WorldWideScience

Sample records for rat brain microglial

  1. Microglial involvement in neuroplastic changes following focal brain ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Alexandre Madinier

    2009-12-01

    Full Text Available The pathogenesis of ischemic stroke is a complex sequence of events including inflammatory reaction, for which the microglia appears to be a major cellular contributor. However, whether post-ischemic activation of microglial cells has beneficial or detrimental effects remains to be elucidated, in particular on long term brain plasticity events. The objective of our study was to determine, through modulation of post-stroke inflammatory response, to what extent microglial cells are involved in some specific events of neuronal plasticity, neurite outgrowth and synaptogenesis. Since microglia is a source of neurotrophic factors, the identification of the brain-derived neurophic factor (BDNF as possible molecular actor involved in these events was also attempted. As a means of down-regulating the microglial response induced by ischemia, 3-aminobenzamide (3-AB, 90 mg/kg, i.p. was used to inhibit the poly(ADP-ribose polymerase-1 (PARP-1. Indeed, PARP-1 contributes to the activation of the transcription factor NF-kB, which is essential to the upregulation of proinflammatory genes, in particular responsible for microglial activation/proliferation. Experiments were conducted in rats subjected to photothrombotic ischemia which leads to a strong and early microglial cells activation/proliferation followed by an infiltration of macrophages within the cortical lesion, events evaluated at serial time points up to 1 month post-ictus by immunostaining for OX-42 and ED-1. Our most striking finding was that the decrease in acute microglial activation induced by 3-AB was associated with a long term down-regulation of two neuronal plasticity proteins expression, synaptophysin (marker of synaptogenesis and GAP-43 (marker of neuritogenesis as well as to a significant decrease in tissue BDNF production. Thus, our data argue in favour of a supportive role for microglia in brain neuroplasticity stimulation possibly through BDNF production, suggesting that a targeted

  2. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke

    OpenAIRE

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L.; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L.; Vexler, Zinaida S.

    2016-01-01

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral arter...

  3. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor

    Directory of Open Access Journals (Sweden)

    d'Avila Joana C

    2012-02-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces activation of microglia. Activated microglia can in turn increase secondary injury and impair recovery. This innate immune response requires hours to days to become fully manifest, thus providing a clinically relevant window of opportunity for therapeutic intervention. Microglial activation is regulated in part by poly(ADP-ribose polymerase-1 (PARP-1. Inhibition of PARP-1 activity suppresses NF-kB-dependent gene transcription and thereby blocks several aspects of microglial activation. Here we evaluated the efficacy of a PARP inhibitor, INO-1001, in suppressing microglial activation after cortical impact in the rat. Methods Rats were subjected to controlled cortical impact and subsequently treated with 10 mg/kg of INO-1001 (or vehicle alone beginning 20 - 24 hours after the TBI. Brains were harvested at several time points for histological evaluation of inflammation and neuronal survival, using markers for microglial activation (morphology and CD11b expression, astrocyte activation (GFAP, and neuronal survival (NeuN. Rats were also evaluated at 8 weeks after TBI using measures of forelimb dexterity: the sticky tape test, cylinder test, and vermicelli test. Results Peak microglial and astrocyte activation was observed 5 to 7 days after this injury. INO-1001 significantly reduced microglial activation in the peri-lesion cortex and ipsilateral hippocampus. No rebound inflammation was observed in rats that were treated with INO-1001 or vehicle for 12 days followed by 4 days without drug. The reduced inflammation was associated with increased neuronal survival in the peri-lesion cortex and improved performance on tests of forelimb dexterity conducted 8 weeks after TBI. Conclusions Treatment with a PARP inhibitor for 12 days after TBI, with the first dose given as long as 20 hours after injury, can reduce inflammation and improve histological and functional outcomes.

  4. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation.

    Directory of Open Access Journals (Sweden)

    Robin Cloarec

    Full Text Available Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells.In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15 and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments.Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b- lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1.In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which role, whether favorable or detrimental

  5. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke.

    Science.gov (United States)

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L; Vexler, Zinaida S

    2016-03-09

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGFβ1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposome-encapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGFβ1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1(GFP/+)/Ccr2(RFP/+) mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2(RFP/+) monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke. Copyright © 2016 the authors 0270-6474/16/362881-13$15.00/0.

  6. Neonatal L-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters.

    Science.gov (United States)

    de Lima, Denise Sandrelly Cavalcanti; Francisco, Elian da Silva; Lima, Cássia Borges; Guedes, Rubem Carlos Araújo

    2017-02-01

    In mammals, L-glutamine (Gln) can alter the glutamate-Gln cycle and consequently brain excitability. Here, we investigated in developing rats the effect of treatment with different doses of Gln on anxiety-like behavior, cortical spreading depression (CSD), and microglial activation expressed as Iba1-immunoreactivity. Wistar rats were suckled in litters with 9 and 15 pups (groups L 9 and L 15 ; respectively, normal size- and large size litters). From postnatal days (P) 7-27, the animals received Gln per gavage (250, 500 or 750 mg/kg/day), or vehicle (water), or no treatment (naive). At P28 and P30, we tested the animals, respectively, in the elevated plus maze and open field. At P30-35, we measured CSD parameters (velocity of propagation, amplitude, and duration). Fixative-perfused brains were processed for microglial immunolabeling with anti-IBA-1 antibodies to analyze cortical microglia. Rats treated with Gln presented an anxiolytic behavior and accelerated CSD propagation when compared to the water- and naive control groups. Furthermore, CSD velocity was higher (p litter sizes, and for microglial activation in the L 15 groups. Besides confirming previous electrophysiological findings (CSD acceleration after Gln), our data demonstrate for the first time a behavioral and microglial activation that is associated with early Gln treatment in developing animals, and that is possibly operated via changes in brain excitability.

  7. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    International Nuclear Information System (INIS)

    Schindler, Matthew K.; Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-01-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals

  8. Atorvastatin prevents age-related and amyloid-β-induced microglial activation by blocking interferon-γ release from natural killer cells in the brain

    Directory of Open Access Journals (Sweden)

    Clarke Rachael

    2011-03-01

    Full Text Available Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ. IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1 and IFNγ-induced protein 10 kDa (IP-10, expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2 by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  9. Atorvastatin prevents age-related and amyloid-beta-induced microglial activation by blocking interferon-gamma release from natural killer cells in the brain

    LENUS (Irish Health Repository)

    Lyons, Anthony

    2011-03-31

    Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ). IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ) on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1) and IFNγ-induced protein 10 kDa (IP-10)), expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK) cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2) by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  10. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Jose L. Labandeira-Garcia

    2017-05-01

    Full Text Available Microglia can transform into proinflammatory/classically activated (M1 or anti-inflammatory/alternatively activated (M2 phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory to M2 (immunoregulatory phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II, via its type 1 receptor (AT1, is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization

  11. Microglial dystrophy in the aged and Alzheimer's disease brain is associated with ferritin immunoreactivity.

    Science.gov (United States)

    Lopes, Kryslaine O; Sparks, D Larry; Streit, Wolfgang J

    2008-08-01

    Degeneration of microglial cells may be important for understanding the pathogenesis of aging-related neurodegeneration and neurodegenerative diseases. In this study, we analyzed the morphological characteristics of microglial cells in the nondemented and Alzheimer's disease (AD) human brain using ferritin immunohistochemistry. The central hypothesis was that expression of the iron storage protein ferritin increases the susceptibility of microglia to degeneration, particularly in the aged brain since senescent microglia might become less efficient in maintaining iron homeostasis and free iron can promote oxidative damage. In a primary set of 24 subjects (age range 34-97 years) examined, microglial cells immunoreactive for ferritin were found to constitute a subpopulation of the larger microglial pool labeled with an antibody for HLA-DR antigens. The majority of these ferritin-positive microglia exhibited aberrant morphological (dystrophic) changes in the aged and particularly in the AD brain. No spatial correlation was found between ferritin-positive dystrophic microglia and senile plaques in AD tissues. Analysis of a secondary set of human postmortem brain tissues with a wide range of postmortem intervals (PMI, average 10.94 +/- 5.69 h) showed that the occurrence of microglial dystrophy was independent of PMI and consequently not a product of tissue autolysis. Collectively, these results suggest that microglial involvement in iron storage and metabolism contributes to their degeneration, possibly through increased exposure of the cells to oxidative stress. We conclude that ferritin immunohistochemistry may be a useful method for detecting degenerating microglia in the human brain. (c) 2008 Wiley-Liss, Inc.

  12. Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene

    Directory of Open Access Journals (Sweden)

    Streit Wolfgang J

    2007-02-01

    Full Text Available Abstract Background Microglial neuroinflammation is thought to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS. The purpose of this study was to provide a histopathological evaluation of the microglial neuroinflammatory response in a rodent model of ALS, the SOD1G93A transgenic rat. Methods Multiple levels of the CNS from spinal cord to cerebral cortex were studied in SOD1G93A transgenic rats during three stages of natural disease progression, including presymptomatic, early symptomatic (onset, and late symptomatic (end stage, using immuno- and lectin histochemical markers for microglia, such as OX-42, OX-6, and Griffonia simplicifolia isolectin B4. Results Our studies revealed abnormal aggregates of microglia forming in the spinal cord as early as the presymptomatic stage. During the symptomatic stages there was prominent formation of multinucleated giant cells through fusion of microglial cells in the spinal cord, brainstem, and red nucleus of the midbrain. Other brain regions, including substantia nigra, cranial nerve nuclei, hippocampus and cortex showed normal appearing microglia. In animals during end stage disease at 4–5 months of age virtually all microglia in the spinal cord gray matter showed extensive fragmentation of their cytoplasm (cytorrhexis, indicative of widespread microglial degeneration. Few microglia exhibiting nuclear fragmentation (karyorrhexis indicative of apoptosis were identified at any stage. Conclusion The current findings demonstrate the occurrence of severe abnormalities in microglia, such as cell fusions and cytorrhexis, which may be the result of expression of mutant SOD1 in these cells. The microglial changes observed are different from those that accompany normal microglial activation, and they demonstrate that aberrant activation and degeneration of microglia is part of the pathogenesis of motor neuron disease.

  13. [Facial nerve injuries cause changes in central nervous system microglial cells].

    Science.gov (United States)

    Cerón, Jeimmy; Troncoso, Julieta

    2016-12-01

    Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.

  14. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke.

    Directory of Open Access Journals (Sweden)

    Zahra Hassani

    Full Text Available Stem cell transplantation is to date one of the most promising therapies for chronic ischemic stroke. The human conditionally immortalised neural stem cell line, CTX0E03, has demonstrable efficacy in a rodent model of stroke and is currently in clinical trials. Nonetheless, the mechanisms by which it promotes brain repair are not fully characterised. This study investigated the cellular events occurring after CTX0E03 transplantation in the brains of rats that underwent ischemic stroke.We focused on the endogenous proliferative activity of the host brain in response to cell transplantation and determined the identity of the proliferating cells using markers for young neurons (doublecortin, Dcx and microglia (CD11b. So as to determine the chronology of events occurring post-transplantation, we analysed the engrafted brains one week and four weeks post-transplantation.We observed a significantly greater endogenous proliferation in the striatum of ischemic brains receiving a CTX0E03 graft compared to vehicle-treated ischemic brains. A significant proportion of these proliferative cells were found to be Dcx+ striatal neuroblasts. Further, we describe an enhanced immune response after CTX0E03 engraftment, as shown by a significant increase of proliferating CD11b+ microglial cells.Our study demonstrates that few Dcx+ neuroblasts are proliferative in normal conditions, and that this population of proliferative neuroblasts is increased in response to stroke. We further show that CTX0E03 transplantation after stroke leads to the maintenance of this proliferative activity. Interestingly, the preservation of neuronal proliferative activity upon CTX0E03 transplantation is preceded and accompanied by a high rate of proliferating microglia. Our study suggests that microglia might mediate in part the effect of CTX0E03 transplantation on neuronal proliferation in ischemic stroke conditions.

  15. Microglial pathology

    OpenAIRE

    Streit, Wolfgang J; Xue, Qing-Shan; Tischer, Jasmin; Bechmann, Ingo

    2014-01-01

    This paper summarizes pathological changes that affect microglial cells in the human brain during aging and in aging-related neurodegenerative diseases, primarily Alzheimer’s disease (AD). It also provides examples of microglial changes that have been observed in laboratory animals during aging and in some experimentally induced lesions and disease models. Dissimilarities and similarities between humans and rodents are discussed in an attempt to generate a current understanding of microglial ...

  16. Microglial pathology.

    Science.gov (United States)

    Streit, Wolfgang J; Xue, Qing-Shan; Tischer, Jasmin; Bechmann, Ingo

    2014-09-26

    This paper summarizes pathological changes that affect microglial cells in the human brain during aging and in aging-related neurodegenerative diseases, primarily Alzheimer's disease (AD). It also provides examples of microglial changes that have been observed in laboratory animals during aging and in some experimentally induced lesions and disease models. Dissimilarities and similarities between humans and rodents are discussed in an attempt to generate a current understanding of microglial pathology and its significance during aging and in the pathogenesis of Alzheimer dementia (AD). The identification of dystrophic (senescent) microglia has created an ostensible conflict with prior work claiming a role for activated microglia and neuroinflammation during normal aging and in AD, and this has raised a basic question: does the brain's immune system become hyperactive (inflamed) or does it become weakened (senescent) in elderly and demented people, and what is the impact on neuronal function and cognition? Here we strive to reconcile these seemingly contradictory notions by arguing that both low-grade neuroinflammation and microglial senescence are the result of aging-associated free radical injury. Both processes are damaging for microglia as they synergistically exhaust this essential cell population to the point where the brain's immune system is effete and unable to support neuronal function.

  17. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat

    Science.gov (United States)

    Hanlon, Lauren A.; Huh, Jimmy W.

    2016-01-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  18. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    Science.gov (United States)

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Clearing the corpses: regulatory mechanisms, novel tools, and therapeutic potential of harnessing microglial phagocytosis in the diseased brain

    Directory of Open Access Journals (Sweden)

    Irune Diaz-Aparicio

    2016-01-01

    Full Text Available Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead cells must be quickly removed to avoid the further toxic effects they exert in the parenchyma, a process executed by microglia, the brain professional phagocytes. Although phagocytosis is critical to maintain tissue homeostasis, it has long been either overlooked or indirectly assessed based on microglial morphology, expression of classical activation markers, or engulfment of artificial phagocytic targets in vitro. Nevertheless, these indirect methods present several limitations and, thus, direct observation and quantification of microglial phagocytosis is still necessary to fully grasp its relevance in the diseased brain. To overcome these caveats and obtain a comprehensive, quantitative picture of microglial phagocytosis we have developed a novel set of parameters. These parameters have allowed us to identify the different strategies utilized by microglia to cope with apoptotic challenges induced by excitotoxicity or inflammation. In contrast, we discovered that in mouse and human epilepsy microglia failed to find and engulf apoptotic cells, resulting in accumulation of debris and inflammation. Herein, we advocate that the efficiency of microglial phagocytosis should be routinely tested in neurodegenerative and neurological disorders, in order to determine the extent to which it contributes to apoptosis and inflammation found in these conditions. Finally, our findings point towards enhancing microglial phagocytosis as a novel therapeutic strategy to control tissue damage and inflammation, and accelerate recovery in brain diseases.

  20. Effect of GSM-1800 and U.M.T.S. exposures on micro-glial activation and heat shock proteins induction in brain: a study on young adult and elderly rats

    Energy Technology Data Exchange (ETDEWEB)

    Laclau, M; Billaudel, B; Taxil, M; Haro, E; Ruffie, G; Sanchez, S; Poulletier De Gannes, F; Lagroye, I; Veyret, B [PIOM/Bioelecromagnetics Lab., ENSCPB/EPHE, 33 - Pessac (France)

    2006-07-01

    Contradictory results have emerged from recent studies describing low -level radiofrequency radiation (R.F.R.) as a hazardous factor for the central nervous system while others described such type of exposure as totally safe. In the brain, heat shock proteins (H.s.p.) are often induced under harmful conditions such as ischemia, traumatic injury, epilepsy, hyperthermia, drug administration, and neuro-degenerative diseases. Under those conditions, activation of the micro-glial cell population is often observed. In this work we studied the effect of two types of mobile phone signals, GSM-1800 and U.M.T.S. on the expression of two major H.s.p., induced in the brain under harmful conditions, H.s.p. 70 and H.s.p. 25. We also studied micro-glial activation in young adult (8 weeks) and elderly (17 months) Wistar rats. Height animals by group were exposed. Exposures were performed using a brain-averaged S.A.R. of 2 W/kg following two types of protocols: an acute exposure, with exposure lasting only two hours, and a sub chronic exposure in which the animals were exposed for two hours per day, five days per week, during four weeks. In all cases, rats were progressively habituated to the exposure setup (rockets) over two weeks to avoid stress and a sham group was exposed for each condition. Positive controls were performed by induction of a status epilepticus using a subcutaneous injection kainic acid (10 mg/kg). At the end of exposure, rats were anesthetized with isofluran and perfused from the heart with P.B.S. then paraformaldehyde prior to removing of the brain. Sections (10 m m thick) were prepared on slides for immunohistochemistry. Brain samples were coded and the analysis was performed in a blind manner. The sections were immuno-histo-chemically stained with antibodies raised in rabbits against H.s.p.25 and against the inducible form of H.s.p.70. The whole glial cell population was detected by its common cell surface glyco conjugates, which bind the plant Griffonia

  1. Effect of GSM-1800 and U.M.T.S. exposures on micro-glial activation and heat shock proteins induction in brain: a study on young adult and elderly rats

    International Nuclear Information System (INIS)

    Laclau, M.; Billaudel, B.; Taxil, M.; Haro, E.; Ruffie, G.; Sanchez, S.; Poulletier De Gannes, F.; Lagroye, I.; Veyret, B.

    2006-01-01

    Contradictory results have emerged from recent studies describing low -level radiofrequency radiation (R.F.R.) as a hazardous factor for the central nervous system while others described such type of exposure as totally safe. In the brain, heat shock proteins (H.s.p.) are often induced under harmful conditions such as ischemia, traumatic injury, epilepsy, hyperthermia, drug administration, and neuro-degenerative diseases. Under those conditions, activation of the micro-glial cell population is often observed. In this work we studied the effect of two types of mobile phone signals, GSM-1800 and U.M.T.S. on the expression of two major H.s.p., induced in the brain under harmful conditions, H.s.p. 70 and H.s.p. 25. We also studied micro-glial activation in young adult (8 weeks) and elderly (17 months) Wistar rats. Height animals by group were exposed. Exposures were performed using a brain-averaged S.A.R. of 2 W/kg following two types of protocols: an acute exposure, with exposure lasting only two hours, and a sub chronic exposure in which the animals were exposed for two hours per day, five days per week, during four weeks. In all cases, rats were progressively habituated to the exposure setup (rockets) over two weeks to avoid stress and a sham group was exposed for each condition. Positive controls were performed by induction of a status epilepticus using a subcutaneous injection kainic acid (10 mg/kg). At the end of exposure, rats were anesthetized with isofluran and perfused from the heart with P.B.S. then paraformaldehyde prior to removing of the brain. Sections (10 m m thick) were prepared on slides for immunohistochemistry. Brain samples were coded and the analysis was performed in a blind manner. The sections were immuno-histo-chemically stained with antibodies raised in rabbits against H.s.p.25 and against the inducible form of H.s.p.70. The whole glial cell population was detected by its common cell surface glyco conjugates, which bind the plant Griffonia

  2. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Joanna Mika

    Full Text Available The analgesic effect of delta-opioid receptor (DOR ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p. over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t. administered morphine (10-20 µg, DAMGO (1-2 µg and U50,488H (25-50 µg were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10-20 µg, deltorphin II (1.5-15 µg and SNC80 (10-20 µg administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR and kappa-opioid receptors (KOR, further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.

  3. Age-related memory decline is associated with vascular and microglial degeneration in aged rats.

    Science.gov (United States)

    Zhang, Rong; Kadar, Tamar; Sirimanne, Ernest; MacGibbon, Alastair; Guan, Jian

    2012-12-01

    The hippocampus processes memory is an early target of aging-related biological and structural lesions, leading to memory decline. With absent neurodegeneration in the hippocampus, which identified in rodent model of normal aging the pathology underlying age-related memory impairment is not complete. The effective glial-vascular networks are the key for maintaining neuronal functions. The changes of glial cells and cerebral capillaries with age may contribute to memory decline. Thus we examined age associated changes in neurons, glial phenotypes and microvasculature in the hippocampus of aged rats with memory decline. Young adult (6 months) and aged (35 months) male rats (Fisher/Norway-Brown) were used. To evaluate memory, four days of acquisition phase of Morris water maze tasks were carried out in both age groups and followed by a probe trial 2 h after the acquisition. The brains were then collected for analysis using immunochemistry. The aged rats showed a delayed latency (pvascular and microglial degeneration with reduced vascular endothelial growth factor and elevated GFAP expression in the hippocampus. The data indicate the memory decline with age is associated with neuronal dysfunction, possibly due to impaired glial-vascular-neuronal networks, but not neuronal degeneration. Glial and vascular degeneration found in aged rats may represent early event of aging pathology prior to neuronal degeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. TAM receptors regulate multiple features of microglial physiology.

    Science.gov (United States)

    Fourgeaud, Lawrence; Través, Paqui G; Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D; Burrola, Patrick G; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V; Nimmerjahn, Axel; Lemke, Greg

    2016-04-14

    Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.

  5. Evaluation of C.L.I.N.D.E. as potent peripheral-type benzodiazepine receptor tracer in a rat model of micro-glial activation

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, N.; Guilloteau, D.; Chalon, S. [Institut National de la Sante et de la Recherche Medicale (INSERM), U619, 37 - Tours (France); Universite Francois Rabelais de Tours, 37 (France); Katsifis, A.; Mattner, F. [ANSTO, Sydney (Australia)

    2008-02-15

    The peripheral-type benzodiazepine receptors (P.B.R.) are localized in mitochondria of glial cells and are very low expressed in normal brain. Their expression rises after micro-glial activation consecutive to brain injury. Accordingly, P.B.R. are potential targets to evaluate neuro inflammatory changes in a variety of C.N.S. disorders. To date no effective tool is available to explore P.B.R. by SPECT. We characterized here 6-chloro-2-(4 iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine- 3-acetamide, C.L.I.N.D.E., in a rat model of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intra striatal injection of different amounts of quinolinic acid (Q.A.: 75, 150 or 300 nmol). One week later, 2 groups of rats (n = 5-6/group) were i.v. injected with [{sup 125}I]-C.L.I.N.D.E. (0.4 MBq), one group being pre-injected with P.K.11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography and immunohistochemical studies using O.X.-42 were performed on brain sections In the control group, [{sup 125}I]-C.L.I.N.D.E. binding was significantly higher ( p < 0.001) in lesioned than that in intact side (striatum: 0.552 {+-} 0.109 vs. 0.123 {+-} 0.012% I.D./g tissue; cortex: 0.385 {+-} 0.126 vs. 0.131 {+-} 0.007% with 300 nmol Q.A.). This binding disappeared in rats pretreated with P.K.11195 ( p < 0.001), showing specific binding of C.L.I.N.D.E. to P.B.R.. Ex vivo autoradiography and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated micro-glia. Regression analysis yielded a significant correlation ( p < 0.001) between the ligand binding and the dose of Q.A.. These results demonstrate that C.L.I.N.D.E. is suitable for P.B.R. in vivo SPECT imaging to explore their involvement in neuro degenerative disorders associated with micro-glial activation. (authors)

  6. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Science.gov (United States)

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  7. Peripheral viral infection induced microglial sensome genes and enhanced microglial cell activity in the hippocampus of neonatal piglets

    NARCIS (Netherlands)

    Ji, Peng; Schachtschneider, Kyle M.; Schook, Lawrence B.; Walker, Frederick R.; Johnson, Rodney W.

    2016-01-01

    Although poorly understood, early-life infection is predicted to affect brain microglial cells, making them hypersensitive to subsequent stimuli. To investigate this, we assessed gene expression in hippocampal tissue obtained from a previously published study reporting increased microglial cell

  8. The PPARα Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    International Nuclear Information System (INIS)

    Ramanan, Sriram; Kooshki, Mitra; Zhao Weiling; Hsu, F.-C.; Riddle, David R.; Robbins, Mike E.

    2009-01-01

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) α agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARα knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of 137 Cs γ-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARα-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARα ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  9. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  10. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation.

    Science.gov (United States)

    Thorlin, Thorleif; Rouquette, Jean-Michel; Hamnerius, Yngve; Hansson, Elisabeth; Persson, Mikael; Björklund, Ulrika; Rosengren, Lars; Rönnbäck, Lars; Persson, Mikael

    2006-08-01

    The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be

  11. A novel microglial subset plays a key role in myelinogenesis in developing brain

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Holtman, Inge; Krueger, Martin

    2017-01-01

    Microglia are resident macrophages of the central nervous system that contribute to homeostasis and neuroinflammation. Although known to play an important role in brain development, their exact function has not been fully described. Here we show that in contrast to healthy adult and inflammation......-activated cells, neonatal microglia show a unique myelinogenic and neurogenic phenotype. A CD11c+ microglial subset that predominates in primary myelinating areas of the developing brain expresses genes for neuronal and glial survival, migration and differentiation. These cells are the major source of insulin...

  12. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Vidal-Itriago, Andrés; Kalsbeek, Martin J; Layritz, Clarita; García-Cáceres, Cristina; Tom, Robby Zachariah; Eichmann, Thomas O; Vaz, Frédéric M; Houtkooper, Riekelt H; van der Wel, Nicole; Verhoeven, Arthur J; Yan, Jie; Kalsbeek, A.; Eckel, Robert H; Hofmann, Susanna M; Yi, Chun-Xia

    2017-01-01

    Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial

  13. Zinc triggers microglial activation.

    Science.gov (United States)

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  14. Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion

    DEFF Research Database (Denmark)

    Lehrmann, E; Christensen, Thomas; Zimmer, J

    1997-01-01

    Transient middle cerebral artery occlusion in rats leads to infarction of the lateral part of the striatum and adjacent neocortex, with selective neuronal necrosis in the bordering penumbral zones. Administration of glutamate, cytokine, and leukocyte antagonists have rescued mainly neocortical....../macrophages in the adjacent penumbra. Within the neocortex, a later onset of degeneration along the insular-parietal axis was marked by neuronal expression of heat shock protein and a progressive microglial activation with induction of the full repertoire of microglial activation markers, including a widespread microglial...

  15. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury.

    Science.gov (United States)

    Chen, Xiangrong; Wu, Shukai; Chen, Chunnuan; Xie, Baoyuan; Fang, Zhongning; Hu, Weipeng; Chen, Junyan; Fu, Huangde; He, Hefan

    2017-07-24

    Microglial activation and the subsequent inflammatory response in the central nervous system play important roles in secondary damage after traumatic brain injury (TBI). High-mobility group box 1 (HMGB1) protein, an important mediator in late inflammatory responses, interacts with transmembrane receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) to activate downstream signaling pathways, such as the nuclear factor (NF)-κB signaling pathway, leading to a cascade amplification of inflammatory responses, which are related to neuronal damage after TBI. Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a commonly used clinical immunonutrient, which has antioxidative and anti-inflammatory effects. However, the effects of ω-3 PUFA on HMGB1 expression and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway are not clear. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglial activation in lesioned sites and protein markers for proinflammatory, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and HMGB1 were used to evaluate neuroinflammatory responses and anti-inflammation effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway to evaluate the effects of ω-3 PUFA supplementation and gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. It was found that ω-3 PUFA supplementation inhibited TBI-induced microglial activation and expression of inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), reduced brain edema, decreased neuronal apoptosis, and improved neurological

  16. Axonal lesion-induced microglial proliferation and microglial cluster formation in the mouse

    DEFF Research Database (Denmark)

    Dissing-Olesen, L; Ladeby, R; Nielsen, Helle Hvilsted

    2007-01-01

    Microglia are innate immune cells and form the first line of defense of the CNS. Proliferation is a key event in the activation of microglia in acute pathology, and has been extensively characterized in rats, but not in mice. In this study we investigated axonal-lesion-induced microglial prolifer...

  17. Poly(ADP-ribosepolymerase-1 modulates microglial responses to amyloid β

    Directory of Open Access Journals (Sweden)

    Kauppinen Tiina M

    2011-11-01

    Full Text Available Abstract Background Amyloid β (Aβ accumulates in Alzheimer's disease (AD brain. Microglial activation also occurs in AD, and this inflammatory response may contribute to disease progression. Microglial activation can be induced by Aβ, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly(ADP-ribose polymerase-1 (PARP-1 regulates microglial activation in response to several stimuli through its interactions with the transcription factor, NF-κB. The purpose of this study was to evaluate whether PARP-1 activation is involved in Aβ-induced microglial activation, and whether PARP-1 inhibition can modify microglial responses to Aβ. Methods hAPPJ20 mice, which accumulate Aβ with ageing, were crossed with PARP-1-/- mice to assess the effects of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Aβ peptide was also injected into brain of wt and PARP-1-/- mice to directly determine the effects of PARP-1 on Aβ-induced microglial activation. The effect of PARP-1 on Aβ-induced microglial cytokine production and neurotoxicity was evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1-/- cells and a PARP-1 inhibitor. NF-κB activation was evaluated in microglia infected with a lentivirus reporter gene. Results The hAPPJ20 mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and impaired novel object recognition by age 6 months. All of these features were attenuated in hAPPJ20/PARP-1-/- mice. Similarly, Aβ1-42 injected into mouse brain produced a robust microglial response in wild-type mice, and this was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1 activity was required for Aβ-induced NF-κB activation, morphological transformation, NO release, TNFα release, and neurotoxicity. Conversely, PARP-1 inhibition increased release of the

  18. Protective effects of geniposide and ginsenoside Rg1 combination treatment on rats following cerebral ischemia are mediated via microglial microRNA‑155‑5p inhibition.

    Science.gov (United States)

    Wang, Jun; Li, Dan; Hou, Jincai; Lei, Hongtao

    2018-02-01

    Geniposide, an active component of Gardenia, has been reported to protect against cerebral ischemia in animals. Ginsenoside Rg1, a component of Panax notoginseng, is usually administered in combination with Gardenia for the treatment of acute ischemic stroke; however, there are unknown effects of ginsenoside Rg1 that require further investigation. In the present study, the effects of geniposide and ginsensoide Rg1 combination treatment on focal cerebral ischemic stroke were investigated. For in vivo analysis, male rats were separated into three groups, including the (control), model and geniposide + ginsenoside Rg1 groups (n=8 per group). A middle cerebral artery occlusion model was established as the model group. The treatment group was treated with geniposide (30 mg/kg, tail vein injection) + ginsenoside Rg1 (6 mg/kg, tail vein injection), and the model group received saline instead. Neurobehavioral deficits, infarct volume, brain edema, and the expression of microRNA (miR)‑155‑5p and CD11b by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and immunohistochemistry, were assessed following 24 h of ischemia. For in vitro analysis, BV2 mouse microglial cells were cultured and exposed to geniposide (40 µg/ml) + ginsenoside Rg1 (8 µg/ml) during various durations of oxygen‑glucose deprivation (OGD). The expression levels of miR‑155‑5p, pri‑miR‑155 and pre‑miR‑155 were detected by RT‑qPCR. The results demonstrated that increases in brain infarct volume, edema volume, CD11b‑positive cells and miR‑155‑5p levels were alleviated following geniposide + ginsenoside administration in rats exposed to ischemia. Furthermore, geniposide + ginsenoside Rg1 treatment suppressed the miR‑155‑5p, pri‑miR‑155 and pre‑miR‑155 expression levels in OGD‑injured BV2 microglial cells. The results of the present study demonstrated that tail vein administration of geniposide in combination with ginsenoside Rg1

  19. P2X7 receptor mediates activation of microglial cells in prostate of chemically irritated rats

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2013-04-01

    Full Text Available Purpose Evidence shows that adenosine triphosphate (ATP is involved in the transmission of multiple chronic pain via P2X7 receptor. This study was to investigate the P2X7 and microglial cells in the chronic prostatitis pain. Materials and Methods Rats were divided into control group and chronic prostatitis group (n = 24 per group. A chronic prostatitis animal model was established by injecting complete Freund's adjuvant (CFA to the prostate of rats, and the thermal withdrawal latency (TWL was detected on days 0, 4, 12 and 24 (n = 6 at each time point in each group. Animals were sacrificed and the pathological examination of the prostate, detection of mRNA expression of P2X7 and ionized calcium binding adaptor molecule 1 (IBA-1 and measurement of content of tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β in the dorsal horn of L5-S2 spinal cord were performed on days 0, 4, 12 and 24. In addition, the content of TNF-α and IL-1β in the dorsal horn of L5-S2 spinal cord was measured after intrathecal injection of inhibitors of microglial cells and/or P2X7 for 5 days. Results The chronic prostatitis was confirmed by pathological examination. The expression of P2X7 and IBA-1 and the content of TNF-α and IL-1β in rats with chronic prostatitis were significantly higher than those in the control group. On day 4, the expressions of pro-inflammatory cytokines became to increase, reaching a maximal level on day 12 and started to reduce on day 24, but remained higher than that in the control group. Following suppression of microglial cells and P2X7 receptor, the secretion of TNF-α and IL-1β was markedly reduced. Conclusion In chronic prostatitis pain, the microglial cells and P2X7 receptor are activated resulting in the increased expression of TNF-α and IL-1β in the L5-S2 spinal cord, which might attribute to the maintenance and intensification of pain in chronic prostatitis.

  20. Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain

    Directory of Open Access Journals (Sweden)

    Parakalan Rangarajan

    2012-06-01

    Full Text Available Abstract Background Microglia, the resident immune cells of the central nervous system (CNS, have two distinct phenotypes in the developing brain: amoeboid form, known to be amoeboid microglial cells (AMC and ramified form, known to be ramified microglial cells (RMC. The AMC are characterized by being proliferative, phagocytic and migratory whereas the RMC are quiescent and exhibit a slow turnover rate. The AMC transform into RMC with advancing age, and this transformation is indicative of the gradual shift in the microglial functions. Both AMC and RMC respond to CNS inflammation, and they become hypertrophic when activated by trauma, infection or neurodegenerative stimuli. The molecular mechanisms and functional significance of morphological transformation of microglia during normal development and in disease conditions is not clear. It is hypothesized that AMC and RMC are functionally regulated by a specific set of genes encoding various signaling molecules and transcription factors. Results To address this, we carried out cDNA microarray analysis using lectin-labeled AMC and RMC isolated from frozen tissue sections of the corpus callosum of 5-day and 4-week old rat brain respectively, by laser capture microdissection. The global gene expression profiles of both microglial phenotypes were compared and the differentially expressed genes in AMC and RMC were clustered based on their functional annotations. This genome wide comparative analysis identified genes that are specific to AMC and RMC. Conclusions The novel and specific molecules identified from the trancriptome explains the quiescent state functioning of microglia in its two distinct morphological states.

  1. Deciphering resting microglial morphology and process motility from a synaptic prospect

    Directory of Open Access Journals (Sweden)

    Ines eHristovska

    2016-01-01

    Full Text Available Microglia, the resident immune cells of the central nervous system (CNS, were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes while periodically contacting synapses. Microglial morphology and motility as well as the frequency and duration of physical contacts with synaptic elements were found to be modulated by neuronal activity, sensory experience and neurotransmission; however findings have not been straightforward. Microglial cells are the most morphologically plastic element of the CNS. This unique feature confers them the possibility to locally sense activity, and to respond adequately by establishing synaptic contacts to regulate synaptic inputs by the secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical players in maintaining brain homeostasis and regulating synaptic number, maturation and plasticity. For this reason, a better characterization of microglial cells and cues mediating neuron-to-microglia communication under physiological conditions may help advance our understanding of the microglial behavior and its regulation in the healthy brain. This review highlights recent findings on the instructive role of neuronal activity on microglial motility and microglia-synapse interactions, focusing on the main transmitters involved in this communication and including newly described communication at the tripartite synapse.

  2. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    Science.gov (United States)

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  3. Long-lasting pathological consequences of overexpression-induced α-synuclein spreading in the rat brain.

    Science.gov (United States)

    Rusconi, Raffaella; Ulusoy, Ayse; Aboutalebi, Helia; Di Monte, Donato A

    2018-04-01

    Increased expression of α-synuclein can initiate its long-distance brain transfer, representing a potential mechanism for pathology spreading in age-related synucleinopathies, such as Parkinson's disease. In this study, the effects of overexpression-induced α-synuclein transfer were assessed over a 1-year period after injection of viral vectors carrying human α-synuclein DNA into the rat vagus nerve. This treatment causes targeted overexpression within neurons in the dorsal medulla oblongata and subsequent diffusion of the exogenous protein toward more rostral brain regions. Protein advancement and accumulation in pontine, midbrain, and forebrain areas were contingent upon continuous overexpression, because death of transduced medullary neurons resulted in cessation of spreading. Lack of sustained spreading did not prevent the development of long-lasting pathological changes. Particularly remarkable were findings in the locus coeruleus, a pontine nucleus with direct connections to the dorsal medulla oblongata and greatly affected by overexpression-induced transfer in this model. Data revealed progressive degeneration of catecholaminergic neurons that proceeded long beyond the time of spreading cessation. Neuronal pathology in the locus coeruleus was accompanied by pronounced microglial activation and, at later times, astrocytosis. Interestingly, microglial activation was also featured in another region reached by α-synuclein transfer, the central amygdala, even in the absence of frank neurodegeneration. Thus, overexpression-induced spreading, even if temporary, causes long-lasting pathological consequences in brain regions distant from the site of overexpression but anatomically connected to it. Neurodegeneration may be a consequence of severe protein burden, whereas even a milder α-synuclein accumulation in tissues affected by protein transfer could induce sustained microglial activation. © 2018 The Authors. Aging Cell published by the Anatomical Society and

  4. Recurrent hypoinsulinemic hyperglycemia in neonatal rats increases PARP-1 and NF-κB expression and leads to microglial activation in the cerebral cortex.

    Science.gov (United States)

    Gisslen, Tate; Ennis, Kathleen; Bhandari, Vineet; Rao, Raghavendra

    2015-11-01

    Hyperglycemia is a common metabolic problem in extremely low-birth-weight preterm infants. Neonatal hyperglycemia is associated with increased mortality and brain injury. Glucose-mediated oxidative injury may be responsible. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in DNA repair and cell survival. However, PARP-1 overactivation leads to cell death. NF-κB is coactivated with PARP-1 and regulates microglial activation. The effects of recurrent hyperglycemia on PARP-1/NF-κB expression and microglial activation are not well understood. Rat pups were subjected to recurrent hypoinsulinemic hyperglycemia of 2 h duration twice daily from postnatal (P) day 3-P12 and killed on P13. mRNA and protein expression of PARP-1/NF-κB and their downstream effectors were determined in the cerebral cortex. Microgliosis was determined using CD11 immunohistochemistry. Recurrent hyperglycemia increased PARP-1 expression confined to the nucleus and without causing PARP-1 overactivation and cell death. NF-κB mRNA expression was increased, while IκB mRNA expression was decreased. inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) mRNA expressions were decreased. Hyperglycemia significantly increased the number of microglia. Recurrent hyperglycemia in neonatal rats is associated with upregulation of PARP-1 and NF-κB expression and subsequent microgliosis but not neuronal cell death in the cerebral cortex.

  5. Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain.

    Science.gov (United States)

    Strahan, J Alex; Walker, William H; Montgomery, Taylor R; Forger, Nancy G

    2017-06-01

    Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial "inhibitor" increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753-766, 2017. © 2016 Wiley Periodicals, Inc.

  6. Non-cell autonomous impairment of oligodendrocyte differentiation precedes CNS degeneration in the Zitter rat: Implications of macrophage/microglial activation in the pathogenesis

    Directory of Open Access Journals (Sweden)

    Ookawara Shigeo

    2008-04-01

    Full Text Available Abstract Background The zitter (zi/zi rat, a loss-of-function mutant of the glycosylated transmembrane protein attractin (atrn, exhibits widespread age-dependent spongiform degeneration, hypomyelination, and abnormal metabolism of reactive oxygen species (ROS in the brain. To date, the mechanisms underlying these phenotypes have remained unclear. Results Here, we show differentiation defects in zi/zi oligodendrocytes, accompanied by aberrant extension of cell-processes and hypomyelination. Axonal bundles were relatively preserved during postnatal development. With increasing in age, the injured oligodendrocytes in zi/zi rats become pathological, as evidenced by the accumulation of iron in their cell bodies. Immunohistochemical analysis revealed that atrn expression was absent from an oligodendrocyte lineage, including A2B5-positive progenitors and CNPase-positive differentiated cells. The number and distribution of Olig2-positive oligodendrocyte progenitors was unchanged in the zi/zi brain. Furthermore, an in vitro differentiation assay of cultured oligodendrocyte progenitors prepared from zi/zi brains revealed their normal competence for proliferation and differentiation into mature oligodendrocytes. Interestingly, we demonstrated the accelerated recruitment of ED1-positive macrophages/microglia to the developing zi/zi brain parenchyma prior to the onset of hypomyelination. Semiquantitative RT-PCR analysis revealed a significant up-regulation of CD26 and IL1-β in the zi/zi brain during this early postnatal stage. Conclusion We demonstrated that the onset of the impairment of oligodendrocyte differentiation occurs in a non-cell autonomous manner in zi/zi rats. Hypomyelination of oligodendrocytes was not due to a failure of the intrinsic program of oligodendrocytes, but rather, was caused by extrinsic factors that interrupt oligodendrocyte development. It is likely that macrophage/microglial activation in the zi/zi CNS leads to disturbances in

  7. Microglial cell dysregulation in Brain Aging and Neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Rommy eVon Bernhardi

    2015-07-01

    Full Text Available Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergo phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD. We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide secretion in microglia from young mice, induction of reactive oxygen species (ROS predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in a reduction of protective activation and a facilitation of cytotoxic activation of microglia, resulting in the

  8. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2017-09-01

    Full Text Available Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial uptake of lipid, mitochondrial fuel utilization shifting to glutamine, and significantly decreased immune reactivity. Mice with knockdown of the Lpl gene in microglia gained more body weight than control mice on a high-carbohydrate high-fat (HCHF diet. In these mice, microglial reactivity was significantly decreased in the mediobasal hypothalamus, accompanied by downregulation of phagocytic capacity and increased mitochondrial dysmorphologies. Furthermore, HCHF-diet-induced POMC neuronal loss was accelerated. These results show that LPL-governed microglial immunometabolism is essential to maintain microglial function upon exposure to an HCHF diet. In a hypercaloric environment, lack of such an adaptive immunometabolic response has detrimental effects on CNS regulation of energy metabolism.

  9. Fingolimod modulates microglial activation to augment markers of remyelination

    Directory of Open Access Journals (Sweden)

    Baker David

    2011-07-01

    Full Text Available Abstract Introduction Microglial activation in multiple sclerosis has been postulated to contribute to long-term neurodegeneration during disease. Fingolimod has been shown to impact on the relapsing remitting phase of disease by modulating autoreactive T-cell egress from lymph organs. In addition, it is brain penetrant and has been shown to exert multiple effects on nervous system cells. Methods In this study, the impact of fingolimod and other sphingosine-1-phosphate receptor active molecules following lysophosphotidyl choline-induced demyelination was examined in the rat telencephalon reaggregate, spheroid cell culture system. The lack of immune system components allowed elucidation of the direct effects of fingolimod on CNS cell types in an organotypic situation. Results Following demyelination, fingolimod significantly augmented expression of myelin basic protein in the remyelination phase. This increase was not associated with changes in neurofilament levels, indicating de novo myelin protein expression not associated with axonal branching. Myelin wrapping was confirmed morphologically using confocal and electron microscopy. Increased remyelination was associated with down-regulation of microglial ferritin, tumor necrosis factor alpha and interleukin 1 during demyelination when fingolimod was present. In addition, nitric oxide metabolites and apoptotic effectors caspase 3 and caspase 7 were reduced during demyelination in the presence of fingolimod. The sphingosine-1-phosphate receptor 1 and 5 agonist BAF312 also increased myelin basic protein levels, whereas the sphingosine-1-phosphate receptor 1 agonist AUY954 failed to replicate this effect on remyelination. Conclusions The results presented indicate that modulation of S1P receptors can ameliorate pathological effectors associated with microglial activation leading to a subsequent increase in protein and morphological markers of remyelination. In addition, sphingosine-1-phosphate

  10. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation.

    Science.gov (United States)

    Zhang, Fan; Nance, Elizabeth; Alnasser, Yossef; Kannan, Rangaramanujam; Kannan, Sujatha

    2016-03-22

    Microglial cells have been implicated in neuroinflammation-mediated injury in the brain, including neurodevelopmental disorders such as cerebral palsy (CP) and autism. Pro-inflammatory activation of microglial cells results in the impairment of their neuroprotective functions, leading to an exaggerated, ongoing immune dysregulation that can persist long after the initial insult. We have previously shown that dendrimer-mediated delivery of an anti-inflammatory agent can attenuate inflammation in a rabbit model of maternal inflammation-induced CP and significantly improve the motor phenotype, due to the ability of the dendrimer to selectively localize in activated microglia. To elucidate the interactions between dendrimers and microglia, we created an organotypic whole-hemisphere brain slice culture model from newborn rabbits with and without exposure to inflammation in utero. We then used this model to analyze the dynamics of microglial migration and their interactions with dendrimers in the presence of neuroinflammation. Microglial cells in animals with CP had an amoeboid morphology and impaired cell migration, demonstrated by decreased migration distance and velocity when compared to cells in healthy, age-matched controls. However, this decreased migration was associated with a greater, more rapid dendrimer uptake compared to microglial cells from healthy controls. This study demonstrates that maternal intrauterine inflammation is associated with impaired microglial function and movement in the newborn brain. This microglial impairment may play a role in the development of ongoing brain injury and CP in the offspring. Increased uptake of dendrimers by the "impaired" microglia can be exploited to deliver drugs specifically to these cells and modulate their functions. Host tissue and target cell characteristics are important aspects to be considered in the design and evaluation of targeted dendrimer-based nanotherapeutics for improved and sustained efficacy. This ex

  11. C3-dependent mechanism of microglial priming relevant to multiple sclerosis

    NARCIS (Netherlands)

    Ramaglia, Valeria; Hughes, Timothy R.; Donev, Rossen M.; Ruseva, Marieta M.; Wu, Xiaobo; Huitinga, Inge; Baas, Frank; Neal, James W.; Morgan, B. Paul

    2012-01-01

    Microglial priming predisposes the brain to neurodegeneration and affects disease progression. The signal to switch from the quiescent to the primed state is unknown. We show that deleting the C3 convertase regulator complement receptor 1-related protein y (Crry) induces microglial priming. Mice

  12. Phenotypic clustering: a novel method for microglial morphology analysis.

    Science.gov (United States)

    Verdonk, Franck; Roux, Pascal; Flamant, Patricia; Fiette, Laurence; Bozza, Fernando A; Simard, Sébastien; Lemaire, Marc; Plaud, Benoit; Shorte, Spencer L; Sharshar, Tarek; Chrétien, Fabrice; Danckaert, Anne

    2016-06-17

    Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. Our results counteract the classical view of a homogenous regional resting

  13. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue.

    Science.gov (United States)

    Tamashiro, Tami T; Dalgard, Clifton Lee; Byrnes, Kimberly R

    2012-08-15

    Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted. Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study. The principle and protocol of this methodology have been described in the literature. Additionally, alternate methodologies to isolate primary microglia are well described. Homogenized brain tissue may be separated

  14. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.

    Science.gov (United States)

    Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  15. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner

    Science.gov (United States)

    Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  16. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  17. Microglial responses to amyloid β peptide opsonization and indomethacin treatment

    Directory of Open Access Journals (Sweden)

    Leonard Brian

    2005-08-01

    Full Text Available Abstract Background Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study. Methods We have used an in vitro culture system to model the responses of microglia, derived from rapid autopsies of Alzheimer's disease patients, to Aβ deposits. Results Opsonization of the deposits with anti-Aβ IgG 6E10 enhanced microglial chemotaxis to and phagocytosis of Aβ, as well as exacerbated microglial secretion of the pro-inflammatory cytokines TNF-α and IL-6. Indomethacin, a common nonsteroidal anti-inflammatory drug (NSAID, had no effect on microglial chemotaxis or phagocytosis, but did significantly inhibit the enhanced production of IL-6 after Aβ opsonization. Conclusion These results are consistent with well known, differential NSAID actions on immune cell functions, and suggest that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events.

  18. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats.

    Science.gov (United States)

    Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua

    2018-06-05

    Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    Directory of Open Access Journals (Sweden)

    Rosa M López-Pedrajas

    2015-07-01

    Full Text Available Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB, considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p. for 18 days. Reduced and oxidized forms of glutathione (GSH and GSSG, glutathione peroxidase (GPx activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68 and GFAP expression were determined.Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations.Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction.

  20. Fenbendazole treatment may influence lipopolysaccharide effects in rat brain.

    Science.gov (United States)

    Hunter, Randy L; Choi, Dong-Young; Kincer, Jeanie F; Cass, Wayne A; Bing, Guoying; Gash, Don M

    2007-10-01

    In evaluating discrepant results between experiments in our laboratory, we collected data that challenge the notion that anthelminthic drugs like FBZ do not alter inflammatory responses. We found that FBZ significantly modulates inflammation in F344 rats intrastriatally injected with LPS. FBZ treatment of LPS-injected rats significantly increased weight loss, microglial activation, and dopamine loss; in addition, FBZ attenuated the LPS-induced loss of astrocytes. Therefore, FBZ treatment altered the effects of LPS injection. Caution should be used in interpreting data collected from rats treated with LPS and FBZ.

  1. Atomoxetine, a selective norepinephrine reuptake inhibitor, improves short-term histological outcomes after hypoxic-ischemic brain injury in the neonatal male rat.

    Science.gov (United States)

    Toshimitsu, Masatake; Kamei, Yoshimasa; Ichinose, Mari; Seyama, Takahiro; Imada, Shinya; Iriyama, Takayuki; Fujii, Tomoyuki

    2018-03-30

    treatment group. To determine the involvement of microglia in the process of neuronal loss by HI insult, we further examined the influence of hypoxia on rat primary cultured microglia by the quantitative real-time polymerase chain reaction. Hypoxia did not cause the upregulation of interleukin-1beta (IL-1β) mRNA expression, but decreased the microglial intrinsic nitric oxide synthase (iNOS)/arginase1 mRNA expression ratio. NE treatment further decreased the microglial iNOS/arginase1 mRNA expression ratio. In contrast, no significant neuroprotective effect was observed at P14 when atomoxetine was administered at 3 h after HI insult. These findings suggested that the enhancement of intrinsic neurotransmitter NE signaling by a selective NE reuptake inhibitor, atomoxetine, reduced the perinatal HI insult brain injury. In addition, atomoxetine treatment was associated with changes of TUNEL, pCREB, and BDNF expression levels, and microglial numbers, morphology, and responses. Copyright © 2018. Published by Elsevier Ltd.

  2. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases.

    Science.gov (United States)

    González, Hugo; Elgueta, Daniela; Montoya, Andro; Pacheco, Rodrigo

    2014-09-15

    Neuroinflammation constitutes a fundamental process involved in the progression of several neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and multiple sclerosis. Microglial cells play a central role in neuroinflammation, promoting neuroprotective or neurotoxic microenvironments, thus controlling neuronal fate. Acquisition of different microglial functions is regulated by intercellular interactions with neurons, astrocytes, the blood-brain barrier, and T-cells infiltrating the central nervous system. In this study, an overview of the regulation of microglial function mediated by different intercellular communications is summarised and discussed. Afterward, we focus in T-cell-mediated regulation of neuroinflammation involved in neurodegenerative disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Early Postoperative Nociceptive Threshold and Production of Brain-Derived Neurotrophic Factor Induced by Plantar Incision Are Not Influenced with Minocycline in a Rat: Role of Spinal Microglia

    Directory of Open Access Journals (Sweden)

    Eiji Masaki

    2016-03-01

    Full Text Available Background: Brain-derived neurotrophic factor (BDNF from spinal microglia is crucial for aberrant nociceptive signaling in several pathological pain conditions, including postoperative pain. We assess the contribution of spinal microglial activation and associated BDNF overexpression to the early post-incisional nociceptive threshold. Methods: Male Sprague-Dawley rats were implanted with an intrathecal catheter. A postoperative pain model was established by plantar incision. Thermal and mechanical nociceptive responses were assessed by infrared radiant heat and von Frey filaments before and after plantar incision. Rats were injected intrathecally the microglial activation inhibitor minocycline before incision, 24 h after incision, or both. Other groups were subjected to the same treatments and the L4-L5 spinal cord segment removed for immunohistochemical analysis of microglia activation and BNDF expression. Results: Plantar incision reduced both thermal latency and mechanical threshold, indicating thermal hypersensitivity and mechanical allodynia. Minocycline temporally reduced thermal withdrawal latency but had no effect on mechanical withdrawal threshold, spinal microglial activity, or dorsal horn BDNF overexpression during the early post-incision period. Conclusion: These results suggest that spinal microglia does not contribute substantially to post-incisional nociceptive threshold. The BDNF overexpression response that may contribute to postoperative hyperalgesia and allodynia is likely derived from other sources.

  4. P2Y12R-Dependent Translocation Mechanisms Gate the Changing Microglial Landscape

    Directory of Open Access Journals (Sweden)

    Ukpong B. Eyo

    2018-04-01

    Full Text Available Summary: Microglia are an exquisitely tiled and self-contained population in the CNS that do not receive contributions from circulating monocytes in the periphery. While microglia are long-lived cells, the extent to which their cell bodies are fixed and the molecular mechanisms by which the microglial landscape is regulated have not been determined. Using chronic in vivo two-photon imaging to follow the microglial population in young adult mice, we document a daily rearrangement of the microglial landscape. Furthermore, we show that the microglial landscape can be modulated by severe seizures, acute injury, and sensory deprivation. Finally, we demonstrate a critical role for microglial P2Y12Rs in regulating the microglial landscape through cellular translocation independent of proliferation. These findings suggest that microglial patrol the CNS through both process motility and soma translocation. : Using a chronic in vivo imaging approach, Eyo et al. show that the physical positions of brain microglia change daily and that these changes increase following certain experimental manipulations. The mechanism underlying these changes involves cell translocation controlled by microglial-specific P2Y12 receptors. Keywords: microglia, P2Y12, seizures, epilepsy, whisker trimming, microglial landscape, two photon chronic imaging

  5. The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation

    Directory of Open Access Journals (Sweden)

    Murphy Niamh

    2012-04-01

    Full Text Available Abstract Background Several factors contribute to the deterioration in synaptic plasticity which accompanies age and one of these is neuroinflammation. This is characterized by increased microglial activation associated with increased production of proinflammatory cytokines like interleukin-1β (IL-1β. In aged rats these neuroinflammatory changes are associated with a decreased ability of animals to sustain long-term potentiation (LTP in the dentate gyrus. Importantly, treatment of aged rats with agents which possess anti-inflammatory properties to decrease microglial activation, improves LTP. It is known that endocannabinoids, such as anandamide (AEA, have anti-inflammatory properties and therefore have the potential to decrease the age-related microglial activation. However, endocannabinoids are extremely labile and are hydrolyzed quickly after production. Here we investigated the possibility that inhibiting the degradation of endocannabinoids with the fatty acid amide hydrolase (FAAH inhibitor, URB597, could ameliorate age-related increases in microglial activation and the associated decrease in LTP. Methods Young and aged rats received subcutaneous injections of the FAAH inhibitor URB597 every second day and controls which received subcutaneous injections of 30% DMSO-saline every second day for 28 days. Long-term potentiation was recorded on day 28 and the animals were sacrificed. Brain tissue was analyzed for markers of microglial activation by PCR and for levels of endocannabinoids by liquid chromatography coupled to tandem mass spectrometry. Results The data indicate that expression of markers of microglial activation, MHCII, and CD68 mRNA, were increased in the hippocampus of aged, compared with young, rats and that these changes were associated with increased expression of the proinflammatory cytokines interleukin (IL-1β and tumor necrosis factor-α (TNFα which were attenuated by treatment with URB597. Coupled with these changes, we

  6. Headmasters: Microglial regulation of learning and memory in health and disease

    Directory of Open Access Journals (Sweden)

    Laetitia Weinhard

    2018-03-01

    Full Text Available Microglia are mononuclear phagocytes that reside throughout the lifetime of the animal in the central nervous system (CNS. Originating from the yolk sac, microglial progenitors infiltrate the developing brain anlage even before the formation of the neural network. Mature microglial cells persist by slow rates of self-renewal that vary across brain regions. Eminent studies in the recent decade have highlighted a role for steady state microglia in neurogenesis, synaptic pruning, and formation and maintenance of connectivity within the CNS, which are critical to learning and memory functions. Activity- and learning-dependent synaptic remodeling by microglia has been described in various contexts. Molecular pathways, including signaling through fractalkine CX3CL1 and its receptor CX3CR1, transforming growth factor-beta, classical complement system, colony-stimulating factor 1 receptor, adaptor protein DAP12, and brain-derived neurotropic factor, have been proposed to be important mediators of synaptic plasticity regulated by microglia. Reactive, dysfunctional, or aged microglia are thought to impact learning and memory, and are implicated in human neurodegenerative disorders in which dementia is a hallmark. These disorders include Nasu-Hakola disease, hereditary diffuse leukoencephaly with spheroids, Alzheimer’s disease, frontotemporal dementia, and Parkinson’s disease. Focusing on microglia, here we discuss the potential detrimental effects and risks presented by microglia-specific genetic variants, the environmental factors that target microglia, and microglial aging that likely lead to progressive memory loss in neurodegenerative diseases. Finally, we consider some caveats of the animal model systems that to date have advanced our understanding of microglial regulation of learning and memory.

  7. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    International Nuclear Information System (INIS)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko; Yagi, Shunsuke; Ouchi, Yasuomi; Yoshikawa, Etsuji; Kikuchi, Mitsuru; Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki; Ueki, Takatoshi

    2011-01-01

    Amyloid β protein (Aβ) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between Aβ accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [ 11 C](R)PK11195, [ 11 C]PIB and [ 18 F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [ 11 C](R)PK11195 were directly compared with those of [ 11 C]PIB in the brain regions with reduced glucose metabolism. BPs of [ 11 C](R)PK11195 and [ 11 C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [ 11 C](R)PK11195 BPs, but not [ 11 C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [ 11 C](R)PK11195 and [ 11 C]PIB BPs in the posterior cingulate cortex (PCC) (p 18 F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that Aβ accumulation shown by [ 11 C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of Aβ in early AD. (orig.)

  8. Comprehensive Evaluation of Neuroprotection Achieved by Extended Selective Brain Cooling Therapy in a Rat Model of Penetrating Ballistic-Like Brain Injury

    Science.gov (United States)

    Shear, Deborah A.; Deng-Bryant, Ying; Leung, Lai Yee; Wei, Guo; Chen, Zhiyong; Tortella, Frank C.

    2016-01-01

    Brain hypothermia has been considered as a promising alternative to whole-body hypothermia in treating acute neurological disease, for example, traumatic brain injury. Previously, we demonstrated that 2-hours selective brain cooling (SBC) effectively mitigated acute (≤24 hours postinjury) neurophysiological dysfunction induced by a penetrating ballistic-like brain injury (PBBI) in rats. This study evaluated neuroprotective effects of extended SBC (4 or 8 hours in duration) on sub-acute secondary injuries between 3 and 21 days postinjury (DPI). SBC (34°C) was achieved via extraluminal cooling of rats' bilateral common carotid arteries (CCA). Depending on the experimental design, SBC was introduced either immediately or with a 2- or 4-hour delay after PBBI and maintained for 4 or 8 hours. Neuroprotective effects of SBC were evaluated by measuring brain lesion volume, axonal injury, neuroinflammation, motor and cognitive functions, and post-traumatic seizures. Compared to untreated PBBI animals, 4 or 8 hours SBC treatment initiated immediately following PBBI produced comparable neuroprotective benefits against PBBI-induced early histopathology at 3 DPI as evidenced by significant reductions in brain lesion volume, axonal pathology (beta-amyloid precursor protein staining), neuroinflammation (glial fibrillary acetic protein stained-activated astrocytes and rat major histocompatibility complex class I stained activated microglial cell), and post-traumatic nonconvulsive seizures. In the later phase of the injury (7–21 DPI), significant improvement on motor function (rotarod test) was observed under most SBC protocols, including the 2-hour delay in SBC initiation. However, SBC treatment failed to improve cognitive performance (Morris water maze test) measured 13–17 DPI. The protective effects of SBC on delayed axonal injury (silver staining) were evident out to 14 DPI. In conclusion, the CCA cooling method of SBC produced neuroprotection measured across multiple

  9. Microglial AGE-albumin is critical for neuronal death in Parkinson's disease: a possible implication for theranostics.

    Science.gov (United States)

    Bayarsaikhan, Enkhjargal; Bayarsaikhan, Delger; Lee, Jaesuk; Son, Myeongjoo; Oh, Seyeon; Moon, Jeongsik; Park, Hye-Jeong; Roshini, Arivazhagan; Kim, Seung U; Song, Byoung-Joon; Jo, Seung-Mook; Byun, Kyunghee; Lee, Bonghee

    2015-01-01

    Advanced glycation end products (AGEs) are known to play an important role in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD), by inducing protein aggregation and cross-link, formation of Lewy body, and neuronal death. In this study, we observed that AGE-albumin, the most abundant AGE product in the human PD brain, is synthesized in activated microglial cells and accumulates in the extracellular space. AGE-albumin synthesis in human-activated microglial cells is distinctly inhibited by ascorbic acid and cytochalasin treatment. Accumulated AGE-albumin upregulates the receptor to AGE, leading to apoptosis of human primary dopamine (DA) neurons. In animal experiments, we observed reduced DA neuronal cell death by treatment with soluble receptor to AGE. Our study provides evidence that activated microglial cells are one of the main contributors in AGE-albumin accumulation, deleterious to DA neurons in human and animal PD brains. Finally, activated microglial AGE-albumin could be used as a diagnostic and therapeutic biomarker with high sensitivity for neurodegenerative disorders, including PD.

  10. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  11. SCM-198 inhibits microglial overactivation and attenuates Aβ(1-40)-induced cognitive impairments in rats via JNK and NF-кB pathways.

    Science.gov (United States)

    Hong, Zhen-Yi; Shi, Xue-Ru; Zhu, Kai; Wu, Ting-Ting; Zhu, Yi-Zhun

    2014-08-19

    Neuroinflammation mediated by overactivated microglia plays a key role in many neurodegenerative diseases, including Alzheimer's disease (AD). In this study, we investigated for the first time the anti-neuroinflammatory effects and possible mechanisms of SCM-198 (an alkaloid extracted from Herbaleonuri), which was previously found highly cardioprotective, both in vitro and in vivo. For in vitro experiments, lipopolysaccharide (LPS) or β-amyloid(1-40) (Aβ(1-40)) was applied to induce microglial overactivation. Proinflammatory mediators were measured and activations of NF-κB and mitogen-activated protein kinases' (MAPKs) pathways were investigated. Further protective effect of SCM-198 was evaluated in microglia-neuron co-culture assay and Sprague-Dawley (SD) rats intrahippocampally-injected with Aβ(1-40). SCM-198 reduced expressions of nitric oxide (NO), TNF-α, IL-1β and IL-6 possibly via, at least partially, inhibiting c-Jun N-terminal kinase (JNK) and NF-κB signaling pathways in microglia. Co-culture assay showed that activated microglia pretreated with SCM-198 led to less neuron loss and decreased phosphorylation of tau and extracellular signal-regulated kinase (ERK) in neurons. Besides, SCM-198 also directly protected against Aβ(1-40)-induced neuronal death and lactate dehydrogenase (LDH) release in primary cortical neurons. For in vivo studies, SCM-198 significantly enhanced cognitive performances of rats 12 days after intrahippocampal injections of aged Aβ(1-40) peptides in the Morris water maze (MWM), accompanied by less hippocampal microglial activation, decreased synaptophysin loss and phosphorylation of ERK and tau. Co-administration of donepezil and SCM-198 resulted in a slight cognitive improvement in SD rats 50 days after intrahippocampal injections of aged Aβ(1-40) peptides as compared to only donepezil or SCM-198 treated group. Our findings are the first to report that SCM-198 has considerable anti-neuroinflammatory effects on inhibiting

  12. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Science.gov (United States)

    2016-01-01

    There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD), Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS). The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain's resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues. PMID:28053994

  13. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta.

    Science.gov (United States)

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R; Lesinski, Andrea N; Asselin, Caroline N; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T; Tanzi, Rudolph E

    2013-05-22

    The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer's disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APP(Swe)/PS1(ΔE9)/CD33(-/-) mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Age-specific function of α5β1 integrin in microglial migration during early colonization of the developing mouse cortex.

    Science.gov (United States)

    Smolders, Sophie Marie-Thérèse; Swinnen, Nina; Kessels, Sofie; Arnauts, Kaline; Smolders, Silke; Le Bras, Barbara; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert

    2017-07-01

    Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5β1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5β1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5β1 integrin in microglial migration during colonization of the embryonic brain. © 2017 Wiley Periodicals, Inc.

  15. Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation.

    Science.gov (United States)

    Cruz, Catarina; Meireles, Manuela; Silva, Susana M

    2017-05-01

    Neuroinflammation has been implicated in the pathogenesis of several disorders. Activation of microglia leads to the release of pro-inflammatory mediators and microglial-mediated neuroinflammation has been proposed as one of the alcohol-induced neuropathological mechanisms. The present study aimed to examine the effect of chronic ethanol exposure and long-term withdrawal on microglial activation and neuroinflammation in the hippocampal formation. Male rats were submitted to 6 months of ethanol treatment followed by a 2-month withdrawal period. Stereological methods were applied to estimate the total number of microglia and activated microglia detected by CD11b immunohistochemistry in the hippocampal formation. The expression levels of the pro-inflammatory cytokines TNF-α, COX-2 and IL-15 were measured by qRT-PCR. Alcohol consumption was associated with an increase in the total number of activated microglia but morphological assessment indicated that microglia did not exhibit a full activation phenotype. These data were supported by functional evidence since chronic alcohol consumption produced no changes in the expression of TNF-α or COX-2. The levels of IL-15 a cytokine whose expression is increased upon activation of both astrocytes and microglia, was induced by chronic alcohol treatment. Importantly, the partial activation of microglia induced by ethanol was not reversed by long-term withdrawal. This study suggests that chronic alcohol exposure induces a microglial phenotype consistent with partial activation without significant increase in classical cytokine markers of neuroinflammation in the hippocampal formation. Furthermore, long-term cessation of alcohol intake is not sufficient to alter the microglial partial activation phenotype induced by ethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats.

    Science.gov (United States)

    Teo, Jonathan D; Morris, Margaret J; Jones, Nicole M

    2017-07-01

    In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. Before mating, HFD mothers were 11% heavier than Chow mothers (pmaternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in

  17. Induction of Microglial Activation by Mediators Released from Mast Cells

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-04-01

    Full Text Available Background/Aims: Microglia are the resident immune cells in the brain and play a pivotal role in immune surveillance in the central nervous system (CNS. Brain mast cells are activated in CNS disorders and induce the release of several mediators. Thus, brain mast cells, rather than microglia, are the “first responders” due to injury. However, the functional aspects of mast cell-microglia interactions remain uninvestigated. Methods: Conditioned medium from activated HMC-1 cells induces microglial activation similar to co-culture of microglia with HMC-1 cells. Primary cultured microglia were examined by flow cytometry analysis and confocal microscopy. TNF- alpha and IL-6 were measured with commercial ELISA kits. Cell signalling was analysed by Western blotting. Results: In the present study, we found that the conditioned medium from activated HMC-1 cells stimulated microglial activation and the subsequent production of the pro-inflammatory factors TNF-α and IL-6. Co-culture of microglia and HMC-1 cells with corticotropin-releasing hormone (CRH for 24, 48 and 72 hours increased TNF-α and IL-6 production. Antagonists of histamine receptor 1 (H1R, H4R, proteinase-activated receptor 2 (PAR2 or Toll-like receptor 4 (TLR4 reduced HMC-1-induced pro-inflammatory factor production and MAPK and PI3K/AKT pathway activation. Conclusions: These results imply that activated mast cells trigger microglial activation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS inflammation-related diseases.

  18. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression.

    Directory of Open Access Journals (Sweden)

    Stephanie M C Smith

    Full Text Available Intermittent hypoxia (IH during sleep is a hallmark of sleep apnea, causing significant neuronal apoptosis, and cognitive and behavioral deficits in CNS regions underlying memory processing and executive functions. IH-induced neuroinflammation is thought to contribute to cognitive deficits after IH. In the present studies, we tested the hypothesis that IH would differentially induce inflammatory factor gene expression in microglia in a CNS region-dependent manner, and that the effects of IH would differ temporally. To test this hypothesis, adult rats were exposed to intermittent hypoxia (2 min intervals of 10.5% O2 for 8 hours/day during their respective sleep cycles for 1, 3 or 14 days. Cortex, medulla and spinal cord tissues were dissected, microglia were immunomagnetically isolated and mRNA levels of the inflammatory genes iNOS, COX-2, TNFα, IL-1β and IL-6 and the innate immune receptor TLR4 were compared to levels in normoxia. Inflammatory gene expression was also assessed in tissue homogenates (containing all CNS cells. We found that microglia from different CNS regions responded to IH differently. Cortical microglia had longer lasting inflammatory gene expression whereas spinal microglial gene expression was rapid and transient. We also observed that inflammatory gene expression in microglia frequently differed from that in tissue homogenates from the same region, indicating that cells other than microglia also contribute to IH-induced neuroinflammation. Lastly, microglial TLR4 mRNA levels were strongly upregulated by IH in a region- and time-dependent manner, and the increase in TLR4 expression appeared to coincide with timing of peak inflammatory gene expression, suggesting that TLR4 may play a role in IH-induced neuroinflammation. Together, these data indicate that microglial-specific neuroinflammation may play distinct roles in the effects of intermittent hypoxia in different CNS regions.

  19. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease.

    Science.gov (United States)

    Streit, Wolfgang J; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-10-01

    The role of microglial cells in the pathogenesis of Alzheimer's disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of dystrophic (senescent) microglia in aged human brain, the purpose of this study was to investigate microglial cells in situ and at high resolution in the immediate vicinity of tau-positive structures in order to determine conclusively whether degenerating neuronal structures are associated with activated or with dystrophic microglia. We used a newly optimized immunohistochemical method for visualizing microglial cells in human archival brain together with Braak staging of neurofibrillary pathology to ascertain the morphology of microglia in the vicinity of tau-positive structures. We now report histopathological findings from 19 humans covering the spectrum from none to severe AD pathology, including patients with Down's syndrome, showing that degenerating neuronal structures positive for tau (neuropil threads, neurofibrillary tangles, neuritic plaques) are invariably colocalized with severely dystrophic (fragmented) rather than with activated microglial cells. Using Braak staging of Alzheimer neuropathology we demonstrate that microglial dystrophy precedes the spread of tau pathology. Deposits of amyloid-beta protein (Abeta) devoid of tau-positive structures were found to be colocalized with non-activated, ramified microglia, suggesting that Abeta does not trigger microglial activation. Our findings also indicate that when microglial activation does occur in the absence of an identifiable acute central nervous system insult, it is likely to be the result of systemic infectious

  20. Influence of CSN1S2 protein from Caprine milk Etawah Breed (EB) on histology of microglial cells in rat (Rattus norvegicus) Type-2 diabetes mellitus (T2DM)

    Science.gov (United States)

    Rika, Margareth; Fatchiyah

    2017-11-01

    Type-2 diabetes mellitus (T2DM) is a degenerative disease that causes an imbalance in the metabolism. The aim of this research is to determine the influences of CSN1S2 on the structure of microglial cells in T2DM. Rats (Rattus norvegicus) were divided into eight groups of treatment with looping three times each between treatment groups (CM) Control. The control is given a milk treatment with doses of 375 mg/kg (CM375), 750 mg/kg (CM750), and 1500 mg/kg (CM1500), T2DM (DMK), and T2DM with CSN1S2 375 mg/kg dose (DM375), 750mg/kg (DM750), and 1500 mg/kg (DM1500). The animal model T2DM was induced by a high-fat diet in the form of feed followed by injection of STZ (dose of 25 mg/kg of animal treatment) and treatment of CSN1S2 for 28 days. Brain organs were taken and analysed in histopathology stained by Hematoxylin-eosin (HE) and observed using Olympus BX53. Based on the results, it was concluded that CSN1S2 protein is influential for induction of microglial cell proliferation in animal models of T2DM, as immunity responds to the inflammatory condition in T2DM.

  1. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta

    Science.gov (United States)

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R.; Lesinski, Andrea N.; Asselin, Caroline N.; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T.; Tanzi, Rudolph E.

    2013-01-01

    SUMMARY The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer’s disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APPSwe/PS1ΔE9/CD33−/− mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. PMID:23623698

  2. Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy.

    Science.gov (United States)

    Savard, Alexandre; Lavoie, Karine; Brochu, Marie-Elsa; Grbic, Djordje; Lepage, Martin; Gris, Denis; Sebire, Guillaume

    2013-09-05

    Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes. An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns. LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology. In rat pups at a neurodevelopmental age

  3. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Astroglia-Microglia Cross Talk during Neurodegeneration in the Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Montserrat Batlle

    2015-01-01

    Full Text Available Brain injury triggers a progressive inflammatory response supported by a dynamic astroglia-microglia interplay. We investigated the progressive chronic features of the astroglia-microglia cross talk in the perspective of neuronal effects in a rat model of hippocampal excitotoxic injury. N-Methyl-D-aspartate (NMDA injection triggered a process characterized within 38 days by atrophy, neuronal loss, and fast astroglia-mediated S100B increase. Microglia reaction varied with the lesion progression. It presented a peak of tumor necrosis factor-α (TNF-α secretion at one day after the lesion, and a transient YM1 secretion within the first three days. Microglial glucocorticoid receptor expression increased up to day 5, before returning progressively to sham values. To further investigate the astroglia role in the microglia reaction, we performed concomitant transient astroglia ablation with L-α-aminoadipate and NMDA-induced lesion. We observed a striking maintenance of neuronal death associated with enhanced microglial reaction and proliferation, increased YM1 concentration, and decreased TNF-α secretion and glucocorticoid receptor expression. S100B reactivity only increased after astroglia recovery. Our results argue for an initial neuroprotective microglial reaction, with a direct astroglial control of the microglial cytotoxic response. We propose the recovery of the astroglia-microglia cross talk as a tissue priority conducted to ensure a proper cellular coordination that retails brain damage.

  5. Astroglia-Microglia Cross Talk during Neurodegeneration in the Rat Hippocampus

    Science.gov (United States)

    Batlle, Montserrat; Ferri, Lorenzo; Andrade, Carmen; Ortega, Francisco-Javier; Vidal-Taboada, Jose M.; Pugliese, Marco; Mahy, Nicole; Rodríguez, Manuel J.

    2015-01-01

    Brain injury triggers a progressive inflammatory response supported by a dynamic astroglia-microglia interplay. We investigated the progressive chronic features of the astroglia-microglia cross talk in the perspective of neuronal effects in a rat model of hippocampal excitotoxic injury. N-Methyl-D-aspartate (NMDA) injection triggered a process characterized within 38 days by atrophy, neuronal loss, and fast astroglia-mediated S100B increase. Microglia reaction varied with the lesion progression. It presented a peak of tumor necrosis factor-α (TNF-α) secretion at one day after the lesion, and a transient YM1 secretion within the first three days. Microglial glucocorticoid receptor expression increased up to day 5, before returning progressively to sham values. To further investigate the astroglia role in the microglia reaction, we performed concomitant transient astroglia ablation with L-α-aminoadipate and NMDA-induced lesion. We observed a striking maintenance of neuronal death associated with enhanced microglial reaction and proliferation, increased YM1 concentration, and decreased TNF-α secretion and glucocorticoid receptor expression. S100B reactivity only increased after astroglia recovery. Our results argue for an initial neuroprotective microglial reaction, with a direct astroglial control of the microglial cytotoxic response. We propose the recovery of the astroglia-microglia cross talk as a tissue priority conducted to ensure a proper cellular coordination that retails brain damage. PMID:25977914

  6. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko [Hamamatsu University School of Medicine, Department of Psychiatry and Neurology, Hamamatsu (Japan); Yagi, Shunsuke; Ouchi, Yasuomi [Hamamatsu University School of Medicine, Laboratory of Human Imaging Research, Molecular Imaging Frontier Research Center, Hamamatsu (Japan); Yoshikawa, Etsuji [Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu (Japan); Kikuchi, Mitsuru [Kanazawa University, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa (Japan); Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki [Hamamatsu University School of Medicine, Research Center for Child Mental Development, Hamamatsu (Japan); Ueki, Takatoshi [Hamamatsu University School of Medicine, Department of Anatomy, Hamamatsu (Japan)

    2011-02-15

    Amyloid {beta} protein (A{beta}) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between A{beta} accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [{sup 11}C](R)PK11195, [{sup 11}C]PIB and [{sup 18}F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [{sup 11}C](R)PK11195 were directly compared with those of [{sup 11}C]PIB in the brain regions with reduced glucose metabolism. BPs of [{sup 11}C](R)PK11195 and [{sup 11}C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [{sup 11}C](R)PK11195 BPs, but not [{sup 11}C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [{sup 11}C](R)PK11195 and [{sup 11}C]PIB BPs in the posterior cingulate cortex (PCC) (p < 0.05, corrected) that manifested the most severe reduction in [{sup 18}F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that A{beta} accumulation shown by [{sup 11}C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of A{beta} in early AD. (orig.)

  7. What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Elissa L. Wong

    2017-06-01

    Full Text Available Alcohol exposure during gestation can lead to severe defects in brain development and lifelong physical, behavioral and learning deficits that are classified under the umbrella term fetal alcohol spectrum disorder (FASD. Sadly, FASD is diagnosed at an alarmingly high rate, affecting 2%–5% of live births in the United States, making it the most common non-heritable cause of mental disability. Currently, no standard therapies exist that are effective at battling FASD symptoms, highlighting a pressing need to better understand the underlying mechanisms by which alcohol affects the developing brain. While it is clear that sensory and cognitive deficits are driven by inappropriate development and remodeling of the neural circuits that mediate these processes, alcohol’s actions acutely and long-term on the brain milieu are diverse and complex. Microglia, the brain’s immune cells, have been thought to be a target for alcohol during development because of their exquisite ability to rapidly detect and respond to perturbations affecting the brain. Additionally, our view of these immune cells is rapidly changing, and recent studies have revealed a myriad of microglial physiological functions critical for normal brain development and long-term function. A clear and complete understanding of how microglial roles on this end of the spectrum may be altered in FASD is currently lacking. Such information could provide important insights toward novel therapeutic targets for FASD treatment. Here we review the literature that links microglia to neural circuit remodeling and provide a discussion of the current understanding of how developmental alcohol exposure affects microglial behavior in the context of developing brain circuits.

  8. A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining : cell body to cell size ratio

    NARCIS (Netherlands)

    Hovens, Iris; Nyakas, Csaba; Schoemaker, Regina

    2014-01-01

    Aim: The aim was to validate a newly developed methodology of semi-automatic image analysis to analyze microglial morphology as marker for microglial activation in ionized calcium-binding adaptor protein-1 (IBA-1) stained brain sections. Methods: The novel method was compared to currently used

  9. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury

    Directory of Open Access Journals (Sweden)

    Decosterd Isabelle

    2009-09-01

    Full Text Available Abstract Background After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1 positive fibers (mostly C- and Aδ-fibers and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI, and observed spinal microglial changes 2 days later. Results SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+ were microglia (Iba1+. Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. Conclusion (1 Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers is not enough to prevent nerve injury-induced spinal microglial activation. (2 Peripheral input from large myelinated fibers is important for microglial activation. (3 Microglial activation is associated with mechanical allodynia.

  10. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ogawa, Y.; Iwata, Y.; Ishii, K.

    1992-01-01

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  11. Aluminum neurotoxicity in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S [Tokyo Univ. (Japan). Faculty of Medicine; Ohashi, H; Nagai, H; Kakimi, S; Ogawa, Y; Iwata, Y; Ishii, K

    1993-12-31

    To investigate the etiology of Alzheimer`s disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer`s disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer`s disease patients. Our results indicate that Alzheimer`s disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author).

  12. Learned helplessness activates hippocampal microglia in rats: A potential target for the antidepressant imipramine.

    Science.gov (United States)

    Iwata, Masaaki; Ishida, Hisahito; Kaneko, Koichi; Shirayama, Yukihiko

    An accumulating body of evidence has demonstrated that inflammation is associated with the pathology of depression. We recently found that psychological stress induces inflammation in the hippocampus of the rat brain through the inflammasome, a component of the innate immune system. Microglia, the resident macrophages in the brain, play a central role in the innate immune system and express inflammasomes; thus, we hypothesized that hippocampal microglia would be key mediators in the development of depression via stress-induced inflammation. To test this hypothesis and to determine how antidepressants modulate microglial function, we used immunohistochemistry to examine the morphological changes that occur in the hippocampal microglia of rats exposed to the learned helplessness (LH) paradigm. We noted significantly increased numbers of activated microglia in the granule cell layer, hilus, CA1, and CA3 regions of the hippocampi of LH rats. Conversely, administering imipramine to LH rats for 7days produced a significant decrease in the number of activated microglia in the hilus, but not in the other examined regions. Nonetheless, there were no significant differences in the combined number of activated and non-activated microglia either in LH or LH+imipramine rats relative to control rats. In addition, treating the naïve rats with imipramine or fluvoxamine produced no discernible microglial changes. These data suggest that stress activates hippocampal microglia, while certain antidepressants decrease the number of activated microglia in the hilus, but not in other hippocampal regions. Therefore, the hilus represents a candidate target region for the antidepressant imipramine. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism.

    Science.gov (United States)

    Yuan, Dan; Ma, Bin; Yang, Jing-yu; Xie, Yuan-yuan; Wang, Li; Zhang, Li-jia; Kano, Yoshihiro; Wu, Chun-fu

    2009-12-01

    Excessive production of nitric oxide (NO) and proinflammatory cytokines from activated microglia contributes to human neurodegenerative disorders. Our previous study demonstrated the potent inhibition of lipopolysaccharide (LPS)-induced NO production in rat primary microglial cells by rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of isomeric alkaloids of Uncaria rhynchophylla (Miq.) Jacks. that has been used in China for centuries as a "cognitive enhancer" as well as to treat strokes. We further investigated whether RIN and IRN effectively suppress release of proinflammatory cytokines in LPS-activated microglial cells and the underling molecular mechanism for the inhibition of microglial activation. RIN and IRN concentration-dependently attenuated LPS-induced production of proinflammatory cytokines such as TNF-alpha and IL-1beta as well as NO in mouse N9 microglial cells, with IRN showing more potent inhibition of microglial activation. The western blotting analysis indicated that the potential molecular mechanism for RIN or IRN-mediated attenuation was implicated in suppressions of iNOS protein level, phosphorylation of ERK and p38 MAPKs, and degradation of IkappaBalpha. In addition, the differential regulation of the three signaling pathways by two isomers was shown. Our results suggest that RIN and IRN may be effective therapeutic candidates for use in the treatment of neurodegenerative diseases accompanied by microglial activation.

  14. Cofilin Knockdown Attenuates Hemorrhagic Brain Injury-induced Oxidative Stress and Microglial Activation in Mice.

    Science.gov (United States)

    Alhadidi, Qasim; Nash, Kevin M; Alaqel, Saleh; Sayeed, Muhammad Shahdaat Bin; Shah, Zahoor A

    2018-05-08

    Intracerebral hemorrhage (ICH) resulting from the rupture of the blood vessels in the brain is associated with significantly higher mortality and morbidity. Clinical studies focused on alleviating the primary injury, hematoma formation and expansion, were largely ineffective, suggesting that secondary injury-induced inflammation and the formation of reactive species also contribute to the overall injury process. In this study, we explored the effects of cofilin knockdown in a mouse model of ICH. Animals given stereotaxic injections of cofilin siRNA, 72-h prior to induction of ICH by collagenase injection within the area of siRNA administration showed significantly decreased cofilin expression levels and lower hemorrhage volume and edema, and the animals performed significantly better in neurobehavioral tasks i.e., rotarod, grip strength and neurologic deficit scores. Cofilin siRNA knocked-down mice had reduced ICH-induced DNA fragmentation, blood-brain barrier disruption and microglial activation, with a concomitant increase in astrocyte activation. Increased expression of pro-survival proteins and decreased markers of oxidative stress were also observed in cofilin siRNA-treated mice possibly due to the reduced levels of cofilin. Our results suggest that cofilin plays a major role in ICH-induced secondary injury, and could become a potential therapeutic target. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Connexins and pannexins: New insights into microglial functions and dysfunctions

    Directory of Open Access Journals (Sweden)

    Rosario Gajardo-Gómez

    2016-09-01

    Full Text Available In a physiological context, microglia adopt a resting phenotype that is associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, they shift to the activated phenotype that is necessary for the proper restoration of brain homeostasis. When the intensity of the threat is relatively high, microglial activation can worsen the damage progression instead of providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and with other brain cells, including astrocytes and neurons, is critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. At one end, the gap junction channels (which are exclusively formed by connexins in vertebrates connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively communicate via intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review, we discuss the evidence available concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contribution to microglial function and dysfunction. We focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.

  16. Microglial Inflammasome Activation in Penetrating Ballistic-Like Brain Injury.

    Science.gov (United States)

    Lee, Stephanie W; Gajavelli, Shyam; Spurlock, Markus S; Andreoni, Cody; de Rivero Vaccari, Juan Pablo; Bullock, M Ross; Keane, Robert W; Dietrich, W Dalton

    2018-04-02

    Penetrating traumatic brain injury (PTBI) is a significant cause of death and disability in the United States. Inflammasomes are one of the key regulators of the interleukin (IL)-1β mediated inflammatory responses after traumatic brain injury. However, the contribution of inflammasome signaling after PTBI has not been determined. In this study, adult male Sprague-Dawley rats were subjected to sham procedures or penetrating ballistic-like brain injury (PBBI) and sacrificed at various time-points. Tissues were assessed by immunoblot analysis for expression of IL-1β, IL-18, and components of the inflammasome: apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1, X-linked inhibitor of apoptosis protein (XIAP), nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3), and gasdermin-D (GSDMD). Specific cell types expressing inflammasome proteins also were evaluated immunohistochemically and assessed quantitatively. After PBBI, expression of IL-1β, IL-18, caspase-1, ASC, XIAP, and NLRP3 peaked around 48 h. Brain protein lysates from PTBI animals showed pyroptosome formation evidenced by ASC laddering, and also contained increased expression of GSDMD at 48 h after injury. ASC-positive immunoreactive neurons within the perilesional cortex were observed at 24 h. At 48 h, ASC expression was concentrated in morphologically activated cortical microglia. This expression of ASC in activated microglia persisted until 12 weeks following PBBI. This is the first report of inflammasome activation after PBBI. Our results demonstrate cell-specific patterns of inflammasome activation and pyroptosis predominantly in microglia, suggesting a sustained pro-inflammatory state following PBBI, thus offering a therapeutic target for this type of brain injury.

  17. Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro

    Directory of Open Access Journals (Sweden)

    Jiang Chun H

    2011-01-01

    Full Text Available Abstract Background Microglial activation and the proinflammatory response are controlled by a complex regulatory network. Among the various candidates, macrophage colony-stimulating factor (M-CSF is considered an important cytokine. The up-regulation of M-CSF and its receptor CSF-1R has been reported in brain disease, as well as in diabetic complications; however, the mechanism is unclear. An elevated level of glycated albumin (GA is a characteristic of diabetes; thus, it may be involved in monocyte/macrophage-associated diabetic complications. Results The basal level of expression of M-CSF/CSF-1R was examined in retinal microglial cells in vitro. Immunofluorescence, real-time PCR, immunoprecipitation, and Western blot analyses revealed the up-regulation of CSF-1R in GA-treated microglial cells. We also detected increased expression and release of M-CSF, suggesting that the cytokine is produced by activated microglia via autocrine signaling. Using an enzyme-linked immunosorbent assay, we found that GA affects microglial activation by stimulating the release of tumor necrosis factor-α and interleukin-1β. Furthermore, the neutralization of M-CSF or CSF-1R with antibodies suppressed the proinflammatory response. Conversely, this proinflammatory response was augmented by the administration of M-CSF. Conclusions We conclude that GA induces microglial activation via the release of proinflammatory cytokines, which may contribute to the inflammatory pathogenesis of diabetic retinopathy. The increased microglial expression of M-CSF/CSF-1R not only is a response to microglial activation in diabetic retinopathy but also augments the microglial inflammation responsible for the diabetic microenvironment.

  18. Characteristic microglial features in patients with hereditary diffuse leukoencephalopathy with spheroids.

    Science.gov (United States)

    Tada, Mari; Konno, Takuya; Tada, Masayoshi; Tezuka, Toshiyuki; Miura, Takeshi; Mezaki, Naomi; Okazaki, Ken-Ichi; Arakawa, Musashi; Itoh, Kyoko; Yamamoto, Toru; Yokoo, Hideaki; Yoshikura, Nobuaki; Ishihara, Kenji; Horie, Masao; Takebayashi, Hirohide; Toyoshima, Yasuko; Naito, Makoto; Onodera, Osamu; Nishizawa, Masatoyo; Takahashi, Hitoshi; Ikeuchi, Takeshi; Kakita, Akiyoshi

    2016-10-01

    To clarify the histopathological alterations of microglia in the brains of patients with hereditary diffuse leukoencephalopathy with spheroids (HDLS) caused by mutations of the gene encoding the colony stimulating factor-1 receptor (CSF-1R). We examined 5 autopsied brains and 1 biopsy specimen from a total of 6 patients with CSF-1R mutations. Detailed immunohistochemical, biochemical, and ultrastructural features of microglia were examined, and quantitative analyses were performed. In layers 3 to 4 of the frontal cortex in HDLS brains, microglia showed relatively uniform and delicate morphology, with thin and winding processes accompanying knotlike structures, and significantly smaller areas of Iba1 immunoreactivity and lower numbers of Iba1-positive cells were evident in comparison with control brains. On the other hand, in layers 5 to 6 and the underlying white matter, microglia were distributed unevenly; that is, in some areas they had accumulated densely, whereas in others they were scattered. Immunoblot analyses of microglia-associated proteins, including CD11b and DAP12, revealed that HDLS brains had significantly lower amounts of these proteins than diseased controls, although Ki-67-positive proliferative microglia were not reduced. Ultrastructurally, the microglial cytoplasm and processes in HDLS showed vesiculation of the rough endoplasmic reticulum and disaggregated polyribosomes, indicating depression of protein synthesis. On the other hand, macrophages were immunonegative for GLUT-5 or P2ry12, indicating that they were derived from bone marrow. The pathogenesis of HDLS seems to be associated with microglial vulnerability and morphological alterations. Ann Neurol 2016;80:554-565. © 2016 American Neurological Association.

  19. Inhibitors of Microglial Neurotoxicity: Focus on Natural Products

    Directory of Open Access Journals (Sweden)

    Kyoungho Suk

    2011-01-01

    Full Text Available Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.

  20. Microglial reactivity correlates to the density and the myelination of the anterogradely degenerating axons and terminals following perforant path denervation of the mouse fascia dentata

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Rom Poulsen, Frantz

    1999-01-01

    Transection of the entorhino-dentate perforant path is a well known model for lesion-induced axonal sprouting and glial reactions in the rat. In this study, we have characterized the microglial reaction in the dentate molecular layer of the SJL/J and C57Bl/6 mouse. The morphological transformatio...... in the individual cases. The finding of a potentiated or accelerated microglial activation in the medial as compared to the lateral perforant path zone suggests different kinetics of microglial activation in areas with degenerating myelinated and unmyelinated fibers....

  1. Early Postnatal Lipopolysaccharide Exposure Leads to Enhanced Neurogenesis and Impaired Communicative Functions in Rats.

    Directory of Open Access Journals (Sweden)

    Yi Pang

    Full Text Available Perinatal infection is a well-identified risk factor for a number of neurodevelopmental disorders, including brain white matter injury (WMI and Autism Spectrum Disorders (ASD. The underlying mechanisms by which early life inflammatory events cause aberrant neural, cytoarchitectural, and network organization, remain elusive. This study is aimed to investigate how systemic lipopolysaccharide (LPS-induced neuroinflammation affects microglia phenotypes and early neural developmental events in rats. We show here that LPS exposure at early postnatal day 3 leads to a robust microglia activation which is characterized with mixed microglial proinflammatory (M1 and anti-inflammatory (M2 phenotypes. More specifically, we found that microglial M1 markers iNOS and MHC-II were induced at relatively low levels in a regionally restricted manner, whereas M2 markers CD206 and TGFβ were strongly upregulated in a sub-set of activated microglia in multiple white and gray matter structures. This unique microglial response was associated with a marked decrease in naturally occurring apoptosis, but an increase in cell proliferation in the subventricular zone (SVZ and the dentate gyrus (DG of hippocampus. LPS exposure also leads to a significant increase in oligodendrocyte lineage population without causing discernible hypermyelination. Moreover, LPS-exposed rats exhibited significant impairments in communicative and cognitive functions. These findings suggest a possible role of M2-like microglial activation in abnormal neural development that may underlie ASD-like behavioral impairments.

  2. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer?s disease

    OpenAIRE

    Streit, Wolfgang J.; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-01-01

    The role of microglial cells in the pathogenesis of Alzheimer’s disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of d...

  3. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response.

    Science.gov (United States)

    Cai, Qing; Li, Yuanyuan; Pei, Gang

    2017-03-24

    Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote health and longevity. The pharmacological functions of which had been classified, including the activation of innate immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of this work was to quantitatively analyse the contributions of GLP on microglia. The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid beta 42 (Aβ 42 ) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain. Quantitative results revealed that GLP down-regulates LPS- or Aβ-induced pro-inflammatory cytokines and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of microglial behavioural responses were associated with MCP-1 and C1q expressions. Overall, our study provides an insight into the GLP regulation of LPS- and Aβ-induced neuroinflammation and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial inflammatory and behavioural responses.

  4. Estrogen restores brain insulin sensitivity in ovariectomized non-obese rats, but not in ovariectomized obese rats.

    Science.gov (United States)

    Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2014-06-01

    We previously demonstrated that obesity caused the reduction of peripheral and brain insulin sensitivity and that estrogen therapy improved these defects. However, the beneficial effect of estrogen on brain insulin sensitivity and oxidative stress in either ovariectomy alone or ovariectomy with obesity models has not been determined. We hypothesized that ovariectomy alone or ovariectomy with obesity reduces brain insulin sensitivity and increases brain oxidative stress, which are reversed by estrogen treatment. Thirty female rats were assigned as either sham-operated or ovariectomized. After the surgery, each group was fed either a normal diet or high-fat diet for 12 weeks. At week 13, rats in each group received either the vehicle or estradiol for 30 days. At week 16, blood and brain were collected for determining the peripheral and brain insulin sensitivity as well as brain oxidative stress. We found that ovariectomized rats and high-fat diet fed rats incurred obesity, reduced peripheral and brain insulin sensitivity, and increased brain oxidative stress. Estrogen ameliorated peripheral insulin sensitivity in these rats. However, the beneficial effect of estrogen on brain insulin sensitivity and brain oxidative stress was observed only in ovariectomized normal diet-fed rats, but not in ovariectomized high fat diet-fed rats. Our results suggested that reduced brain insulin sensitivity and increased brain oxidative stress occurred after either ovariectomy or obesity. However, the reduced brain insulin sensitivity and the increased brain oxidative stress in ovariectomy with obesity could not be ameliorated by estrogen treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Acetate supplementation reduces microglia activation and brain interleukin-1β levels in a rat model of Lyme neuroborreliosis

    Directory of Open Access Journals (Sweden)

    Brissette Catherine A

    2012-11-01

    Full Text Available Abstract Background We have found that acetate supplementation significantly reduces neuroglia activation and pro-inflammatory cytokine release in a rat model of neuroinflammation induced with lipopolysaccharide. To test if the anti-inflammatory effect of acetate supplementation is specific to a TLR4-mediated injury, we measured markers of neuroglia activation in rats subjected to B. burgdorferi-induced neuroborreliosis that is mediated in large part by a TLR2-type mechanism. Methods In this study, rats were subjected to Lyme neuroborreliosis following an intravenous infusion of B. burgdorferi (B31-MI-16. Acetate supplementation was induced using glyceryl triacetate (6g/kg by oral gavage. Immunohistochemistry, qPCR, and western blot analyses were used to measure bacterial invasion into the brain, neuroglial activation, and brain and circulating levels of interleukin 1β. Statistical analysis was performed using one-way analysis of variance (ANOVA followed by a Tukey’s post hoc tests or using a Student’s t test assuming unequal variances when appropriate. Results We found that acetate supplementation significantly reduced microglia activation by 2-fold as determined by immunohistochemical and western blot analysis. Further, acetate supplementation also reduced the expression of the pro-inflammatory cytokine IL-1β by 2-fold as compared to controls. On the other hand, the inoculation of rats with B. burgdorferi had no effect on astroglial activation as determined by immunocytochemistry and western blot analysis despite significant increases in circulation levels of antigen toward B. burgdorferi and presence of the bacteria in the central nervous system. Conclusions These results suggest that microglial activation is an essential component to neuroborreliosis and that acetate supplementation may be an effective treatment to reduce injury phenotype and possibly injury progression in Lyme neuroborreliosis.

  6. Fractalkine Attenuates Microglial Cell Activation Induced by Prenatal Stress

    Directory of Open Access Journals (Sweden)

    Joanna Ślusarczyk

    2016-01-01

    Full Text Available The potential contribution of inflammation to the development of neuropsychiatric diseases has recently received substantial attention. In the brain, the main immune cells are the microglia. As they are the main source of inflammatory factors, it is plausible that the regulation of their activation may be a potential therapeutic target. Fractalkine (CX3CL1 and its receptor CX3CR1 play a crucial role in the control of the biological activity of the microglia. In the present study, using microglial cultures we investigated whether fractalkine is able to reverse changes in microglia caused by a prenatal stress procedure. Our study found that the microglia do not express fractalkine. Prenatal stress decreases the expression of the fractalkine receptor, which in turn is enhanced by the administration of exogenous fractalkine. Moreover, treatment with fractalkine diminishes the prenatal stress-induced overproduction of proinflammatory factors such as IL-1β, IL-18, IL-6, TNF-α, CCL2, or NO in the microglial cells derived from prenatally stressed newborns. In conclusion, the present results revealed that the pathological activation of microglia in prenatally stressed newborns may be attenuated by fractalkine administration. Therefore, understanding of the role of the CX3CL1-CX3CR1 system may help to elucidate the mechanisms underlying the neuron-microglia interaction and its role in pathological conditions in the brain.

  7. Telomere dysfunction reduces microglial numbers without fully inducing an aging phenotype

    DEFF Research Database (Denmark)

    Khan, Asif Manzoor; Babcock, Alicia; Saeed, Hamid

    2015-01-01

    The susceptibility of the aging brain to neurodegenerative disease may in part be attributed to cellular aging of the microglial cells that survey it. We investigated the effect of cellular aging induced by telomere shortening on microglia by the use of mice lacking the telomerase RNA component...... (TERC) and design-based stereology. TERC knockout (KO) mice had a significantly reduced number of CD11b(+) microglia in the dentate gyrus. Because of an even greater reduction in dentate gyrus volume, microglial density was, however, increased. Microglia in TERC KO mice maintained a homogenous...... distribution and normal expression of CD45 and CD68 and the aging marker, ferritin, but were morphologically distinct from microglia in both adult and old wild-type mice. TERC KO mice also showed increased cellular apoptosis and impaired spatial learning. Our results suggest that individual microglia...

  8. Levo-Tetrahydropalmatine Attenuates Bone Cancer Pain by Inhibiting Microglial Cells Activation

    Directory of Open Access Journals (Sweden)

    Mao-yin Zhang

    2015-01-01

    Full Text Available Objective. The present study is to investigate the analgesic roles of L-THP in rats with bone cancer pain caused by tumor cell implantation (TCI. Methods. Thermal hyperalgesia and mechanical allodynia were measured at different time points before and after operation. L-THP (20, 40, and 60 mg/kg were administrated intragastrically at early phase of postoperation (before pain appearance and later phase of postoperation (after pain appearance, respectively. The concentrations of TNF-α, IL-1β, and IL-18 in spinal cord were measured by enzyme-linked immunosorbent assay. Western blot was used to test the activation of astrocytes and microglial cells in spinal cord after TCI treatment. Results. TCI treatment induced significant thermal hyperalgesia and mechanical allodynia. Administration of L-THP at high doses significantly prevented and/or reversed bone cancer-related pain behaviors. Besides, TCI-induced activation of microglial cells and the increased levels of TNF-α and IL-18 were inhibited by L-THP administration. However, L-THP failed to affect TCI-induced astrocytes activation and IL-1β increase. Conclusion. This study suggests the possible clinical utility of L-THP in the treatment of bone cancer pain. The analgesic effects of L-THP on bone cancer pain maybe underlying the inhibition of microglial cells activation and proinflammatory cytokines increase.

  9. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    Science.gov (United States)

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  10. Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain.

    Science.gov (United States)

    Shibuta, Kazuo; Suzuki, Ikuko; Shinoda, Masamichi; Tsuboi, Yoshiyuki; Honda, Kuniya; Shimizu, Noriyoshi; Sessle, Barry J; Iwata, Koichi

    2012-04-27

    The aim of this study was to evaluate spatial organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1), and to clarify the involvement in mechanisms underlying orofacial secondary hyperalgesia following infraorbital nerve injury. We found that the head-withdrawal threshold to non-noxious mechanical stimulation of the maxillary whisker pad skin was significantly reduced in chronic constriction injury of the infraorbital nerve (ION-CCI) rats from day 1 to day 14 after ION-CCI. On day 3 after ION-CCI, mechanical allodynia was obvious in the orofacial skin areas innervated by the 1st and 3rd branches of the trigeminal nerve as well as the 2nd branch area. Hyperactive microglial cells in Vc and C1 were observed on days 3 and 7 after ION-CCI. On day 3 after ION-CCI, a large number of phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells were observed in Vc and C1. Many hyperactive microglial cells were also distributed over a wide area of Vc and C1 innervated by the trigeminal nerve. The intraperitoneal administration of minocycline significantly reduced the activation of microglial cells and the number of pERK-IR cells in Vc and C1, and also significantly attenuated the development of mechanical allodynia. Furthermore, enhanced background activity and mechanical evoked responses of Vc wide dynamic range neurons in ION-CCI rats were significantly reversed following minocycline administration. These findings suggest that activation of microglial cells over a wide area of Vc and C1 is involved in the enhancement of Vc and C1 neuronal excitability in the early period after ION-CCI, resulting in the neuropathic pain in orofacial areas innervated by the injured as well as uninjured nerves. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. α-Asarone Attenuates Cognitive Deficit in a Pilocarpine-Induced Status Epilepticus Rat Model via a Decrease in the Nuclear Factor-κB Activation and Reduction in Microglia Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Hui-juan Liu

    2017-12-01

    Full Text Available BackgroundTemporal lobe epilepsy (TLE is one of the most drug-resistant types of epilepsy with about 80% of TLE patients falling into this category. Increasing evidence suggests that neuroinflammation, which has a critical role in the epileptogenesis of TLE, is associated with microglial activation. Therefore, agents that act toward the alleviation in microglial activation and the attenuation of neuroinflammation are promising candidates to treat TLE. α-Asarone is a major active ingredient of the Acori Graminei Rhizoma used in Traditional Chinese Medicine, which has been used to improve various disease conditions including stroke and convulsions. In addition, an increasing number of studies suggested that α-asarone can attenuate microglia-mediated neuroinflammation. Thus, we hypothesized that α-asarone is a promising neuroprotective agent for the treatment of the TLE.MethodsThe present study evaluated the therapeutic effects of α-asarone on microglia-mediated neuroinflammation and neuroprotection in vitro and in vivo, using an untreated control group, a status epilepticus (SE-induced group, and an SE-induced α-asarone pretreated group. A pilocarpine-induced rat model of TLE was established to investigate the neuroprotective effects of α-asarone in vivo. For the in vitro study, lipopolysaccharide (LPS-stimulated primary cultured microglial cells were used.ResultsThe results indicated that the brain microglial activation in the rats of the SE rat model led to important learning and memory deficit. Preventive treatment with α-asarone restrained microglial activation and reduced learning and memory deficit. In the in vitro studies, α-asarone significantly suppressed proinflammatory cytokine production in primary cultured microglial cells and attenuated the LPS-stimulated neuroinflammatory responses. Our mechanistic study revealed that α-asarone inhibited inflammatory processes by regulation the transcription levels of kappa-B, by blocking

  12. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy

    Directory of Open Access Journals (Sweden)

    Couture Réjean

    2010-06-01

    Full Text Available Abstract Background The pro-nociceptive kinin B1 receptor (B1R is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Methods Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p., and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p. were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I-HPP-desArg10-Hoe 140 were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK and antagonists (SSR240612 and R-715 were measured on neuropathic pain manifestations. Results STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1β, TNF-α, TRPV1 and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. Conclusion The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  13. Does microglial dysfunction play a role in autism and Rett syndrome?

    Science.gov (United States)

    Maezawa, Izumi; Calafiore, Marco; Wulff, Heike; Jin, Lee-Way

    2011-02-01

    Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies.

  14. Development of antibodies against the rat brain somatostatin receptor.

    Science.gov (United States)

    Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T

    1992-05-15

    Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

  15. Overweight worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic ischemia in neonatal brain through JNK hyperactivation

    Directory of Open Access Journals (Sweden)

    Wu Hsin-Chieh

    2011-04-01

    Full Text Available Abstract Background Apoptosis, neuroinflammation and blood-brain barrier (BBB damage affect the susceptibility of the developing brain to hypoxic-ischemic (HI insults. c-Jun N-terminal kinase (JNK is an important mediator of insulin resistance in obesity. We hypothesized that neonatal overweight aggravates HI brain damage through JNK hyperactivation-mediated upregulation of neuronal apoptosis, neuroinflammation and BBB leakage in rat pups. Methods Overweight (OF pups were established by reducing the litter size to 6, and control (NF pups by keeping the litter size at 12 from postnatal (P day 1 before HI on P7. Immunohistochemistry and immunoblotting were used to determine the TUNEL-(+ cells and BBB damage, cleaved caspase-3 and poly (ADP-ribose polymerase (PARP, and phospho-JNK and phospho-BimEL levels. Immunofluorescence was performed to determine the cellular distribution of phospho-JNK. Results Compared with NF pups, OF pups had a significantly heavier body-weight and greater fat deposition on P7. Compared with the NF-HI group, the OF-HI group showed significant increases of TUNEL-(+ cells, cleaved levels of caspase-3 and PARP, and ED1-(+ activated microglia and BBB damage in the cortex 24 hours post-HI. Immunofluorescence of the OF-HI pups showed that activated-caspase 3 expression was found mainly in NeuN-(+ neurons and RECA1-(+ vascular endothelial cells 24 hours post-HI. The OF-HI group also had prolonged escape latency in the Morris water maze test and greater brain-volume loss compared with the NF-HI group when assessed at adulthood. Phospho-JNK and phospho-BimEL levels were higher in OF-HI pups than in NF-HI pups immediately post-HI. JNK activation in OF-HI pups was mainly expressed in neurons, microglia and vascular endothelial cells. Inhibiting JNK activity by AS601245 caused more attenuation of cleaved caspase-3 and PARP, a greater reduction of microglial activation and BBB damage post-HI, and significantly reduced brain damage in

  16. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sudhakar R. Subramaniam

    2017-06-01

    Full Text Available Parkinson’s disease (PD is a chronic and progressive disorder characterized neuropathologically by loss of dopamine neurons in the substantia nigra, intracellular proteinaceous inclusions, reduction of dopaminergic terminals in the striatum, and increased neuroinflammatory cells. The consequent reduction of dopamine in the basal ganglia results in the classical parkinsonian motor phenotype. A growing body of evidence suggest that neuroinflammation mediated by microglia, the resident macrophage-like immune cells in the brain, play a contributory role in PD pathogenesis. Microglia participate in both physiological and pathological conditions. In the former, microglia restore the integrity of the central nervous system and, in the latter, they promote disease progression. Microglia acquire different activation states to modulate these cellular functions. Upon activation to the M1 phenotype, microglia elaborate pro-inflammatory cytokines and neurotoxic molecules promoting inflammation and cytotoxic responses. In contrast, when adopting the M2 phenotype microglia secrete anti-inflammatory gene products and trophic factors that promote repair, regeneration, and restore homeostasis. Relatively little is known about the different microglial activation states in PD and a better understanding is essential for developing putative neuroprotective agents. Targeting microglial activation states by suppressing their deleterious pro-inflammatory neurotoxicity and/or simultaneously enhancing their beneficial anti-inflammatory protective functions appear as a valid therapeutic approach for PD treatment. In this review, we summarize microglial functions and, their dual neurotoxic and neuroprotective role in PD. We also review molecules that modulate microglial activation states as a therapeutic option for PD treatment.

  17. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier integrity through a mechanism involving P2X7 receptors.

    Science.gov (United States)

    Rubio-Araiz, Ana; Perez-Hernandez, Mercedes; Urrutia, Andrés; Porcu, Francesca; Borcel, Erika; Gutierrez-Lopez, Maria Dolores; O'Shea, Esther; Colado, Maria Isabel

    2014-08-01

    The recreational drug 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') produces a neuro-inflammatory response in rats characterized by an increase in microglial activation and IL-1β levels. The integrity of the blood-brain barrier (BBB) is important in preserving the homeostasis of the brain and has been shown to be affected by neuro-inflammatory processes. We aimed to study the effect of a single dose of MDMA on the activity of metalloproteinases (MMPs), expression of extracellular matrix proteins, BBB leakage and the role of the ionotropic purinergic receptor P2X7 (P2X7R) in the changes induced by the drug. Adult male Dark Agouti rats were treated with MDMA (10 mg/kg, i.p.) and killed at several time-points in order to evaluate MMP-9 and MMP-3 activity in the hippocampus and laminin and collagen-IV expression and IgG extravasation in the dentate gyrus. Microglial activation, P2X7R expression and localization were also determined in the dentate gyrus. Separate groups were treated with MDMA and the P2X7R antagonists Brilliant Blue G (BBG; 50 mg/kg, i.p.) or A-438079 (30 mg/kg, i.p.). MDMA increased MMP-3 and MMP-9 activity, reduced laminin and collagen-IV expression and increased IgG immunoreactivity. In addition, MDMA increased microglial activation and P2X7R immunoreactivity in these cells. BBG suppressed the increase in MMP-9 and MMP-3 activity, prevented basal lamina degradation and IgG extravasation into the brain parenchyma. A-438079 also prevented the MDMA-induced reduction in laminin and collagen-IV immunoreactivity. These results indicate that MDMA alters BBB permeability through an early P2X7R-mediated event, which in turn leads to enhancement of MMP-9 and MMP-3 activity and degradation of extracellular matrix.

  18. Brain dysfunctions in Wistar rats exposed to municipal landfill leachates

    Directory of Open Access Journals (Sweden)

    Chibuisi G. Alimba

    2015-12-01

    Full Text Available Brain damage induced by Olusosun and Aba-Eku municipal landfill leachates was investigated in Wistar rats. Male rats were orally exposed to 1–25% concentrations of the leachates for 30 days. Catalase (CAT and superoxide dismutase (SOD activities, and malondialdehyde (MDA concentrations in the brain and serum of rats were evaluated; body and brain weight gain and histopathology were examined. There was significant (p < 0.05 decrease in body weight gain and SOD activity but increase in absolute and relative brain weight gain, MDA concentration and CAT activity in both brain and serum of treated rats. The biochemical parameters, which were more altered in the brain than serum, corroborated the neurologic lesions; neurodegeneration of purkinje cells with loss of dendrites, perineural vacuolations of the neuronal cytoplasm (spongiosis and neuronal necrosis in the brain. The concentrations of Cr, Cu, Pb, As, Cd, Mn, Ni, sulphates, ammonia, chloride and phosphate in the leachate samples were above standard permissible limits. The interactions of the neurotoxic constituents of the leachates induced the observed brain damage in the rats via oxidative damage. This suggests health risk in wildlife and human populations.

  19. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  20. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    OpenAIRE

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected ...

  1. CCL2/MCP-1 modulation of microglial activation and proliferation

    Directory of Open Access Journals (Sweden)

    Garcia-Bueno Borja

    2011-07-01

    Full Text Available Abstract Background Monocyte chemoattractant protein (CCL2/MCP-1 is a chemokine that attracts cells involved in the immune/inflammatory response. As microglia are one of the main cell types sustaining inflammation in brain, we proposed here to analyze the direct effects of MCP-1 on cultured primary microglia. Methods Primary microglia and neuronal cultures were obtained from neonatal and embryonic Wistar rats, respectively. Microglia were incubated with different concentrations of recombinant MCP-1 and LPS. Cell proliferation was quantified by measuring incorporation of bromodeoxyuridine (BrdU. Nitrite accumulation was measured using the Griess assay. The expression and synthesis of different proteins was measured by RT-PCR and ELISA. Cell death was quantified by measuring release of LDH into the culture medium. Results MCP-1 treatment (50 ng/ml, 24 h did not induce morphological changes in microglial cultures. Protein and mRNA levels of different cytokines were measured, showing that MCP-1 was not able to induce proinflammatory cytokines (IL-1β, IL6, MIP-1α, either by itself or in combination with LPS. A similar lack of effect was observed when measuring inducible nitric oxide synthase (NOS2 expression or accumulation of nitrites in the culture media as a different indicator of microglial activation. MCP-1 was also unable to alter the expression of different trophic factors that were reduced by LPS treatment. In order to explore the possible release of other products by microglia and their potential neurotoxicity, neurons were co-cultured with microglia: no death of neurons could be detected when treated with MCP-1. However, the presence of MCP-1 induced proliferation of microglia, an effect opposite to that observed with LPS. Conclusion These data indicate that, while causing migration and proliferation of microglia, MCP-1 does not appear to directly activate an inflammatory response in this cell type, and therefore, other factors may be

  2. Extreme hypoxia tolerance of naked mole-rat brain.

    Science.gov (United States)

    Larson, John; Park, Thomas J

    2009-12-09

    Mammalian brains have extremely high levels of aerobic metabolism and typically suffer irreversible damage after brief periods of oxygen deprivation such as occur during stroke or cardiac arrest. Here we report that brain tissue from naked mole-rats, rodents that live in a chronically low-oxygen environment, is remarkably resistant to hypoxia: naked mole-rat neurons maintain synaptic transmission much longer than mouse neurons and can recover from periods of anoxia exceeding 30 min. We suggest that brain tolerance to hypoxia may result from slowed or arrested brain development in these extremely long-lived animals.

  3. Neural Mobilization Treatment Decreases Glial Cells and Brain-Derived Neurotrophic Factor Expression in the Central Nervous System in Rats with Neuropathic Pain Induced by CCI in Rats

    Directory of Open Access Journals (Sweden)

    Aline Carolina Giardini

    2017-01-01

    Full Text Available Background. Glial cells are implicated in the development of chronic pain and brain-derived neurotropic factor (BDNF released from activated microglia contributes to the nociceptive transmission. Neural mobilization (NM technique is a method clinically effective in reducing pain sensitivity. Here we examined the involvement of glial cells and BDNF expression in the thalamus and midbrain after NM treatment in rats with chronic constriction injury (CCI. CCI was induced and rats were subsequently submitted to 10 sessions of NM, every other day, beginning 14 days after CCI. Thalamus and midbrain were analyzed for glial fibrillary acidic protein (GFAP, microglial cell OX-42, and BDNF using Immunohistochemistry and Western blot assays. Results. Thalamus and midbrain of CCI group showed increases in GFAP, OX-42, and BDNF expression compared with control group and, in contrast, showed decreases in GFAP, OX-42, and BDNF after NM when compared with CCI group. The decreased immunoreactivity for GFAP, OX-42, and BDNF in ventral posterolateral nucleus in thalamus and the periaqueductal gray in midbrain was shown by immunohistochemistry. Conclusions. These findings may improve the knowledge about the involvement of astrocytes, microglia, and BDNF in the chronic pain and show that NM treatment, which alleviates neuropathic pain, affects glial cells and BDNF expression.

  4. In vitro comparison of rat and chicken brain neurotoxic esterase

    International Nuclear Information System (INIS)

    Novak, R.; Padilla, S.

    1986-01-01

    A systematic comparison was undertaken to characterize neurotoxic esterase (NTE) from rat and chicken brain in terms of inhibitor sensitivities, pH optima, and molecular weights. Paraoxon titration of phenyl valerate (PV)-hydrolyzing carboxylesterases showed that rat esterases were more sensitive than chicken to paraoxon inhibition at concentrations less than or equal to microM and superimposable with chicken esterases at concentrations of 2.5-1000 microM. Mipafox titration of the paraoxon-resistant esterases at a fixed paraoxon concentration of 100 microM (mipafox concentration: 0-1000 microM) resulted in a mipafox I50 of 7.3 microM for chicken brain NTE and 11.6 microM for rat brain NTE. NTE (i.e., paraoxon-resistant, mipafox-sensitive esterase activity) comprised 80% of chicken and 60% of rat brain paraoxon-resistant activity with the specific activity of chicken brain NTE approximately twice that of rat brain NTE. The pH maxima for NTE from both species was similar showing broad, slightly alkaline optima from pH 7.9 to 8.6. [ 3 H]Diisopropyl phosphorofluoridate (DFP)-labeled NTE from the brains of both species had an apparent mol wt of 160,000 measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In conclusion, NTE from both species was very similar, with the mipafox I50 for rat NTE within the range of reported values for chicken and human NTE, and the inhibitor parameters of the chicken NTE assay were applicable for the rat NTE assay

  5. An automatic rat brain extraction method based on a deformable surface model.

    Science.gov (United States)

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain.

    Science.gov (United States)

    Moini-Zanjani, Taraneh; Ostad, Seyed-Nasser; Labibi, Farzaneh; Ameli, Haleh; Mosaffa, Nariman; Sabetkasaei, Masoumeh

    2016-11-01

    Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppresses the development of neuropathic pain. Here, we evaluated the analgesic effect of minocycline in a chronic constriction injury (CCI) model of neuropathic pain in rat and assessed IL-6 concentration from cultured macrophage and microglia cells. Male Wistar rat (n=6, 150-200 g) were divided into three different groups: 1) CCI+vehicle, 2) sham+vehicle, and 3) CCI+drug. Minocycline (10, 20, and 40 mg/kg) was injected one hour before surgery and continued daily to day 14 post ligation. Von Frey filaments and acetone, as pain behavioral tests, were used for mechanical allodynia and cold allodynia, respectively. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7, 10, and 14 post -injury. At day 14, rats were killed and monocyte-derived macrophage from right ventricle and microglia from lumbar part of the spinal cord were isolated and cultured in RPMI and Leibovitz's media, respectively. IL-6 concentration was evaluated in cell culture supernatant after 24 h. Minocycline (10, 20, and 40 mg/kg) attenuated pain behavior, and a decrease in IL-6 concentration was observed in immune cells compared to CCI vehicle-treated animals. Minocycline reduced pain behavior and decreased IL-6 concentration in macrophage and microglial cells.

  7. Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Marta Machado-Pereira

    2017-01-01

    Full Text Available Inflammatory mechanisms triggered by microglial cells are involved in the pathophysiology of several brain disorders, hindering repair. Herein, we propose the use of retinoic acid-loaded polymeric nanoparticles (RA-NP as a means to modulate microglia response towards an anti-inflammatory and neuroprotective phenotype (M2. RA-NP were first confirmed to be internalized by N9 microglial cells; nanoparticles did not affect cell survival at concentrations below 100 μg/mL. Then, immunocytochemical studies were performed to assess the expression of pro- and anti-inflammatory mediators. Our results show that RA-NP inhibited LPS-induced release of nitric oxide and the expression of inducible nitric oxide synthase and promoted arginase-1 and interleukin-4 production. Additionally, RA-NP induced a ramified microglia morphology (indicative of M2 state, promoting tissue viability, particularly neuronal survival, and restored the expression of postsynaptic protein-95 in organotypic hippocampal slice cultures exposed to an inflammatory challenge. RA-NP also proved to be more efficient than the free equivalent RA concentration. Altogether, our data indicate that RA-NP may be envisioned as a promising therapeutic agent for brain inflammatory diseases.

  8. A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation.

    Directory of Open Access Journals (Sweden)

    Kallol Dutta

    Full Text Available BACKGROUND: Benzo[a]pyrene (B[a]P belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. CONCLUSIONS/SIGNIFICANCE: Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our

  9. Annexin-1 Mediates Microglial Activation and Migration via the CK2 Pathway during Oxygen–Glucose Deprivation/Reperfusion

    Directory of Open Access Journals (Sweden)

    Shuangxi Liu

    2016-10-01

    Full Text Available Annexin-1 (ANXA1 has shown neuroprotective effects and microglia play significant roles during central nervous system injury, yet the underlying mechanisms remain unclear. This study sought to determine whether ANXA1 regulates microglial response to oxygen–glucose deprivation/reperfusion (OGD/R treatment and to clarify the downstream molecular mechanism. In rat hippocampal slices, OGD/R treatment enhanced the ANXA1 expression in neuron, the formyl peptide receptor (FPRs expression in microglia, and the microglial activation in the CA1 region (cornu ammonis 1. These effects were reversed by the FPRs antagonist Boc1. The cell membrane currents amplitude of BV-2 microglia (the microglial like cell-line was increased when treated with Ac2-26, the N-terminal peptide of ANXA1. Ac2-26 treatment enhanced BV-2 microglial migration whereas Boc1 treatment inhibited the migration. In BV-2 microglia, both the expression of the CK2 target phosphorylated α-E-catenin and the binding of casein kinase II (CK2 with α-E-catenin were elevated by Ac2-26, these effects were counteracted by the CK2 inhibitor TBB and small interfering (si RNA directed against transcripts of CK2 and FPRs. Moreover, both TBB and siRNA-mediated inhibition of CK2 blocked Ac2-26-mediated BV-2 microglia migration. Our findings indicate that ANXA1 promotes microglial activation and migration during OGD/R via FPRs, and CK2 target α-E-catenin phosphorylation is involved in this process.

  10. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid β-Protein by Promoting Microglial Phagocytosis.

    Science.gov (United States)

    Zhang, Can; Griciuc, Ana; Hudry, Eloise; Wan, Yu; Quinti, Luisa; Ward, Joseph; Forte, Angela M; Shen, Xunuo; Ran, ChongZhao; Elmaleh, David R; Tanzi, Rudolph E

    2018-01-18

    Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APP Swedish -expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

  11. Neuropeptide Y receptors in rat brain: autoradiographic localization

    International Nuclear Information System (INIS)

    Martel, J.C.; St-Pierre, S.; Quirion, R.

    1986-01-01

    Neuropeptide Y (NPY) receptor binding sites have been characterized in rat brain using both membrane preparations and receptor autoradiography. Radiolabelled NPY binds with high affinity and specificity to an apparent single class of sites in rat brain membrane preparations. The ligand selectivity pattern reveals strong similarities between central and peripheral NPY receptors. NPY receptors are discretely distributed in rat brain with high densities found in the olfactory bulb, superficial layers of the cortex, ventral hippocampus, lateral septum, various thalamic nuclei and area postrema. The presence of high densities of NPY and NPY receptors in such areas suggests that NPY could serve important functions as a major neurotransmitter/neuromodulator in the central nervous system

  12. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion.

    Science.gov (United States)

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-09-01

    Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. © 2014 Associated Professional Sleep Societies, LLC.

  13. Region-selective effects of neuroinflammation and antioxidant treatment on peripheral benzodiazepine receptors and NMDA receptors in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Biegon, A.; Alvarado, M.; Budinger, T.F.; Grossman, R.; Hensley, K.; West, M.S.; Kotake, Y.; Ono, M.; Floyd, R.A.

    2001-12-10

    Following induction of acute neuroinflammation by intracisternal injection of endotoxin (lipopolysaccharide) in rats, quantitative autoradiography was used to assess the regional level of microglial activation and glutamate (NMDA) receptor binding. The possible protective action of the antioxidant phenyl-tert-butyl nitrone in this model was tested by administering the drug in the drinking water for 6 days starting 24 hours after endotoxin injection. Animals were killed 7 days post-injection and consecutive cryostat brain sections labeled with [3H]PK11195 as a marker of activated microglia and [125I]iodoMK801 as a marker of the open-channel, activated state of NMDA receptors. Lipopolysaccharide increased [3H]PK11195 binding in the brain, with the largest increases (2-3 fold) in temporal and entorhinal cortex, hippocampus, and substantia innominata. A significant (>50 percent) decrease in [125I]iodoMK801 binding was found in the same brain regions. Phenyl-tert-butyl nitrone treatment resulted in a partial inhibition ({approx}25 percent decrease) of the lipopolysaccharide-induced increase in [3H]PK11195 binding but completely reversed the lipopolysaccharide-induced decrease in [125I]iodoMK80 binding in the entorhinal cortex, hippocampus, and substantia innominata. Loss of NMDA receptor function in cortical and hippocampal regions may contribute to the cognitive deficits observed in diseases with a neuroinflammatory component, such as meningitis or Alzheimer's disease.

  14. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, ... Methods: Forty-eight rats (P7-pups) were randomly assigned to one of four groups: ... Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants, .... Of the 48 rats initially used in the current study, 5.

  15. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  16. Increased microglial catalase activity in multiple sclerosis grey matter.

    Science.gov (United States)

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    Science.gov (United States)

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2017-10-01

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC 50 ) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  18. Temporal profiles of age-dependent changes in cytokine mRNA expression and glial cell activation after status epilepticus in postnatal rat hippocampus.

    Science.gov (United States)

    Järvelä, Juha T; Lopez-Picon, Francisco R; Plysjuk, Anna; Ruohonen, Saku; Holopainen, Irma E

    2011-04-08

    Status epilepticus (SE) is proposed to lead to an age-dependent acute activation of a repertoire of inflammatory processes, which may contribute to neuronal damage in the hippocampus. The extent and temporal profiles of activation of these processes are well known in the adult brain, but less so in the developing brain. We have now further elucidated to what extent inflammation is activated by SE by investigating the acute expression of several cytokines and subacute glial reactivity in the postnatal rat hippocampus. SE was induced by an intraperitoneal (i.p.) injection of kainic acid (KA) in 9- and 21-day-old (P9 and P21) rats. The mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), matrix metalloproteinase-9 (MMP-9), glial-derived neurotrophic factor (GDNF), interferon gamma (IFN-γ), and transforming growth factor-beta 1 (TGF-β1) were measured from 4 h up to 3 days after KA injection with real-time quantitative PCR (qPCR). IL-1β protein expression was studied with ELISA, GFAP expression with western blotting, and microglial and astrocyte morphology with immunohistochemistry 3 days after SE. SE increased mRNA expression of IL-1β, TNF-α and IL-10 mRNA in hippocampus of both P9 and P21 rats, their induction being more rapid and pronounced in P21 than in P9 rats. MMP-9 expression was augmented similarly in both age groups and GDNF expression augmented only in P21 rats, whereas neither IFN-γ nor TGF-β1 expression was induced in either age group. Microglia and astrocytes exhibited activated morphology in the hippocampus of P21 rats, but not in P9 rats 3 d after SE. Microglial activation was most pronounced in the CA1 region and also detected in the basomedial amygdala. Our results suggest that SE provokes an age-specific cytokine expression in the acute phase, and age-specific glial cell activation in the subacute phase as verified now in the postnatal rat hippocampus. In the juvenile hippocampus

  19. [Expression of c-jun protein after experimental rat brain concussion].

    Science.gov (United States)

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  20. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats

    International Nuclear Information System (INIS)

    Liu, Hao; Rose, Marie E.; Culver, Sherman; Ma, Xiecheng; Dixon, C. Edward; Graham, Steven H.

    2016-01-01

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1–5 d, 14–20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. - Highlights: • Effects of rosiglitazone after CCI were evaluated using a rat TBI model. • Rosiglitazone suppressed production of TNFα at 24 h after CCI. • Rosiglitazone inhibited microglial activation at 21 d after CCI. • Rosiglitazone increased survival of CA3 neurons at 21 d after CCI. • Rosiglitazone-treated animals had improved performance in beam balance testing.

  1. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Rose, Marie E. [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurology, University of Pittsburgh School of Medicine, PA (United States); Culver, Sherman; Ma, Xiecheng; Dixon, C. Edward [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurosurgery, University of Pittsburgh, PA 15216 (United States); Department of Critical Care Medicine, University of Pittsburgh, PA 15216 (United States); Graham, Steven H., E-mail: Steven.Graham@va.gov [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurology, University of Pittsburgh School of Medicine, PA (United States)

    2016-04-15

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1–5 d, 14–20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. - Highlights: • Effects of rosiglitazone after CCI were evaluated using a rat TBI model. • Rosiglitazone suppressed production of TNFα at 24 h after CCI. • Rosiglitazone inhibited microglial activation at 21 d after CCI. • Rosiglitazone increased survival of CA3 neurons at 21 d after CCI. • Rosiglitazone-treated animals had improved performance in beam balance testing.

  2. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells.

    Science.gov (United States)

    Kata, Diana; Földesi, Imre; Feher, Liliana Z; Hackler, Laszlo; Puskas, Laszlo G; Gulya, Karoly

    2017-06-01

    Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. PERIPHERAL LIPOPOLYSACCHARIDE STIMULATION INDUCES INTERLEUKIN-1-BETA MESSENGER-RNA IN RAT-BRAIN MICROGLIAL CELLS

    NARCIS (Netherlands)

    BUTTINI, M; BODDEKE, H

    The inflammatory cytokine interleukin-1 acts as an endogenous pyrogen in organisms affected by infectious diseases and has been shown to influence the activity of the central nervous system. Using in situ hybridization histochemistry, we have examined the cellular source of interleukin-1 beta in rat

  4. Brain glucose content in fetuses of ethanol-fed rats

    Energy Technology Data Exchange (ETDEWEB)

    Pullen, G.; Singh, S.P.; Snyder, A.K.; Hoffen, B.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4 and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.

  5. Hydrophilic solute transport across the rat blood-brain barrier

    International Nuclear Information System (INIS)

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of 3 H-inulin and 14 C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients

  6. Testosterone supplementation restores vasopressin innervation in the senescent rat brain

    NARCIS (Netherlands)

    Goudsmit, E.; Fliers, E.; Swaab, D. F.

    1988-01-01

    The vasopressin (AVP) innervation in the male rat brain is decreased in senescence. This decrease is particularly pronounced in brain regions where AVP fiber density is dependent on plasma levels of sex steroids. Since plasma testosterone levels decrease progressively with age in the rat, the

  7. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation.

    Science.gov (United States)

    Wang, S; Wang, H; Guo, H; Kang, L; Gao, X; Hu, L

    2011-06-30

    Inhibition of microglial over-reaction and the inflammatory processes may represent a therapeutic target to alleviate the progression of neurological diseases, such as neurodegenerative diseases and stroke. Scutellarin is the major active component of Erigeron breviscapus (Vant.) Hand-Mazz, a herbal medicine in treatment of cerebrovascular diseases for a long time in the Orient. In this study, we explored the mechanisms of neuroprotection by Scutellarin, particularly its anti-inflammatory effects in microglia. We observed that Scutellarin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory mediators such as nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and reactive oxygen species (ROS), suppressed LPS-stimulated inducible nitric oxide synthase (iNOS), TNFα, and IL-1β mRNA expression in rat primary microglia or BV-2 mouse microglial cell line. Scutellarin inhibited LPS-induced nuclear translocation and DNA binding activity of nuclear factor κB (NF-κB). It repressed the LPS-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation without affecting the activity of extracellular signal regulated kinase (ERK) mitogen-activated protein kinase. Moreover, Scutellarin also inhibited interferon-γ (IFN-γ)-induced NO production, iNOS mRNA expression and transcription factor signal transducer and activator of transcription 1α (STAT1α) activation. Concomitantly, conditioned media from Scutellarin pretreated BV-2 cells significantly reduced neurotoxicity compared with conditioned media from LPS treated alone. Together, the present study reported the anti-inflammatory activity of Scutellarin in microglial cells along with their underlying molecular mechanisms, and suggested Scutellarin might have therapeutic potential for various microglia mediated neuroinflammation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury

    Directory of Open Access Journals (Sweden)

    Ziebell Jenna M

    2012-10-01

    Full Text Available Abstract Background Since their discovery, the morphology of microglia has been interpreted to mirror their function, with ramified microglia constantly surveying the micro-environment and rapidly activating when changes occur. In 1899, Franz Nissl discovered what we now recognize as a distinct microglial activation state, microglial rod cells (Stäbchenzellen, which he observed adjacent to neurons. These rod-shaped microglia are typically found in human autopsy cases of paralysis of the insane, a disease of the pre-penicillin era, and best known today from HIV-1-infected brains. Microglial rod cells have been implicated in cortical ‘synaptic stripping’ but their exact role has remained unclear. This is due at least in part to a scarcity of experimental models. Now we have noted these rod microglia after experimental diffuse brain injury in brain regions that have an associated sensory sensitivity. Here, we describe the time course, location, and surrounding architecture associated with rod microglia following experimental diffuse traumatic brain injury (TBI. Methods Rats were subjected to a moderate midline fluid percussion injury (mFPI, which resulted in transient suppression of their righting reflex (6 to 10 min. Multiple immunohistochemistry protocols targeting microglia with Iba1 and other known microglia markers were undertaken to identify the morphological activation of microglia. Additionally, labeling with Iba1 and cell markers for neurons and astrocytes identified the architecture that surrounds these rod cells. Results We identified an abundance of Iba1-positive microglia with rod morphology in the primary sensory barrel fields (S1BF. Although present for at least 4 weeks post mFPI, they developed over the first week, peaking at 7 days post-injury. In the absence of contusion, Iba1-positive microglia appear to elongate with their processes extending from the apical and basal ends. These cells then abut one another and lay adjacent

  9. Synergistic Effects of Psychosocial Stress and Mild Peripheral Infection on Inducing Microglial Activation in the Hippocampal Dentate Gyrus and Long-Lasting Deficits in Hippocampus-Related Memory.

    Science.gov (United States)

    Tzeng, Wen-Yu; Su, Chien-Chou; Sun, Li-Han; Cherng, Chianfang G.; Yu, Lung

    2018-04-30

    Lipopolysaccharide (LPS) treatment and stress may cause immune activation in the brain, an event which has been thought to play a role in mediating stress-induced cognitive dysfunction. However, the enduring impact of psychosocial stress on brain immune activation or cognitive deficits has not been well investigated. Likewise, it remains unexplored whether there exist synergistic effects of psychosocial stress and a weak systemic LPS treatment on brain immune activation and/or cognitive function. In this work, a 10-day social defeat regimen was used to model psychosocial stress and the number and density of ionized calcium-binding adaptor molecule 1 (Iba1)-stained microglia was used to reveal brain immune activation in male Balb/C mice. The social defeat regimen did not cause observable microglial activation in dentate gyrus (DG) 24 h after the conclusion of the regimen. Microglial activation peaked in DG 24 h following a single 1 mg/kg intra-peritoneal LPS injection. At this time point, DG microglial activation was not evident providing 0.125 mg/kg or lower of LPS was used, this dose of LPS was, thus, regarded as the “sub-threshold” in this study. Twenty-four h after the conclusion of the defeat regimen, mice received a social interaction test to determine their defeat stress susceptibility and a “sub-threshold” LPS injection. DG microglial activation was observed in the defeat-stress susceptible, but not in the resilient, mice. Furthermore, the stress-susceptible mice showed impairment in object location and Y maze tasks 24 and 72 h after the “sub-threshold” LPS injection. These results suggest that psychosocial stress, when combined with a negligible peripheral infection, may induce long-lasting hippocampus-related memory deficits exclusively in subjects susceptible to psychosocial stresses.

  10. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    Wong, K.L.; Tyce, G.M.

    1983-01-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U- 14 C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  11. Computational Identification of Potential Multi-drug Combinations for Reduction of Microglial Inflammation in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Thomas J. Anastasio

    2015-06-01

    Full Text Available Like other neurodegenerative diseases, Alzheimer Disease (AD has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  12. Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease.

    Science.gov (United States)

    Anastasio, Thomas J

    2015-01-01

    Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  13. Brain perfusion in acute and chronic hyperglycemia in rats

    International Nuclear Information System (INIS)

    Kikano, G.E.; LaManna, J.C.; Harik, S.I.

    1989-01-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose

  14. Radioimmunoassay of met-enkephalin in microdissected areas of paraformaldehyde-fixed rat brain

    International Nuclear Information System (INIS)

    Correa, F.M.A.; Saavedra, J.M.

    1984-01-01

    The effects were studied of various sample preparation procedures on rat brain met-enkephalin content, measured by radioimmunoassay. Whole brain met-enkephalin content of rats killed by decapitation followed by immediate tissue freezing was similar to that of rats killed by microwave irradiation and to those of rats anesthetized with pentobarbital or halothane before killing, whether previously perfused with paraformaldehyde or not. In contrast, a decrease (up to 80%) in met-enkephalin concentrations was observed when brain samples were frozen and thawed to mimic the procedure utilized in the ''punch'' technique for analysis of discrete brain nuclei. This decrease was totally prevented by paraformaldehyde perfusion of the brain prior to sacrifice. Brain perfusion did not alter the amount of immunoassayable met-enkephalin extracted from tissue or its profile after Sephadex chromatography. Paraformaldehyde perfusion results in better morphological tissue preservation and facilitates the ''punch'' dissecting technique. Paraformaldehyde perfusion may be the procedure of choice for the measurement of neuropeptides in specific brain nuclei dissected by the ''punch'' technique

  15. Regulatory Effects of Fisetin on Microglial Activation

    OpenAIRE

    Chuang, Jing-Yuan; Chang, Pei-Chun; Shen, Yi-Chun; Lin, Chingju; Tsai, Cheng-Fang; Chen, Jia-Hong; Yeh, Wei-Lan; Wu, Ling-Hsuan; Lin, Hsiao-Yun; Liu, Yu-Shu; Lu, Dah-Yuu

    2014-01-01

    Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS...

  16. Bidirectional Microglia-Neuron Communication in the Healthy Brain

    Directory of Open Access Journals (Sweden)

    Ukpong B. Eyo

    2013-01-01

    Full Text Available Unlike other resident neural cells that are of neuroectodermal origin, microglia are resident neural cells of mesodermal origin. Traditionally recognized for their immune functions during disease, new roles are being attributed to these cells in the development and maintenance of the central nervous system (CNS including specific communication with neurons. In this review, we highlight some of the recent findings on the bidirectional interaction between neurons and microglia. We discuss these interactions along two lines. First, we review data that suggest that microglial activity is modulated by neuronal signals, focusing on evidence that (i neurons are capable of regulating microglial activation state and influence basal microglial activities; (ii classic neurotransmitters affect microglial behavior; (iii chemotactic signals attract microglia during acute neuronal injury. Next, we discuss some of the recent data on how microglia signal to neurons. Signaling mechanisms include (i direct physical contact of microglial processes with neuronal elements; (ii microglial regulation of neuronal synapse and circuit by fractalkine, complement, and DAP12 signaling. In addition, we discuss the use of microglial depletion strategies in studying the role of microglia in neuronal development and synaptic physiology. Deciphering the mechanisms of bidirectional microglial-neuronal communication provides novel insights in understanding microglial function in both the healthy and diseased brain.

  17. Incidence of brain tumours in rats exposed to an aerosol of 239PuO2

    International Nuclear Information System (INIS)

    Sanders, C.L.; Dagle, G.E.; Mahaffey, J.A.

    1992-01-01

    Incidence of brain tumours was investigated in 3390 female and male Wistar rats exposed to an aerosol of 239 PuO 2 , or as sham-exposed controls. Lung doses ranged from 0.05 to 22 Gy. In females, six brain tumours were found in 1058 control rats (incidence, 0.6%) and 24 brain tumours in 2134 rats exposed to Pu (incidence, 1.1%); the survival-adjusted level of significance was p = 0.29 for comparing control with exposed females. In males, two brain tumours were found in 60 control rats (incidence, 3.3%) and seven brain tumours in 138 rats exposed to Pu (incidence, 5.1%); the survival-adjusted level of significance was p = 0.33. Brain tumour incidence was about five times greater in male than in female rats (p = 0.0001), a highly significant sex difference in brain tumour incidence. Tumour types were distributed similarly among control and Pu-exposed groups of both sexes; most were astrocytomas. Mean lifespans for rats with brain tumours were not significantly different between control and Pu-exposed rats. (author)

  18. Microwave hyperthermia enhancement of methotrexate absorption in rat brains

    International Nuclear Information System (INIS)

    Lin, J.C.; Yuen, M.K.; Jung, D.T.

    1987-01-01

    The author studied enhanced absorption of methotrexate (MTX) in brains of male Wistar (10 weeks old, 500g) subjected to microwave hyperthermia. The rat was anesthetized using 40 mg/kg of sodium pentobarbital, IP and was placed in a stereotaxic head holder. Microwave energy (2450 MHz, 2.6 W/cm/sup 2/, CW) were applied directly to the left side of the rat's head by a coaxial applicator for 20 min. The body temperature was kept at 37.8 0 C. The brain temperature recorded in a similar group of animals using a Vitek probe was about 45 0 C. Three different MTX dosages, 50, 100 and 200 mg/kg, were injected intravenously immediately following microwave irradiation into three groups of rats in 1.5, 3 and 6 min., respectively. MTX was allowed to circulate for five min. before brains were removed for analysis. Standard HPLC procedures were applied to samples from anterior and posterior left hemisphere of the cerebrum, and the cerebellum. Samples from the right hemisphere were used for controls. The average absorption at the posterior left hemisphere was found to be 2.4, 9.6 and 12.4μg of MTX/g of brain tissue for 50, 100 and 200 mg/kg, respectively. These results indicate that MTX absorption is significantly increased in rat brains subjected to microwave hyperthermia treatment

  19. Neuroanatomy-based matrix-guided trimming protocol for the rat brain.

    Science.gov (United States)

    Defazio, Rossella; Criado, Ana; Zantedeschi, Valentina; Scanziani, Eugenio

    2015-02-01

    Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight. In the setup phase, we identified eight channels, that is, 6, 8, 10, 12, 14, 16, 19, and 21, matching the recommended landmarks midway to the optic chiasm, frontal pole, optic chiasm, infundibulum, mamillary bodies, midbrain, middle cerebellum, and posterior cerebellum, respectively. In the validation study, we trimmed the immersion-fixed brains of 60 rats using the selected channels to determine how consistently the channels reproduced anatomical landmarks. Percentage of success (i.e., presence of expected targets for each level) ranged from 89 to 100%. Where 100% success was not achieved, it was noted that the shift in brain trimming was toward the caudal pole. In conclusion, we developed and validated a trimming protocol for the rat brain that allow comparable extensiveness, homology, and relevance of coronal sections as the landmark-guided trimming with the advantage of being quickly learned by technicians. © 2014 by The Author(s).

  20. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    Science.gov (United States)

    Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R

    2012-01-01

    Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and

  1. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    Directory of Open Access Journals (Sweden)

    Kun Hua

    Full Text Available Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like

  2. Xenon Reduces Neuronal Hippocampal Damage and Alters the Pattern of Microglial Activation after Experimental Subarachnoid Hemorrhage: A Randomized Controlled Animal Trial

    Directory of Open Access Journals (Sweden)

    Michael Veldeman

    2017-09-01

    Full Text Available ObjectiveThe neuroprotective properties of the noble gas xenon have already been demonstrated using a variety of injury models. Here, we examine for the first time xenon’s possible effect in attenuating early brain injury (EBI and its influence on posthemorrhagic microglial neuroinflammation in an in vivo rat model of subarachnoid hemorrhage (SAH.MethodsSprague-Dawley rats (n = 22 were randomly assigned to receive either Sham surgery (n = 9; divided into two groups or SAH induction via endovascular perforation (n = 13, divided into two groups. Of those randomized for SAH, 7 animals were postoperatively ventilated with 50 vol% oxygen/50 vol% xenon for 1 h and 6 received 50 vol% oxygen/50 vol% nitrogen (control. The animals were sacrificed 24 h after SAH. Of each animal, a cerebral coronal section (−3.60 mm from bregma was selected for assessment of histological damage 24 h after SAH. A 5-point neurohistopathological severity score was applied to assess neuronal cell damage in H&E and NeuN stained sections in a total of four predefined anatomical regions of interest. Microglial activation was evaluated by a software-assisted cell count of Iba-1 stained slices in three cortical regions of interest.ResultsA diffuse cellular damage was apparent in all regions of the ipsilateral hippocampus 24 h after SAH. Xenon-treated animals presented with a milder damage after SAH. This effect was found to be particularly pronounced in the medial regions of the hippocampus, CA3 (p = 0.040, and dentate gyrus (DG p = 0.040. However, for the CA1 and CA2 regions, there were no statistical differences in neuronal damage according to our histological scoring. A cell count of activated microglia was lower in the cortex of xenon-treated animals. This difference was especially apparent in the left piriform cortex (p = 0.017.ConclusionIn animals treated with 50 vol% xenon (for 1 h after SAH, a less pronounced neuronal damage was

  3. The effect of infectious brain edema on NMDA receptor binding in rat's brain

    International Nuclear Information System (INIS)

    Cheng Guansheng; Chen Jianfang; Chen Xiang

    1997-01-01

    PURPOSE: The effect of the infectious brain edema (IBE) induced by Bordetella Pertussis (BP) on the specific binding of 3 H MK-801 in rat's brain in vivo was determined. METHODS: BP was injected via left internal carotid artery in rat model of infectious brain edema. Male SD rats were divided into three groups: 1) Group control (NS, n = 11); 2) Group IBF (BP, n = 12); 3) Group pretreatment of MK-801 + PB (MK-801, n = 4). Normal saline or BP 0.2 ml/kg was injected into left internal carotid artery in NS and BP group respectively. MK-801 0.5 mg/kg per day was injected i.p. two days before injection of BP in group MK-801. Rats were killed by decapitation at 24 hours after injection of BP. The specific binding of N-methyl-D-aspartate (NMDA) receptor were measured with 3 H-MK-801 in the neuronal membrane of cerebral cortex. The Scatchard plots were performed. RESULTS: The B max values were 0.623 +- 0.082 and 0.606 +- 0.087 pmol/mg protein in group NS and BP respectively (t = 0.48, P>0.05). The Kd values were 43.1 +- 4.2 and 30.5 +- 3.0 nmol/L in group NS and BP respectively (t = 7.8, P<0.05). The specific binding of NMDA receptor was decreased by pretreatment of MK-801. CONCLUSIONS: The total number of NMDA receptor had not changed, whereas its affinity increased significantly in the model of brain edema induced by pertussis bacilli in rat. The increase of affinity of NMDA receptor can be blockaded by MK-801 pretreatment in vivo

  4. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    Science.gov (United States)

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2018-01-01

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  5. Decreased α1-adrenergic receptor-mediated inositide hydrolysis in neurons from hypertensive rat brain

    International Nuclear Information System (INIS)

    Feldstein, J.B.; Gonzales, R.A.; Baker, S.P.; Sumners, C.; Crews, F.T.; Raizada, M.K.

    1986-01-01

    The expression of α 1 -adrenergic receptors and norepinephrine (NE)-stimulated hydrolysis of inositol phospholipid has been studied in neuronal cultures from the brains of normotensive (Wistar-Kyoto, WKY) and spontaneously hypertensive (SH) rats. Binding of 125 I-1-[β-(4-hydroxyphenyl)-ethyl-aminomethyl] tetralone (HEAT) to neuronal membranes was 68-85% specific and was rapid. Competition-inhibition experiments with various agonists and antagonists suggested that 125 I-HEAT bound selectively to α 1 -adrenergic receptors. Specific binding of 125 I-HEAT to neuronal membranes from SH rat brain cultures was 30-45% higher compared with binding in WKY normotensive controls. This increase was attributed to an increase in the number of α 1 -adrenergic receptors on SH rat brain neurons. Incubation of neuronal cultures of rat brain from both strains with NE resulted in a concentration-dependent stimulation of release of inositol phosphates, although neurons from SH rat brains were 40% less responsive compared with WKY controls. The decrease in responsiveness of SH rat brain neurons to NE, even though the α 1 -adrenergic receptors are increased, does not appear to be due to a general defect in membrane receptors and postreceptor signal transduction mechanisms. This is because neither the number of muscarinic-cholinergic receptors nor the carbachol-stimulated release of inositol phosphates is different in neuronal cultures from the brains of SH rats compared with neuronal cultures from the brains of WKY rats. These observations suggest that the increased expression of α 1 -adrenergic receptors does not parallel the receptor-mediated inositol phosphate hydrolysis in neuronal cultures from SH rat brain

  6. Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751(SL mice.

    Directory of Open Access Journals (Sweden)

    Melinda E Lull

    Full Text Available NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer's Disease (AD. Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM, to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and London mutations (hAPP(751(SL.Four month old hAPP(751(SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg apocynin by gavage for four months.Only hAPP(751(SL mice treated with apocynin showed reduced plaque size and a reduction in the number of cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments tested (saline, DM, and apocynin demonstrated low levels of TNFα, protein nitration, lipid peroxidation, and NADPH oxidase activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751(SL mice at 8 months of age that was not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate Aβ-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect learning and memory tasks or synaptic density in hAPP(751(SL mice. To discern how apocynin was affecting plaque levels (plaque load and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on beta-amyloid (Aβ phagocytosis, microglial proliferation, or microglial survival.Together, this study suggests that while hAPP(751(SL mice show increases in microglial number and plaque load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque size and microglial number, suggesting that apocynin may have additional

  7. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Rearing rats in isolation after weaning is an environmental manipulation that leads to behavioural and neurochemical alterations that resemble what is seen in schizophrenia. The model is neurodevelopmental in origin and has been used as an animal model of schizophrenia. However, only a few studies...... Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  8. Studies on estradiol-2/4-hydroxylase activity in rat brain and liver

    International Nuclear Information System (INIS)

    Theron, C.N.

    1985-03-01

    A sensitive and specific radio-enzymatic assay was used to study estradiol-2/4-hydroxylase activity in rat liver microsomes and in microsomes obtained from 6 discrete brain areas of the rat. Kinetic parameters were determined for these enzyme activities. The effects of different P-450 inhibitors on estradiol-2/4-hydroxylase activity in brain and liver microsomes were also studied. In both organs these enzyme activities were found to be located mainly in the microsomal fraction and were inhibited by the 3 P-450 inhibitors tested. The hepatic estradiol-2/4-hydroxylase activity in adult male rats was significantly higher than that of females, but the enzyme activity in the brain did not exhibit a similar sex difference. Furthermore, estradiol-2/4-hydroxylase activity in rat liver was strongly induced by phenobarbitone treatment, but not in the brain. The phenobarbitone-induced activity in male and female rats exhibited significant kinetic differences. In female rats sexual maturation was associated with significant changes in the apparent Km of estradiol-2/4-hydroxylases in the liver and hypothalamus. Evidence was found that the in vitro estradiol-2/4-hydroxylase activity in rat brain and liver is due to more than one form of microsomal P-450. Kinetic studies showed important differences between the estradiol-2/4-hydroxylase activities in the hippocampus and hypothalamus. Significant differences in estradiol-2/4-hydroxylase activities were observed in the 6 brain areas studied, with the hippocampus showing the highest, and the hypothalamus the lowest activity at all developmental stages in both male and female rats

  9. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... have evaluated the neuroanatomical changes in this animal model in comparison to changes seen in schizophrenia. In this study, we applied stereological volume estimates to evaluate the total brain, the ventricular system, and the pyramidal and granular cell layers of the hippocampus in male and female...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  10. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  11. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  12. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  13. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using 14 C autoradiography to measure the uptake of 14 C 2-deoxy-D-glucose ( 14 C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14 C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14 C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10 9 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  14. Brain biochemistry of infant mice and rats exposed to lead

    Energy Technology Data Exchange (ETDEWEB)

    Berber, G.B.; Maes, J.; Gilliavod, N.; Casale, G.

    1978-05-01

    Brains of rats and mice exposed to lead from birth receive biochemical examinations. Mice are given drinking water with lead and are studied until they are 17 days old. Rats ae given lead in the diet and followed for more than a year. In mice a retardation in body growth and development in brain DNA is found. In rats, cathepsin is enhanced at almost all times. An important role of proteolytic processes and biogenic animes is suggested in lead encephalopathy. (33 references, 7 tables)

  15. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    , the ghrelin receptor, neuropeptide Y, adiponectin and proopiomelanocortin. We investigated whether the expression of these factors was affected in rats chronically treated with the antipsychotic risperidone. METHODS: Male Sprague-Dawley rats were treated with risperidone (1.0 mg/kg/day) or vehicle (20...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  16. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  17. Regulatory effects of fisetin on microglial activation.

    Science.gov (United States)

    Chuang, Jing-Yuan; Chang, Pei-Chun; Shen, Yi-Chun; Lin, Chingju; Tsai, Cheng-Fang; Chen, Jia-Hong; Yeh, Wei-Lan; Wu, Ling-Hsuan; Lin, Hsiao-Yun; Liu, Yu-Shu; Lu, Dah-Yuu

    2014-06-26

    Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin)-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase)-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  18. Regulatory Effects of Fisetin on Microglial Activation

    Directory of Open Access Journals (Sweden)

    Jing-Yuan Chuang

    2014-06-01

    Full Text Available Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO production, and inducible nitric oxide synthase (iNOS expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  19. Anti-inflammatory Effects of Curcumin in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Yangyang Yu

    2018-04-01

    Full Text Available Lipoteichoic acid (LTA induces neuroinflammatory molecules, contributing to the pathogenesis of neurodegenerative diseases. Therefore, suppression of neuroinflammatory molecules could be developed as a therapeutic method. Although previous data supports an immune-modulating effect of curcumin, the underlying signaling pathways are largely unidentified. Here, we investigated curcumin’s anti-neuroinflammatory properties in LTA-stimulated BV-2 microglial cells. Inflammatory cytokine tumor necrosis factor-α [TNF-α, prostaglandin E2 (PGE2, and Nitric Oxide (NO] secretion in LTA-induced microglial cells were inhibited by curcumin. Curcumin also inhibited LTA-induced inducible NO synthases (iNOS and cyclooxygenase-2 (COX-2 expression. Subsequently, our mechanistic studies revealed that curcumin inhibited LTA-induced phosphorylation of mitogen-activated protein kinase (MAPK including ERK, p38, Akt and translocation of NF-κB. Furthermore, curcumin induced hemeoxygenase (HO-1HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf-2 expression in microglial cells. Inhibition of HO-1 reversed the inhibition effect of HO-1 on inflammatory mediators release in LTA-stimulated microglial cells. Taken together, our results suggest that curcumin could be a potential therapeutic agent for the treatment of neurodegenerative disorders via suppressing neuroinflammatory responses.

  20. Intracarotid injection of 195mPt-CDDP on rat brain tumors

    International Nuclear Information System (INIS)

    Ikawa, Eishi; Kamitani, Hideki; Hori, Tomokatsu; Akaboshi, Mitsuhiko.

    1995-01-01

    We began to try intracarotid injection of 195m Pt-CDDP on transplanted rats of C6 glioma. As a control, normal rats were also treated with intracarotid injection of 195m Pt-CDDP. After injection, the tumor, the normal brain of injected site, the brain of contralateral site, and the blood were sampled for the measurement of the Pt uptake. On normal rats, the ratio of the Pt uptake of the brain to that of the blood was highest in 20 minutes after injection. The ratio of the Pt uptake of the brain of injected site to that of the blood was almost same as that of the brain of contralateral site, so it seemed that the Pt uptake was not so enhanced with intracarotid injection on the normal brain. On the other hand, the ratio of the Pt uptake of the transplanted brain tumor to that of the blood was greatly higher than that of the normal brain. So it seemed that the intracarotid injection of CDDP may have some activities against brain tumors. This study was now started, so we continue this study further more. (author)

  1. Effects of enriched uranium on developing brain damage of neonatal rats

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2001-01-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium 235 U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 β (IL- β), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells

  2. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  3. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    Science.gov (United States)

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  5. Radiation therapy of 9L rat brain tumors

    International Nuclear Information System (INIS)

    Henderson, S.D.; Kimler, B.F.; Morantz, R.A.

    1981-01-01

    The effects of radiation therapy on normal rats and on rats burdened with 9L brain tumors have been studied. The heads of normal rats were x-irradiated with single exposures ranging from 1000 R to 2700 R. Following acute exposures greater than 2100 R, all animals died in 8 to 12 days. Approximately 30% of the animals survived beyond 12 days over the range of 1850 to 1950 R; following exposures less than 1850 R, all animals survived the acute radiation effects, and median survival times increased with decreasing exposure. Three fractionated radiation schedules were also studied: 2100 R or 3000 R in 10 equal fractions, and 3000 R in 6 equal fractions, each schedule being administered over a 2 week period. The first schedule produced a MST of greater than 1 1/2 years; the other schedules produced MSTs that were lower. It was determined that by applying a factor of 1.9, similar survival responses of normal rats were obtained with single as with fractionated radiation exposures. Animals burdened with 9L gliosarcoma brain tumors normally died of the disease process within 18 to 28 days ater tumor inoculation. Both single and fractionated radiation therapy resulted in a prolongation of survival of tumor-burdened rats. This prolongation was found to be linearly dependent upon the dose; but only minimally dependent upon the time after inoculation at which therapy was initiated, or upon the fractionation schedule that was used. As with normal animals, similar responses were obtained with single as with fractionated exposures when a factor (1.9) was applied. All tumor-bearing animals died prior to the time that death was observed in normal, irradiated rats. Thus, the 9L gliosarcoma rat brain tumor model can be used for the pre-clinical experimental investigation of new therapeutic schedules involving radiation therapy and adjuvant therapies

  6. Regional brain glucose use in unstressed rats after two days of starvation

    International Nuclear Information System (INIS)

    Mans, A.M.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Regional brain glucose use was measured in conscious, unrestrained, fed rats and after 2 days of starvation, using quantitative autoradiography and [6- 14 C]glucose. Plasma glucose, lactate, and ketone body concentrations and brain glucose and lactate content were measured in separate groups of rats. Glucose concentrations were lower in starved rats in both plasma and brain; plasma ketone body concentrations were elevated. Glucose use was found to be lower throughout the brain by about 12%. While some areas seemed to be affected more than others, statistical analysis showed that none were exceptionally different. The results could not be explained by increased loss of 14 C as lactate or pyruvate during the experimental period, because the arteriovenous differences of these species were insignificant. The calculated contribution by ketone bodies to the total energy consumption was between 3 and 9% for the brain as a whole in the starved rats and could, therefore, partially account for the depression seen in glucose use. It was concluded that glucose oxidation is slightly depressed throughout the brain after 2 days of starvation

  7. Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica L. Bolton

    2017-05-01

    Full Text Available Microglia are the resident immune cells of the brain, important for normal neural development in addition to host defense in response to inflammatory stimuli. Air pollution is one of the most pervasive and harmful environmental toxicants in the modern world, and several large scale epidemiological studies have recently linked prenatal air pollution exposure with an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD. Diesel exhaust particles (DEP are a primary toxic component of air pollution, and markedly activate microglia in vitro and in vivo in adult rodents. We have demonstrated that prenatal exposure to DEP in mice, i.e., to the pregnant dams throughout gestation, results in a persistent vulnerability to behavioral deficits in adult offspring, especially in males, which is intriguing given the greater incidence of ASD in males to females (∼4:1. Moreover, there is a striking upregulation of toll-like receptor (TLR 4 gene expression within the brains of the same mice, and this expression is primarily in microglia. Here we explored the impact of gestational exposure to DEP or vehicle on microglial morphology in the developing brains of male and female mice. DEP exposure increased inflammatory cytokine protein and altered the morphology of microglia, consistent with activation or a delay in maturation, only within the embryonic brains of male mice; and these effects were dependent on TLR4. DEP exposure also increased cortical volume at embryonic day (E18, which switched to decreased volume by post-natal day (P30 in males, suggesting an impact on the developing neural stem cell niche. Consistent with this hypothesis, we found increased microglial-neuronal interactions in male offspring that received DEP compared to all other groups. Taken together, these data suggest a mechanism by which prenatal exposure to environmental toxins may affect microglial development and long-term function, and thereby contribute

  8. Induction by mercury compounds of brain metallothionein in rats: Hg{sup 0} exposure induces long-lived brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira; Nakano, Atsuhiro [Biochemistry Section, National Institute for Minamata Disease, Kumamoto (Japan); Hirayama, Kimiko [Kumamoto University, College of Medical Science (Japan)

    1998-03-01

    Metallothionein (MT) is one of the stress proteins which can easily be induced by various kind of heavy metals. However, MT in the brain is difficult to induce because of blood-brain barrier impermeability to most heavy metals. In this paper, we have attempted to induce brain MT in rats by exposure to methylmercury (MeHg) or metallic mercury vapor, both of which are known to penetrate the blood-brain barrier and cause neurological damage. Rats treated with MeHg (40 {mu}mol/kg per day x 5 days, p.o.) showed brain Hg levels as high as 18 {mu}g/g with slight neurological signs 10 days after final administration, but brain MT levels remained unchanged. However, rats exposed to Hg vapor for 7 days showed 7-8 {mu}g Hg/g brain tissue 24 h after cessation of exposure. At that time brain MT levels were about twice the control levels. Although brain Hg levels fell gradually with a half-life of 26 days, MT levels induced by Hg exposure remained unchanged for >2 weeks. Gel fractionation revealed that most Hg was in the brain cytosol fraction and thus bound to MT. Hybridization analysis showed that, despite a significant increase in MT-I and -II mRNA in brain, MT-III mRNA was less affected. Although significant Hg accumulation and MT induction were observed also in kidney and liver of Hg vapor-exposed rats, these decreased more quickly than in brain. The long-lived MT in brain might at least partly be accounted for by longer half-life of Hg accumulated there. The present results showed that exposure to Hg vapor might be a suitable procedure to provide an in vivo model with enhanced brain MT. (orig.) With 4 figs., 1 tab., 27 refs.

  9. The observation of blood-brain barrier of organic mercury poisoned rat

    International Nuclear Information System (INIS)

    Kuwabara, Takeo; Yuasa, Tatsuhiko; Hidaka, Kazuyuki; Igarashi, Hironaka; Kaneko, Kiyotoshi; Miyatake, Tadashi

    1989-01-01

    Permeability of the blood-brain barrier (BBB) of methymercury chrolide (MMC) intoxicated rat brain was studied in vivo by gadlinium diethylenetriamine pentaacetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI), measuring the longitudinal relaxation time (T 1 ) and the transverse relaxation time (T 2 ). MMC intoxicated rat brain showed the prolonged T 1 in the cerebral white matter and prolonged T 2 in the cerebellar cortex. After Gd-DTPA administration, T 1 of cerebral and cerebellar white matter shortened from 1.647 to 1.344 sec., and 1.290 to 1.223 sec. respectively. On the contrary, T 2 showed no change after Gd-DTPA injection. It was concluded that, although the shortening of T 1 after Gd-DTPA enhancement was rather little when compared with experimental brain ischemia, the shortening of the relaxation time of the MMC intoxicated rat brain was caused by the increased permeability of BBB. (author)

  10. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    Science.gov (United States)

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  11. Brain and Serum Androsterone is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Richard J Servatius

    2016-08-01

    Full Text Available Exposure to lateral fluid percussion (LFP injury consistent with mild traumatic brain injury (mTBI persistently attenuates acoustic startle responses (ASRs in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM. ASRs were measured post injury days (PIDs 1, 3, 7, 14, 21 and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34, PID 35 (S35, on both days (2S, or the experimental context (CON. Levels of the neurosteroids pregnenolone (PREG, allopregnanolone (ALLO, and androsterone (ANDRO were determined for the prefrontal cortex, hippocampus and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30 and 60 min post-stressor for determination of corticosterone (CORT levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  12. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation

    International Nuclear Information System (INIS)

    Akiyama, Katsuhiko; Tanaka, Ryuichi; Sato, Mitsuya; Takeda, Norio

    2001-01-01

    Cognitive dysfunction and histological changes in the brain were investigated following irradiation in 20 Fischer 344 rats aged 6 months treated with whole brain irradiation (WBR) (25 Gy/single dose), and compared with the same number of sham-irradiated rats as controls. Performance of the Morris water maze task and the passive avoidance task were examined one year after WBR. Finally, histological and immunohistochemical examinations using antibodies to myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and neurofilament (NF) were performed of the rat brains. The irradiated rats continued to gain weight 7 months after WBR whereas the control rats stopped gaining weight. Cognitive functions in both the water maze task and the passive avoidance task were lower in the irradiated rats than in the control rats. Brain damage consisting of demyelination only or with necrosis was found mainly in the body of the corpus callosum and the parietal white matter near the corpus callosum in the irradiated rats. Immunohistochemical examination of the brains without necrosis found MBP-positive fibers were markedly decreased in the affected areas by irradiation; NF-positive fibers were moderately decreased and irregularly dispersed in various shapes in the affected areas; and GFAP-positive fibers were increased, with gliosis in those areas. These findings are similar to those in clinically accelerated brain aging in conditions such as Alzheimer's disease, Binswanger's disease, and multiple sclerosis. (author)

  13. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    Science.gov (United States)

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  14. Glucose metabolism of fetal rat brain in utero, measured with labeled deoxyglucose

    Energy Technology Data Exchange (ETDEWEB)

    Dyve, S [Department of General Physiology and Biophysics, Panum Institute, Copenhagen (Denmark); Gjedde, A [Positron Imaging Laboratories, McConnell Brain Imaging Center, Montreal, Quebec (Canada)

    1991-01-01

    Mammals have low cerebral metabolic rates immediately after birth and, by inference, also before birth. In this study, we extended the deoxyglucose method to the fetal rat brain in utero. Rate constants for deoxyglucose transfer across the maternal placental and fetal blood-brain barriers, and lumped constant, have not been reported. Therefore, we applied a new method of determining the lumped constant regionally to the fetal rat brain in utero. The lumped constant averaged 0.55 +- 0.15 relative to the maternal circulation. On this basis, we determined the glucose metabolic rate of the fetal rat brain to be one third of the corresponding maternal value, or 19 +- 2 {mu}mol hg{sup -1} min{sup -1}. (author).

  15. Global Proteomic Analysis of Brain Tissues in Transient Ischemia Brain Damage in Rats

    Directory of Open Access Journals (Sweden)

    Jiann-Hwa Chen

    2015-05-01

    Full Text Available Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM and the control rats were separated using two-dimensional gel electrophoresis (2-DE to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT and cathepsin D (CATD, which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2 protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia

  16. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia

    Science.gov (United States)

    Chan, Su Jing; Wong, WS Fred; Wong, Peter TH; Bian, Jin-Song

    2010-01-01

    BACKGROUND AND PURPOSE Andrographolide is a diterpenoid lactone isolated from a traditional medicinal herb, Andrographis paniculata. It possesses potent anti-inflammatory activity. The present study examined potential therapeutic effects of andrographolide on cerebral ischaemia using a rat model with permanent middle cerebral artery occlusion (pMCAO). EXPERIMENTAL APPROACH The MCA in rats was permanently occluded (by cautery), and 24 h later neurological effects were assessed with behavioural scores. Infarct volume and microglial activation were determined histologically. The p65 form of the transcription factor, nuclear factor-κB (NF-κB), was measured by Western blot, and cytokines by immunoassay of brain extracts. KEY RESULTS Andrographolide, given i.p. 1 h after pMCAO, reduced infarct volume with a maximum reduction of approximately 50% obtained at 0.1 mg·kg−1. Neurological deficits were also reduced by andrographolide, reflecting a correlation between infarct volume and neurological deficits. pMCAO was found to induce activation of microglia and elevate tumour necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin (PG)E2 in the ischaemic brain areas. Andrographolide (0.1 mg·kg−1) significantly attenuated or abolished these effects. In addition, andrographolide suppressed the translocation of p65 from cytosol to nucleus, indicating reduced NF-κB activation. CONCLUSIONS AND IMPLICATIONS Andrographolide exhibited neuroprotective effects, with accompanying suppression of NF-κB and microglial activation, and reduction in the production of cytokines including TNF-α and IL-1β, and pro-inflammatory factors such as PGE2. Our findings suggest that andrographolide may have therapeutic value in the treatment of stroke. PMID:20880404

  17. Radio frequency radiation effects on protein kinase C activity in rats' brain

    International Nuclear Information System (INIS)

    Paulraj, R.; Behari, J.

    2004-01-01

    The present work describes the effect of amplitude modulated radio frequency (rf) radiation (112 MHz amplitude-modulated at 16 Hz) on calcium-dependent protein kinase C (PKC) activity on developing rat brain. Thirty-five days old Wistar rats were used for this study. The rats were exposed 2 h per day for 35 days at a power density of 1.0 mW/cm 2 (SAR=1.48 W/kg). After exposure, rats were sacrificed and PKC was determined in whole brain, hippocampus and whole brain minus hippocampus separately. A significant decrease in the enzyme level was observed in the exposed group as compared to the sham exposed group. These results indicate that this type of radiation could affect membrane bound enzymes associated with cell signaling, proliferation and differentiation. This may also suggest an affect on the behavior of chronically exposed rats

  18. Marrow stromal cells administrated intracisternally to rats after traumatic brain injury migrate into the brain and improve neurological function

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹

    2004-01-01

    @@ Marrow stromal cells(MSCs) have been reported to transplant into injured brain via intravenous or intraarterial or direct intracerebral administration.1-3 In the present study, we observed that MSCs migrated into the brain, survived and diffeneriated into neural cells after they were injected into the cisterna magna of rats, and that the behavior of the rats after traumatic brain injury (TBI) was improved.

  19. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  20. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  1. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test.

  2. Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection.

    Science.gov (United States)

    Martini, Alessandra Cadete; Berta, Temugin; Forner, Stefânia; Chen, Gang; Bento, Allisson Freire; Ji, Ru-Rong; Rae, Giles Alexander

    2016-04-08

    Spinal cord injury (SCI) is a severe neurological disorder with many disabling consequences, including persistent neuropathic pain, which develops in about 40 % of SCI patients and is induced and sustained by excessive and uncontrolled spinal neuroinflammation. Here, we have evaluated the effects of lipoxin A4 (LXA4), a member of a unique class of endogenous lipid mediators with both anti-inflammatory and analgesic properties, on spinal neuroinflammation and chronic pain in an experimental model of SCI. Spinal hemisection at T10 was carried out in adult male CD1 mice and Wistar rats. To test if LXA4 can reduce neuroinflammation and neuropathic pain, each animal received two intrathecal injections of LXA4 (300 pmol) or vehicle at 4 and 24 h after SCI. Sensitivity to mechanical stimulation of the hind paws was evaluated using von Frey monofilaments, and neuroinflammation was tested by measuring the mRNA and/or protein expression levels of glial markers and cytokines in the spinal cord samples after SCI. Also, microglia cultures prepared from murine cortical tissue were used to assess the direct effects of LXA4 on microglial activation and release of pro-inflammatory TNF-α. LXA4 treatment caused significant reductions in the intensity of mechanical pain hypersensitivity and spinal expression levels of microglial markers and pro-inflammatory cytokines induced by SCI, when compared to rodents receiving control vehicle injections. Notably, the increased expressions of the microglial marker IBA-1 and of the pro-inflammatory cytokine TNF-α were the most affected by the LXA4 treatment. Furthermore, cortical microglial cultures expressed ALX/FPR2 receptors for LXA4 and displayed potentially anti-inflammatory responses upon challenge with LXA4. Collectively, our results suggest that LXA4 can effectively modulate microglial activation and TNF-α release through ALX/FPR2 receptors, ultimately reducing neuropathic pain in rodents after spinal cord hemisection. The dual anti

  3. CNS-syndrome. Characterization of rat brain intermediate filaments

    International Nuclear Information System (INIS)

    Nedzvetskij, V.S.; Busygina, S.G.; Berezin, V.A.; Dvoretskij, A.I.

    1990-01-01

    A study was made of the effect of ionizing radiation on the content and polypeptide composition of filamentous and soluble glial fibrillary acidic protein (GFAP) in different regions of rat brain. Ionizing radiation was shown to decrease considerably the level of soluble GFAP in cerebral cortex, cerebellum, middle brain and hippocampus. Polypeptide composition of soluble GFAP detected by the immonublot-method was found to be changed considerably in different brain areas of irradiated animals

  4. Changes of interleukin-1β, tumor necrosis factor α and interleukin-6 in brain and plasma after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    朱涛; 姚智; 袁汉娜; 陆伯刚; 杨树源

    2004-01-01

    Objective: To study the changes of interleukin-1 β (IL-1β), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) levels in brain and plasma after brain injury and to assess the relationship between the cytokine levels and injury severity in rats. Methods: A total of 51 male Wistar rats, weighing 280-340 g, were anesthetized with chloral hydrate (400 mg/kg body weight) through intraperitoneal injection and fixed on a stereotaxic instrument. Severe brain injury was created in 16 rats (severe injury group) and moderate brain injury in 18 rats (moderate injury group) by a fluid percussion model, and cytokine levels of IL-1β, TNFα and IL-6 were measured with biological assay. And sham operation was made on the other 17 rats (control group). Results: In the control group, the levels of IL-1β, TNFα and IL-6 were hardly detected in the cortex of the rats, but in the ipsilateral cortex of the rats in both injury groups, they increased obviously at 8 hours after injury. The increasing degree of these cytokines had no significant difference between the two injury groups. The levels of IL-6 in the plasma of all the rats increased slightly, whereas the levels of IL-1β and TNFα were undetectable. Conclusions: The increase of IL-1β, TNFα and IL-6 levels is closely related to brain injury. The increased cytokine levels in the central nervous system are not parallel to those in the peripheral blood. It suggests that inflammatory cytokines play important roles in the secondary neural damage after brain injury.

  5. In vivo imaging of brain androgen receptors in rats: a [18F]FDHT PET study

    International Nuclear Information System (INIS)

    Khayum, M.A.; Doorduin, J.; Antunes, I.F.; Kwizera, C.; Zijlma, R.; Boer, J.A. den; Dierckx, R.A.J.O.; Vries, E.F.J. de

    2015-01-01

    Introduction: Steroid hormones like androgens play an important role in the development and maintenance of several brain functions. Androgens can act through androgen receptors (AR) in the brain. This study aims to demonstrate the feasibility of positron emission tomography (PET) with 16β-[ 18 F]fluoro-5α-dihydrotestosterone ([ 18 F]FDHT) to image AR expression in the brain. Methods: Male Wistar rats were either orchiectomized to inhibit endogenous androgen production or underwent sham-surgery. Fifteen days after surgery, rats were subjected to a 90-min dynamic [ 18 F]FDHT PET scan with arterial blood sampling. In a subset of orchiectomized rats, 1 mg/kg dihydrotestosterone was co-injected with the tracer in order to saturate the AR. Plasma samples were analyzed for the presence of radioactive metabolites by radio-TLC. Pharmacokinetic modeling was performed to quantify brain kinetics of the tracer. After the PET scan, the animals were terminated for ex-vivo biodistribution. Results: PET imaging and ex vivo biodistribution studies showed low [ 18 F]FDHT uptake in all brain regions, except pituitary. [ 18 F]FDHT uptake in the surrounding cranial bones was high and increased over time. [ 18 F]FDHT was rapidly metabolized in rats. Metabolism was significantly faster in orchiectomized rats than in sham-orchiectomized rats. Quantitative analysis of PET data indicated substantial spill-over of activity from cranial bones into peripheral brain regions, which prevented further analysis of peripheral brain regions. Logan graphical analysis and kinetic modeling using 1- and 2-tissue compartment models showed reversible and homogenously distributed tracer uptake in central brain regions. [ 18 F]FDHT uptake in the brain could not be blocked by endogenous androgens or administration of dihydrotestosterone. Conclusion: The results of this study indicate that imaging of AR availability in rat brain with [ 18 F]FDHT PET is not feasible. The low AR expression in the brain, the

  6. stimulated BV2 Microglial

    African Journals Online (AJOL)

    2012-03-26

    Mar 26, 2012 ... 2), in LPS-stimulated BV2 microglial cells. The level of NO production was analyzed using Griess reaction. The release of PGE2 was determined using sandwich enzyme-linked immunosorbent assay. The DNA-binding activity of nuclear factor-κB (NF-κB) was measured by electrophoretic mobility shift assay ...

  7. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  8. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat.

    Science.gov (United States)

    Samini, Fariborz; Samarghandian, Saeed; Borji, Abasalt; Mohammadi, Gholamreza; bakaian, Mahdi

    2013-09-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow coloring principle in turmeric, is a polyphenolic and a major active constituent. Besides anti-inflammatory, thrombolytic and anti-carcinogenic activities, curcumin also possesses strong antioxidant property. The neuroprotective effects of curcumin were evaluated in a weight drop model of cortical contusion trauma in rat. Male Wistar rats (350-400 g, n=9) were anesthetized with sodium pentobarbital (60 mg/kg i.p.) and subjected to head injury. Five days before injury, animals randomly received an i.p. bolus of either curcumin (50 and 100 mg/kg/day, n=9) or vehicle (n=9). Two weeks after the injury and drug treatment, animals were sacrificed and a series of brain sections, stained with hematoxylin and eosin (H&E) were evaluated for quantitative brain lesion volume. Two weeks after the injury, oxidative stress parameter (malondialdehyde) was also measured in the brain. Curcumin (100 mg/kg) significantly reduced the size of brain injury-induced lesions (Pcurcumin (100 mg/kg). Curcumin treatment significantly improved the neurological status evaluated during 2 weeks after brain injury. The study demonstrates the protective efficacy of curcumin in rat traumatic brain injury model. © 2013 Elsevier Inc. All rights reserved.

  9. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    Science.gov (United States)

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.

  10. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells.

    Science.gov (United States)

    Klimaszewska-Łata, Joanna; Gul-Hinc, Sylwia; Bielarczyk, Hanna; Ronowska, Anna; Zyśk, Marlena; Grużewska, Katarzyna; Pawełczyk, Tadeusz; Szutowicz, Andrzej

    2015-04-01

    There are significant differences between acetyl-CoA and ATP levels, enzymes of acetyl-CoA metabolism, and toll-like receptor 4 contents in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration-dependent several-fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α-ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl-CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl-CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy-acetyl-CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl-CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll-like receptors and degree of disequilibrium between acetyl-CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells. There are significant differences between acetyl-CoA and ATP levels and enzymes of acetyl-CoA metabolism in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Pathological stimulation of microglial toll-like receptors (TLRs) triggered excessive synthesis of microglia-derived nitric oxide (NO)/NOO radicals that

  11. Curcumin is a potent modulator of microglial gene expression and migration

    Directory of Open Access Journals (Sweden)

    Aslanidis Alexander

    2011-09-01

    Full Text Available Abstract Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and

  12. Curcumin is a potent modulator of microglial gene expression and migration

    Science.gov (United States)

    2011-01-01

    Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB) signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and Signal transducer and activator

  13. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease.

    Science.gov (United States)

    Biscaro, Barbara; Lindvall, Olle; Tesco, Giuseppina; Ekdahl, Christine T; Nitsch, Roger M

    2012-01-01

    Activated microglia with macrophage-like functions invade and surround β-amyloid (Aβ) plaques in Alzheimer's disease (AD), possibly contributing to the turnover of Aβ, but they can also secrete proinflammatory factors that may be involved in the pathogenesis of AD. Microglia are known to modulate adult hippocampal neurogenesis. To determine the role of microglia on neurogenesis in brains with Aβ pathology, we inhibited microglial activation with the tetracycline derivative minocycline in doubly transgenic mice expressing mutant human amyloid precursor protein (APP) and mutant human presenilin-1 (PS1). Minocycline increased the survival of new dentate granule cells in APP/PS1 mice indicated by more BrdU+/NeuN+ cells as compared to vehicle-treated transgenic littermates, accompanied by improved behavioral performance in a hippocampus-dependent learning task. Both brain levels of Aβ and Aβ-related morphological deficits in the new neurons labeled with GFP-expressing retrovirus were unaffected in minocycline-treated mice. These results suggest a role for microglia in Aβ-related functional deficits and in suppressing the survival of new neurons, and show that modulation of microglial function with minocycline can protect hippocampal neurogenesis in the presence of Aβ pathology. Copyright © 2012 S. Karger AG, Basel.

  14. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  15. Dietary Virgin Olive Oil Reduces Blood Brain Barrier Permeability, Brain Edema, and Brain Injury in Rats Subjected to Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Fatemeh Mohagheghi

    2010-01-01

    Full Text Available Recent studies suggest that dietary virgin olive oil (VOO reduces hypoxia-reoxygenation injury in rat brain slices. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each consisting of 18 Wistar rats, were studied. One group (control received saline, while three treatment groups received oral VOO (0.25, 0.5, and 0.75 mL/kg/day, respectively. After 30 days, blood lipid profiles were determined, before a 60-min period of middle cerebral artery occlusion (MCAO. After 24-h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. VOO reduced the LDL/HDL ratio in doses of 0.25, 0.5, and 0.75 mL/kg/day in comparison to the control group (p < 0.05, and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 0.25 vs. 0.5 vs. 0.75 mL/kg/day, attenuated corrected infarct volumes were 207.82 ± 34.29 vs. 206.41 ± 26.23 vs. 124.21 ± 14.73 vs. 108.46 ± 31.63 mm3; brain water content of the infarcted hemisphere was 82 ±± 0.25 vs. 81.5 ± 0.56 vs. 80.5 ± 0.22 vs. 80.5 ± 0.34%; and blood brain barrier permeability of the infarcted hemisphere was 11.31 ± 2.67 vs. 9.21 ± 2.28 vs. 5.83 ± 1.6 vs. 4.43 ± 0.93 µg/g tissue (p < 0.05 for measures in doses 0.5 and 0.75 mL/kg/day vs. controls. Oral administration of VOO reduces infarct volume, brain edema, blood brain barrier permeability, and improves neurologic deficit scores after transient MCAO in rats.

  16. Rat Brain Biogenic Amine Levels during Acute and Sub- acute ...

    African Journals Online (AJOL)

    User

    2011-05-20

    May 20, 2011 ... substances in rat brain regions are altered during acute and sub-acute .... Different areas of the brain such as cerebral cortex (CC), cerebellum (CB), .... dopamine metabolism and differential motor behavioral tolerance.

  17. Quantitative autoradiography of [3H]corticosterone receptors in rat brain

    International Nuclear Information System (INIS)

    Sapolsky, R.M.; McEwen, B.S.; Rainbow, T.C.

    1983-01-01

    The authors have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 μCi [ 3 H]corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradigraphic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue. (Auth.)

  18. Neuroprotective effect of Buddleja officinalis extract on transient middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Lee, Dae-Hee; Ha, Nina; Bu, Yung-Min; Choi, Hyoung Il; Park, Yoo Guen; Kim, Yoon Bum; Kim, Mi-Yeon; Kim, Hocheol

    2006-08-01

    The flower buds of Buddleja officinalis MAXIM (Loganiaceae) are used to treat headache and inflammatory diseases in traditional Korean medicine. In the present study, the neuroprotective effects of the methanolic extract of B. officinalis (BOME) and of its hexane fraction (BOHF) were investigated in a middle cerebral artery occlusion (MCAo, 120 min occlusion, 24 h reperfusion) Sprague-Dawley rat model. BOME or BOHF (100 mg/kg, p.o.) was twice administered 30 min before the onset of MCAo and 2 h after reperfusion. BOME and BOHF treated groups showed infarct volumes reduced by 33.9% and 68.2%, respectively, at 2 h occlusion. In BOHF treated animals, cyclooxygenase-2 and iNOS inductions were inhibited in ischemic hemispheres at both the mRNA and protein levels. Furthermore, in vitro studies showed that BOME and BOHF both inhibited LPS-induced nitric oxide production in BV-2 mouse microglial cells. These results suggest that the anti-inflammatory and the microglial activation inhibitory effects of B. officinalis extract may contribute to its neuroprotective effects in brain ischemia.

  19. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat.

    Science.gov (United States)

    Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A

    2018-01-01

    HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain

  20. Lifelong consumption of sodium selenite: gender differences on blood-brain barrier permeability in convulsive, hypoglycemic rats.

    Science.gov (United States)

    Seker, F Burcu; Akgul, Sibel; Oztas, Baria

    2008-07-01

    The aim of this study was to compare the effects of hypoglycemia and induced convulsions on the blood-brain barrier permeability in rats with or without lifelong administration of sodium selenite. There is a significant decrease of the blood-brain barrier permeability in three brain regions of convulsive, hypoglycemic male rats treated with sodium selenite when compared to sex-matched untreated rats (p0.05). The blood-brain barrier permeability of the left and right hemispheres of untreated, moderately hypoglycemic convulsive rats of both genders was better than their untreated counterparts (peffect against blood-brain barrier permeability during convulsions and that the effects of sodium selenite are gender-dependent.

  1. Effects of 3,3',5-triiodothyronine on microglial functions.

    Science.gov (United States)

    Mori, Yuki; Tomonaga, Daichi; Kalashnikova, Anastasia; Furuya, Fumihiko; Akimoto, Nozomi; Ifuku, Masataka; Okuno, Yuko; Beppu, Kaoru; Fujita, Kyota; Katafuchi, Toshihiko; Shimura, Hiroki; Churilov, Leonid P; Noda, Mami

    2015-05-01

    L-tri-iodothyronine (3, 3', 5-triiodothyronine; T3) is an active form of the thyroid hormone (TH) essential for the development and function of the CNS. Though nongenomic effect of TH, its plasma membrane-bound receptor, and its signaling has been identified, precise function in each cell type of the CNS remained to be investigated. Clearance of cell debris and apoptotic cells by microglia phagocytosis is a critical step for the restoration of damaged neuron-glia networks. Here we report nongenomic effects of T3 on microglial functions. Exposure to T3 increased migration, membrane ruffling and phagocytosis of primary cultured mouse microglia. Injection of T3 together with stab wound attracted more microglia to the lesion site in vivo. Blocking TH transporters and receptors (TRs) or TRα-knock-out (KO) suppressed T3-induced microglial migration and morphological change. The T3-induced microglial migration or membrane ruffling was attenuated by inhibiting Gi /o -protein as well as NO synthase, and subsequent signaling such as phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). Inhibitors for Na(+) /K(+) -ATPase, reverse mode of Na(+) /Ca(2+) exchanger (NCX), and small-conductance Ca(2+) -dependent K(+) (SK) channel also attenuated microglial migration or phagocytosis. Interestingly, T3-induced microglial migration, but not phagocytosis, was dependent on GABAA and GABAB receptors, though GABA itself did not affect migratory aptitude. Our results demonstrate that T3 modulates multiple functional responses of microglia via multiple complex mechanisms, which may contribute to physiological and/or pathophysiological functions of the CNS. © 2015 Wiley Periodicals, Inc.

  2. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  3. Pathological histone acetylation in Parkinson's disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition.

    Science.gov (United States)

    Harrison, Ian F; Smith, Andrew D; Dexter, David T

    2018-02-14

    Parkinson's disease (PD) is associated with degeneration of nigrostriatal neurons due to intracytoplasmic inclusions composed predominantly of a synaptic protein called α-synuclein. Accumulations of α-synuclein are thought to 'mask' acetylation sites on histone proteins, inhibiting the action of histone acetyltransferase (HAT) enzymes in their equilibrium with histone deacetylases (HDACs), thus deregulating the dynamic control of gene transcription. It is therefore hypothesised that the misbalance in the actions of HATs/HDACs in neurodegeneration can be rectified with the use of HDAC inhibitors, limiting the deregulation of transcription and aiding neuronal homeostasis and neuroprotection in disorders such as PD. Here we quantify histone acetylation in the Substantia Nigra pars compacta (SNpc) in the brains of control, early and late stage PD cases to determine if histone acetylation is a function of disease progression. PD development is associated with Braak-dependent increases in histone acetylation. Concurrently, we show that as expected disease progression is associated with reduced markers of dopaminergic neurons and increased markers of activated microglia. We go on to demonstrate that in vitro, degenerating dopaminergic neurons exhibit histone hypoacetylation whereas activated microglia exhibit histone hyperacetylation. This suggests that the disease-dependent increase in histone acetylation observed in human PD cases is likely a combination of the contributions of both degenerating dopaminergic neurons and infiltrating activated microglia. The HDAC SIRT 2 has become increasingly implicated as a novel target for mediation of neuroprotection in PD: the neuronal and microglial specific effects of its inhibition however remain unclear. We demonstrate that SIRT 2 expression in the SNpc of PD brains remains relatively unchanged from controls and that SIRT 2 inhibition, via AGK2 treatment of neuronal and microglial cultures, results in neuroprotection of

  4. Characteristic effects of heavy ion irradiation on the rat brain

    International Nuclear Information System (INIS)

    Sun, X.Z.; Takahashi, S.; Kubota, Y.; Yoshida, S.; Takeda, H.; Zhang, R.; Fukui, Y.

    2005-01-01

    Heavy ion irradiation has the feature to administer a large radiation dose in the vicinity of the endpoint in the beam range, and its irradiation system and biophysical characteristics are different from ordinary irradiation instruments like X- or gamma-rays. Using this special feature, heavy ion irradiation has been applied for cancer treatment. The safety and efficacy of heavy ion irradiator have been demonstrated to a great extent. For instance, brain tumors treated by heavy-ion beams became smaller or disappearance. However, fundamental research related to such clinical phenotypes and their underlying mechanisms are little known. In order to clarify characteristic effects of heavy ion irradiation on the brain, we developed an experimental system for irradiating a restricted region of the rat brain using heavy ion beams. The characteristics of the heavy ion beams, histological, behavioral and elemental changes were studied in the rat following heavy ion irradiation. Adult male Sprague-Dawley rats, aged 12 weeks and weighing 260-340 g (Shizuoka Laboratory Animal Center, Hamamatsu, Japan) were used. Rats were deeply anesthetized 10-15 minutes before irradiation with ketamine (40 mg/kg) and xylazine (10 mg/kg), immobilized in a specifically designed jig, and irradiated with 290 MeV/nucleon charged carbon beams in a dorsal-to ventral direction, The left cerebral hemispheres of the brain were irradiated at doses of 100 Gy charged carbon particles. The depth-dose distribution of the heavy ion beams was modified to make a spread-out bragg peak of 5 mm wide with a range modulator. The characteristics of the heavy-ion beams (field and depth of the heavy-ion beams) were examined by a measuring paraffin section of rat brain at different thickness. That extensive necrosis was observed between 2.5 mm and 7.5 mm depth from the surface of the rat head, suggesting a relatively high dose and uniform dose was delivered among designed depths and the spread-out bragg peak used here

  5. Development of I-123-labeled amines for brain studies: localization of I-123 iodophenylalkyl amines in rat brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Baldwin, R.M.; Lin, T.H.

    1980-01-01

    Localization in rat brain of forty iodophenylalkyl amines labeled with I-123 was evaluated in an attempt to develop I-123-labeled amines useful for brain studies. For the amines studied, the highest activity in brain and the brain-to-blood activity ratios ranked p > m > o as related to iodine position on the benzene ring: for alkyl groups the rank order was α-methylethyl > ethyl > methyl > none; for N additions it was single lipophilic group > H > two lipophilic groups. It is suggested that introduction of a halogen into the ring structure of many amines results in greater concentration of the agent in brain than is seen with the nonhalogenated parent compound. The agent N-isopropyl-p-iodoamphetamine was chosen for further study because, in the rat, it showed high brain activity (1.57%/g) and brain-blood ratio (12.6) at 5 min

  6. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  7. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  8. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    Science.gov (United States)

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  9. Reduction in brain immunoreactive corticotropin-releasing factor (CRF) in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hashimoto, K.; Hattori, T.; Murakami, K.; Suemaru, S.; Kawada, Y.; Kageyama, J.; Ota, Z.

    1985-01-01

    The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125 I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neurointermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR

  10. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    International Nuclear Information System (INIS)

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  11. Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Sharma, Pushpa; Su, Yan A; Barry, Erin S; Grunberg, Neil E; Lei, Zhang

    2012-09-01

    Mild traumatic brain injury (mTBI) represents a major health problem in civilian populations as well as among the military service members due to (1) lack of effective treatments, and (2) our incomplete understanding about the progression of secondary cell injury cascades resulting in neuronal cell death due to deficient cellular energy metabolism and damaged mitochondria. The aim of this study was to identify and delineate the mitochondrial targeted genes responsible for altered brain energy metabolism in the injured brain. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed up for 7 days. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed for 7 days. The severity of brain injury was evaluated by the neurological severity scale-revised (NSS-R) at 3 and 5 days post TBI and immunohistochemical analyses at 7 days post TBI. The expression profiles of mitochondrial-targeted genes across the hippocampus from TBI and naïe rats were also examined by oligo-DNA microarrays. NSS-R scores of TBI rats (5.4 ± 0.5) in comparison to naïe rats (3.9 ± 0.5) and H and E staining of brain sections suggested a mild brain injury. Bioinformatics and systems biology analyses showed 31 dysregulated genes, 10 affected canonical molecular pathways including a number of genes involved in mitochondrial enzymes for oxidative phosphorylation, mitogen-activated protein Kinase (MAP), peroxisome proliferator-activated protein (PPAP), apoptosis signaling, and genes responsible for long-term potentiation of Alzheimer's and Parkinson's diseases. Our results suggest that dysregulated mitochondrial-focused genes in injured brains may have a clinical utility for the development of future therapeutic strategies aimed at the treatment of TBI.

  12. Microglia are essential to masculinization of brain and behavior

    Science.gov (United States)

    Lenz, Kathryn M.; Nugent, Bridget M.; Haliyur, Rachana; McCarthy, Margaret M.

    2013-01-01

    Brain sexual differentiation in rodents results from the perinatal testicular androgen surge. In the preoptic area (POA), estradiol aromatized from testosterone upregulates the production of the proinflammatory molecule, prostaglandin E2 (PGE2) to produce sex-specific brain development. PGE2 produces a two-fold greater density of dendritic spines in males than in females and masculinizes adult copulatory behavior. One neonatal dose of PGE2 masculinizes the POA and behavior, and simultaneous treatment with an inhibitor of additional prostaglandin synthesis prevents this masculinization, indicating a positive feed-forward process that leads to sustained increases in PGE2. The mechanisms underlying this feed-forward process were unknown. Microglia, the primary immunocompetent cells in the brain, are active neonatally, contribute to normal brain development, and both produce and respond to prostaglandins. We investigated whether there are sex differences in microglia in the POA and whether they influence developmental masculinization. Neonatal males had twice as many ameboid microglia as females and a more activated morphological profile, and both estradiol and PGE2 masculinized microglial number and morphology in females. Microglial inhibition during the critical period for sexual differentiation prevented sex differences in microglia, estradiol-induced masculinization of dendritic spine density, and adult copulatory behavior. Microglial inhibition also prevented the estradiol-induced upregulation of PGE2, indicating that microglia are essential to the feed-forward process through which estradiol upregulates prostaglandin production. These studies demonstrate that immune cells in the brain interact with the nervous and endocrine systems during development, and are crucial for sexual differentiation of brain and behavior. PMID:23407936

  13. Aging and sex influence the permeability of the blood-brain barrier in the rat

    International Nuclear Information System (INIS)

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer [ 14 C]-α-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels

  14. Leptin Mediate High Fat Diet Sensitization of Angiotensin II-elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation

    Science.gov (United States)

    Xue, Baojian; Yu, Yang; Zhang, Zhongming; Guo, Fang; Beltz, Terry G.; Thunhorst, Robert L.; Felder, Robert B.; Johnson, Alan Kim

    2016-01-01

    Obesity is characterized by increased circulating levels of the adipocyte-derived hormone leptin, which can increase sympathetic nerve activity and raise blood pressure. A previous study revealed that rats fed a high fat diet (HFD) have an enhanced hypertensive response to subsequent angiotensin (Ang) II administration that is mediated at least in part by increased activity of brain renin-angiotensin system (RAS) and proinflammatory cytokines (PICs). The present study tested whether leptin mediates this HFD-induced sensitization of Ang II-elicited hypertension by interacting with brain RAS and PICs mechanisms. Rats fed a HFD for 3 weeks had significant increases in white adipose tissue mass, plasma leptin levels and mRNA expression of leptin and its receptors in the lamina terminalis (LT) and hypothalamic paraventricular nucleus (PVN). Central infusion of a leptin receptor antagonist during HFD feeding abolished HFD sensitization of Ang II-elicited hypertension. Furthermore, central infusion of leptin mimicked the sensitizing action of HFD. Concomitant central infusions of the AT1-R antagonist irbesartan, the TNF-α synthesis inhibitor pentoxifylline, or the inhibitor of microglial activation minocycline prevented the sensitization produced by central infusion of leptin. RT-PCR analysis indicated that either HFD or leptin administration upregulated mRNA expression of several components of the RAS and PICs in the LT and PVN. The leptin antagonist and the inhibitors of AT1-R, TNF-α synthesis and microglial activation all reversed the expression of these genes. The results suggest that HFD-induced sensitization of Ang II-elicited hypertension is mediated by leptin through upregulation of central RAS and PICs. PMID:27021010

  15. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    Science.gov (United States)

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ..... on the brain and nervous system of humans as handlers and ... environment may be at higher health risk in that their internal ...

  17. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    Science.gov (United States)

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    disease. Therefore, we show that system [Formula: see text] participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotrophic lateral sclerosis disease progression after onset of clinical symptoms. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    Science.gov (United States)

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury.

    Science.gov (United States)

    Chen, Xiangrong; Chen, Chunnuan; Fan, Sining; Wu, Shukai; Yang, Fuxing; Fang, Zhongning; Fu, Huangde; Li, Yasong

    2018-04-20

    Microglial polarization and the subsequent neuroinflammatory response are contributing factors for traumatic brain injury (TBI)-induced secondary injury. High mobile group box 1 (HMGB1) mediates the activation of the NF-κB pathway, and it is considered to be pivotal in the late neuroinflammatory response. Activation of the HMGB1/NF-κB pathway is closely related to HMGB1 acetylation, which is regulated by the sirtuin (SIRT) family of proteins. Omega-3 polyunsaturated fatty acids (ω-3 PUFA) are known to have antioxidative and anti-inflammatory effects. We previously demonstrated that ω-3 PUFA inhibited TBI-induced microglial activation and the subsequent neuroinflammatory response by regulating the HMGB1/NF-κB signaling pathway. However, no studies have elucidated if ω-3 PUFA affects the HMGB1/NF-κB pathway in a HMGB1 deacetylation of dependent SIRT1 manner, thus regulating microglial polarization and the subsequent neuroinflammatory response. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, rotarod test, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglia polarization and pro-inflammatory markers, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and HMGB1, were used to evaluate the neuroinflammatory responses and the anti-inflammatory effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1/NF-κB signaling pathway activation to evaluate the effects of ω-3 PUFA supplementation. The impact of SIRT1 deacetylase activity on HMGB1 acetylation and the interaction between HMGB1 and SIRT1 were assessed to evaluate anti-inflammation effects of ω-3 PUFAs, and also, whether these effects were dependent on a SIRT1-HMGB1/NF-κB axis to gain further insight into the mechanisms underlying the

  20. Influence of post-traumatic stress disorder on neuroinflammation and cell proliferation in a rat model of traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sandra A Acosta

    Full Text Available Long-term consequences of traumatic brain injury (TBI are closely associated with the development of severe psychiatric disorders, such as post-traumatic stress disorder (PTSD, yet preclinical studies on pathological changes after combined TBI with PTSD are lacking. In the present in vivo study, we assessed chronic neuroinflammation, neuronal cell loss, cell proliferation and neuronal differentiation in specific brain regions of adult Sprague-Dawley male rats following controlled cortical impact model of moderate TBI with or without exposure to PTSD. Eight weeks post-TBI, stereology-based histological analyses revealed no significant differences between sham and PTSD alone treatment across all brain regions examined, whereas significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle, but not cerebellum, in animals that received TBI alone and combined TBI-PTSD compared with PTSD alone and sham treatment. Additional immunohistochemical results revealed a significant loss of CA3 pyramidal neurons in the hippocampus of TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Further examination of neurogenic niches revealed a significant downregulation of Ki67-positive proliferating cells, but not DCX-positive neuronally migrating cells in the neurogenic subgranular zone and subventricular zone for both TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Comparisons of levels of neuroinflammation and neurogenesis between TBI alone and TBI+PTSD revealed that PTSD did not exacerbate the neuropathological hallmarks of TBI. These results indicate a progressive deterioration of the TBI brain, which, under the conditions of the present approach, was not intensified by PTSD, at least within our time window and within the examined areas of the brain. Although the PTSD manipulation employed here did not exacerbate the pathological effects of TBI, the observed long

  1. Influence of post-traumatic stress disorder on neuroinflammation and cell proliferation in a rat model of traumatic brain injury.

    Science.gov (United States)

    Acosta, Sandra A; Diamond, David M; Wolfe, Steven; Tajiri, Naoki; Shinozuka, Kazutaka; Ishikawa, Hiroto; Hernandez, Diana G; Sanberg, Paul R; Kaneko, Yuji; Borlongan, Cesar V

    2013-01-01

    Long-term consequences of traumatic brain injury (TBI) are closely associated with the development of severe psychiatric disorders, such as post-traumatic stress disorder (PTSD), yet preclinical studies on pathological changes after combined TBI with PTSD are lacking. In the present in vivo study, we assessed chronic neuroinflammation, neuronal cell loss, cell proliferation and neuronal differentiation in specific brain regions of adult Sprague-Dawley male rats following controlled cortical impact model of moderate TBI with or without exposure to PTSD. Eight weeks post-TBI, stereology-based histological analyses revealed no significant differences between sham and PTSD alone treatment across all brain regions examined, whereas significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle, but not cerebellum, in animals that received TBI alone and combined TBI-PTSD compared with PTSD alone and sham treatment. Additional immunohistochemical results revealed a significant loss of CA3 pyramidal neurons in the hippocampus of TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Further examination of neurogenic niches revealed a significant downregulation of Ki67-positive proliferating cells, but not DCX-positive neuronally migrating cells in the neurogenic subgranular zone and subventricular zone for both TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Comparisons of levels of neuroinflammation and neurogenesis between TBI alone and TBI+PTSD revealed that PTSD did not exacerbate the neuropathological hallmarks of TBI. These results indicate a progressive deterioration of the TBI brain, which, under the conditions of the present approach, was not intensified by PTSD, at least within our time window and within the examined areas of the brain. Although the PTSD manipulation employed here did not exacerbate the pathological effects of TBI, the observed long-term inflammation and suppressed

  2. Influence of Post-Traumatic Stress Disorder on Neuroinflammation and Cell Proliferation in a Rat Model of Traumatic Brain Injury

    Science.gov (United States)

    Diamond, David M.; Shinozuka, Kazutaka; Ishikawa, Hiroto; Hernandez, Diana G.; Sanberg, Paul R.; Kaneko, Yuji; Borlongan, Cesar V.

    2013-01-01

    Long-term consequences of traumatic brain injury (TBI) are closely associated with the development of severe psychiatric disorders, such as post-traumatic stress disorder (PTSD), yet preclinical studies on pathological changes after combined TBI with PTSD are lacking. In the present in vivo study, we assessed chronic neuroinflammation, neuronal cell loss, cell proliferation and neuronal differentiation in specific brain regions of adult Sprague-Dawley male rats following controlled cortical impact model of moderate TBI with or without exposure to PTSD. Eight weeks post-TBI, stereology-based histological analyses revealed no significant differences between sham and PTSD alone treatment across all brain regions examined, whereas significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle, but not cerebellum, in animals that received TBI alone and combined TBI-PTSD compared with PTSD alone and sham treatment. Additional immunohistochemical results revealed a significant loss of CA3 pyramidal neurons in the hippocampus of TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Further examination of neurogenic niches revealed a significant downregulation of Ki67-positive proliferating cells, but not DCX-positive neuronally migrating cells in the neurogenic subgranular zone and subventricular zone for both TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Comparisons of levels of neuroinflammation and neurogenesis between TBI alone and TBI+PTSD revealed that PTSD did not exacerbate the neuropathological hallmarks of TBI. These results indicate a progressive deterioration of the TBI brain, which, under the conditions of the present approach, was not intensified by PTSD, at least within our time window and within the examined areas of the brain. Although the PTSD manipulation employed here did not exacerbate the pathological effects of TBI, the observed long-term inflammation and suppressed

  3. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Directory of Open Access Journals (Sweden)

    Luciana Frick

    2016-01-01

    Full Text Available There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD, Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS. The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain’s resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues.

  4. Effect of MgSO4 on the contents of Ca2+ in brain cell and NO in brain tissue of rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Yuan Wenjia; Cui Fengmei; Liu Ping; He Chao; Tu Yu; Wang Lili

    2009-01-01

    The work is to explore the protection of magnesium sulfate(MgSO 4 ) on radiation-induced acute brain injury. Thirty six mature Sprague-Dawley(SD) rats were randomly divided into 3 groups of control, experimental control and experimental therapy group. The whole brains of SD rats of experimental control and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. MgSO 4 was injected into the abdomen of experimental therapy rats group 1 day before, immediately and continue for 5 days after irradiation respectively. The brain tissues were taken on 3, 10, 17 and 24 d after irradiation. Ca 2+ content in brain cell was measured by laser scanning confocal microscopy, and the NO content in brain tissue was detected by the method of nitric acid reductase. Compared with the blank control group, the contents of Ca 2+ in brain cell and NO in brain tissue of the experimental control group increase (P 4 used in early stage can inhibit the contents of Ca 2+ in brain cell and NO in brain tissue after radiation-induced acute brain injury. It means that MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  5. Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer’s Disease Not Evident in Mouse Models

    Directory of Open Access Journals (Sweden)

    Brad A. Friedman

    2018-01-01

    Full Text Available Microglia, the CNS-resident immune cells, play important roles in disease, but the spectrum of their possible activation states is not well understood. We derived co-regulated gene modules from transcriptional profiles of CNS myeloid cells of diverse mouse models, including new tauopathy model datasets. Using these modules to interpret single-cell data from an Alzheimer’s disease (AD model, we identified microglial subsets—distinct from previously reported “disease-associated microglia”—expressing interferon-related or proliferation modules. We then analyzed whole-tissue RNA profiles from human neurodegenerative diseases, including a new AD dataset. Correcting for altered cellular composition of AD tissue, we observed elevated expression of the neurodegeneration-related modules, but also modules not implicated using expression profiles from mouse models alone. We provide a searchable, interactive database for exploring gene expression in all these datasets (http://research-pub.gene.com/BrainMyeloidLandscape. Understanding the dimensions of CNS myeloid cell activation in human disease may reveal opportunities for therapeutic intervention.

  6. Increased Arousal Levels and Decreased Sleep by Brain Music in Rats

    Institute of Scientific and Technical Information of China (English)

    Guang-Zhan Fang; Chun-Peng Zhang; Dan Wu; Yang Xia; Yong-Xiu Lai; De-Zhong Yao

    2009-01-01

    More and more studies have been reported on whether music and other types of auditory stimulation would improve the quality of sleep.Many of these studies have found significant results,but others argue that music is not significantly better than the tones or control conditions in improving sleep.For further understanding the relationship between music and sleep or music and arousal,the present study therefore examines the effects of brain music on sleep and arousal by means of biofeedback.The music is from the transformation of rapid eye movement (REM) sleep electroencephalogram (EEG) of rats using an algorithm in the Chengdu Brain Music (CBM) system.When the brain music was played back to rats,EEG data were recorded to assess the efficacy of music to induce or improve sleep,or increase arousal levels by sleep staging,etc.Our results demonstrate that exposure to the brain music increases arousal levels and decreases sleep in rats,and the underlying mechanism of decreased non-rapid eye movement (NREM) and REM sleep may be different.

  7. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  8. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies.

    Directory of Open Access Journals (Sweden)

    Yannick Béjot

    Full Text Available BACKGROUND: Whereas brain-derived neurotrophic factor (BDNF levels are measured in the brain in animal models of stroke, neurotrophin levels in stroke patients are measured in plasma or serum samples. The present study was designed to investigate the meaning of circulating BDNF levels in stroke patients. METHODS AND RESULTS: Unilateral ischemic stroke was induced in rats by the injection of various numbers of microspheres into the carotid circulation in order to mimic the different degrees of stroke severity observed in stroke patients. Blood was serially collected from the jugular vein before and after (4 h, 24 h and 8 d embolization and the whole brains were collected at 4, 24 h and 8 d post-embolization. Rats were then selected from their degree of embolization, so that the distribution of stroke severity in the rats at the different time points was large but similar. Using ELISA tests, BDNF levels were measured in plasma, serum and brain of selected rats. Whereas plasma and serum BDNF levels were not changed by stroke, stroke induced an increase in brain BDNF levels at 4 h and 24 h post-embolization, which was not correlated with stroke severity. Individual plasma BDNF levels did not correlate with brain levels at any time point after stroke but a positive correlation (r = 0.67 was observed between individual plasma BDNF levels and stroke severity at 4 h post-embolization. CONCLUSION: Circulating BDNF levels do not mirror brain BDNF levels after stroke, and severe stroke is associated with high plasma BDNF in the very acute stage.

  9. The effect of minocycline on the masticatory movements following the inferior alveolar nerve transection in freely moving rats

    Directory of Open Access Journals (Sweden)

    Mostafeezur Rahman

    2012-04-01

    Full Text Available Abstract Background To determine the effects of inferior alveolar nerve transection (IAN-X on masticatory movements in freely moving rats and to test if microglial cells in the trigeminal principal sensory nucleus (prV or motor nucleus (motV may be involved in modulation of mastication, the effects of microglial cell inhibitor minocycline (MC on masticatory jaw movements, microglia (Iba1 immunohistochemistry and the masticatory jaw movements and related masticatory muscle EMG activities were studied in IAN-X rats. Results The number of Iba1-immunoreactive (IR cells both in prV and motV was significantly larger in IAN-X rats compared with sham rats on day 3 after IAN-X. The intraperitoneal (i.p. administration of MC caused a significant reduction of the number of Iba1-IR cells both in prV and motV that was evident on day 14 after IAN-X. Furthermore, a significant reduction of the number of Iba1-IR cells could be observed in motV but not in prV after microinjection (m.i. of MC into the motV of IAN-X rats. The rats also exhibited a significant decrease in the head-withdrawal threshold on the side ipsilateral to the IAN-X compared to the threshold before IAN-X and it lasted to day 14. In addition, IAN-X markedly affected the ability to rat to carry out mastication. The number of complete masticatory sequences was significantly decreased. Furthermore, the total masticatory sequence time and food preparatory (PP period duration was significantly elongated in compared to sham rats. Although IAN-X significantly affected the total number of chewing cycles within the RC period of a masticatory sequence, it had no effect on the duration of the chewing cycles. On the other hand, systemic administration of MC (both i.p. and m.i. in IAN-X rats significantly improved decreased head-withdrawal threshold and the impaired masticatory jaw movements. Conclusions The present findings reveal that the strong modulation of masticatory jaw movements occurs following

  10. Regional brain distribution of toluene in rats and in a human autopsy

    Energy Technology Data Exchange (ETDEWEB)

    Ameno, Kiyoshi; Kiriu, Takahiro; Fuke, Chiaki; Ameno, Setsuko; Shinohara, Toyohiko; Ijiri, Iwao (Kagawa Medical School (Japan). Dept. of Forensic Medicine)

    1992-02-01

    Toluene concentrations in 9 brain regions of acutely exposed rats and that in 11 brain regions of a human case who inhaled toluene prior to death are described. After exposure to toluene by inhalation (2000 or 10 000 ppm) for 0.5 h or by oral dosing (400 mg/kg.), rats were killed by decapitation 0.5 and 4 h after onset of inhalation and 2 and 10 h after oral ingestion. After each experimental condition the highest range of brain region/blood toluene concentration ratio (BBCR) was in the brain stem regions (2.85-3.22) such as the pons and medulla oblongata, the middle range (1.77-2.12) in the midbrain, thalamus, caudate-putamen, hypothalamus and cerebellum, and the lowest range (1.22-1.64) in the hippocampus and cerebral cortex. These distribution patterns were quite constant. Toluene concentration in various brain regions were unevenly distributed and directly related blood levels. In a human case who had inhaled toluene vapor, the distribution among brain regions was relatively similar to that in rats, the highest concentration ratios being in the corpus callosum (BBCR:2.66) and the lowest in the hippocampus (BBCR:1.47). (orig.).

  11. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D.; Morris, G.M.

    2000-01-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED 50 ) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  12. Expression and Localization of TRK-Fused Gene Products in the Rat Brain and Retina

    International Nuclear Information System (INIS)

    Maebayashi, Hisae; Takeuchi, Shigako; Masuda, Chiaki; Makino, Satoshi; Fukui, Kenji; Kimura, Hiroshi; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It has been reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. However, no information regarding the localization of Tfg in rat tissues is available. In this study, we investigated the expression of Tfg mRNA in normal rat tissues using reverse transcription-polymerase chain reaction (RT-PCR). We also produced an antibody against Tfg gene products and examined the localization of TFG in the rat brain and retina. The RT-PCR experiments demonstrated that two types of Tfg mRNA were expressed in rat tissues: the conventional form of Tfg (cTfg) and a novel variant form, retinal Tfg (rTfg). RT-PCR analyses demonstrated that cTfg was ubiquitously expressed in rat tissues, while rTfg was predominantly expressed in the brain and retina. Western blot analysis demonstrated two bands with molecular weights of about 30 kDa and 50 kDa in the rat brain. Immunohistochemistry indicated that TFG proteins were predominantly expressed by neurons in the brain. In the rat retina, intense TFG-immunoreactivity was detected in the layer of rods and cones and the outer plexiform layer

  13. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats.

    Science.gov (United States)

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-11-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (Pspinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (Pspinal cord gives some positive effects for the regeneration of the white matter.

  14. Time Courses of Cortical Glucose Metabolism and Microglial Activity Across the Life Span of Wild-Type Mice: A PET Study.

    Science.gov (United States)

    Brendel, Matthias; Focke, Carola; Blume, Tanja; Peters, Finn; Deussing, Maximilian; Probst, Federico; Jaworska, Anna; Overhoff, Felix; Albert, Nathalie; Lindner, Simon; von Ungern-Sternberg, Barbara; Bartenstein, Peter; Haass, Christian; Kleinberger, Gernot; Herms, Jochen; Rominger, Axel

    2017-12-01

    Contrary to findings in the human brain, 18 F-FDG PET shows cerebral hypermetabolism of aged wild-type (WT) mice relative to younger animals, supposedly due to microglial activation. Therefore, we used dual-tracer small-animal PET to examine directly the link between neuroinflammation and hypermetabolism in aged mice. Methods: WT mice (5-20 mo) were investigated in a cross-sectional design using 18 F-FDG ( n = 43) and translocator protein (TSPO) ( 18 F-GE180; n = 58) small-animal PET, with volume-of-interest and voxelwise analyses. Biochemical analysis of plasma cytokine levels and immunohistochemical confirmation of microglial activity were also performed. Results: Age-dependent cortical hypermetabolism in WT mice relative to young animals aged 5 mo peaked at 14.5 mo (+16%, P mice. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  15. Multidimensional MRI-CT atlas of the naked mole-rat brain

    Directory of Open Access Journals (Sweden)

    Fumiko eSeki

    2013-12-01

    Full Text Available Naked mole-rats have a variety of distinctive features such as the organisation of a hierarchical society (known as eusociality, extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI. Advanced MRI techniques such as diffusion tensor imaging (DTI, which generates high contrast images of fibre structures, can characterise unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography (CT were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualisation of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.

  16. Improved apparatus for neutron capture therapy of rat brain tumors

    International Nuclear Information System (INIS)

    Liu, Hungyuan B.; Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1994-01-01

    The assembly for irradiating tumors in the rat brain at the thermal neutron beam port of the Brookhaven Medical Research Reactor was redesigned to lower the average whole-body dose from different components of concomitant radiation without changing the thermal neutron fluence at the brain tumor. At present, the tumor-bearing rat is positioned in a rat holder that functions as a whole-body radiation shield. A 2.54 cm-thick collimator with a centered conical aperture, 6 cm diameter tapering to 2 cm diameter, is used to restrict the size of the thermal neutron field. Using the present holder and collimator as a baseline design, Monte Carlo calculations and mixed-field dosimetry were used to assess new designs. The computations indicate that a 0.5 cm-thick plate, made of 6 Li 2 CO 3 dispersed in polyethylene (Li-poly), instead of the existing rat holder, will reduce the whole-body radiation dose. Other computations show that a 10.16 cm-thick (4 inches) Li-poly collimator, having a centered conical aperture of 12 cm diameter tapering to 2 cm diameter, would further reduce the whole-body dose. The proposed irradiation apparatus of tumors in the rat brain, although requiring a 2.3-fold longer irradiation time, would reduce the average whole-body dose to less than half of that from the existing irradiation assembly. 7 refs., 4 figs., 7 tabs

  17. Cloning and expression of a rat brain α2B-adrenergic receptor

    International Nuclear Information System (INIS)

    Flordellis, C.S.; Handy, D.E.; Bresnahan, M.R.; Zannis, V.I.; Gavras, H.

    1991-01-01

    The authors isolated a cDNA clone (RBα 2B ) and its homologous gene (GRα 2B ) encoding an α 2B -adrenergic receptor subtype by screening a rat brain cDNA and a rat genomic library. Nucleotide sequence analysis showed that both clones code for a protein of 458 amino acids, which is 87% homologous to the human kidney glycosylated adrenergic receptor (α 2 -C4) and divergent from the rat kidney nonglycosylated α 2B subtype (RNGα 2 ). Transient expression of RBα 2B in COS-7 cells resulted in high-affinity saturable binding for [ 3 H]rauwolscine and a high receptor number in the membranes of transfected COS-7 cells. Pharmacological analysis demonstrated that the expressed receptor bound adrenergic ligands with the following order of potency: rauwolscine > yohimbine > prazosin > oxymetazoline, with a prazosin-to-oxymetazoline K i ratio of 0.34. This profile is characteristic of the α 2B -adrenergic receptor subtype. Blotting analysis of rat brain mRNA gave one major and two minor mRNA species, and hybridization with strand-specific probes showed that both DNA strands of GRα 2B may be transcriptionally active. These findings show that rat brain expresses an α 2B -adrenergic receptor subtype that is structurally different from the rat kidney nonglycosylated α 2B subtype. Thus the rat expresses at least two divergent α 2B -adrenergic receptors

  18. Volumetric abnormalities of the brain in a rat model of recurrent headache.

    Science.gov (United States)

    Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan

    2018-01-01

    Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.

  19. Feeding the beast: can microglia in the senescent brain be regulated by diet?

    Science.gov (United States)

    Johnson, Rodney W

    2015-01-01

    Microglial cells, resident macrophages in the central nervous system (CNS), are relatively quiescent but can respond to signals from the peripheral immune system and induce neuroinflammation. In aging, microglia tend to transition to the M1 pro-inflammatory state and become hypersensitive to messages emerging from immune-to-brain signaling pathways. Thus, whereas in younger individuals where microglia respond to signals from the peripheral immune system and induce a well-controlled neuroinflammatory response that is adaptive (e.g., when well controlled, fever and sickness behavior facilitate recovery from infection), in older individuals with an infection, microglia overreact and produce excessive levels of inflammatory cytokines causing behavioral pathology including cognitive dysfunction. Importantly, recent studies indicate a number of naturally occurring bioactive compounds present in certain foods have anti-inflammatory properties and are capable of mitigating brain microglial cells. These include, e.g., flavonoid and non-flavonoid compounds in fruits and vegetables, and n-3 polyunsaturated fatty acids (PUFA) in oily fish. Thus, dietary bioactives have potential to restore the population of microglial cells in the senescent brain to a more quiescent state. The pragmatic concept to constrain microglia through dietary intervention is significant because neuroinflammation and cognitive deficits are co-morbid factors in many chronic inflammatory diseases. Controlling microglial cell reactivity has important consequences for preserving adult neurogenesis, neuronal structure and function, and cognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells.

    Science.gov (United States)

    Song, Jin-Ho; Yeh, Jay Z

    2012-05-10

    Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats.

    Science.gov (United States)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S; Simonsen, Mette; Ott, Peter; Vilstrup, Hendrik; Sørensen, Michael

    2014-03-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine, and aspartate and incorporation of (15)NH(4)(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation of (15)NH(4)(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH(4)(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined but only in brain was an increased incorporation of (15)N-ammonia into alanine observed. Liver and kidney were important for metabolizing blood-borne ammonia.

  2. Oxidative stress induces the decline of brain EPO expression in aging rats.

    Science.gov (United States)

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (paging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (paging could result in the decline of EPO in the hippocampus and oxidative stress might be the main reason for the decline of brain EPO in aging rats, involved with the decrease of HIF-2α stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats

    Science.gov (United States)

    Kouchi, Hayet Y.; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S.; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  4. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    Directory of Open Access Journals (Sweden)

    Raafat P Fares

    Full Text Available Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage, which offers: (1 minimally stressful social interactions; (2 increased voluntary exercise; (3 multiple entertaining activities; (4 cognitive stimulation (maze exploration, and (5 novelty (maze configuration changed three times a week. The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.

  5. Blood-ocular and blood-brain barrier function in streptozocin-induced diabetes in rats

    International Nuclear Information System (INIS)

    Maeepea, O.; Karlsson, C.; Alm, A.

    1984-01-01

    Edetic acid labeled with chromium 51 was injected intravenously in normal rats and in rats with streptozocin-induced diabetes. One hour after the injection the animals were killed and the concentrations of edetic acid 51Cr in vitreous body, retina, and brain were determined. No significant difference was observed between the two groups for either tissue. In a second series, a mixture of tritiated 1-glucose and aminohippuric acid tagged with carbon 14 was injected instead of edetic acid. A substantial accumulation of aminohippuric acid 14C compared with tritiated 1-glucose was observed in the vitreous body and the brain of diabetic rats in comparison with the control group. It is concluded that untreated streptozocin-induced diabetes in rats for one to two weeks will not cause a generalized increase in the permeability of the blood-ocular or the blood-brain barriers, but organic acids may accumulate in the vitreous body as well as in the brain as a consequence of reduced outward transport through these barriers

  6. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Figlewicz, D.F.; Kahn, S.E.; Baskin, D.G.; Greenwood, M.R.; Porte, D. Jr.

    1990-01-01

    In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals

  7. Comparison of Trazodone, Diazepame and Dibenzepine Influences on Rat Brain Beta-Endorphins Content

    Directory of Open Access Journals (Sweden)

    Radivoj Jadrić

    2007-08-01

    Full Text Available The aim of our study was to establish the extent of influence of different psychotropic drugs to brain β-endorphins in experimental animals. The study was performed on albino Wistar rats (weight 250 g, treated with different psychoactive drugs. RIA technique was employed for quantification of brain β-endorphins. Brain β-endorphins were higher in experiment group treated with trazodone (929 pg/g ± 44,43; X±SD, and dibenzepine (906,63 pg/g ± 74,06, yet with lower brain content in rats treated with diazepame (841,55 pg/g ± 68,47, compared to brain β-endorphins content of control group treated with saline solution (0,95% NaCl (873,5 pg/g ± 44,89. Significant differences were obtained comparing brain β-endorphins of trazodone vs. diaze-pame treated animals, with diazepame group having lower values (p<0,02. This study showed differences in changes of rat brain β-endorphins contents when different psy-choactive drugs are used. Therefore, we consider that β-endorphins could be used for evaluation of effects of psychoactive drugs, as a useful parameter in therapy with these psycho pharmaceuticals.

  8. Microglial response to Alzheimer's disease is differentially modulated by voluntary wheel running and enriched environments.

    Science.gov (United States)

    Rodríguez, J J; Noristani, H N; Verkhratsky, A

    2015-03-01

    Alzheimer's disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced changes of microglia response to AD have been neglected. We investigated effects of running (RUN) and enriched (ENR) environments on numerical density (N v, #/mm(3)) and morphology of microglia in a triple transgenic (3×Tg-AD) mouse model of AD that closely mimics AD pathology in humans. We used immunohistochemical approach to characterise microglial domain by measuring their overall cell surface, volume and somata volume. 3×Tg-AD mice housed in standard control (STD) environment showed significant increase in microglial N v (11.7 %) in CA1 stratum lacunosum moleculare (S.Mol) of the hippocampus at 12 months compared to non-transgenic (non-Tg) animals. Exposure to combined RUN and ENR environments prevented an increase in microglial N v in 3×Tg-AD and reduced microglial numbers to non-Tg control levels. Interestingly, 3×Tg-AD mice housed solely in ENR environment displayed significant decrease in microglial N v in CA1 subfield (9.3 % decrease), stratum oriens (11.5 % decrease) and S.Mol (7.6 % decrease) of the hippocampus compared to 3×Tg-AD mice housed in STD environment. Morphological analysis revealed microglial hypertrophy due to pronounced increase in microglia surface, volume and somata volume (61, 78 and 41 %) in 3×Tg-AD mice housed in RUN (but not in ENR) compared to STD environment. These results indicate that exposure to RUN and ENR environments have differential effects on microglial density and activation-associated changes in microglial morphology.

  9. Strategies to increase the activity of microglia as efficient protectors of the brain against infections

    Directory of Open Access Journals (Sweden)

    Roland eNau

    2014-05-01

    Full Text Available In healthy individuals, infections of the CNS are comparatively rare. Based on the ability of microglial cells to phagocytose and kill pathogens and on clinical findings in immunocompromized patients with CNS infections, we hypothesize that an intact microglial function is crucial to protect the brain from infections. Phagocytosis of pathogens by microglial cells can be stimulated by agonists of receptors of the innate immune system. Enhancing this pathway to increase the resistance of the brain to infections entails the risk of inducing collateral damage to the nervous tissue. The diversity of microglial cells opens avenue to selectively stimulate sub-populations responsible for the defence against pathogens without stimulating sub-populations which are responsible for collateral damage to the nervous tissue. Palmitoylethanolamide (PEA, an endogenous lipid, increased phagocytosis of bacteria by microglial cells in vitro without a measurable proinflammatory effect. It was tested clinically apparently without severe side effects. Glatiramer acetate increased phagocytosis of latex beads by microglia and monocytes, and dimethyl fumarate enhanced elimination of human immunodeficiency virus from infected macrophages without inducing a release of proinflammatory compounds. Therefore, the discovery of compounds which stimulate the elimination of pathogens without collateral damage of neuronal structures appears an achievable goal. PEA and, with limitations, glatiramer acetate and dimethyl fumarate appear promising candidates.

  10. [11C]befloxatone brain kinetics is not influenced by Bcrp function at the blood-brain barrier: A PET study using Bcrp TGEM knockout rats

    International Nuclear Information System (INIS)

    Hosten, Benoit; Jacob, Aude; Saubamea, Bruno; Scherrmann, Jean-Michel; Boisgard, Raphael; Goutal, Sebastien; Dolle, Frederic; Tournier, Nicolas; Cisternino, Salvatore

    2013-01-01

    Knockout (KO) animals are useful tools with which to assess the interplay between P-glycoprotein (P-gp; Abcb1) and the breast cancer resistance protein (Bcrp, Abcg2), two major ABC-transporters expressed at the blood-brain barrier (BBB). However, one major drawback of such deficient models is the possible involvement of compensation between transporters. In the present study, P-gp and Bcrp distribution in the brain as well as P-gp expression levels at the BBB were compared between the Bcrp TGEM KO rat model and the wild-type (WT) strain. Therefore, we used confocal microscopy of brain slices and western blot analysis of the isolated brain microvessels forming the BBB. This deficient rat model was used to assess the influence of Bcrp on the brain and peripheral kinetics of its substrate [ 11 C]befloxatone using positron emission tomography (PET). The influence of additional P-gp inhibition was tested using elacridar (GF120918) 2 mg/kg in Bcrp KO rats. The distribution pattern of P-gp in the brain as well as P-gp expression levels at the BBB was similar in Bcrp-deficient and WT rats. Brain and peripheral kinetics of [ 11 C]befloxatone were not influenced by the lack of Bcrp. Neither was the brain uptake of [ 11 C]befloxatone in Bcrp-deficient rats influenced by the inhibition of P-gp. In conclusion, the Bcrp-deficient rat strain, in which we detected no compensatory mechanism or modification of P-gp expression as compared to WT rats, is a suitable model to study Bcrp function separately from that of P-gp at the BBB. However, although selectively transported by BCRP in vitro, our results suggest that [ 11 C]befloxatone PET imaging might not be biased by impaired function of this transporter in vivo. (authors)

  11. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    Science.gov (United States)

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  12. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    Science.gov (United States)

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  13. Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia.

    Science.gov (United States)

    Huang, Jia; You, Xiaofang; Liu, Weilin; Song, Changming; Lin, Xiaomin; Zhang, Xiufeng; Tao, Jing; Chen, Lidian

    2017-10-10

    During ischemic stroke (IS), adenosine 5'-triphosphate (ATP) is released from damaged nerve cells of the infract core region to the extracellular space, invoking peri-infarct glial cellular P2 purinoceptors singling, and causing pro-inflammatory cytokine secretion, which is likely to initiate or aggravate motor and cognitive impairment. It has been proved that electroacupuncture (EA) is an effective and safe strategy used in anti-inflammation. However, EA for the role of purine receptors in the central nervous system has not yet been reported. Ischemia-reperfusion injured rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). EA treatment at the DU 20 and DU 24 acupoints treatment were conducted to rats from the 12 h after MCAO/R injury for consecutive 7 days. The neurological outcomes, infarction volumes and the level of astroglial and microglial/macrophage hyperplasia, inflammatory cytokine and P2X7R and P2Y1R expression in the peri-infarct hippocampal CA1and sensorimotor cortex were investigated after IS to evaluate the MCAO/R model and therapeutic mechanism of EA treatment. EA effectively reduced the level of pro-inflammatory cytokine interleukin-1β (IL-1β) as evidenced by reduction in astroglial and microglial/macrophage hyperplasia and the levels of P2X7R and ED1, P2X7R and GFAP, P2Y1R and ED1, P2Y1R and GFAP co-expression in peri-infarct hippocampal CA1 and sensorimotor cortex compared with that of MCAO/R model and Non-EA treatment, accompanied by the improved neurological deficit and the motor and memory impairment outcomes. Therefore, our data support the hypothesis that EA could exert its anti-inflammatory effect via inhibiting the astroglial and microglial/macrophage P2 purinoceptors (P2X7R and P2Y1R)-mediated neuroinflammation after MCAO/R injury. Astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia in peri-infarct hippocampal CA1 and sensorimotor cortex were attenuated by EA

  14. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  15. Estrone is neuroprotective in rats after traumatic brain injury.

    Science.gov (United States)

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (pcerebral cortical levels of TUNEL-positive staining (pprotective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  16. Impairments of learning and memory in the rats after brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Nobuhiko [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-06-01

    Clinical trials of hadrontherapy have been carried out world wide at several facilities including National Institute of Radiological Sciences (NIRS). Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumors. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We investigated and reported here the early consequences of brain damages caused by proton beam. The animals that had memorized the location of the standard position were locally irradiated to brain with either 70 MeV protons or 290 MeV carbon ions. At 24 hr after irradiation, impairment of the long-term memory was not observed in the irradiated rats compared to control. Irradiated animals, however, required substantially longer time finding out the standard position than control rats when the standard platform displaced to a position different from memorized position. This follows that a single doses of 30 Gy, either protons or carbon ions, impairs the working memory of animals. Function of muscarinic acetylcholine receptors was analyzed by an in vivo binding assay using radioligand quinuclidinyl benzilate (QNB). Irradiated rats were intravenously injected with 5.5 MBq of {sup 3}H-QNB 24 hr after the irradiation, and decapitated 60 min after tracer injection. The autoradiographic studies showed an transitional increase of {sup 3}H-QNB in vivo binding in the early phase after proton irradiation, even though no change in in-vitro {sup 3}H-QNB binding was see in brain autoradiograms of irradiated rats. The cerebral blood flow and the histrogical features of brain were also changed at 3 months post-irradiation. These results indicate that the memory impairment caused by radiation is closely related to the early change of acetylcholine receptor in vivo. (author)

  17. Impairments of learning and memory in the rats after brain irradiation

    International Nuclear Information System (INIS)

    Takai, Nobuhiko

    2002-01-01

    Clinical trials of hadrontherapy have been carried out world wide at several facilities including National Institute of Radiological Sciences (NIRS). Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumors. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We investigated and reported here the early consequences of brain damages caused by proton beam. The animals that had memorized the location of the standard position were locally irradiated to brain with either 70 MeV protons or 290 MeV carbon ions. At 24 hr after irradiation, impairment of the long-term memory was not observed in the irradiated rats compared to control. Irradiated animals, however, required substantially longer time finding out the standard position than control rats when the standard platform displaced to a position different from memorized position. This follows that a single doses of 30 Gy, either protons or carbon ions, impairs the working memory of animals. Function of muscarinic acetylcholine receptors was analyzed by an in vivo binding assay using radioligand quinuclidinyl benzilate (QNB). Irradiated rats were intravenously injected with 5.5 MBq of 3 H-QNB 24 hr after the irradiation, and decapitated 60 min after tracer injection. The autoradiographic studies showed an transitional increase of 3 H-QNB in vivo binding in the early phase after proton irradiation, even though no change in in-vitro 3 H-QNB binding was see in brain autoradiograms of irradiated rats. The cerebral blood flow and the histrogical features of brain were also changed at 3 months post-irradiation. These results indicate that the memory impairment caused by radiation is closely related to the early change of acetylcholine receptor in vivo. (author)

  18. The effect of electromagnetic radiation on the rat brain: an experimental study.

    Science.gov (United States)

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  19. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    International Nuclear Information System (INIS)

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-01-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human 125 -I-IGF-II (10 pM) was incubated for 16 hrs at 4 0 C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA 1 -CA 2 and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of 125 I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning

  20. [Alterations of glial fibrillary acidic protein in rat brain after gamma knife irradiation].

    Science.gov (United States)

    Ma, Z M; Jiang, B; Ma, J R

    2001-08-28

    To study glial fibrillary acidic protein (GFAP) immunoreactivity in different time and water content of the rat brain treated with gamma knife radiotherapy and to understand the alteration course of the brain lesion after a single high dose radiosurgical treatment. In the brains of the normal rats were irradiated by gamma knife with 160 Gy-high dose. The irradiated rats were then killed on the 1st day, 7th day, 14th day, and 28th day after radiotherapy, respectively. The positive cells of GFAP in brain tissue were detected by immunostaining; the water content of the brain tissue was measured by microgravimetry. The histological study of the irradiated brain tissue was performed with H.E. and examined under light microscope. The numbers of GFAP-positive astrocytes began to increase on the 1st day after gamma knife irradiation. It was enlarged markedly in the number and size of GFAP-stained astrocytes over the irradiated areas. Up to the 28th day, circumscribed necrosis foci (4 mm in diameter) was seen in the central area of the target. In the brain tissue around the necrosis, GFAP-positive astrocytes significantly increased (P gravity in the irradiated brain tissue the 14th and 28th day after irradiation. The results suggest that GFAP can be used as a marker for the radiation-induced brain injury. The brain edema and disruption of brain-blood barrier can be occurred during the acute stage after irradiation.

  1. Restoring susceptibility induced MRI signal loss in rat brain at 9.4 T: A step towards whole brain functional connectivity imaging.

    Directory of Open Access Journals (Sweden)

    Rupeng Li

    Full Text Available The aural cavity magnetic susceptibility artifact leads to significant echo planar imaging (EPI signal dropout in rat deep brain that limits acquisition of functional connectivity fcMRI data. In this study, we provide a method that recovers much of the EPI signal in deep brain. Needle puncture introduction of a liquid-phase fluorocarbon into the middle ear allows acquisition of rat fcMRI data without signal dropout. We demonstrate that with seeds chosen from previously unavailable areas, including the amygdala and the insular cortex, we are able to acquire large scale networks, including the limbic system. This tool allows EPI-based neuroscience and pharmaceutical research in rat brain using fcMRI that was previously not feasible.

  2. Experimental autoimmune prostatitis induces microglial activation in the spinal cord.

    Science.gov (United States)

    Wong, Larry; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen

    2015-01-01

    The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host's immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S14-S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Our data show that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. © 2014 Wiley Periodicals, Inc.

  3. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    International Nuclear Information System (INIS)

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-01-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of [ 3 H]-antagonist as well as of the labeled natural neurotransmitter, [ 3 H]-acetylcholine [( 3 H]-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of [ 3 H]-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity [ 3 H]-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with [ 3 H]-antagonist represent a loss of low-affinity agonist binding sites. In contrast, [ 3 H]-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms

  4. Effects of anesthesia on [11C]raclopride binding in the rat brain

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Simonsen, Mette; Møller, Arne

    Background Very often rats are anesthetized prior to micro positron emission tomography (microPET) brain imaging in order to prevent head movements. Anesthesia can be administered by inhalation agents, such as isoflurane, or injection mixtures, such as fentanyl-fluanisone-midazolam. Unfortunately......, anesthesia affects a variety of physiological variables, including in the brain. Aim The aim of this study was to compare the effects of inhalation and injection anesthesia on the binding potential of the dopaminergic D2/3 tracer [11C]raclopride used for PET brain imaging in human and animal studies....... Materials & Methods Nine male Lew/Mol rats were assigned to either inhalation (isoflurane; N=4) or injection (fentanyl-fluanisone-midazolam; N=5) anesthesia. Catheters were surgically placed in femoral arteries and veins for blood sampling and tracer injection. After a short attenuation scan, the rats were...

  5. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    Science.gov (United States)

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  7. Astrocyte galectin-9 potentiates microglial TNF secretion.

    Science.gov (United States)

    Steelman, Andrew J; Li, Jianrong

    2014-08-27

    Aberrant neuroinflammation is suspected to contribute to the pathogenesis of myriad neurological diseases. As such, determining the pathways that promote or inhibit glial activation is of interest. Activation of the surface glycoprotein T-cell immunoglobulin and mucin-domain containing protein 3 (Tim-3) by the lectin galectin-9 has been implicated in promoting innate immune cell activation by potentiating or synergizing toll-like receptor (TLR) signaling. In the present study we examined the role of the Tim-3/galectin-9 pathway in glial activation in vitro. Primary monocultures of microglia or astrocytes, co-cultures containing microglia and astrocytes, and mixed glial cultures consisting of microglia, astrocytes and oligodendrocytes were stimulated with poly(I:C) or LPS, and galectin-9 up-regulation was determined. The effect of endogenous galectin-9 production on microglial activation was examined using cultures from wild-type and Lgals9 null mice. The ability for recombinant galectin-9 to promote microglia activation was also assessed. Tim-3 expression on microglia and BV2 cells was examined by qPCR and flow cytometry and its necessity in transducing the galectin-9 signal was determined using a Tim-3 specific neutralizing antibody or recombinant soluble Tim-3. Astrocytes potentiated TNF production from microglia following TLR stimulation. Poly(I:C) stimulation increased galectin-9 expression in microglia and microglial-derived factors promoted galectin-9 up-regulation in astrocytes. Astrocyte-derived galectin-9 in turn enhanced microglial TNF production. Similarly, recombinant galectin-9 enhanced poly(I:C)-induced microglial TNF and IL-6 production. Inhibition of Tim-3 did not alter TNF production in mixed glial cultures stimulated with poly(I:C). Galectin-9 functions as an astrocyte-microglia communication signal and promotes cytokine production from microglia in a Tim-3 independent manner. Activation of CNS galectin-9 likely modulates neuroinflammatory

  8. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    International Nuclear Information System (INIS)

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-01-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation

  9. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    Science.gov (United States)

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  10. Fragmentation of Protein Kinase N (PKN) in the Hydrocephalic Rat Brain

    International Nuclear Information System (INIS)

    Okii, Norifumi; Amano, Taku; Seki, Takahiro; Matsubayashi, Hiroaki; Mukai, Hideyuki; Ono, Yoshitaka; Kurisu, Kaoru; Sakai, Norio

    2007-01-01

    PKN (protein kinase N; also called protein kinase C-related kinase (PRK-1)), is a serine/threonine protein kinase that is ubiquitously expressed in several organs, including the brain. PKN has a molecular mass of 120 kDa and has two domains, a regulatory and a catalytic domain, in its amino-terminals and carboxyl-terminus, respectively. Although the role of PKN has not been fully elucidated, previous studies have revealed that PKN is cleaved to a constitutively active catalytic fragment of 55 kDa in response to apoptotic signals. Hydrocephalus is a pathological condition caused by insufficient cerebrospinal fluid (CSF) circulation and subsequent excess of CSF in the brain. In this study, in order to elucidate the role of PKN in the pathophysiology of hydrocephalus, we examined PKN fragmentation in hydrocephalic model rats. Hydrocephalus was induced in rats by injecting kaolin into the cisterna magna. Kaolin-induced rats (n=60) were divided into three groups according to the observation period after treatment (group 1: 3–6 weeks, group 2: 7–12 weeks, and group 3: 13–18 weeks). Sham-treated control rats, injected with sterile saline (n=20), were similarly divided into three groups. Spatial learning ability was estimated by a modified water maze test. Thereafter, brains were cut into slices and ventricular dilatation was estimated. Fragmentation of PKN was observed by Western blotting in samples collected from the parietal cortex, striatum, septal nucleus, hippocampus, and periaqueductal gray matter. All kaolin-induced rats showed ventricular dilatation. Most of them showed less spatial learning ability than those of sham-treated controls. In most regions, fragmentation of PKN had occurred in a biphasic manner more frequently than that in controls. The appearance of PKN fragmentation in periaqueductal gray matter was correlated with the extent of ventricular dilation and spatial learning disability. These results revealed that PKN fragmentation was observed in

  11. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    Science.gov (United States)

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  12. Imaging of water distribution in the rat brain by activation autoradiography

    International Nuclear Information System (INIS)

    Kogure, K.; Kawashima, K.; Iwata, R.; Ido, T.

    1990-01-01

    Regional water distribution in the rat brain was obtained autoradiographically by activation analysis. The autoradiogram obtained for the normal rat brain showed high accumulation of water in the areas of sensory-motor cortex, hippocampus, thalamus, and amygdaloid cortex, whereas corpus callosum and internal capsule showed low water contents as expected. The estimated values of water content were 78.6 +/- 4.9 weight % for gray matter, and 73.5 +/- 4.9 weight % for white matter, respectively. The mean values of the water content were consistent with those obtained by a conventional drying-weighing method

  13. Influence of age on the passage of paraquat through the blood-brain barrier in rats: a distribution and pathological examination

    International Nuclear Information System (INIS)

    Widdowson, P.S.; Farnworth, M.J.; Simpson, M.G.; Lock, E.A.

    1996-01-01

    Experiments were performed to determine the extent of paraquat entry into the brain of neonatal and elderly rats, as compared with adult rats, which may be dependent on the efficacy of the blood-brain barrier. A single, median lethal dose (20 mg/kg s.c.) of paraquat containing [14C]paraquat was administered to neonatal (10 day old), adult (3 month old) and elderly (18 month old) rats. In contrast to the adult and elderly rats where paraquat levels fell over the 24 h post-dosing period to negligible levels, paraquat concentrations in neonatal brains did not decrease with time between 0.5 and 24 h following dosing. The distribution of [14C]paraquat was measured in selective brain regions using quantitative autoradiography in all three age groups of rats, 30 min and 24 h following dosing. Autoradiography demonstrated that brain paraquat distributions were similar in the rat age groups. Most of the paraquat was confined to regions outside the blood-brain barrier and to brain regions that lack a complete blood-brain barrier e.g. dorsal hypothalamus, area postrema and the anterior olfactory bulb. Between 0.5 h and 24 h following dosing, paraquat concentrations in deeper brain structures, some distance away from the sites of entry, began to slowly increase in all the rat age groups. By 24 h following dosing, a majority of brain regions examined using quantitative autoradiography revealed significantly higher paraquat concentrations in neonatal brains as compared to brain regions of adult and elderly rats. Despite increased paraquat entry into neonatal brain, we could find no evidence for paraquat-induced neuronal cell damage following a detailed histopathological examination of perfused-fixed brains. In conclusion, impaired blood-brain barrier integrity in neonatal brain thus permitting more paraquat to enter than in adult brain, did not result in neuronal damage

  14. Utilization of 14C-tyrosine in brain and peripheral tissues of developmentally protein malnourished rats

    International Nuclear Information System (INIS)

    Miller, M.; Leahy, J.P.; McConville, F.; Morgane, P.J.; Resnick, O.

    1978-01-01

    Prior studies of developmentally protein malnourished rats have reported substantial changes in brain and peripheral utilization of 14 C-leucine, 14 C-phenylalanine, and 14 C-tryptophan. In the present study rats born to dams fed a low protein diet (8% casein) compared to the offspring of control rats fed a normal diet (25% casein) showed few significant differences in the uptake and incorporation of 14 C-tyrosine into brain and peripheral tissues from birth to age 21 days. At birth, the 8% casein pups exhibited significant decreases in brain and peripheral tissue incorporation of tracer only at short post-injection times (10 and 20 min), but not at longer intervals (90 and 180 min). During ontogenetic development (Days 5-21), the 8% casein rats showed significant increases in uptake of 14 C-tyrosine into the brain and peripheral tissues on Day 11 and a significantly higher percent incorporation of tracer into brain protein on Day 21 as compared to the 25% casein rats. For the most part, there were no significant changes in incorporation of radioactivity in peripheral tissues for the 2 diet groups on these post-birth days. Overall, the data indicates that developmental protein malnutrition causes relatively fewer changes in brain and peripheral utilization of the semi-essential amino acid tyrosine than those observed in previous studies with essential amino acids

  15. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain

    Directory of Open Access Journals (Sweden)

    Katharine Askew

    2017-01-01

    Full Text Available Summary: Microglia play key roles in brain development, homeostasis, and function, and it is widely assumed that the adult population is long lived and maintained by self-renewal. However, the precise temporal and spatial dynamics of the microglial population are unknown. We show in mice and humans that the turnover of microglia is remarkably fast, allowing the whole population to be renewed several times during a lifetime. The number of microglial cells remains steady from late postnatal stages until aging and is maintained by the spatial and temporal coupling of proliferation and apoptosis, as shown by pulse-chase studies, chronic in vivo imaging of microglia, and the use of mouse models of dysregulated apoptosis. Our results reveal that the microglial population is constantly and rapidly remodeled, expanding our understanding of its role in the maintenance of brain homeostasis. : The mechanism or mechanisms underlying microglial homeostasis are unknown. Askew et al. show that microglia self-renewal is maintained by coupled proliferation and apoptosis, resulting in a stable microglia number over a mouse or human lifetime. Keywords: self-renewal, BrdU, CSF1R, CX3CR1, Macgreen, Vav-Bcl2, RNA-seq

  16. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  17. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    Science.gov (United States)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  18. Disruption of behavior and brain metabolism in artificially reared rats.

    Science.gov (United States)

    Aguirre-Benítez, Elsa L; Porras, Mercedes G; Parra, Leticia; González-Ríos, Jacquelina; Garduño-Torres, Dafne F; Albores-García, Damaris; Avendaño, Arturo; Ávila-Rodríguez, Miguel A; Melo, Angel I; Jiménez-Estrada, Ismael; Mendoza-Garrido, Ma Eugenia; Toriz, César; Diaz, Daniel; Ibarra-Coronado, Elizabeth; Mendoza-Ángeles, Karina; Hernández-Falcón, Jesús

    2017-12-01

    Early adverse life stress has been associated to behavioral disorders that can manifest as inappropriate or aggressive responses to social challenges. In this study, we analyzed the effects of artificial rearing on the open field and burial behavioral tests and on GFAP, c-Fos immunoreactivity, and glucose metabolism measured in anxiety-related brain areas. Artificial rearing of male rats was performed by supplying artificial milk through a cheek cannula and tactile stimulation, mimicking the mother's licking to rat pups from the fourth postnatal day until weaning. Tactile stimulation was applied twice a day, at morning and at night, by means of a camel brush on the rat anogenital area. As compared to mother reared rats, greater aggressiveness, and boldness, stereotyped behavior (burial conduct) was observed in artificially reared rats which occurred in parallel to a reduction of GFAP immunoreactivity in somatosensory cortex, c-Fos immunoreactivity at the amygdala and primary somatosensory cortex, and lower metabolism in amygdala (as measured by 2-deoxi-2-[ 18 fluoro]-d-glucose uptake, assessed by microPET imaging). These results could suggest that tactile and/or chemical stimuli from the mother and littermates carry relevant information for the proper development of the central nervous system, particularly in brain areas involved with emotions and social relationships of the rat. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1413-1429, 2017. © 2017 Wiley Periodicals, Inc.

  19. Quantitative determination of deoxyribonucleic acid in rat brain

    Science.gov (United States)

    Penn, N. W.; Suwalski, R.

    1969-01-01

    1. A procedure is given for spectrophotometric analysis of rat brain DNA after its resolution into component bases. Amounts of tissue in the range 50–100mg. can be used. 2. The amount of DNA obtained by the present method is 80% greater than that reported for rat brain by a previous procedure specific for DNA thymine. Identity of the material is established by the base ratios of purines and pyrimidines. The features responsible for the higher yield are the presence of dioxan during alkaline hydrolysis of tissue, the determination of the optimum concentration of potassium hydroxide in this step and omission of organic washes of the initial acid-precipitated residues. 3. The requirement for dioxan during alkaline hydrolysis suggests a possible association of brain DNA with lipid. The concentration of potassium hydroxide that gives maximum yield is 0·1m, indicating that there may be internucleotide linkages in this DNA that are more sensitive to alkali than those of liver or thymus DNA. 4. This procedure gives low yields of DNA from liver. It is not suitable for analysis of the DNA from this tissue. PMID:5353529

  20. Effect of sildenafil citrate (Viagra®) on trace element concentration in serum and brain of rats.

    Science.gov (United States)

    Fayed, Abdel-Hasseb A; Gad, Shereen B

    2011-12-01

    As a vasodilator with good hemodynamic effects, sildenafil has been successfully used in the treatment of patients with pulmonary hypertension and cardiovascular diseases. By selectively inhibiting phosphodiestrase type 5 (PDE-5) and thus effectively reducing the breakdown of c GMP, sildenafil administration can markedly improve the erectile dysfunction. Sildenafil also elevates localized cerebral blood flow in rat brain. The objective of the present study was to investigate the effect of sildenafil on the level of trace elements (Zinc (Zn), copper (Cu), iron (Fe), selenium (Se), cobalt (Co), and chromium (Cr)) in blood and brain of rats. Sixteen male albino rats weighing 180-200 g were divided into two groups (8 rats/group). Sildenafil (Viagra, Pfizer Inc.) was dissolved in saline and administered at a dose of 10mg/kg i.p. (0.5 ml volume) to rats in the treated group every 72 h for 12 injections. Rats in the control group were administered the same volume of saline as in treated group. All rats were sacrificed 24h after the last injection. Blood samples were collected and serum was separated and stored at -20°C. Brains were dissected and stored frozen until analysis. Trace elements concentrations were determined by flame emission atomic absorption spectrophotometer. Results showed that sildenafil injection significantly (P<0.05) increased serum and brain Se and Cu concentrations. Moreover, sildenafil increased the Cr concentration in the brain tissue. It was concluded that sildenafil citrate administration increased serum Se and Cu as well as, increased brain Se, Cu, and Cr concentrations in rats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats

    Science.gov (United States)

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-01-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (PMRI analysis demonstrated moderate improvement in water diffusion along the spinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (P<0.05). The number of brain stem and motor cortex FG-positive neurons in group M was significantly higher than in group C. The present study demonstrated that delivery of activated microglia directly into the injured spinal cord gives some

  2. Effect of glycyrrhizin on traumatic brain injury in rats and its mechanism

    Directory of Open Access Journals (Sweden)

    Gu Xiangjin

    2014-02-01

    Full Text Available 【Abstract】Objective: To investigate the neuroprotective effects of glycyrrhizin (Gly as well as its effect on expression of high-mobility group box 1 (HMGB1 in rats after traumatic brain injury (TBI. Methods: Male Sprague-Dawley rats were randomly divided into three groups: sham group, TBI group, and TBI+Gly group (n=36 per group. Rat TBI model was made by using the modified Feeney’s method. In TBI+Gly group, Gly was administered intravenously at a dosage of 10 mg/kg 30 min after TBI. At 24 h after TBI, motor function and brain water content were evaluated. Meanwhile, HMGB1/HMGB1 receptors including toll-like receptor 4 (TLR4 and receptor for advanced glycation end products (RAGE/nuclear factor- κB(NF- κB signaling pathway and inflammatory cytokines in the injured brain tissues were detected using quantitative real-time polymerase chain reaction, western blot, electrophoretic mobility shift assay and enzyme-linked immunosorbent assay. Furthermore, HMGB1, RAGE and TLR4 immunohistochemistry and apoptosis were analyzed. Results: Beam walking performance impairment and brain edema were significantly reduced in TBI+Gly group compared with TBI group; meanwhile, the over-expressions of HMGB1/HMGB1 receptors (TLR4 and RAGE/NF-κB DNA-binding activity and inflammatory cytokines were inhibited. The percentages of HMGB1, RAGE and TLR4- positive cells and apoptotic cells were respectively 58.37%±5.06%, 54.15%±4.65%, 65.50%± 4.83%, 52.02%± 4.63% in TBI group and 39.99%±4.99%, 34.87%±5.02%, 43.33%±4.54%, 37.84%±5.16% in TBI+Gly group (all P<0.01 compared with TBI group. Conclusion: Gly can reduce secondary brain injury and improve outcomes in rat following TBI by down-regulation of HMGB1/HMGB1 receptors (TLR4 and RAGE/NF-κB - mediated inflammatory responses in the injured rat brain.

  3. Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats.

    Science.gov (United States)

    Haas, Clarissa B; Kalinine, Eduardo; Zimmer, Eduardo R; Hansel, Gisele; Brochier, Andressa W; Oses, Jean P; Portela, Luis V; Muller, Alexandre P

    2016-11-01

    Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-β, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.

  4. The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinsons disease rats

    OpenAIRE

    Chen, Yuan; Lian, Yajun; Ma, Yunqing; Wu, Chuanjie; Zheng, Yake; Xie, Nanchang

    2017-01-01

    The expression and significance of tyrosine hydroxylase (TH) in brain tissue of rats with Parkinson's disease (PD) were explored and analyzed. A total of 120 clean-grade and healthy adult Wistar rats weighing 180–240 g were randomly divided equally into four groups according to the random number table method. Rats were sacrificed before and after the model establishment for 3, 6 or 8 weeks. The number of revolutions in rats was observed and the relative expression of TH mRNA in brain tissue w...

  5. Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats.

    Science.gov (United States)

    Vasatkova, Anna; Krizova, Sarka; Krystofova, Olga; Adam, Vojtech; Zeman, Ladislav; Beklova, Miroslava; Kizek, Rene

    2009-01-01

    The aim of this study is to determine level of metallothioneins (MTs) in brain tissues of rats administered by feed mixtures with different content of mouldy wheat or fungi. Selected male laboratory rats of Wistar albino at age of 28 days were used in our experiments. The rats were administered by feed mixtures with different content of vitamins, naturally mouldy wheat or fungi for 28 days. At the very end of the experiment, the animals were put to death and brains were sampled. MT level was determined by differential pulse voltammetry Brdicka reaction. We found that MTs' level in brain tissues from rats administered by standard feed mixtures was significantly higher compared to the level of MTs in rats supplemented by vitamins. Further we studied the effect of supplementation of naturally mouldy wheat on MTs level in rats. In mouldy wheat we detected the presence of following fungi species: Mucor spp., Absidia spp., Penicillium spp., Aspergillus spp. and Fusarium spp. Moreover we also identified and quantified following mycotoxins - deoxynivalenol, zearalenone, T2-toxin and aflatoxins. Level of MTs determined in rats treated with 33 or 66% of mouldy wheat was significantly lower compared to control ones. On the other hand rats treated with 100% of mouldy wheat had less MTs but not significantly. Supplementation of vitamins to rats fed by mouldy wheat had adverse effect on MTs level compared to rats with no other supplementation by vitamins. Moreover vitamins supplementation has no effect on MTs level in brain tissues of rats treated or non-treated with Ganoderma lucidum L. Both mycotoxins and vitamins have considerable effect on level of MTs in brain tissues. It can be assumed that the administered substances markedly influence redox metabolism, which could negatively influence numerous biochemical pathways including those closely related with MTs.

  6. Insulin-like growth factor II messenger ribonucleic acids are synthesized in the choroid plexus of the rat brain

    International Nuclear Information System (INIS)

    Hynes, M.A.; Brooks, P.J.; Van Wyk, J.J.; Lund, P.K.

    1988-01-01

    Previous studies demonstrating the presence of immunoreactive insulin-like growth factors (IGFs) and their receptors in the brain suggest a role of the IGFs in the central nervous system. IGF-II has been implicated as the predominant IGF in brain of mature animals based on studies of immunoreactive peptide and of IGF-II mRNAs. To obtain information about the sites of synthesis of IGF-II in adult rat brain, a 32 P-labeled 31 base long synthetic oligodeoxyribonucleotide complementary in sequence to trailer peptide coding sequences in rat IGF-II mRNA (IGF-II 31 mer) was hybridized with coronal sections of fixed rat brain. The IGF-II 31 mer showed specific hybridization with the choroid plexus throughout rat brain, whereas in other brain regions, structures or cells, hybridization was not discernibly above background. These findings suggest that the choroid plexus is a primary site of synthesis of IGF-II, a probable source of IGF-II in cerebrospinal fluid, and a potential source of IGF-II for actions on target cells within the adult rat brain

  7. Protective Effects of Edaravone in Adult Rats with Surgery and Lipopolysaccharide Administration-Induced Cognitive Function Impairment.

    Directory of Open Access Journals (Sweden)

    Peiqi Wang

    Full Text Available Postoperative cognitive dysfunction (POCD is a clinical syndrome characterized by cognitive declines in patients after surgery. Previous studies have suggested that surgery contributed to such impairment. It has been proven that neuroinflammation may exacerbate surgery-induced cognitive impairment in aged rats. The free radical scavenger edaravone has high blood brain barrier permeability, and was demonstrated to effectively remove free radicals from the brain and alleviate the development of POCD in patients undergoing carotid endarterectomy, suggesting its potential role in preventing POCD. For this reason, this study was designed to determine whether edaravone is protective against POCD through its inhibitory effects on inflammatory cytokines and oxidative stress. First, Sprague Dawley adult male rats were administered 3 mg/kg edaravone intraperitoneally after undergoing a unilateral nephrectomy combined with lipopolysaccharide injection. Second, behavioral parameters related to cognitive function were recorded by fear conditioning and Morris Water Maze tests. Last, superoxide dismutase activities and malondialdehyde levels were measured in the hippocampi and prefrontal cortex on postoperative days 3 and 7, and microglial (Iba1 activation, p-Akt and p-mTOR protein expression, and synaptic function (synapsin 1 were also examined 3 and 7 days after surgery. Rats that underwent surgery plus lipopolysaccharide administration showed significant impairments in spatial and working memory, accompanied by significant reductions in hippocampal-dependent and independent fear responses. All impairments were attenuated by treatment with edaravone. Moreover, an abnormal decrease in superoxide dismutase activation, abnormal increase in malondialdehyde levels, significant increase in microglial reactivity, downregulation of p-Akt and p-mTOR protein expression, and a statistically significant decrease in synapsin-1 were observed in the hippocampi and

  8. Protective Effects of Edaravone in Adult Rats with Surgery and Lipopolysaccharide Administration-Induced Cognitive Function Impairment.

    Science.gov (United States)

    Wang, Peiqi; Cao, Jiangbei; Liu, Na; Ma, Li; Zhou, Xueyue; Zhang, Hong; Wang, Yongan

    2016-01-01

    Postoperative cognitive dysfunction (POCD) is a clinical syndrome characterized by cognitive declines in patients after surgery. Previous studies have suggested that surgery contributed to such impairment. It has been proven that neuroinflammation may exacerbate surgery-induced cognitive impairment in aged rats. The free radical scavenger edaravone has high blood brain barrier permeability, and was demonstrated to effectively remove free radicals from the brain and alleviate the development of POCD in patients undergoing carotid endarterectomy, suggesting its potential role in preventing POCD. For this reason, this study was designed to determine whether edaravone is protective against POCD through its inhibitory effects on inflammatory cytokines and oxidative stress. First, Sprague Dawley adult male rats were administered 3 mg/kg edaravone intraperitoneally after undergoing a unilateral nephrectomy combined with lipopolysaccharide injection. Second, behavioral parameters related to cognitive function were recorded by fear conditioning and Morris Water Maze tests. Last, superoxide dismutase activities and malondialdehyde levels were measured in the hippocampi and prefrontal cortex on postoperative days 3 and 7, and microglial (Iba1) activation, p-Akt and p-mTOR protein expression, and synaptic function (synapsin 1) were also examined 3 and 7 days after surgery. Rats that underwent surgery plus lipopolysaccharide administration showed significant impairments in spatial and working memory, accompanied by significant reductions in hippocampal-dependent and independent fear responses. All impairments were attenuated by treatment with edaravone. Moreover, an abnormal decrease in superoxide dismutase activation, abnormal increase in malondialdehyde levels, significant increase in microglial reactivity, downregulation of p-Akt and p-mTOR protein expression, and a statistically significant decrease in synapsin-1 were observed in the hippocampi and prefrontal cortices of

  9. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  10. Relationship between catalase activity and uptake of elemental mercury by rat brain

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1983-01-01

    Uptake of mercury by brain after intravenous injection of elemental mercury was investigated in the rat. Catalase activity was inhibited by aminotriazole either by intraperitoneal affecting catalase in most tissues of the animal or by intraventricular injections affecting catalase in the brain selectively. Uptake of elemental mercury by rat brain was not influenced by intraperitoneal administration of aminotriazole resulting in 50% inhibition of brain catalase. However, when the inhibitor was injected intraventricularly in concentrations to give a 50% inhibition of brain catalase, it was shown that the mercury uptake by brain was significantly decreased. In the latter case when only brain catalase was inhibited and the supply of elemtal mercury to brain was maintained, mercury uptake by brain was proportional to the activity of catalase in brain tissue and to the injected amount of elemental mercury. Contrary to the intraventricular injection of aminotriazole, in animals recieving aminotriazole intraperitoneally prior to elemental mercury injection, we suggest that the lower activity of brain catalse is compensated by an increased supply of elemtal mercury caused by the generally lower oxidation rate in the animal. This view is supported by the finding that mercury uptake by liver increased due to aminotriazole intraperitoneally although activity of catalase was depressed. (author)

  11. Demonstration of endogenous imipramine like material in rat brain

    International Nuclear Information System (INIS)

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-01-01

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits [ 3 H] imipramine specific binding and mimics the inhibitory effect of imipramine on [ 3 H] serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits [ 3 H] imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum

  12. Measurement of tritiated norepinephrine metabolism in intact rat brain

    International Nuclear Information System (INIS)

    Levitt, M.; Kowalik, S.; Barkai, A.I.

    1983-01-01

    A procedure for the study of NE metabolism in the intact rat brain is described. The method involves ventriculocisternal perfusion of the adult male rat with artificial CSF containing [ 3 H]NE. Radioactivity in the perfusate associated with NE and its metabolites 3,4-dihydroxymandelic acid (DOMA), 3,4-dihydroxphenylethyleneglycol (DHPG), 3-methoxy-4-hydroxymandelic acid (VMA), 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), and normetanephrine (NMN) is separated using high-performance liquid chromatography (HPLC). After 80 min the radioactivity in the perfusate reaches an apparent steady-state. Analysis of the steady-state samples shows higher activity in the fractions corresponding to DHPG and MHPG than in those corresponding to DOMA and VMA, confirming glycol formation as the major pathway of NE metabolism in rat brain. Pretreatment with an MAO inhibitor (tranylcypromine) results in a marked decrease in the deaminated metabolites DHPG and MHPG and a concurrent increase in NMN. The results indicate this to be a sensitive procedure for the in vivo determination of changes in NE metabolism. (Auth.)

  13. Effects of acupuncture on tissue oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1978-04-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by smypathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture points (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible and was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase in inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes increased brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients.

  14. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats.

    Science.gov (United States)

    Shumake, Jason; Colorado, Rene A; Barrett, Douglas W; Gonzalez-Lima, F

    2010-07-09

    Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for the treatment of affective disorders. We hypothesized that fluoxetine antidepressant effects may be mediated by decreasing metabolism in the habenula and increasing metabolism in the ventral tegmental area. We measured the effects of fluoxetine on forced swim behavior and regional brain cytochrome oxidase activity in congenitally helpless rats treated for 2 weeks with fluoxetine (5mg/kg, i.p., daily). Fluoxetine reduced immobility in the forced swim test as anticipated, but congenitally helpless rats responded in an atypical manner, i.e., increasing climbing without affecting swimming. As hypothesized, fluoxetine reduced metabolism in the habenula and increased metabolism in the ventral tegmental area. In addition, fluoxetine reduced the metabolism of the hippocampal dentate gyrus and dorsomedial prefrontal cortex. This study provided the first detailed mapping of the regional brain effects of an antidepressant drug in congenitally helpless rats. All of the effects were consistent with previous studies that have metabolically mapped the effects of serotonergic antidepressants in the normal rat brain, and were in the predicted direction of metabolic normalization of the congenitally helpless rat for all affected brain regions except the prefrontal cortex. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  16. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain.

    Science.gov (United States)

    Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2014-03-01

    Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

  17. Oxytocin biotransformation in the rat limbic brain

    NARCIS (Netherlands)

    Burbach, J.P.H.; Schotman, P.; Kloet, E.R. de

    2006-01-01

    Two peptide fragments of oxytocin were isolated by high-pressure liquid chromatography from digests of oxytocin obtained after exposure to a SPM preparation of the rat limbic brain. The structures of these peptides, being Gln-Asn-Cys(O)x-Pro-Leu-GlyNH2 and Gln-Asn-Cys(-S-S-Cys)-Pro-Leu-GlyNH2, were

  18. Pathological and MRI study on experimental heroin-induced brain damage in rats

    International Nuclear Information System (INIS)

    Long Yu; Kong Xiangquan; Xu Haibo; Liu Dingxi; Yuan Ren; Yu Qun; Xiong Yin; Deng Xianbo

    2005-01-01

    Objective: To study the pathological characteristics of the heroin-induced brain damage in rats, and to assess the diagnostic value of MRI. Methods: A total of 40 adult Wistar rats were studied, 32 rats were used for injecting heroin as heroin group and 8 were used for injecting saline as control group. The heroin dependent rat model was established by administering heroin (ip) in the ascending dosage schedule (0.5 mg/kg), three times a day (at 8:00, 12:00, and 18:00). The control group was established by the same way by injection with saline. The withdrawal scores were evaluated with imp roved criterion in order to estimate the degree of addiction after administering naloxone. Based on the rat model of heroin dependence, the rat model of heroin-induced brain damage was established by the same way with increasing heroin dosage everyday. Two groups were examined by using MRI, light microscope, and electron microscope, respectively in different heroin accumulated dosage (918, 1580, 2686, 3064, 4336, and 4336 mg/kg withdrawal after 2 weeks). Results: There was statistically significant difference (t=9.737, P<0.01) of the withdrawal scores between the heroin dependent group and the saline group (23.0 ± 4.4 and 1.4 ± 0.5, respectively). It suggested that the heroin dependent rat model be established successfully. In different accumulated dosage ( from 1580 mg/kg to 4336 mg/kg), there were degeneration and death of nerve cells in cerebrum and cerebellum of heroin intoxicated rats, and it suggested that the rat model of heroin-induced brain damage was established successfully. The light microscope and electron microscope features of heroin-induced brain damage in rats included: (1) The nerve cells of cerebral cortex degenerated and died. According to the heroin accumulated dosage, there were statistically significant difference of the nerve cell deaths between 4336 mg/kg group and 1580 mg/kg group or control group (P=0.024 and P=0.032, respectively); (2) The main

  19. Vitamin-C protect ethanol induced apoptotic neuro degeneration in postnatal rat brain

    International Nuclear Information System (INIS)

    Naseer, M.I.; Najeebullah; Ikramullah; Zubair, H.; Hassan, M.; Yang, B.C.

    2010-01-01

    Objective: To evaluate ethanol effects to induced activation of caspsae-3, and to observe the protective effects of Vitamin C (vit-C) on ethanol-induced apoptotic neuro degeneration in rat cortical area of brain. Methodology: Administration of a single dose of ethanol in 7-d postnatal (P7) rats triggers activation of caspase-3 and widespread apoptotic neuronal death. Western blot analysis, cells counting and Nissl staining were used to elucidate possible protective effect of vit-C against ethanol-induced apoptotic neuro degeneration in brain. Results: The results showed that ethanol significantly increased caspase-3 expression and neuronal apoptosis. Furthermore, the co-treatment of vit-C along with ethanol showed significantly decreased expression of caspase-3 as compare to control group. Conclusion: Our findings indicate that vit-C can prevent some of the deleterious effect of ethanol on developing rat brain when given after ethanol exposure and can be used as an effective protective agent for Fetal Alcohol Syndrome (FAS). (author)

  20. Complexity of the Microglial Activation Pathways that Drive Innate Host Responses During Lethal Alphavirus Encephalitis in Mice

    Directory of Open Access Journals (Sweden)

    Nilufer Esen

    2012-04-01

    Full Text Available Microglia express multiple TLRs (Toll-like receptors and provide important host defence against viruses that invade the CNS (central nervous system. Although prior studies show these cells become activated during experimental alphavirus encephalitis in mice to generate cytokines and chemokines that influence virus replication, tissue inflammation and neuronal survival, the specific PRRs (pattern recognition receptors and signalling intermediates controlling microglial activation in this setting remain unknown. To investigate these questions directly in vivo, mice ablated of specific TLR signalling molecules were challenged with NSV (neuroadapted Sindbis virus and CNS viral titres, inflammatory responses and clinical outcomes followed over time. To approach this problem specifically in microglia, the effects of NSV on primary cells derived from the brains of wild-type and mutant animals were characterized in vitro. From the standpoint of the virus, microglial activation required viral uncoating and an intact viral genome; inactivated virus particles did not elicit measurable microglial responses. At the level of the target cell, NSV triggered multiple PRRs in microglia to produce a broad range of inflammatory mediators via non-overlapping signalling pathways. In vivo, disease survival was surprisingly independent of TLR-driven responses, but still required production of type-I IFN (interferon to control CNS virus replication. Interestingly, the ER (endoplasmic reticulum protein UNC93b1 facilitated host survival independent of its known effects on endosomal TLR signalling. Taken together, these data show that alphaviruses activate microglia via multiple PRRs, highlighting the complexity of the signalling networks by which CNS host responses are elicited by these infections.

  1. Specific binding of 125I-salmon calcitonin to rat brain

    International Nuclear Information System (INIS)

    Nakamuta, Hiromichi; Furukawa, Shinichi; Koida, Masao; Yajima, Haruaki; Orlowski, R.C.

    1981-01-01

    Rat brain particulate fraction was found to contain binding sites for 125 I-Salmon Calcitonin-I ( 125 I-SCT). Maximum binding occurred in the physiological pH range of 7.25 - 7.5. The binding reaction proceeded in a temperature-dependent manner. Binding sites were broadly distributed among the various rat brain regions and considerable regional differences existed in the affinity and density as detected by Scatchard analysis. The highest affinity was recorded in the case of the hypothalamus and the lowest in the case of the cerebellum. The KD (nM) and Bmax (pmole/mg protein) estimated for the binding to four regions were as follows: hypothalamus: 1.4 and 0.19, midbrain, hippocampus plus striatum: 1.5 and 0.08, pon plus medulla oblongata: 3.0 and 0.15 and cerebellum: 8.3 and 0.20. Using a particulate fraction of rat brain void of cerebellum and cortices, a binding assay for calcitonins was developed. Binding of 125 I-SCT was inhibited by unlabeled salmon, [Asu sup(1,7)]-eel and porcine calcitonins in a dose-dependent manner and the IC50s were 2.0, 8.0 and 30 nM, respectively. The IC50s were comparable to those estimated using a kidney particulate fraction. Human calcitonin, β-endorphin and substance P were weak inhibitors of the binding. Other peptides, drugs and putative neurotransmitters tested (totally 23 substances) failed to inhibit the binding at concentrations of 1.0 μM. The physiological significance of brain binding sites for calcitonin, with the possibility that the brain may possess endogenous ligands for these sites are discussed. (author)

  2. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    Directory of Open Access Journals (Sweden)

    Marco Sifringer

    2015-01-01

    Full Text Available Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.

  3. Soft-food diet induces oxidative stress in the rat brain.

    Science.gov (United States)

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. The Plant-Derived Chalcone 2,2′,5′-Trihydroxychalcone Provides Neuroprotection against Toll-Like Receptor 4 Triggered Inflammation in Microglia

    Directory of Open Access Journals (Sweden)

    Manasi Jiwrajka

    2016-01-01

    Full Text Available Chalcones are plant metabolites with potential for therapeutic exploitation as antioxidant, anti-inflammatory, and antiproliferative agents. Here we explored the neuroprotective effects of 2,2′,5′-trihydroxychalcone (225THC, a potent antioxidant with radical-scavenging properties. 225THC was found to be a potent inhibitor of apoptosis in stimulated primary rat neuronal cultures. This was likely mediated by an anti-inflammatory effect on microglial cells since 225THC inhibited LPS-stimulated TNF-α and IL-6 secretion from primary rat microglia and modulated the cytokine/chemokine profile of BV2 microglial cells. Additionally, 225THC inhibited LPS-evoked inducible nitric oxide synthase expression but did not influence endogenous superoxide generation. Microglial flow cytometric analyses indicated the 225THC treatment induced a shift from an M1-like phenotype to a more downregulated microglial profile. Taken together these data suggest that the chalcone 2,2′,5′-trihydroxychalcone can modulate neuroinflammatory activation in brain-derived microglia and holds promise as a therapeutic in neuroinflammatory conditions.

  5. Response of rat brain protein synthesis to ethanol and sodium barbital

    International Nuclear Information System (INIS)

    Tewari, S.; Greenberg, S.A.; Do, K.; Grey, P.A.

    1987-01-01

    Central nervous system (CNS) depressants such as ethanol and barbiturates under acute or chronic conditions can induce changes in rat brain protein synthesis. While these data demonstrate the individual effects of drugs on protein synthesis, the response of brain protein synthesis to alcohol-drug interactions is not known. The goal of the present study was to determine the individual and combined effects of ethanol and sodium barbital on brain protein synthesis and gain an understanding of the mechanisms by which these alterations in protein synthesis are produced. Specifically, the in vivo and in vitro effects of sodium barbital (one class of barbiturates which is not metabolized by the hepatic tissue) were examined on brain protein synthesis in rats made physically dependent upon ethanol. Using cell free brain polysomal systems isolated from Control, Ethanol and 24 h Ethanol Withdrawn rats, data show that sodium barbital, when intubated intragastrically, inhibited the time dependent incorporation of 14 C) leucine into protein by all three groups of ribosomes. Under these conditions, the Ethanol Withdrawn group displayed the largest inhibition of the 14 C) leucine incorporation into protein when compared to the Control and Ethanol groups. In addition, sodium barbital when added at various concentrations in vitro to the incubation medium inhibited the incorporation of 14 C) leucine into protein by Control and Ethanol polysomes. The inhibitory effects were also obtained following preincubation of ribosomes in the presence of barbital but not cycloheximide. Data suggest that brain protein synthesis, specifically brain polysomes, through interaction with ethanol or barbital are involved in the functional development of tolerance. These interactions may occur through proteins or polypeptide chains or alterations in messenger RNA components associated with the ribosomal units

  6. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes

    Science.gov (United States)

    Gonzalez-Carter, Daniel A.; Leo, Bey Fen; Ruenraroengsak, Pakatip; Chen, Shu; Goode, Angela E.; Theodorou, Ioannis G.; Chung, Kian Fan; Carzaniga, Raffaella; Shaffer, Milo S. P.; Dexter, David T.; Ryan, Mary P.; Porter, Alexandra E.

    2017-03-01

    Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson’s disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity.

  7. Metabolic fate of 13N-labeled ammonia in rat brain

    International Nuclear Information System (INIS)

    Cooper, A.J.L.; McDonald, J.M.; Gelbard, A.S.; Gledhill, R.F.; Duffy, T.E.

    1979-01-01

    After infusion of physiological concentrations of [ 13 N]ammonia for 10 min via one internal carotid artery, the relative specific activities of glutamate, glutamine (α-amino), and glutamine (amide) in rat brain were approximately 1:5:400, respectively. Analysis of metabolites, after infusion of [ 13 N]ammonia into one lateral cerebral ventricle, indicated that ammonia entering the brain from the cerebrospinal fluid is also metabolized in a small glutamate pool. Pretreatment with methionine sulfoximine led to a decrease in the label present in brain glutamine following carotid artery infusion of [ 13 N]ammonia. 13 N activity in brain glutamate was greater than in the α-amino group of glutamine. The amount of label recovered in the right cerebral hemisphere, 5 s after a rapid bolus injection of [ 13 N]ammonia via the right common carotid artery, was independent of concentration within the bolus over a 1000-fold range indicating that ammonia enters the brain largely by diffusion. In normal rats approximately 60% of the label recovered in brain was incorporated into glutamine, indicating that the t 1 /sub// 2 for conversion of ammonia to glutamine in the small pool is in the range of 1 to 3 s or less. The data emphasize the importance of the small pool glutamine synthetase as a metabolic trap for the detoxification of blood-borne and endogenously produced brain ammonia. The possibility that the astrocytes represent the anatomical site of the small pool is considered

  8. Are microglia minding us? Digging up the unconscious mind-brain relationship from a neuropsychoanalytic approach.

    Directory of Open Access Journals (Sweden)

    Takahiro A. Kato

    2013-02-01

    Full Text Available The unconscious mind-brain relationship remains unresolved. From the perspective of neuroscience, neuronal networks including synapses have been dominantly believed to play crucial roles in human mental activities, while glial contribution to mental activities has long been ignored. Recently, it has been suggested that microglia, glial cells with immunological/inflammatory functions, play important roles in psychiatric disorders. Newly revealed microglial roles, such as constant direct contact with synapses even in normal brain, have defied the common traditional belief that microglia do not contribution to neuronal networks. Recent human neuroeconomic investigations with healthy volunteers using minocycline, an antibiotic with inhibitory effects on microglial activation, suggest that microglia may unconsciously modulate human social behaviors as noise.We herein propose a novel unconscious mind structural system in the brain centering on microglia from a neuropsychoanalytic approach. At least to some extent, microglial activation in the brain may activate unconscious drives as psychological immune memory/reaction in the mind, and result in various emotions, traumatic reactions, psychiatric symptoms including suicidal behaviors, and (psychoanalytic transference during interpersonal relationships. Microglia have the potential to bridge the huge gap between neuroscience, biological psychiatry, psychology and psychoanalysis as a key player to connect the conscious and the unconscious world.

  9. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7.

    Science.gov (United States)

    Coleman, Leon G; Zou, Jian; Crews, Fulton T

    2017-01-25

    Toll-like receptor (TLR) signaling is emerging as an important component of neurodegeneration. TLR7 senses viral RNA and certain endogenous miRNAs to initiate innate immune responses leading to neurodegeneration. Alcoholism is associated with hippocampal degeneration, with preclinical studies linking ethanol-induced neurodegeneration with central innate immune induction and TLR activation. The endogenous miRNA let-7b binds TLR7 to cause neurodegeneration. TLR7 and other immune markers were assessed in postmortem human hippocampal tissue that was obtained from the New South Wales Tissue Bank. Rat hippocampal-entorhinal cortex (HEC) slice culture was used to assess specific effects of ethanol on TLR7, let-7b, and microvesicles. We report here that hippocampal tissue from postmortem human alcoholic brains shows increased expression of TLR7 and increased microglial activation. Using HEC slice culture, we found that ethanol induces TLR7 and let-7b expression. Ethanol caused TLR7-associated neuroimmune gene induction and initiated the release let-7b in microvesicles (MVs), enhancing TLR7-mediated neurotoxicity. Further, ethanol increased let-7b binding to the danger signaling molecule high mobility group box-1 (HMGB1) in MVs, while reducing let-7 binding to classical chaperone protein argonaute (Ago2). Flow cytometric analysis of MVs from HEC media and analysis of MVs from brain cell culture lines found that microglia were the primary source of let-7b and HMGB1-containing MVs. Our results identify that ethanol induces neuroimmune pathology involving the release of let-7b/HMGB1 complexes in microglia-derived microvesicles. This contributes to hippocampal neurodegeneration and may play a role in the pathology of alcoholism.

  10. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    Science.gov (United States)

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  11. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    Directory of Open Access Journals (Sweden)

    Najmeh Kabiri

    2016-09-01

    Full Text Available The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99. Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly higher than the Sham group, although right hemispheres in all of the treated groups illustrated higher brain water content than the left ones. Brain anti-oxidant capacity elevated in the ischemic rats treated with Kombucha and in the Sham group. Brain and plasma malondialdehyde concentrations significantly decreased in both of the ischemic groups injected with Kombucha. The findings suggest that Kombucha tea could be useful for the prevention of cerebral damage.

  12. The Effect of Hydroxylated Fullerene Nanoparticles on Antioxidant Defense System in Brain Ischemia Rat

    Directory of Open Access Journals (Sweden)

    2017-05-01

    Full Text Available Background and Objectives: According to the previous findings, brain ischemia attenuates the brain antioxidant defense system. This study aimed to investigate the effect of hydroxylated fullerene nanoparticle on antioxidant defense system in ischemic brain rat. Methods: In this Experimental study, rats were divided into three groups (n=6 in each group: sham, ischemic control, and ischemic treatment group. Brain ischemia was induced by middle cerebral artery (MCA occlusion for 90 minutes followed by a 24-hour reperfusion. Ischemic treatment animals received fullerene nanoparticles intraperitoneally at a dose of 10mg/kg immediately after the end of MCA occlusion. After 24-h reperfusion period, brain catalase and superoxide dismutase (SOD, and glutathione activities were assessed by biochemical methods. The data were analyzed using one-way ANOVA and Tukey post-hoc test. Results: The mean glutathione level and catalase and SOD activities in sham animals were 1±0.18%, 1±0.20%, and 1±0.04%, respectively. Induction of brain ischemia decreased the value of glutathione level and catalase and SOD activities in control ischemic rats and their values were obtained to be 0.55±0.09%, 0.44±0.05%, and 0.86±0.02%, respectively. Fullerene significantly increased the activities of catalase (0.93±0.29% and SOD (1.33±0.22% in ischemic treatment group compared to ischemic control rats, but did not change the glutathione level (0.52±0.25%. Conclusion: The results of this study showed that treatment with fullerene nanoparticles improves the brain antioxidant defense system, which is weakened during brain ischemia, through increasing catalase and SOD activities.

  13. Effects of acupuncture on tissue-oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1977-01-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by sympathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex of the animals through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture loci (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible. The effect was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase of inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes an increase of brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients. Dilatation of cerebral vascular vessels and improvement of autoregulation in the brain by acupuncture stimulation may also explain the effectiveness of acupuncture in the treatment of migraine headache.

  14. Regulation of brain aromatase activity in rats

    International Nuclear Information System (INIS)

    Roselli, C.E.; Ellinwood, W.E.; Resko, J.A.

    1984-01-01

    The distribution and regulation of aromatase activity in the adult rat brain with a sensitive in vitro assay that measures the amount of 3 H 2 O formed during the conversion of [1 beta- 3 H]androstenedione to estrone. The rate of aromatase activity in the hypothalamus-preoptic area (HPOA) was linear with time up to 1 h, and with tissue concentrations up to 5 mgeq/200 microliters incubation mixture. The enzyme demonstrated a pH optimum of 7.4 and an apparent Michaelis-Menten constant (Km) of 0.04 microns. The greatest amount of aromatase activity was found in amygdala and HPOA from intact male rats. The hippocampus, midbrain tegmentum, cerebral cortex, cerebellum, and anterior pituitary all contained negligible enzymatic activity. Castration produced a significant decrease in aromatase activity in the HPOA, but not in the amygdala or cerebral cortex. The HPOAs of male rats contained significantly greater aromatase activity than the HPOAs of female rats. In females, this enzyme activity did not change during the estrous cycle or after ovariectomy. Administration of testosterone to gonadectomized male and female rats significantly enhanced HPOA aromatase activities to levels approximating those found in HPOA from intact males. Therefore, the results suggest that testosterone, or one of its metabolites, is a major steroidal regulator of HPOA aromatase activity in rats

  15. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    Science.gov (United States)

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.

  16. Imaging of aromatase distribution in rat and rhesus monkey brains with [11C]vorozole

    International Nuclear Information System (INIS)

    Takahashi, Kayo; Bergstroem, Mats; Fraendberg, Pernilla; Vesstroem, Eva-Lotta; Watanabe, Yasuyoshi; Langstroem, Bengt

    2006-01-01

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [ 11 C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K d of [ 11 C]vorozole binding to aromatase in MA was determined to be 0.60±0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [ 11 C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons

  17. Effects of ebselen on ischemia/reperfusion injury in rat brain.

    Science.gov (United States)

    Aras, M; Altaş, M; Meydan, S; Nacar, E; Karcıoğlu, M; Ulutaş, K T; Serarslan, Y

    2014-10-01

    Interruption of blood flow may result in considerable tissue damage via ischemia/reperfusion (I/R) injury-induced oxidative stress in brain tissues. The aim of the present study was to investigate the effects of Ebselen treatment in short-term global brain I/R injury in rats. The study was carried out on 27 Wistar-albino rats, divided into three groups including Sham group (n = 11), I/R group (n = 8) and I/R+Ebselen group (n = 8). Malondialdehyde (MDA) levels were significantly increased in I/R group in comparison with the Sham group and I/R+Ebselen group (p Ebselen (p Ebselen group when compared with Sham group (p Ebselen group when compared with Sham (p Ebselen showed morphological improvement. Ebselen has neuron-protective effects due to its antioxidant properties as shown by the decrease in MDA overproduction, increase in SOD activity and the histological improvement after administration of Ebselen to I/R in brain tissue.

  18. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    Science.gov (United States)

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function. Copyright © 2016 the authors 0270-6474/16/3612106-11$15.00/0.

  19. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    Science.gov (United States)

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  20. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors.

    Science.gov (United States)

    Yang, Yan-Wei; Wang, Yun-Lu; Lu, Jia-Kai; Tian, Lei; Jin, Mu; Cheng, Wei-Ping

    2018-03-01

    The neuroprotective effect against spinal cord ischemia/reperfusion injury in rats exerted by delayed xenon post-conditioning is stronger than that produced by immediate xenon post-conditioning. However, the mechanisms underlying this process remain unclear. Activated microglia are the main inflammatory cell type in the nervous system. The release of pro-inflammatory factors following microglial activation can lead to spinal cord damage, and inhibition of microglial activation can relieve spinal cord ischemia/reperfusion injury. To investigate how xenon regulates microglial activation and the release of inflammatory factors, a rabbit model of spinal cord ischemia/reperfusion injury was induced by balloon occlusion of the infrarenal aorta. After establishment of the model, two interventions were given: (1) immediate xenon post-conditioning-after reperfusion, inhalation of 50% xenon for 1 hour, 50% N 2 /50%O 2 for 2 hours; (2) delayed xenon post-conditioning-after reperfusion, inhalation of 50% N 2 /50%O 2 for 2 hours, 50% xenon for 1 hour. At 4, 8, 24, 48 and 72 hours after reperfusion, hindlimb locomotor function was scored using the Jacobs locomotor scale. At 72 hours after reperfusion, interleukin 6 and interleukin 10 levels in the spinal cord of each group were measured using western blot assays. Iba1 levels were determined using immunohistochemistry and a western blot assay. The number of normal neurons at the injury site was quantified using hematoxylin-eosin staining. At 72 hours after reperfusion, delayed xenon post-conditioning remarkably enhanced hindlimb motor function, increased the number of normal neurons at the injury site, decreased Iba1 levels, and inhibited interleukin-6 and interleukin-10 levels in the spinal cord. Immediate xenon post-conditioning did not noticeably affect the above-mentioned indexes. These findings indicate that delayed xenon post-conditioning after spinal cord injury improves the recovery of neurological function by reducing

  1. Spinal Microgliosis Due to Resident Microglial Proliferation Is Required for Pain Hypersensitivity after Peripheral Nerve Injury

    Directory of Open Access Journals (Sweden)

    Nan Gu

    2016-07-01

    Full Text Available Peripheral nerve injury causes neuropathic pain accompanied by remarkable microgliosis in the spinal cord dorsal horn. However, it is still debated whether infiltrated monocytes contribute to injury-induced expansion of the microglial population. Here, we found that spinal microgliosis predominantly results from local proliferation of resident microglia but not from infiltrating monocytes after spinal nerve transection (SNT by using two genetic mouse models (CCR2RFP/+:CX3CR1GFP/+ and CX3CR1creER/+:R26tdTomato/+ mice as well as specific staining of microglia and macrophages. Pharmacological inhibition of SNT-induced microglial proliferation correlated with attenuated neuropathic pain hypersensitivities. Microglial proliferation is partially controlled by purinergic and fractalkine signaling, as CX3CR1−/− and P2Y12−/− mice show reduced spinal microglial proliferation and neuropathic pain. These results suggest that local microglial proliferation is the sole source of spinal microgliosis, which represents a potential therapeutic target for neuropathic pain management.

  2. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    Science.gov (United States)

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat

  3. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Science.gov (United States)

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  4. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.

    Science.gov (United States)

    Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang

    2017-06-27

    The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P control group compared to other three groups (P neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.

  5. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    International Nuclear Information System (INIS)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-01-01

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife

  6. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats

    DEFF Research Database (Denmark)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne

    2014-01-01

    , and aspartate and incorporation of (15)NH4(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation...... of (15)NH4(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH4(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined...

  7. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes.

    Science.gov (United States)

    Abbott, N Joan; Dolman, Diana E M; Drndarski, Svetlana; Fredriksson, Sarah M

    2012-01-01

    In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2

  8. Fingolimod against endotoxin-induced fetal brain injury in a rat model.

    Science.gov (United States)

    Yavuz, And; Sezik, Mekin; Ozmen, Ozlem; Asci, Halil

    2017-11-01

    Fingolimod is a sphingosine-1-phosphate receptor modulator used for multiple sclerosis treatment and acts on cellular processes such as apoptosis, endothelial permeability, and inflammation. We hypothesized that fingolimod has a positive effect on alleviating preterm fetal brain injury. Sixteen pregnant rats were divided into four groups of four rats each. On gestational day 17, i.p. endotoxin was injected to induce fetal brain injury, followed by i.p. fingolimod (4 mg/kg maternal weight). Hysterotomy for preterm delivery was performed 6 h after fingolimod. The study groups included (i) vehicle controls (i.p. normal saline only); (ii) positive controls (endotoxin plus saline); (iii) saline plus fingolimod; and (iv) endotoxin plus fingolimod treatment. Brain tissues of the pups were dissected for evaluation of interleukin (IL)-6, caspase-3, and S100β on immunohistochemistry. Maternal fingolimod treatment attenuated endotoxin-related fetal brain injury and led to lower immunoreactions for IL-6, caspase-3, and S100β compared with endotoxin controls (P < 0.0001 for all comparisons). Antenatal maternal fingolimod therapy had fetal neuroprotective effects by alleviating preterm birth-related fetal brain injury with inhibitory effects on inflammation and apoptosis. © 2017 Japan Society of Obstetrics and Gynecology.

  9. Multidimensional MRI-CT atlas of the naked mole-rat brain (Heterocephalus glaber).

    Science.gov (United States)

    Seki, Fumiko; Hikishima, Keigo; Nambu, Sanae; Okanoya, Kazuo; Okano, Hirotaka J; Sasaki, Erika; Miura, Kyoko; Okano, Hideyuki

    2013-01-01

    Naked mole-rats have a variety of distinctive features such as the organization of a hierarchical society (known as eusociality), extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI). Advanced MRI techniques such as diffusion tensor imaging (DTI), which generates high contrast images of fiber structures, can characterize unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D) images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualization of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.

  10. Fast and Accurate Rat Head Motion Tracking With Point Sources for Awake Brain PET.

    Science.gov (United States)

    Miranda, Alan; Staelens, Steven; Stroobants, Sigrid; Verhaeghe, Jeroen

    2017-07-01

    To avoid the confounding effects of anesthesia and immobilization stress in rat brain positron emission tomography (PET), motion tracking-based unrestrained awake rat brain imaging is being developed. In this paper, we propose a fast and accurate rat headmotion tracking method based on small PET point sources. PET point sources (3-4) attached to the rat's head are tracked in image space using 15-32-ms time frames. Our point source tracking (PST) method was validated using a manually moved microDerenzo phantom that was simultaneously tracked with an optical tracker (OT) for comparison. The PST method was further validated in three awake [ 18 F]FDG rat brain scans. Compared with the OT, the PST-based correction at the same frame rate (31.2 Hz) reduced the reconstructed FWHM by 0.39-0.66 mm for the different tested rod sizes of the microDerenzo phantom. The FWHM could be further reduced by another 0.07-0.13 mm when increasing the PST frame rate (66.7 Hz). Regional brain [ 18 F]FDG uptake in the motion corrected scan was strongly correlated ( ) with that of the anesthetized reference scan for all three cases ( ). The proposed PST method allowed excellent and reproducible motion correction in awake in vivo experiments. In addition, there is no need of specialized tracking equipment or additional calibrations to be performed, the point sources are practically imperceptible to the rat, and PST is ideally suitable for small bore scanners, where optical tracking might be challenging.

  11. Prenatal Immune Challenge in Mice Leads to Partly Sex-Dependent Behavioral, Microglial, and Molecular Abnormalities Associated with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Chin W. Hui

    2018-02-01

    Full Text Available Epidemiological studies revealed that environmental factors comprising prenatal infection are strongly linked to risk for later development of neuropsychiatric disorders such as schizophrenia. Considering strong sex differences in schizophrenia and its increased prevalence in males, we designed a methodological approach to investigate possible sex differences in pathophysiological mechanisms. Prenatal immune challenge was modeled by systemic administration of the viral mimic polyinosinic-polycytidylic acid (Poly I:C to C57BL/6 mice at embryonic day 9.5. The consequences on behavior, gene expression, and microglia—brain immune cells that are critical for normal development—were characterized in male vs. female offspring at adulthood. The cerebral cortex, hippocampus, and cerebellum, regions where structural and functional alterations were mainly described in schizophrenia patients, were selected for cellular and molecular analyses. Confocal and electron microscopy revealed most pronounced differences in microglial distribution, arborization, cellular stress, and synaptic interactions in the hippocampus of male vs. female offspring exposed to Poly I:C. Sex differences in microglia were also measured under both steady-state and Poly I:C conditions. These microglial alterations were accompanied by behavioral impairment, affecting for instance sensorimotor gating, in males. Consistent with these results, increased expression of genes related to inflammation was measured in cerebral cortex and hippocampus of males challenged with Poly I:C. Overall, these findings suggest that schizophrenia's higher incidence in males might be associated, among other mechanisms, with an increased microglial reactivity to prenatal immune challenges, hence determining disease outcomes into adulthood.

  12. Antioxidant potential properties of mushroom extract (Agaricus bisporus) against aluminum-induced neurotoxicity in rat brain.

    Science.gov (United States)

    Waly, Mostafa I; Guizani, Nejib

    2014-09-01

    Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.

  13. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Alejandro Lorón-Sánchez

    2016-01-01

    Full Text Available The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group or 0.01 mg/kg epinephrine (TBI-Epi group or no injection (TBI-0 and Sham-0 groups. Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal.

  14. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Science.gov (United States)

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  15. Fetal hypothalamic transplants into brain irradiated rats: Graft morphometry and host behavioral responses

    International Nuclear Information System (INIS)

    Pearlman, S.H.; Rubin, P.; White, H.C.; Wiegand, S.J.; Gash, D.M.

    1990-01-01

    This study was designed to test the hypothesis that neural implants can ameliorate or prevent some of the long-term changes associated with CNS irradiation. Using a rat model, the initial study focused on establishing motor, regulatory, and morphological changes associated with brain radiation treatments. Secondly, fetal hypothalamic tissue grafts were placed into the third ventricle of rats which had been previously irradiated. Adult male Long Evans rats received one of three radiation doses (15, 22.5, ampersand 30 Gy) or no radiation. Three days after irradiation, 7 animals in each dose group received an embryonic day 17 hypothalamic graft into the third ventricle while the remaining 8-9 animals in each group received injections of vehicle solution (sham). Few changes were observed in the 15 and 22.5 Gy animals, however rats in the 30 Gy treatment group showed stereotypic and ambulatory behavioral hyperactivity 32 weeks after irradiation. Regulatory changes in the high dose group included decreased growth rate and decreased urine osmolalities, but these measures were extremely variable among animals. Morphological results demonstrated that 30 Gy irradiated animals showed extensive necrosis primarily in the fimbria, which extended into the internal capsule, optic nerve, hippocampus, and thalamus. Hemorrhages were found in the hippocampus, thalamus, and fimbria. Defects in the blood-brain barrier also were evident by entry of intravascularly injected horseradish peroxidase into the parenchyma of the brain. Animals in the 30 Gy grafted group showed fewer behavioral changes and less brain damage than their sham grafted counterparts. Specifically, activity measures were comparable to normal levels, and a dilute urine was not found in the 30 Gy implanted rats. Morphological changes support these behavioral results since only two 30 Gy implanted rats showed necrosis

  16. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Immortalized sheep microglial cells are permissive to a diverse range of ruminant viruses.

    Science.gov (United States)

    Stanton, James B; Swanson, Beryl; Orozco, Edith; Muñoz-Gutiérrez, Juan F; Evermann, James F; Ridpath, Julia F

    2017-12-01

    Ruminants, including sheep and goats (small ruminants), are key agricultural animals in many parts of the world. Infectious diseases, including many viral diseases, are significant problems to efficient production of ruminants. Unfortunately, reagents tailored to viruses of ruminants, and especially small ruminants, are lacking compared to other animals more typically used for biomedical research. The purpose of this study was to determine the permissibility of a stably immortalized, sheep microglial cell line to viruses that are reported to infect ruminants: bovine viral diarrhea virus (BVDV), bovine herpesvirus 1 (BoHV-1), small ruminant lentiviruses (SRLV), and bovine respiratory syncytial virus (BRSV). Sublines A and H of previously isolated, immortalized, and characterized (CD14-positive) ovine microglial cells were used. Bovine turbinate cells and goat synovial membrane cells were used for comparison. Cytopathic changes were used to confirm infection of individual wells, which were then counted and used to calculate the 50% tissue culture infectious dose. Uninoculated cells served as negative controls and confirmed that the cells were not previously infected with these viruses using polymerase chain reaction (PCR). Inoculation of the two microglial cell sublines with laboratory and field isolates of BVDV, BoHV-1, and BRSV resulted in viral infection in a manner similar to bovine turbinate cells. Immortalized microglia cells are also permissive to SRLV, similar to goat synovial membrane cells. These immortalized sheep microglial cells provide a new tool for the study of ruminant viruses in ruminant microglial cell line.

  18. TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States

    Directory of Open Access Journals (Sweden)

    Laura Batti

    2016-06-01

    Full Text Available Neuropathic pain is a widespread chronic pain state that results from injury to the nervous system. Spinal microglia play a causative role in the pathogenesis of neuropathic pain through secretion of growth factors and cytokines. Here, we investigated the contribution of TMEM16F, a protein that functions as a Ca2+-dependent ion channel and a phospholipid scramblase, to microglial activity during neuropathic pain. We demonstrate that mice with a conditional ablation of TMEM16F in microglia do not develop mechanical hypersensitivity upon nerve injury. In the absence of TMEM16F, microglia display deficits in process motility and phagocytosis. Moreover, loss of GABA immunoreactivity upon injury is spared in TMEM16F conditional knockout mice. Collectively, these data indicate that TMEM16F is an essential component of the microglial response to injury and suggest the importance of microglial phagocytosis in the pathogenesis of neuropathic pain.

  19. Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools

    DEFF Research Database (Denmark)

    Kelsen, Jesper; Larsen, Marianne; Sørensen, Jens Christian H.

    2010-01-01

    We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats ...

  20. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    ) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18......Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP...

  1. An HPLC tracing of the enhancer regulation in selected discrete brain areas of food-deprived rats.

    Science.gov (United States)

    Miklya, I; Knoll, B; Knoll, J

    2003-05-09

    The recent discovery of the enhancer regulation in the mammalian brain brought a different perspective to the brain-organized realization of goal-oriented behavior, which is the quintessence of plastic behavioral descriptions such as drive or motivation. According to this new approach, 'drive' means that special endogenous enhancer substances enhance the impulse-propagation-mediated release of transmitters in a proper population of enhancer-sensitive neurons, and keep these neurons in the state of enhanced excitability until the goal is reached. However, to reach any goal needs the participation of the catecholaminergic machinery, the engine of the brain. We developed a method to detect the specific enhancer effect of synthetic enhancer substances [(-)-deprenyl, (-)-PPAP, (-)-BPAP] by measuring the release of transmitters from freshly isolated selected discrete brain areas (striatum, substantia nigra, tuberculum olfactorium, locus coeruleus, raphe) by the aid of HPLC with electrochemical detection. To test the validity of the working hypothesis that in any form of goal-seeking behavior the catecholaminergic and serotonergic neurons work on a higher activity level, we compared the amount of norepinephrine, dopamine, and serotonin released from selected discrete brain areas isolated from the brain of sated and food-deprived rats. Rats were deprived of food for 48 and 72 hours, respectively, and the state of excitability of their catecholaminergic and serotonergic neurons in comparison to that of sated rats was measured. We tested the orienting-searching reflex activity of the rats in a special open field, isolated thereafter selected discrete brain areas and measured the release of norepinephrine, dopamine, and serotonin from the proper tissue samples into the organ bath. The orienting-searching reflex activity of the rats increased proportionally to the time elapsed from the last feed and the amount of dopamine released from the striatum, substantia nigra and

  2. Impact of prenatal antimicrobial treatment on fetal brain damage due to autogenous fecal peritonitis in Wistar rats: A Histomorphometric Study

    Directory of Open Access Journals (Sweden)

    Neylane Gadelha

    2017-10-01

    Full Text Available Purpose: To investigate brain neuronal density in newborn rats whose mothers were subjected to fecal peritonitis and compare findings between rats born to mothers treated and not treated with antimicrobials. Methods: Peritonitis was induced with a 10% fecal suspension (4mL/kg in 2 pregnant rats. Of these, 1 received antimicrobial treatment 24 hours after peritonitis induction: moxifloxacin and dexamethasone plus 2 mL of the inner bark of the Schinus terebinthifolius raddi extract. One pregnant rat underwent no intervention and served as a control. Results: The newborn brains of rats born to mothers with fecal peritonitis were significantly smaller and of less firm consistency. Brain neuronal density was lower in the untreated group than in the control and treated groups (P<0.01. Conclusions: Untreated peritonitis caused brain damage in the offspring, which was averted by effective early antimicrobial treatment. This approach may provide an early avenue for translation of such therapy in humans. Keywords: peritonitis, brain injuries, rats

  3. Effect of aging on phosphate metabolites of rat brain as revealed by the in vivo and in vitro 31P NMR measurements

    International Nuclear Information System (INIS)

    Liu, Hsiuchih; Chi, Chinwen; Liu, Tsungyun; Liu, Lianghui; Luh, Wenming; Hsieh, Changhuain; Wu, Wenguey

    1991-01-01

    Changes of phosphate metabolism in brains of neonate, weaning and adult rats were compared using both in vivo and in vitro nuclear magnetic resonance spectra. Ratios of phosphocreatine/nucleoside triphosphate (PCr/NTP) were the same in neonatal brain in both in vivo and in vitro studies, but not in weaning and adult brains. This discrepancy may have resulted from extended cerebral hypoxia due to slowed freezing of the brain by the increased skull thickness and brain mass in the weaning and adult rats. Variations of in vitro extraction condition for this age-related study may lead to systematic errors in the adult rats. Nevertheless, the phosphomonoester/nucleoside triphosphate (PME/NTP) ratios in extracts of brain from neonatal rats were higher than those obtained in vivo. In addition, the glycerophosphorylethanolamine plus glycerophosphorylcholine/nucleoside triphosphate (GPE+GPC/NTP) ratios, which were not measurable in vivo, showed age-dependent increase in extracts of rat brain. Some of the phosphomonoester and phosphodiester molecules in rat brain may be undetectable in in vivo NMR analysis because of their interaction with cellular components. The total in vitro GPE and GPC concentration in brain from neonatal rat was estimated to be 0.34 mmole/g wet tissue

  4. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    Directory of Open Access Journals (Sweden)

    Yang Jia-Le

    2012-05-01

    Full Text Available Abstract Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA-induced monoarthritis (MA. In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker or the glia fibrillary acidic protein (GFAP, an astrocytic marker. These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p. gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia

  5. Effect of 60Co-irradiation on normal and low protein diet fed rat brain

    International Nuclear Information System (INIS)

    Hasan, S.S.; Habibullah, M.

    1980-01-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain. (orig.) [de

  6. Melanin-concentrating hormone: unique peptide neuronal systems in the rat brain and pituitary gland

    International Nuclear Information System (INIS)

    Zamir, N.; Skofitsch, G.; Bannon, M.J.; Jacobowitz, D.M.

    1986-01-01

    A unique neuronal system was detected in the rat central nervous system by immunohistochemistry and radioimmunoassay with antibodies to salmon melanin-concentrating hormone (MCH). MCH-like immunoreactive (MCH-LI) cell bodies were confined to the hypothalamus. MCH-LI fibers were found throughout the brain but were most prevalent in hypothalamus, mesencephalon, and pons-medulla regions. High concentrations of MCH-LI were measured in the hypothalamic medial forebrain bundle (MFB), posterior hypothalamic nucleus, and nucleus of the diagonal band. Reversed-phase high-performance liquid chromatography of MFB extracts from rat brain indicate that MCH-like peptide from the rat has a different retention time than that of the salmon MCH. An osmotic stimuls (2% NaCl as drinking water for 120 hr) caused a marked increase in MCH-LI concentrations in the lateral hypothalamus and neurointermediate lobe. The present studies establish the presence of MCH-like peptide in the rat brain. The MCH-LI neuronal system is well situated to coordinate complex functions such as regulation of water intake

  7. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effects of the PPAR-β agonist GW501516 in an in vitro model of brain inflammation and antibody-induced demyelination

    Directory of Open Access Journals (Sweden)

    Honegger Paul

    2009-05-01

    Full Text Available Abstract Background Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS. Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-γ (IFN-γ and lipopolysaccharide (LPS. Peroxisome proliferator-associated receptor (PPAR pathways are involved in the control of the inflammatory processes, and PPAR-β seems to play an important role in the regulation of central inflammation. In addition, PPAR-β agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE, an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-β agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-γ and LPS. Methods Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-γ and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG. The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, inducible NO synthase (i-NOS, PPAR-β, PPAR-γ, glial fibrillary acidic protein (GFAP, myelin basic protein (MBP, and high molecular weight neurofilament protein (NF-H. GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4 and ED1 labeling. Results GW 501516 decreased the IFN-γ-induced up-regulation of TNF-α and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-β agonist. However, it increased IL

  9. Characterization of rat brain NCAM mRNA using DNA oligonucleotide probes

    DEFF Research Database (Denmark)

    Andersson, A M; Gaardsvoll, H; Giladi, E

    1990-01-01

    A number of different isoforms of the neural cell adhesion molecule (NCAM) have been identified. The difference between these is due to alternative splicing of a single NCAM gene. In rat brain NCAM mRNAs with sizes of 7.4, 6.7, 5.2, 4.3 and 2.9 kb have been reported. We have synthesized six DNA...... oligonucleotides, that hybridize to different exons in the NCAM gene. Furthermore we have constructed three oligonucleotides, that exclusively hybridize to mRNAs lacking certain exons, by letting them consist of sequences adjacent to both sides of the splice sites. By means of these probes we have characterized...... the five NCAM mRNAs in rat brain....

  10. Synapses of the rat end brain in response to flight effects

    International Nuclear Information System (INIS)

    Antipov, V.V.; Tikhonchuk, V.S.; Ushakov, I.B.; Fedorov, V.P.

    1988-01-01

    Using electron microscopy, synapses of different structures of the rat end brain related to cognitive and motor acts (sensorimotor cortex, caudate nucleus) as well as memory and behavior (hippocampus) were examined. Rats were exposed to ionizing radiation, superhigh frequency, hypoxia, hyperoxia, vibration and acceleration (applied separately or in combination) which have been traditionally in the focus of space and aviation medicine. Brain internuronal junctions were found to be very sensitive to the above effects, particularly ionizing radiation and hypoxia. Conversely, synapses were shown to be highly resistant to short-term hyperoxia and electromagnetic radiation. When combined effects were used, response of interneuronal junctions depended on the irradiation dose and order of application of radiation and other flight factors

  11. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development. PMID:26848844

  12. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    Science.gov (United States)

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-05-01

    Δ 9 -Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [ 18 F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Amphetamine in rat brain after intraperitoneal injection of N-alkylated analogues.

    Science.gov (United States)

    Nazarali, A J; Baker, G B; Coutts, R T; Pasutto, F M

    1983-01-01

    Three N-alkylated analogues of amphetamine were administered intraperitoneally to male Sprague-Dawley rats and whole brain levels of amphetamine (AM) and the N-alkyl analogue were determined one hour after injection of the N-alkylated compounds. The drugs administered were the N-2-cyanoethyl-(I) (fenproporex), the N-3-chloropropyl-(II) (mefenorex) and the N-n-propyl-(III) derivatives of AM: the first two of these are used clinically as anorexiants, and the latter has been used extensively to study aspects of metabolism of AM-like compounds. Analysis of AM, I, II and III was performed using electron-capture gas chromatography with a capillary column after reaction of compounds with pentafluorobenzoyl chloride under aqueous conditions. In a second comparative study, equimolar doses (0.05 mMole/kg) of I or AM were administered intraperitoneally to the rats and brain levels determined after one hour. Results indicate extensive N-dealkylation occurs for compounds I, II and III in the rat.

  14. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  15. Protective effects of edaravone on the radiation response of oligodendrocyte in rats following whole brain irradiation

    International Nuclear Information System (INIS)

    Chen Yingzhu; Tian Ye; Bao Shiyao; Bao Huan; Zhan Zhilin

    2007-01-01

    Objective: To investigate the changes of the oligodendrocyte lineage cells in the cortex following whole brain irradiation and the effects of the neotype free radical scavenger, edaravone on radiation response of oligodendrocyte in rats. Methods: 120 male Sprague Dawley rats were randomly divided into sham- irradiation group, irradiation group and edaravone group. The model of whole-brain irradiation was established with exposure of the whole brain of the rats to 4 MeV X-rays with a single-dose of 10 Gy. The rats were injected intraperitoneally with edaravone at 0.3, 1.0 and 3.0 mg/kg. Tissue microarray of irradiation-induced brain injury in rats was constructed. The expression of A2BS, oligodendrocyte market 4(O4) and 2', 3'-cyclic nucleotide 3'- phosphodiesterase (CNPase) in the cortex was examined by tissue microarray technology and immunohistochemistry. The positive cells were counted. Results: Compared with the sham-irradiation group, the number of A2BS-positive cells increased and the number of O4, CNPase-positive cells decreased significantly at certain time in the irradiation group(P<0.05). Compared with irradiation group, A2BS-positive cells decreased significantly after edaravone treatment, while O4-positive cells and CNPase-positive cells increased significantly (P<0.05, or P<0.01). Conclusions: The number of oligodendrocyte precursor cells in the cortex of rats increased reactively following whole brain irradiation and changed with time. Edaravone played a protective role in oligodendrocyte ischemic reaction in a dose-dependent manner. (authors)

  16. Protective effects of edaravone on the radiation response of oligodendrocyte in rats following whole brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yingzhu, Chen; Ye, Tian; Shiyao, Bao; Huan, Bao; Zhilin, Zhan [The Second Affiliated Hospital of Suzhou Univ., Suzhou (China)

    2007-08-15

    Objective: To investigate the changes of the oligodendrocyte lineage cells in the cortex following whole brain irradiation and the effects of the neotype free radical scavenger, edaravone on radiation response of oligodendrocyte in rats. Methods: 120 male Sprague Dawley rats were randomly divided into sham- irradiation group, irradiation group and edaravone group. The model of whole-brain irradiation was established with exposure of the whole brain of the rats to 4 MeV X-rays with a single-dose of 10 Gy. The rats were injected intraperitoneally with edaravone at 0.3, 1.0 and 3.0 mg/kg. Tissue microarray of irradiation-induced brain injury in rats was constructed. The expression of A2BS, oligodendrocyte market 4(O4) and 2', 3'-cyclic nucleotide 3'- phosphodiesterase (CNPase) in the cortex was examined by tissue microarray technology and immunohistochemistry. The positive cells were counted. Results: Compared with the sham-irradiation group, the number of A2BS-positive cells increased and the number of O4, CNPase-positive cells decreased significantly at certain time in the irradiation group(P<0.05). Compared with irradiation group, A2BS-positive cells decreased significantly after edaravone treatment, while O4-positive cells and CNPase-positive cells increased significantly (P<0.05, or P<0.01). Conclusions: The number of oligodendrocyte precursor cells in the cortex of rats increased reactively following whole brain irradiation and changed with time. Edaravone played a protective role in oligodendrocyte ischemic reaction in a dose-dependent manner. (authors)

  17. [Measurement of the blood flow in various areas of the rat brain by means of microspheres].

    Science.gov (United States)

    Deroo, J; Gerber, G B

    1976-01-01

    A method is described to measure regional blood flow in different structures of the rat brain. Microspheres (15 micron) are injected, the brain is sectioned, stained for myeline, radioautographs are prepared and the microspheres in the different structures are counted. The values obtained for different brain structures are counted. The values obtained for different brain regions (cortex, corpus callosum, thalamus hipocampus, hypothalamic region, colliculi, cerebellum, pons, medulla) compare well with those published by others on larger animals. In rats fed 1% of lead from birth, higher blood flow is found in the cortex and a lower one in the interior part of the brain compared to controls.

  18. Distribution of kappa opioid receptors in the brain of young and old male rats

    International Nuclear Information System (INIS)

    Maggi, R.; Limonta, P.; Dondi, D.; Martini, L.; Piva, F.

    1989-01-01

    The experiments to be described have been designed in order to: (a) provide new information on the concentrations of opioid kappa receptors in different regions of the brain of the male rats; and (b) to analyze whether the density of brain kappa receptors might be modified by the process of aging. The concentration of kappa receptors was investigated in the hypothalamus, amygdala, mesencephalon, corpus striatum, hippocampus, thalamus, frontal poles, anterior and posterior cortex collected from male rats of 2 and 19 months of age. 3 H-bremazocine (BRZ) was used as the ligand of kappa receptors, after protection of mu and delta receptors respectively with dihydromorphine and d-ala-d-leu-enkephalin. The results obtained show that: (1) in young male rats, the number of kappa opioid receptors is different in the various brain areas examined. (2) Aging exerts little influence on the number of kappa receptors in the majority of the brain structures considered. However in the amygdala and in the thalamus the number of kappa receptors was increased in old animals

  19. Differences in postmortem stability of sex steroid receptor immunoreactivity in rat brain

    NARCIS (Netherlands)

    Fodor, Mariann; van Leeuwen, Fred W.; Swaab, Dick F.

    2002-01-01

    Difficulties in demonstrating sex steroid receptors in the human brain by immunohistochemistry (IHC) may depend on postmortem delay and a long fixation time. The effect of different postmortem times was therefore studied in rat brain kept in the skull at room temperature for 0, 6, or 24 hr after

  20. Identification of a third form of NaK-ATPase catalytic subunit in rat brain by photoaffinity labeling

    International Nuclear Information System (INIS)

    Lowndes, J.M.; Millan, N.M.; Ruoho, A.E.; Hokin-Neaverson, M.

    1987-01-01

    Using photoaffinity labeling, they have found a form of the NaK-ATPase catalytic subunit, α(-), in the rat brain that is distinct from the α and α(+) forms. Strong radiolabeling of α(-) was obtained with [ 125 I]azido-iodophenethylamido-succinyl-cymarin (AISC). AISC is a new cardiotonic steroid photolabel which they have synthesized and characterized chemically and biochemically. This compound labels α(-) better than the photolabels that they have previously reported. SDS-PAGE (5%) of photolabeled rat brain microsomes showed that α(-) migrated with faster mobility than the dog kidney α subunit. The α(-) appears to have different specificity for different cardiotonic steroids than either α(+) or α. The radiolabeling of rat brain α(+) and dog kidney α with [ 125 I]AISC was protectable by ouabain; in contrast, 1 mM ouabain did not reduce the [ 125 I]AISC-labeling of α(-), although the labeling was protected with 200 μM cymarin or AISC. The results indicate that the α(-) form of the NaK-ATPase in rat brain binds cymarin and its derivative but has little affinity for ouabain. It is possible that α(-) may be the translation product of the rat brain α(III) mRNA which has recently been described

  1. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Heng-Chih Chang

    Full Text Available Brain ischemia leads to muscle inactivity-induced atrophy and may exacerbate motor function deficits. Intramuscular insulin-like growth factor I (IGF-I injection has been shown to alleviate the brain ischemia-induced muscle atrophy and thus improve the motor function. Motor function is normally gauged by the integrity and coordination of the central nervous system and peripheral muscles. Whether brain ischemic regions are adaptively changed by the intramuscular IGF-I injection is not well understood. In this study, the effect of intramuscular IGF-I injection was examined on the central nervous system of brain ischemic rats. Rats were divided into 4 groups: sham control, brain ischemia control, brain ischemia with IGF-I treatment, and brain ischemia with IGF-I plus IGF-I receptor inhibitor treatment. Brain ischemia was induced by right middle cerebral artery occlusion. IGF-I and an IGF-1 receptor inhibitor were injected into the affected calf and anterior tibialis muscles of the treated rats for 4 times. There was an interval of 2 days between each injection. Motor function was examined and measured at the 24 hours and 7 days following a brain ischemia. The affected hind-limb muscles, sciatic nerve, lumbar spinal cord, and motor cortex were collected for examination after euthanizing the rats. IGF-I expression in the central nervous system and affected muscles were significantly decreased after brain ischemia. Intramuscular IGF-I injection increased the IGF-I expression in the affected muscles, sciatic nerve, lumbar spinal cord, and motor cortex. It also increased the p-Akt expression in the affected motor cortex. Furthermore, intramuscular IGF-I injection decreased the neuronal apoptosis and improved the motor function. However, co-administration of the IGF-I receptor inhibitor eliminated these effects. Intramuscular IGF-I injection after brain ischemia attenuated or reversed the decrease of IGF-I in both central and peripheral tissues, and

  2. Study on developing brain damage of neonatal rats induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Yang Shuqin

    2000-01-01

    Objective: The injurious effects of enriched uranium 235 U on developing brain of neonatal Wistar pure bred rats were studied. Methods: The model of irradiation induced brain damage in vivo was settled. The effects of cerebrum exposure by 235 U on somatic growth and neuro-behavior development of neonatal rats were examined by thirteen index determination of multiple parameters. The dynamic retention of autoradiographic tracks of 235 U in cells of developing brain was observed. The changes of NSE, IL-1β, SOD, and ET in cerebral cortex, hippocampus, diencephalon, cerebellum after expose to 235 U were examined with radioimmunoassay. Results: The somatic growth such as increase of body weight and brain weight was lower significantly. The retardation of development was found such as eye opening, sensuous function as auditory startle, movement and coordination function and activity as swimming, physiological reflexes as negative geotaxis, surface righting, grasping reflex suspension and the tendency behavior. The data showed delayed growth and abnormal neuro-behavior. The micro-autoradiographic tracing showed that the tracks of 235 U were mainly accumulated in the nucleus of developing brain. At the same time only few tracks appeared in the cytoplasm and interval between cells. Experimental study showed that when the dose of 235 U irradiation was increased, the level of NSE was decreased and the IL-1β was increased. However, the results indicated that SOD and ET can be elevated by the low dose irradiation of 235 U, and can be inhibited by the high dose. Conclusion: The behavior of internal irradiation from 235 U on the developing brain damage of neonatal rats were of sensibility and compensation in nervous cells

  3. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    of Tat-activated microglia, as well as AnnexinV, a phosphatidylserine-binding protein. In addition, LRRK2i decreased brain-specific angiogenesis inhibitor 1 (BAI1 receptor expression on BV-2 cells after Tat-treatment, a key receptor in phosphatidylserine-mediated phagocytosis. Conclusion Taken together, these results implicate LRRK2 as a key player in microglial inflammation and, in particular, in the phagocytosis of neuronal elements. These studies show that LRRK2 kinase inhibition may prove an effective therapeutic strategy for HANDs, as well as other neuroinflammatory conditions.

  4. Rat brain digital stereotaxic white matter atlas with fine tract delineation in Paxinos space and its automated applications in DTI data analysis.

    Science.gov (United States)

    Liang, Shengxiang; Wu, Shang; Huang, Qi; Duan, Shaofeng; Liu, Hua; Li, Yuxiao; Zhao, Shujun; Nie, Binbin; Shan, Baoci

    2017-11-01

    To automatically analyze diffusion tensor images of the rat brain via both voxel-based and ROI-based approaches, we constructed a new white matter atlas of the rat brain with fine tracts delineation in the Paxinos and Watson space. Unlike in previous studies, we constructed a digital atlas image from the latest edition of the Paxinos and Watson. This atlas contains 111 carefully delineated white matter fibers. A white matter network of rat brain based on anatomy was constructed by locating the intersection of all these tracts and recording the nuclei on the pathway of each white matter tract. Moreover, a compatible rat brain template from DTI images was created and standardized into the atlas space. To evaluate the automated application of the atlas in DTI data analysis, a group of rats with right-side middle cerebral artery occlusion (MCAO) and those without were enrolled in this study. The voxel-based analysis result shows that the brain region showing significant declines in signal in the MCAO rats was consistent with the occlusion position. We constructed a stereotaxic white matter atlas of the rat brain with fine tract delineation and a compatible template for the data analysis of DTI images of the rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of sublethal doses of gamma radiation on the developing rat brain

    International Nuclear Information System (INIS)

    Cerda, H.; Carlsson, J.; Larsson, B.; Saefwenberg, J.O.

    1975-01-01

    Newborn rats were irradiated with 60 Co gamma rays. Doses of 0, 80 or 160 rads were given to the whole body. The whole body and brain weights, DNA and RNA contents of the brain and 3 H-thymidine or 3 H-uridine incorporated by the brain were measured at 5, 10 or 15 days after birth. A dose of 160 rads produced clear alterations in the brain but no clear effects could be detected when 80 rads were given. (author)

  6. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Inhibitory Effects of Ketamine on Lipopolysaccharide-Induced Microglial Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2009-01-01

    Full Text Available Microglia activated in response to brain injury release neurotoxic factors including nitric oxide (NO and proinflammatory cytokines such as tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β. Ketamine, an anesthetic induction agent, is generally reserved for use in patients with severe hypotension or respiratory depression. In this study, we found that ketamine (100 and 250 μM concentration-dependently inhibited lipopolysaccharide (LPS-induced NO and IL-1β release in primary cultured microglia. However, ketamine (100 and 250 μM did not significantly inhibit the LPS-induced TNF-α production in microglia, except at the higher concentration (500 μM. Further study of the molecular mechanisms revealed that ketamine markedly inhibited extracellular signal-regulated kinase (ERK1/2 phosphorylation but not c-Jun N-terminal kinase or p38 mitogen-activated protein kinase stimulated by LPS in microglia. These results suggest that microglial inactivation by ketamine is at least partially due to inhibition of ERK1/2 phosphorylation.

  8. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.

  9. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    Science.gov (United States)

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Dynamic Multi-Coil Technique (DYNAMITE) Shimming of the Rat Brain at 11.7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Herman, Peter; Sanganahalli, Basavaraju G.; Brown, Peter B.; McIntyre, Scott; Nixon, Terence W.; Green, Dan; Hyder, Fahmeed; de Graaf, Robin A.

    2014-01-01

    The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation, however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task due to a multitude of complex, susceptibility-induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult-to-shim subcortical structures or for the entire brain. Based on the recently introduced multi-coil approach for magnetic field modeling, the DYNAmic Multi-coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient-echo echo-planar imaging (EPI) are demonstrated. An integrated multi-coil/radio-frequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF setup is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first through third order SH shapes. The EPI signal over the rat brain increased by 31% and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, along with the achievable large brain coverage of this method will be crucial when signal pathways, cortical circuitry or the brain’s default network are studied. Along with the efficiency gains of MC-based shimming compared to SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small bore animal

  11. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    Science.gov (United States)

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  12. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.

    Science.gov (United States)

    Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F

    2017-08-01

    Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat.

    Science.gov (United States)

    Fujikawa, Takahiko; Soya, Hideaki; Tamashiro, Kellie L K; Sakai, Randall R; McEwen, Bruce S; Nakai, Naoya; Ogata, Masato; Suzuki, Ikukatsu; Nakashima, Kunio

    2004-04-01

    Stress causes hypocalcemia and ulcerogenesis in rats. In rats under stressful conditions, a rapid and transient increase in circulating prolactin (PRL) is observed, and this enhanced PRL induces PRL receptors (PRLR) in the choroid plexus of rat brain. In this study we used restraint stress in water to elucidate the mechanism by which PRLR in the rat brain mediate the protective effect of PRL against stress-induced hypocalcemia and ulcerogenesis. We show that rat PRL acts through the long form of PRLR in the hypothalamus. This is followed by an increase in the long form of PRLR mRNA expression in the choroid plexus of the brain, which provides protection against restraint stress in water-induced hypocalcemia and gastric erosions. We also show that PRL induces the expression of PRLR protein and corticotropin-releasing factor mRNA in the paraventricular nucleus. These results suggest that the PRL levels increase in response to stress, and it moves from the circulation to the cerebrospinal fluid to act on the central nervous system and thereby plays an important role in helping to protect against acute stress-induced hypocalcemia and gastric erosions.

  14. Increased transfer of 45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats.

    Science.gov (United States)

    Murphy, V A; Rapoport, S I

    1988-06-28

    Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.

  15. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  16. Antidiabetic and Neuroprotective Effects of Trigonella Foenum-graecum Seed Powder in Diabetic Rat Brain

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2012-01-01

    Full Text Available Trigonella foenum-graecum seed powder (TSP has been reported to have hypoglycemic and hyperinsulinemic action. The objective of the study was to examine the antidiabetic and neuroprotective role of TSP in hyperglycemiainduced alterations in blood glucose, insulin levels and activities of membrane linked enzymes (Na+K+ATPase, Ca2+ATPase, antioxidant enzymes (superoxide dismutase, glutathione S-transferase, calcium (Ca2+ levels, lipid peroxidation, membrane fluidity and neurolipofuscin accumulation in the diabetic rat brain. Female Wistar rats weighing between 180 and 220 g were made diabetic by a single injection of alloxan monohydrate (15 mg/100 g body weight, diabetic rats were given 2 IU insulin, per day with 5% TSP in the diet for three weeks. A significant increase in lipid peroxidation was observed in diabetic brain. The increased lipid peroxidation following chronic hyperglycemia was accompanied with a significant increase in the neurolipofuscin deposition and Ca2+ levels with decreased activities of membrane linked ATPases and antioxidant enzymes in diabetic brain. A decrease in synaptosomal membrane fluidity may influence the activity of membrane linked enzymes in diabetes. The present study showed that TSP treatment can reverse the hyperglycemia induced changes to normal levels in diabetic rat brain. TSP administration amended effect of hyperglycemia on alterations in lipid peroxidation, restoring membrane fluidity, activities of membrane bound and antioxidant enzymes, thereby ameliorating the diabetic complications.

  17. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    Science.gov (United States)

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  18. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  19. Acute effects of organotins on brain, liver and kidney in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, R.S.; Kaur, G.; Srivastava, R.C.; Srivastava, T.N.

    1985-01-01

    Effects of dioctyltin oxide (DOTO) tricyclohexyltin hydroxide (TCHTOH) and tributyltin oxide (TBTO) were examined on some enzymic activities in liver and kidney and biogenic amines level in brain of rats at 24 hours after single subcutaneous administration (25 ..mu..mole/100 g B. Wt.). All the organotin compounds produced a significant increase in the activity of alkaline phosphatase and adenosin triphosphatase and decrease in monoamine oxidase in both liver and kidney. DOTO and TCHTOH were more effective in impairing the activity of succinate dehydrogenase in liver. Concentrations of ..gamma..-aminobutyric acid (GABA) and dopamine were found to be significantly decreased in brain however, acetylcholine concentration remained unaltered. These results suggest that organotin compounds DOTO and TCHTOH are more toxic to rats than TBTO. 30 references, 3 tables.

  20. Evaluation of the Effect of Fingolimod Treatment on Microglial Activation Using Serial PET Imaging in Multiple Sclerosis.

    Science.gov (United States)

    Sucksdorff, Marcus; Rissanen, Eero; Tuisku, Jouni; Nuutinen, Salla; Paavilainen, Teemu; Rokka, Johanna; Rinne, Juha; Airas, Laura

    2017-10-01

    Traditionally, multiple sclerosis (MS) has been considered a white matter disease with focal inflammatory lesions. It is, however, becoming clear that significant pathology, such as microglial activation, also takes place outside the plaque areas, that is, in areas of normal-appearing white matter (NAWM) and gray matter (GM). Microglial activation can be detected in vivo using 18-kDa translocator protein (TSPO)-binding radioligands and PET. It is unknown whether fingolimod affects microglial activation in MS. The aim of this study was to investigate whether serial PET can be used to evaluate the effect of fingolimod treatment on microglial activation. Methods: Ten relapsing-remitting MS patients were studied using the TSPO radioligand 11 C-( R )-PK11195. Imaging was performed at baseline and after 8 and 24 wk of fingolimod treatment. Eight healthy individuals were imaged for comparison. Microglial activation was evaluated as distribution volume ratio of 11 C-( R )-PK11195. Results: The patients had MS for an average of 7.9 ± 4.3 y (mean ± SD), their total relapses averaged 4 ± 2.4, and their Expanded Disability Status Scale was 2.7 ± 0.5. The patients were switched to fingolimod because of safety reasons or therapy escalation. The mean washout period before the initiation of fingolimod was 2.3 ± 1.1 mo. The patients were clinically stable on fingolimod. At baseline, microglial activation was significantly higher in the combined NAWM and GM areas of MS patients than in healthy controls ( P = 0.021). 11 C-( R )-PK11195 binding was reduced (-12.31%) within the combined T2 lesion area after 6 mo of fingolimod treatment ( P = 0.040) but not in the areas of NAWM or GM. Conclusion: Fingolimod treatment reduced microglial/macrophage activation at the site of focal inflammatory lesions, presumably by preventing leukocyte trafficking from the periphery. It did not affect the widespread, diffuse microglial activation in the NAWM and GM. The study opens new vistas for

  1. Effect of Piper betle leaf extract on alcoholic toxicity in the rat brain.

    Science.gov (United States)

    Saravanan, R; Rajendra Prasad, N; Pugalendi, K V

    2003-01-01

    The protective effect of Piper betle, a commonly used masticatory, has been examined in the brain of ethanol-administered Wistar rats. Brain of ethanol-treated rats exhibited increased levels of lipids, lipid peroxidation, and disturbances in antioxidant defense. Subsequent to the experimental induction of toxicity (i.e., the initial period of 30 days), aqueous P. betle extract was simultaneously administered in three different doses (100, 200, and 300 mg kg(-1)) for 30 days along with the daily dose of alcohol. P. betle coadministration resulted in significant reduction of lipid levels (free fatty acids, cholesterol, and phospholipids) and lipid peroxidation markers such as thiobarbituric acid reactive substances and hydroperoxides. Further, antioxidants, like reduced glutathione, vitamin C, vitamin E, superoxide dismutase, catalase, and glutathione peroxidase, were increased in P. betle-coadministered rats. The higher dose of extract (300 mg kg(-1)) was more effective, and these results indicate the neuroprotective effect of P. betle in ethanol-treated rats.

  2. Effects of acrylamide and acrylic acid on creatine kinase activity in the rat brain

    International Nuclear Information System (INIS)

    Kohriyama, Kazuaki; Matsuoka, Masato; Igisu, Hideki

    1994-01-01

    In vitro, both acrylamide and acrylic acid inhibited creatine kinase (CK) activity in rat brain homogenates, and acrylic acid was more potent than acrylamide. In vivo, however, when given i.p. 50 mg/kg per day for 8 days to rats, only acrylamide inhibited CK activity in the brain and caused apparent neurological signs. 14 C in the brain 24 h after the injection of 14 C-labelled chemicals was more than 7 times greater with acrylamide than with acrylic acid. The inhibition of CK activity by acrylamide varied in eight regions of the brain; from 54% in hypothalamus to 27% in cerebellar vermis. The regional difference of CK inhibition, however, did not agree well with either 14 C distribution or with the distribution in regions which appear clinically or pathologically vulnerable to acrylamide. (orig.)

  3. Environmental Enrichment, Performance, and Brain Injury in Male and Female Rats

    National Research Council Canada - National Science Library

    Elliott, Brenda M

    2004-01-01

    ...) and physical enrichment (PE) on the cognitive performance of neurologically intact and brain-injured rats and to determine if there are gender differences in these effects. Measures of basic (i.e...

  4. Preparation and biocompatibility study of in situ forming polymer implants in rat brains.

    Science.gov (United States)

    Nasongkla, Norased; Boongird, Atthaporn; Hongeng, Suradej; Manaspon, Chawan; Larbcharoensub, Noppadol

    2012-02-01

    We describe the development of polymer implants that were designed to solidify once injected into rat brains. These implants comprised of glycofurol and copolymers of D: ,L: -lactide (LA), ε-caprolactone and poly(ethylene glycol) (PLECs). Scanning electron microscopy (SEM) and gel permeation chromatography (GPC) showed that the extent of implant degradation was increased with LA: content in copolymers. SEM analysis revealed the formation of porosity on implant surface as the degradation proceeds. PLEC with 19.3% mole of LA: was chosen to inject in rat brains at the volume of 10, 25 and 40 μl. Body weights, hematological and histopathological data of rats treated with implants were evaluated on day 3, 6, 14, 30 and 45 after the injection. Polymer solution at the injection volume of 10 μl were tolerated relatively well compared to those of 25 and 40 μl as confirmed by higher body weight and healing action (fibrosis tissue) 30 days after treatment. The results from this study suggest a possible application as drug delivery systems that can bypass the blood brain barrier.

  5. Imaging of aromatase distribution in rat and rhesus monkey brains with [{sup 11}C]vorozole

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kayo [Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala SE-75124 (Sweden); Uppsala Imanet, Uppsala SE-75109 (Sweden)]. E-mail: kayo.takahashi@uppsala.imanet.se; Bergstroem, Mats [Uppsala Imanet, Uppsala SE-75109 (Sweden); Department of Pharmaceutical Biosciences, Uppsala University, Uppsala SE-75124 (Sweden); Fraendberg, Pernilla [Uppsala Imanet, Uppsala SE-75109 (Sweden); Vesstroem, Eva-Lotta [Uppsala Imanet, Uppsala SE-75109 (Sweden); Watanabe, Yasuyoshi [Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585 (Japan); Langstroem, Bengt [Uppsala Imanet, Uppsala SE-75109 (Sweden)

    2006-07-15

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [{sup 11}C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K {sub d} of [{sup 11}C]vorozole binding to aromatase in MA was determined to be 0.60{+-}0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [{sup 11}C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons.

  6. Impact of aspartame consumption on neurotransmitters in rat brain ...

    African Journals Online (AJOL)

    Background: Aspartame (APM), a common artificial sweetener, has been used for diabetic subjects and body weight control for a long time. The goal of the present study was to evaluate the impact of APM consumption on neurotransmitters and oxidative stress in rat's brain. Materials and Methods: Four groups of male ...

  7. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    Energy Technology Data Exchange (ETDEWEB)

    Netopilova, M; Drsata, J [Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 50005 Hradec Kralove (Czech Republic); Haugvicova, R; Kubova, H; Mares, P [Institute of Physiology, Czech Academy of Sciences, 14220 Prague (Czech Republic)

    1998-07-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using {sup 14}C-carboxyl-labelled glutamate and measurement of {sup 14}CO{sub 2} radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  8. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    International Nuclear Information System (INIS)

    Netopilova, M.; Drsata, J.; Haugvicova, R.; Kubova, H.; Mares, P.

    1998-01-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using 14 C-carboxyl-labelled glutamate and measurement of 14 CO 2 radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  9. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE

    Directory of Open Access Journals (Sweden)

    Benjamin Harding

    2016-12-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI insult in neonatal rats via intracerebroventricular (ICV injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional

  10. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Bodsch, W; Huerter, T; Hossmann, K A [Max-Planck-Institut fuer Hirnforschung, Koeln (Germany, F.R.). Forschungsstelle fuer Hirnkreislauf-Forschung

    1982-10-07

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema.

  11. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    International Nuclear Information System (INIS)

    Bodsch, W.; Huerter, T.; Hossmann, K.-A.

    1982-01-01

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema. (Auth.)

  12. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model.

    Directory of Open Access Journals (Sweden)

    Zheng Ke

    Full Text Available BACKGROUND: Stroke rehabilitation with different exercise paradigms has been investigated, but which one is more effective in facilitating motor recovery and up-regulating brain neurotrophic factor (BDNF after brain ischemia would be interesting to clinicians and patients. Voluntary exercise, forced exercise, and involuntary muscle movement caused by functional electrical stimulation (FES have been individually demonstrated effective as stroke rehabilitation intervention. The aim of this study was to investigate the effects of these three common interventions on brain BDNF changes and motor recovery levels using a rat ischemic stroke model. METHODOLOGY/PRINCIPAL FINDINGS: One hundred and seventeen Sprague-Dawley rats were randomly distributed into four groups: Control (Con, Voluntary exercise of wheel running (V-Ex, Forced exercise of treadmill running (F-Ex, and Involuntary exercise of FES (I-Ex with implanted electrodes placed in two hind limb muscles on the affected side to mimic gait-like walking pattern during stimulation. Ischemic stroke was induced in all rats with the middle cerebral artery occlusion/reperfusion model and fifty-seven rats had motor deficits after stroke. Twenty-four hours after reperfusion, rats were arranged to their intervention programs. De Ryck's behavioral test was conducted daily during the 7-day intervention as an evaluation tool of motor recovery. Serum corticosterone concentration and BDNF levels in the hippocampus, striatum, and cortex were measured after the rats were sacrificed. V-Ex had significantly better motor recovery in the behavioral test. V-Ex also had significantly higher hippocampal BDNF concentration than F-Ex and Con. F-Ex had significantly higher serum corticosterone level than other groups. CONCLUSION/SIGNIFICANCE: Voluntary exercise is the most effective intervention in upregulating the hippocampal BDNF level, and facilitating motor recovery. Rats that exercised voluntarily also showed less

  13. Combined treatment with progesterone and magnesium sulfate positively affects traumatic brain injury in immature rats.

    Science.gov (United States)

    Uysal, Nazan; Baykara, Basak; Kiray, Muge; Cetin, Ferihan; Aksu, Ilkay; Dayi, Ayfer; Gurpinar, Tugba; Ozdemir, Durgul; Arda, M Nuri

    2013-01-01

    It is well known that head trauma results in damage in hippocampal and cortical areas of the brain and impairs cognitive functions. The aim of this study is to explore the neuroprotective effect of combination therapy with magnesium sulphate (MgSO4) and progesterone in the 7-days-old rat pups subjected to contusion injury. Progesterone (8 mg/kg) and MgSO4 (150 mg/kg) were injected intraperitoneally immediately after induction of traumatic brain injury. Half of groups were evaluated 24 hours later, the remaining animals 3 weeks after trauma or sham surgery. Anxiety levels were assessed with open field activity and elevated plus maze; learning and memory performance were evaluated with Morris Water maze in postnatal 27 days. Combined therapy with progesterone and magnesium sulfate significantly attenuated trauma-induced neuronal death, increased brain VEGF levels and improved spatial memory deficits that appear later in life. Brain VEGF levels were higher in rats that received combined therapy compared to rats that received either medication alone. Moreover, rats that received combined therapy had reduced hipocampus and prefrontal cortex apoptosis in the acute period. These results demonstrate that combination of drugs with different mechanisms of action may be preferred in the treatment of head trauma.

  14. AQP4 expression and its relationship with brain edema after gamma kife radiosurgery in rats

    International Nuclear Information System (INIS)

    Shen Guangjian; Xu Minhui; Zou Yongwen; Gen Mingying; Li Feipeng; Tang Wenyuan; Sun Shanquan

    2007-01-01

    Objective: To explore AQP4 expression and its relationship with brain edema after gamma knife radiosurgery (GKRS) in rats. Methods: Wistar rats were divided into two groups-the control group and experimental group. The experimental group model was established by radiating rat left rotral caudate nucleus with GKRS (100 Gy, 4 mm), and was examinded at interval times of 1 d, 3 d, 7 d, 15 d, 30 d and 45 d. Brain water content (BWC) was determined by wet-dry weighing method. AQP4 expression on mRNA and protein were measured by immunohistochemistry (ICH) and in situ hybridization (ISH). Results: In control group, AQP4 protein and its mRNA were expressed in subpial astrocytes, choroid plexus, ependyma and perivascular astrocytes. After GKRS, AQP4 protein and its mRNA in these sites were enhanced, and became most remarkable at 30 d. The positive corrlationship was showed between AQP4 and its mRNA, and AQP4 and BWC. Conclusions: AQP4 protein and its mRNA can be induced in some brain zone after irradiating rat left rotral caudate nucleus with GKRS. The increased expression of AQP4 and its mRNA may play a role in the ocurrence or development of brain edema after GKRS. (authors)

  15. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.

    Science.gov (United States)

    Iyyaswamy, Ashok; Rathinasamy, Sheeladevi

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  16. Influence of histidine on zinc transport into rat brain

    International Nuclear Information System (INIS)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto

    2000-01-01

    The brain of rats injected intravenously with 65 Zn-His or 65 ZnCl 2 was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from 65 Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from 65 Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of 65 Zn-His in the brain was similar to that of 65 ZnCl 2 group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the 65 Zn-His group from the blood was higher than that of the 65 ZnCl 2 group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  17. Effect of naloxone hydrochloride on c-fos protein expression in brain and plasma beta-endorphin level in rats with diffuse brain injury and secondary brain insult

    Directory of Open Access Journals (Sweden)

    Jun-jie JING

    2012-09-01

    Full Text Available Objective To observe the changes of c-fos protein expression in brain and beta-endorphin (β-EP level in blood plasma in rats with diffuse brain injury (DBI and secondary brain insult (SBI after intraperitoneal injection of naloxone hydrochloride, and explore the role of c-fos andβ-EP in development of SBI in rats. Methods Seventy health male SD rats were enrolled in the present study and randomly divided into group A (intraperitoneally injected with 0.9% saline after DBI and SBI model was reproduced, group B (injected intraperitoneally with 1.0mg/kg naloxone hydrochloride after DBI and SBI model was reproduced, and group C (intraperitoneally injected with 1.0mg/kg naloxone hydrochloride after DBI and before SBI model was reproduced. The animals were sacrificed 3, 24 and 48 hours after injury, and the number of c-fos positive cells in brain and content of β-EP in blood plasma were determined by immunohistochemistry and radioimmunoassay respectively, the water content and number of injured neurons in brain tissue were measured by pathomorphological observation of the brain tissue. Results No significant difference was observed between group B and C for all the detection parameters. In group B and C, the water content in brain tissue at 3h and 24h was found to be decreased, while the number of injured neurons at 24h and 48h increased, number of c-fos positive cells in brain at 3h, 24h and 48h decreased, and content of β-EP in blood plasma at 3h and 24h decreased when compared with group A(P < 0.05. Conclusion Naloxone hydrochloride could decrease the c-fos expression in brain and β-EP level in blood plasma, alleviate the nerve injury, and protect neural function. The therapeutic effect of naloxone administered either after DBI and SBI or after DBI and before SBI was similar.

  18. Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189.

    Science.gov (United States)

    Reiner, Anton; Heldt, Scott A; Presley, Chaela S; Guley, Natalie H; Elberger, Andrea J; Deng, Yunping; D'Surney, Lauren; Rogers, Joshua T; Ferrell, Jessica; Bu, Wei; Del Mar, Nobel; Honig, Marcia G; Gurley, Steven N; Moore, Bob M

    2014-12-31

    We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50-60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50-60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI.

  19. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats.

    Science.gov (United States)

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2012-02-01

    Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. DNA microarray unravels rapid changes in transcriptome of MK-801 treated rat brain

    Science.gov (United States)

    Kobayashi, Yuka; Kulikova, Sofya P; Shibato, Junko; Rakwal, Randeep; Satoh, Hiroyuki; Pinault, Didier; Masuo, Yoshinori

    2015-01-01

    AIM: To investigate the impact of MK-801 on gene expression patterns genome wide in rat brain regions. METHODS: Rats were treated with an intraperitoneal injection of MK-801 [0.08 (low-dose) and 0.16 (high-dose) mg/kg] or NaCl (vehicle control). In a first series of experiment, the frontoparietal electrocorticogram was recorded 15 min before and 60 min after injection. In a second series of experiments, the whole brain of each animal was rapidly removed at 40 min post-injection, and different regions were separated: amygdala, cerebral cortex, hippocampus, hypothalamus, midbrain and ventral striatum on ice followed by DNA microarray (4 × 44 K whole rat genome chip) analysis. RESULTS: Spectral analysis revealed that a single systemic injection of MK-801 significantly and selectively augmented the power of baseline gamma frequency (30-80 Hz) oscillations in the frontoparietal electroencephalogram. DNA microarray analysis showed the largest number (up- and down- regulations) of gene expressions in the cerebral cortex (378), midbrain (376), hippocampus (375), ventral striatum (353), amygdala (301), and hypothalamus (201) under low-dose (0.08 mg/kg) of MK-801. Under high-dose (0.16 mg/kg), ventral striatum (811) showed the largest number of gene expression changes. Gene expression changes were functionally categorized to reveal expression of genes and function varies with each brain region. CONCLUSION: Acute MK-801 treatment increases synchrony of baseline gamma oscillations, and causes very early changes in gene expressions in six individual rat brain regions, a first report. PMID:26629322

  1. Epileptic rat brain tissue analyzed by 2D correlation Raman spectroscopy

    Science.gov (United States)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Lewandowski, Marian H.; Kowalski, Rafał; Palus, Katarzyna; Chrobok, Łukasz; Moskal, Paulina; Birczyńska, Malwina; Sozańska, Agnieszka

    2018-01-01

    Absence epilepsy is the neurological disorder characterized by the pathological spike-and wave discharges present in the electroencephalogram, accompanying a sudden loss of consciousness. Experiments were performed on brain slices obtained from young male WAG/Rij rats (2-3 weeks old), so that they were sampled before the appearance of brain-damaging seizures symptoms. Two differing brain areas of the rats' brain tissue were studied: the somatosensory cortex (Sc) and the dorsal lateral geniculate nucleus of the thalamus (DLG). The Raman spectra of the fresh brain scraps, kept during measurements in artificial cerebrospinal fluid, were collected using as an excitation source 442 nm, 514.5 nm, 785 nm and 1064 nm laser line. The average spectra were analyzed by 2D correlation method regarding laser line as an external perturbation. In 2D synchronous spectra positive auto-peaks corresponding to the Cdbnd C stretching and amide I band vibrations show maxima at 1660 cm- 1 and 1662 cm- 1 for Sc and DLG, respectively. The prominent auto-peak at 2937 cm- 1, originated from the CH3 mode in DLG brain area, seems to indicate the importance of methylation, considered to be significant in epileptogenesis. Synchronous and asynchronous correlations peaks, glutamic acid and gamma-aminobutyric acid (GABA), appear in Sc and DLG, respectively. In the 1730-1600 cm- 1 range occur cross-peaks which appearance might be triggered by glial fibrillary acidic protein (GFAP) activation.

  2. Effects of Junk Foods on Brain Neurotransmitters (Dopamine and Serotonin) and some Biochemical Parameters in Albino Rats

    International Nuclear Information System (INIS)

    Abd Elmonem, H.A.; Ali, E.A.

    2011-01-01

    Nutritional Habits have changed significantly and junk foods have become widely popular, in recent years. The present study aimed to shed the light on the effect of potato chips and / or ketchup consumption on some biochemical parameters. Sixty four male and female albino rats were used in the study. Animals were maintained on 0.25 g potato chips/ rat and / or 0.125 g ketchup / rat, 5 days a week for 4 weeks. Potato chips showed the lowest body wt gain in the male rats after 4 weeks but, ketchup modulated this negative effect of the potato chips in the group of male animals fed on potato chips plus ketchup. Potato chips significantly decreased brain serotonin, liver glutathione (GSH) and catalase (CAT) in both sexes; brain dopamine, serum total proteins, albumin, total globulins, α 2 - and β 1 -globulins in the females and serum thyroxine (T 4 ) in the male rats. Ketchup apparently affected serum T 4 and A / G ratio in both sexes, brain dopamine and liver GSH in the males in addition to brain serotonin, serum total globulins and ?1-globulin in the female rats. Potato chips plus ketchup significantly changed T 4 , dopamine, GSH, CAT, α 1 and α 2 -globulins in both sexes; serotonin and β 1 -globulin in the male rats, total proteins and albumin in the females. It could be concluded that potato chips consumption might induce numerous adverse effects in various body organs

  3. Brain maps 4.0-Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps.

    Science.gov (United States)

    Swanson, Larry W

    2018-04-15

    The fourth edition (following editions in 1992, 1998, 2004) of Brain maps: structure of the rat brain is presented here as an open access internet resource for the neuroscience community. One new feature is a set of 10 hierarchical nomenclature tables that define and describe all parts of the rat nervous system within the framework of a strictly topographic system devised previously for the human nervous system. These tables constitute a global ontology for knowledge management systems dealing with neural circuitry. A second new feature is an aligned atlas of bilateral flatmaps illustrating rat nervous system development from the neural plate stage to the adult stage, where most gray matter regions, white matter tracts, ganglia, and nerves listed in the nomenclature tables are illustrated schematically. These flatmaps are convenient for future development of online applications analogous to "Google Maps" for systems neuroscience. The third new feature is a completely revised Atlas of the rat brain in spatially aligned transverse sections that can serve as a framework for 3-D modeling. Atlas parcellation is little changed from the preceding edition, but the nomenclature for rat is now aligned with an emerging panmammalian neuroanatomical nomenclature. All figures are presented in Adobe Illustrator vector graphics format that can be manipulated, modified, and resized as desired, and freely used with a Creative Commons license. © 2018 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  4. Effect of /sup 60/Co-irradiation on normal and low protein diet fed rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S S [Garhwal Univ., Srinagar, Uttar Pradesh (India). Dept. of Zoology; Habibullah, M [Jawaharlal Nehru Univ., New Delhi (India). Neurobiology Lab.

    1980-06-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain.

  5. Brain maps 4.0—Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps

    Science.gov (United States)

    2018-01-01

    Abstract The fourth edition (following editions in 1992, 1998, 2004) of Brain maps: structure of the rat brain is presented here as an open access internet resource for the neuroscience community. One new feature is a set of 10 hierarchical nomenclature tables that define and describe all parts of the rat nervous system within the framework of a strictly topographic system devised previously for the human nervous system. These tables constitute a global ontology for knowledge management systems dealing with neural circuitry. A second new feature is an aligned atlas of bilateral flatmaps illustrating rat nervous system development from the neural plate stage to the adult stage, where most gray matter regions, white matter tracts, ganglia, and nerves listed in the nomenclature tables are illustrated schematically. These flatmaps are convenient for future development of online applications analogous to “Google Maps” for systems neuroscience. The third new feature is a completely revised Atlas of the rat brain in spatially aligned transverse sections that can serve as a framework for 3‐D modeling. Atlas parcellation is little changed from the preceding edition, but the nomenclature for rat is now aligned with an emerging panmammalian neuroanatomical nomenclature. All figures are presented in Adobe Illustrator vector graphics format that can be manipulated, modified, and resized as desired, and freely used with a Creative Commons license. PMID:29277900

  6. Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder.

    Science.gov (United States)

    Modi, Hiren R; Ma, Kaizong; Chang, Lisa; Chen, Mei; Rapoport, Stanley I

    2017-08-01

    Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. VCD like VPA will reduce brain AA turnover in unanaesthetized rats. A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1- 14 C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD. Published by Elsevier B.V.

  7. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.

    Science.gov (United States)

    Trost, A; Motloch, K; Bruckner, D; Schroedl, F; Bogner, B; Kaser-Eichberger, A; Runge, C; Strohmaier, C; Klein, B; Aigner, L; Reitsamer, H A

    2015-07-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology

  8. The effects of raloxifene treatment on oxidative status in brain tissues and learning process of ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Süreyya Osmanova

    2011-01-01

    Full Text Available Background: The effects of estrogene on central nervous system are still controversial. Objective: We aimed to investigate the effects of raloxifene on the antioxidant enzyme [superoxide dismutase (SOD and catalase (CAT] activities and malondialdehyde (MDA levels in brain homogenates of ovariectomized female rats and its effect on cognitive process of learning.Materials and Methods: Female Sprague Dawley rats (n=24 were divided into three groups. Three weeks after ovariectomy; nonovariectomized group (control group (n=8 was given physiological saline (SP as placebo. First ovariectomized group (n=8 received raloxifene 1mg/kg dissolved in a 1% solution of carboxymethylcellulose (CMC subcutaneusly (sc and second group of ovariectomized rats were given 1 % CMC 1mg/kg (sc every day for 14 days. Learning behaviors of rats were evaluated in active avoidence cage with using sound and electrical stimulation. The levels of oxidative stress (MDA and antioxidant enzymes (SOD, CAT in different regions of the brain homogenates were compared between three groups of decapitated rats.Results: Raloxifene had a significant attenuating effect on the levels of MDA in brain tissues suggesting raloxifene’s effect against lipid peroxidation at the end of training days. With the comparison of brain regions, cortex showed the highest average activity of SOD and CAT and cerebellum had the lowest average levels for both. Its effects on learning and cognitive process with active avoidence task were considered insignificant.Conclusion: Raloxifene treatment may have preventive effects for the brain against oxidative stress and lipid peroxidation in rats

  9. Analysis of Biotinylated Generation 4 Poly(amidoamine (PAMAM Dendrimer Distribution in the Rat Brain and Toxicity in a Cellular Model of the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Heather A. Bullen

    2013-09-01

    Full Text Available Dendrimers are highly customizable nanopolymers with qualities that make them ideal for drug delivery. The high binding affinity of biotin/avidin provides a useful approach to fluorescently label synthesized dendrimer-conjugates in cells and tissues. In addition, biotin may facilitate delivery of dendrimers through the blood-brain barrier (BBB via carrier-mediated endocytosis. The purpose of this research was to: (1 measure toxicity using lactate dehydrogenase (LDH assays of generation (G4 biotinylated and non-biotinylated poly(amidoamine (PAMAM dendrimers in a co-culture model of the BBB, (2 determine distribution of dendrimers in the rat brain, kidney, and liver following systemic administration of dendrimers, and (3 conduct atomic force microscopy (AFM on rat brain sections following systemic administration of dendrimers. LDH measurements showed that biotinylated dendrimers were toxic to cell co-culture after 48 h of treatment. Distribution studies showed evidence of biotinylated and non-biotinylated PAMAM dendrimers in brain. AFM studies showed evidence of dendrimers only in brain tissue of treated rats. These results indicate that biotinylation does not decrease toxicity associated with PAMAM dendrimers and that biotinylated PAMAM dendrimers distribute in the brain. Furthermore, this article provides evidence of nanoparticles in brain tissue following systemic administration of nanoparticles supported by both fluorescence microscopy and AFM.

  10. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  11. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats I: Magnetic resonance imaging.

    Science.gov (United States)

    van Vliet, Erwin A; Otte, Willem M; Wadman, Wytse J; Aronica, Eleonora; Kooij, Gijs; de Vries, Helga E; Dijkhuizen, Rick M; Gorter, Jan A

    2016-01-01

    The mammalian target of rapamycin (mTOR) pathway has received increasing attention as a potential antiepileptogenic target. Treatment with the mTOR inhibitor rapamycin after status epilepticus reduces the development of epilepsy in a rat model. To study whether rapamycin mediates this effect via restoration of blood-brain barrier (BBB) dysfunction, contrast-enhanced magnetic resonance imaging (CE-MRI) was used to determine BBB permeability throughout epileptogenesis. Imaging was repeatedly performed until 6 weeks after kainic acid-induced status epilepticus in rapamycin (6 mg/kg for 6 weeks starting 4 h after SE) and vehicle-treated rats, using gadobutrol as contrast agent. Seizures were detected using video monitoring in the week following the last imaging session. Gadobutrol leakage was widespread and extensive in both rapamycin and vehicle-treated epileptic rats during the acute phase, with the piriform cortex and amygdala as the most affected regions. Gadobutrol leakage was higher in rapamycin-treated rats 4 and 8 days after status epilepticus compared to vehicle-treated rats. However, during the chronic epileptic phase, gadobutrol leakage was lower in rapamycin-treated epileptic rats along with a decreased seizure frequency. This was confirmed by local fluorescein staining in the brains of the same rats. Total brain volume was reduced by this rapamycin treatment regimen. The initial slow recovery of BBB function in rapamycin-treated epileptic rats indicates that rapamycin does not reduce seizure activity by a gradual recovery of BBB integrity. The reduced BBB leakage during the chronic phase, however, could contribute to the decreased seizure frequency in post-status epilepticus rats treated with rapamycin. Furthermore, the data show that CE-MRI (using step-down infusion with gadobutrol) can be used as biomarker for monitoring the effect of drug therapy in rats. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  12. Proteomic Analysis of Parkin Isoforms Expression in Different Rat Brain Areas.

    Science.gov (United States)

    D'Amico, Agata Grazia; Maugeri, Grazia; Reitano, Rita; Cavallaro, Sebastiano; D'Agata, Velia

    2016-10-01

    PARK2 gene's mutations are related to the familial form of juvenile Parkinsonism, also known as the autosomic recessive juvenile Parkinsonism. This gene encodes for parkin, a 465-amino acid protein. To date, a large number of parkin isoforms, generated by an alternative splicing mechanism, have been described. Currently, Gene Bank lists 27 rat PARK2 transcripts, which matches to 20 exclusive parkin alternative splice variants. Despite the existence of these isoforms, most of the studies carried out so far, have been focused only on the originally cloned parkin. In this work we have analyzed the expression profile of parkin isoforms in some rat brain areas including prefrontal cortex, hippocampus, substantia nigra and cerebellum. To discriminate among these isoforms, we detected their localization through the use of two antibodies that are able to identify different domains of the parkin canonical sequence. Our analysis has revealed that at least fourteen parkin isoforms are expressed in rat brain with a various distribution in the regions analyzed. Our study might help to elucidate the pathophysiological role of these proteins in the central nervous system.

  13. Effect of a water-maze procedure on the redox mechanisms in brain parts of aged rats

    Directory of Open Access Journals (Sweden)

    Natalia Andreevna Krivova

    2015-03-01

    Full Text Available The Morris water maze (MWM is a tool for assessment of age-related cognitive deficits. In our work, MWM was used for appraisal of cognitive deficits in 11-month-old rats and investigation of the effect exerted by training in the Morris water maze on the redox mechanisms in rat brain parts. Young adult (3-month-old and aged (11-month-old male rats were trained in the water maze. Intact animals of the corresponding age were used as the reference groups. The level of pro- and antioxidant capacity in brain tissue homogenates was assessed using the chemiluminescence method.Cognitive deficits were found in 11-month-old rats: at the first day of training they showed only 30% of successful MWM trials. However, at the last training day the percentage of successful trials was equal for young adult and aged animals. This indicates that cognitive deficits in aged rats can be reversed by MWM training. Therewith, the MWM spatial learning procedure itself produces changes in different processes of redox homeostasis in 11-month-old and 3-month-old rats as compared to intact animals. Young adult rats showed a decrease in prooxidant capacity in all brain parts, while 11-month-old rats demonstrated an increase in antioxidant capacity in the olfactory bulb, pons + medulla oblongata and frontal lobe cortex. Hence, the MWM procedure activates the mechanisms that restrict the oxidative stress in brain parts. The obtained results may be an argument for further development of the animal training procedures aimed to activate the mechanisms responsible for age-related cognitive deficits. This may be useful not only for the development of training procedures applicable to human patients with age-related cognitive impairments, but also for their rehabilitation.

  14. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    Directory of Open Access Journals (Sweden)

    Frank Cloutier

    2013-01-01

    Full Text Available The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP. Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.

  15. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism.

    Science.gov (United States)

    Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui

    2015-11-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

  16. Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Waagepetersen, Helle S; Schousboe, Arne

    2010-01-01

    Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affected...... by these conditions. [1-(13)C]glucose was administered to Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats. Sprague-Dawley (SprD), Zucker lean (ZL), and ZDF lean rats were used as controls. Several brain regions were analyzed for glycogen levels along with (13)C-labeling and content of glutamate, glutamine...... of glutamine and glutamate were decreased in the cerebellum of the ZO and the ZDF rats. Glycogen levels were also lower in this region. These results suggest that the obese and type 2 diabetic models were associated with lower brain glucose metabolism. Glucose metabolism through the TCA cycle was more...

  17. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  18. Antipsychotics, chlorpromazine and haloperidol inhibit voltage-gated proton currents in BV2 microglial cells.

    Science.gov (United States)

    Shin, Hyewon; Song, Jin-Ho

    2014-09-05

    Microglial dysfunction and neuroinflammation are thought to contribute to the pathogenesis of schizophrenia. Some antipsychotic drugs have anti-inflammatory activity and can reduce the secretion of pro-inflammatory cytokines and reactive oxygen species from activated microglial cells. Voltage-gated proton channels on the microglial cells participate in the generation of reactive oxygen species and neuronal toxicity by supporting NADPH oxidase activity. In the present study, we examined the effects of two typical antipsychotics, chlorpromazine and haloperidol, on proton currents in microglial BV2 cells using the whole-cell patch clamp method. Chlorpromazine and haloperidol potently inhibited proton currents with IC50 values of 2.2 μM and 8.4 μM, respectively. Chlorpromazine and haloperidol are weak bases that can increase the intracellular pH, whereby they reduce the proton gradient and affect channel gating. Although the drugs caused a marginal positive shift of the activation voltage, they did not change the reversal potential. This suggested that proton current inhibition was not due to an alteration of the intracellular pH. Chlorpromazine and haloperidol are strong blockers of dopamine receptors. While dopamine itself did not affect proton currents, it also did not alter proton current inhibition by the two antipsychotics, indicating dopamine receptors are not likely to mediate the proton current inhibition. Given that proton channels are important for the production of reactive oxygen species and possibly pro-inflammatory cytokines, the anti-inflammatory and antipsychotic activities of chlorpromazine and haloperidol may be partly derived from their ability to inhibit microglial proton currents. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Izabela M. Zakiewicz

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  20. Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system.

    Science.gov (United States)

    McCaughey-Chapman, Amy; Connor, Bronwen

    2017-02-01

    Organotypic brain slice cultures are a useful tool to study neurological function as they provide a more complex, 3-dimensional system than standard 2-dimensional in vitro cell cultures. Building on a previously developed mouse brain slice culture protocol, we have developed a rat sagittal brain slice culture system as an ex vivo model of dopamine cell loss. We show that rat brain organotypic slice cultures remain viable for up to 6 weeks in culture. Using Fluoro-Gold axonal tracing, we demonstrate that the slice 3-dimensional cytoarchitecture is maintained over a 4 week culturing period, with particular focus on the nigrostriatal pathway. Treatment of the cultures with 6-hydroxydopamine and desipramine induces a progressive loss of Fluoro-Gold-positive nigral cells with a sustained loss of tyrosine hydroxylase-positive nigral cells. This recapitulates the pattern of dopaminergic degeneration observed in the rat partial 6-hydroxydopamine lesion model and, most importantly, the progressive pathology of Parkinson's disease. Our slice culture platform provides an advance over other systems, as we demonstrate for the first time 3-dimensional cytoarchitecture maintenance of rat nigrostriatal sagittal slices for up to 6 weeks. Our ex vivo organotypic slice culture system provides a long term cellular platform to model Parkinson's disease, allowing for the elucidation of mechanisms involved in dopaminergic neuron degeneration and the capability to study cellular integration and plasticity ex vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of hyperbaric oxygen on lipid peroxidation and visual development in neonatal rats with hypoxia-ischemia brain damage.

    Science.gov (United States)

    Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting

    2016-07-01

    The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.

  2. Decreased resting functional connectivity after traumatic brain injury in the rat.

    Directory of Open Access Journals (Sweden)

    Asht Mangal Mishra

    Full Text Available Traumatic brain injury (TBI contributes to about 10% of acquired epilepsy. Even though the mechanisms of post-traumatic epileptogenesis are poorly known, a disruption of neuronal networks predisposing to altered neuronal synchrony remains a viable candidate mechanism. We tested a hypothesis that resting state BOLD-fMRI functional connectivity can reveal network abnormalities in brain regions that are connected to the lesioned cortex, and that these changes associate with functional impairment, particularly epileptogenesis. TBI was induced using lateral fluid-percussion injury in seven adult male Sprague-Dawley rats followed by functional imaging at 9.4T 4 months later. As controls we used six sham-operated animals that underwent all surgical operations but were not injured. Electroencephalogram (EEG-functional magnetic resonance imaging (fMRI was performed to measure resting functional connectivity. A week after functional imaging, rats were implanted with bipolar skull electrodes. After recovery, rats underwent pentyleneterazol (PTZ seizure-susceptibility test under EEG. For image analysis, four pairs of regions of interests were analyzed in each hemisphere: ipsilateral and contralateral frontal and parietal cortex, hippocampus, and thalamus. High-pass and low-pass filters were applied to functional imaging data. Group statistics comparing injured and sham-operated rats and correlations over time between each region were calculated. In the end, rats were perfused for histology. None of the rats had epileptiform discharges during functional imaging. PTZ-test, however revealed increased seizure susceptibility in injured rats as compared to controls. Group statistics revealed decreased connectivity between the ipsilateral and contralateral parietal cortex and between the parietal cortex and hippocampus on the side of injury as compared to sham-operated animals. Injured animals also had abnormal negative connectivity between the ipsilateral and

  3. Distribution of [3H]diadenosine tetraphosphate binding sites in rat brain

    International Nuclear Information System (INIS)

    Miras-Portugal, M.T.; Palacios, J.M.; Torres, M.; Cortes, R.; Rodriguez-Pascual, F.

    1997-01-01

    The distribution of the diadenosine tetraphosphate high-affinity binding sites has been studied in rat brain by an autoradiographic method using [ 3 H]diadenosine tetraphosphate as the ligand. The binding characteristics are comparable to those described in studies performed on rat brain synaptosomes. White matter is devoid of specific binding. The range of binding site densities in gray matter varies from 3 to 15 fmol/mg of tissue, exhibiting a widespread but heterogeneous distribution. The highest densities correspond to the seventh cranial nerve, medial superior olive, pontine nuclei, glomerular and external plexiform layers of the olfactory bulb, and the granule cell layer of the cerebellar cortex. Intermediate density levels of binding correspond to different cortical areas, several nuclei of the amygdala, and the oriens and pyramidal layers of the hippocampal formation.The localization of diadenosine tetraphosphate binding sites in the brain may provide information on the places where diadenosine polyphosphate compounds can be expected to function in the central nervous system. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Dynamics of pathomorphological changes in rat brain as a function of γ-radiation dose

    International Nuclear Information System (INIS)

    Fedorov, V.P.

    1990-01-01

    Neurohistological, histochemical, electron-microscopic and biometric techniques were used to study the response of rat brain to irradiation within a wide range of doses. Nerve cells were shown to be highly radioresistant. At the same time, synapses and blood-brain barrier structures were highly radiosensitive. The pathomorphologic changes in different brain areas followed a dose-time function

  5. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    Science.gov (United States)

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  6. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study.

    Science.gov (United States)

    Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu

    2018-04-23

    Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].

    Science.gov (United States)

    Feng, Er-Cui; Jiang, Li

    2017-12-01

    To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (Pmemory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.

  8. Long-term evolution of cerebral hemodynamics after brain irradiation in the rat

    International Nuclear Information System (INIS)

    Keyeux, A.; Ochrymowicz-Bemelmans, D.

    1985-01-01

    Long-term evolution of radioisotope indices, evaluating respectively the cerebral blood flow (CBF), the cerebral blood volume (CBV) and the cephalic specific distribution space of iodoantipyrine (ΔIAP) of rat, was studied after brain irradiation at 20 Gy. Radioinduced hemodynamic alterations evidenced by this approach are biphasic and support the prominent role of circulation impairment in the genesis of delayed brain radionecrosis [fr

  9. Venous or arterial blood components trigger more brain swelling, tissue death after acute subdural hematoma compared to elderly atrophic brain with subdural effusion (SDE) model rats.

    Science.gov (United States)

    Wajima, Daisuke; Sato, Fumiya; Kawamura, Kenya; Sugiura, Keisuke; Nakagawa, Ichiro; Motoyama, Yasushi; Park, Young-Soo; Nakase, Hiroyuki

    2017-09-01

    Acute subdural hematoma (ASDH) is a frequent complication of severe head injury, whose secondary ischemic lesions are often responsible for the severity of the disease. We focused on the differences of secondary ischemic lesions caused by the components, 0.4ml venous- or arterial-blood, or saline, infused in the subdural space, evaluating the differences in vivo model, using rats. The saline infused rats are made for elderly atrophic brain with subdural effusion (SDE) model. Our data showed that subdural blood, both venous- and arterial-blood, aggravate brain edema and lesion development more than SDE. This study is the first study, in which different fluids in rats' subdural space, ASDH or SDE are compared with the extension of early and delayed brain damage by measuring brain edema and histological lesion volume. Blood constituents started to affect the degree of ischemia underneath the subdural hemorrhage, leading to more pronounced breakdown of the blood-brain barrier and brain damage. This indicates that further strategies to treat blood-dependent effects more efficiently are in view for patients with ASDH. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia A.; Bustamante, Eduardo A.; Bortell, Nikki; Morsey, Brenda; Fox, Howard S.; Ravasi, Timothy; Marcondes, Maria Cecilia Garibaldi

    2016-01-01

    /function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model

  11. Ocular Changes in TgF344-AD Rat Model of Alzheimer's Disease

    OpenAIRE

    Tsai, Yuchun; Lu, Bin; Ljubimov, Alexander V.; Girman, Sergey; Ross-Cisneros, Fred N.; Sadun, Alfredo A.; Svendsen, Clive N.; Cohen, Robert M.; Wang, Shaomei

    2014-01-01

    In this study, we observed pathological changes in the choroid and in RPE cells in the TgF344-AD rat model; choroidal thinning was further observed in human AD retina. Along with Aβ deposition, the inflammatory response was manifested by microglial recruitment and complement activation.

  12. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  13. Neuroglobin in the rat brain (II): co-localisation with neurotransmitters

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Dewilde, Sylvia

    2008-01-01

    In an accompanying article, we found that neuroglobin (Ngb) was expressed in a few well-defined nuclei in the rat brain. Here, we show by use of immunohistochemistry and in situ hybridisation (ISH) that Ngb co-localise with several specific neurotransmitters. Ngb co-localise consistently with tyr...

  14. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  15. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  16. In vivo study about specific captation of 125 I-insulin by rat brain structures

    International Nuclear Information System (INIS)

    Sanvitto, G.L.

    1986-01-01

    The specific captation of 125 I-insulin was evaluated by brain structures, as olfactory bulbous, hypothalamus and cerebellum in rats, from in vivo experiences that including two different aspects: captation measure of 125 I-insulin after the intravenous injection of the labelled hormone, in fed rats and in rats with 48 h of fast or convulsion, procedure by the pentylene tetrazole; captation measure of 125 I-insulin after intra-cerebral-ventricular injection of the labelled hormone in fed rats. (C.G.C.)

  17. Peripheral formalin injection induces unique spinal cord microglial phenotypic changes

    Science.gov (United States)

    Fu, Kai-Yuan; Tan, Yong-Hui; Sung, Backil; Mao, Jianren

    2014-01-01

    Microglia are resident immune cells of brain and activated by peripheral tissue injury. In the present study, we investigated the possible induction of several microglial surface immunomolecules in the spinal cord, including leukocyte common antigen (LCA/CD45), MHC class I antigen, MHC class II antigen, Fc receptor, and CD11c following formalin injection into the rat’s hind paw. CD45 and MHC class I were upregulated in the activated microglia, which was evident on day 3 with the peak expression on day 7 following peripheral formalin injection. There was a very low basal expression of MHC class II, CD11c, and the Fc receptor, which did not change after the formalin injection. These results, for the first time, indicate that peripheral formalin injection can induce phenotypic changes of microglia with distinct upregulation of CD45 and MHC class I antigen. The data suggest that phenotypic changes of the activated microglia may be a unique pattern of central changes following peripheral tissue injury. PMID:19015000

  18. Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.

    Science.gov (United States)

    Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława

    2016-02-01

    Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. The beneficial effects of l-cysteine on brain antioxidants of rats affected by sodium valproate.

    Science.gov (United States)

    Hamza, R Z; El-Shenawy, N S

    2017-11-01

    Oxidative stress caused by sodium valproate (SV) is known to play a key role in the pathogenesis of brain tissue. The present study was designed to evaluate the protective effect of l-cysteine (LC) on the antioxidants of brain tissue of rats. The animals were divided into six groups: control group 1 was treated with saline as vehicle, groups 2 and 3 were treated with low and high doses of SV (100 and 500 mg/kg, respectively), group 4 was treated with LC (100 mg/kg), and groups 5 and 6 were treated with low-dose SV + LC and high-dose SV + LC, respectively. All the groups were treated orally by gastric tube for 30 successive days. Some antioxidant parameters were determined. Brain tissue (cerebral cortex) of SV-treated animals showed an increase in lipid peroxidation (LPO) and reduction in activity of enzymatic antioxidant and total antioxidant levels. Histopathological examination of cerebral cortex of SV rats showed astrocytic swelling, inflammation, and necrosis. After 4 weeks of the combination treatment of SV and LC daily, results showed significant improvement in the activity of cathepsin marker enzymes and restored the structure of the brain. LC was able to ameliorate oxidative stress deficits observed in SV rats. LC decreased LPO level and was also able to restore the activity of antioxidant enzymes as well as structural deficits observed in the brain of SV animals. The protective effect of LC in SV-treated rats is mediated through attenuation of oxidative stress, suggesting a therapeutic role for LC in individuals treated with SV.

  20. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    Directory of Open Access Journals (Sweden)

    Yasuhisa Ano

    Full Text Available Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body

  1. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    Science.gov (United States)

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  2. Isolation of murine postnatal brain microglia for phenotypic characterization using magnetic cell separation technology.

    Science.gov (United States)

    Harms, Ashley S; Tansey, Malú G

    2013-01-01

    To shorten the time between brain harvesting and microglia isolation, and characterization, we utilized the MACS(®) neural dissociation kit followed by OctoMACS(®) CD11b magnetic bead isolation technique to positively select for brain microglia expressing the pan-microglial marker CD11b, a key subunit of the membrane attack complex (MAC). This protocol yields a viable and highly pure (>95%) microglial population of approximately 500,000 cells per pup that is amenable for in vitro characterization within hours or days after being harvested from brain tissue. Primary microglia from C57Bl/6 mice were plated for next-day analyses of morphology and cellular markers by immunocytochemistry or for analysis of gene expression under resting or LPS-stimulated conditions. The ease of isolation enables investigators to perform molecular and cellular analyses without having to wait 1-2 weeks to isolate microglia by conventional methods involving mechanical agitation to dislodge these from astrocyte beds.

  3. Influence of histidine on zinc transport into rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto [Shizuoka Univ. (Japan). School of Pharmaceutical Sciences

    2000-06-01

    The brain of rats injected intravenously with {sup 65}Zn-His or {sup 65}ZnCl{sub 2} was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from {sup 65}Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from {sup 65}Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of {sup 65}Zn-His in the brain was similar to that of {sup 65}ZnCl{sub 2} group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the {sup 65}Zn-His group from the blood was higher than that of the {sup 65}ZnCl{sub 2} group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  4. Performance Enhancement of the RatCAP Awake Rat Brain PET System

    International Nuclear Information System (INIS)

    Vaska, P.; Woody, C.; Schlyer, D.; Radeka, V.; O'Connor, P.; Park, S.-J.; Pratte, J.-F.; Junnarkar, S.; Purschke, M.; Southekal, S.; Stoll, S.; Schiffer, W.; Lee, D.; Neill, J.; Wharton, D.; Myers, N.; Wiley, S.; Kandasamy, A.; Fried, J.; Krishnamoorthy, S.; Kriplani, A.; Maramraju, S.; Lecomte, R.; Fontaine, R.

    2011-01-01

    The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required for neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.

  5. Immuno-localization of galanin receptor-1 (GALR1) in rat brain

    International Nuclear Information System (INIS)

    Larm, J.M.; Gundlach, A.L.

    2002-01-01

    Full text: Galanin is expressed in discrete areas throughout the central nervous system and has several putative physiological actions including effects on hormone secretion, reproduction and cognition, via actions at multiple G-protein-coupled receptors. Currently, three galanin receptors - GalR1, -R2, -R3 - have been identified that differ in pharmacology, signalling and distribution. The distribution of [ 125 I]-galanin binding sites presumably represents multiple receptors and so the precise regional and cellular localization of each receptor subtype is unknown. This study examined the distribution in rat brain of GalR1 receptors by immunohistochemistry, using polyclonal antibodies raised against short peptide sequences from the third intracellular loop and the proximal C-terminal. Adult rats were deeply anaesthetized (pentobarbitone 60 mg/kg, ip.) and perfusion-fixed with 4% paraformaldehyde. Specific GalR1 immunoreactivity (IR) was detected in neurons in various brain regions including cells within the olfactory bulb, piriform cortex, dorsomedial thalamus, hypothalamus (PVN, SON, ARC), midbrain/pons (intense staining in ventrolateral/medial PAG) and medulla. The localization pattern was qualitatively similar with both antisera and was consistent with that observed for GalR1 mRNA in normal rat brain. Recent evidence also reveals that GalR1- mRNA and -IR levels are coordinately altered after neuronal stimulation. These studies demonstrate a method for the identification of GalR1-containing cells that should assist in better differentiating the phenotype of galanin-receptive neurons. Copyright (2002) Australian Neuroscience Society

  6. Fusogenic properties of Sendai virosome envelopes in rat brain preparations.

    Science.gov (United States)

    de Fiebre, C M; Bryant, S O; Notabartolo, D; Wu, P; Meyer, E M

    1993-10-01

    Sendai virosomes were characterized with respect to their ability to bind to, fuse with, and introduce substances into several rat brain preparations. Encapsulation efficiency for Sendai virosomes was enhanced but binding to cerebral cortical P2 preparations was attenuated by addition of bovine brain phosphatidylcholine during reconstitution. A higher percentage of Sendai virosomes than phosphatidylcholine liposomes appeared to bind to, fuse with and subsequently deliver [14C]sucrose into osmotically labile pools of the P2 preparation. Fusogenic activity was estimated by measuring dequenching of fluorescently labelled N-NBD-phosphatidylethanolamine. More virosomally encapsulated [14C]sucrose was bound to the P2 fraction than introduced into osmotically labile organelles, and the fraction of vesicles undergoing fusion was intermediate between these two values. Non-encapsulated [14C]sucrose did not bind to and was not taken up by the P2 fraction in a quantifiable manner. Virosomal envelopes also bound to primary cultures of rat brain neurons and glia in an apparently saturable manner. Addition of increasing amounts of the adenoassociated virus-derived vector pJDT95 increased encapsulation efficiency, and virosomes reconstituted in the presence of 60 micrograms DNA retained most of their binding activity (5.4% of total label) compared to those containing [14C]sucrose alone (8.4%). These data indicate that Sendai virosomes may be useful in the delivery of substances into brain-derived tissues, potentially for the modulation of gene expression and neurotransmission.

  7. Perfusion of the isolated rat brain with [14C]-Δ1-tetrahydrocannabinol

    International Nuclear Information System (INIS)

    Martin, B.; Agurell, S.; Krieglstein, J.; Rieger, H.

    1977-01-01

    There is controversy over whether Δ 1 -tetrahydrocannabinol (Δ 1 -THC) or its metabolites is responsible for the behavioural and cardiovascular effects of cannabis. It has been shown that, even in the absence of metabolism, Δ 1 -THC was capable of altering the EEG of isolated perfused rat brain, and must therefore contribute to the psychoactivity of cannabis. TLC studies showed no evidence for brain metabolism of [ 14 C]-Δ 1 -THC, and in particular the 7-hydroxylated metabolite (7-OH-Δ 1 -THC) could not be detected. A disproportionate amount of CNS activity in the rat cannot therefore be attributed to 7-OH-Δ 1 -THC on the basis that it is formed at or near its locus of action. (U.K.)

  8. Possible effects of rosuvastatin on noise-induced oxidative stress in rat brain

    Directory of Open Access Journals (Sweden)

    Alevtina Ersoy

    2014-01-01

    Full Text Available The problem of noise has recently gained more attention as it has become an integral part of our daily lives. However, its influence has yet to be fully elucidated. Other than being an unpleasant stimulus, noise may cause health disorders through annoyance and stress, including oxidative stress. Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, may possess antioxidant properties. Based on rat models, our project investigates the effect of rosuvastatin on noise-induced oxidative stress in the brain tissue. Thirty-two male Wistar albino rats were used. The rats were divided into four groups: Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage, and control. After the data had been collected, oxidant and antioxidant parameters were analyzed in the cerebral cortex, brain stem, and cerebellum. Results indicated that superoxide dismutase values were significantly decreased in the cerebral cortex, while malondialdehyde values in the brainstem and cerebellum were significantly increased in the group with only noise exposure. Superoxide dismutase values in the brainstem were significantly increased, but nitric oxide values in the cerebellum and brainstem and malondialdehyde values in the cerebellum and cerebral cortex were significantly decreased in the group where only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased superoxide dismutase values in the cerebral cortex and brainstem, but significantly reduced malondialdehyde values in the brain stem. Consequently, our data show that brain tissue was affected by oxidative stress due to continued exposure to noise. This noise-induced stress decreases with rosuvastatin therapy.

  9. Effect of thiamine deficiency, pyrithiamine and oxythiamine on pyruvate metabolism in rat liver and brain in vivo

    International Nuclear Information System (INIS)

    Meghal, S.K.; O'Neal, R.M.; Koeppe, R.E.

    1977-01-01

    Rats were fed either a thiamine-deficient diet or diets containing pyrithiamine or oxythiamine. When symptoms of thiamine deficiency appeared, the animals were injected intraperitoneally with [2- 14 C] pyruvate six to twelve minutes prior to sacrifice. Free glutamic and aspartic acids were isolated from liver and brain and degraded. The results indicate that, in thiamine-deficient or oxythiamine-treated rats, pyruvate metabolism in liver and brain is similar to that in normal animals. In contrast, pyrithinamine drastically decreases the oxidative decarboxylation of pyruvate by rat liver. (auth.)

  10. Regional specificity in deltamethrin induced cytochrome P450 expression in rat brain

    International Nuclear Information System (INIS)

    Yadav, Sanjay; Johri, Ashu; Dhawan, Alok; Seth, Prahlad K.; Parmar, Devendra

    2006-01-01

    Oral administration of deltamethrin (5 mg/kg x 7 or 15 or 21 days) was found to produce a time-dependent increase in the mRNA expression of xenobiotic metabolizing cytochrome P450 1A1 (CYP1A1), 1A2 and CYP2B1, 2B2 isoenzymes in rat brain. RT-PCR studies further showed that increase in the mRNA expression of these CYP isoenzymes observed after 21 days of exposure was region specific. Hippocampus exhibited maximum increase in the mRNA expression of CYP1A1, which was followed by pons-medulla, cerebellum and hypothalamus. The mRNA expression of CYP2B1 also exhibited maximum increase in the hypothalamus and hippocampus followed by almost similar increase in midbrain and cerebellum. In contrast, mRNA expression of CYP1A2 and CYP2B2, the constitutive isoenzymes exhibited relatively higher increase in pons-medulla, cerebellum and frontal cortex. Immunoblotting studies carried out with polyclonal antibody raised against rat liver CYP1A1/1A2 or CYP2B1/2B2 isoenzymes also showed increase in immunoreactivity comigrating with CYP1A1/1A2 or 2B1/2B2 in the microsomal fractions isolated from hippocampus, hypothalamus and cerebellum of rat treated with deltamethrin. Though the exact relationship of the xenobiotic metabolizing CYPs with the physiological function of the brain is yet to be clearly understood, the increase in the mRNA expression of the CYPs in the brain regions that regulate specific brain functions affected by deltamethrin have further indicated that modulation of these CYPs could be associated with the various endogenous functions of the brain

  11. Differentiation in boron distribution in adult male and female rats' normal brain: A BNCT approach

    International Nuclear Information System (INIS)

    Goodarzi, Samereh; Pazirandeh, Ali; Jameie, Seyed Behnamedin; Baghban Khojasteh, Nasrin

    2012-01-01

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. - Highlights: ► Boron distribution in male and female rats' normal brain was studied in this research. ► Coronal sections of animal tissue samples were irradiated with thermal neutrons. ► Alpha and Lithium tracks were counted using alpha autoradiography. ► Different boron concentration was seen in brain sections of male and female rats. ► The highest boron concentration was seen in 4 h after boron compound injection.

  12. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    Science.gov (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  13. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    Science.gov (United States)

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  14. The effect of ZMS on brain M receptor in aged rats

    International Nuclear Information System (INIS)

    Hu Mei; Hu Yaer; Zhang Wei; Xia Zongqin

    2001-01-01

    Objective: The purpose of this work was to study the effect of ZMS, an active component of Yin tonic, Zhimu, on brain M 2 receptor density of aged animals and its correlation with the effect on learning/memory ability. Methods: A dual-site competitive binding assay using 3 H-quinuclidinyl benzilate (QNB) as non selective radioligand and unlabelled Methoctramine as selective competitive agent was established for measuring M 2 receptor density in aged rats. Results: In addition to the change of total density of M receptors, the density of a subtype of M receptors, M 2 receptor in brain was significantly decreased in aged rats [(231.8 +- 115.9) fmol·mg -1 (x-bar +- s) in young rats and (97.9 +- 46.3) fmol·mg -1 in aged rats]. When the aged rats were treated with ZMS for two months, in addition to the up-regulation of total M receptors, the M 2 receptor was up-regulated significantly [being (213 +- 77) mg at a ZMS dose of 3.6 mg·kg -1 ·d - '1, and (212 +- 72) mg at a ZMS dose of 18 mg·kg -1 ·d -1 ]. When the correlation between M 2 or total M receptor densities and the learning/memory ability measured by Y-maze performance was examined with linear regression, the correlation coefficient was remarkable (0.721 and 0.505, respectively). Conclusions: ZMS has the ability of up-regulating M 2 receptor and this may be an important factor for the improvement of learning and memory by ZMS

  15. Effects of propranolol and clonidine on brain edema, blood-brain barrier permeability, and endothelial glycocalyx disruption after fluid percussion brain injury in the rat

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Hansen, Morten Bagge

    2018-01-01

    clonidine would decrease brain edema, blood-brain barrier permeability, and glycocalyx disruption at 24 hours after trauma. METHODS: We subjected 53 adult male Sprague-Dawley rats to lateral fluid percussion brain injury and randomized infusion with propranolol (n = 16), propranolol + clonidine (n = 16......), vehicle (n = 16), or sham (n = 5) for 24 hours. Primary outcome was brain water content at 24 hours. Secondary outcomes were blood-brain barrier permeability and plasma levels of syndecan-1 (glycocalyx disruption), cell damage (histone-complexed DNA fragments), epinephrine, norepinephrine, and animal.......555). We found no effect of propranolol and propranolol/clonidine on blood-brain barrier permeability and animal motor scores. Unexpectedly, propranolol and propranolol/clonidine caused an increase in epinephrine and syndecan-1 levels. CONCLUSION: This study does not provide any support for unselective...

  16. Effects of intravenous administration of bone marrow stromal stem cells on cognitive impairment of the whole-brain irradiated rat models

    International Nuclear Information System (INIS)

    Ding Weijun; Wang Jianhua; Zhu Min; Chen Baoguo; Wang Yang

    2007-01-01

    Objective: To explore the effect of intravenous infusion of bone marrow stromal stem cells(MSCs) on cognitive function of rats after whole brain irradiation. Methods: MSCs were isolated and cultured from adult rats. After Sprague-Dawly female rats were anaesthetized with chloral hydrate, their whole cerebrum was irradiated with a single dose of 20 Gy by 6 MV X-ray. Seven days after irradiation, 4 x 106 Hoechst33342-1abelled MSCs were intravenously injected into the tail vein of these rats. Four and 8 weeks after transplantation, the learning and memorizing ability was measured with the Y maze test. Immunohistochemical method was used to identify MSCs or ceils derived from MSCs in the brain. Results: The learning and memorizing ability of irradiation groups were significantly different from that of normal control group (P < 0.01). Significant improvement of cognitive impairment was observed in rats treated with MSCs at 4 and 8 weeks after transplantation as compared with the controll groups (P<0.05). This showed that the MSCs survived and were localized to the brain tissue. The number of Hoechst33342 immunohistofluorescence positive cells and double-immunostaining cells significantly decreased in 8 weeks group as compared with the 4 weeks group. Conclusion: Marrow stromal stem cells delivered to the irradiation brain tissue through intravenous route improve the cognitive impairment after whole brain irradiation. These cells may survive and differentiate in the brain tissue of irradiated rats. (authors)

  17. Effects of sevoflurane on adenylate cyclase and phosphodiesterases activity in brain of rats

    International Nuclear Information System (INIS)

    Feng Changdong; Yang Jianping; Dai Tijun

    2009-01-01

    Objective: To investigate the effects of sevoflurane on c adenylate cyclase (AC) and phosphodiesterases (PDE) activity in the cerebrocortex, hippocampus and brain stem of rats, and to examine the role of cAMP in sevoflurane anesthesia. Methods: Fourty SD rats were delaminately designed and allocated randomly to 5 groups inhaling 1.5% sevoflurane i.e., no recovery (recovery group, n=8) and one hour after righting reflexrecovery (aware group, n=8). The brain tissues were rapidly dissected into cerebrocortex and hippocampus and brain stem.Then the adenylate cyclase and phosphodiesterases activity were assessed. Results: So far as the activity of AC is concerned, compared with the control group, the activity of AC in the cerebrocortex, hippocampus and brain stem brain stem of induction group and anesthesia group, the cerebrocortex, and hippocampus in the recovery group were significantly increased; compared with those in the anesthesia group, the activity of AC in the cerebrocortex, hippocampus and brain stem of aware group were significantly decreased (P<0.05); For the activity of PDE, compared with the control group, the activity of PDE in the cerebrocortex, hippocampus and brain stem in the induction group and anesthesia group was significantly decreased, compared with that in anesthesia group, the activity of PDE in the cerebrocortex, hippocampus and brain stem of recovery group and aware group was significantly increased (P<0.05). Conclusion: cAMP may play an important role in sevoflurane anesthesia. (authors)

  18. Blood-brain transfer and metabolism of 6-[18F]fluoro-L-dopa in rat

    International Nuclear Information System (INIS)

    Reith, J.; Dyve, S.; Kuwabara, H.; Guttman, M.; Diksic, M.; Gjedde, A.

    1990-01-01

    In a study designed to reveal the rates of blood-brain transfer and decarboxylation of fluoro-L-3,4-dihydroxyphenylalanine (FDOPA), we discovered a major discrepancy between the DOPA decarboxylase activity reported in the literature and the rate of FDOPA decarboxylation measured in the study. Donor rats received intravenous injections of 6 mCi fluorine-18-labeled FDOPA. The donor rats synthesized methyl-FDOPA. Arterial plasma, containing both FDOPA and methyl-FDOPA, was sampled from the donor rats at different times and reinjected into recipient rats in which it circulated for 20 s. The blood-brain clearance of the mixture of labeled tracers in the plasma was determined by an integral method. The individual permeabilities were determined by linear regression analysis, according to which the average methyl-FDOPA permeability in the blood-brain barrier was twice that of FDOPA, which averaged 0.037 ml g-1 min-1. The permeability ratio was used to determine the fractional clearance from the brain of FDOPA (and hence of methyl-FDOPA), which averaged 0.081 min-1. In the striatum, the measured average FDOPA decarboxylation rate constant (kD3) was 0.010 min-1, or no more than 1% of the rate of striatal decarboxylation of DOPA measured in vitro and in vivo. We interpreted this finding as further evidence in favor of the hypothesis that striatum has two dopamine (DA) pools, of which only DA in the large pool is protected from metabolism. Hence, no more than 1% of the quantity of fluoro-DA theoretically synthesized was actually retained in striatum

  19. Motor, Visual and Emotional Deficits in Mice after Closed-Head Mild Traumatic Brain Injury Are Alleviated by the Novel CB2 Inverse Agonist SMM-189

    Directory of Open Access Journals (Sweden)

    Anton Reiner

    2014-12-01

    Full Text Available We have developed a focal blast model of closed-head mild traumatic brain injury (TBI in mice. As true for individuals that have experienced mild TBI, mice subjected to 50–60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2, we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50–60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI.

  20. Brain inflammation enhances 1-methyl-4-phenylpyridinium-evoked neurotoxicity in rats

    International Nuclear Information System (INIS)

    Goralski, Kerry B.; Renton, Kenneth W.

    2004-01-01

    Experimental Parkinson's disease and Parkinson's disease in humans include a CNS inflammatory component that may contribute to the pathogenesis of the disease. CNS inflammation produces a loss in cytochrome P450 metabolism and may impair the brain's protection against neurotoxins. We have examined if preexisting inflammation in the brain could increase the toxicity of the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP + ). Lipopolysaccharide (LPS, 25 μg) or saline (control) was injected into the left lateral cerebral ventricle. A single injection of MPP + into the median forebrain bundle followed 48 h later and produced a reduction in striatal dopamine content that was dose and time dependant. Two-days after 5 μg of MPP + was administered, a 90% decrease in striatal dopamine content was observed in saline- and LPS-pretreated rats. However, 4 and 7 days after 5 μg MPP + treatment, striatal dopamine recovered up to 70-80% of control values in saline-pretreated rats but remained depressed (80-90%) in rats treated with LPS. These results suggested that CNS inflammation might create an increased risk factor for drug-induced CNS toxicity or chemically mediated Parkinson's disease. The prolonged toxicity of MPP + may be due to a decrease in brain cytochrome P450 metabolism that occurs during inflammation. As a second objective for the study, we examined if the CNS lesion produced by MPP + altered cytochrome P450 metabolic activity in the liver, kidney, and lung. We have demonstrated a novel mechanism whereby the brain pathology produced by MPP + treatment contributes to a reduction in cytochrome P450 metabolism in the kidney but not the liver or lung. Therefore, a chemically evoked CNS disorder with a chronic inflammatory component might have major effects on the renal metabolism of drugs or endogenous substrates

  1. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  2. Brain scan in cerebral ischemia. An experimental model in the rat

    International Nuclear Information System (INIS)

    Turner, J.H.

    1975-01-01

    A rapid embolic method for consistent induction of stroke in the rat is described. Brain scans were performed using a micro-pinhole collimator system, and the value of the model for studies in localization of radiopharmaceuticals in cerebral ischemia is demonstrated

  3. Efficiency analysis of clearance of two types of exogenous iron from the rat brain by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Polikarpov, D. M., E-mail: polikarpov.imp@gmail.com; Cherepanov, V. M.; Gabbasov, R. R. [National Research Centre, ' Kurchatov Institute' (Russian Federation); Chuev, M. A.; Mischenko, I. N. [Russian Academy of Sciences, Russian Institute of Physics and Technology (Russian Federation); Korshunov, V. A. [Russian Academy of Sciences, Institute of Higher Nervous Activity and Neurophysiology (Russian Federation); Panchenko, V. Y. [National Research Centre, ' Kurchatov Institute' (Russian Federation)

    2013-04-15

    Fe{sub 3}O{sub 4} based ferrofluid was injected transcranially in the ventricle of the rat brain. At 3 months after the injection the rat was sacrificed and the brain was investigated by Moessbauer spectroscopy and histological Perls Prussian blue method. Joint analysis of histological and Moessbauer data confirms that superparamagnetic nanoparticles Fe{sub 3}O{sub 4}, which constituted about 91 % of the iron of the ferrofluid, were cleared from the brain, while the concomitant chemical compound containing ferric ion in the high-spin state, remains intact.

  4. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Pari, Leelavinothan; Murugavel, Ponnusamy

    2007-01-01

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P + K + -ATPase, Mg 2+ -ATPase and Ca 2+ -ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  5. {sup 26}Al incorporation into the brain of rat fetuses through the placental barrier and subsequent metabolism in postnatal development

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, Sakae, E-mail: yumoto-s@viola.ocn.ne.j [Yumoto Institute of Neurology, Kawadacho 6-11, Shinjuku-ku, Tokyo 162-0054 (Japan); Nagai, Hisao [College of Humanities and Sciences, Nihon University, Tokyo (Japan); Kakimi, Shigeo [Faculty of Medicine, Nihon University, Tokyo (Japan); Matsuzaki, Hiroyuki [School of Engineering, The University of Tokyo, Tokyo (Japan)

    2010-04-15

    Aluminium (Al) inhibits prenatal and postnatal development of the brain. We used {sup 26}Al as a tracer, and measured {sup 26}Al incorporation into rat fetuses through the placental barrier by accelerator mass spectrometry (AMS). From day 15 to day 18 of gestation, {sup 26}AlCl{sub 3} was subcutaneously injected into pregnant rats. Considerable amounts of {sup 26}Al were measured in the tissues of newborn rats immediately after birth. The amounts of {sup 26}Al in the liver and kidneys decreased rapidly during postnatal development. However, approximately 15% of {sup 26}Al incorporated into the brain of fetuses remained in the brain of adult rats 730 days after birth.

  6. Ionizing radiation alters the properties of sodium channels in rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, M J; Hunt, W A; Harris, R A

    1986-08-01

    The effect of ionizing radiation on neuronal membrane function was assessed by measurement of neurotoxin-stimulated /sup 22/Na/sup +/ uptake by rat brain synaptosomes. High-energy electrons and gamma photons were equally effective in reducing the maximal uptake of /sup 22/Na/sup +/ with no significant change in the affinity of veratridine for its binding site in the channel. Ionizing radiation reduced the veratridine-stimulated uptake at the earliest times measured (3 and 5 s), when the rate of uptake was greatest. Batrachotoxin-stimulated /sup 22/Na/sup +/ uptake was less sensitive to inhibition by radiation. The binding of (/sup 3/H)saxitoxin to its receptor in the sodium channel was unaffected by exposure to ionizing radiation. The effect of ionizing radiation on the lipid order of rat brain synaptic plasma membranes was measured by the fluorescence polarization of the molecular probes 1,6-diphenyl-1,3,5-hexatriene and 1-(4-(trimethylammonium)phenyl)-6-phenyl-1,3,5-hexatriene. A dose of radiation that reduced the veratridine-stimulated uptake of /sup 22/Na/sup +/ had no effect on the fluorescence polarization of either probe. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive sodium channels in rat brain synaptosomes. This effect of radiation is not dependent on changes in the order of membrane lipids.

  7. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats.

    Science.gov (United States)

    Teodorak, Brena P; Ferreira, Gabriela K; Scaini, Giselli; Wessler, Letícia B; Heylmann, Alexandra S; Deroza, Pedro; Valvassori, Samira S; Zugno, Alexandra I; Quevedo, João; Streck, Emilio L

    2015-08-01

    Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p.) or vehicle (2% Tween 80). Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  8. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats

    Directory of Open Access Journals (Sweden)

    BRENA P. TEODORAK

    2015-08-01

    Full Text Available Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p. or vehicle (2% Tween 80. Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  9. Virus Infections on Prion Diseased Mice Exacerbate Inflammatory Microglial Response

    Science.gov (United States)

    Lins, Nara; Mourão, Luiz; Trévia, Nonata; Passos, Aline; Farias, José Augusto; Assunção, Jarila; Bento-Torres, João; Consentino Kronka Sosthenes, Marcia; Diniz, José Antonio Picanço; Vasconcelos, Pedro Fernando da Costa

    2016-01-01

    We investigated possible interaction between an arbovirus infection and the ME7 induced mice prion disease. C57BL/6, females, 6-week-old, were submitted to a bilateral intrahippocampal injection of ME7 prion strain (ME7) or normal brain homogenate (NBH). After injections, animals were organized into two groups: NBH (n = 26) and ME7 (n = 29). At 15th week after injections (wpi), animals were challenged intranasally with a suspension of Piry arbovirus 0.001% or with NBH. Behavioral changes in ME7 animals appeared in burrowing activity at 14 wpi. Hyperactivity on open field test, errors on rod bridge, and time reduction in inverted screen were detected at 15th, 19th, and 20th wpi respectively. Burrowing was more sensitive to earlier hippocampus dysfunction. However, Piry-infection did not significantly affect the already ongoing burrowing decline in the ME7-treated mice. After behavioral tests, brains were processed for IBA1, protease-resistant form of PrP, and Piry virus antigens. Although virus infection in isolation did not change the number of microglia in CA1, virus infection in prion diseased mice (at 17th wpi) induced changes in number and morphology of microglia in a laminar-dependent way. We suggest that virus infection exacerbates microglial inflammatory response to a greater degree in prion-infected mice, and this is not necessarily correlated with hippocampal-dependent behavioral deficits. PMID:28003864

  10. Brain activation in response to visceral stimulation in rats with amygdala implants of corticosterone: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Anthony C Johnson

    2010-01-01

    Full Text Available Although visceral pain of gastrointestinal (GI origin is the major complaint in patients with irritable bowel syndrome (IBS it remains poorly understood. Brain imaging studies suggest a defect in brain-gut communication in IBS with a greater activation of central arousal circuits including the amygdala. Previously, we found that stereotaxic implantation of corticosterone (CORT onto the amygdala in rats induced anxiety and colonic hypersensitivity. In the present study we used functional magnetic resonance imaging (fMRI to identify specific brain sites activated in a rat model characterized by anxiety and colonic hypersensitivity.Anesthetized male rats received micropellets (30 microg each of either CORT or cholesterol (CHOL, to serve as a control, implanted stereotaxically on the dorsal margin of each amygdala. Seven days later, rats were anesthetized and placed in the fMRI magnet (7T. A series of isobaric colorectal balloon distensions (CRD - 90s 'off', 30s 'on', 8 replicates at two pressures (40 and 60 mmHg were performed in a standard block-design. Cross correlation statistical analysis was used to determine significant differences between distended and non-distended states in CORT and CHOL-treated animals. Analysis of the imaging data demonstrated greater overall brain activation in response to CRD in rats with CORT implants compared to CHOL controls. Additionally, CORT implants produced significant positive bilateral increases in MRI signal in response to CRD in specific nuclei known as integration sites important in anxiety and pain perception.These data indicate that chronic exposure of the amygdala to elevated levels of CORT enhances overall brain activation in response to CRD, and identified other specific brain regions activated in response to mechanical distension of the colon. These results demonstrate the feasibility of performing fMRI imaging in a rodent model that supports clinical observations in IBS patients with enhanced

  11. {beta}-adrenergic receptor density and adenylate cyclase activity in lead-exposed rat brain after cessation of lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Huoy-Rou [I-Shou University, Department of Biomedical Engineering, Dashu Shiang, Kaohsiung County (Taiwan); Tsao, Der-An [Fooyin University of Technology, Department of Medical Technology (Taiwan); Yu, Hsin-Su [Taiwan University, Department of Dermatology, College of Medicine (Taiwan); Ho, Chi-Kung [Kaohsiung Medical University, Occupational Medicine (Taiwan); Kaohsiung Medical University, Graduate Institute of Medicine, Research Center for Occupational Disease (Taiwan)

    2005-01-01

    To understanding the reversible or irreversible harm to the {beta}-adrenergic system in the brain of lead-exposed rats, this study sets up an animal model to estimate the change in the sympathetic nervous system of brain after lead exposure was withdrawn. We address the following topics in this study: (a) the relationship between withdrawal time of lead exposure and brain {beta}-adrenergic receptor, blood lead level, and brain lead level in lead-exposed rats after lead exposure was stopped; and (b) the relationship between lead level and {beta}-adrenergic receptor and cyclic AMP (c-AMP) in brain. Wistar rats were chronically fed with 2% lead acetate and water for 2 months. Radioligand binding was assayed by a method that fulfilled strict criteria of {beta}-adrenergic receptor using the ligand [{sup 125}I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The c-AMP level was determined by radioimmunoassay. The results showed a close relationship between decreasing lead levels and increasing numbers of brain {beta}-adrenergic receptors and brain adenylate cyclase activity after lead exposure was withdrawn. The effect of lead exposure on the {beta}-adrenergic system of the brain is a partly reversible condition. (orig.)

  12. Alterations in substance P binding in brain nuclei of spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Shigematsu, K.; Niwa, M.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1987-01-01

    Substance P binding sites were characterized in brain nuclei of young (4-wk-old) and adult (16-wk-old) spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto (WKY) control rats by quantitative autoradiography. Young SHR presented higher affinity constants (K/sub A/) than young WKY. The changes were restricted to locus coeruleus, the area postrema, the dorsal motor nucleus of the vagus, and to discrete areas located in lobes 9 and 10 of the vermis cerebelli of SHR. There were no differences in the maximal binding capacity (B/sub max/) except in the nucleus ambiguus where the B/sub max/ was lower than WKY. Conversely, the number of substance P binding sites was higher in the locus coeruleus, the nucleus tegmentalis dorsalis, the nucleus ambiguus, the dorsal motor nucleus of the vagus, the hypoglossal nucleus, the inferior olivary nucleus, and lobes 9 and 10 of the vermis cerebelli of adult SHR when compared with adult WKY. The results support the hypothesis of a role for brain substance P in blood pressure regulation and in genetic hypertension in rats

  13. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Valeria Hansberg-Pastor

    2015-01-01

    Full Text Available The CCAAT/enhancer-binding protein beta (C/EBPβ is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle.

  14. Anxiety-related behavior in hyperhomocysteinemia induced by methionine nutritional overload in rats: role of the brain oxidative stress.

    Science.gov (United States)

    Hrncic, Dragan; Mikić, Jelena; Rasic-Markovic, Aleksandra; Velimirović, Milica; Stojković, Tihomir; Obrenović, Radmila; Rankov-Petrović, Bojana; Šušić, Veselinka; Djuric, Dragan; Petronijević, Nataša; Stanojlovic, Olivera

    2016-10-01

    The aim of this study was to examine the effects of a methionine-enriched diet on anxiety-related behavior in rats and to determine the role of the brain oxidative status in these alterations. Adult male Wistar rats were fed from the 30th to 60th postnatal day with standard or methionine-enriched diet (double content comparing with standard diet: 7.7 g/kg). Rats were tested in open field and light-dark tests and afterwards oxidative status in the different brain regions were determined. Hyperhomocysteinemia induced by methionine-enriched diet in this study decreased the number of rearings, as well as the time that these animals spent in the center of the open field, but increased index of thigmotaxy. Oxidative status was selectively altered in the examined regions. Lipid peroxidation was significantly increased in the cortex and nc. caudatus of rats developing hyperhomocysteinemia, but unaltered in the hippocampus and thalamus. Based on the results of this research, it could be concluded that hyperhomocysteinemia induced by methionine nutritional overload increased anxiety-related behavior in rats. These proanxiogenic effects could be, at least in part, a consequence of oxidative stress in the rat brain.

  15. Effects of low doses of gamma radiation on DNA synthesis in the developing rat brain

    International Nuclear Information System (INIS)

    Cerda, H.

    1983-01-01

    Rats of one or ten days of age were irradiated with low doses of gamma radiation, and synthesis of DNA was examined by the incorporation of 3 H-thymidine in the cerebellum and the rest of the brain in vivo. DNA synthesis was depressed in both parts of the brain but the effects were larger in cerebellum. A minimum was found about 10 hours after irradiation in the older rats and later (18 h) in the younger ones. The dose response in 10 day-old rats, was biphasic and showed that cerebellum was more affected. Autoradiographs showed that fewer cells entered the cycle and those synthesizing showed a depressed rate of synthesis. These findings are discussed in relation to induction of cell death. (Auth.)

  16. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity

    Science.gov (United States)

    Zhang, Yuan; Shen, Kai; Bai, Ying; Lv, Xuan; Huang, Rongrong; Zhang, Wei; Chao, Jie; Nguyen, Lan K.; Hua, Jun; Gan, Guangming; Hu, Gang; Yao, Honghong

    2016-01-01

    ABSTRACT BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143+/− mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse. PMID:27464000

  17. Effects Of Amitryptilin Administration on Rat Sera and Brain Beta-endorphins

    Directory of Open Access Journals (Sweden)

    Radivoj Jadrić

    2006-11-01

    Full Text Available The aim of our study was to establish the influence of antidepressive drugs on serum and brain beta-endorphins in experimental animals. Experiment was performed on albino Wistar rats. Antidepressant amitryptiline was used, and for quantification of sera and brain beta-endorphins RIA technique. Our results showed difference between sera and brain beta-endorphins concentration in amitryptiline pretreated animals, vs. those in serum and brain of control group treated with 0.95% NaCl. This study shows that use of psychoactive drugs have influence on sera and brain beta-endorphins concentration. Beta-endorphins could be of great importance, used as markers for evaluation of antidepressant drug effects.

  18. Whole body X-irradiation and impact of dietary factors on brain and testes of albino rats

    International Nuclear Information System (INIS)

    Hasan, S.S.; Chaturvedi, P.K.

    1988-01-01

    The study was undertaken to investigate the radioprotective effect of protein diet on the irradiated brain and testes. The study indicated that the less availability of protein in the diet caused a marked reduction in the protein and nucleic acid (DNA and RNA) contents of brain after irradiation. Further, the protein deficiency in diet brought about an increased deamination of protein in the brain of irradiated rats. It was noted that in response to irradiation the testes of protein deficient diet fed rats got adversely affected as compared to high protein diet fed animals. This paper gives evidence that feeding of protein enriched diet provides protection against ionizing radiation. (orig.) [de

  19. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  20. Altered brain serotonergic neurotransmission following caffeine withdrawal produces behavioral deficits in rats.

    Science.gov (United States)

    Khaliq, Saima; Haider, Saida; Naqvi, Faizan; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Caffeine administration has been shown to enhance performance and memory in rodents and humans while its withdrawal on the other hand produces neurobehavioral deficits which are thought to be mediated by alterations in monoamines neurotransmission. A role of decreased brain 5-HT (5-hydroxytryptamine, serotonin) levels has been implicated in impaired cognitive performance and depression. Memory functions of rats were assessed by Water Maze (WM) and immobility time by Forced Swim Test (FST). The results of this study showed that repeated caffeine administration for 6 days at 30 mg/kg dose significantly increases brain 5-HT (pcaffeine. Withdrawal of caffeine however produced memory deficits and significantly increases the immobility time of rats in FST. The results of this study are linked with caffeine induced alterations in serotonergic neurotransmission and its role in memory and depression.