calcium dependent proteins and phospholipases. Activation of phospholipase A 2 can be harmful to surrounding neurons through free radical damage. In addition to observed increases in calcium, there was evidence of increases in iron levels. This is consistent with measurements in other degenerative brain disorders, and may signal a late surge in free radical production.

  14. Changes in calcium and iron levels in the brains of rats during kainate induced epilepsy

    International Nuclear Information System (INIS)

    Ren, M.-Q.; Ong, W.-Y.; Makjanic, Jagoda; Watt, Frank

    1999-01-01

    Epilepsy is a recurrent disorder of cerebral function characterised by sudden brief attacks of altered consciousness, motor activity or sensory phenomena, and affects approximately 1% of the population. Kainic acid injection induces neuronal degeneration in rats, is associated with glial hypertrophy and proliferation in the CA3-CA4 fields of hippocampal complex, and is a model for temporal lobe epilepsy. In this study we have applied Nuclear Microscopy to the investigation of the elemental changes within the hippocampus and the cortex areas of the rat brain following kainate injection. Analyses of unstained freeze dried tissue sections taken at 1 day and 1, 2, 3 and 4 weeks following injection were carried out using the Nuclear Microscopy facility at the Research Centre for Nuclear Microscopy, National University of Singapore. Quantitative analysis and elemental mapping indicates that there are significant changes in the calcium levels and distributions in the hippocampus as early as 1 day following injection. Preliminary results indicate a rapid increase in cellular calcium. High levels of calcium can activate calcium dependent proteins and phospholipases. Activation of phospholipase A 2 can be harmful to surrounding neurons through free radical damage. In addition to observed increases in calcium, there was evidence of increases in iron levels. This is consistent with measurements in other degenerative brain disorders, and may signal a late surge in free radical production

  15. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Science.gov (United States)

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  16. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats

    DEFF Research Database (Denmark)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne

    2014-01-01

    , and aspartate and incorporation of (15)NH4(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation...... of (15)NH4(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH4(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined...

  17. The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinsons disease rats

    OpenAIRE

    Chen, Yuan; Lian, Yajun; Ma, Yunqing; Wu, Chuanjie; Zheng, Yake; Xie, Nanchang

    2017-01-01

    The expression and significance of tyrosine hydroxylase (TH) in brain tissue of rats with Parkinson's disease (PD) were explored and analyzed. A total of 120 clean-grade and healthy adult Wistar rats weighing 180–240 g were randomly divided equally into four groups according to the random number table method. Rats were sacrificed before and after the model establishment for 3, 6 or 8 weeks. The number of revolutions in rats was observed and the relative expression of TH mRNA in brain tissue w...

  18. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Therapeutic effect of methanolic extract of Laportea aestuans (L.) Chew, on oxidative stress in the brain of male Wistar rats

    Science.gov (United States)

    Elizabeth, Omotosho Omolola; Olawumi, Ogunlade Oladipupo

    2018-04-01

    The aim of this study was to assess the effect of diclofenac-induced oxidative stress in the brain of Wistar rats. The experiment was carried out using thirty-six rats. Six groups contained six rats in each. The first group being the control group received 1ml of gum acacia which is the vehicle. Groups 2 to 6 were induced with oxidative stress by oral administration of 40 mg/kg body weight of diclofenac and pretreated as follows: group 2 received only diclofenac, group 3 with 200 mg/kg body weight of methanolic extract of Laportea aestuans (L.) Chew, group 4 with 400 mg/kg body weight of Laportea aestuans extract, group 5 with 800 mg/kg body weight of Laportea aestuans and group 6 with 50 mg/kg body weight of cimetidine. The pretreatment was carried out for a period of seven days after which oxidative stress was induced. The animals were thereafter sacrificed and brain was excised. Antioxidant enzymes and molecules such as superoxide dismutase, catalase, glutathione, levels of malondialdehyde and protein carbonyl were assayed by standard methods. The results showed significant increases in glutathione level and activities of catalase, superoxide dismutase and significant decrease in lipid peroxidation and protein carbonyl in groups 3 to 5 when compared to group 2. This shows that the methanolic extract of Laportea aestuans has a protective effect on the brain against oxidative stress.

  20. Tritium in organic compounds of brain of rats exposed to tritiated water or tritiated food during three successive generations

    International Nuclear Information System (INIS)

    Major, Z.

    1987-01-01

    The study was performed on Wistar rats which were chronically exposed to tritiated water (HTO, 37.0 kBq/ml) or to tritiated food (48.1 kBq/g). The tritium exposure of the rats was started before mating and was continued up to delivery of the F 3 generation. The incorporation of organically bound tritium (OBT) was determined in whole brain and in some organic components of rats at various ages. The specific activity of OBT in whole brain and in its organic components with the exception of proteins significantly increased in the F 1 +F 2 generations of rats in comparison with F 0 females. The contribution of OBT to the total dose rate was about 6 per cent in HTO group and 9 per cent in T-food group. The contribution of lipids and proteins to the dose rate from OBT was similar in both treatment groups, being 60 and 20 per cent, respectively. 20 refs. (author)

  1. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats

    International Nuclear Information System (INIS)

    Kodavanti, Prasada Rao S.; Royland, Joyce E.; Richards, Judy E.; Besas, Jonathan; MacPhail, Robert C.

    2011-01-01

    The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), γ-glutamylcysteine synthetase (γ-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)), and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1 g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at − 80 °C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12 month old rats. These results indicate changes in OS parameters with age and toluene exposure resulted in oxidative

  2. Effect of ethanol on enkephalinergic opioid system of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Belyayev, N.A.; Balakireva, N.N.; Brusov, O.S.; Panchenko, L.F.

    1983-10-13

    Specific binding of /sup 3/H-morphine and /sup 3/H-(D-Ala/sup 2/, D-Leu/sup 5/)-enkephalin (H-EN) with opiatic receptors was studied on white rats along with the content of Met- and Leu-enkephalin and the activity of enkephalinase in various brain segments after single dose (20% solution in 0.9% NaCl, IP; 1.5-4.5 g/kg body weight) and chronic injection (20% EtOH substituted for drinking water) of ethanol. The single injection of EtOH (1.5-4.5 g/kg) resulted in a depression of the specific binding of H-EN with opiate receptors. Doses of 1.5 and 2.5 g/kg led to a lower content of Leu-enkephalin in mid-brain but to an increase of Met-enkephalin; the 4.5 g/kg dose had no effect on the striatum. With chronic administration of EtOH, most of the values obtained on the experimental animals were similar to the control data. 23 references.

  3. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  4. THE SERUM PROTEIN FRACTIONS IN THYMOQUINONE TREATED RATS.

    Science.gov (United States)

    A, Güllü; S, Dede

    2016-01-01

    TQ has been used as treatment and preventive agent for many diseases over the years. The goal of this study was to investigate the effects of TQ supplement on fractions of serum proteins. Fourteen male Wistar-Albino rats (200-250 g weight) were used as material for two groups; (control (C) and thymoquinone (TQ) respectively. Each group contained seven rats. The control group had only corn oil, while the TQ group was dissolved in corn oil. 30 mg/kg/day were given by oral gavage for four weeks. The serum protein fractions were identified using cellulose acetate technique. The total protein level and albumin, α-1, α-2 fractions and A/G ratio have showed no difference between groups (p>0.05). β-globulin fractions of TQ group were higher than control's (pfractions may have originated from elevation or decline synthesis, or activities of containing proteins.

  5. Effects of sublethal doses of gamma radiation on the developing rat brain

    International Nuclear Information System (INIS)

    Cerda, H.; Carlsson, J.; Larsson, B.; Saefwenberg, J.O.

    1975-01-01

    Newborn rats were irradiated with 60 Co gamma rays. Doses of 0, 80 or 160 rads were given to the whole body. The whole body and brain weights, DNA and RNA contents of the brain and 3 H-thymidine or 3 H-uridine incorporated by the brain were measured at 5, 10 or 15 days after birth. A dose of 160 rads produced clear alterations in the brain but no clear effects could be detected when 80 rads were given. (author)

  6. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    Wong, K.L.; Tyce, G.M.

    1983-01-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U- 14 C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  7. Glutamic Acid Signal Synchronizes Protein Synthesis Kinetics in Hepatocytes from Old Rats for the Following Several Days. Cell Metabolism Memory.

    Science.gov (United States)

    Brodsky, V Y; Malchenko, L A; Lazarev, D S; Butorina, N N; Dubovaya, T K; Zvezdina, N D

    2018-03-01

    The kinetics of protein synthesis was investigated in primary cultures of hepatocytes from old rats in serum-free medium. The rats were fed mixed fodder supplemented with glutamic acid and then transferred to a regular mixed fodder. The amplitude of protein synthesis rhythm in hepatocytes isolated from these rats increased on average 2-fold in comparison with the rats not receiving glutamic acid supplement. Based on this indicator reflecting the degree of cell-cell interactions, the cells from old rats were not different from those of young rats. The effect was preserved for 3-4 days. These results are discussed in connection with our previous data on preservation of the effect of single administration of gangliosides, noradrenaline, serotonin, and other synchronizers on various cell populations. In contrast to the other investigated factors, glutamic acid is capable of penetrating the blood-brain barrier, which makes its effect possible not only in the case of hepatocytes and other non-brain cells, but also in neurons.

  8. Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain

    International Nuclear Information System (INIS)

    Lin, Anya M.Y.; Chao, P.L.; Fang, S.F.; Chi, C.W.; Yang, C.H.

    2007-01-01

    The mechanism underlying sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat brain. Arsenite was locally infused in the substantia nigra (SN) of anesthetized rat. Seven days after infusion, lipid peroxidation in the infused SN was elevated and dopamine level in the ipsilateral striatum was reduced in a concentration-dependent manner (0.3-5 nmol). Furthermore, local infusion of arsenite (5 nmol) decreased GSH content and increased expression of heat shock protein 70 and heme oxygenase-1 in the infused SN. Aggregation of α-synuclein, a putative pathological protein involved in several CNS neurodegenerative diseases, was elevated in the arsenite-infused SN. From the breakdown pattern of α-spectrin, both necrosis and apoptosis were involved in the arsenite-induced neurotoxicity. Pyknotic nuclei, cellular shrinkage and cytoplasmic disintegration, indicating necrosis, and TUNEL-positive cells and DNA ladder, indicating apoptosis was observed in the arsenite-infused SN. Arsenite-induced apoptosis was mediated via two different organelle pathways, mitochondria and endoplasmic reticulum (ER). For mitochondrial activation, cytosolic cytochrome c and caspase-3 levels were elevated in the arsenite-infused SN. In ER pathway, arsenite increased activating transcription factor-4, X-box binding protein 1, C/EBP homologues protein (CHOP) and cytosolic immunoglobulin binding protein levels. Moreover, arsenite reduced procaspase 12 levels, an ER-specific enzyme in the infused SN. Taken together, our study suggests that arsenite is capable of inducing oxidative injury in CNS. In addition to mitochondria, ER stress was involved in the arsenite-induced apoptosis. Arsenite-induced neurotoxicity clinically implies a pathophysiological role of arsenite in CNS neurodegeneration

  9. Protein profiles of serum, brain regions and hypophyses of pubertal ...

    African Journals Online (AJOL)

    The effects of dietary fumonisin B1 (FB1 ), a toxin produced mainly by Fusarium verticillioides and F. proliferatum that grow on maize worldwide, on protein profiles of serum, brain regions and hypophyses were studied in 24 male Large White weanling pigs randomly divided into four groups (n = 6). In a completely ...

  10. Serum protein and enzyme levels in rats following administration of ...

    African Journals Online (AJOL)

    The effects of caffeinated and non-caffeinated paracetamol administration, with or without vitamins A and E supplementation on the protein and enzyme levels in Wistar albino rats were investigated using cafeinated paracetamol and paracetamol as caffeinated and non-caffeinated paracetamol respectively, and water ...

  11. Aquaporin-11: A channel protein lacking apparent transport function expressed in brain

    Directory of Open Access Journals (Sweden)

    Tsunenari Takashi

    2006-05-01

    Full Text Available Abstract Background The aquaporins are a family of integral membrane proteins composed of two subfamilies: the orthodox aquaporins, which transport only water, and the aquaglyceroporins, which transport glycerol, urea, or other small solutes. Two recently described aquaporins, numbers 11 and 12, appear to be more distantly related to the other mammalian aquaporins and aquaglyceroporins. Results We report on the characterization of Aquaporin-11 (AQP11. AQP11 RNA and protein is found in multiple rat tissues, including kidney, liver, testes and brain. AQP11 has a unique distribution in brain, appearing in Purkinje cell dendrites, hippocampal neurons of CA1 and CA2, and cerebral cortical neurons. Immunofluorescent staining of Purkinje cells indicates that AQP11 is intracellular. Unlike other aquaporins, Xenopus oocytes expressing AQP11 in the plasma membrane failed to transport water, glycerol, urea, or ions. Conclusion AQP11 is functionally distinct from other proteins of the aquaporin superfamily and could represent a new aquaporin subfamily. Further studies are necessary to elucidate the role of AQP11 in the brain.

  12. Performance Enhancement of the RatCAP Awake Rat Brain PET System

    International Nuclear Information System (INIS)

    Vaska, P.; Woody, C.; Schlyer, D.; Radeka, V.; O'Connor, P.; Park, S.-J.; Pratte, J.-F.; Junnarkar, S.; Purschke, M.; Southekal, S.; Stoll, S.; Schiffer, W.; Lee, D.; Neill, J.; Wharton, D.; Myers, N.; Wiley, S.; Kandasamy, A.; Fried, J.; Krishnamoorthy, S.; Kriplani, A.; Maramraju, S.; Lecomte, R.; Fontaine, R.

    2011-01-01

    The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required for neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.

  13. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    Science.gov (United States)

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  14. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats.

    Science.gov (United States)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S; Simonsen, Mette; Ott, Peter; Vilstrup, Hendrik; Sørensen, Michael

    2014-03-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine, and aspartate and incorporation of (15)NH(4)(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation of (15)NH(4)(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH(4)(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined but only in brain was an increased incorporation of (15)N-ammonia into alanine observed. Liver and kidney were important for metabolizing blood-borne ammonia.

  15. RPE cell surface proteins in normal and dystrophic rats

    International Nuclear Information System (INIS)

    Clark, V.M.; Hall, M.O.

    1986-01-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  16. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  17. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    Science.gov (United States)

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  18. Environmental Enrichment, Performance, and Brain Injury in Male and Female Rats

    National Research Council Canada - National Science Library

    Elliott, Brenda M

    2004-01-01

    ...) and physical enrichment (PE) on the cognitive performance of neurologically intact and brain-injured rats and to determine if there are gender differences in these effects. Measures of basic (i.e...

  19. Catechins decrease neurological severity score through apoptosis and neurotropic factor pathway in rat traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Retty Ratnawati

    2017-08-01

    Administration of catechins decreased NSS through inhibiting inflammation and apoptosis, as well as induced the neurotrophic factors in rat brain injury. Catechins may serve as a potential intervention for TBI.

  20. A non-equilibrium 24-hour vasopressin radioimmunoassay: development and basal levels in the rat brain

    International Nuclear Information System (INIS)

    Brinton, R.E.; Deshmukh, P.P.; Chen, A.; Davis, T.P.; Hsiao, S.; Yamamura, H.I.

    1983-01-01

    In this paper the authors report a highly-sensitive non-equilibrium RIA which can be performed within 24 h. To demonstrate the sensitivity of this RIA, brain regions from rat were examined for vasopressin content. (Auth.)

  1. The NMDAR subunit NR3A interacts with microtubule-associated protein 1S in the brain

    DEFF Research Database (Denmark)

    Eriksson, Maria; Samuelsson, Helena; Samuelsson, Eva-Britt

    2007-01-01

    -proximal part of the NR3A C-terminus. MAP1S belongs to the same family as MAP1A and MAP1B, and was found to be abundant in both postnatal and adult rat brain. In hippocampal neurons the distribution-pattern of MAP1S resembled that of beta-tubulin III, but a fraction of the protein colocalized with synaptic...

  2. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  3. Profiles of VGF Peptides in the Rat Brain and Their Modulations after Phencyclidine Treatment

    Directory of Open Access Journals (Sweden)

    Barbara Noli

    2017-06-01

    Full Text Available From the VGF precursor protein originate several low molecular weight peptides, whose distribution in the brain and blood circulation is not entirely known. Among the VGF peptides, those containing the N-terminus portion were altered in the cerebro-spinal fluid (CSF and hypothalamus of schizophrenia patients. “Hence, we aimed to better investigate the involvement of the VGF peptides in schizophrenia by studying their localization in the brain regions relevant for the disease, and revealing their possible modulations in response to certain neuronal alterations occurring in schizophrenia”. We produced antibodies against different VGF peptides encompassing the N-terminus, but also C-terminus-, TLQP-, GGGE- peptide sequences, and the so named NERP-3 and -4. These antibodies were used to carry out specific ELISA and immunolocalization studies while mass spectrometry (MS analysis was also performed to recognize the intact brain VGF fragments. We used a schizophrenia rat model, in which alterations in the prepulse inhibition (PPI of the acoustic startle response occurred after PCP treatment. In normal rats, all the VGF peptides studied were distributed in the brain areas examined including hypothalamus, prefrontal cortex, hippocampus, accumbens and amygdaloid nuclei and also in the plasma. By liquid chromatography-high resolution mass, we identified different intact VGF peptide fragments, including those encompassing the N-terminus and the NERPs. PCP treatment caused behavioral changes that closely mimic schizophrenia, estimated by us as a disruption of PPI of the acoustic startle response. The PCP treatment also induced selective changes in the VGF peptide levels within certain brain areas. Indeed, an increase in VGF C-terminus and TLQP peptides was revealed in the prefrontal cortex (p < 0.01 where they were localized within parvoalbumin and tyrosine hydroxylase (TH containing neurons, respectively. Conversely, in the nucleus accumbens, PCP

  4. The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity.

    Science.gov (United States)

    Yin, Fei; Yao, Jia; Sancheti, Harsh; Feng, Tao; Melcangi, Roberto C; Morgan, Todd E; Finch, Caleb E; Pike, Christian J; Mack, Wendy J; Cadenas, Enrique; Brinton, Roberta D

    2015-07-01

    The perimenopause is an aging transition unique to the female that leads to reproductive senescence which can be characterized by multiple neurological symptoms. To better understand potential underlying mechanisms of neurological symptoms of perimenopause, the present study determined genomic, biochemical, brain metabolic, and electrophysiological transformations that occur during this transition using a rat model recapitulating fundamental characteristics of the human perimenopause. Gene expression analyses indicated two distinct aging programs: chronological and endocrine. A critical period emerged during the endocrine transition from regular to irregular cycling characterized by decline in bioenergetic gene expression, confirmed by deficits in fluorodeoxyglucose-positron emission tomography (FDG-PET) brain metabolism, mitochondrial function, and long-term potentiation. Bioinformatic analysis predicted insulin/insulin-like growth factor 1 and adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK/PGC1α) signaling pathways as upstream regulators. Onset of acyclicity was accompanied by a rise in genes required for fatty acid metabolism, inflammation, and mitochondrial function. Subsequent chronological aging resulted in decline of genes required for mitochondrial function and β-amyloid degradation. Emergence of glucose hypometabolism and impaired synaptic function in brain provide plausible mechanisms of neurological symptoms of perimenopause and may be predictive of later-life vulnerability to hypometabolic conditions such as Alzheimer's. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Altered blood-brain barrier permeability in rats with prehepatic portal hypertension turns to normal when portal pressure is lowered

    Science.gov (United States)

    Eizayaga, Francisco; Scorticati, Camila; Prestifilippo, Juan P; Romay, Salvador; Fernandez, Maria A; Castro, José L; Lemberg, Abraham; Perazzo, Juan C

    2006-01-01

    AIM: To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation, at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS: Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 days after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia, plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected, were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS: Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION: The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility. Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment. PMID:16552803

  6. ERP-based detection of brain pathology in rat models for preclinical Alzheimer's disease

    Science.gov (United States)

    Nouriziabari, Seyed Berdia

    Early pathological features of Alzheimer's disease (AD) include the accumulation of hyperphosphorylated tau protein (HP-tau) in the entorhinal cortex and progressive loss of basal forebrain (BF) cholinergic neurons. These pathologies are known to remain asymptomatic for many years before AD is clinically diagnosed; however, they may induce aberrant brain processing which can be captured as an abnormality in event-related potentials (ERPs). Here, we examined cortical ERPs while a differential associative learning paradigm was applied to adult male rats with entorhinal HP-tau, pharmacological blockade of muscarinic acetylcholine receptors, or both conditions. Despite no impairment in differential associative and reversal learning, each pathological feature induced distinct abnormality in cortical ERPs to an extent that was sufficient for machine classifiers to accurately detect a specific type of pathology based on these ERP features. These results highlight a potential use of ERPs during differential associative learning as a biomarker for asymptomatic AD pathology.

  7. Purification and characterization of mu-specific opioid receptor from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, J.; Cho, T.M.; Ge, B.L.; Loh, H.H.

    1986-03-05

    A mu-specific opioid receptor was purified to apparent homogeneity from rat brain membranes by 6-succinylmorphine affinity chromatography, Ultrogel filtration, wheat germ agglutinin affinity chromatography, and isoelectric focusing. The purified receptor had a molecular weight of 58,000 as determined by polyacrylamide gel electrophoresis, and was judged to be homogeneous by the following criteria: (1) a single band on the SDS gel; and (2) a specific opioid binding activity of 17,720 pmole/mg protein, close to the theoretical value. In addition, the 58,000 molecular weight value agrees closely with that determined by covalently labelling purified receptor with bromoacetyl-/sup 3/H-dihydromorphine or with /sup 125/I-beta-endorphin and dimethyl suberimidate. To their knowledge, this is the first complete purification of an opioid receptor that retains its ability to bind opiates.

  8. Effects of immunosuppressive treatment on protein expression in rat kidney

    Directory of Open Access Journals (Sweden)

    Kędzierska K

    2014-09-01

    Full Text Available Karolina Kędzierska,1 Katarzyna Sporniak-Tutak,2 Krzysztof Sindrewicz,2 Joanna Bober,3 Leszek Domański,1 Mirosław Parafiniuk,4 Elżbieta Urasińska,5 Andrzej Ciechanowicz,6 Maciej Domański,1 Tomasz Smektała,2 Marek Masiuk,5 Wiesław Skrzypczak,6 Małgorzata Ożgo,6 Joanna Kabat-Koperska,1 Kazimierz Ciechanowski1 1Department of Nephrology, Transplantology, and Internal Medicine, 2Department of Dental Surgery, 3Department of Medical Chemistry, 4Department of Forensic Medicine, 5Department of Pathomorphology, Pomeranian Medical University, 6Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland Abstract: The structural proteins of renal tubular epithelial cells may become a target for the toxic metabolites of immunosuppressants. These metabolites can modify the properties of the proteins, thereby affecting cell function, which is a possible explanation for the mechanism of immunosuppressive agents' toxicity. In our study, we evaluated the effect of two immunosuppressive strategies on protein expression in the kidneys of Wistar rats. Fragments of the rat kidneys were homogenized after cooling in liquid nitrogen and then dissolved in lysis buffer. The protein concentration in the samples was determined using a protein assay kit, and the proteins were separated by two-dimensional electrophoresis. The obtained gels were then stained with Coomassie Brilliant Blue, and their images were analyzed to evaluate differences in protein expression. Identification of selected proteins was then performed using mass spectrometry. We found that the immunosuppressive drugs used in popular regimens induce a series of changes in protein expression in target organs. The expression of proteins involved in drug, glucose, amino acid, and lipid metabolism was pronounced. However, to a lesser extent, we also observed changes in nuclear, structural, and transport proteins' synthesis. Very slight differences

  9. Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.

    Science.gov (United States)

    Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław

    2017-04-01

    The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.

  10. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.

    Science.gov (United States)

    Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young

    2006-01-01

    Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.

  11. Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats.

    Science.gov (United States)

    Vasatkova, Anna; Krizova, Sarka; Krystofova, Olga; Adam, Vojtech; Zeman, Ladislav; Beklova, Miroslava; Kizek, Rene

    2009-01-01

    The aim of this study is to determine level of metallothioneins (MTs) in brain tissues of rats administered by feed mixtures with different content of mouldy wheat or fungi. Selected male laboratory rats of Wistar albino at age of 28 days were used in our experiments. The rats were administered by feed mixtures with different content of vitamins, naturally mouldy wheat or fungi for 28 days. At the very end of the experiment, the animals were put to death and brains were sampled. MT level was determined by differential pulse voltammetry Brdicka reaction. We found that MTs' level in brain tissues from rats administered by standard feed mixtures was significantly higher compared to the level of MTs in rats supplemented by vitamins. Further we studied the effect of supplementation of naturally mouldy wheat on MTs level in rats. In mouldy wheat we detected the presence of following fungi species: Mucor spp., Absidia spp., Penicillium spp., Aspergillus spp. and Fusarium spp. Moreover we also identified and quantified following mycotoxins - deoxynivalenol, zearalenone, T2-toxin and aflatoxins. Level of MTs determined in rats treated with 33 or 66% of mouldy wheat was significantly lower compared to control ones. On the other hand rats treated with 100% of mouldy wheat had less MTs but not significantly. Supplementation of vitamins to rats fed by mouldy wheat had adverse effect on MTs level compared to rats with no other supplementation by vitamins. Moreover vitamins supplementation has no effect on MTs level in brain tissues of rats treated or non-treated with Ganoderma lucidum L. Both mycotoxins and vitamins have considerable effect on level of MTs in brain tissues. It can be assumed that the administered substances markedly influence redox metabolism, which could negatively influence numerous biochemical pathways including those closely related with MTs.

  12. The observation of blood-brain barrier of organic mercury poisoned rat

    International Nuclear Information System (INIS)

    Kuwabara, Takeo; Yuasa, Tatsuhiko; Hidaka, Kazuyuki; Igarashi, Hironaka; Kaneko, Kiyotoshi; Miyatake, Tadashi

    1989-01-01

    Permeability of the blood-brain barrier (BBB) of methymercury chrolide (MMC) intoxicated rat brain was studied in vivo by gadlinium diethylenetriamine pentaacetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI), measuring the longitudinal relaxation time (T 1 ) and the transverse relaxation time (T 2 ). MMC intoxicated rat brain showed the prolonged T 1 in the cerebral white matter and prolonged T 2 in the cerebellar cortex. After Gd-DTPA administration, T 1 of cerebral and cerebellar white matter shortened from 1.647 to 1.344 sec., and 1.290 to 1.223 sec. respectively. On the contrary, T 2 showed no change after Gd-DTPA injection. It was concluded that, although the shortening of T 1 after Gd-DTPA enhancement was rather little when compared with experimental brain ischemia, the shortening of the relaxation time of the MMC intoxicated rat brain was caused by the increased permeability of BBB. (author)

  13. Involvement of the JNK/FOXO3a/Bim Pathway in Neuronal Apoptosis after Hypoxic-Ischemic Brain Damage in Neonatal Rats.

    Directory of Open Access Journals (Sweden)

    Deyuan Li

    Full Text Available c-Jun N-terminal kinase (JNK plays a key role in the regulation of neuronal apoptosis. Previous studies have revealed that forkhead transcription factor (FOXO3a is a critical effector of JNK-mediated tumor suppression. However, it is not clear whether the JNK/FOXO3a pathway is involved in neuronal apoptosis in the developing rat brain after hypoxia-ischemia (HI. In this study, we generated an HI model using postnatal day 7 rats. Fluorescence immunolabeling and Western blot assays were used to detect the distribution and expression of total and phosphorylated JNK and FOXO3a and the pro-apoptotic proteins Bim and CC3. We found that JNK phosphorylation was accompanied by FOXO3a dephosphorylation, which induced FOXO3a translocation into the nucleus, resulting in the upregulation of levels of Bim and CC3 proteins. Furthermore, we found that JNK inhibition by AS601245, a specific JNK inhibitor, significantly increased FOXO3a phosphorylation, which attenuated FOXO3a translocation into the nucleus after HI. Moreover, JNK inhibition downregulated levels of Bim and CC3 proteins, attenuated neuronal apoptosis and reduced brain infarct volume in the developing rat brain. Our findings suggest that the JNK/FOXO3a/Bim pathway is involved in neuronal apoptosis in the developing rat brain after HI. Agents targeting JNK may offer promise for rescuing neurons from HI-induced damage.

  14. Expression of annexin and Annexin-mRNA in rat brain under influence of steroid drugs

    NARCIS (Netherlands)

    Voermans, PH; Go, KG; ter Horst, GJ; Ruiters, MHJ; Solito, E; Parente, L; James, HE; Marshall, LF; Reulen, HJ; Baethmann, A; Marmarou, A; Ito, U; Hoff, JT; Kuroiwa, T; Czernicki, Z

    1997-01-01

    Brain tissue of rats pretreated with methylprednisolone or with the 21-aminosteroid U74389F, and that of untreated control rats, was assessed for the expression of Annexin-l (Anx-1) and the transcription of its mRNA. For this purpose Anx-1 cDNA was amplified and simultaneously a T7-RNA-polymerase

  15. Mitochondrial monoaminoxidase activity and serotonin content in rat brain after whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Savitskij, I.V.; Tsybul'skij, V.V.; Grivtsev, B.A.

    1985-01-01

    It is shown that γ-irradiation of albino rats with a dose of 30 Gy leads to pronounced phase changes in monoaminoxidase activity and serotonin content in rat brain at early times after whole-body exposure. These is a similar direction of changes in the activity of the enzyme and in the content of the substrate adequate to the latter

  16. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    Directory of Open Access Journals (Sweden)

    Jacob Aude

    2011-08-01

    Full Text Available Abstract Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP or Δ9-tetrahydrocannabinol (Δ9-THC. Results After ex vivo exposure to TCDD (a highly potent AhR ligand for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold and Cyp1b1 protein (2-fold in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation.

  18. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    Science.gov (United States)

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Glomerular sieving of high molecular weight proteins in proteinuric rats

    International Nuclear Information System (INIS)

    Bertolatus, J.A.; Abuyousef, M.; Hunsicker, L.G.

    1987-01-01

    To characterize the permeability of the glomerular capillary wall to high molecular weight proteins in normal and proteinuric rats, we determined the glomerular sieving coefficients (GSC) of radioiodinated marker proteins of known size and charge by means of a paired label, tissue accumulation method previously validated in this laboratory. In one group of rats (Series A) the GSCs of 125 I-anionic IgG (aIgG-molecular weight [mol wt] 150,000, pI 4.9) and 131 I-neutral IgG (nIgG-pI 7.4 to 7.6) were measured simultaneously. In Series B, the GSC of a second anionic marker, 131 I-human ceruloplasmin (Crp-mol wt 137,000, pI 4.9) was compared to that of 125 I-nIgG. As in the previous report, the labeled proteins were not degraded or deiodinated during the 20 minute clearance period for GSC determination. Within Series A and B, three subgroups of rats were studied: control saline-infused rats, rats made acutely proteinuric by infusion of the polycation hexadimethrine (HDM), and rats with chronic doxorubicin (Adriamycin-Adria) nephrosis. In the control rats, GSCs for the anionic markers aIgG (Series A) or Crp (Series B) were significantly greater than that of nIgG (both series). These large proteins crossed the filtration barrier by a different pathway from that available to smaller neutral molecules the size of albumin, which in our previous study had a much higher GSC than a native, anionic albumin marker. In a third group of control rats only (Series C), the GSCs of native anionic bovine albumin (BSA) and nIgG were compared directly. The GSC of BSA (0.0029) was only slightly larger than the GSC of nIgG (0.0025), indicating that most of the native albumin crosses the glomerular capillary wall via a nonselective pathway similar to that available to nIgG. The results in the control groups are compatible with recently-described heteroporous models of glomerular size selectivity

  20. Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain.

    Science.gov (United States)

    Krishna, Gokul; Muralidhara

    2018-05-25

    Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Regional distribution of serotonin transporter protein in postmortem human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Stephen J. [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)]. E-mail: Stephen_Kish@CAMH.net; Furukawa, Yoshiaki [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Chang Lijan [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Tong Junchao [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Ginovart, Nathalie [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Wilson, Alan [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Meyer, Jeffrey H. [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2005-02-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met.

  2. Regional distribution of serotonin transporter protein in postmortem human brain

    International Nuclear Information System (INIS)

    Kish, Stephen J.; Furukawa, Yoshiaki; Chang Lijan; Tong Junchao; Ginovart, Nathalie; Wilson, Alan; Houle, Sylvain; Meyer, Jeffrey H.

    2005-01-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  3. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  4. Changes in Brain 14-3-3 Proteins in Response to Insulin Resistance Induced by a High Palatable Diet.

    Science.gov (United States)

    Bock, Hugo; Zimmer, Aline Rigon; Zimmer, Eduardo Rigon; de Souza, Diogo Onofre Gomes; Portela, Luis Valmor Cruz; Saraiva-Pereira, Maria Luiza

    2015-08-01

    The 14-3-3 protein family takes part in a wide range of cellular processes and is expressed in all eukaryotic organisms. In mammals, seven isoforms (β, ε, η, γ, τ, ζ, and σ) have been identified. 14-3-3 proteins are suggested to modulate the insulin-signaling cascade in the brain. The aim of this study was to investigate whether insulin resistance state induced by high palatable diet modulates expression of the 14-3-3 proteins in brain. Wistar male rats (n = 8) were divided into two experimental groups: insulin resistant (IR), induced by high palatable diet, and control (CO) group. Biochemical parameters (glucose tolerance test and plasma lipid profile) were evaluated after 130 days. Brain structures (cortex and hippocampus) were dissected for evaluation of messenger RNA (mRNA) and protein levels of different 14-3-3 proteins. Statistical analyses included Student t test and Pearson correlation. Significant decrease was observed in Ywhah and in Ywahq mRNA levels in the cortex of IR group, while no changes were observed in the hippocampus. Significant increase of θ isoform was observed in hippocampus IR group by immunodetection, while no differences were detected in the remaining isoforms. Inverse correlation was observed between blood glucose levels in cortex IR group and both Ywhah and Ywhaq mRNA levels. Protein levels of Creb and phosphatidylinositide 3-kinases (PI3K) showed to be increased in the hippocampus. These alterations may be due to a compensatory effect of impaired insulin signaling. We demonstrated differential expression of 14-3-3 isoforms throughout brain regions of rats with IR. As a whole, our results indicate that brain 14-3-3 levels are influenced by different diets.

  5. Localization of Reversion-Induced LIM Protein (RIL) in the Rat Central Nervous System

    International Nuclear Information System (INIS)

    Iida, Yuko; Matsuzaki, Toshiyuki; Morishima, Tetsuro; Sasano, Hiroshi; Asai, Kiyofumi; Sobue, Kazuya; Takata, Kuniaki

    2009-01-01

    Reversion-induced LIM protein (RIL) is a member of the ALP (actinin-associated LIM protein) subfamily of the PDZ/LIM protein family. RIL serves as an adaptor protein and seems to regulate cytoskeletons. Immunoblotting suggested that RIL is concentrated in the astrocytes in the central nervous system. We then examined the expression and localization of RIL in the rat central nervous system and compared it with that of water channel aquaporin 4 (AQP4). RIL was concentrated in the cells of ependyma lining the ventricles in the brain and the central canal in the spinal cord. In most parts of the central nervous system, RIL was expressed in the astrocytes that expressed AQP4. Double-labeling studies showed that RIL was concentrated in the cytoplasm of astrocytes where glial fibrillary acidic protein was enriched as well as in the AQP4-enriched regions such as the endfeet or glia limitans. RIL was also present in some neurons such as Purkinje cells in the cerebellum and some neurons in the brain stem. Differential expression of RIL suggests that it may be involved in the regulation of the central nervous system

  6. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat.

    Science.gov (United States)

    Samini, Fariborz; Samarghandian, Saeed; Borji, Abasalt; Mohammadi, Gholamreza; bakaian, Mahdi

    2013-09-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow coloring principle in turmeric, is a polyphenolic and a major active constituent. Besides anti-inflammatory, thrombolytic and anti-carcinogenic activities, curcumin also possesses strong antioxidant property. The neuroprotective effects of curcumin were evaluated in a weight drop model of cortical contusion trauma in rat. Male Wistar rats (350-400 g, n=9) were anesthetized with sodium pentobarbital (60 mg/kg i.p.) and subjected to head injury. Five days before injury, animals randomly received an i.p. bolus of either curcumin (50 and 100 mg/kg/day, n=9) or vehicle (n=9). Two weeks after the injury and drug treatment, animals were sacrificed and a series of brain sections, stained with hematoxylin and eosin (H&E) were evaluated for quantitative brain lesion volume. Two weeks after the injury, oxidative stress parameter (malondialdehyde) was also measured in the brain. Curcumin (100 mg/kg) significantly reduced the size of brain injury-induced lesions (Pcurcumin (100 mg/kg). Curcumin treatment significantly improved the neurological status evaluated during 2 weeks after brain injury. The study demonstrates the protective efficacy of curcumin in rat traumatic brain injury model. © 2013 Elsevier Inc. All rights reserved.

  7. Neuroprotective effect of Quince leaf hydroalcoholic extract on intracerebroventricular streptozotocin-induced oxidative stress in cortical tissue of rat brain

    Directory of Open Access Journals (Sweden)

    A Hajizadeh Moghaddam

    2015-12-01

    Full Text Available Background & aim: Oxidative stress is a result of the imbalance between free radicals and the antioxidant system of the body. Increased oxidative stress in brain causes dysfunction of brain activities, destruction of neurons, and disease such as Alzheimer. Antioxidants, for example vitamins, phenolic compounds and flavonoids have been extensively investigated as potential therapeutic agents in vitro and in vivo for prevention of neurodegenerative diseases. In the present experimental study, the neuro-protective effect of quince leaf hydroalcoholic extract (QLHE on intracerebroventricular streptozotocin (icv-STZ-induced oxidative stress in cortical tissue of rat brain was examined. Methods: In the present experimental research, forty-two Wistar rats were randomly divided into control, sham, icv-STZ and icv-STZ treated with QLHE groups. The ICV-STZ group rats were injected unilaterally with ICV-STZ (3 mg/kg using a stereotactic device and QLHE (50, 100 and 150 mg/kg/day were administered for 6 weeks starting from 3 weeks before of ICV-STZ injection. The rats were killed at the end of the study and their brain cortical tissue superoxide dismutase and catalase activity were measured. The assay of catalase and superoxide dismutase was performed by following the Genet method. The amount of protein was determined according to the Bradford method.The statistical analysis was performed using one way ANOVA. Data were expressed as mean±SD and  P<0.05 was considered significant. Results: The present study indicated that in the ICV-STZ group showed significant decrease (P<0.001 in enzymatic antioxidants superoxide dismutase and catalase in the cortical tissue of the brain. Treatment of different doses of QLHE significantly increased superoxide dismutase and catalase activity compared to icv-STZ group (P<0.001 in cortical tissue of the brain. Conclusion: The study demonstrated the effectiveness of quince leaf hydroalcoholic extract as a powerful antioxidant

  8. Brain and Serum Androsterone is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Richard J Servatius

    2016-08-01

    Full Text Available Exposure to lateral fluid percussion (LFP injury consistent with mild traumatic brain injury (mTBI persistently attenuates acoustic startle responses (ASRs in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM. ASRs were measured post injury days (PIDs 1, 3, 7, 14, 21 and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34, PID 35 (S35, on both days (2S, or the experimental context (CON. Levels of the neurosteroids pregnenolone (PREG, allopregnanolone (ALLO, and androsterone (ANDRO were determined for the prefrontal cortex, hippocampus and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30 and 60 min post-stressor for determination of corticosterone (CORT levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  9. Radio-iodinated surface proteins of electrophoretically separated rat lymphocytes

    International Nuclear Information System (INIS)

    Jilg, W.; Hannig, K.; Zeiller, K.

    1980-01-01

    Rat thymocytes and lymph node cells were separated into three T and one B subpopulation by means of free flow electrophoresis. The surface proteins of the separated cells were labelled by lactoperoxidase catalysed radioiodination. Most of the label was demonstrated to be at the cell surface. Although the surface protein patterns of the four lamphocyte subpopulations were rather similar, distinctive differences could be found. B cells had six labelled proteins which seemed to be absent in the other cells. In the T cell group three protein bands were identified, each with specificity for peripheral T cells, thymocytes and all T cells respectively. Four other proteins were found which showed quantitative differences between the four cell groups. (orig.) [de

  10. Incorporation of tritium into hair proteins of rat

    International Nuclear Information System (INIS)

    Rochalska, M.; Ardelt, W.; Szot, Z.

    1981-01-01

    A simple and relatively rapid procedure for the extraction and fractionation of hair proteins, was elaborated and used for an analysis of rat hair proteins, tritiated in vivo. The most radioactive protein, containing over 6% of the initial hair radioactivity, was isolated in a homogeneous state. The protein had a molecular weight of about 190,000 daltons, and showed high proportions of glutamic acid, cysteine, aspartic acid, serine, and glycine and a low content of methionine and histidine. More than 80% of total tritium radioactivity incorporated into this protein was distributed among indispensable phenylalanine (30.3%) and, isoleucine (17.2%), valine (17.6%), proline (10,5%) and tyrosine (8.4%). The highest values of specific radioactivity were recorded for phenylalanine, isoleucine, valine and methionine. The radioactivity recovered in the amino acids is due to the presence of firmly bound tritium. (author)

  11. Levetiracetam Affects Differentially Presynaptic Proteins in Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Daniele Marcotulli

    2017-12-01

    Full Text Available Presynaptic proteins are potential therapeutic targets for epilepsy and other neurological diseases. We tested the hypothesis that chronic treatment with the SV2A ligand levetiracetam affects the expression of other presynaptic proteins. Results showed that in rat neocortex no significant difference was detected in SV2A protein levels in levetiracetam treated animals compared to controls, whereas levetiracetam post-transcriptionally decreased several vesicular proteins and increased LRRK2, without any change in mRNA levels. Analysis of SV2A interactome indicates that the presynaptic proteins regulation induced by levetiracetam reported here is mediated by this interactome, and suggests that LRRK2 plays a role in forging the pattern of effects.

  12. Simultaneous MRI and PET imaging of a rat brain

    International Nuclear Information System (INIS)

    Raylman, Raymond R; Majewski, Stan; Lemieux, Susan K; Velan, S Sendhil; Kross, Brian; Popov, Vladimir; Smith, Mark F; Weisenberger, Andrew G; Zorn, Carl; Marano, Gary D

    2006-01-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging

  13. Simultaneous MRI and PET imaging of a rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Lemieux, Susan K [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Velan, S Sendhil [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Weisenberger, Andrew G [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Zorn, Carl [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Marano, Gary D [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States)

    2006-12-21

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  14. (/sup 3/H)-beta-endorphin binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Houghten, R.A.; Johnson, N.; Pasternak, G.W.

    1984-10-01

    The binding of (/sup 3/H)-beta-endorphin to rat brain homogenates is complex. Although Scatchard analysis of saturation studies yields a straight line, detailed competition studies are multiphasic, suggesting that even at low concentrations of the compound, the /sup 3/H-ligand is binding to more than one class of site. A portion of (/sup 3/H)-beta-endorphin binding is sensitive to low concentrations of morphine or D-Ala2-Leu5-enkephalin (less than 5 nM). The inhibition observed with each compound alone (5 nM) is the same as that seen with both together (each at 5 nM). Thus, the binding remaining in the presence of both morphine and the enkephalin does not correspond to either mu or delta sites. The portion of (/sup 3/H)-beta-endorphin binding that is inhibited under these conditions appears to be equally sensitive to both morphine and the enkephalin and may correspond to mu1 sites. Treating membrane homogenates with naloxonazine, a mu1 selective antagonist, lowers (/sup 3/H)-beta-endorphin binding to the same degree as morphine and D-Ala2-Leu5-enkephalin alone or together. This possible binding of (/sup 3/H)-beta-endorphin to mu1 sites is consistent with the role of mu1 sites in beta-endorphin analgesia and catalepsy in vivo.

  15. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  16. [3H]-beta-endorphin binding in rat brain

    International Nuclear Information System (INIS)

    Houghten, R.A.; Johnson, N.; Pasternak, G.W.

    1984-01-01

    The binding of [ 3 H]-beta-endorphin to rat brain homogenates is complex. Although Scatchard analysis of saturation studies yields a straight line, detailed competition studies are multiphasic, suggesting that even at low concentrations of the compound, the 3 H-ligand is binding to more than one class of site. A portion of [ 3 H]-beta-endorphin binding is sensitive to low concentrations of morphine or D-Ala2-Leu5-enkephalin (less than 5 nM). The inhibition observed with each compound alone (5 nM) is the same as that seen with both together (each at 5 nM). Thus, the binding remaining in the presence of both morphine and the enkephalin does not correspond to either mu or delta sites. The portion of [ 3 H]-beta-endorphin binding that is inhibited under these conditions appears to be equally sensitive to both morphine and the enkephalin and may correspond to mu1 sites. Treating membrane homogenates with naloxonazine, a mu1 selective antagonist, lowers [ 3 H]-beta-endorphin binding to the same degree as morphine and D-Ala2-Leu5-enkephalin alone or together. This possible binding of [ 3 H]-beta-endorphin to mu1 sites is consistent with the role of mu1 sites in beta-endorphin analgesia and catalepsy in vivo

  17. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain

    DEFF Research Database (Denmark)

    Skjolding, Anders Daehli; Holst, Anders Vedel; Broholm, Helle

    2013-01-01

    findings to human pathophysiology. This study compares expression of aquaporin-4 in hydrocephalic human brain with human controls and hydrocephalic rat brain. Methods:  Cortical biopsies from patients with chronic hydrocephalus (n=29) were sampled secondary to planned surgical intervention. Aquaporin-4...

  18. Differences in postmortem stability of sex steroid receptor immunoreactivity in rat brain

    NARCIS (Netherlands)

    Fodor, Mariann; van Leeuwen, Fred W.; Swaab, Dick F.

    2002-01-01

    Difficulties in demonstrating sex steroid receptors in the human brain by immunohistochemistry (IHC) may depend on postmortem delay and a long fixation time. The effect of different postmortem times was therefore studied in rat brain kept in the skull at room temperature for 0, 6, or 24 hr after

  19. Perinatal protein deprivation facilitates morphine cross-sensitization to cocaine and enhances ΔFosB expression in adult rats.

    Science.gov (United States)

    Perondi, María Cecilia; Gutiérrez, María Cecilia; Valdomero, Analía; Cuadra, Gabriel Ricardo

    2017-08-30

    Previous studies have indicated that neural changes induced by early nutritional insult cause an altered response to pharmacological treatments, including addictive drugs. This study evaluates the influence of perinatal protein malnutrition in developing cross-sensitization to cocaine-induced rewarding effects in animals pre-exposed to morphine. Different groups of well-nourished (C-rats) and protein-deprived animals (D-rats) were treated twice a day for three days with increasing doses of morphine or with saline. After 3days, the incentive motivational effects of cocaine were assessed in a Conditioned Place Preference paradigm in both groups. In saline pre-treated animals, dose-response curves to cocaine revealed a conditioning effect in D-rats at doses of 5, 7.5 and 10mg/kg, while this effect was observed in C-rats only with 10 and 15mg/kg. Furthermore, when animals of both groups were pre-treated with escalating doses of morphine, cross-sensitization to the conditioning effect of cocaine was elicited only in D-rats with low doses of cocaine (5 and 7.5mg/kg). In contrast, under the same experimental conditions, C-rats show no cross-sensitization. To correlate this differential rewarding response with a molecular substrate linked to the behavioral changes observed after repeated drug exposure, ΔFosB expression was assessed in different brain regions. D-rats showed a significant increase in this transcription factor in the nucleus accumbens, amygdala and medial prefrontal cortex. These results demonstrated that perinatal protein deprivation facilitates rewarding effects and the development of cross-sensitization to cocaine, which correlates with an upregulation of ΔFosB in brain areas related to the reward circuitry. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    Science.gov (United States)

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  1. Oxidative stress in the developing brain: effects of postnatal glucocorticoid therapy and antioxidants in the rat.

    Directory of Open Access Journals (Sweden)

    Emily J Camm

    Full Text Available In premature infants, glucocorticoids ameliorate chronic lung disease, but have adverse effects on long-term neurological function. Glucocorticoid excess promotes free radical overproduction. We hypothesised that the adverse effects of postnatal glucocorticoid therapy on the developing brain are secondary to oxidative stress and that antioxidant treatment would diminish unwanted effects. Male rat pups received a clinically-relevant tapering course of dexamethasone (DEX; 0.5, 0.3, and 0.1 mg x kg(-1 x day(-1, with or without antioxidant vitamins C and E (DEXCE; 200 mg x kg(-1 x day(-1 and 100 mg x kg(-1 x day(-1, respectively, on postnatal days 1-6 (P1-6. Controls received saline or saline with vitamins. At weaning, relative to controls, DEX decreased total brain volume (704.4±34.7 mm(3 vs. 564.0±20.0 mm(3, the soma volume of neurons in the CA1 (1172.6±30.4 µm(3 vs. 1002.4±11.8 µm(3 and in the dentate gyrus (525.9±27.2 µm(3 vs. 421.5±24.6 µm(3 of the hippocampus, and induced oxidative stress in the cortex (protein expression: heat shock protein 70 [Hsp70]: +68%; 4-hydroxynonenal [4-HNE]: +118% and nitrotyrosine [NT]: +20%. Dexamethasone in combination with vitamins resulted in improvements in total brain volume (637.5±43.1 mm(3, and soma volume of neurons in the CA1 (1157.5±42.4 µm(3 and the dentate gyrus (536.1±27.2 µm(3. Hsp70 protein expression was unaltered in the cortex (+9%, however, 4-HNE (+95% and NT (+24% protein expression remained upregulated. Treatment of neonates with vitamins alone induced oxidative stress in the cortex (Hsp70: +67%; 4-HNE: +73%; NT: +22% and in the hippocampus (NT: +35%. Combined glucocorticoid and antioxidant therapy in premature infants may be safer for the developing brain than glucocorticoids alone in the treatment of chronic lung disease. However, antioxidant therapy in healthy offspring is not recommended.

  2. Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain

    Directory of Open Access Journals (Sweden)

    Iyaswamy Ashok

    2014-01-01

    Full Text Available Aspartame, an artificial sweetener, is very widely used in many foods and beverages. But there are controversies about its metabolite which is marked for its toxicity. Hence it is believed to be unsafe for human use. Previous studies have reported on methanol exposure with involvements of free radicals on excitotoxicity of neuronal apoptosis. Hence, this present study is proposed to investigate whether or not chronic aspartame (FDA approved Daily Acceptable Intake (ADI,40 mg/kg bwt administration could release methanol, and whether or not it can induce changes in brain oxidative stress status and gene and protein expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax and caspase-3 in the rat brain region. To mimic the human methanol metabolism, Methotrexate (MTX-treated Wistar strain male albino rats were used and after the oral administration of aspartame, the effects were studied along with controls and MTX-treated controls. Aspartame exposure resulted with a significant increase in the enzymatic activity in protein carbonyl, lipid peroxidation levels, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase and catalase activity in (aspartame MTX-treated animals and with a significant decrease in reduced glutathione, glutathione reductase and protein thiol, pointing out the generation of free radicals. The gene and protein expression of pro apoptotic marker Bax showed a marked increase whereas the anti-apoptotic marker Bcl-2 decreased markedly indicating the aspartame is harmful at cellular level. It is clear that long term aspartame exposure could alter the brain antioxidant status, and can induce apoptotic changes in brain.

  3. Metabolic clues to salubrious longevity in the brain of the longest-lived rodent: the naked mole-rat.

    Science.gov (United States)

    Triplett, Judy C; Swomley, Aaron; Kirk, Jessime; Lewis, Katilyn; Orr, Miranda; Rodriguez, Karl; Cai, Jian; Klein, Jon B; Buffenstein, Rochelle; Butterfield, D Allan

    2015-08-01

    Naked mole-rats (NMRs) are the oldest-living rodent species. Living underground in a thermally stable ecological niche, NMRs have evolved certain exceptional traits, resulting in sustained health spans, negligible cognitive decline, and a pronounced resistance to age-related disease. Uncovering insights into mechanisms underlying these extraordinary traits involved in successful aging may conceivably provide crucial clues to extend the human life span and health span. One of the most fundamental processes inside the cell is the production of ATP, which is an essential fuel in driving all other energy-requiring cellular activities. Not surprisingly, a prominent hallmark in age-related diseases, such as neurodegeneration and cancer, is the impairment and dysregulation of metabolic pathways. Using a two-dimensional polyacrylamide gel electrophoresis proteomics approach, alterations in expression and phosphorylation levels of metabolic proteins in the brains of NMRs, aged 2-24 years, were evaluated in an age-dependent manner. We identified 13 proteins with altered levels and/or phosphorylation states that play key roles in various metabolic pathways including glycolysis, β-oxidation, the malate-aspartate shuttle, the Tricarboxylic Acid Cycle (TCA) cycle, the electron transport chain, NADPH production, as well as the production of glutamate. New insights into potential pathways involved in metabolic aspects of successful aging have been obtained by the identification of key proteins through which the NMR brain responds and adapts to the aging process and how the NMR brain adapted to resist age-related degeneration. This study examines the changes in the proteome and phosphoproteome in the brain of the naked mole-rat aged 2-24 years. We identified 13 proteins (labeled in red) with altered expression and/or phosphorylation levels that are conceivably associated with sustained metabolic functions in the oldest NMRs that may promote a sustained health span and life span.

  4. Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain.

    Science.gov (United States)

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy

    2014-01-01

    Aspartame, an artificial sweetener, is very widely used in many foods and beverages. But there are controversies about its metabolite which is marked for its toxicity. Hence it is believed to be unsafe for human use. Previous studies have reported on methanol exposure with involvements of free radicals on excitotoxicity of neuronal apoptosis. Hence, this present study is proposed to investigate whether or not chronic aspartame (FDA approved Daily Acceptable Intake (ADI),40 mg/kg bwt) administration could release methanol, and whether or not it can induce changes in brain oxidative stress status and gene and protein expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax and caspase-3 in the rat brain region. To mimic the human methanol metabolism, Methotrexate (MTX)-treated Wistar strain male albino rats were used and after the oral administration of aspartame, the effects were studied along with controls and MTX-treated controls. Aspartame exposure resulted with a significant increase in the enzymatic activity in protein carbonyl, lipid peroxidation levels, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase and catalase activity in (aspartame MTX)-treated animals and with a significant decrease in reduced glutathione, glutathione reductase and protein thiol, pointing out the generation of free radicals. The gene and protein expression of pro apoptotic marker Bax showed a marked increase whereas the anti-apoptotic marker Bcl-2 decreased markedly indicating the aspartame is harmful at cellular level. It is clear that long term aspartame exposure could alter the brain antioxidant status, and can induce apoptotic changes in brain.

  5. Effects of enriched uranium on developing brain damage of neonatal rats

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2001-01-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium 235 U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 β (IL- β), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells

  6. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    Science.gov (United States)

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  7. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  8. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2015-01-01

    Full Text Available Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20 and Qubin (GB7 acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.

  9. Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain

    Directory of Open Access Journals (Sweden)

    Praetorius Jeppe

    2010-11-01

    Full Text Available Abstract Background The water channel protein aquaporin-4 (AQP4 is reported to be of possible major importance for accessory cerebrospinal fluid (CSF circulation pathways. We hypothesized that changes in AQP4 expression in specific brain regions correspond to the severity and duration of hydrocephalus. Methods Hydrocephalus was induced in adult rats (~8 weeks by intracisternal kaolin injection and evaluated after two days, one week and two weeks. Using magnetic resonance imaging (MRI we quantified lateral ventricular volume, water diffusion and blood-brain barrier properties in hydrocephalic and control animals. The brains were analysed for AQP4 density by western blotting and localisation by immunohistochemistry. Double fluorescence labelling was used to study cell specific origin of AQP4. Results Lateral ventricular volume was significantly increased over control at all time points after induction and the periventricular apparent diffusion coefficient (ADC value significantly increased after one and two weeks of hydrocephalus. Relative AQP4 density was significantly decreased in both cortex and periventricular region after two days and normalized after one week. After two weeks, periventricular AQP4 expression was significantly increased. Relative periventricular AQP4 density was significantly correlated to lateral ventricular volume. AQP4 immunohistochemical analysis demonstrated the morphological expression pattern of AQP4 in hydrocephalus in astrocytes and ventricular ependyma. AQP4 co-localized with astrocytic glial fibrillary acidic protein (GFAP in glia limitans. In vascular structures, AQP4 co-localized to astroglia but not to microglia or endothelial cells. Conclusions AQP4 levels are significantly altered in a time and region dependent manner in kaolin-induced hydrocephalus. The presented data suggest that AQP4 could play an important neurodefensive role, and may be a promising future pharmaceutical target in hydrocephalus and CSF

  10. SHORT-TERM MEMORY IS INDEPENDENT OF BRAIN PROTEIN SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Hasker P.; Rosenzweig, Mark R.; Jones, Oliver W.

    1980-09-01

    Male Swiss albino CD-1 mice given a single injection of a cerebral protein synthesis inhibitor, anisomycin (ANI) (1 mg/animal), 20 min prior to single trial passive avoidance training demonstrated impaired retention at tests given 3 hr, 6 hr, 1 day, and 7 days after training. Retention was not significantly different from saline controls when tests were given 0.5 or 1.5 hr after training. Prolonging inhibition of brain protein synthesis by giving either 1 or 2 additional injections of ANI 2 or 2 and 4 hr after training did not prolong short-term retention performance. The temporal development of impaired retention in ANI treated mice could not be accounted for by drug dosage, duration of protein synthesis inhibition, or nonspecific sickness at test. In contrast to the suggestion that protein synthesis inhibition prolongs short-term memory (Quinton, 1978), the results of this experiment indicate that short-term memory is not prolonged by antibiotic drugs that inhibit cerebral protein synthesis. All evidence seems consistent with the hypothesis that short-term memory is protein synthesis independent and that the establishment of long-term memory depends upon protein synthesis during or shortly after training. Evidence for a role of protein synthesis in memory maintenance is discussed.

  11. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Rearing rats in isolation after weaning is an environmental manipulation that leads to behavioural and neurochemical alterations that resemble what is seen in schizophrenia. The model is neurodevelopmental in origin and has been used as an animal model of schizophrenia. However, only a few studies...... Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  12. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats

    Directory of Open Access Journals (Sweden)

    Vegard Lysne

    2015-06-01

    Full Text Available The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP, with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP.

  13. Dissociation of changes in the permeability of the blood-brain barrier from catecholamine-induced changes in blood pressure of normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Sankar, R.; Domer, F.R.; Taylor, B.

    1982-01-01

    Researchers have studied the effects of the pressor catecholamine, dopamine, and the depressor catecholamine, isoproterenol, on the systemic blood pressure and the permeability of the blood-brain barrier (BBB) to albumin in normotensive (WKY) and spontaneously hypertensive (SHR) rats. The rats were anesthetized with pentobarbital. The permeability of the BBB to protein was measured by the extravasation of radioiodinated serum albumin (RISA). The permeability was decreased by both catecholamines despite the dose-dependent, yet opposite, changes in blood pressure in the WKY rats. The blood pressure response to both of the catecholamines was enhanced in the SHR rats. Isoproterenol caused a decrease in the permeability of the BBB in the SHR but dopamine did not. Results with both WKY and SHR rats are suggestive of an adrenergically-mediated decrease in movement across the BBB of compounds of large molecular weight, regardless of changes in blood pressure

  14. In vivo imaging of brain androgen receptors in rats: a [18F]FDHT PET study

    International Nuclear Information System (INIS)

    Khayum, M.A.; Doorduin, J.; Antunes, I.F.; Kwizera, C.; Zijlma, R.; Boer, J.A. den; Dierckx, R.A.J.O.; Vries, E.F.J. de

    2015-01-01

    Introduction: Steroid hormones like androgens play an important role in the development and maintenance of several brain functions. Androgens can act through androgen receptors (AR) in the brain. This study aims to demonstrate the feasibility of positron emission tomography (PET) with 16β-[ 18 F]fluoro-5α-dihydrotestosterone ([ 18 F]FDHT) to image AR expression in the brain. Methods: Male Wistar rats were either orchiectomized to inhibit endogenous androgen production or underwent sham-surgery. Fifteen days after surgery, rats were subjected to a 90-min dynamic [ 18 F]FDHT PET scan with arterial blood sampling. In a subset of orchiectomized rats, 1 mg/kg dihydrotestosterone was co-injected with the tracer in order to saturate the AR. Plasma samples were analyzed for the presence of radioactive metabolites by radio-TLC. Pharmacokinetic modeling was performed to quantify brain kinetics of the tracer. After the PET scan, the animals were terminated for ex-vivo biodistribution. Results: PET imaging and ex vivo biodistribution studies showed low [ 18 F]FDHT uptake in all brain regions, except pituitary. [ 18 F]FDHT uptake in the surrounding cranial bones was high and increased over time. [ 18 F]FDHT was rapidly metabolized in rats. Metabolism was significantly faster in orchiectomized rats than in sham-orchiectomized rats. Quantitative analysis of PET data indicated substantial spill-over of activity from cranial bones into peripheral brain regions, which prevented further analysis of peripheral brain regions. Logan graphical analysis and kinetic modeling using 1- and 2-tissue compartment models showed reversible and homogenously distributed tracer uptake in central brain regions. [ 18 F]FDHT uptake in the brain could not be blocked by endogenous androgens or administration of dihydrotestosterone. Conclusion: The results of this study indicate that imaging of AR availability in rat brain with [ 18 F]FDHT PET is not feasible. The low AR expression in the brain, the

  15. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats

    OpenAIRE

    Shumake, Jason; Colorado, Rene A.; Barrett, Douglas W.; Gonzalez-Lima, F.

    2010-01-01

    Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for...

  16. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    DEFF Research Database (Denmark)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-01-01

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...

  17. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  18. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain.

    Science.gov (United States)

    Swathy, S S; Indira, M

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The optimal dose of Ksheerabala was found from a dose escalation study, wherein it was found that Ksheerabala showed maximum protection against quinolinic acid-induced neurotoxicity at a dose of 15 microL/100 g body weight/day, which was selected for further experiments. Four groups of female albino rats were maintained for 21 days as follows: 1. Control group, 2. Quinolinic acid (55 microg/100 g body weight), 3. Ksheerabala (15 microL/100 g body weight), 4. Ksheerabala (15 microL/100 g body weight) + Quinolinic acid (55 microg/100 g body weight). At the end of the experimental period, levels of lipid peroxidation products, protein carbonyls, and activities of scavenging enzymes were analyzed. The results revealed that quinolinic acid intake caused enhanced lipid and protein peroxidation as evidenced by increased levels of peroxidation products such as malondialdehyde, hydroperoxide, conjugated dienes, and protein carbonyls. On the other hand, the activities of scavenging enzymes such as catalase, superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase as well as the concentration of glutathione were reduced. On coadminstration of Ksheerabala along with quinolinic acid, the levels of all the biochemical parameters were restored to near-normal levels, indicating the protective effect of the drug. These results were reinforced by histopathological studies.

  19. [3H]opipramol labels a novel binding site and sigma receptors in rat brain membranes

    International Nuclear Information System (INIS)

    Ferris, C.D.; Hirsch, D.J.; Brooks, B.P.; Snowman, A.M.; Snyder, S.H.

    1991-01-01

    Opipramol (OP), a clinically effective antidepressant with a tricyclic structure, is inactive as an inhibitor of biogenic amine uptake. [ 3 H]Opipramol binds saturably to rat brain membranes (apparent KD = 4 nM, Bmax = 3 pmol/mg of protein). [ 3 H]Opipramol binding can be differentiated into haloperidol-sensitive and -resistant components, with Ki values for haloperidol of 1 nM (Bmax = 1 pmol/mg of protein) and 350 nM (Bmax = 1.9 pmol/mg of protein), respectively. The drug specificity of the haloperidol-sensitive component is the same as that of sigma receptors labeled with (+)-[ 3 H]3-(3-hydroxyphenyl)-N-(1-propyl)piperdine. The haloperidol-resistant component does not correspond to any known neurotransmitter receptor or uptake recognition site. It displays high affinity for phenothiazines and related structures such as perphenazine, clopenthixol, and flupenthixol, whose potencies are comparable to that of opipramol. Because certain of these drugs are more potent at the haloperidol-resistant opipramol site than in exerting any other action, it is possible that this opipramol-selective site may mediate their therapeutic effects

  20. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  1. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Samini, Fariborz; Farkhondeh, Tahereh

    2016-04-01

    Chrysin (CH) is a natural flavonoid with pharmacological influences. The purpose of the current study was the assessment of possible protective effects of CH against oxidative damage in the serum, liver, brain, and pancreas of streptozotocin (STZ)- induced diabetic rats. In the present study, the rats were divided into the following groups of 8 animals each: control, untreated diabetic, 3 CH (20, 40, 80 mg/kg/day)-treated diabetic groups. To find out the modulations of cellular antioxidant defense systems, malondialdehyde (MDA) level and antioxidant enzymes including glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities were determined in the serum, liver, brain, and pancreas. STZ caused an elevation of glucose, MDA, TG, TC, LDL-C and with reduction of HDL-C, total protein, SOD, CAT, and GST in the serum, liver, brain, and pancreas (p < 0.01). The findings showed that the significant elevation in the glucose, MDA, TG, TC, LDL-C and reduction of HDL-C, total protein, SOD, CAT, and GST were ameliorated in the CH-treated diabetic groups versus to the untreated groups, in a dose dependent manner (p < 0.05). The current study offers that CH may be recovered diabetes and its complications by modification of oxidative stress.

  2. Comprehensive Evaluation of Neuroprotection Achieved by Extended Selective Brain Cooling Therapy in a Rat Model of Penetrating Ballistic-Like Brain Injury

    Science.gov (United States)

    Shear, Deborah A.; Deng-Bryant, Ying; Leung, Lai Yee; Wei, Guo; Chen, Zhiyong; Tortella, Frank C.

    2016-01-01

    Brain hypothermia has been considered as a promising alternative to whole-body hypothermia in treating acute neurological disease, for example, traumatic brain injury. Previously, we demonstrated that 2-hours selective brain cooling (SBC) effectively mitigated acute (≤24 hours postinjury) neurophysiological dysfunction induced by a penetrating ballistic-like brain injury (PBBI) in rats. This study evaluated neuroprotective effects of extended SBC (4 or 8 hours in duration) on sub-acute secondary injuries between 3 and 21 days postinjury (DPI). SBC (34°C) was achieved via extraluminal cooling of rats' bilateral common carotid arteries (CCA). Depending on the experimental design, SBC was introduced either immediately or with a 2- or 4-hour delay after PBBI and maintained for 4 or 8 hours. Neuroprotective effects of SBC were evaluated by measuring brain lesion volume, axonal injury, neuroinflammation, motor and cognitive functions, and post-traumatic seizures. Compared to untreated PBBI animals, 4 or 8 hours SBC treatment initiated immediately following PBBI produced comparable neuroprotective benefits against PBBI-induced early histopathology at 3 DPI as evidenced by significant reductions in brain lesion volume, axonal pathology (beta-amyloid precursor protein staining), neuroinflammation (glial fibrillary acetic protein stained-activated astrocytes and rat major histocompatibility complex class I stained activated microglial cell), and post-traumatic nonconvulsive seizures. In the later phase of the injury (7–21 DPI), significant improvement on motor function (rotarod test) was observed under most SBC protocols, including the 2-hour delay in SBC initiation. However, SBC treatment failed to improve cognitive performance (Morris water maze test) measured 13–17 DPI. The protective effects of SBC on delayed axonal injury (silver staining) were evident out to 14 DPI. In conclusion, the CCA cooling method of SBC produced neuroprotection measured across multiple

  3. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport

    Directory of Open Access Journals (Sweden)

    Szilvia Veszelka

    2018-05-01

    Full Text Available Cell culture-based blood-brain barrier (BBB models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC, ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA. As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L, and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1 and influx transporters (GLUT-1, LAT-1 were present in all models at mRNA levels. The transcript of BCRP (ABCG2 was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which

  4. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  5. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  6. Studies on estradiol-2/4-hydroxylase activity in rat brain and liver

    International Nuclear Information System (INIS)

    Theron, C.N.

    1985-03-01

    A sensitive and specific radio-enzymatic assay was used to study estradiol-2/4-hydroxylase activity in rat liver microsomes and in microsomes obtained from 6 discrete brain areas of the rat. Kinetic parameters were determined for these enzyme activities. The effects of different P-450 inhibitors on estradiol-2/4-hydroxylase activity in brain and liver microsomes were also studied. In both organs these enzyme activities were found to be located mainly in the microsomal fraction and were inhibited by the 3 P-450 inhibitors tested. The hepatic estradiol-2/4-hydroxylase activity in adult male rats was significantly higher than that of females, but the enzyme activity in the brain did not exhibit a similar sex difference. Furthermore, estradiol-2/4-hydroxylase activity in rat liver was strongly induced by phenobarbitone treatment, but not in the brain. The phenobarbitone-induced activity in male and female rats exhibited significant kinetic differences. In female rats sexual maturation was associated with significant changes in the apparent Km of estradiol-2/4-hydroxylases in the liver and hypothalamus. Evidence was found that the in vitro estradiol-2/4-hydroxylase activity in rat brain and liver is due to more than one form of microsomal P-450. Kinetic studies showed important differences between the estradiol-2/4-hydroxylase activities in the hippocampus and hypothalamus. Significant differences in estradiol-2/4-hydroxylase activities were observed in the 6 brain areas studied, with the hippocampus showing the highest, and the hypothalamus the lowest activity at all developmental stages in both male and female rats

  7. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... have evaluated the neuroanatomical changes in this animal model in comparison to changes seen in schizophrenia. In this study, we applied stereological volume estimates to evaluate the total brain, the ventricular system, and the pyramidal and granular cell layers of the hippocampus in male and female...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  8. Glucose metabolism of fetal rat brain in utero, measured with labeled deoxyglucose

    Energy Technology Data Exchange (ETDEWEB)

    Dyve, S [Department of General Physiology and Biophysics, Panum Institute, Copenhagen (Denmark); Gjedde, A [Positron Imaging Laboratories, McConnell Brain Imaging Center, Montreal, Quebec (Canada)

    1991-01-01

    Mammals have low cerebral metabolic rates immediately after birth and, by inference, also before birth. In this study, we extended the deoxyglucose method to the fetal rat brain in utero. Rate constants for deoxyglucose transfer across the maternal placental and fetal blood-brain barriers, and lumped constant, have not been reported. Therefore, we applied a new method of determining the lumped constant regionally to the fetal rat brain in utero. The lumped constant averaged 0.55 +- 0.15 relative to the maternal circulation. On this basis, we determined the glucose metabolic rate of the fetal rat brain to be one third of the corresponding maternal value, or 19 +- 2 {mu}mol hg{sup -1} min{sup -1}. (author).

  9. Electrophoretic comparison of nuclear and nucleolar proteins II. Rat pancreas

    NARCIS (Netherlands)

    Poort, C.

    1961-01-01

    The nuclei and nucleoli from rat pancreas were isolated and extracted successively with 0.14 M NaCl, 1 M NaCl, and 0.1 N NaOH. In the 0.14 M NaCl and 0.1 N NaOH extracts agar electrophoresis revealed differences between the nucleolar proteins and those from the non-nucleolar part of the nucleus.

  10. Intracarotid injection of 195mPt-CDDP on rat brain tumors

    International Nuclear Information System (INIS)

    Ikawa, Eishi; Kamitani, Hideki; Hori, Tomokatsu; Akaboshi, Mitsuhiko.

    1995-01-01

    We began to try intracarotid injection of 195m Pt-CDDP on transplanted rats of C6 glioma. As a control, normal rats were also treated with intracarotid injection of 195m Pt-CDDP. After injection, the tumor, the normal brain of injected site, the brain of contralateral site, and the blood were sampled for the measurement of the Pt uptake. On normal rats, the ratio of the Pt uptake of the brain to that of the blood was highest in 20 minutes after injection. The ratio of the Pt uptake of the brain of injected site to that of the blood was almost same as that of the brain of contralateral site, so it seemed that the Pt uptake was not so enhanced with intracarotid injection on the normal brain. On the other hand, the ratio of the Pt uptake of the transplanted brain tumor to that of the blood was greatly higher than that of the normal brain. So it seemed that the intracarotid injection of CDDP may have some activities against brain tumors. This study was now started, so we continue this study further more. (author)

  11. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat.

    Science.gov (United States)

    Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A

    2018-01-01

    HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain

  12. Phenoxybenzamine Is Neuroprotective in a Rat Model of Severe Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Thomas F. Rau

    2014-01-01

    Full Text Available Phenoxybenzamine (PBZ is an FDA approved α-1 adrenergic receptor antagonist that is currently used to treat symptoms of pheochromocytoma. However, it has not been studied as a neuroprotective agent for traumatic brain injury (TBI. While screening neuroprotective candidates, we found that phenoxybenzamine reduced neuronal death in rat hippocampal slice cultures following exposure to oxygen glucose deprivation (OGD. Using this system, we found that phenoxybenzamine reduced neuronal death over a broad dose range (0.1 µM–1 mM and provided efficacy when delivered up to 16 h post-OGD. We further tested phenoxybenzamine in the rat lateral fluid percussion model of TBI. When administered 8 h after TBI, phenoxybenzamine improved neurological severity scoring and foot fault assessments. At 25 days post injury, phenoxybenzamine treated TBI animals also showed a significant improvement in both learning and memory compared to saline treated controls. We further examined gene expression changes within the cortex following TBI. At 32 h post-TBI phenoxybenzamine treated animals had significantly lower expression of pro-inflammatory signaling proteins CCL2, IL1β, and MyD88, suggesting that phenoxybenzamine may exert a neuroprotective effect by reducing neuroinflammation after TBI. These data suggest that phenonxybenzamine may have application in the treatment of TBI.

  13. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress.

    Science.gov (United States)

    Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang

    2016-03-01

    Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning. © 2014 Wiley Periodicals, Inc.

  14. Comparison of (/sup 125/I)beta-endorphin binding to rat brain and NG108-15 cells using a monoclonal antibody directed against the opioid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bidlack, J.M.; O' Malley, W.E.; Schulz, R.

    1988-02-01

    The properties of (/sup 125/I)beta h-endorphin-binding sites from rat brain membranes and membranes from the NG108-15 cell line were compared using a monoclonal antibody directed against the opioid receptor and opioid peptides as probes. The binding of (/sup 125/I)beta h-endorphin to both rat brain and NG108-15 membranes yielded linear Scatchard plots with Kd values of 1.2 nM and 1.5 nM, respectively, and Bmax values of 865 fmol/mg rat brain membrane protein and 1077 fmol/mg NG108-15 membrane protein. A monoclonal antibody, OR-689.2.4, capable of inhibiting mu and delta binding but not kappa binding to rat brain membranes, noncompetitively inhibited the binding of 1 nM (/sup 125/I)beta h-endorphin to rat brain and NG108-15 membranes with an IC50 value of 405 nM for rat brain membranes and 543 nM for NG108-15 membranes. The monoclonal antibody also inhibited the binding of 3 nM (/sup 3/H) (D-penicillamine2, D-penicillamine5) enkephalin to NG108-15 membranes with an IC50 value of 370 nM. In addition to blocking the binding of (/sup 125/I)beta h-endorphin to brain membranes, the antibody also displaced (/sup 125/I)beta h-endorphin from membranes. Site-specific opioid peptides had large variations in their IC50 values depending on whether they were inhibiting (/sup 125/I)beta h-endorphin binding to rat brain or the NG108-15 membranes. When the peptides were tested with the monoclonal antibody for their combined ability to inhibit (/sup 125/I)beta h-endorphin binding to both membrane preparations, the peptides and antibody blocked binding as though they were acting at allosterically coupled sites, not two totally independent sites. These studies suggest that mu-, delta-, and beta-endorphin-binding sites share some sequence homology with the 35,000-dalton protein that the antibody is directed against.

  15. In vivo study about specific captation of 125 I-insulin by rat brain structures

    International Nuclear Information System (INIS)

    Sanvitto, G.L.

    1986-01-01

    The specific captation of 125 I-insulin was evaluated by brain structures, as olfactory bulbous, hypothalamus and cerebellum in rats, from in vivo experiences that including two different aspects: captation measure of 125 I-insulin after the intravenous injection of the labelled hormone, in fed rats and in rats with 48 h of fast or convulsion, procedure by the pentylene tetrazole; captation measure of 125 I-insulin after intra-cerebral-ventricular injection of the labelled hormone in fed rats. (C.G.C.)

  16. Kinetic parameters of protein metabolism in rats during protein-free feeding

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Wuensche, J.

    1987-01-01

    16 male rats of 100 g live weight were given 50 mg of a mixture containing 15 N-labelled amino acids as a single dose within a protein-free feeding period. Following this the 15 N excretion in feces and urine as well as the development of the 15 N excess in different organs and tissues were estimated over 3 days by slaughtering the animals within given 7 time intervals. Using a 3 pool model and the computer program for the interpretation of 15 N tracer experiments by Toewe et al. (1984), kinetic parameters such as the rate of protein synthesis, protein breakdown and the rate of reutilization were calculated. Despite a negative N balance (- 41.8 mg N/d) under protein-free conditions the protein metabolism of the rat shows high dynamics characterized by a high flux rate (225 mg N/d) and a high rate of body protein synthesis (181 mg/d). The reutilization was 85 %. Depending on time the 15 N excess in the tested organs and tissues showed significant differences and seems to demonstrate that under these conditions protein synthesis mainly takes place in the most important organs (e.g. intestinal tract, liver). Under protein-free feeding conditions protein synthesis and protein breakdown of the whole body seems to be slightly increased in comparison to N balanced feeding conditions. (author)

  17. Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis

    Energy Technology Data Exchange (ETDEWEB)

    Gui, C.Z.; Ran, L.Y.; Li, J.P.; Guan, Z.Z. [Guiyang Medical College, Guiyang (China). Dept. of Pathology

    2010-09-15

    The purpose of the investigation is to reveal the mechanism of the decreased ability of learning and memory induced by coal burning fluorosis. Ten offspring SD rats aged 30 days, who were born from the mothers with chronic coal burning fluorosis, and ten offspring with same age from the normal mothers as controls were selected. Spatial learning and memory of the rats were evaluated by Morris Water Maze test. Cholinesterase activity was detected by photometric method. The expressions of nicotinic acetylcholine receptors (nAChRs) at protein and mRNA levels were detected by Western blotting and Real-time PCR, respectively. The results showed that in the rat offspring exposed to higher fluoride as compared to controls, the learning and memory ability declined; the cholinesterase activities in the brains were inhibited; the protein levels of alpha 3, alpha 4 and alpha 7 nAChR subunits were decreased which showed certain significant correlations with the declined learning and memory ability; and the mRNA levels of alpha 3 and alpha 4 nAChRs were decreased, whereas the alpha 7 mRNA increased. The data indicated that coal burning fluorosis can induce the decreased ability of learning and memory of rat offspring, in which the mechanism might be connected to the changed nAChRs and cholinesterase.

  18. Radioimmunoassay of met-enkephalin in microdissected areas of paraformaldehyde-fixed rat brain

    International Nuclear Information System (INIS)

    Correa, F.M.A.; Saavedra, J.M.

    1984-01-01

    The effects were studied of various sample preparation procedures on rat brain met-enkephalin content, measured by radioimmunoassay. Whole brain met-enkephalin content of rats killed by decapitation followed by immediate tissue freezing was similar to that of rats killed by microwave irradiation and to those of rats anesthetized with pentobarbital or halothane before killing, whether previously perfused with paraformaldehyde or not. In contrast, a decrease (up to 80%) in met-enkephalin concentrations was observed when brain samples were frozen and thawed to mimic the procedure utilized in the ''punch'' technique for analysis of discrete brain nuclei. This decrease was totally prevented by paraformaldehyde perfusion of the brain prior to sacrifice. Brain perfusion did not alter the amount of immunoassayable met-enkephalin extracted from tissue or its profile after Sephadex chromatography. Paraformaldehyde perfusion results in better morphological tissue preservation and facilitates the ''punch'' dissecting technique. Paraformaldehyde perfusion may be the procedure of choice for the measurement of neuropeptides in specific brain nuclei dissected by the ''punch'' technique

  19. Heterotrimeric G protein subunits are located on rat liver endosomes

    Directory of Open Access Journals (Sweden)

    Van Dyke Rebecca W

    2004-01-01

    Full Text Available Abstract Background Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors. Results By Western blotting Gsα, Giα1,2, Giα3 and Gβ were enriched in both canalicular (CM and basolateral (BLM membranes but also readily detectable on three types of purified rat liver endosomes in the order recycling receptor compartment (RRC > compartment for uncoupling of receptor and ligand (CURL > multivesicular bodies (MVB >> purified secondary lysosomes. Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma membranes and intracellular organelles indicated this was not due to contamination of endosome preparations by CM or BLM. Adenylate cyclase (AC was also identified on purified CM, BLM, RRC, CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma membrane markers. By confocal microscopy, punctate staining for Gsα, Giα3 and Gβ corresponded to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera toxin-treated livers. Conclusion We conclude that heterotrimeric G protein subunits as well as AC likely traffic into hepatocytes on endosome membranes, possibly generating downstream signals spatially separate from signalling generated at the plasma membrane, analogous to the role(s of internalized insulin receptors.

  20. Oxidized tissue proteins after intestinal reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Schanaider Alberto

    2005-01-01

    Full Text Available PURPOSE: To analyse if the carbonyl proteins measurement could be validated as a method that allows the identification of an intestinal oxidative stress after ischemia and reperfusion injury. METHODS: Twenty-five male Wistar rats (n =21 weighting 200 to 250g were divided into three groups. Group I - control (n = 10. Group II - sham (n = 5 and Group III (n = 10 subjected to 60 minutes of intestinal ischemia and equal period of reperfusion. For this purpose it was clamped the superior mesenteric artery in its distal third. Histological changes and carbonyl protein levels were determined in the samples of all groups. In group III, samples of both normal and reperfused ileal segment were studied. RESULTS: All the reperfused segments showed mucosal and submucosal swelling and inflammatory infiltrate of the lamina propria. Levels of carbonyl protein rose in group III, including in the non-ischemic segments. The sensitivity and specificity of the carbonyl protein tissue levels were respectively 94% and 88%. CONCLUSION: The carbonyl protein method is a useful biologic marker of oxidative stress after the phenomenon of intestinal ischemia and reperfusion in rats. It was also noteworthy that the effects of oxidative stress could be seen far from the locus of the primary injury.

  1. Inhibitory Effect on Cerebral Inflammatory Response following Traumatic Brain Injury in Rats: A Potential Neuroprotective Mechanism of N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2008-01-01

    Full Text Available Although N-acetylcysteine (NAC has been shown to be neuroprotective for traumatic brain injury (TBI, the mechanisms for this beneficial effect are still poorly understood. Cerebral inflammation plays an important role in the pathogenesis of secondary brain injury after TBI. However, it has not been investigated whether NAC modulates TBI-induced cerebral inflammatory response. In this work, we investigated the effect of NAC administration on cortical expressions of nuclear factor kappa B (NF-κB and inflammatory proteins such as interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and intercellular adhesion molecule-1 (ICAM-1 after TBI. As a result, we found that NF-κB, proinflammatory cytokines, and ICAM-1 were increased in all injured animals. In animals given NAC post-TBI, NF-κB, IL-1β, TNF-α, and ICAM-1 were decreased in comparison to vehicle-treated animals. Measures of IL-6 showed no change after NAC treatment. NAC administration reduced brain edema, BBB permeability, and apoptotic index in the injured brain. The results suggest that post-TBI NAC administration may attenuate inflammatory response in the injured rat brain, and this may be one mechanism by which NAC ameliorates secondary brain damage following TBI.

  2. Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats

    Science.gov (United States)

    Kouchi, Hayet Y.; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S.; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  3. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    Directory of Open Access Journals (Sweden)

    Raafat P Fares

    Full Text Available Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage, which offers: (1 minimally stressful social interactions; (2 increased voluntary exercise; (3 multiple entertaining activities; (4 cognitive stimulation (maze exploration, and (5 novelty (maze configuration changed three times a week. The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.

  4. Relationship between catalase activity and uptake of elemental mercury by rat brain

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1983-01-01

    Uptake of mercury by brain after intravenous injection of elemental mercury was investigated in the rat. Catalase activity was inhibited by aminotriazole either by intraperitoneal affecting catalase in most tissues of the animal or by intraventricular injections affecting catalase in the brain selectively. Uptake of elemental mercury by rat brain was not influenced by intraperitoneal administration of aminotriazole resulting in 50% inhibition of brain catalase. However, when the inhibitor was injected intraventricularly in concentrations to give a 50% inhibition of brain catalase, it was shown that the mer