WorldWideScience

Sample records for rat brain exposed

  1. Incidence of brain tumours in rats exposed to an aerosol of 239PuO2

    International Nuclear Information System (INIS)

    Sanders, C.L.; Dagle, G.E.; Mahaffey, J.A.

    1992-01-01

    Incidence of brain tumours was investigated in 3390 female and male Wistar rats exposed to an aerosol of 239 PuO 2 , or as sham-exposed controls. Lung doses ranged from 0.05 to 22 Gy. In females, six brain tumours were found in 1058 control rats (incidence, 0.6%) and 24 brain tumours in 2134 rats exposed to Pu (incidence, 1.1%); the survival-adjusted level of significance was p = 0.29 for comparing control with exposed females. In males, two brain tumours were found in 60 control rats (incidence, 3.3%) and seven brain tumours in 138 rats exposed to Pu (incidence, 5.1%); the survival-adjusted level of significance was p = 0.33. Brain tumour incidence was about five times greater in male than in female rats (p = 0.0001), a highly significant sex difference in brain tumour incidence. Tumour types were distributed similarly among control and Pu-exposed groups of both sexes; most were astrocytomas. Mean lifespans for rats with brain tumours were not significantly different between control and Pu-exposed rats. (author)

  2. Brain biochemistry of infant mice and rats exposed to lead

    Energy Technology Data Exchange (ETDEWEB)

    Berber, G.B.; Maes, J.; Gilliavod, N.; Casale, G.

    1978-05-01

    Brains of rats and mice exposed to lead from birth receive biochemical examinations. Mice are given drinking water with lead and are studied until they are 17 days old. Rats ae given lead in the diet and followed for more than a year. In mice a retardation in body growth and development in brain DNA is found. In rats, cathepsin is enhanced at almost all times. An important role of proteolytic processes and biogenic animes is suggested in lead encephalopathy. (33 references, 7 tables)

  3. Brain dysfunctions in Wistar rats exposed to municipal landfill leachates

    Directory of Open Access Journals (Sweden)

    Chibuisi G. Alimba

    2015-12-01

    Full Text Available Brain damage induced by Olusosun and Aba-Eku municipal landfill leachates was investigated in Wistar rats. Male rats were orally exposed to 1–25% concentrations of the leachates for 30 days. Catalase (CAT and superoxide dismutase (SOD activities, and malondialdehyde (MDA concentrations in the brain and serum of rats were evaluated; body and brain weight gain and histopathology were examined. There was significant (p < 0.05 decrease in body weight gain and SOD activity but increase in absolute and relative brain weight gain, MDA concentration and CAT activity in both brain and serum of treated rats. The biochemical parameters, which were more altered in the brain than serum, corroborated the neurologic lesions; neurodegeneration of purkinje cells with loss of dendrites, perineural vacuolations of the neuronal cytoplasm (spongiosis and neuronal necrosis in the brain. The concentrations of Cr, Cu, Pb, As, Cd, Mn, Ni, sulphates, ammonia, chloride and phosphate in the leachate samples were above standard permissible limits. The interactions of the neurotoxic constituents of the leachates induced the observed brain damage in the rats via oxidative damage. This suggests health risk in wildlife and human populations.

  4. Catecholamine levels in the brain of rats exposed by inhalation to benzalkonium chloride.

    Science.gov (United States)

    Swiercz, Radosław; Grzelińska, Zofia; Gralewicz, Sławomir; Wasowicz, Wojciech

    2009-01-01

    The aim of the study was to obtain quantitative data on the effect of inhalation exposure to benzalkonium chloride (BAC) on the concentration of catecholamines and their metabolites in selected brain structures. Additionally, concentration of corticosterone (CORT) in plasma was estimated. Wistar rats were subjected to a single (6-hour) or repeated (3 days, 6 h/day) exposure to BAC aerosol at ca. 30 mg/m3. The Waters integrated analytical system of HPLC was used to determine the plasma corticosterone. Qualitative and quantitative determinations of catecholamines and their metabolites: 3,4-dihydroxyphenylacetic (DOPAC) and homovanillic (HVA) acids were performed with the use of the Waters integrity HPLC. The determinations have shown that in the BAC-exposed rats the plasma CORT concentration was several times higher than in the control rats. A significant increase of the concentration of dopamine (DA) (striatum and diencephalon) and noradrenaline (NA) (hippocampus and cerebellum) and a significant reduction of adrenaline (A) level (cortex, hippocampus, striatum and mesencephaloon) was found to occur in the brain of rats exposed to BAC compared to control. In the animals exposed to BAC, the concentration of DOPAC, a DA metabolite, was significantly reduced, but the change occurred mainly in the striatum. This resulted in a significant decrease of the DOPAC/DA and HVA/DA metabolic ratio in this structure. It is assumed that the alterations in the concentration of catecholamines and their metabolites in the BAC-exposed rats were related to the unexpectedly strong and persistent activation of the hypothalamo-pituitary-adrenocortical (HPA) axis evidenced by the high plasma CORT concentration.

  5. Brain plasticity of rats exposed to prenatal immobilization stress

    Directory of Open Access Journals (Sweden)

    Badalyan B. Yu.

    2011-10-01

    Full Text Available Aim. This histochemical and immunohistochemical study was aimed at examining the brain cellular structures of newborn rats exposed to prenatal immobilization (IMO stress. Methods. Histochemical method on detection of Ca2+-dependent acid phosphatase activity and ABC immunohistochemical technique. Results. Cell structures with radial astrocytes marker GFAP, neuroepithelial stem cell marker gene nestin, stem-cells marker and the hypothalamic neuroprotective proline-rich polypeptide PRP-1 (Galarmin, a natural cytokine of a common precursor to neurophysin vasopressin associated glycoprotein have been revealed in several brain regions. Conclusions. Our findings indicate the process of generation of new neurons in response to IMO and PRP-1 involvement in this recovery mechanism, as PRP-1-Ir was detected in the above mentioned cell structures, as well as in the neurons and nerve fibers.

  6. Rats exposed to 2.45GHz of non-ionizing radiation exhibit behavioral changes with increased brain expression of apoptotic caspase 3.

    Science.gov (United States)

    Varghese, Rini; Majumdar, Anuradha; Kumar, Girish; Shukla, Amit

    2018-03-01

    In recent years there has been a tremendous increase in use of Wi-Fi devices along with mobile phones, globally. Wi-Fi devices make use of 2.4GHz frequency. The present study evaluated the impact of 2.45GHz radiation exposure for 4h/day for 45days on behavioral and oxidative stress parameters in female Sprague Dawley rats. Behavioral tests of anxiety, learning and memory were started from day 38. Oxidative stress parameters were estimated in brain homogenates after sacrificing the rats on day 45. In morris water maze, elevated plus maze and light dark box test, the 2.45GHz radiation exposed rats elicited memory decline and anxiety behavior. Exposure decreased activities of super oxide dismutase, catalase and reduced glutathione levels whereas increased levels of brain lipid peroxidation was encountered in the radiation exposed rats, showing compromised anti-oxidant defense. Expression of caspase 3 gene in brain samples were quantified which unraveled notable increase in the apoptotic marker caspase 3 in 2.45GHz radiation exposed group as compared to sham exposed group. No significant changes were observed in histopathological examinations and brain levels of TNF-α. Analysis of dendritic arborization of neurons showcased reduction in number of dendritic branching and intersections which corresponds to alteration in dendritic structure of neurons, affecting neuronal signaling. The study clearly indicates that exposure of rats to microwave radiation of 2.45GHz leads to detrimental changes in brain leading to lowering of learning and memory and expression of anxiety behavior in rats along with fall in brain antioxidant enzyme systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. {beta}-adrenergic receptor density and adenylate cyclase activity in lead-exposed rat brain after cessation of lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Huoy-Rou [I-Shou University, Department of Biomedical Engineering, Dashu Shiang, Kaohsiung County (Taiwan); Tsao, Der-An [Fooyin University of Technology, Department of Medical Technology (Taiwan); Yu, Hsin-Su [Taiwan University, Department of Dermatology, College of Medicine (Taiwan); Ho, Chi-Kung [Kaohsiung Medical University, Occupational Medicine (Taiwan); Kaohsiung Medical University, Graduate Institute of Medicine, Research Center for Occupational Disease (Taiwan)

    2005-01-01

    To understanding the reversible or irreversible harm to the {beta}-adrenergic system in the brain of lead-exposed rats, this study sets up an animal model to estimate the change in the sympathetic nervous system of brain after lead exposure was withdrawn. We address the following topics in this study: (a) the relationship between withdrawal time of lead exposure and brain {beta}-adrenergic receptor, blood lead level, and brain lead level in lead-exposed rats after lead exposure was stopped; and (b) the relationship between lead level and {beta}-adrenergic receptor and cyclic AMP (c-AMP) in brain. Wistar rats were chronically fed with 2% lead acetate and water for 2 months. Radioligand binding was assayed by a method that fulfilled strict criteria of {beta}-adrenergic receptor using the ligand [{sup 125}I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The c-AMP level was determined by radioimmunoassay. The results showed a close relationship between decreasing lead levels and increasing numbers of brain {beta}-adrenergic receptors and brain adenylate cyclase activity after lead exposure was withdrawn. The effect of lead exposure on the {beta}-adrenergic system of the brain is a partly reversible condition. (orig.)

  8. Evaluation of passive avoidance learning and spatial memory in rats exposed to low levels of lead during specific periods of early brain development.

    Science.gov (United States)

    Rao Barkur, Rajashekar; Bairy, Laxminarayana K

    2015-01-01

    Widespread use of heavy metal lead (Pb) for various commercial purposes has resulted in the environmental contamination caused by this metal. The studies have shown a definite relationship between low level lead exposure during early brain development and deficit in children's cognitive functions. This study investigated the passive avoidance learning and spatial learning in male rat pups exposed to lead through their mothers during specific periods of early brain development. Experimental male rats were divided into 5 groups: i) the normal control group (NC) (N = 12) consisted of rat offspring born to mothers who were given normal drinking water throughout gestation and lactation, ii) the pre-gestation lead exposed group (PG) (N = 12) consisted of rat offspring, mothers of these rats had been exposed to 0.2% lead acetate in the drinking water for 1 month before conception, iii) the gestation lead exposed group (G) (N = 12) contained rat offspring born to mothers who had been exposed to 0.2% lead acetate in the drinking water throughout gestation, iv) the lactation lead exposed group (L) (N = 12) had rat offspring, mothers of these rats exposed to 0.2% lead acetate in the drinking water throughout lactation and v) the gestation and lactation lead exposed group (GL) (N = 12) contained rat offspring, mothers of these rats were exposed to 0.2% lead acetate throughout gestation and lactation. The study found deficit in passive avoidance learning in the G, L and GL groups of rats. Impairment in spatial learning was found in the PG, G, L and GL groups of rats. Interestingly, the study found that gestation period only and lactation period only lead exposure was sufficient to cause deficit in learning and memory in rats. The extent of memory impairment in the L group of rats was comparable with the GL group of rats. So it can be said that postnatal period of brain development is more sensitive to neurotoxicity compared to prenatal exposure. This work is available in Open

  9. Differential numbers of foci of lymphocytes within the brains of Lewis rats exposed to weak complex nocturnal magnetic fields during development of experimental allergic encephalomyelitis.

    Science.gov (United States)

    Persinger, Michael A

    2009-01-01

    To discern if specific structures of the rat brain contained more foci of lymphocytes following induction of experimental allergic encephalomyelitis and exposures to weak, amplitude-modulated magnetic fields for 6 min once per hour during the scotophase, the residuals between the observed and predicted values for the numbers of foci for 320 structures were obtained. Compared to the brains of sham-field exposed rats, the brains of rats exposed to 7-Hz 50 nT (0.5 mG) amplitude-modulated fields showed more foci within hippocampal structures and the dorsal central grey of the midbrain while those exposed to 7-Hz 500 nT (5 mG) fields showed greater densities within the hypothalamus and optic chiasm. The brains of rats exposed to either the 50 nT or 500 nT amplitude-modulated 40-Hz fields displayed greater densities of foci within the midbrain structures related to rapid eye movement. Most of the enhancements of infiltrations within the magnetic field-exposed rats occurred in structures within periventricular or periaqueductal regions and were both frequency- and intensity-dependent. The specificity and complexity of the configurations of the residuals of the numbers of infiltrated foci following exposures to the different fields suggest that the brain itself may be a "sensory organ" for the detection of these stimuli.

  10. Radio frequency radiation effects on protein kinase C activity in rats' brain

    International Nuclear Information System (INIS)

    Paulraj, R.; Behari, J.

    2004-01-01

    The present work describes the effect of amplitude modulated radio frequency (rf) radiation (112 MHz amplitude-modulated at 16 Hz) on calcium-dependent protein kinase C (PKC) activity on developing rat brain. Thirty-five days old Wistar rats were used for this study. The rats were exposed 2 h per day for 35 days at a power density of 1.0 mW/cm 2 (SAR=1.48 W/kg). After exposure, rats were sacrificed and PKC was determined in whole brain, hippocampus and whole brain minus hippocampus separately. A significant decrease in the enzyme level was observed in the exposed group as compared to the sham exposed group. These results indicate that this type of radiation could affect membrane bound enzymes associated with cell signaling, proliferation and differentiation. This may also suggest an affect on the behavior of chronically exposed rats

  11. Pomegranate Alleviates Oxidative Damage and Neurotransmitter Alterations in Rats Brain Exposed to Aluminum Chloride and/or Gamma Radiation

    International Nuclear Information System (INIS)

    Said, U.Z.; EL-Tahawey, N.A.; Elassal, A.A.; Elsayed, E.M.; Shousha, W.Gh.

    2013-01-01

    Aluminum and gamma radiation, both are potent neurotoxins and have been implicated in many human neuro degenerative diseases. The present study was designed to investigate the role of pomegranate in alleviating oxidative damage and alteration of neurotransmitters in the brain of rats exposed to aluminum chloride (AlCl 3 ), and/or gamma radiation (IR). The results revealed that rats whole body exposed to γ- rays, (1 Gy/week up to 4 Gy), and/or administered aluminum chloride (35 mg/kg body weight), via gavages for 4 weeks, resulted in brain tissue damage, featuring by significant increase of the level of thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP), associated with significant decrease of superoxide dismutase (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content indicating occurrence of oxidative stress. A significant decrease of serotonin (5-HT) level associated with a significant increase of 5-hydroxyindole acetic acid (5-HIAA), in addition to a significant decrease in dopamine (DA), norepinephrine (NE) and epinephrine (EPI) contents recorded at the 1st, 7th and 14th day post-irradiation, indicating alterations in the metabolism of brain monoamines. On the other hand, the results exhibited that, supplementation of rats with pomegranate, via gavages, at a dose of 3 ml /kg body weight/ day, for 4 weeks along with AlCl 3 with or without radiation has significantly ameliorated the changes occurred in the mentioned parameters and the values returned close to the normal ones. It could be concluded that pomegranate, by its antioxidant constituents might antagonize brain oxidative damage and minimize the severity of aluminum (Al), and/or radiation-induced neurotransmitters disorders

  12. Antioxidant Role of Pomegranates on Liver and Brain Tissues of Rats Exposed to an Organophosphorus Insecticide

    International Nuclear Information System (INIS)

    Abd Elmonem, H.A.

    2014-01-01

    Toxicities of organophosphorus insecticides cause oxidative damage on many organs such as the liver and brain due to generation of reactive oxygen species. Pomegranate is among the richest fruit in poly - phenols. The aim of this study was to compare between the antioxidant strength of pomegranate juice (PJ) and pomegranate molasses (PM) and their effects on alanine transferase (ALT), aspartate aminotransferase (AST), Alkaline phosphatase (ALP) and total protein (TP) in liver and levels of malondialdehyde (MAD), reduced glutathione (GSH) and nitric oxide (NO) in rat liver and brain tissues exposed to 1/10 LD 50 diazinon (DI). Six groups each of 6 male albino rats were used comprising control, DI, PJ, PM, PJ + DI and PM + DI for 15 days. The activities of ALT, AST, and TP concentration in liver have been increased due to treatment of rats with DI. These increases restored to normalcy when rats were supplemented with PJ or PM with DI. The results demonstrate that treatment with DI induced significant increase in MDA and NO concentrations and significant decrease in GSH levels of liver and brain tissues. The administration of PJ or PM along with DI significant decrease in MDA and NO levels and significant increase in GSH level compared to DI-group. The present study suggest that PJ or PM has a potential protective effect as it can elevate antioxidant defense system, lessens induced oxidative dam - ages and protect the brain and liver tissue against DI-induced toxicity. In addition, comaring PJ with PM it was noticed that PJ had higher antioxidant activity as evidenced by increased GSH content and decreased NO level in the liver by greater extend than PM.

  13. Tritium in organic compounds of brain of rats exposed to tritiated water or tritiated food during three successive generations

    International Nuclear Information System (INIS)

    Major, Z.

    1987-01-01

    The study was performed on Wistar rats which were chronically exposed to tritiated water (HTO, 37.0 kBq/ml) or to tritiated food (48.1 kBq/g). The tritium exposure of the rats was started before mating and was continued up to delivery of the F 3 generation. The incorporation of organically bound tritium (OBT) was determined in whole brain and in some organic components of rats at various ages. The specific activity of OBT in whole brain and in its organic components with the exception of proteins significantly increased in the F 1 +F 2 generations of rats in comparison with F 0 females. The contribution of OBT to the total dose rate was about 6 per cent in HTO group and 9 per cent in T-food group. The contribution of lipids and proteins to the dose rate from OBT was similar in both treatment groups, being 60 and 20 per cent, respectively. 20 refs. (author)

  14. Alterations of metallothionein isomers in Hg{sup 0}-exposed rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, A. [Biochemistry Section, National Institute for Minamata Disease, Minamata, Kumamoto 867-0008 (Japan); Nagano, M. [Morikawa Kenkodo Co., Ltd., 2170 Taguchi, Kosa, Kamimashiki, Kumamoto 861-4616 (Japan); Hirayama, K. [Kumamoto University College of Medical Science, Kuhonji, Kumamoto 862-0976 (Japan)

    2003-01-01

    Previously we found that exposure to mercury vapor effectively induced brain metallothionein (MT) in rats. Here, using FPLC-gel chromatography, we examined time-dependent alterations in the MT isomers, MT-I/II and MT-III, following 3 weeks of exposure. Rats were exposed to mercury vapor at 8.3 mg/m{sup 3} for 15 h in total over 5 consecutive days. Total MT levels in rat cerebrum and cerebellum increased by 65% and 155%, respectively, 24 h after the final exposure. The increased levels in both tissues remained unchanged for at least 2 weeks after termination of exposure. Interestingly, most MT in control rat cerebrum and cerebellum was accounted for by MT-III, with MT-I/II being less than 10%. Through mercury vapor exposure, MT-I/II was quickly induced to a significant extent in both tissues, reaching a level comparable to that of MT-III. The induction rate of MT-I/II in the cerebellum was somewhat higher than in the cerebrum. Chromatograms showed that the MT-I/II thus induced began to decline at an early stage in both tissues. In the cerebrum, the amount of MT-I/II on day 22 was about 30% of the maximum level on day 1. On the other hand, the induction of MT-III was not that dramatic, but it did become evident, at least in the latter stage, when MT-I/II had begun to decrease. Thus, though the induction rate of MT-III was not as high as MT-I/II, it was sustained throughout the experimental period. (orig.)

  15. 'Unicorn' among rats exposed to mycotoxins from Fusarium.

    Science.gov (United States)

    Schoental, R

    1983-05-01

    A horn-like nodule developed in the middle of the forehead of a white rat, exposed perinatally to T-2 toxin and to zearalenone, the secondary metabolites of Fusarium. The hard nodule consisted mainly of keratine, derived from a squamous carcinoma spreading through the nasal turbinals and invading the brain.

  16. Pro-oxidant effects in the brain of rats concurrently exposed to uranium and stress

    International Nuclear Information System (INIS)

    Linares, Victoria; Sanchez, Domenec J.; Belles, Montserrat; Albina, Luisa; Gomez, Mercedes; Domingo, Jose L.

    2007-01-01

    Metal toxicity may be associated with increased rates of reactive oxygen species (ROS) generation within the central nervous system (CNS). Although the kidney is the main target organ for uranium (U) toxicity, this metal can also accumulate in brain. In this study, we investigated the modifications on endogenous antioxidant capacity and oxidative damage in several areas of the brain of U-exposed rats. Eight groups of adult male rats received uranyl acetate dihydrate (UAD) in the drinking water at 0, 10, 20, and 40 mg/kg/day for 3 months. Animals in four groups were concurrently subjected to restraint stress during 2 h/day throughout the study. At the end of the experimental period, cortex, hippocampus and cerebellum were removed and processed to examine the following stress markers: reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS), as well as U concentrations. The results show that U significantly accumulated in hippocampus, cerebellum and cortex after 3 months of exposure. Moreover, UAD exposure promoted oxidative stress in these cerebral tissues. In cortex and cerebellum, TBARS levels were positively correlated with the U content, while in cerebellum GSSG and GSH levels were positively and negatively correlated, respectively, with U concentrations. In hippocampus, CAT and SOD activities were positively correlated with U concentration. The present results suggest that chronic oral exposure to UAD can cause progressive perturbations on physiological brain levels of oxidative stress markers. Although at the current UAD doses restraint scarcely showed additional adverse effects, its potential influence should not be underrated

  17. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  18. Reorganization of auditory map and pitch discrimination in adult rats chronically exposed to low-level ambient noise

    Directory of Open Access Journals (Sweden)

    Weimin eZheng

    2012-09-01

    Full Text Available Behavioral adaption to a changing environment is critical for an animal’s survival. How well the brain can modify its functional properties based on experience essentially defines the limits of behavioral adaptation. In adult animals the extent to which experience shapes brain function has not been fully explored. Moreover, the perceptual consequences of experience-induced changes in the brains of adults remain unknown. Here we show that the tonotopic map in the primary auditory cortex of adult rats living with low-level ambient noise underwent a dramatic reorganization. Behaviorally, chronic noise-exposure impaired fine, but not coarse pitch discrimination. When tested in a noisy environment, the noise-exposed rats performed as well as in a quiet environment whereas the control rats performed poorly. This suggests that noise-exposed animals had adapted to living in a noisy environment. Behavioral pattern analyses revealed that stress or distraction engendered by the noisy background could not account for the poor performance of the control rats in a noisy environment. A reorganized auditory map may therefore have served as the neural substrate for the consistent performance of the noise-exposed rats in a noisy environment.

  19. 90 days bioassay in sprague-dawley rats exposed to 20KHz magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Ho [College of Veterinary Medicine, Chonnam National Univ. Kwangju (Korea, Republic of); Song, Ji-Eun; Lee, Yun-Sil [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Pack, Jeong-Ki [ETRI, Daejon (Korea, Republic of); Yoo, Done-SIk [College of Engineering, Daejon (Korea, Republic of)

    2002-07-01

    Sprague Dawley rats (20 rats/group [10 males, 10 females] in sham and magnetic field exposed groups) were exposed in carrousel irradiator to an 20 KHz magnetic field for 8 hrs/day, 5 days/week, for 90 days. Urine analysis (pH, SG, protein, ketone body, RBC, WBC, glucose, bilirubin, and urobilinogen), blood analysis (WBC, RBC, HGB; henoglubin concentration, HCT; hematocrit, MCV; mean corpuscular volume, MCH; mean corpuscular hemoglobin, MCHC; mean corpuscular hemoglobin concentration, and PLT; platelet or thrombocyte count), blood biochemistry (total protein, blood urea nitrogen, creatinine, glucose, total bilirubin, total cholesterol, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase), histopathological analysis for organs such as liver, kidney, testis, ovary, spleen, brain, heart, and lung were performed. When compared to the sham control rats, there were no significant differences in above analysis of magnetic field exposed rats. From the results, there were no significant differences between control and exposed fetus.

  20. Protective Effect of Ocimum basilicum on Brain Cells Exposed to Oxidative Damage by Electromagnetic Field in Rat: Ultrastructural Study by Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Khaki Arash

    2016-01-01

    Full Text Available Objective: Basil herb (Ocimum basilicum has long been used in human nutrition. Nowadays antioxidant role of this herb is known more. The aim of this study was to study the anti-oxidative property of sweet basil to protect central nervous system against oxidative damages of electromagnetic field (EMF and its affective sequences. Materials and Methods: Forty Albino male Wistar rats were randomly allocated to four groups, 10 rats per each. Group 1 received normal diet (control group, group 2 was exposed to 50 Hz EMF for 8 weeks (EMF group. Group 3 was exposed to 50 Hz EMF and fed with basil extract (0.5 g/kg body weight for 8 weeks (treatment group and group 4 was fed with basil extract (0.5 g/kg body weight for 8 weeks and named as herbal group. At the end of eighth week 5 mL blood was taken from all rats for biochemical analysis and for ultra structural study of brain neuron samples was taken. Results: The results showed level of superoxide dismutase (SOD, glutathione (GSH peroxidase and catalase activity (CAT were significantly increased in herbal and treatment groups as compared to EMF group (P < 0.05. Level of malondialdehyde (MDA was significantly decreased in treatment group as compare to EMF group (P < 0.05. Ultra structural evaluation of EMF group showed brain nucleus has a lot of heterochromatic changes and mitochondria have been ovulated and have swelling figure this changes were less in treatment group. Conclusion: Antioxidant capacity of basil extract can cause to decrease oxidative effects of EMF on brain tissue and in rats.

  1. Induction by mercury compounds of brain metallothionein in rats: Hg{sup 0} exposure induces long-lived brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira; Nakano, Atsuhiro [Biochemistry Section, National Institute for Minamata Disease, Kumamoto (Japan); Hirayama, Kimiko [Kumamoto University, College of Medical Science (Japan)

    1998-03-01

    Metallothionein (MT) is one of the stress proteins which can easily be induced by various kind of heavy metals. However, MT in the brain is difficult to induce because of blood-brain barrier impermeability to most heavy metals. In this paper, we have attempted to induce brain MT in rats by exposure to methylmercury (MeHg) or metallic mercury vapor, both of which are known to penetrate the blood-brain barrier and cause neurological damage. Rats treated with MeHg (40 {mu}mol/kg per day x 5 days, p.o.) showed brain Hg levels as high as 18 {mu}g/g with slight neurological signs 10 days after final administration, but brain MT levels remained unchanged. However, rats exposed to Hg vapor for 7 days showed 7-8 {mu}g Hg/g brain tissue 24 h after cessation of exposure. At that time brain MT levels were about twice the control levels. Although brain Hg levels fell gradually with a half-life of 26 days, MT levels induced by Hg exposure remained unchanged for >2 weeks. Gel fractionation revealed that most Hg was in the brain cytosol fraction and thus bound to MT. Hybridization analysis showed that, despite a significant increase in MT-I and -II mRNA in brain, MT-III mRNA was less affected. Although significant Hg accumulation and MT induction were observed also in kidney and liver of Hg vapor-exposed rats, these decreased more quickly than in brain. The long-lived MT in brain might at least partly be accounted for by longer half-life of Hg accumulated there. The present results showed that exposure to Hg vapor might be a suitable procedure to provide an in vivo model with enhanced brain MT. (orig.) With 4 figs., 1 tab., 27 refs.

  2. Changes in brain development of rat fetus exposed to 137Cs γ rays in different pregnant periods of the female rats

    International Nuclear Information System (INIS)

    Guo Yuefeng; Wang Mingming

    2004-01-01

    Pregnant rats in 11d and 16d of their pregnancy were given one-off whole body exposure by 137 Cs γ rays to 0.2, 0.4, 0.9 and 2.0 Gy, respectively. Changes were observed in conditioned drinking response and cerebrum hippocampi cone cell number of the baby rats exposed to the γ rays in different periods of their embryo development. As a result, that pregnant rats exposed to 137 Cs γ rays in different pregnant periods may induce significant decrease in cerebrum hippocampi cone cell number and achieving rate of conditioned drinking response of the babies. The dose-response relationship can be described by Y=a-b log 10 D. The achieving rate of conditioned drinking response were significantly correlated to cerebrum hippocampi cone cell number in the babies, and the achieving rate of conditioned drinking response of the babies exposed at pregnant 11d was lower than others exposed at pregnant 16d

  3. Serum-thyroxine levels in microwave-exposed rats

    International Nuclear Information System (INIS)

    Lu, S.T.; Lebda, N.; Michaelson, S.M.; Pettit, S.

    1985-01-01

    The nature of the response of the thyroid gland in animals exposed to microwave irradiation is controversial. Animal experimentation has contributed to the controversy because both increased and decreased thyroid functions have been reported. The thyroxine concentration in rats as representative of thyroid function in animals exposed to 2.45-GHz, 120-Hz amplitude-modulated microwaves has been studied. These studies covered a long time span; rats from two commercial sources (BS and CR) were used and subjected to different numbers of exposures, and therefore these data were evaluated for their stability. Two factors could influence in the result significantly, i.e., source of animal and number of sham exposures. Rats used in the 2-hr exposures were from two different commercial sources; rats from CR had a higher (but normal) thyroxine concentration than did rats from BS. Therefore the data of these animals were separated by commercial source for reevaluation. Instead of increased thyroxine concentration in rats exposed at 25, 30, and 40 mW/cm 2 , changes were not noted in any microwave-exposed rats. The influence of sham exposure revealed that appropriate concurrent control and specification of animal source are needed in longitudinal studies. Furthermore, statistical procedures used can greatly influence the conclusions. Thus the specificity of changes in thyroxine concentration in rats exposed to microwaves because of its sporadic occurrence and because of inconsistencies among experiments was doubted

  4. Protective effect of kolaviron, a biflavonoid from Garcinia kola seeds, in brain of Wistar albino rats exposed to gamma-radiation

    International Nuclear Information System (INIS)

    Adaramoye, O.A.

    2010-01-01

    This study was designed to evaluate the protective effect of kolaviron (KV), a biflavonoid from Garcinia kola seeds, against γ-radiation (5 Gy)-induced oxidative stress in brain of Wistar rats. Vitamin C (VC) served as standard antioxidant. Forty-four rats were divided into 4 groups of 11 animals each. One group was un-irradiated (normal), two groups were treated with KV and VC (250 mg/kg) for 6 weeks prior to and 8 weeks after irradiation, and fourth group was only irradiated. Rats were sacrificed 1 and 8 weeks after irradiation. Cellular alterations were monitored using changes in the levels of malondialdehyde (MDA)-an index of lipid peroxidation, superoxide dismutase (SOD), glutathione-S-transferase (GST), reduced glutathione (GSH), catalase (CAT), alanine and aspartate aminotransferases (ALT and AST), urea and creatinine. MDA levels increased significantly (p<0.05) by 90% and 151% after 1 and 8 weeks of irradiation. Furthermore, levels of GSH and antioxidant enzymes were significantly (p<0.05) decreased in γ-irradiated animals. GSH and GST decreased by 61% and 43% after 1 week, and by 75% and 74%, after 8 weeks of exposure, respectively. γ-Irradiation decreased SOD and CAT levels by 53% and 68%, respectively, and caused significant (p<0.05) increases in serum ALT, AST and urea after 8 weeks of exposure. Treatment with KV and VC significantly decreased the levels of MDA, ALT, AST and urea. The antioxidant indices were significantly ameliorated in KV-treated animals. These data suggest that kolaviron may protect against γ-radiation-induced oxidative stress in brain of exposed rats. (author)

  5. Quantitative autoradiography of [3H]corticosterone receptors in rat brain

    International Nuclear Information System (INIS)

    Sapolsky, R.M.; McEwen, B.S.; Rainbow, T.C.

    1983-01-01

    The authors have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 μCi [ 3 H]corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradigraphic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue. (Auth.)

  6. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Myelin basic protein in brains of rats with low dose lead encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Sundstroem, R; Karlsson, B

    1987-02-01

    In the present study control rats and lead exposed rats which did not have any retardation of growth were examined by radioimmunological assay of myelin basic protein (MBP) of homogenates of cerebrum and cerebellum at 30, 60 and 120 days of age. Lead was administered on postnatal days 1-15 by daily intraperitoneal injections of 10 mg lead nitrate/kg body weight. This lead dose results in light microscopically discernible hemorrhagic encephalopathy in the cerebellum of 15-day old rats, but does not induce growth retardation. The controls were injected with vehicle only. The amount of lead in the blood and brain homogenates of lead-exposed and control rats 15-200 days old was estimated by atomic absorption spectrophotometry. Significant differences between the lead-exposed and control rats were not found in the cerebral or cerebellar content of MBP. Considering the results of previous investigations, the findings do not exclude a hypo-myelinating effect of lead, but they suggest that exposure to lead without concomitant malnutrition does not cause hypo-myelination in the cerebrum and cerebellum of the developing rat.

  8. Effects of enriched uranium on developing brain damage of neonatal rats

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2001-01-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium 235 U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 β (IL- β), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells

  9. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  10. Study on the ultrastructure of brain in rats prenatally exposed to tritiated water

    International Nuclear Information System (INIS)

    Yang Zhiyuan; Guo Yuefen; Lai Chixiang

    1993-01-01

    At 11th day of gestation, rats were intraperitoneally injected with HTO, the activity of which were 5.55 x 10 6 Bq/mL of body water and 5.55 x 10 5 Bq/mL of body water. In these conditions, the cumulative doses for 1-day-old and 18-day-old young rats were estimated to be 1.6-1.7 Gy and 0.16-0.17 Gy, respectively. Under the above-mentioned conditions, some significant injuries in the ultrastructure of the nucleus of neutron and of the cell apparatuses in the cytoplasm of the cerebral and cerebellar cortexes can be seen on the 1-day-old and 18-day-old young rats. When young rats were 90 days old, these injuries of ultrastructure in brain cells had not be observed but it was observed that the processes of neutroglia cells replenished the crevices in injured neutropilem of the cerebral and cerebellar cortex

  11. Serotonin metabolism in rat brain

    International Nuclear Information System (INIS)

    Schutte, H.H.

    1976-01-01

    The metabolism of serotonin in rat brain was studied by measuring specific activities of tryptophan in plasma and of serotonin, 5-hydroxyindole acetic acid and tryptophan in the brain after intravenous injection of tritiated tryptophan. For a detailed analysis of the specific activities, a computer simulation technique was used. It was found that only a minor part of serotonin in rat brain is synthesized from tryptophan rapidly transported from the blood. It is suggested that the brain tryptophan originates from brain proteins. It was also found that the serotonin in rat brain is divided into more than one metabolic compartment

  12. Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload.

    Science.gov (United States)

    Maaroufi, Karima; Had-Aissouni, Laurence; Melon, Christophe; Sakly, Mohsen; Abdelmelek, Hafedh; Poucet, Bruno; Save, Etienne

    2014-01-01

    The increasing use of mobile phone technology over the last decade raises concerns about the impact of high frequency electromagnetic fields (EMF) on health. More recently, a link between EMF, iron overload in the brain and neurodegenerative disorders including Parkinson's and Alzheimer's diseases has been suggested. Co-exposure to EMF and brain iron overload may have a greater impact on brain tissues and cognitive processes than each treatment by itself. To examine this hypothesis, Long-Evans rats submitted to 900 MHz exposure or combined 900 MHz EMF and iron overload treatments were tested in various spatial learning tasks (navigation task in the Morris water maze, working memory task in the radial-arm maze, and object exploration task involving spatial and non spatial processing). Biogenic monoamines and metabolites (dopamine, serotonin) and oxidative stress were measured. Rats exposed to EMF were impaired in the object exploration task but not in the navigation and working memory tasks. They also showed alterations of monoamine content in several brain areas but mainly in the hippocampus. Rats that received combined treatment did not show greater behavioral and neurochemical deficits than EMF-exposed rats. None of the two treatments produced global oxidative stress. These results show that there is an impact of EMF on the brain and cognitive processes but this impact is revealed only in a task exploiting spontaneous exploratory activity. In contrast, there are no synergistic effects between EMF and a high content of iron in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Spirulina platensis attenuates the associated neurobehavioral and inflammatory response impairments in rats exposed to lead acetate.

    Science.gov (United States)

    Khalil, Samah R; Khalifa, Hesham A; Abdel-Motal, Sabry M; Mohammed, Hesham H; Elewa, Yaser H A; Mahmoud, Hend Atta

    2018-08-15

    Heavy metals are well known as environmental pollutants with hazardous impacts on human and animal health because of their wide industrial usage. In the present study, the role of Spirulina platensis in reversing the oxidative stress-mediated brain injury elicited by lead acetate exposure was evaluated. In order to accomplish this aim, rats were orally administered with 300 mg/kg bw Spirulina for 15 d, before and simultaneously with an intraperitoneal injection of 50 mg/kg bw lead acetate [6 injections through the two weeks]. As a result, the co-administration of Spirulina with lead acetate reversed the most impaired open field behavioral indices; however, this did not happen for swimming performance, inclined plane, and grip strength tests. In addition, it was observed that Spirulina diminished the lead content that accumulated in both the blood and the brain tissue of the exposed rats, and reduced the elevated levels of oxidative damage indices, and brain proinflammatory markers. Also, because of the Spirulina administration, the levels of the depleted biomarkers of antioxidant status and interleukin-10 in the lead-exposed rats were improved. Moreover, Spirulina protected the brain tissue (cerebrum and cerebellum) against the changes elicited by lead exposure, and also decreased the reactivity of HSP70 and Caspase-3 in both cerebrum and cerebellum tissues. Collectively, our findings demonstrate that Spirulina has a potential use as a food supplement in the regions highly polluted with heavy metals. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Pari, Leelavinothan; Murugavel, Ponnusamy

    2007-01-01

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P + K + -ATPase, Mg 2+ -ATPase and Ca 2+ -ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  15. The effects of in vitro exposure to white spirit on [Ca2+] in synaptosomes from rats exposed prenatally to white spirit

    DEFF Research Database (Denmark)

    Edelfors, S.; Hass, Ulla; Ravn-Jonsen, A.

    1999-01-01

    Female rats were exposed to white spirit (400 and 800 ppm for 6 hr/day) at day 7-20 during pregnancy. Thirty-five days after birth all female offspring were sacrificed, the brains removed, and the synaptosomal fractions prepared for in vitro studies. The cytosolic calcium concentration was measured...... using the FURA-2 technique. The results show that cytosolic calcium was increased in synaptosomes from rats exposed to white spirit prenatally compared to synaptosomes from unexposed rats. When synaptosomes were exposed to white spirit in vitro, the cytosolic calcium concentration changes were identical...... in all groups of rats. The membrane leakage measured as FURA-2 leakage from the synaptosomes identical in all three groups of animals. The results suggest that prenatal exposure to white spirit induces long-lasting and possibly irreversible changes in calcium homeostasis in the rat nervous system....

  16. Regional brain distribution of toluene in rats and in a human autopsy

    Energy Technology Data Exchange (ETDEWEB)

    Ameno, Kiyoshi; Kiriu, Takahiro; Fuke, Chiaki; Ameno, Setsuko; Shinohara, Toyohiko; Ijiri, Iwao (Kagawa Medical School (Japan). Dept. of Forensic Medicine)

    1992-02-01

    Toluene concentrations in 9 brain regions of acutely exposed rats and that in 11 brain regions of a human case who inhaled toluene prior to death are described. After exposure to toluene by inhalation (2000 or 10 000 ppm) for 0.5 h or by oral dosing (400 mg/kg.), rats were killed by decapitation 0.5 and 4 h after onset of inhalation and 2 and 10 h after oral ingestion. After each experimental condition the highest range of brain region/blood toluene concentration ratio (BBCR) was in the brain stem regions (2.85-3.22) such as the pons and medulla oblongata, the middle range (1.77-2.12) in the midbrain, thalamus, caudate-putamen, hypothalamus and cerebellum, and the lowest range (1.22-1.64) in the hippocampus and cerebral cortex. These distribution patterns were quite constant. Toluene concentration in various brain regions were unevenly distributed and directly related blood levels. In a human case who had inhaled toluene vapor, the distribution among brain regions was relatively similar to that in rats, the highest concentration ratios being in the corpus callosum (BBCR:2.66) and the lowest in the hippocampus (BBCR:1.47). (orig.).

  17. Influence of electromagnetic field (1800 MHz on lipid peroxidation in brain, blood, liver and kidney in rats

    Directory of Open Access Journals (Sweden)

    Paweł Bodera

    2015-08-01

    Full Text Available Objectives: The aim of this study is the evaluation of the influence of repeated (5 times for 15 min exposure to electromagnetic field (EMF of 1800 MHz frequency on tissue lipid peroxidation (LPO both in normal and inflammatory state, combined with analgesic treatment. Material and Methods: The concentration of malondialdehyde (MDA as the end-product of the lipid peroxidation (LPO was estimated in blood, liver, kidneys, and brain of Wistar rats, both healthy and those with complete Freund’s adjuvant (CFA-induced persistent paw inflammation. Results: The slightly elevated levels of the MDA in blood, kidney, and brain were observed among healthy rats in electromagnetic field (EMF-exposed groups, treated with tramadol (TRAM/EMF and exposed to the EMF. The malondialdehyde remained at the same level in the liver in all investigated groups: the control group (CON, the exposed group (EMF, treated with tramadol (TRAM as well as exposed to and treated with tramadol (TRAM/EMF. In the group of animals treated with the complete Freund’s adjuvant (CFA we also observed slightly increased values of the MDA in the case of the control group (CON and the exposed groups (EMF and TRAM/EMF. The MDA values concerning kidneys remained at the same levels in the control, exposed, and not-exposed group treated with tramadol. Results for healthy rats and animals with inflammation did not differ significantly. Conclusions: The electromagnetic field exposure (EMF, applied in the repeated manner together with opioid drug tramadol (TRAM, slightly enhanced lipid peroxidation level in brain, blood, and kidneys.

  18. Synapses of the rat end brain in response to flight effects

    International Nuclear Information System (INIS)

    Antipov, V.V.; Tikhonchuk, V.S.; Ushakov, I.B.; Fedorov, V.P.

    1988-01-01

    Using electron microscopy, synapses of different structures of the rat end brain related to cognitive and motor acts (sensorimotor cortex, caudate nucleus) as well as memory and behavior (hippocampus) were examined. Rats were exposed to ionizing radiation, superhigh frequency, hypoxia, hyperoxia, vibration and acceleration (applied separately or in combination) which have been traditionally in the focus of space and aviation medicine. Brain internuronal junctions were found to be very sensitive to the above effects, particularly ionizing radiation and hypoxia. Conversely, synapses were shown to be highly resistant to short-term hyperoxia and electromagnetic radiation. When combined effects were used, response of interneuronal junctions depended on the irradiation dose and order of application of radiation and other flight factors

  19. The Effect of 2.45 GHz Microwave Radiation on Brain Cell Apoptosis in Sprague Dawley Rats

    International Nuclear Information System (INIS)

    Wan Saffiey Wan Abdullah; Rozaimah Abdul Rahim; Zulkifli Yusof

    2016-01-01

    Microwave radiation is a part of non-ionizing electromagnetic radiations present in the environment and is now being perceived as health risks. The study was performed to investigate the effect of 2.45 GHz microwave radiation on brain cell apoptosis in Sprague Dawley rat. In the research done, 32 Sprague Dawley rat were used and divided into four groups; control group, G1 (1 month exposure), G2 (2 months exposure) and G3 (3 months exposure). The presence of apoptotic activity in control group was compared molecularly with exposed group through DNA ladder test. Each exposed group were irradiated in GTEM cell at frequency of 2.45 GHz located at RF/ MW laboratory. There was presence of necrotic instead of apoptotic activity in brain cell and increase in weight of Sprague Dawley rat. Therefore the effect of 2.45GHz microwave radiation shown no presence of apoptosis and increase in weight of Sprague Dawley rat. (author)

  20. Bromodeoxyuridine and methylazoxymethanol exposure during brain development affects behavior in rats : consideration for a role of nerve growth factor and brain derived neurotrophic factor

    NARCIS (Netherlands)

    Fiore, M; Aloe, L; Westenbroek, C; Amendola, T; Antonelli, A; Korf, J

    2001-01-01

    Rats prenatally exposed to the neurotoxins methylazoxymethanol (MAM) or 5-Bromo-2'-deoxyuridine (BrdU) are used as animal models of brain maldevelopment. We administered in rats MAM (20 mg/kg), or BrdU (100 mg/kg) or both at gestational day 11. Locomotion was not affected by any prenatal treatment

  1. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    Science.gov (United States)

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (pradiation exposure was found more effective on the male animals (p0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed to demonstrate the mechanisms of that breakdown. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The effect of electromagnetic radiation on the rat brain: an experimental study.

    Science.gov (United States)

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  3. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    International Nuclear Information System (INIS)

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-01-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human 125 -I-IGF-II (10 pM) was incubated for 16 hrs at 4 0 C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA 1 -CA 2 and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of 125 I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning

  4. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    ) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18......Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP...

  5. Effect of manganese on neonatal rat: manganese concentration and enzymatic alterations in brain

    Energy Technology Data Exchange (ETDEWEB)

    Seth, P K; Husain, R; Mushtaq, M; Chandra, S V

    1977-01-01

    Suckling rats were exposed for 15 and 30 days to manganese through the milk of nursing dams receiving 15 mg MnCl/sub 2/.4H/sub 2/O/kg/day orally and after which the neurological manifestations of metal poisoning were studied. No significant differences in the growth rate, developmental landmarks and walking movements were observed between the control and manganese-exposed pups. The metal concentration was significantly increased in the brain of manganese-fed pups at 15 days and exhibited a further three-fold increase over the control, at 30 days. The accumulation of the metal in the brain of manganese-exposed nursing dams was comparatively much less. A significant decrease in succinic dehydrogenase, adenosine triphosphatase, adenosine deaminase, acetylcholine esterase and an increase in monoamine oxidase activity was observed in the brain of experimental pups and dams. The results suggest that the developing brain may also be susceptible to manganese.

  6. Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation.

    Science.gov (United States)

    Burlaka, A P; Druzhyna, M O; Vovk, A V; Lukin, S М

    2016-12-01

    To investigate the changes of redox-state of mammalian brain cells as the critical factor of initiation and formation of radiation damage of biological structures in setting of continuous exposure to low doses of ionizing radiation or fractionated ultra high frequency electromagnetic radiation (UHF EMR) at non-thermal levels. The influence of low-intensity ionizing radiation was studied on outbred female rats kept for 1.5 years in the Chernobyl accident zone. The effects of total EMR in the UHF band of non-thermal spectrum were investigated on Wistar rats. The rate of formation of superoxide radicals and the rate of NO synthesis in mitochondria were determined by the EPR. After exposure to ionizing or UHF radiation, the levels of ubisemiquinone in brain tissue of rats decreased by 3 and 1.8 times, respectively. The content of NO-FeS-protein complexes in both groups increased significantly (р < 0.05). In the conditions of ionizing or EMR the rates of superoxide radical generation in electron-transport chain of brain cell mitochondria increased by 1.5- and 2-fold, respectively (р < 0.05). In brain tissue of rats kept in the Chernobyl zone, significant increase of NO content was registered; similar effect was observed in rats treated with UHFR (р < 0.05). The detected changes in the electron transport chain of mitochondria of brain cells upon low-intensity irradiation or UHF EMR cause the metabolic reprogramming of cell mitochondria that increases the rate of superoxide radical generation and nitric oxide, which may initiate the development of neurodegenerative diseases and cancer. This article is part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  7. Alterations of apparent diffusion coefficient (ADC) in the brain of rats chronically exposed to lead acetate.

    Science.gov (United States)

    López-Larrubia, Pilar; Cauli, Omar

    2011-03-15

    Diffusion-weighted imaging (DWI) allows the assessment of the water apparent diffusion coefficient (ADC), a measure of tissue water diffusivity which is altered during different pathological conditions such as cerebral oedema. By means of DWI, we repeatedly measured in the same rats apparent diffusion coefficient ADC in different brain areas (motor cortex (MCx), somato-sensory cortex (SCx), caudate-putamen (CPu), hippocampus (Hip), mesencephalic reticular formation (RF), corpus callosum (CC) and cerebellum (Cb)) after 1 week, 4 and 12 weeks of lead acetate exposure via drinking water (50 or 500 ppm). After 12 weeks of lead exposure rats received albumin-Evans blue complex administration and were sacrificed 1h later. Blood-brain barrier permeability and water tissue content were determined in order to evaluate their relationship with ADC changes. Chronic exposure to lead acetate (500 ppm) for 4 weeks increased ADC values in Hip, RF and Cb but no in other brain areas. After 12 weeks of lead acetate exposure at 500 ppm ADC is significantly increased also in CPu and CC. Brain areas displaying high ADC values after lead exposure showed also an increased water content and increased BBB permeability to Evans blue-albumin complex. Exposure to 50 ppm for 12 weeks increased ADC values and BBB permeability in the RF and Cb. In summary, chronic lead exposure induces cerebral oedema in the adult brain depending on the brain area and the dose of exposure. RF and Cb appeared the most sensitive brain areas whereas cerebral cortex appears resistant to lead-induced cerebral oedema. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Influence of low frequency magnetic field used in magnetotherapy on interleukin 6 (IL-6 contents in rat heart and brain

    Directory of Open Access Journals (Sweden)

    Elżbieta Ciejka

    2017-08-01

    Full Text Available Background: The human population is exposed ever more frequently to magnetic fields (MF. This is due to both technological progress and development of the economy as well as to advances made in medical science. That is why the thorough understanding and systematized knowledge about mechanisms by which MF exerts its effects on living organisms play such an important role. In this context the health of MF-exposed people is the subject of particular concern. The aim of the study was to evaluate the effect of extremely low frequency magnetic field (ELFMF used in magnetotherapy on the concentration of interleukin 6 (IL-6 in rat heart and brain. Material and Methods: The male rats were randomly divided into 3 experimental groups: group I – control, without contact with magnetic field; group II − exposed to bipolar, rectangular magnetic field 40 Hz, induction “peak-to-peak” 7 mT 30 min/day for 2 weeks; and group III − exposed to bipolar, rectangular magnetic field 40 Hz, 7 mT 60 min/day for 2 weeks. Concentration of IL-6 in the heart and brain of animals was measured after MF exposure. Results: Exposure to ELFMF: 40 Hz, induction “peak-to-peak” 7 mT 30 min/day for 2 weeks caused a significant IL-6 increase in rat hearts compared to the control group (p < 0.05 and a non-significant IL-6 decrease in rat brain. The magnetic field applied for 60 min resulted in non-significant IL-6 increase in rat hearts compared to the control group and significant IL-6 decrease in rat brain (p < 0.05. Conclusions: The influence of magnetic field on inflammation in the body varies depending on the MF parameters and the affected tissues or cells. Med Pr 2017;68(4:517–523

  9. [Influence of low frequency magnetic field used in magnetotherapy on interleukin 6 (IL-6) contents in rat heart and brain].

    Science.gov (United States)

    Ciejka, Elżbieta; Skibska, Beata; Gorąca, Anna

    2017-06-27

    The human population is exposed ever more frequently to magnetic fields (MF). This is due to both technological progress and development of the economy as well as to advances made in medical science. That is why the thorough understanding and systematized knowledge about mechanisms by which MF exerts its effects on living organisms play such an important role. In this context the health of MF-exposed people is the subject of particular concern. The aim of the study was to evaluate the effect of extremely low frequency magnetic field (ELFMF) used in magnetotherapy on the concentration of interleukin 6 (IL-6) in rat heart and brain. The male rats were randomly divided into 3 experimental groups: group I - control, without contact with magnetic field; group II - exposed to bipolar, rectangular magnetic field 40 Hz, induction "peak-to-peak" 7 mT 30 min/day for 2 weeks; and group III - exposed to bipolar, rectangular magnetic field 40 Hz, 7 mT 60 min/day for 2 weeks. Concentration of IL-6 in the heart and brain of animals was measured after MF exposure. Exposure to ELFMF: 40 Hz, induction "peak-to-peak" 7 mT 30 min/day for 2 weeks caused a significant IL-6 increase in rat hearts compared to the control group (p < 0.05) and a non-significant IL-6 decrease in rat brain. The magnetic field applied for 60 min resulted in non-significant IL-6 increase in rat hearts compared to the control group and significant IL-6 decrease in rat brain (p < 0.05). The influence of magnetic field on inflammation in the body varies depending on the MF parameters and the affected tissues or cells. Med Pr 2017;68(4):517-523. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Increased gluconeogenesis in rats exposed to hyper-G stress

    International Nuclear Information System (INIS)

    Daligcon, B.C.; Oyama, J.; Hannak, K.

    1985-01-01

    The role of gluconeogenesis on the increase in plasma glucose and liver glycogen of rats exposed to hyper-G (radial acceleration) stress was determined. Overnight-fasted, male Sprague-Dawley rats (250-300 g) were injected i.p. with uniformly labeled 14 C lactate, alanine, or glycerol (5 μCi/rat) and immediately exposed to 3.1 G for 0.25, 0.50, and 1.0 hr. 14 C incorporation of the labeled substrates into plasma glucose and liver glycogen was measured and compared to noncentrifuged control rats injected in a similar manner. Significant increases in 14 C incorporation of all three labeled substrates into plasma glucose were observed in centrifuged rats at all exposure periods; 14 C incorporation into liver glycogen was significantly increased only at 0.50 and 1.0 hr. The i.p. administration (5 mg/100-g body wt) of 5-methoxyindole-2-carboxylic acid, a potent gluconeogenesis inhibitor, prior to centrifugation blocked the increase in plasma glucose and liver glycogen during the first hour of centrifugation. The increase in plasma glucose and liver glycogen was also abolished in adrenodemedullated rats exposed to centrifugation for 1.0 hr. Propranolol, a beta-adrenergic blocker, suppressed the increase in plasma glucose of rats exposed to centrifugation for 0.25 hr. From the results of this study, it is concluded that the initial, rapid rise in plasma glucose as well as the increase in liver glycogen of rats exposed to hyper-G stress can be attributed to an increased rate of gluconeogenesis, and that epinephrine plays a dominant role during the early stages of exposure to centrifugation. 11 references, 3 tables

  11. Real-time optical diagnosis of the rat brain exposed to a laser-induced shock wave: observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia.

    Directory of Open Access Journals (Sweden)

    Shunichi Sato

    Full Text Available Despite many efforts, the pathophysiology and mechanism of blast-induced traumatic brain injury (bTBI have not yet been elucidated, partially due to the difficulty of real-time diagnosis and extremely complex factors determining the outcome. In this study, we topically applied a laser-induced shock wave (LISW to the rat brain through the skull, for which real-time measurements of optical diffuse reflectance and electroencephalogram (EEG were performed. Even under conditions showing no clear changes in systemic physiological parameters, the brain showed a drastic light scattering change accompanied by EEG suppression, which indicated the occurrence of spreading depression, long-lasting hypoxemia and signal change indicating mitochondrial energy impairment. Under the standard LISW conditions examined, hemorrhage and contusion were not apparent in the cortex. To investigate events associated with spreading depression, measurement of direct current (DC potential, light scattering imaging and stereomicroscopic observation of blood vessels were also conducted for the brain. After LISW application, we observed a distinct negative shift in the DC potential, which temporally coincided with the transit of a light scattering wave, showing the occurrence of spreading depolarization and concomitant change in light scattering. Blood vessels in the brain surface initially showed vasodilatation for 3-4 min, which was followed by long-lasting vasoconstriction, corresponding to hypoxemia. Computer simulation based on the inverse Monte Carlo method showed that hemoglobin oxygen saturation declined to as low as ∼35% in the long-term hypoxemic phase. Overall, we found that topical application of a shock wave to the brain caused spreading depolarization/depression and prolonged severe hypoxemia-oligemia, which might lead to pathological conditions in the brain. Although further study is needed, our findings suggest that spreading depolarization/depression is one of

  12. Similarity between the effects of carbon-ion irradiation and X-irradiation on the development of rat brain

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Murata, Yoshiharu; Takahashi, Sentaro; Kubota, Yoshihisa

    2000-01-01

    The effects of carbon-ion irradiation and X-irradiation on the development of rat brain were compared. Twenty pregnant rats were injected with bromodeoxyuridine (BrdU) at 9 pm on day 18 pregnancy and divided into five groups. Three hours after injection (day 19.0) one group was exposed to 290 MeV/u carbon-ion radiation by a single dose of 1.5 Gy. Other groups were exposed to X-radiation by 1.5, 2.0 or 2.5 Gy, or sham-treated, respectively. Fetuses were removed from one dam in each group 8 h after exposure and examined histologically. Extensive cell death was observed in the brain mantle from the irradiated groups. The cell death after 1.5 Gy carbon-ion irradiation was remarkably more extensive than that after 1.5 Gy X-irradiation, but comparable to that after 2.0 Gy or 2.5 Gy X-irradiation. The remaining rats were allowed to give birth and the offspring were sacrificed at 6 weeks of age. All of the irradiated offspring manifested microcephaly. The size of the brain mantle exposed to 1.5 Gy carbon-ion radiation was significantly smaller than that exposed to 1.5 Gy X-radiation and larger than that exposed to 2.5 Gy X-radiation. A histological examination of the cerebral cortex revealed that cortical layers II-IV were malformed. The defect by 1.5 Gy carbon-ion irradiation was more severe than that by the same dose of X-irradiation. Although the BrdU-incorporated neurons were greatly reduced in number in all irradiated groups, these cells reached the superficial area of the cortex. These findings indicated that the effects of both carbon-ion irradiation and X-irradiation on the development of rat brain are similar in character, and the effect of 1.5 Gy carbon-ion irradiation compares to that of 2.0-2.5 Gy X-irradiation. (author)

  13. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    Directory of Open Access Journals (Sweden)

    Marco Sifringer

    2015-01-01

    Full Text Available Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.

  14. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ogawa, Y.; Iwata, Y.; Ishii, K.

    1992-01-01

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  15. Aluminum neurotoxicity in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S [Tokyo Univ. (Japan). Faculty of Medicine; Ohashi, H; Nagai, H; Kakimi, S; Ogawa, Y; Iwata, Y; Ishii, K

    1993-12-31

    To investigate the etiology of Alzheimer`s disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer`s disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer`s disease patients. Our results indicate that Alzheimer`s disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author).

  16. Effects of electromagnetic radiation produced by 3G mobile phones on rat brains: magnetic resonance spectroscopy, biochemical, and histopathological evaluation.

    Science.gov (United States)

    Dogan, M; Turtay, M G; Oguzturk, H; Samdanci, E; Turkoz, Y; Tasdemir, S; Alkan, A; Bakir, S

    2012-06-01

    The effects of electromagnetic radiation (EMR) produced by a third-generation (3G) mobile phone (MP) on rat brain tissues were investigated in terms of magnetic resonance spectroscopy (MRS), biochemistry, and histopathological evaluations. The rats were randomly assigned to two groups: Group 1 is composed of 3G-EMR-exposed rats (n = 9) and Group 2 is the control group (n = 9). The first group was subjected to EMR for 20 days. The control group was not exposed to EMR. Choline (Cho), creatinin (Cr), and N-acetylaspartate (NAA) levels were evaluated by MRS. Catalase (CAT) and glutathione peroxidase (GSH-Px) enzyme activities were measured by spectrophotometric method. Histopathological analyses were carried out to evaluate apoptosis in the brain tissues of both groups. In MRS, NAA/Cr, Cho/Cr, and NAA/Cho ratios were not significantly different between Groups 1 and 2. Neither the oxidative stress parameters, CAT and GSH-Px, nor the number of apoptotic cells were significantly different between Groups 1 and 2. Usage of short-term 3G MP does not seem to have a harmful effect on rat brain tissue.

  17. Blood-brain barrier permeation in the rat during exposure to low-power 1.7-GHz microwave radiation

    International Nuclear Information System (INIS)

    Ward, T.R.; Ali, J.S.

    1985-01-01

    The permeability of the blood-brain barrier to high-and low-molecular-weight compounds has been measured as a function of continuous-wave (CW) and pulsed-microwave radiation. Adult rats, anesthetized with pentobarbital and injected intravenously with a mixture of [ 14 C] sucrose and [ 3 H] inulin, were exposed for 30 min at a specific absorption rate of 0.1 W/kg to 1.7-GHz CW and pulsed (0.5-microseconds pulse width, 1,000 pps) microwaves. After exposure, the brain was perfused and sectioned into nine regions, and the radioactivity in each region was counted. During identical exposure conditions, temperatures of rats were measured in eight of the brain regions by a thermistor probe that did not perturb the field. No change in uptake of either tracer was found in any of the eight regions as compared with those of sham-exposed animals

  18. Differential cardiac effects in rats exposed to atmospheric ...

    Science.gov (United States)

    The results of this study demonstrate that atmospheric smog generated from both isoprene and toluene cause cardiac effects in rats. In addition, it appears that smog from toluene is more toxic in terms of cardiac arrhythmogenicity. Smog, which is a complex mixture of particulate matter and gaseous irritants (ozone, sulfur dioxide, reactive aldehydes), as well as components which react with sunlight to form secondary pollutants, has recently been linked to increased risk of adverse cardiac responses. The components, and therefore health effects, of atmospheric smog are determined by the fuel used to generate them. In this study we examined the difference between isoprene- and toluene-generated smog in causing cardiac effects in rats and hypothesized that both atmospheres would cause cardiac electrical and functional changes in rats. Male Wistar-Kyoto rats were exposed to either atmospheric smog generated by the USEPA’s mobile reaction chamber using either isoprene or toluene, or filtered air for four hours. One day later, rats were anesthetized and left ventricular functional responses to dobutamine were measured using a Millar probe and arrhythmia sensitivity to aconitine. Baseline left ventricular pressure (LVP) was lower in toluene-exposed animals but not isoprene when compared to air. Increases in LVP with increasing doses of dobutamine were impaired only in toluene-exposed rats. Both isoprene and toluene impaired the rate of ventri

  19. Measurement of blood-brain barrier permeation in rats during exposure to 2450-MHz microwaves

    International Nuclear Information System (INIS)

    Ward, T.R.; Elder, J.A.; Long, M.D.; Svendsgaard, D.

    1982-01-01

    Adult rats anesthesized with pentobarbital and injected intravenously with a mixture of [ 14 C] sucrose and [ 3 H] inulin were exposed for 30 min to an environment at an ambient temperature of 22, 30, or 40 degrees C, or were exposed at 22 degrees C to 2450-MHz CW microwave radiation at power densities of 0, 10, 20, or 30 mW/cm2. Following exposure, the brain was perfused and sectioned into eight regions, and the radioactivity in each region was counted. The data were analyzed by two methods. First, the data for each of the eight regions and for each of the two radioactive tracers were analyzed by regression analysis for a total of 16 analyses and Bonferroni's Inequality was applied to prevent false positive results from numerous analyses. By this conservative test, no statistically significant increase in permeation was found for either tracer in any brain region of rats exposed to microwaves. Second, a profile analysis was used for a general change in tracer uptake across all brain regions. Using this statistical method, a significant increase in permeation was found for sucrose but not for inulin. A correction factor was then derived from the warm-air experiments to correct for the increase in permeation of the brain associated with change in body temperature. This correction factor was applied to the data for the irradiated animals. After correcting the data for thermal effects of the microwave radiation, no significant increase in permeation was found

  20. Effects of the administration of a catalase inhibitor into the fourth cerebral ventricle on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke

    OpenAIRE

    Valenti, Vitor E.; Abreu, Luiz Carlos de; Fonseca, Fernando L. A.; Adami, Fernando; Sato, Monica A.; Vanderlei, Luiz Carlos M.; Ferreira, Lucas Lima; Rodrigues, Luciano M.; Ferreira, Celso

    2013-01-01

    OBJECTIVE: Previous studies have demonstrated a relationship between brain oxidative stress and cardiovascular regulation. We evaluated the effects of central catalase inhibition on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. METHODS: Male Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SH) (16 weeks old) were implanted with a stainless steel guide cannula leading into the fourth cerebral ventricle (4...

  1. Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission.

    Science.gov (United States)

    Falcioni, L; Bua, L; Tibaldi, E; Lauriola, M; De Angelis, L; Gnudi, F; Mandrioli, D; Manservigi, M; Manservisi, F; Manzoli, I; Menghetti, I; Montella, R; Panzacchi, S; Sgargi, D; Strollo, V; Vornoli, A; Belpoggi, F

    2018-08-01

    In 2011, IARC classified radiofrequency radiation (RFR) as possible human carcinogen (Group 2B). According to IARC, animals studies, as well as epidemiological ones, showed limited evidence of carcinogenicity. In 2016, the NTP published the first results of its long-term bioassays on near field RFR, reporting increased incidence of malignant glial tumors of the brain and heart Schwannoma in rats exposed to GSM - and CDMA - modulated cell phone RFR. The tumors observed in the NTP study are of the type similar to the ones observed in some epidemiological studies of cell phone users. The Ramazzini Institute (RI) performed a life-span carcinogenic study on Sprague-Dawley rats to evaluate the carcinogenic effects of RFR in the situation of far field, reproducing the environmental exposure to RFR generated by 1.8 GHz GSM antenna of the radio base stations of mobile phone. This is the largest long-term study ever performed in rats on the health effects of RFR, including 2448 animals. In this article, we reported the final results regarding brain and heart tumors. Male and female Sprague-Dawley rats were exposed from prenatal life until natural death to a 1.8 GHz GSM far field of 0, 5, 25, 50 V/m with a whole-body exposure for 19 h/day. A statistically significant increase in the incidence of heart Schwannomas was observed in treated male rats at the highest dose (50 V/m). Furthermore, an increase in the incidence of heart Schwann cells hyperplasia was observed in treated male and female rats at the highest dose (50 V/m), although this was not statistically significant. An increase in the incidence of malignant glial tumors was observed in treated female rats at the highest dose (50 V/m), although not statistically significant. The RI findings on far field exposure to RFR are consistent with and reinforce the results of the NTP study on near field exposure, as both reported an increase in the incidence of tumors of the brain and heart in RFR-exposed Sprague

  2. Thioredoxin and impaired spatial learning and memory in the rats exposed to intermittent hypoxia

    Institute of Scientific and Technical Information of China (English)

    YANG Xiu-hong; LIU Hui-guo; LIU Xue; CHEN Jun-nan

    2012-01-01

    Background Obstructive sleep apnea (OSA) can cause cognitive dysfunction and may be a reversible cause of cognitive loss in patients with Alzheimer's disease (AD).Chronic exposure to intermittent hypoxia (IH),such as encountered in OSA,is marked by neurodegenerative changes in rat brain.We investigated the change of thioredoxin (Trx),spatial learning and memory in rats exposed to chronic intermittent hypoxia (CIH).Methods Forty healthy male Sprague-Dawley (SD) rats were randomly divided into four groups of ten each:a CIH+normal saline (CIH+NS group),a N-acetylcystein-treated CIH (CIH+NAC) group,a sham CIH group (sham CIH+NS),and a sham NAC-treated sham CIH (CIH+NAC) group.Spatial learning and memory in each group was assessed with the Morris water maze.Real-time PCR and Western blotting were used to examine mRNA and protein expression of Trx in the hippocampus tissue.The terminal deoxynucleotidyl transferase-mediated dUTP-nick end-labeling (TUNEL) method was used to detect the apoptotic cells of the hippocampus CA1 region.Results ClH-rats showed impaired spatial learning and memory in the Morris water maze,including longer mean latencies for the target platform,reduced numbers of passes over the previous target platform and a smaller percentage of time spent in the target quadrant.Trx mRNA and protein levels were significantly decreased in the CIH-hippocampus,meanwhile,an elevated apoptotic index revealed apoptosis of hippocampal neurons of rats exposed to CIH.The rats,which acted better in the Morris water maze,showed higher levels of the Trx mRNA and protein in the hippocampus;apoptotic index of the neurons in the hippocampus of each group was negatively correlated with the Trx mRNA and protein levels.Conclusion The Trx deficit likely plays an important role in the impaired spatial learning and memory in the rats exposed to CIH and may work through the apoptosis of neurons in the hippocampus.

  3. Effects of Circadian Disruption on Methamphetamine Consumption in Methamphetamine-Exposed Rats

    Science.gov (United States)

    Doyle, Susan E.; Feng, Hanting; Garber, Garrett; Menaker, Michael; Lynch, Wendy J.

    2015-01-01

    Rationale A substantial number of clinical studies indicate associations between sleep abnormalities and drug abuse; however, the role played by the circadian system in the development of addiction is largely unknown. Objective The aim of this study was to examine the effects of experimentally induced chronic jet lag on methamphetamine consumption in a rat model of methamphetamine drinking. Methods Male Sprague-Dawley rats (n=32) were housed in running wheel cages in a 12:12 light:dark cycle. One group of rats (n=16) was given two weeks of forced methamphetamine consumption (0.01% in drinking water; meth pre-exposed) while a second group (n=16, not pre-exposed) received water only. This was followed by a two week abstinence period during which half of the animals from each group were exposed to 4 consecutive 6-hr advancing phase shifts of the light:dark cycle, while the other half remained on the original light:dark cycle. Methamphetamine consumption was assessed in all rats following the deprivation period using a two-bottle choice paradigm. Results Methamphetamine consumption was initially lower in methamphetamine pre-exposed vs. not pre-exposed rats. However, during the second week following abstinence, consumption was significantly higher in phase shifted rats of the methamphetamine pre-exposed group compared to all other groups. Conclusions These data reveal an effect of circadian rhythm disturbance on methamphetamine consumption, and suggest that dysregulation of the circadian system be considered in the etiology of relapse and addiction. PMID:25543849

  4. Participation of catalase in voluntary ethanol consumption in perinatally low-level lead-exposed rats.

    Science.gov (United States)

    Mattalloni, Mara S; De Giovanni, Laura N; Molina, Juan C; Cancela, Liliana M; Virgolini, Miriam B

    2013-10-01

    Environmental lead (Pb) exposure and alcohol abuse pose significant public health problems for our society. One of the proposed mechanisms of action of the developmental neurotoxicant Pb is related to its ability to affect antioxidant enzymes, including catalase (CAT). Ethanol's (EtOH) motivational effects are postulated to be mediated by the CAT-dependent acetaldehyde generated in the brain. The current study sought to investigate the role of this enzyme in the elevated EtOH intake previously reported in perinatally Pb-exposed rats. Thirty-five-day-old male Wistar rats exposed to 220 ppm Pb during gestation and lactation were offered escalating EtOH solutions (2 to 10%) or water, 2 h/d for 28 days. Once baseline 10% EtOH intake was achieved, they were injected with (i) saline (SAL), (ii) 3-amino 1,2,4 triazole (aminotriazole [AT], a CAT inhibitor, 250 mg/kg intraperitoneally [i.p.], 5 hours before the last 8 EtOH intake sessions), or (iii) 3-nitropropionic acid (3NPA; a CAT activator, 20 mg/kg subcutaneously [s.c.], 45 minutes before the last 4 EtOH intake sessions). Rats were then sacrificed, blood collected, and brain regions harvested for CAT activity determination. Additional studies evaluated EtOH intake and CAT activity in response to 10 and 30 mg/kg 3NPA. Both 3NPA and AT were evaluated for striatal cytotoxicity. We observed that AT pretreatment blunted the increased EtOH intake, as well as the elevated CAT activity in blood, cerebellum, and hippocampus evidenced in the developmentally Pb-exposed rats that have consumed EtOH. Conversely, 20 mg/kg 3NPA further increased voluntary EtOH intake in these animals as compared with controls, concomitantly with a slight elevation in CAT activity both in blood and in the striatum, associated with no changes in striatal cytotoxicity. These results suggest a participation of CAT, and possibly acetaldehyde, in Pb-induced high EtOH intake, and open up new avenues to elucidate the mechanism that underlies the Pb and Et

  5. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development

    International Nuclear Information System (INIS)

    Wang Qiang; Luo Wenjing; Zheng Wei; Liu Yiping; Xu Hui; Zheng Gang; Dai Zhongming; Zhang Wenbin; Chen Yaoming; Chen Jingyuan

    2007-01-01

    Children are known to be venerable to lead (Pb) toxicity. The blood-brain barrier (BBB) in immature brain is particularly vulnerable to Pb insults. This study was designed to test the hypothesis that Pb exposure damaged the integrity of the BBB in young animals and iron (Fe) supplement may prevent against Pb-induced BBB disruption. Male weanling Sprague-Dawley rats were divided into four groups. Three groups of rats were exposed to Pb in drinking water containing 342 μg Pb/mL as Pb acetate, among which two groups were concurrently administered by oral gavage once every other day with 7 mg Fe/kg and 14 mg Fe/kg as FeSO 4 solution as the low and high Fe treatment group, respectively, for 6 weeks. The control group received sodium acetate in drinking water. Pb exposure significantly increased Pb concentrations in blood by 6.6-folds (p < 0.05) and brain tissues by 1.5-2.0-folds (p < 0.05) as compared to controls. Under the electron microscope, Pb exposure in young animals caused an extensive extravascular staining of lanthanum nitrate in brain parenchyma, suggesting a leakage of cerebral vasculature. Western blot showed that Pb treatment led to 29-68% reduction (p < 0.05) in the expression of occludin as compared to the controls. Fe supplement among Pb-exposed rats maintained the normal ultra-structure of the BBB and restored the expression of occludin to normal levels. Moreover, the low dose Fe supplement significantly reduced Pb levels in blood and brain tissues. These data suggest that Pb exposure disrupts the structure of the BBB in young animals. The increased BBB permeability may facilitate the accumulation of Pb. Fe supplement appears to protect the integrity of the BBB against Pb insults, a beneficial effect that may have significant clinical implications

  6. Analysis of emotionality and locomotion in radio-frequency electromagnetic radiation exposed rats.

    Science.gov (United States)

    Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Paval, Jaijesh; Kedage, Vivekananda; Bhat, M Shankaranarayana; Nayak, Satheesha; Bhat, P Gopalakrishna

    2013-07-01

    In the current study the modulatory role of mobile phone radio-frequency electromagnetic radiation (RF-EMR) on emotionality and locomotion was evaluated in adolescent rats. Male albino Wistar rats (6-8 weeks old) were randomly assigned into the following groups having 12 animals in each group. Group I (Control): they remained in the home cage throughout the experimental period. Group II (Sham exposed): they were exposed to mobile phone in switch-off mode for 28 days, and Group III (RF-EMR exposed): they were exposed to RF-EMR (900 MHz) from an active GSM (Global system for mobile communications) mobile phone with a peak power density of 146.60 μW/cm(2) for 28 days. On 29th day, the animals were tested for emotionality and locomotion. Elevated plus maze (EPM) test revealed that, percentage of entries into the open arm, percentage of time spent on the open arm and distance travelled on the open arm were significantly reduced in the RF-EMR exposed rats. Rearing frequency and grooming frequency were also decreased in the RF-EMR exposed rats. Defecation boli count during the EPM test was more with the RF-EMR group. No statistically significant difference was found in total distance travelled, total arm entries, percentage of closed arm entries and parallelism index in the RF-EMR exposed rats compared to controls. Results indicate that mobile phone radiation could affect the emotionality of rats without affecting the general locomotion.

  7. Topographical distribution of decrements and recovery in muscarinic receptors from rat brains repeatedly exposed to sublethal doses of soman

    International Nuclear Information System (INIS)

    Churchill, L.; Pazdernik, T.L.; Jackson, J.L.; Nelson, S.R.; Samson, F.E.; McDonough, J.H. Jr.

    1984-01-01

    [3H]Quinuclidinyl benzilate binding to rat brain muscarinic receptors decreased after repeated exposure to soman, a potent organophosphorus cholinesterase inhibitor. The topographical distribution of this decrement was analyzed by quantitative receptor autoradiography. After 4 weeks of soman, three times a week, quinuclidinyl benzilate binding decreased to 67 to 80% of control in frontal and parietal cortex, caudate-putamen, lateral septum, hippocampal body, dentate gyrus, superior colliculus, nucleus of the fifth nerve, and central grey. Minor or no decreases were observed in thalamic or hypothalamic nuclei, reticular formation, pontine nuclei, inferior colliculus, nucleus of the seventh nerve, and cerebellum. Scatchard analyses of saturation curves using frontal cortex sections from soman-treated rats revealed a decrease in maximal quinuclidinyl benzilate binding from that in control rats and a return toward control levels by 24 days without any significant change in affinity. These brain areas showing significant decrements in muscarinic receptors recovered with a similar time course. An estimate of the time for 50% recovery for some of the brain areas was 14 days for superior colliculus, 16 days for cortex, and 19 days for hippocampal body. The application of quantitative receptor autoradiography to analyze receptor alterations has been valuable in localizing the telencephalon as a region more susceptible to change in receptor concentration

  8. Topographical distribution of decrements and recovery in muscarinic receptors from rat brains repeatedly exposed to sublethal doses of soman

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, L.; Pazdernik, T.L.; Jackson, J.L.; Nelson, S.R.; Samson, F.E.; McDonough, J.H. Jr.

    1984-08-01

    (3H)Quinuclidinyl benzilate binding to rat brain muscarinic receptors decreased after repeated exposure to soman, a potent organophosphorus cholinesterase inhibitor. The topographical distribution of this decrement was analyzed by quantitative receptor autoradiography. After 4 weeks of soman, three times a week, quinuclidinyl benzilate binding decreased to 67 to 80% of control in frontal and parietal cortex, caudate-putamen, lateral septum, hippocampal body, dentate gyrus, superior colliculus, nucleus of the fifth nerve, and central grey. Minor or no decreases were observed in thalamic or hypothalamic nuclei, reticular formation, pontine nuclei, inferior colliculus, nucleus of the seventh nerve, and cerebellum. Scatchard analyses of saturation curves using frontal cortex sections from soman-treated rats revealed a decrease in maximal quinuclidinyl benzilate binding from that in control rats and a return toward control levels by 24 days without any significant change in affinity. These brain areas showing significant decrements in muscarinic receptors recovered with a similar time course. An estimate of the time for 50% recovery for some of the brain areas was 14 days for superior colliculus, 16 days for cortex, and 19 days for hippocampal body. The application of quantitative receptor autoradiography to analyze receptor alterations has been valuable in localizing the telencephalon as a region more susceptible to change in receptor concentration.

  9. Metabolic profile and genotoxicity in obese rats exposed to cigarette smoke.

    Science.gov (United States)

    Damasceno, Debora C; Sinzato, Yuri K; Bueno, Aline; Dallaqua, Bruna; Lima, Paula H; Calderon, Iracema M P; Rudge, Marilza V C; Campos, Kleber E

    2013-08-01

    Experimental studies have shown that exposure to cigarette smoke has negative effects on lipid metabolism and oxidative stress status. Cigarette smoke exposure in nonpregnant and pregnant rats causes significant genotoxicity (DNA damage). However, no previous studies have directly evaluated the effects of obesity or the association between obesity and cigarette smoke exposure on genotoxicity. Therefore, the aim of the present investigation was to evaluate DNA damage levels, oxidative stress status and lipid profiles in obese Wistar rats exposed to cigarette smoke. Female rats subcutaneously (s.c.) received a monosodium glutamate solution or vehicle (control) during the neonatal period to induce obesity. The rats were randomly distributed into three experimental groups: control, obese exposed to filtered air, and obese exposed to tobacco cigarette smoke. After a 2-month exposure period, the rats were anesthetized and killed to obtain blood samples for genotoxicity, lipid profile, and oxidative stress status analyses. The obese rats exposed to tobacco cigarette smoke presented higher DNA damage, triglycerides, total cholesterol, free fatty acids, VLDL-c, HDL-c, and LDL-c levels compared to control and obese rats exposed to filtered air. Both obese groups showed reduced SOD activity. These results showed that cigarette smoke enhanced the effects of obesity. In conclusion, the association between obesity and cigarette smoke exposure exacerbated the genotoxicity, negatively impacted the biochemical profile and antioxidant defenses and caused early glucose intolerance. Thus, the changes caused by cigarette smoke exposure can trigger the earlier onset of metabolic disorders associated with obesity, such as diabetes and metabolic syndrome. Copyright © 2012 The Obesity Society.

  10. Disturbances of perinatal carbohydrate metabolism in rats exposed to methylmercury in utero

    Energy Technology Data Exchange (ETDEWEB)

    Snell, K; Ashby, S L; Barton, S J

    1977-12-01

    Pregnant rats were given a single subcutaneous injection of methylmercuric chloride (at 4 or 8 mg/kg) on the ninth day of gestation. Fetal (2 days prenatal), newborn and postnatal (6 days post partum) animals from the methylmercury-treated mothers were investigated with respect to parameters of carbohydrate metabolism. In the absence of any physical abnormalities, fetal rats exposed to methylmercury in utero showed diminished concentrations of plasma glucose and liver glycogen concentrations and a lower hepatic glucose-6-phosphatase activity compared to control animals. Newborn rats from the methylmercury-treated mothers showed an impairment in glycogen mobilization in the first hours of extra-uterine life which was accompanied by a severe and protracted hypoglycemic response. Postnatal rats exposed to methylmercury in utero exhibited higher liver glycogen concentration and decreased body weights compared to control rats. The results point to a derangement of perinatal carbohydrate metabolism in the offspring of pregnant rats exposed briefly to low doses of methylmercury during gestation (''metabolic teratogenesis''). The postnatal hypoglycemic episode in exposed rats may contribute to the pathogenesis of the neurological disturbances revealed by these animals in later life.

  11. Technical Nuances of Exposing Rat Common Carotid Arteries for Practicing Microsurgical Anastomosis.

    Science.gov (United States)

    Tayebi Meybodi, Ali; Aklinski, Joseph; Gandhi, Sirin; Lawton, Michael T; Preul, Mark C

    2018-04-17

    Animal models are commonly used in training protocols for microsurgical vascular anastomosis. Rat common carotid arteries (CCAs) are frequently used for this purpose. Much attention has been paid to the technical details of various anastomosis configurations using these arteries. However, technical nuances of exposing rat CCAs have been understudied. The purpose of this study is to describe nuances of technique for safely and efficiently exposing rat CCAs in preparation for a vascular anastomosis. Bilateral CCAs were exposed and prepared for anastomosis in 10 anesthetized Sprague-Dawley rats through a midline cervical incision. The exposed length of the CCA was measured. Additionally, technical nuances of exposure and surgically relevant anatomic details were recorded. The CCAs were exposed from the sternoclavicular joint to their bifurcation (average length, 19.1 ± 2.8 mm). Tenets important for a safe and efficient exposure of the CCAs included 1) generous subcutaneous dissection to expose the external jugular veins (EJVs), 2) avoiding injury to or compression of the EJVs, 3) superior mobilization of the salivary glands, 4) division of internal jugular veins, 5) opening the carotid sheath at its midlevel and from medial to lateral, and 6) avoiding injury to the vagus nerve or sympathetic trunk. Using the principles introduced in this study, trainees may safely and efficiently expose rat CCAs in preparation for a bypass. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Preference for safflower oil in rats exposed to a cold environment under free-feeding conditions.

    Science.gov (United States)

    Saitoh, Masaji; Ishii, Toshiaki; Takewaki, Tadashi; Nishimura, Masakazu

    2005-07-01

    There are several benefits to a high-fat diet for animals exposed to cold, including improved tolerance to severe cold conditions and increased survival rates in cold environments. It is therefore of interest to examine whether animals exposed to cold will selectively consume lipids. We examined the intake of safflower oil (SO) by rats exposed to cold (4 +/- 2 degrees C) under a feeding condition in which the rats were given free access to SO. Rats exposed to cold consumed more SO than those housed at 25 +/- 2 degrees C. This finding suggests that rats prefer SO in a cold environment. There was no significant difference in the ratio of calories of SO ingested to that of matter (standard laboratory chow plus SO) ingested between rats exposed to cold and those at 25 +/- 2 degrees C. The high SO intake also affected cold tolerance and metabolite kinetics in the rats. Factors that affected the SO intake of rats exposed to cold are also discussed.

  13. Recruitment of hypothalamic orexin neurons after formalin injections in adult male rats exposed to a neonatal immune challenge

    Directory of Open Access Journals (Sweden)

    Erin Jane Campbell

    2015-03-01

    Full Text Available Exposure to early life physiological stressors, such as infection, is thought to contribute to the onset of psychopathology in adulthood. In animal models, injections of the bacterial immune challenge, lipopolysaccharide (LPS, during the neonatal period has been shown to alter both neuroendocrine function and behavioural pain responses in adulthood. Interestingly, recent evidence suggests a role for the lateral hypothalamic peptide orexin in stress and nociceptive processing. However, whether neonatal LPS exposure affects the reactivity of the orexin system to formalin-induced inflammatory pain in later life remains to be determined. Male Wistar rats (n=13 were exposed to either LPS or saline (0.05mg/kg, i.p on postnatal days (PND 3 and 5. On PND 80-97, all rats were exposed to a subcutaneous hindpaw injection of 2.25% formalin. Following behavioural testing, animals were perfused and brains processed for Fos-protein and orexin immunohistochemistry. Rats treated with LPS during the neonatal period exhibited decreased licking behaviours during the interphase of the formalin test, the period typically associated with the active inhibition of pain, and increased grooming responses to formalin in adulthood. Interestingly, these behavioural changes were accompanied by an increase in the percentage of Fos-positive orexin cells in the dorsomedial and perifornical hypothalamus in LPS-exposed animals. Similar increases in Fos-protein were also observed in stress and pain sensitive brain regions that receive orexinergic inputs. These findings highlight a potential role for orexin in the behavioural responses to pain and provide further evidence that early life stress can prime the circuitry responsible for these responses in adulthood.

  14. Estrogen restores brain insulin sensitivity in ovariectomized non-obese rats, but not in ovariectomized obese rats.

    Science.gov (United States)

    Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2014-06-01

    We previously demonstrated that obesity caused the reduction of peripheral and brain insulin sensitivity and that estrogen therapy improved these defects. However, the beneficial effect of estrogen on brain insulin sensitivity and oxidative stress in either ovariectomy alone or ovariectomy with obesity models has not been determined. We hypothesized that ovariectomy alone or ovariectomy with obesity reduces brain insulin sensitivity and increases brain oxidative stress, which are reversed by estrogen treatment. Thirty female rats were assigned as either sham-operated or ovariectomized. After the surgery, each group was fed either a normal diet or high-fat diet for 12 weeks. At week 13, rats in each group received either the vehicle or estradiol for 30 days. At week 16, blood and brain were collected for determining the peripheral and brain insulin sensitivity as well as brain oxidative stress. We found that ovariectomized rats and high-fat diet fed rats incurred obesity, reduced peripheral and brain insulin sensitivity, and increased brain oxidative stress. Estrogen ameliorated peripheral insulin sensitivity in these rats. However, the beneficial effect of estrogen on brain insulin sensitivity and brain oxidative stress was observed only in ovariectomized normal diet-fed rats, but not in ovariectomized high fat diet-fed rats. Our results suggested that reduced brain insulin sensitivity and increased brain oxidative stress occurred after either ovariectomy or obesity. However, the reduced brain insulin sensitivity and the increased brain oxidative stress in ovariectomy with obesity could not be ameliorated by estrogen treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Study on developing brain damage of neonatal rats induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Yang Shuqin

    2000-01-01

    Objective: The injurious effects of enriched uranium 235 U on developing brain of neonatal Wistar pure bred rats were studied. Methods: The model of irradiation induced brain damage in vivo was settled. The effects of cerebrum exposure by 235 U on somatic growth and neuro-behavior development of neonatal rats were examined by thirteen index determination of multiple parameters. The dynamic retention of autoradiographic tracks of 235 U in cells of developing brain was observed. The changes of NSE, IL-1β, SOD, and ET in cerebral cortex, hippocampus, diencephalon, cerebellum after expose to 235 U were examined with radioimmunoassay. Results: The somatic growth such as increase of body weight and brain weight was lower significantly. The retardation of development was found such as eye opening, sensuous function as auditory startle, movement and coordination function and activity as swimming, physiological reflexes as negative geotaxis, surface righting, grasping reflex suspension and the tendency behavior. The data showed delayed growth and abnormal neuro-behavior. The micro-autoradiographic tracing showed that the tracks of 235 U were mainly accumulated in the nucleus of developing brain. At the same time only few tracks appeared in the cytoplasm and interval between cells. Experimental study showed that when the dose of 235 U irradiation was increased, the level of NSE was decreased and the IL-1β was increased. However, the results indicated that SOD and ET can be elevated by the low dose irradiation of 235 U, and can be inhibited by the high dose. Conclusion: The behavior of internal irradiation from 235 U on the developing brain damage of neonatal rats were of sensibility and compensation in nervous cells

  16. Characteristic effects of heavy ion irradiation on the rat brain

    International Nuclear Information System (INIS)

    Sun, X.Z.; Takahashi, S.; Kubota, Y.; Yoshida, S.; Takeda, H.; Zhang, R.; Fukui, Y.

    2005-01-01

    successfully and satisfactorily retained its high-dose localization in the defined region. Histological and neuronal behavioral examinations showed that no obvious behavioral and histological changes before 7 weeks of exposure, but loss of hairs was found in the left brain this time in the irradiated group. The shape and size of depilation were almost same to the left collimation. At 8 weeks after exposure, the distinctive histological changes such as necrosis, vascular dilatation and tissue swelling were observed and almost animals exposed to the heavy ion beams exhibited behavioral changes, either in an abnormal walking pattern or rotation when suspended by their tail. From 16 to 32 weeks after irradiation, necrotic rarefaction became dominant at the center of the irradiated region and enlarged blood vessels were present in the surrounding area. Behavioral changes during this period also became more marked. The rats showed total loss of their balance both in an abnormal walking pattern and rotation from 16 weeks onwards, Major elemental contribution in the brain studied with X-rays fluorescence indicated that a sudden decrease in the concentration of K and Cl appeared as early as 24 hours after ischemia induction in the rat brain, while the concentrations of P, Fe and Zn did not significantly change. A decrease in the concentration of K and P in the region where tissue selling and necrosis was observed. Significant increases in the concentrations of Cl, Fe, Zn were found in the thalamus and surrounding area o f necrosis. These results revealed that levels of inorganic ions in the brain were good indicators for the pathological states of the nervous system.

  17. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  18. Effects of glutamine pretreatment on learning and memory in heat-exposed rats

    Institute of Scientific and Technical Information of China (English)

    Shenghao Zhao; Lei Wang; Qin Wang; Siyi Wang; Chundi Deng; Xianfei Xie; Youe Yan; Hui Wang

    2008-01-01

    BACKGROUND: Glutamine (Gln) pretreatment can protect neural cells from injuries due to heat, ischemia, hypoxia, endotoxemia, and inflammatory factors.OBJECTIVE: To observe the effects of Gln pretreatment on learning and memory, survival time, and rectal temperature in heat-exposed rats.DESIGN, TIME AND SETTING: The present randomized grouping, neurobehavioral experiment was performed at the Laboratory of Department of Pharmacology, Basic School of Medicine, Wuhan University between March and September 2007.MATERIALS: Twenty-four healthy, Wistar rats were included in this study. SPX-160B biochemistry incubator (Shanghai Experimental Equipment Co., Ltd., China), probe electronic thermometer (11000 type, Maikepai Science and Technology Co., Ltd., China), Y-type maze box used in conjunction with MG-2 maze stimulator (Zhangjiagang Biomedical Instrument Factory, China), L-Gin (Batch No. 061218, 5 g/bottle, prepared into 10% aqueous solution, Amresco Company, USA) were used.METHODS: Twenty-four rats were randomly and evenly divided into 3 groups: heat-exposed, Gln low-lose, and Gln high-dose. Following learning and memory testing with the Y-maze, rats in the heat-exposed group were subjected to heat injury (40.5-41.5℃) in a biochemistry incubator. Rectal temperature was measured every 5 minutes. Thirty-five minutes after heat exposure, rats were removed and placed in the Y-type maze to test learning and memory again. Subsequently, the rats were returned to the same environment of thermal stimulation until they died. Rat survival time was recorded. Subsequent to learning and memory testing, rats in the Gln low-dose and high-dose groups received an i.p. injection of Gln (0.4 g/kg and 0.8 g/kg, respectively), and were exposed to heat injury. The remaining experimental procedures remained the same as for the heat-exposed group.MAIN OUTCOME MEASURES: Rat learning and memory, rectal temperature, and survival time in heat exposure environment.RESULTS: (1) In the Y

  19. Toxicity of lunar dust assessed in inhalation-exposed rats.

    Science.gov (United States)

    Lam, Chiu-wing; Scully, Robert R; Zhang, Ye; Renne, Roger A; Hunter, Robert L; McCluskey, Richard A; Chen, Bean T; Castranova, Vincent; Driscoll, Kevin E; Gardner, Donald E; McClellan, Roger O; Cooper, Bonnie L; McKay, David S; Marshall, Linda; James, John T

    2013-10-01

    Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m(3) of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m(3). This 4-week exposure study in rats showed that 6.8 mg/m(3) was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats.

  20. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    Science.gov (United States)

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    Science.gov (United States)

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  2. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Abdolreza Babaee

    2015-09-01

    Full Text Available Objective(s:Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis, as well as inhibition of apoptosis in brain tissue of male rats after TBI. Materials and Methods: The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg. All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. Results: The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P

  3. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    International Nuclear Information System (INIS)

    Beck, T.; Krieglstein, J.

    1987-01-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O 2 . Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded [ 14 C]2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur

  4. Hippocampal-dependent Pavlovian conditioning in adult rats exposed to binge-like doses of ethanol as neonates.

    Science.gov (United States)

    Lindquist, Derick H

    2013-04-01

    Binge-like postnatal ethanol exposure produces significant damage throughout the brain in rats, including the cerebellum and hippocampus. In the current study, cue- and context-mediated Pavlovian conditioning were assessed in adult rats exposed to moderately low (3E; 3g/kg/day) or high (5E; 5g/kg/day) doses of ethanol across postnatal days 4-9. Ethanol-exposed and control groups were presented with 8 sessions of trace eyeblink conditioning followed by another 8 sessions of delay eyeblink conditioning, with an altered context presented over the last two sessions. Both forms of conditioning rely on the brainstem and cerebellum, while the more difficult trace conditioning also requires the hippocampus. The hippocampus is also needed to gate or modulate expression of the eyeblink conditioned response (CR) based on contextual cues. Results indicate that the ethanol-exposed rats were not significantly impaired in trace EBC relative to control subjects. In terms of CR topography, peak amplitude was significantly reduced by both doses of alcohol, whereas onset latency but not peak latency was significantly lengthened in the 5E rats across the latter half of delay EBC in the original training context. Neither dosage resulted in significant impairment in the contextual gating of the behavioral response, as revealed by similar decreases in CR production across all four treatment groups following introduction of the novel context. Results suggest ethanol-induced brainstem-cerebellar damage can account for the present results, independent of the putative disruption in hippocampal development and function proposed to occur following postnatal ethanol exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. [Morphological structure of rat epiphysis exposed to electromagnetic radiation from communication devices].

    Science.gov (United States)

    Yashchenko, S G; Rybalko, S Yu

    Pineal gland is one of the most important components of homeostasis - the supporting system of the body. It participates in the launch of stress responses, restriction of their development, prevention of adverse effects on the body. There was proved an impact of electromagnetic radiation on the epiphysis. However, morphological changes in the epiphysis under exposure to electromagnetic radiation of modern communication devices are studied not sufficiently. For the time present the population is daily exposed to electromagnetic radiation, including local irradiation on the brain. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. Performed transmission electron microscopy revealed signs of degeneration of dark and light pinealocytes. These signs were manifested in the development of a complex of general and specific morphological changes. There was revealed the appearance of signs of aging and depletion transmission electron microscopy both in light and dark pinealocytes. These signs were manifested in the accumulation of lipofuscin granules and electron-dense "brain sand", the disappearance of nucleoli, cytoplasm vacuolization and mitochondrial cristae enlightenment.

  6. Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.

    Science.gov (United States)

    Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława

    2016-02-01

    Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Effect of cadmium exposure on lipids, lipid peroxidation and metal distribution in rat brain regions

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, T; Ali, M M; Chandra, S V

    1985-01-01

    Effect of cadmium treatment on brain lipids, lipid peroxidation and distribution of Zn, Cu and Fe in rat brain regions was investigated. Adult male rats were exposed to Cd (100 ppm Cd as cadmium acetate) in drinking water for 30 days. The Cd exposure resulted in a significant decrease in the phospholipid content and an increase in the lipid peroxidation in the cerebral cortex and cerebellum. The total lipid content was not affected in any of the regions but a significant decrease in cholesterol and cerebroside contents were observed only in the cerebral cortex. A positive correlation between the increase in lipid peroxidation and decrease in the phospholipid content in the cerebral cortex and cerebellum was observed. A maximum accumulation of Cd occurred in the cerebral cortex. The Cu and Fe contents were significantly increased but the Zn levels decreased in the Cd-treated rats in all but the midbrain region. Results suggest that the increased peroxidation decomposition of structural lipids and the altered distribution of the essential trace metals in brain may play a significant role in Cd-induced neurotoxicity. 27 references, 2 tables.

  8. Effects of Vitamin C on Kidney and Bone of Rats Exposed to Low ...

    African Journals Online (AJOL)

    ABSTRACT: In this study, the effect of vitamin C on cadmium-induced toxicity was investigated. Wister rats were exposed to ... and muscles of cadmium exposed rats (1.0- ..... Fauci, A.S., Braunwald, K., Isselbacher, K.J., Wilson,. J.D., Martin ...

  9. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression.

    Directory of Open Access Journals (Sweden)

    Tetsuya Takahashi

    Full Text Available Clinical manifestations of methylmercury (MeHg intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF, a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity.

  10. Development of antibodies against the rat brain somatostatin receptor.

    Science.gov (United States)

    Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T

    1992-05-15

    Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

  11. Effect of acetaminophen administration to rats chronically exposed to depleted uranium

    International Nuclear Information System (INIS)

    Gueguen, Y.; Grandcolas, L.; Baudelin, C.; Grison, S.; Tissandie, E.; Jourdain, J.R.; Paquet, F.; Voisin, P.; Aigueperse, J.; Gourmelon, P.; Souidi, M.

    2007-01-01

    The extensive use of depleted uranium (DU) in both civilian and military applications results in the increase of the number of human beings exposed to this compound. We previously found that DU chronic exposure induces the expression of CYP enzymes involved in the metabolism of xenobiotics (drugs). In order to evaluate the consequences of these changes on the metabolism of a drug, rats chronically exposed to DU (40 mg/l) were treated by acetaminophen (APAP, 400 mg/kg) at the end of the 9-month contamination. Acetaminophen is considered as a safe drug within the therapeutic range but in the case of overdose or in sensitive animals, hepatotoxicity and nephrotoxicity could occur. In the present work, plasma concentration of APAP was higher in the DU group compared to the non-contaminated group. In addition, administration of APAP to the DU-exposed rats increased plasma ALT (p < 0.01) and AST (p < 0.05) more rapidly than in the control group. Nevertheless, no histological alteration of the liver was observed but renal injury characterized by incomplete proximal tubular cell necrosis was higher for the DU-exposed rats. Moreover, in the kidney, CYP2E1 gene expression, an important CYP responsible for APAP bioactivation and toxicity, is increased (p < 0.01) in the DU-exposed group compared to the control group. In the liver, CYP's activities were decreased between control and DU-exposed rats. These results could explain the worse elimination of APAP in the plasma and confirm our hypothesis of a modification of the drug metabolism following a DU chronic contamination

  12. Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats.

    Directory of Open Access Journals (Sweden)

    Patrick K House

    Full Text Available Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor.

  13. Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats.

    Science.gov (United States)

    House, Patrick K; Vyas, Ajai; Sapolsky, Robert

    2011-01-01

    Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor.

  14. Micronuclei frequency in albino rats exposed to high natural radiation

    International Nuclear Information System (INIS)

    Aneesh, D.; Godwin Wesley, S.

    2013-01-01

    Genotoxicity and DNA damage endpoints are used to evaluate results in the context of cell survival. Genotoxicity in mammalian cells is monitored mostly by using cytokinesis-block micronucleus (CBMN) assay. The score of micronuclei (MN) in peripheral blood lymphocytes can be used as a biomarker and also as a bio-dosimeter of radiation exposure. In the present study the effect of natural radiation on albino rats has been investigated, to find out if there is any increase in MN frequency in peripheral blood lymphocytes. Animals at the age of 2-3 weeks were exposed to natural radiation, at the dose of 10.38 μGyh -1 for a period of 6 months. A parallel control set was also maintained (0.12 μGy h -1 '). Blood samples were collected from both test (exposed to natural radiation) and control rats. Lymphocyte culture was done following 'microculture techniques' for 72 h. Cytochalasin B, at a concentration of 6.0 μg/ml, was added to the lymphocyte cultures at 44 h to block cytokinesis. The frequency of MN was evaluated by scoring a total of 1000 binucleated (BN) cells from one slide. The frequency of MN among the rats exposed to natural radiation was found to be 1.83±0.05 per 1000 BN cells and in the control it was 1.82±0.07 per 1000 BN cells. No statistically significant difference in the MN frequencies of exposed and control groups (p>0.05) was seen. The lower MN frequency in natural radiation exposed rats could be an indication of adaptive response. (author)

  15. Dental Fluorosis and Catalase Immunoreactivity of the Brain Tissues in Rats Exposed to High Fluoride Pre- and Postnatally.

    Science.gov (United States)

    Güner, Şirin; Uyar-Bozkurt, Süheyla; Haznedaroğlu, Eda; Menteş, Ali

    2016-11-01

    This study evaluated dental fluorosis of the incisors and immunoreactivity in the brain tissues of rats given chronic fluoride doses pre- and postnatally. Female rats were given drinking water with 0, 30 or 100 ppm fluoride ad libitum throughout gestation and the nursing period. In addition, 63 male offspring were treated with the same water regimens as the mothers after weaning and were followed for 1, 3 or 5 months. The upper and lower incisors were collected, and all teeth were examined under a stereomicroscope and scored by two blinded examiners using a modified rodent enamel fluorosis index. Cortical, hippocampal and cerebellar brain samples were evaluated morphologically and immunohistochemically. All fluoride-treated pups were born with low body weight (p = 0.001). All animals from the fluoride groups had enamel fluorosis with defects of various degrees. The increase in the dental fluorosis scores in the fluoride treatment groups was significant (p fluoride groups was significantly higher than that in the controls after 1, 3 and 5 months (p toxicity of fluoride.

  16. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  17. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    OpenAIRE

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected ...

  18. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.

    Science.gov (United States)

    Xu, Yali; Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing; Liu, Zheng

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  19. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction

    Directory of Open Access Journals (Sweden)

    Yali Xu

    2016-01-01

    Full Text Available Objective. Blood-brain barrier (BBB is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p<0.01. Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4±1, grade 2 while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  20. Extreme hypoxia tolerance of naked mole-rat brain.

    Science.gov (United States)

    Larson, John; Park, Thomas J

    2009-12-09

    Mammalian brains have extremely high levels of aerobic metabolism and typically suffer irreversible damage after brief periods of oxygen deprivation such as occur during stroke or cardiac arrest. Here we report that brain tissue from naked mole-rats, rodents that live in a chronically low-oxygen environment, is remarkably resistant to hypoxia: naked mole-rat neurons maintain synaptic transmission much longer than mouse neurons and can recover from periods of anoxia exceeding 30 min. We suggest that brain tolerance to hypoxia may result from slowed or arrested brain development in these extremely long-lived animals.

  1. In vitro comparison of rat and chicken brain neurotoxic esterase

    International Nuclear Information System (INIS)

    Novak, R.; Padilla, S.

    1986-01-01

    A systematic comparison was undertaken to characterize neurotoxic esterase (NTE) from rat and chicken brain in terms of inhibitor sensitivities, pH optima, and molecular weights. Paraoxon titration of phenyl valerate (PV)-hydrolyzing carboxylesterases showed that rat esterases were more sensitive than chicken to paraoxon inhibition at concentrations less than or equal to microM and superimposable with chicken esterases at concentrations of 2.5-1000 microM. Mipafox titration of the paraoxon-resistant esterases at a fixed paraoxon concentration of 100 microM (mipafox concentration: 0-1000 microM) resulted in a mipafox I50 of 7.3 microM for chicken brain NTE and 11.6 microM for rat brain NTE. NTE (i.e., paraoxon-resistant, mipafox-sensitive esterase activity) comprised 80% of chicken and 60% of rat brain paraoxon-resistant activity with the specific activity of chicken brain NTE approximately twice that of rat brain NTE. The pH maxima for NTE from both species was similar showing broad, slightly alkaline optima from pH 7.9 to 8.6. [ 3 H]Diisopropyl phosphorofluoridate (DFP)-labeled NTE from the brains of both species had an apparent mol wt of 160,000 measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In conclusion, NTE from both species was very similar, with the mipafox I50 for rat NTE within the range of reported values for chicken and human NTE, and the inhibitor parameters of the chicken NTE assay were applicable for the rat NTE assay

  2. An automatic rat brain extraction method based on a deformable surface model.

    Science.gov (United States)

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Effects of the administration of a catalase inhibitor into the fourth cerebral ventricle on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2013-06-01

    Full Text Available OBJECTIVE: Previous studies have demonstrated a relationship between brain oxidative stress and cardiovascular regulation. We evaluated the effects of central catalase inhibition on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. METHODS: Male Wistar Kyoto (WKY rats and spontaneously hypertensive rats (SH (16 weeks old were implanted with a stainless steel guide cannula leading into the fourth cerebral ventricle (4th V. The femoral artery and vein were cannulated for arterial pressure and heart rate measurement and drug infusion, respectively. The rats were exposed to sidestream cigarette smoke for 180 minutes/day, 5 days/week for 3 weeks (CO: 100-300 ppm. The baroreflex was tested using a pressor dose of phenylephrine (8 μg/kg, bolus and a depressor dose of sodium nitroprusside (50 μg/kg, bolus. Cardiovascular responses were evaluated before and 5, 15, 30 and 60 minutes after injection of a catalase inhibitor (3-amino-1,2,4-triazole, 0.001 g/100 μL into the 4th V. RESULTS: Vehicle administration into the 4th V did not affect the cardiovascular response, whereas administration of the central catalase inhibitor increased the basal HR and attenuated the bradycardic peak (p<0.05 to a greater extent in WKY rats exposed to sidestream cigarette smoke than in WKY rats exposed to fresh air. However, in spontaneously hypertensive rats, the effect of the catalase inhibitor treatment was stronger in the fresh air condition (p<0.05. CONCLUSION: Administration of a catalase inhibitor into the 4th V combined with exposure to sidestream cigarette smoke has a stronger effect in WKY rats than in SH rats.

  4. Biochemical Changes in the Serum and Liver of albino rats exposed ...

    African Journals Online (AJOL)

    Biochemical changes in the serum and liver of albino rats chronically exposed to rats administered 5gk-1 , 7.5gk-1 and 15gk-1 of gasoline , kerosine and crude petroleum(bonny light) respectively were studied. The petroleum samples were administered intraperitoneally and the biochemical changes in the rat serum and the ...

  5. Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats.

    Science.gov (United States)

    Ragy, Merhan Mamdouh

    2015-01-01

    Increasing use of mobile phones in daily life with increasing adverse effects of electromagnetic radiation (EMR), emitted from mobile on some physiological processes, cause many concerns about their effects on human health. Therefore, this work was designed to study the effects of exposure to mobile phone emits 900-MHz EMR on the brain, liver and kidney of male albino rats. Thirty male adult rats were randomly divided into four groups (10 each) as follows: control group (rats without exposure to EMR), exposure group (exposed to 900-MHz EMR for 1 h/d for 60 d) and withdrawal group (exposed to 900-MHz electromagnetic wave for 1 h/d for 60 d then left for 30 d without exposure). EMR emitted from mobile phone led to a significant increase in malondialdehyde (MDA) levels and significant decrease total antioxidant capacity (TAC) levels in brain, liver and kidneys tissues. The sera activity of alanine transaminase (ALT), aspartate aminotransferase (AST), urea, creatinine and corticosterone were significantly increased (p electromagnetic field emitting from mobile phone might produce impairments in some biochemicals changes and oxidative stress in brain, liver and renal tissue of albino rats. These alterations were corrected by withdrawal.

  6. Effect of Omega-3 Fatty Acids on Neurotransmitters Level in the Brain of Male Albino Rats Exposed to Gamma Irradiation

    International Nuclear Information System (INIS)

    Saada, H.N.; Said, U.Z.; Shedid, S.M.; Mahdy, E.M.E.; Elmezayen, H.E.

    2014-01-01

    The omega-3 fatty acids are essential dietary nutrients, and one of their important roles is providing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) for growth and function of nervous tissue. Reduced level of DHA in the brain induce dramatic changes in brain function including changes in size of neurons as well as changes in learning and memory. The objective of this study was to evaluate the role of fish oil rich in omega-3 fatty acids on γ-radiation-induced physiological changes in the brain cerebral hemispheres. Omega-3 fatty acids was supplemented daily by gavages to rats at a dose of 400 mg/ kg body wt for 7 days pre- and 21 days post-exposure to whole body fractionated gamma rays at doses of 2 Gy/week up to a total dose of 8 Gy. The results demonstrated that whole body γ-irradiation induced oxidative stress, de - creased the main polyunsaturated fatty acids; DHA and EPA, and induced neurotransmitters alteration in brain tissues. Oxidative stress was manifested by a significant increase in lipid peroxidation product malondialdehyde (MDA) and decrease in the activity of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). Oxidative stress was accompanied by alterations in the level of the neurotransmitters manifested by a significant increase of glutamic and aspartic and a significant decrease of serotonin (5-HT) levels in brain cerebral hemispheres. Rats receiving fish oil 7 days before and 21 days after exposure to γ-radiation showed significant improvement in the levels of EPA and DHA associated with significant amelioration of oxidative stress and neurotransmitters alteration. It is concluded that fish oil protect the brain from radiation-induced physiological changes by protecting brain cellular membranes through counteracting the decrease of omega-3 fatty acids and minimizing oxidative stress

  7. Neuropeptide Y receptors in rat brain: autoradiographic localization

    International Nuclear Information System (INIS)

    Martel, J.C.; St-Pierre, S.; Quirion, R.

    1986-01-01

    Neuropeptide Y (NPY) receptor binding sites have been characterized in rat brain using both membrane preparations and receptor autoradiography. Radiolabelled NPY binds with high affinity and specificity to an apparent single class of sites in rat brain membrane preparations. The ligand selectivity pattern reveals strong similarities between central and peripheral NPY receptors. NPY receptors are discretely distributed in rat brain with high densities found in the olfactory bulb, superficial layers of the cortex, ventral hippocampus, lateral septum, various thalamic nuclei and area postrema. The presence of high densities of NPY and NPY receptors in such areas suggests that NPY could serve important functions as a major neurotransmitter/neuromodulator in the central nervous system

  8. A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations.

    Science.gov (United States)

    Zaidan, Hiba; Ramaswami, Gokul; Golumbic, Yaela N; Sher, Noa; Malik, Assaf; Barak, Michal; Galiani, Dalia; Dekel, Nava; Li, Jin B; Gaisler-Salomon, Inna

    2018-01-08

    Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats. In parallel, we assessed changes in ADARs expression levels. In agreement with previous studies, we found editing to be generally higher in adult compared to neonatal rat brain. At birth, editing was generally lower in prefrontal cortex than in amygdala. Stress affected editing at the serotonin receptor 2c (Htr2c), and editing at this site was significantly altered in offspring of rats exposed to prereproductive stress across two generations. Stress-induced changes in Htr2c editing measured with mmPCR-seq were comparable to changes measured with Sanger and Illumina sequencing. Developmental and stress-induced changes in Adar and Adarb1 mRNA expression were observed but did not correlate with editing changes. Our findings indicate that mmPCR-seq can accurately detect A-to-I RNA editing in rat brain samples, and confirm previous accounts of a developmental increase in RNA editing rates. Our findings also point to stress in adolescence as an environmental factor that alters RNA editing patterns several generations forward, joining a growing body of literature describing the transgenerational effects of stress.

  9. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, ... Methods: Forty-eight rats (P7-pups) were randomly assigned to one of four groups: ... Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants, .... Of the 48 rats initially used in the current study, 5.

  10. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  11. Performance and exposure indices of rats exposed to low concentrations of lead.

    Science.gov (United States)

    Cory-Slechta, D A; Weiss, B; Cox, C

    1985-04-01

    To further characterize the lower end of the function relating lead exposure and biological exposure indices to behavior, male weanling rats were exposed chronically to drinking solutions containing 25 ppm sodium acetate (controls) or 25 ppm lead acetate. Behavioral training began when the animals reached 50 days of age, and performance on a fixed-interval 1-min schedule of food reinforcement was then assessed over 90 experimental sessions (136 days). This exposure produced overall response rate increases over the first 40 sessions that were similar to those observed previously with higher concentrations of lead. Response rates of the two groups tended to merge subsequently. The increased overall response rates in the treated group derived primarily from an increased frequency of shorter interresponse times (IRTs) and increased running rates (calculated without the postreinforcement interval). Blood lead (PbB) and zinc protoporphyrin (ZPP) values were determined following sessions 30, 60, and 90. PbB values of the lead-exposed group averaged 15 to 20 micrograms/dl throughout the study; ZPP did not differ. The mean brain lead value of the treated group was 0.07 micrograms Pb/g. Blood-brain ratios (1.38 to 4.06) were substantially greater than those previously observed at higher exposures. These data extend to even lower exposures, and lower blood lead concentrations, the effective concentration for behavioral effects, and further emphasize the importance of the sensitivity of the endpoint in assessing behavioral toxicity.

  12. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride.

    Science.gov (United States)

    Adedara, Isaac A; Ojuade, Temini Jesu D; Olabiyi, Bolanle F; Idris, Umar F; Onibiyo, Esther M; Ajeigbe, Olufunke F; Farombi, Ebenezer O

    2017-02-01

    Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.

  13. Deterioration in brain and heart functions following a single sub-lethal (0.8 LCt50) inhalation exposure of rats to sarin vapor:

    International Nuclear Information System (INIS)

    Allon, N.; Chapman, S.; Egoz, I.; Rabinovitz, I.; Kapon, J.; Weissman, B.A.; Yacov, G.; Bloch-Shilderman, E.; Grauer, E.

    2011-01-01

    The main injuries among victims of the terrorist act in the Tokyo subway resulted from sub-lethal inhalation and whole body exposure to sarin vapor. In order to study the long term effects of such exposure and to simulate these conditions, freely moving rats were exposed to sarin vapor (27.2 ± 1.7 μg/l) for 10 min. About 50% of the rats showed no overt symptoms and the rest had mild to moderate clinical symptoms that subsided within 4 h following exposure. A reduction of weight was noted during the first 3 days with full recovery on the 4th day. Rat's heart was challenged with epinephrine 1 and 6 months post exposure. A significant reduction in the threshold for epinephrine-induced arrhythmia (EPIA) was noted in rats exposed to sarin. A time dependent increase in the kD and Bmax values of muscarinic auto receptors (M2) was recorded in the rat's cortex and striatum. No changes were recorded in the rats' brain trans locator protein (TSPO) levels, concomitant with no observed changes in the animals' performance in A Morris water maze test. A significant increase in open field activity was noted 6 months following exposure to sarin vapor as well as a significant decrease in prostaglandin E 2 (PGE 2 ) production in the brain. It is speculated that down regulation of the M2 auto receptor function, caused hyper reactivity of the cholinergic system which leads to the changes described above. The continuous reduction in M2 auto-receptor system through an unknown mechanism may be the cause for long lasting decline in sarin-exposed casualties' health.

  14. Aggregation patterns of fetal rat brain cells following exposure to X-irradiation

    International Nuclear Information System (INIS)

    Shoji, R.; Suzuki, K.; Lee, I.P.

    1980-01-01

    In our search for a simplified in vitro test system to assess the teratogenic effects of physical factors, we studied the effects of total maternal body X-irradiation on aggregation patterns of enzymatically isolated fetal rat brain cells and on ultrastructural aggregate changes. The fetal brain cells were derived from day 14 gestation fetuses of pregnant Sprague-Dawley (CD strain) rats exposed to X-irradiation (25 - 200 R) one hour prior to sacrifice. Notable changes in the cell aggregates following X-irradiation included a reduction in cell aggregate size and an increase in number. The frequency of cell aggregates was higher in the treated than in the control group, and the mean diameter of cell aggregates was inversely related to increasing X-irradiation doses. Transmission electron microscopy revealed in isolated cells features of degenerative process which were similar to those found in intact fetal brain lesions caused by maternal X-irradiation. Furthermore, scanning electron microscopy revealed that inhibition of cell aggregation following X-irradiation could probably be attributed to inhibition of membrane filopodia development and a consequent failure of cell aggregates to fuse into a greater cell aggregate mass. These results suggest that the membrane factors which influence cell aggregation may be a useful parameter to assess early effects of X-irradiation-induced brain deformity. Presently, the cell aggregation culture system is being further evaluated as a short term test system for environmental teratogens

  15. Effects of Acute Systemic Hypoxia and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia.

    Directory of Open Access Journals (Sweden)

    Wanchao Yang

    Full Text Available Therapeutic hypercapnia has the potential for neuroprotection after global cerebral ischemia. Here we further investigated the effects of different degrees of acute systemic hypoxia in combination with hypercapnia on brain damage in a rat model of hypoxia and ischemia. Adult wistar rats underwent unilateral common carotid artery (CCA ligation for 60 min followed by ventilation with normoxic or systemic hypoxic gas containing 11%O2,13%O2,15%O2 and 18%O2 (targeted to PaO2 30-39 mmHg, 40-49 mmHg, 50-59 mmHg, and 60-69 mmHg, respectively or systemic hypoxic gas containing 8% carbon dioxide (targeted to PaCO2 60-80 mmHg for 180 min. The mean artery pressure (MAP, blood gas, and cerebral blood flow (CBF were evaluated. The cortical vascular permeability and brain edema were examined. The ipsilateral cortex damage and the percentage of hippocampal apoptotic neurons were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL assay as well as flow cytometry, respectively. Immunofluorescence and western blotting were performed to determine aquaporin-4 (AQP4 expression. In rats treated with severe hypoxia (PaO2 50 mmHg, hypercapnia protected against these pathophysiological changes. Moreover, hypercapnia treatment significantly reduced brain damage in the ischemic ipsilateral cortex and decreased the percentage of apoptotic neurons in the hippocampus after the CCA ligated rats were exposed to mild or moderate hypoxemia (PaO2 > 50 mmHg; especially under mild hypoxemia (PaO2 > 60 mmHg, hypercapnia significantly attenuated the expression of AQP4 protein with brain edema (p < 0.05. Hypercapnia exerts beneficial effects under mild to moderate hypoxemia and augments detrimental effects under severe hypoxemia on brain damage in a rat model of hypoxia-ischemia.

  16. Brain manganese, catecholamine turnover, and the development of startle in rats prenatally exposed to manganese

    International Nuclear Information System (INIS)

    Kontur, P.J.; Fechter, L.D.

    1985-01-01

    Manganese (Mn) can be neurotoxic when present in high concentrations. Neonatal animals show differential absorption, accumulation, and excretion of Mn relative to adults. If similar kinetic differences exist during gestation, then fetal animals may be susceptible to Mn neurotoxicity. The objective of this study was to examine maternal-fetal Mn transfer and the susceptibility of prenatal animals to Mn neurotoxicity. This was approached by studying the ability of Mn to cross the placenta and reach the fetal central nervous system using radiotracer and atomic absorption spectroscopy techniques. Manganese is thought to disrupt catecholamine neurotransmission in the central nervous system. This was examined in newborn rats by alpha-methyl-para-tyrosine induced catecholamine turnover and the development of the acoustic startle response. The results suggest that there are limits on fetal Mn accumulation under conditions of both normal and excessive dietary Mn levels. Manganese accumulation in the fetal brain after exposure to increased dietary Mn does not alter either dopamine or norepinephrine turnover or the development of the acoustic startle response. Excess Mn does not appear to be neurotoxic to fetal rats in spite of its limited accumulation in nervous tissue after gestational exposure

  17. Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats' brain.

    Science.gov (United States)

    Ijomone, Omamuyovwi Meashack; Okori, Stephen Odey; Ijomone, Olayemi Kafilat; Ebokaiwe, Azubike Peter

    2018-02-26

    Nickel (Ni) is a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for neurological symptoms in humans. The present study investigated the behavior and histomorphological alterations in brain of rats sub-acutely exposed to nickel chloride (NiCl 2 ) and the possible involvement of oxidative stress. Rats were administered with 5, 10 or 20 mg/kg NiCl 2 via intraperitoneal injections for 21 days. Neurobehavioral assessment was performed using the Y-maze and open field test (OFT). Histomorphological analyses of brain tissues, as well as biochemical determination of oxidative stress levels were performed. Results showed that Ni treatments significantly reduced body weight and food intake. Cognitive and motor behaviors on the Y-maze and OFT, respectively, were compromised following Ni treatments. Administration of Ni affected neuronal morphology in the brain and significantly reduced percentage of intact neurons in both hippocampus and striatum. Additionally, markers of oxidative stress levels and nitric oxide (NO) levels were significantly altered following Ni treatments. These data suggest that compromised behavior and brain histomorphology following Ni exposures is associated with increase in oxidative stress.

  18. [Expression of c-jun protein after experimental rat brain concussion].

    Science.gov (United States)

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  19. The orexin-1 receptor antagonist SB-334867 decreases anxiety-like behavior and c-Fos expression in the hypothalamus of rats exposed to cat odor.

    Science.gov (United States)

    Vanderhaven, M W; Cornish, J L; Staples, L G

    2015-02-01

    Increasing evidence suggests that the orexin system is involved in modulating anxiety, and we have recently shown that cat odor-induced anxiety in rats is attenuated by the orexin receptor antagonist SB-334867. In the current experiment, c-Fos expression was used to map changes in neuronal activation following SB-334867 administration in the cat odor anxiety model. Male Wistar rats were exposed to cat odor with or without SB-334867 pre-treatment (10 mg/kg, i.p.). A naïve control group not exposed to cat odor was also used. Following cat odor exposure, brains were processed for c-Fos expression. Vehicle-treated rats showed an increase in anxiety-like behaviors (increased hiding and decreased approach toward the cat odor), and increased c-Fos expression in the posteroventral medial amygdala (MePV), paraventricular hypothalamus (PVN) and dorsal premammillary nucleus (PMd). In rats pretreated with SB-334867, approach scores increased and c-Fos expression decreased in the PVN and PMd. These results provide both behavioral and neuroanatomical evidence for the attenuation of cat odor-induced anxiety in rats via the orexin system. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  20. Early Effects of Lipopolysaccharide-Induced Inflammation on Foetal Brain Development in Rat

    Directory of Open Access Journals (Sweden)

    Cristina A Ghiani

    2011-10-01

    Full Text Available Studies in humans and animal models link maternal infection and imbalanced levels of inflammatory mediators in the foetal brain to the aetiology of neuropsychiatric disorders. In a number of animal models, it was shown that exposure to viral or bacterial agents during a period that corresponds to the second trimester in human gestation triggers brain and behavioural abnormalities in the offspring. However, little is known about the early cellular and molecular events elicited by inflammation in the foetal brain shortly after maternal infection has occurred. In this study, maternal infection was mimicked by two consecutive intraperitoneal injections of 200 μg of LPS (lipopolysaccharide/kg to timed-pregnant rats at GD15 (gestational day 15 and GD16. Increased thickness of the CP (cortical plate and hippocampus together with abnormal distribution of immature neuronal markers and decreased expression of markers for neural progenitors were observed in the LPS-exposed foetal forebrains at GD18. Such effects were accompanied by decreased levels of reelin and the radial glial marker GLAST (glial glutamate transporter, and elevated levels of pro-inflammatory cytokines in maternal serum and foetal forebrains. Foetal inflammation elicited by maternal injections of LPS has discrete detrimental effects on brain development. The early biochemical and morphological changes described in this work begin to explain the sequelae of early events that underlie the neurobehavioural deficits reported in humans and animals exposed to prenatal insults.

  1. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    International Nuclear Information System (INIS)

    Zhu, Changlian; Gao, Jianfeng; Li, Qian; Huang, Zhiheng; Zhang, Yu; Li, Hongfu; Kuhn, Hans-Georg; Blomgren, Klas

    2011-01-01

    Research highlights: → The effect of MRI on the developing brain is a matter of debate. → Repeated exposure to MRI did not affect neurogenesis. → Memory function was not affected by repeated MRI during development. → Neither late gestation nor young postnatal brains were affected by MRI. → Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI), could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 o C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.

  2. Histomorphometric Evaluation of the Small Coronary Arteries in Rats Exposed to Industrial Noise

    Directory of Open Access Journals (Sweden)

    Ana Lousinha

    2015-05-01

    Full Text Available Morphological changes induced by industrial noise (IN have been experimentally observed in several organs. Histological observations of the coronary arteries showed prominent perivascular tissue and fibrosis among IN-exposed rats. The effects on the small arteries are unknown. Objective: To evaluate the histomorphometric changes induced by IN on rat heart small arteries. Methods: Twenty Wistar rats exposed to IN during a maximum period of seven months and 20 age-matched controls were studied. Hearts were transversely sectioned from ventricular apex to atria and a mid-ventricular fragment was selected for analysis. The histological images were obtained with an optical microscope using 400× magnifications. A total of 634 arterial vessels (298 IN-exposed and 336 controls were selected. The mean lumen-to-vessel wall (L/W and mean vessel wall-to-perivascular tissue (W/P ratios were calculated using image J software. Results: There were no differences between exposed and control animals in their L/W ratios (p = 0.687 and time variations in this ratio were non-significant (p = 0.110. In contrast, exposed animals showed lower W/P ratios than control animals (p < 0.001, with significant time variations (p = 0.004. Conclusions: Industrial noise induced an increase in the perivascular tissue of rat small coronary arteries, with significant development of periarterial fibrosis.

  3. Distribution of dearomatised white spirit in brain, blood, and fat tissue after repeated exposure of rats

    DEFF Research Database (Denmark)

    Lof, A.; Lam, Henrik Rye; Gullstrand, E.

    1999-01-01

    Petroleum products with low content of aromatics have been increasingly used during the past years. This study investigates tissue disposition of dearomatised white spirit. In addition, brain neurotransmitter concentrations were measured. Male rats were exposed by inhalation to 0, 400 (2.29 mg....../l), or 800 p.p.m. (4.58 mg/l) of dearomatised white spirit, 6 hr/day, 5 days/week up to 3 weeks. Five rats from each group were sacrificed immediately after the exposure for 1, 2, or 3 weeks and 2, 4, 6, or 24 hr after the end of 3 weeks' exposure. After 3 weeks of exposure the concentration of total white...... spirit was 1.5 and 5.6 mg/kg in blood; 7.1 and 17.1 mg/kg in brain; 432 and 1452 mg/kg in fat tissue at the exposure levels of 400 and 800 p.p.m., respectively. The concentrations of n-nonane, n-decane, n-undecane, and total white spirit in blood and brain were not affected by the duration of exposure...

  4. Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation.

    Science.gov (United States)

    Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Karun, Kalesh M; Nayak, Satheesha B; Bhat, P Gopalakrishna

    2015-10-01

    The effects of chronic and repeated radiofrequency electromagnetic radiation (RFEMR) exposure on spatial cognition and hippocampal architecture were investigated in prepubescent rats. Four weeks old male Wistar rats were exposed to RF-EMR (900 MHz; SAR-1.15 W/kg with peak power density of 146.60 μW/cm(2)) for 1 h/day, for 28 days. Followed by this, spatial cognition was evaluated by Morris water maze test. To evaluate the hippocampal morphology; H&E staining, cresyl violet staining, and Golgi-Cox staining were performed on hippocampal sections. CA3 pyramidal neuron morphology and surviving neuron count (in CA3 region) were studied using H&E and cresyl violet stained sections. Dendritic arborization pattern of CA3 pyramidal neuron was investigated by concentric circle method. Progressive learning abilities were found to be decreased in RF-EMR exposed rats. Memory retention test performed 24 h after the last training revealed minor spatial memory deficit in RF-EMR exposed group. However, RF-EMR exposed rats exhibited poor spatial memory retention when tested 48 h after the final trial. Hirano bodies and Granulovacuolar bodies were absent in the CA3 pyramidal neurons of different groups studied. Nevertheless, RF-EMR exposure affected the viable cell count in dorsal hippocampal CA3 region. RF-EMR exposure influenced dendritic arborization pattern of both apical and basal dendritic trees in RF-EMR exposed rats. Structural changes found in the hippocampus of RF-EMR exposed rats could be one of the possible reasons for altered cognition.

  5. Brain glucose content in fetuses of ethanol-fed rats

    Energy Technology Data Exchange (ETDEWEB)

    Pullen, G.; Singh, S.P.; Snyder, A.K.; Hoffen, B.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4 and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.

  6. Hydrophilic solute transport across the rat blood-brain barrier

    International Nuclear Information System (INIS)

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of 3 H-inulin and 14 C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients

  7. Effects of lanthanum exposure on elemental distribution in rat brains measured by synchrotron radiation XRF

    International Nuclear Information System (INIS)

    Feng Liuxing; Xiao Haiqing; He Xiao; Liu Nianqing; Zhao Yuliang; Chai Zhifang; Zhang Zhiyong

    2005-01-01

    Rare earth elements (REEs) comprise a coherent series of 15 elements from lanthanum to lutetium and possessing very similar chemical properties. In recent decades, with the rapid increase of the exploitation of REE resources and their applications to modern industry and daily life, particularly to agriculture as fertilizer additives in China, more and more REEs are coming into environmental system as well as food chain through various ways. It has become increasingly important to obtain more information on the physiological function of REEs and their long-term biological effects on body of living beings. Epidemiological investigations found that the intelligence quotients (IQ) of children from the REE-high background regions are obviously different from that of the normal region. This indicated that REEs probably affect the function of brain. However, the mechanism is totally unknown. The contents and distributions of major and trace elements are sometimes good indicators of the physiological and pathological conditions of human and animal brains In this study, the effects of subchronic lanthanum exposure on the elemental distribution in the rat brains were studied. Wistar rats were exposed to lanthanum chloride through oral administration at O, 0.1, 2, and 40-mg/kg doses for 6 months. The elements such as Cl, K, Ca, Fe, Cu, and Zn in brain slices were identified by synchrotron radiation X-ray fluorescence analysis. Differences in two-dimensional maps of elemental distribution were noticed. Cl, Ca, and Zn were primarily concentrated in hippocampus of the controls. With the increase of the lanthanum dosage, the Ca and Zn levels were significantly decreased, while the Cu levels were significantly elevated in cortex, hippocampus and thalamus. Our results suggest that subchronic lanthanum exposure in rats appears to change elemental distribution in brain. The impact of lanthanides on brain function is not negligible.

  8. Turmeric extract inhibits apoptosis of hippocampal neurons of trimethyltin-exposed rats.

    Science.gov (United States)

    Yuliani, S; Widyarini, S; Mustofa; Partadiredja, G

    2017-01-01

    The aim of the present study was to reveal the possible antiapoptotic effect of turmeric (Curcuma longa Linn.) on the hippocampal neurons of rats exposed to trimethyltin (TMT). Oxidative damage in the hippocampus can induce the apoptosis of neurons associated with the pathogenesis of dementiaMETHODS. The ethanolic turmeric extract and a citicoline (as positive control) solution were administered to the TMT-exposed rats for 28 days. The body weights of rats were recorded once a week. The hippocampal weights and imumunohistochemical expression of caspase 3 proteins in the CA1 and CA2-CA3 regions of the hippocampi were examined at the end of the experiment. Immunohistochemical analysis showed that the injection of TMT increased the expression of caspase 3 in the CA1 and CA2-CA3 regions of hippocampus. TMT also decreased the body and hippocampal weights. Furthermore, the administration of 200 mg/kg bw dose of turmeric extract decreased the caspase 3 expression in the CA2-CA3 pyramidal neurons but not in the CA1 neurons. It also prevented the decrease of the body and hippocampal weights. We suggest that the 200 mg/kg bw dose of turmeric extract may exert antiapoptotic effect on the hippocampal neurons of the TMT-exposed rats (Tab. 1, Fig. 3, Ref. 49).

  9. Testosterone supplementation restores vasopressin innervation in the senescent rat brain

    NARCIS (Netherlands)

    Goudsmit, E.; Fliers, E.; Swaab, D. F.

    1988-01-01

    The vasopressin (AVP) innervation in the male rat brain is decreased in senescence. This decrease is particularly pronounced in brain regions where AVP fiber density is dependent on plasma levels of sex steroids. Since plasma testosterone levels decrease progressively with age in the rat, the

  10. Impairment of male reproduction in adult rats exposed to hydroxyprogesterone caproate in utero

    Science.gov (United States)

    Pushpalatha, T.; Ramachandra Reddy, P.; Sreenivasula Reddy, P.

    Hydroxyprogesterone caproate is one of the most effective and widely used drugs for the treatment of uterine bleeding and threatened miscarriage in women. Hydroxyprogesterone caproate was administered to pregnant rats in order to assess the effect of intraperitoneal exposure to supranormal levels of hydroxyprogesterone caproate on the male reproductive potential in the first generation. The cauda epididymal sperm count and motility decreased significantly in rats exposed to hydroxyprogesterone caproate during embryonic development, when compared with control rats. The levels of serum testosterone decreased with an increase in follicle stimulating hormone and luteinizing hormone in adult rats exposed to hydroxyprogesterone caproate during the embryonic stage. It was suggested that the impairment of male reproductive performance could be mediated through the inhibition of testosterone production.

  11. Behavioral and neural effects of intra-striatal infusion of anti-streptococcal antibodies in rats

    Science.gov (United States)

    Lotan, Dafna; Benhar, Itai; Alvarez, Kathy; Mascaro-Blanco, Adita; Brimberg, Lior; Frenkel, Dan; Cunningham, Madeleine W.; Joel, Daphna

    2014-01-01

    Group A β-hemolytic streptococcal (GAS) infection is associated with a spectrum of neuropsychiatric disorders. The leading hypothesis regarding this association proposes that a GAS infection induces the production of auto-antibodies, which cross-react with neuronal determinants in the brain through the process of molecular mimicry. We have recently shown that exposure of rats to GAS antigen leads to the production of anti-neuronal antibodies concomitant with the development of behavioral alterations. The present study tested the causal role of the antibodies by assessing the behavior of naïve rats following passive transfer of purified antibodies from GAS-exposed rats. Immunoglobulin G (IgG) purified from the sera of GAS-exposed rats was infused directly into the striatum of naïve rats over a 21-day period. Their behavior in the induced-grooming, marble burying, food manipulation and beam walking assays was compared to that of naïve rats infused with IgG purified from adjuvant-exposed rats as well as of naïve rats. The pattern of in vivo antibody deposition in rat brain was evaluated using immunofluorescence and colocalization. Infusion of IgG from GAS-exposed rats to naïve rats led to behavioral and motor alterations partially mimicking those seen in GAS-exposed rats. IgG from GAS-exposed rats reacted with D1 and D2 dopamine receptors and 5HT-2A and 5HT-2C serotonin receptors in vitro. In vivo, IgG deposits in the striatum of infused rats colocalized with specific brain proteins such as dopamine receptors, the serotonin transporter and other neuronal proteins. Our results demonstrate the potential pathogenic role of autoantibodies produced following exposure to GAS in the induction of behavioral and motor alterations, and support a causal role for autoantibodies in GAS-related neuropsychiatric disorders. PMID:24561489

  12. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    Wong, K.L.; Tyce, G.M.

    1983-01-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U- 14 C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  13. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    Science.gov (United States)

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Brain perfusion in acute and chronic hyperglycemia in rats

    International Nuclear Information System (INIS)

    Kikano, G.E.; LaManna, J.C.; Harik, S.I.

    1989-01-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose

  15. Radioimmunoassay of met-enkephalin in microdissected areas of paraformaldehyde-fixed rat brain

    International Nuclear Information System (INIS)

    Correa, F.M.A.; Saavedra, J.M.

    1984-01-01

    The effects were studied of various sample preparation procedures on rat brain met-enkephalin content, measured by radioimmunoassay. Whole brain met-enkephalin content of rats killed by decapitation followed by immediate tissue freezing was similar to that of rats killed by microwave irradiation and to those of rats anesthetized with pentobarbital or halothane before killing, whether previously perfused with paraformaldehyde or not. In contrast, a decrease (up to 80%) in met-enkephalin concentrations was observed when brain samples were frozen and thawed to mimic the procedure utilized in the ''punch'' technique for analysis of discrete brain nuclei. This decrease was totally prevented by paraformaldehyde perfusion of the brain prior to sacrifice. Brain perfusion did not alter the amount of immunoassayable met-enkephalin extracted from tissue or its profile after Sephadex chromatography. Paraformaldehyde perfusion results in better morphological tissue preservation and facilitates the ''punch'' dissecting technique. Paraformaldehyde perfusion may be the procedure of choice for the measurement of neuropeptides in specific brain nuclei dissected by the ''punch'' technique

  16. Cocaine-associated odor cue re-exposure increases blood oxygenation level dependent signal in memory and reward regions of the maternal rat brain.

    Science.gov (United States)

    Caffrey, Martha K; Febo, Marcelo

    2014-01-01

    Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and -Cue). The BOLD response to +Cue and -Cue was measured in dams on postpartum days 2-4. Odor cues were delivered to dams in the absence and then the presence of pups. Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus -Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. COCAINE-ASSOCIATED ODOR CUE RE-EXPOSURE INCREASES BLOOD OXYGENATION LEVEL DEPENDENT SIGNAL IN MEMORY AND REWARD REGIONS OF THE MATERNAL RAT BRAIN*

    Science.gov (United States)

    Caffrey, Martha K.; Febo, Marcelo

    2013-01-01

    BACKGROUND Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. METHODS Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and −Cue). The BOLD response to +Cue and −Cue was measured in dams on postpartum days 2–4. Odor cues were delivered to dams in the absence and then the presence of pups. RESULTS Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus −Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. CONCLUSIONS Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. PMID:24183499

  18. Brain heparan sulphate proteoglycans are altered in developing foetus when exposed to in-utero hyperglycaemia.

    Science.gov (United States)

    Sandeep, M S; Nandini, C D

    2017-08-01

    In-utero exposure of foetus to hyperglycaemic condition affects the growth and development of the organism. The brain is one of the first organs that start to develop during embryonic period and glycosaminoglycans (GAGs) and proteoglycans (PGs) are one of the key molecules involved in its development. But studies on the effect of hyperglycaemic conditions on brain GAGs/PGs are few and far between. We, therefore, looked into the changes in brain GAGs and PGs at various developmental stages of pre- and post-natal rats from non-diabetic and diabetic mothers as well as in adult rats induced with diabetes using a diabetogenic agent, Streptozotocin. Increased expression of GAGs especially that of heparan sulphate class in various developmental stages were observed in the brain as a result of in-utero hyperglycaemic condition but not in that of adult rats. Changes in disaccharides of heparan sulphate (HS) were observed in various developmental stages. Furthermore, various HSPGs namely, syndecans-1 and -3 and glypican-1 were overexpressed in offspring from diabetic mother. However, in adult diabetic rats, only glypican-1 was overexpressed. The offsprings from diabetic mothers became hyperphagic at the end of 8 weeks after birth which can have implications in the long run. Our results highlight the likely impact of the in-utero exposure of foetus to hyperglycaemic condition on brain GAGs/PGs compared to diabetic adult rats.

  19. Microwave hyperthermia enhancement of methotrexate absorption in rat brains

    International Nuclear Information System (INIS)

    Lin, J.C.; Yuen, M.K.; Jung, D.T.

    1987-01-01

    The author studied enhanced absorption of methotrexate (MTX) in brains of male Wistar (10 weeks old, 500g) subjected to microwave hyperthermia. The rat was anesthetized using 40 mg/kg of sodium pentobarbital, IP and was placed in a stereotaxic head holder. Microwave energy (2450 MHz, 2.6 W/cm/sup 2/, CW) were applied directly to the left side of the rat's head by a coaxial applicator for 20 min. The body temperature was kept at 37.8 0 C. The brain temperature recorded in a similar group of animals using a Vitek probe was about 45 0 C. Three different MTX dosages, 50, 100 and 200 mg/kg, were injected intravenously immediately following microwave irradiation into three groups of rats in 1.5, 3 and 6 min., respectively. MTX was allowed to circulate for five min. before brains were removed for analysis. Standard HPLC procedures were applied to samples from anterior and posterior left hemisphere of the cerebrum, and the cerebellum. Samples from the right hemisphere were used for controls. The average absorption at the posterior left hemisphere was found to be 2.4, 9.6 and 12.4μg of MTX/g of brain tissue for 50, 100 and 200 mg/kg, respectively. These results indicate that MTX absorption is significantly increased in rat brains subjected to microwave hyperthermia treatment

  20. Neuroanatomy-based matrix-guided trimming protocol for the rat brain.

    Science.gov (United States)

    Defazio, Rossella; Criado, Ana; Zantedeschi, Valentina; Scanziani, Eugenio

    2015-02-01

    Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight. In the setup phase, we identified eight channels, that is, 6, 8, 10, 12, 14, 16, 19, and 21, matching the recommended landmarks midway to the optic chiasm, frontal pole, optic chiasm, infundibulum, mamillary bodies, midbrain, middle cerebellum, and posterior cerebellum, respectively. In the validation study, we trimmed the immersion-fixed brains of 60 rats using the selected channels to determine how consistently the channels reproduced anatomical landmarks. Percentage of success (i.e., presence of expected targets for each level) ranged from 89 to 100%. Where 100% success was not achieved, it was noted that the shift in brain trimming was toward the caudal pole. In conclusion, we developed and validated a trimming protocol for the rat brain that allow comparable extensiveness, homology, and relevance of coronal sections as the landmark-guided trimming with the advantage of being quickly learned by technicians. © 2014 by The Author(s).

  1. The effect of infectious brain edema on NMDA receptor binding in rat's brain

    International Nuclear Information System (INIS)

    Cheng Guansheng; Chen Jianfang; Chen Xiang

    1997-01-01

    PURPOSE: The effect of the infectious brain edema (IBE) induced by Bordetella Pertussis (BP) on the specific binding of 3 H MK-801 in rat's brain in vivo was determined. METHODS: BP was injected via left internal carotid artery in rat model of infectious brain edema. Male SD rats were divided into three groups: 1) Group control (NS, n = 11); 2) Group IBF (BP, n = 12); 3) Group pretreatment of MK-801 + PB (MK-801, n = 4). Normal saline or BP 0.2 ml/kg was injected into left internal carotid artery in NS and BP group respectively. MK-801 0.5 mg/kg per day was injected i.p. two days before injection of BP in group MK-801. Rats were killed by decapitation at 24 hours after injection of BP. The specific binding of N-methyl-D-aspartate (NMDA) receptor were measured with 3 H-MK-801 in the neuronal membrane of cerebral cortex. The Scatchard plots were performed. RESULTS: The B max values were 0.623 +- 0.082 and 0.606 +- 0.087 pmol/mg protein in group NS and BP respectively (t = 0.48, P>0.05). The Kd values were 43.1 +- 4.2 and 30.5 +- 3.0 nmol/L in group NS and BP respectively (t = 7.8, P<0.05). The specific binding of NMDA receptor was decreased by pretreatment of MK-801. CONCLUSIONS: The total number of NMDA receptor had not changed, whereas its affinity increased significantly in the model of brain edema induced by pertussis bacilli in rat. The increase of affinity of NMDA receptor can be blockaded by MK-801 pretreatment in vivo

  2. Decreased α1-adrenergic receptor-mediated inositide hydrolysis in neurons from hypertensive rat brain

    International Nuclear Information System (INIS)

    Feldstein, J.B.; Gonzales, R.A.; Baker, S.P.; Sumners, C.; Crews, F.T.; Raizada, M.K.

    1986-01-01

    The expression of α 1 -adrenergic receptors and norepinephrine (NE)-stimulated hydrolysis of inositol phospholipid has been studied in neuronal cultures from the brains of normotensive (Wistar-Kyoto, WKY) and spontaneously hypertensive (SH) rats. Binding of 125 I-1-[β-(4-hydroxyphenyl)-ethyl-aminomethyl] tetralone (HEAT) to neuronal membranes was 68-85% specific and was rapid. Competition-inhibition experiments with various agonists and antagonists suggested that 125 I-HEAT bound selectively to α 1 -adrenergic receptors. Specific binding of 125 I-HEAT to neuronal membranes from SH rat brain cultures was 30-45% higher compared with binding in WKY normotensive controls. This increase was attributed to an increase in the number of α 1 -adrenergic receptors on SH rat brain neurons. Incubation of neuronal cultures of rat brain from both strains with NE resulted in a concentration-dependent stimulation of release of inositol phosphates, although neurons from SH rat brains were 40% less responsive compared with WKY controls. The decrease in responsiveness of SH rat brain neurons to NE, even though the α 1 -adrenergic receptors are increased, does not appear to be due to a general defect in membrane receptors and postreceptor signal transduction mechanisms. This is because neither the number of muscarinic-cholinergic receptors nor the carbachol-stimulated release of inositol phosphates is different in neuronal cultures from the brains of SH rats compared with neuronal cultures from the brains of WKY rats. These observations suggest that the increased expression of α 1 -adrenergic receptors does not parallel the receptor-mediated inositol phosphate hydrolysis in neuronal cultures from SH rat brain

  3. Pharmacological manipulation of serotonin receptors during brain embryogenesis favours stress resiliency in female rats

    Directory of Open Access Journals (Sweden)

    Gianluca Lavanco

    2018-02-01

    Full Text Available Manipulations of the serotonin transmission during early development induce long-lasting changes in the serotonergic circuitry throughout the brain. However, little is known on the developmental consequences in the female progeny. Therefore, this study aimed at exploring the behavioural effects of pre- and postnatal stimulation of the serotonergic system by 5-methoxytryptamine in adolescent female rats on behavioural reactivity and anxiety- like phenotype. Our results show that perinatal 5- methoxythyptamine decreased total distance travelled and rearing frequency in the novel enviroment, and increased the preference for the centre of the arena in the open field test. Moreover, perinatal 5-methoxytryptamine increased the percentages of entries and time spent on the open arms of the elevated plus maze, with respect to perinatally vehicle-exposed rats. Thus, perinatal stimulation of serotonin receptors does not impair the functional response to the emotional challenges in female rats, favouring the occurrence of a stress-resilient phenotype.

  4. Four weeks' inhalation exposure of Long Evans rats to 4-tert-butyltoluene: Effect on evoked potentials, behaviour and brain neurochemistry

    DEFF Research Database (Denmark)

    Lam, Henrik Rye; Ladefoged, Ole; Østergaard, Grete

    2000-01-01

    Long-lasting central nervous system (CNS) neurotoxicity of 4-tert-butyltoluene (TBT) has been investigated using electrophysiology, behaviour, and neurochemistry in Long Evans rats exposed by inhalation to 0, 20, or 40 p.p.m. TBT 6 hr/day, 7 days/week for 4 weeks. Flash evoked potentials...... and somatosensory evoked potentials were not affected by TBT In Auditory Brain Stem Response there was no shift in hearing threshold, but the amplitude of the first wave was increased in both exposed groups at high stimulus levels. Three to four months after the end of exposure, behavioural studies in Morris water...... maze and eight-arm maze failed to demonstrate any TBT induced effects. Exposure was followed by a 5 months exposure-free period prior to gross regional and subcellular (synaptosomal) neurochemical investigations of the brain. TBT reduced the NA concentration in whole brain minus cerebellum...

  5. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Rearing rats in isolation after weaning is an environmental manipulation that leads to behavioural and neurochemical alterations that resemble what is seen in schizophrenia. The model is neurodevelopmental in origin and has been used as an animal model of schizophrenia. However, only a few studies...... Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  6. Studies on estradiol-2/4-hydroxylase activity in rat brain and liver

    International Nuclear Information System (INIS)

    Theron, C.N.

    1985-03-01

    A sensitive and specific radio-enzymatic assay was used to study estradiol-2/4-hydroxylase activity in rat liver microsomes and in microsomes obtained from 6 discrete brain areas of the rat. Kinetic parameters were determined for these enzyme activities. The effects of different P-450 inhibitors on estradiol-2/4-hydroxylase activity in brain and liver microsomes were also studied. In both organs these enzyme activities were found to be located mainly in the microsomal fraction and were inhibited by the 3 P-450 inhibitors tested. The hepatic estradiol-2/4-hydroxylase activity in adult male rats was significantly higher than that of females, but the enzyme activity in the brain did not exhibit a similar sex difference. Furthermore, estradiol-2/4-hydroxylase activity in rat liver was strongly induced by phenobarbitone treatment, but not in the brain. The phenobarbitone-induced activity in male and female rats exhibited significant kinetic differences. In female rats sexual maturation was associated with significant changes in the apparent Km of estradiol-2/4-hydroxylases in the liver and hypothalamus. Evidence was found that the in vitro estradiol-2/4-hydroxylase activity in rat brain and liver is due to more than one form of microsomal P-450. Kinetic studies showed important differences between the estradiol-2/4-hydroxylase activities in the hippocampus and hypothalamus. Significant differences in estradiol-2/4-hydroxylase activities were observed in the 6 brain areas studied, with the hippocampus showing the highest, and the hypothalamus the lowest activity at all developmental stages in both male and female rats

  7. Assessment of bioaccumulation, neuropathology, and neurobehavior following subchronic (90 days) inhalation in Sprague-Dawley rats exposed to manganese phosphate.

    Science.gov (United States)

    Normandin, Louise; Carrier, Gaétan; Gardiner, Phillip F; Kennedy, Greg; Hazell, Alan S; Mergler, Donna; Butterworth, Roger F; Philippe, Suzanne; Zayed, Joseph

    2002-09-01

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese (Mn) compound added to unleaded gasoline. It has been suggested that the combustion products of MMT containing Mn, such as manganese phosphate, could cause neurological symptoms similar to Parkinson's disease in humans. The aim of this work was to investigate the exposure-response relationship of bioaccumulation, neuropathology, and neurobehavior following a subchronic inhalation exposure to manganese phosphate in Sprague-Dawley male rats. Rats were exposed 6 h/day, 5 days/week for 13 consecutive weeks at 30, 300, or 3000 microg/m(3) Mn phosphate and compared to controls. Some rats were implanted with chronic EMG electrodes in the gastrocnemius muscle of the hind limb to assess tremor at the end of Mn exposure. Spontaneous motor activity was measured for 36 h using a computerized autotrack system. Rats were then sacrificed by exsanguination and Mn level in different brain tissues and other organs was determined by instrumental neutron activation analysis. Neuronal cell counts were obtained by assessing the sum of five grid areas for the caudate/putamen and the sum of two adjacent areas for the globus pallidus. Increased manganese concentrations were observed in all tissues of the brain and was dose-dependent in olfactory bulb and caudate/putamen. In fact, beginning with the highest level of exposure (3000 microg/m(3)) and ending with the control group, Mn concentrations in the olfactory bulb were 2.47 vs 1.28 vs 0.77 vs 0.64 ppm (P Locomotor activity assessment and tremor assessment did not reveal in neurobehavioral changes between the groups. Our results reinforce the hypothesis that the olfactory bulb and caudate/putamen are the main brain tissues for Mn accumulation after subchronic inhalation exposure.

  8. [Changes of neurotransmitter, lipid peroxide and their metabolic related enzyme activities in the brain of rats exposed to noise and vitamin E].

    Science.gov (United States)

    Sakuma, N

    1984-09-01

    Effects of noise on locomotor activities were analysed in rat. In addition, changes in lipid peroxide (LPX), their metabolic related enzyme activities, and neurotransmitter in the rat brain due to noise exposure and the effects of vitamin E on the rats were studied. The results obtained were as follows: After white noise exposure of 95 dB (A), the locomotor activities of rat increased. But 3 weeks after noise exposure, the activities began to decrease. LPX and glutathione peroxidase (GSH-Px) activities in hypothalamus and cortex increased at the 14th day after noise exposure or at the 21st day after noise exposure. Superoxide dismutase (SOD) activities increased in hippocampus at the 4th day after noise exposure, and decreased in midbrain and thalamus at the 14th day and the 21th day after noise exposure. Norepinephrine (NE) increased in hypothalamus at the 1st day, the 2nd day and the 7th day after noise exposure, and increased in striatum at the 7th day after noise exposure, in cortex at the 4th day and the 7th day after exposure. At the 14th day after noise exposure, NE decreased in cerebellum, in medulla and pons, in midbrain and thalamus, and in cortex. In cortex NE also decreased at the 21st day after noise exposure. Serotonin increased in hypothalamus and in midbrain and thalamus at the 1st and 4th day after noise exposure, and increased in striatum at the 7th day after noise exposure. Decrease in serotonin was observed in cerebellum at the 14th day after noise exposure. Vitamin E decreased LPX in rat brain and the liver.

  9. Various irrigation fluids affect postoperative brain edema and cellular damage during experimental neurosurgery in rats.

    Science.gov (United States)

    Doi, Kazuhisa; Kawano, Takeshi; Morioka, Yujiro; Fujita, Yasutaka; Nishimura, Masuhiro

    2006-12-01

    This study was conducted to investigate how various irrigation fluids used during neurosurgical procedures affect the degree of postoperative brain edema and cellular damage during experimental neurosurgery in rats. The cerebral cortex was exposed and incised crosswise with a surgical knife under irrigation with an artificial CSF, lactated Ringer's solution, or normal saline. Four hours after injury, irrigation was stopped and brain tissue samples were obtained from injured and uninjured sites. Specific gravity, cerebrovascular permeability, and TTC staining of the samples were evaluated. Incision and irrigation of the brain were not performed on the control group. At the injured site, specific gravities of the samples in the normal saline group and the lactated Ringer's solution group were significantly lower than the specific gravity in the artificial CSF group. The EB concentration was significantly higher in the lactated Ringer's solution group and relatively high in the normal saline group as compared with the artificial CSF group. TTC staining did not differ significantly between the artificial CSF group and the control group. It was significantly lower in the lactated Ringer's solution group and the normal saline group than in the control group and the artificial CSF group. As compared with normal saline and lactated Ringer's solution, artificial CSF reduced postoperative brain edema, cerebrovascular permeability, and cellular damage in sites injured by experimental neurosurgery in rats.

  10. Gene Expression Profiling in Lung Tissues from Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Zhang, Ye; Lam, Chiu-Wing; Zalesak, Selina M.; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Scully, Robert R.; Williams, Kyle; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (gene expression changes in lung tissues from rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, and 3 months after the last inhalation exposure. The total RNAs were isolated from lung tissues after being lavaged. The Agilent Rat GE v3 microarray was used to profile global gene expression (44K). The genes with significant expression changes are identified and the gene expression data were further analyzed using various statistical tools.

  11. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... have evaluated the neuroanatomical changes in this animal model in comparison to changes seen in schizophrenia. In this study, we applied stereological volume estimates to evaluate the total brain, the ventricular system, and the pyramidal and granular cell layers of the hippocampus in male and female...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  12. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  13. Effect of kombucha on some trace element levels in different organs of electromagnetic field exposed rats

    Directory of Open Access Journals (Sweden)

    Ola A. Gharib

    2014-01-01

    Full Text Available Mobile phones have increased exponentially all over the world. The present study was performed to evaluate the effect of kombucha (KT on some trace element levels of brain, spleen and intestine in male albino rats exposed to a 950 MHz electromagnetic field (EMF. Four experimental groups labelled as controls, EMF group, KT group and KT + EMF group were formed with six randomly chosen animals in each group. After EMF exposure for eight weeks and the animals were sacrificed by decapitation. Brain, spleen and intestine samples were collected for trace element analysis. The group of animals subjected to electromagnetic waves caused significant increases in iron copper levels and copper/zinc ratio accompanied with a decrease of zinc level in all studied organs. Combined treatment of kombucha with EMF resulted in a successful attenuation of these adverse effects of EMF. From present findings we can state that kombucha as a supplement has an ameliorative signs against the effects of electromagnetic radiation.

  14. Significant long-term, but not short-term, hippocampal-dependent memory impairment in adult rats exposed to alcohol in early postnatal life.

    Science.gov (United States)

    Goodfellow, Molly J; Lindquist, Derick H

    2014-09-01

    In rodents, ethanol exposure in early postnatal life is known to induce structural and functional impairments throughout the brain, including the hippocampus. Herein, rat pups were administered one of three ethanol doses over postnatal days (PD) 4-9, a period of brain development comparable to the third trimester of human pregnancy. As adults, control and ethanol rats were trained and tested in a variant of hippocampal-dependent one-trial context fear conditioning. In Experiment 1, subjects were placed into a novel context and presented with an immediate footshock (i.e., within ∼8 sec). When re-exposed to the same context 24 hr later low levels of conditioned freezing were observed. Context pre-exposure 24 hr prior to the immediate shock reversed the deficit in sham-intubated and unintubated control rats, enhancing freezing behavior during the context retention test. Even with context pre-exposure, however, significant dose-dependent reductions in contextual freezing were seen in ethanol rats. In Experiment 2, the interval between context pre-exposure and the immediate shock was shortened to 2 hr, in addition to the standard 24 hr. Ethanol rats trained with the 2 hr, but not 24 hr, interval displayed retention test freezing levels roughly equal to controls. Results suggest the ethanol rats can encode a short-term context memory and associate it with the aversive footshock 2 hr later. In the 24 hr ethanol rats the short-term context memory is poorly transferred or consolidated into long-term memory, we propose, impeding the memory's subsequent retrieval and association with shock. © 2014 Wiley Periodicals, Inc.

  15. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  16. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using 14 C autoradiography to measure the uptake of 14 C 2-deoxy-D-glucose ( 14 C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14 C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14 C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10 9 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  17. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    , the ghrelin receptor, neuropeptide Y, adiponectin and proopiomelanocortin. We investigated whether the expression of these factors was affected in rats chronically treated with the antipsychotic risperidone. METHODS: Male Sprague-Dawley rats were treated with risperidone (1.0 mg/kg/day) or vehicle (20...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  18. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  19. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats.

    Science.gov (United States)

    Teo, Jonathan D; Morris, Margaret J; Jones, Nicole M

    2017-07-01

    In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. Before mating, HFD mothers were 11% heavier than Chow mothers (pmaternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in

  20. Intracarotid injection of 195mPt-CDDP on rat brain tumors

    International Nuclear Information System (INIS)

    Ikawa, Eishi; Kamitani, Hideki; Hori, Tomokatsu; Akaboshi, Mitsuhiko.

    1995-01-01

    We began to try intracarotid injection of 195m Pt-CDDP on transplanted rats of C6 glioma. As a control, normal rats were also treated with intracarotid injection of 195m Pt-CDDP. After injection, the tumor, the normal brain of injected site, the brain of contralateral site, and the blood were sampled for the measurement of the Pt uptake. On normal rats, the ratio of the Pt uptake of the brain to that of the blood was highest in 20 minutes after injection. The ratio of the Pt uptake of the brain of injected site to that of the blood was almost same as that of the brain of contralateral site, so it seemed that the Pt uptake was not so enhanced with intracarotid injection on the normal brain. On the other hand, the ratio of the Pt uptake of the transplanted brain tumor to that of the blood was greatly higher than that of the normal brain. So it seemed that the intracarotid injection of CDDP may have some activities against brain tumors. This study was now started, so we continue this study further more. (author)

  1. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    Science.gov (United States)

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  3. Radiation therapy of 9L rat brain tumors

    International Nuclear Information System (INIS)

    Henderson, S.D.; Kimler, B.F.; Morantz, R.A.

    1981-01-01

    The effects of radiation therapy on normal rats and on rats burdened with 9L brain tumors have been studied. The heads of normal rats were x-irradiated with single exposures ranging from 1000 R to 2700 R. Following acute exposures greater than 2100 R, all animals died in 8 to 12 days. Approximately 30% of the animals survived beyond 12 days over the range of 1850 to 1950 R; following exposures less than 1850 R, all animals survived the acute radiation effects, and median survival times increased with decreasing exposure. Three fractionated radiation schedules were also studied: 2100 R or 3000 R in 10 equal fractions, and 3000 R in 6 equal fractions, each schedule being administered over a 2 week period. The first schedule produced a MST of greater than 1 1/2 years; the other schedules produced MSTs that were lower. It was determined that by applying a factor of 1.9, similar survival responses of normal rats were obtained with single as with fractionated radiation exposures. Animals burdened with 9L gliosarcoma brain tumors normally died of the disease process within 18 to 28 days ater tumor inoculation. Both single and fractionated radiation therapy resulted in a prolongation of survival of tumor-burdened rats. This prolongation was found to be linearly dependent upon the dose; but only minimally dependent upon the time after inoculation at which therapy was initiated, or upon the fractionation schedule that was used. As with normal animals, similar responses were obtained with single as with fractionated exposures when a factor (1.9) was applied. All tumor-bearing animals died prior to the time that death was observed in normal, irradiated rats. Thus, the 9L gliosarcoma rat brain tumor model can be used for the pre-clinical experimental investigation of new therapeutic schedules involving radiation therapy and adjuvant therapies

  4. Regional brain glucose use in unstressed rats after two days of starvation

    International Nuclear Information System (INIS)

    Mans, A.M.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Regional brain glucose use was measured in conscious, unrestrained, fed rats and after 2 days of starvation, using quantitative autoradiography and [6- 14 C]glucose. Plasma glucose, lactate, and ketone body concentrations and brain glucose and lactate content were measured in separate groups of rats. Glucose concentrations were lower in starved rats in both plasma and brain; plasma ketone body concentrations were elevated. Glucose use was found to be lower throughout the brain by about 12%. While some areas seemed to be affected more than others, statistical analysis showed that none were exceptionally different. The results could not be explained by increased loss of 14 C as lactate or pyruvate during the experimental period, because the arteriovenous differences of these species were insignificant. The calculated contribution by ketone bodies to the total energy consumption was between 3 and 9% for the brain as a whole in the starved rats and could, therefore, partially account for the depression seen in glucose use. It was concluded that glucose oxidation is slightly depressed throughout the brain after 2 days of starvation

  5. The observation of blood-brain barrier of organic mercury poisoned rat

    International Nuclear Information System (INIS)

    Kuwabara, Takeo; Yuasa, Tatsuhiko; Hidaka, Kazuyuki; Igarashi, Hironaka; Kaneko, Kiyotoshi; Miyatake, Tadashi

    1989-01-01

    Permeability of the blood-brain barrier (BBB) of methymercury chrolide (MMC) intoxicated rat brain was studied in vivo by gadlinium diethylenetriamine pentaacetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI), measuring the longitudinal relaxation time (T 1 ) and the transverse relaxation time (T 2 ). MMC intoxicated rat brain showed the prolonged T 1 in the cerebral white matter and prolonged T 2 in the cerebellar cortex. After Gd-DTPA administration, T 1 of cerebral and cerebellar white matter shortened from 1.647 to 1.344 sec., and 1.290 to 1.223 sec. respectively. On the contrary, T 2 showed no change after Gd-DTPA injection. It was concluded that, although the shortening of T 1 after Gd-DTPA enhancement was rather little when compared with experimental brain ischemia, the shortening of the relaxation time of the MMC intoxicated rat brain was caused by the increased permeability of BBB. (author)

  6. Oxidative stress is reduced in Wistar rats exposed to smoke from tobacco and treated with specific broad-band pulse electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Bajić V.

    2009-01-01

    Full Text Available There have been a number of attempts to reduce the oxidative radical burden of tobacco. A recently patented technology, pulse electromagnetic technology, has been shown to induce differential action of treated tobacco products versus untreated products on the production of reactive oxygen species (ROS in vivo. In a 90-day respiratory toxicity study, Wistar rats were exposed to cigarette smoke from processed and unprocessed tobacco and biomarkers of oxidative stress were compared with pathohistological analysis of rat lungs. Superoxide dismutase (SOD activity was decreased in a dose-dependent manner to 81% in rats exposed to smoke from normal cigarettes compared to rats exposed to treated smoke or the control group. These results correspond to pathohistological analysis of rat lungs, in which those rats exposed to untreated smoke developed initial signs of emphysema, while rats exposed to treated smoke showed no pathology, as in the control group. The promise of inducing an improved health status in humans exposed to smoke from treated cigarettes merits further investigation.

  7. Brain and Serum Androsterone is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Richard J Servatius

    2016-08-01

    Full Text Available Exposure to lateral fluid percussion (LFP injury consistent with mild traumatic brain injury (mTBI persistently attenuates acoustic startle responses (ASRs in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM. ASRs were measured post injury days (PIDs 1, 3, 7, 14, 21 and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34, PID 35 (S35, on both days (2S, or the experimental context (CON. Levels of the neurosteroids pregnenolone (PREG, allopregnanolone (ALLO, and androsterone (ANDRO were determined for the prefrontal cortex, hippocampus and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30 and 60 min post-stressor for determination of corticosterone (CORT levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  8. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation

    International Nuclear Information System (INIS)

    Akiyama, Katsuhiko; Tanaka, Ryuichi; Sato, Mitsuya; Takeda, Norio

    2001-01-01

    Cognitive dysfunction and histological changes in the brain were investigated following irradiation in 20 Fischer 344 rats aged 6 months treated with whole brain irradiation (WBR) (25 Gy/single dose), and compared with the same number of sham-irradiated rats as controls. Performance of the Morris water maze task and the passive avoidance task were examined one year after WBR. Finally, histological and immunohistochemical examinations using antibodies to myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and neurofilament (NF) were performed of the rat brains. The irradiated rats continued to gain weight 7 months after WBR whereas the control rats stopped gaining weight. Cognitive functions in both the water maze task and the passive avoidance task were lower in the irradiated rats than in the control rats. Brain damage consisting of demyelination only or with necrosis was found mainly in the body of the corpus callosum and the parietal white matter near the corpus callosum in the irradiated rats. Immunohistochemical examination of the brains without necrosis found MBP-positive fibers were markedly decreased in the affected areas by irradiation; NF-positive fibers were moderately decreased and irregularly dispersed in various shapes in the affected areas; and GFAP-positive fibers were increased, with gliosis in those areas. These findings are similar to those in clinically accelerated brain aging in conditions such as Alzheimer's disease, Binswanger's disease, and multiple sclerosis. (author)

  9. Glucose metabolism of fetal rat brain in utero, measured with labeled deoxyglucose

    Energy Technology Data Exchange (ETDEWEB)

    Dyve, S [Department of General Physiology and Biophysics, Panum Institute, Copenhagen (Denmark); Gjedde, A [Positron Imaging Laboratories, McConnell Brain Imaging Center, Montreal, Quebec (Canada)

    1991-01-01

    Mammals have low cerebral metabolic rates immediately after birth and, by inference, also before birth. In this study, we extended the deoxyglucose method to the fetal rat brain in utero. Rate constants for deoxyglucose transfer across the maternal placental and fetal blood-brain barriers, and lumped constant, have not been reported. Therefore, we applied a new method of determining the lumped constant regionally to the fetal rat brain in utero. The lumped constant averaged 0.55 +- 0.15 relative to the maternal circulation. On this basis, we determined the glucose metabolic rate of the fetal rat brain to be one third of the corresponding maternal value, or 19 +- 2 {mu}mol hg{sup -1} min{sup -1}. (author).

  10. Liver antioxidant stores protect the brain from electromagnetic radiation (900 and 1800 MHz)-induced oxidative stress in rats during pregnancy and the development of offspring.

    Science.gov (United States)

    Çetin, Hasan; Nazıroğlu, Mustafa; Çelik, Ömer; Yüksel, Murat; Pastacı, Nural; Özkaya, Mehmet Okan

    2014-12-01

    The present study determined the effects of mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) exposure on oxidative stress in the brain and liver as well as the element levels in growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their offspring were equally divided into three different groups: the control, 900 MHz, and 1800 MHz groups. The 900 MHz and 1800 MHz groups were exposed to EMR for 60 min/d during pregnancy and neonatal development. At the 4th, 5th, and 6th weeks of the experiment, brain samples were obtained. Brain and liver glutathione peroxidase activities, as well as liver vitamin A and β-carotene concentrations decreased in the EMR groups, although brain iron, vitamin A, and β-carotene concentrations increased in the EMR groups. In the 6th week, selenium concentrations in the brain decreased in the EMR groups. There were no statistically significant differences in glutathione, vitamin E, chromium, copper, magnesium, manganese, and zinc concentrations between the three groups. EMR-induced oxidative stress in the brain and liver was reduced during the development of offspring. Mobile phone-induced EMR could be considered as a cause of oxidative brain and liver injury in growing rats.

  11. Global Proteomic Analysis of Brain Tissues in Transient Ischemia Brain Damage in Rats

    Directory of Open Access Journals (Sweden)

    Jiann-Hwa Chen

    2015-05-01

    Full Text Available Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM and the control rats were separated using two-dimensional gel electrophoresis (2-DE to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT and cathepsin D (CATD, which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2 protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia

  12. Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy.

    Science.gov (United States)

    Savard, Alexandre; Lavoie, Karine; Brochu, Marie-Elsa; Grbic, Djordje; Lepage, Martin; Gris, Denis; Sebire, Guillaume

    2013-09-05

    Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes. An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns. LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology. In rat pups at a neurodevelopmental age

  13. [Interference of vitamin E on the brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats].

    Science.gov (United States)

    Gao, Xian; Luo, Rui; Ma, Bin; Wang, Hui; Liu, Tian; Zhang, Jing; Lian, Zhishun; Cui, Xi

    2013-07-01

    To investigate the interlerence ot vitamin E on brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats. 40 pregnant rats were randomly divided into five groups (positive control, negative control, low, middle and high dosage of vitamin E groups). The low, middle and high dosage of vitamin E groups were supplemented with 5, 15 and 30 mg/ml vitamin E respectively since the first day of pregnancy. And the negative control group and the positive control group were given peanut oil without vitamin E. All groups except for the negative control group were exposed to 900MHz intensity of cell phone radiation for one hour each time, three times per day for 21 days. After accouchement, the right hippocampus tissue of fetal rats in each group was taken and observed under electron microscope. The vitality of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) in pregnant and fetal rats' brain tissue were tested. Compared with the negative control group, the chondriosomes in neuron and neuroglia of brain tissues was swelling, mild edema was found around the capillary, chromatin was concentrated and collected, and bubbles were formed in vascular endothelial cells (VEC) in the positive fetal rat control group, whereas the above phenomenon was un-conspicuous in the middle and high dosage of vitamin E groups. We can see uniform chromatin, abundant mitochondrion, rough endoplasmic reticulum and free ribosomes in the high dosage group. The apoptosis has not fond in all groups'sections. In the antioxidase activity analysis, compared with the negative control group, the vitality of SOD and GSH-Px significantly decreased and the content of MDA significantly increased both in the pregnant and fetal rats positive control group (P electromagnetic radiation of cell phone in pregnant rats and fetal rats.

  14. Relationship between calcium entry and ACh release in K+ -stimulated rat brain synaptosomes

    International Nuclear Information System (INIS)

    Suszkiw, J.B.; O'Leary, M.E.; Toth, G.P.

    1986-01-01

    This paper examines the pattern of Ca ++ entry-dependent ACh release in relation to the kinetics of Ca ++ entry, and its inactivation in rat brain synaptosomes exposed to 50 mM K 0 + for short and prolonged durations. Intrasynaptosomal ACh was radiolabeled from tritium-choline in the presence of 20 um Paraoxon to inhibit the acetylcholinesterase activity. The release of tritium-ACh was studied in superfused synaptosomal beds formed on glass microfiber filters and by rapid filtration. The intermittent stimulation of superfused synaptosomal beds by 3-min pulses of 50 mM K + evoked decremental output of tritium-ACh which reached nearly undetectable levels after the fifth stimulus

  15. Effects of hyperbaric oxygen on crystalline lens and retina in nicotine-exposed rats.

    Science.gov (United States)

    Ari, Seyhmus; Nergiz, Yusuf; Cingü, Abdullah Kürşat; Atay, Ahmet Engin; Sahin, Alparslan; Cinar, Yasin; Caca, Ihsan

    2013-03-01

    To determine histopathological changes on crystalline lens and retina of rats after subcutaneous injection of nicotine and to examine the effects of hyperbaric oxygen (HBO) on these changes related to nicotine exposure. Twenty-eight female Sprague-Dawley rats were enrolled in the study and the rats were divided into four equal sized groups randomly (Group N: the rats exposed only to nicotine, group HB: the rats received only HBO, group N+HB: the rats that underwent to nicotine injection and subsequently received HBO, group C: the control group that neither exposed to nicotine nor received HBO). The rats were sacrificed by decapitation method and all were enucleated immediately after scarification. Tissue samples from crystalline lens, lens capsule, and the retina from the right eyes of the rats were examined by light microscopy. While the histological appearances of the retina and the lens was similar in group HB, group N+HB, and the control group; group N showed some pathological changes like decrement in the retinal ganglion cell density, atrophy of the retinal nerve fiber layer, congestion of the vessels in the optic nerve head, thinning of the internal plexiform layer, thinning of the lens capsule, and transformation of the anterior subcapsular epithelium into squamous epithelia. Subcutaneous injection of nicotine was found to be related with some pathological changes in the retina and lens of the Sprague-Dawley rats. However HBO caused no significant negative effect. Furthermore, the histopathological changes related to nicotine exposure in the lens and retina of the rats recovered by the application of HBO.

  16. Marrow stromal cells administrated intracisternally to rats after traumatic brain injury migrate into the brain and improve neurological function

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹

    2004-01-01

    @@ Marrow stromal cells(MSCs) have been reported to transplant into injured brain via intravenous or intraarterial or direct intracerebral administration.1-3 In the present study, we observed that MSCs migrated into the brain, survived and diffeneriated into neural cells after they were injected into the cisterna magna of rats, and that the behavior of the rats after traumatic brain injury (TBI) was improved.

  17. Brain abnormalities among the mentally retarded prenatally exposed atomic bomb survivors

    International Nuclear Information System (INIS)

    Schull, W.J.; Otake, Masanori; Nishitani, Hiromu; Hasuo, Kanehiro; Kobayashi, Takuro; Goto, Ikuo.

    1992-07-01

    An increased occurrence of severe mental retardation, with or without accompanying small head size, at specific gestational ages has been the most conspicuous effect on brain development of prenatal exposure to the bombings of Hiroshima and Nagasaki. A variety of biological mechanisms could be responsible for this finding, including cell killing and mismanaged neuronal migration. We describe here the findings on magnetic resonance imaging of the brains of five of these mentally retarded individuals, all of whom were exposed in the 8th through the 15th weeks following fertilization, the gestational period shown to be the most vulnerable to radiation-related damage. In the two cases exposed at the 8th or 9th week following fertilization, large areas of ectopic gray matter are seen, strong evidence of a failure of the neurons to migrate to their proper functional sites. The two individuals exposed in the 12th or 13th week show no readily recognized ectopic gray areas but do show mild macrogyria, which implies some impairment in the development of the cortical zone. Moreover, both have mega cisterna magna. Finally, the one individual seen who was exposed still later in development, in the 15th week, shows none of the changes seen in the other four individuals. This person's brain, though small, appears to have normal architecture. These findings are discussed in terms of the embryological events transpiring at the time of the prenatal exposure of these individuals to ionizing radiation. (author)

  18. Effects of Electromagnetic Fields on the Blood Brain Barrier

    National Research Council Canada - National Science Library

    Persson, Rolf

    2000-01-01

    ...) in the 91 5-2450 MHz range on the permeability of the blood brain barrier (BBB) in rats. Male and female Fischer rats were exposed to continuous wave or pulse-modulated EMF, with different pulse powers and times up to 960 minutes...

  19. Significant changes in the amounts of neurotransmitter and related substances in rat brain induced by subacute exposure to low levels of toluene and xylene

    Energy Technology Data Exchange (ETDEWEB)

    Honma, T.; Sudo, A.; Miyagawa, M.; Sato, M.; Hasegawa, H.

    1983-01-01

    Rats were exposed to toluene and xylene at 200-800 ppm for 30 days. After exposure, changes in the dopamine, norepinephrine, serotonin, acetylcholine (ACh), cyclic AMP, cyclic GMP, GABA, glutamic acid, glutamine, aspartic acid, taurine, glycine and alanine content of different areas of the brain were investigated. ACh in the striatum and whole brain were reduced dose-dependently by toluene and xylene. The reduction at 800 ppm of the solvents was in the range of 10 to 20% of the ACh content of the control rats. Toluene and xylene caused different changes in monoamine content other than ACh, but the changes were not dose-dependent. Among the seven free amino acids that are the main amino acid components of the brain, the glutamine content was increased by toluene and xylene at 800 ppm. Decrease in ACh and increase in glutamine in the brain appear to be phenomena common to many kinds of organic solvents including toluene and xylene after acute and subacute exposure.

  20. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  1. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  2. Effect of administration of vitamins C and E on fertilization capacity of rats exposed to noise stress

    Directory of Open Access Journals (Sweden)

    Ghasem Saki

    2013-01-01

    Full Text Available The aims of this study were to evaluate the effects of administration of Vitamins C and E on fertilization capacity in rats exposed to noise stress. 40 adult male rats were randomly divided into 5 equal groups. Group 1 as controls who were not exposed to noise and groups 2-5 exposed to noise with 90-120 dB intensity and 300-350 Hz frequency from 7 pm to 7 am everyday for 50 days. Group 2 exposed to noise and did not receive Vitamins. Group 3 received vitamin C, Group 4 received Vitamin E. Group 5 received Vitamins C and E concomitantly. After 50 days, serum Follicle-stimulating hormone (FSH, Luteinizing hormone (LH and testosterone were calculated. Then each rat was left with three female rats for mating. Pregnant females were sacrificed on the 19 th day of pregnancy and evaluated for the presence and number of viable, dead and absorbed fetuses. The level of FSH, LH and testosterone significantly decreased in rats exposed to noise (P < 0.05. By administration of Vitamins in groups 3-5 we observed that the level of hormones significantly increased in compared to group 2 (P < 0.05. The fertilization capacity of male rats in groups 3-5 significantly increased in compared to group 2 (P < 0.05. There was significant difference between groups 1 and 2 in case of fertilization capacity (P = 0.001. The data in this study strongly suggests a negative role for noise stress on level of FSH, LH and testosterone level and also fertilization capacity of male rats. To complement the information it is suggested that this research be done on human samples.

  3. Expression of phosphorylated extracellular signal-regulated kinase in rat kidneys exposed to high +Gz

    Directory of Open Access Journals (Sweden)

    Hyun-Soo Kim

    2012-11-01

    Full Text Available Exposure to high gravitational acceleration forces acting along the body axis from the head to the feet (+Gz severely reduces blood flow to the visceral organs, including the kidneys. Extracellular signal-regulated kinase (ERK figures predominantly in mediating kidney cell responses to a wide variety of stress-related stimuli. Though previous studies have shown the activation of ERK in some experimental models, the regulation of ERK associated with +Gz exposure has not yet been investigated. The aim of this study was to examine the effect of high +Gz exposure on ERK activation in the kidneys. Using a small animal centrifuge, eight male Sprague-Dawley rats were exposed to +10Gz or +13Gz three times for 3 minutes each. The bilateral kidneys were obtained from each rat, and the expression levels of phosphorylated ERK (p-ERK were evaluated using immunohistochemistry. In the control group, the collecting duct epithelium displayed faint cytoplasmic staining with no nuclear staining of p-ERK. By contrast, rats exposed to +10Gz showed strong nuclear staining intensity for p-ERK. In the renal papilla, the epithelial cells of collecting ducts and thin segments of the loop of Henle exhibited strong nuclear immunoreactivity for p-ERK. Rats exposed to +13Gz also showed the same staining intensity and distribution of p-ERK expression as that of rats exposed to +10Gz. This study is the first to describe +Gz exposure-induced alteration in the expression of p-ERK in the kidneys. Our finding suggests that high +Gz exposure leads to the activation of ERK in the renal papilla.

  4. The Effects of Stereotactic Cerebroventricular Administration of Albumin, Mannitol, Hypertonic Sodium Chloride, Glycerin and Dextran in Rats with Experimental Brain Edema.

    Science.gov (United States)

    Ates, Tuncay; Gezercan, Yurdal; Menekse, Guner; Turkoz, Yusuf; Parlakpinar, Hakan; Okten, Ali Ihsan; Akyuva, Yener; Onal, Selami Cagatay

    2017-01-01

    To evaluate the effects of cerebroventricular administration of hyperoncotic/hyperosmotic agents on edematous brain tissue in rats with experimental head trauma. The study included 54 female Sprague-Dawley rats with weights ranging between 200 and 250 g. Six experimental groups were examined with each group containing 9 rats. All rats were exposed to head trauma, and treatment groups were administered 2 µl of one of the drugs (albumin, mannitol, hypertonic sodium chloride (NaCl), glycerin and dextran) 6, 12 and 24 hours after the trauma via the cerebroventricular route and using a stereotactic device. Rats were sacrificed 48 hours after the trauma, and brain tissues were extracted without damage. Biochemical analyses including reduced glutathione (GSH), nitric oxide (NO), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) were performed on the injured left hemisphere. Compared with the control group, the albumin, mannitol, 3% NaCl and glycerin treatment groups revealed dramatic increases in GSH levels (p < 0.001). Levels of MDA, which is the end-product of brain edema and lipid peroxidation, failed to show a statistically significant decrease, but there was a decreasing trend observed in the inter-group comparisons. NO levels were also decreased in the 3% NaCl treatment group. An analysis of TNF-α and IL-1β, two proinflammatory cytokines associated with the trauma, revealed that IL-1β decreased significantly in all treatment groups (p=0.001), whereas no significant difference was detected in TNF-α levels. Cerebroventricular administration of hyperoncotic/hyperosmotic agents provides substantial effects on the treatment of brain edema.

  5. Role of melatonin in mitigating nonylphenol-induced toxicity in frontal cortex and hippocampus of rat brain.

    Science.gov (United States)

    Tabassum, Heena; Ashafaq, Mohammad; Parvez, Suhel; Raisuddin, Sheikh

    2017-03-01

    Nonylphenol (NP), an environmental endocrine disruptor mimics estrogen and is a potential toxicant both under in vitro and in vivo conditions. In this study, the effect of melatonin on NP- induced neurotoxicity and cognitive alteration was investigated in adult male Wistar rats. Melatonin supplementation has been known to protect cells from neurotoxic injury. The animals were divided into three groups namely, control (vehicle) which received olive oil orally and treated rats received NP (25 mg/kg, per os) thrice a week for 45 days while the third group i.e., NP + melatonin, animals were co-administered melatonin (10 mg/kg, i.p.) along with NP. On the 46th day, rats were assessed for anxiety, motor co-ordination, grip strength and cognitive performance using Morris water maze test and then sacrificed for biochemical and histopathological assays in brain tissues. Melatonin improved the behavioral performance in NP exposed group. The results showed that NP significantly decreased the activity of acetylcholine esterase (AchE), monoamine oxidase (MAO) and Na + /K + -ATPase, in rat brain tissue along with other enzymes of antioxidant milieu. The outcome of the study shows that NP, like other persistent endocrine disrupting pollutants, creates a potential risk of cognitive, neurochemical and histopathological perturbations as a result of environmental exposure. Taken together, our study demonstrates that melatonin is protective against NP-induced neurotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Biogenic amines in brain areas of rats and response to varying dose levels of whole body gamma irradiation

    International Nuclear Information System (INIS)

    Abdelhamid, F.M.; Elmossalamy, N.; Othman, S.A.; Roushdy, H.M.; Abdelraheem, K.

    1994-01-01

    The levels of norepinephrine (NE), dopamine (DA), 5-hydroxy-tryptamine (5-HT) and 5-hydroxy-indole acetic acid (5-HIAA) were examined in the brain areas:cortex,: cerebellum, striatum and pons in rats exposed to whole body gamma-irradiation at the dose levels 6.5 and 10 Gy. The data obtained indicated that: 6.5 Gy induced in all brain areas, a slight increase in 5-HT concomitant with significant decrease in NE, DA levels, besides a significant increase in 5-HTAA in cerebellum and pons. After the dose 10 Gy the maximum excitation of 5-HT level was in striatum whereas declines in NE, DA were recorded in all brain areas. 5-HIAA displayed significant increase in cerebellum and pons and maximum decline in the cortex. 4 tab

  7. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test.

  8. Effects of the administration of a catalase inhibitor into the fourth cerebral ventricle on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke.

    Science.gov (United States)

    Valenti, Vitor E; Abreu, Luiz Carlos de; Fonseca, Fernando L A; Adami, Fernando; Sato, Monica A; Vanderlei, Luiz Carlos M; Ferreira, Lucas Lima; Rodrigues, Luciano M; Ferreira, Celso

    2013-06-01

    Previous studies have demonstrated a relationship between brain oxidative stress and cardiovascular regulation. We evaluated the effects of central catalase inhibition on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. Male Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SH) (16 weeks old) were implanted with a stainless steel guide cannula leading into the fourth cerebral ventricle (4th V). The femoral artery and vein were cannulated for arterial pressure and heart rate measurement and drug infusion, respectively. The rats were exposed to sidestream cigarette smoke for 180 minutes/day, 5 days/week for 3 weeks (CO: 100-300 ppm). The baroreflex was tested using a pressor dose of phenylephrine (8 μg/kg, bolus) and a depressor dose of sodium nitroprusside (50 μg/kg, bolus). Cardiovascular responses were evaluated before and 5, 15, 30 and 60 minutes after injection of a catalase inhibitor (3-amino-1,2,4-triazole, 0.001 g/100 μL) into the 4th V. Vehicle administration into the 4th V did not affect the cardiovascular response, whereas administration of the central catalase inhibitor increased the basal HR and attenuated the bradycardic peak (peffect of the catalase inhibitor treatment was stronger in the fresh air condition (pcatalase inhibitor into the 4th V combined with exposure to sidestream cigarette smoke has a stronger effect in WKY rats than in SH rats.

  9. CNS-syndrome. Characterization of rat brain intermediate filaments

    International Nuclear Information System (INIS)

    Nedzvetskij, V.S.; Busygina, S.G.; Berezin, V.A.; Dvoretskij, A.I.

    1990-01-01

    A study was made of the effect of ionizing radiation on the content and polypeptide composition of filamentous and soluble glial fibrillary acidic protein (GFAP) in different regions of rat brain. Ionizing radiation was shown to decrease considerably the level of soluble GFAP in cerebral cortex, cerebellum, middle brain and hippocampus. Polypeptide composition of soluble GFAP detected by the immonublot-method was found to be changed considerably in different brain areas of irradiated animals

  10. Deep-body temperature changes in rats exposed to chronic centrifugation.

    Science.gov (United States)

    Oyama, J.; Platt, W. T.; Holland, V. B.

    1971-01-01

    Deep-body temperature was monitored continuously by implant biotelemetry in unrestrained rats before, during, and after exposure to prolonged and almost continuous centrifugation. Rats subjected to centrifugation for the first time at various G loads ranging up to 2.5 G show a rapid and significant fall in temperature which is sustained below normal levels for periods as long as 3 days. The magnitude of the temperature fall and the recovery time were generally proportional to the G load imposed. The initial fall and recovery of body temperature closely parallels the decrease in food consumption and to a lesser degree the decrease in body mass experienced by centrifuged rats. After exposure to 2 weeks of centrifugation, rats show either no change or only a small transient increase in temperature when decelerated to a lower G level or when returned to normal gravity. Rats repeatedly exposed to centrifugation consistently showed a smaller temperature response compared to the initial exposure. Implant temperature biotelemetry has been found to be a sensitive, reliable, and extremely useful technique for assessing the initial stress of centrifugation and in monitoring the time course of recovery and acclimation of rats to increase as well as*decrease G.

  11. Changes of interleukin-1β, tumor necrosis factor α and interleukin-6 in brain and plasma after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    朱涛; 姚智; 袁汉娜; 陆伯刚; 杨树源

    2004-01-01

    Objective: To study the changes of interleukin-1 β (IL-1β), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) levels in brain and plasma after brain injury and to assess the relationship between the cytokine levels and injury severity in rats. Methods: A total of 51 male Wistar rats, weighing 280-340 g, were anesthetized with chloral hydrate (400 mg/kg body weight) through intraperitoneal injection and fixed on a stereotaxic instrument. Severe brain injury was created in 16 rats (severe injury group) and moderate brain injury in 18 rats (moderate injury group) by a fluid percussion model, and cytokine levels of IL-1β, TNFα and IL-6 were measured with biological assay. And sham operation was made on the other 17 rats (control group). Results: In the control group, the levels of IL-1β, TNFα and IL-6 were hardly detected in the cortex of the rats, but in the ipsilateral cortex of the rats in both injury groups, they increased obviously at 8 hours after injury. The increasing degree of these cytokines had no significant difference between the two injury groups. The levels of IL-6 in the plasma of all the rats increased slightly, whereas the levels of IL-1β and TNFα were undetectable. Conclusions: The increase of IL-1β, TNFα and IL-6 levels is closely related to brain injury. The increased cytokine levels in the central nervous system are not parallel to those in the peripheral blood. It suggests that inflammatory cytokines play important roles in the secondary neural damage after brain injury.

  12. Adiponectin alleviates genioglossal mitochondrial dysfunction in rats exposed to intermittent hypoxia.

    Directory of Open Access Journals (Sweden)

    Hanpeng Huang

    Full Text Available Genioglossal dysfunction is involved in the pathophysiology of obstructive sleep apnea hypoxia syndrome (OSAHS characterized by nocturnal chronic intermittent hypoxia (CIH. The pathophysiology of genioglossal dysfunction and possible targeted pharmacotherapy for alleviation of genioglossal injury in CIH require further investigation.Rats in the control group were exposed to normal air, while rats in the CIH group and CIH+adiponectin (AD group were exposed to the same CIH condition (CIH 8 hr/day for 5 successive weeks. Furthermore, rats in CIH+AD group were administrated intravenous AD supplementation at the dosage of 10 µg, twice a week for 5 consecutive weeks. We found that CIH-induced genioglossus (GG injury was correlated with mitochondrial dysfunction, reduction in the numbers of mitochondrias, impaired mitochondrial ultrastructure, and a reduction in type I fibers. Compared with the CIH group, impaired mitochondrial structure and function was significantly improved and a percentage of type I fiber was elevated in the CIH+AD group. Moreover, compared with the control group, the rats' GG in the CIH group showed a significant decrease in phosphorylation of LKB1, AMPK, and PGC1-α, whereas there was significant rescue of such reduction in phosphorylation within the CIH+AD group.CIH exposure reduces mitochondrial biogenesis and impairs mitochondrial function in GG, while AD supplementation increases mitochondrial contents and alleviates CIH-induced mitochondrial dysfunction possibly through the AMPK pathway.

  13. Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens

    DEFF Research Database (Denmark)

    Boberg, Julie; Mandrup, Karen; Jacobsen, Pernille Rosenskjold

    2013-01-01

    Dietary phytoestrogens may prevent certain human diseases, but endocrine activity has been reported in animal studies. Sprague-Dawley rats were exposed perinatally to a 1-, 10- or 100-fold “high human dietary intake” mixture of 12 phytoestrogens consisting of mainly the lignan secoisolarici resinol...... genes in testis and prostate were unaffected. Decreased serum estradiol was seen in genistein-exposed dams. This study indicated adverse effects at high intake levels in rats, but does not provide evidence for risk of phytoestrogen-mediated endocrine disruption at normal human dietary consumption levels...

  14. In vivo imaging of brain androgen receptors in rats: a [18F]FDHT PET study

    International Nuclear Information System (INIS)

    Khayum, M.A.; Doorduin, J.; Antunes, I.F.; Kwizera, C.; Zijlma, R.; Boer, J.A. den; Dierckx, R.A.J.O.; Vries, E.F.J. de

    2015-01-01

    Introduction: Steroid hormones like androgens play an important role in the development and maintenance of several brain functions. Androgens can act through androgen receptors (AR) in the brain. This study aims to demonstrate the feasibility of positron emission tomography (PET) with 16β-[ 18 F]fluoro-5α-dihydrotestosterone ([ 18 F]FDHT) to image AR expression in the brain. Methods: Male Wistar rats were either orchiectomized to inhibit endogenous androgen production or underwent sham-surgery. Fifteen days after surgery, rats were subjected to a 90-min dynamic [ 18 F]FDHT PET scan with arterial blood sampling. In a subset of orchiectomized rats, 1 mg/kg dihydrotestosterone was co-injected with the tracer in order to saturate the AR. Plasma samples were analyzed for the presence of radioactive metabolites by radio-TLC. Pharmacokinetic modeling was performed to quantify brain kinetics of the tracer. After the PET scan, the animals were terminated for ex-vivo biodistribution. Results: PET imaging and ex vivo biodistribution studies showed low [ 18 F]FDHT uptake in all brain regions, except pituitary. [ 18 F]FDHT uptake in the surrounding cranial bones was high and increased over time. [ 18 F]FDHT was rapidly metabolized in rats. Metabolism was significantly faster in orchiectomized rats than in sham-orchiectomized rats. Quantitative analysis of PET data indicated substantial spill-over of activity from cranial bones into peripheral brain regions, which prevented further analysis of peripheral brain regions. Logan graphical analysis and kinetic modeling using 1- and 2-tissue compartment models showed reversible and homogenously distributed tracer uptake in central brain regions. [ 18 F]FDHT uptake in the brain could not be blocked by endogenous androgens or administration of dihydrotestosterone. Conclusion: The results of this study indicate that imaging of AR availability in rat brain with [ 18 F]FDHT PET is not feasible. The low AR expression in the brain, the

  15. Attenuating brain edema, hippocampal oxidative stress, and cognitive dysfunction in rats using hyperbaric oxygen preconditioning during simulated high-altitude exposure.

    Science.gov (United States)

    Lin, Hung; Chang, Ching-Ping; Lin, Hung-Jung; Lin, Mao-Tsun; Tsai, Cheng-Chia

    2012-05-01

    We assessed whether hyperbaric oxygen preconditioning (HBO2P) in rats induced heat shock protein (HSP)-70 and whether HSP-70 antibody (Ab) preconditioning attenuates high altitude exposure (HAE)-induced brain edema, hippocampal oxidative stress, and cognitive dysfunction. Rats were randomly divided into five groups: the non-HBO2P + non-HAE group, the HBO2P + non-HAE group, the non-HBO2P + HAE group, the HBO2P + HAE group, and the HBO2P + HSP-70 Abs + HAE group. The HBO2P groups were given 100% O2 at 2.0 absolute atmospheres for 1 hour per day for 5 consecutive days. The HAE groups were exposed to simulated HAE (9.7% O2 at 0.47 absolute atmospheres of 6,000 m) in a hypobaric chamber for 3 days. Polyclonal rabbit anti-mouse HSP-70-neutralizing Abs were intravenously injected 24 hours before the HAE experiments. Immediately after returning to normal atmosphere, the rats were given cognitive performance tests, overdosed with a general anesthetic, and then their brains were excised en bloc for water content measurements and biochemical evaluation and analysis. Non-HBO2P group rats displayed cognitive deficits, brain edema, and hippocampal oxidative stress (evidenced by increased toxic oxidizing radicals [e.g., nitric oxide metabolites and hydroxyl radicals], increased pro-oxidant enzymes [e.g., malondialdehyde and oxidized glutathione] but decreased antioxidant enzymes [e.g., reduced glutathione, glutathione peroxide, glutathione reductase, and superoxide dismutase]) in HAE. HBO2P induced HSP-70 overexpression in the hippocampus and significantly attenuated HAE-induced brain edema, cognitive deficits, and hippocampal oxidative stress. The beneficial effects of HBO2P were significantly reduced by HSP-70 Ab preconditioning. Our results suggest that high-altitude cerebral edema, cognitive deficit, and hippocampal oxidative stress can be prevented by HSP-70-mediated HBO2P in rats.

  16. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  17. α-lipoic acid inhibits oxidative stress in testis and attenuates testicular toxicity in rats exposed to carbimazole during embryonic period

    Directory of Open Access Journals (Sweden)

    P. Prathima

    Full Text Available The aim of this study was to evaluate the probable protective effect of α-lipoic acid against testicular toxicity in rats exposed to carbimazole during the embryonic period. Time-mated pregnant rats were exposed to carbimazole from the embryonic days 9–21. After completion of the gestation period, all the rats were allowed to deliver pups and weaned. At postnatal day 100, F1 male pups were assessed for the selected reproductive endpoints. Gestational exposure to carbimazole decreased the reproductive organ indices, testicular daily sperm count, epididymal sperm variables viz., sperm count, viable sperm, motile sperm and HOS-tail coiled sperms. Significant decrease in the activity levels of 3β- and 17β-hydroxysteroid dehydrogenases and expression of StAR mRNA levels with a significant increase in the total cholesterol levels were observed in the testis of experimental rats over the controls. These events were also accompanied by a significant reduction in the serum testosterone levels in CBZ exposed rats, indicating reduced steroidogenesis. In addition, the deterioration of the testicular architecture and reduced fertility ability were noticed in the carbimazole exposed rats. Significant reduction in the activity levels of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione content with a significant increase in the levels of lipid peroxidation were observed in the testis of carbimazole exposed rats over the controls. Conversely, supplementation of α-lipoic acid (70 mg/Kg bodyweight ameliorated the male reproductive health in rats exposed to carbimazole during the embryonic period as evidenced by enhanced reproductive organ weights, selected sperm variables, testicular steroidogenesis, and testicular enzymatic and non-enzymatic antioxidants. To conclude, diminished testicular antioxidant balance associated with reduced spermatogenesis and steroidogenesis might be responsible

  18. Does melatonin influence the apoptosis in rat uterus of animals exposed to continuous light?

    Science.gov (United States)

    Ferreira, Cecília S; Carvalho, Kátia C; Maganhin, Carla C; Paiotti, Ana P R; Oshima, Celina T F; Simões, Manuel J; Baracat, Edmund C; Soares, José M

    2016-02-01

    Melatonin has been described as a protective agent against cell death and oxidative stress in different tissues, including in the reproductive system. However, the information on the action of this hormone in rat uterine apoptosis is low. Our objective was to evaluate the effects of melatonin on mechanisms of cell death in uterus of rats exposed to continuous light stress. Twenty adult Wistar rats were divided into two groups: GContr (vehicle control) and GExp which were treated with melatonin (0.4 mg/mL), both were exposed to continuous light for 90 days. The uterus was removed and processed for quantitative real time PCR (qRT-PCR), using PCR-array plates of the apoptosis pathway; for immunohistochemistry and TUNEL. The results of qRT-PCR of GEXP group showed up-regulation of 13 and 7, pro-apoptotic and anti-apoptotic genes, respectively, compared to GContr group. No difference in pro-apoptotic proteins (Bax, Fas and Faslg) expression was observed by immunohistochemistry, although the number of TUNEL-positive cells was lower in the group treated with melatonin compared to the group not treated with this hormone. Our data suggest that melatonin influences the mechanism and decreases the apoptosis in uterus of rats exposed to continuous light.

  19. Aluminium and Gamma Irradiation Induced Oxidative Damage in Brain Tissue of Male Rats - Protective Role of Ferulic Acid

    International Nuclear Information System (INIS)

    Mansour, S.Z.; Hanafi, N.; Noaman, E.

    2011-01-01

    The current study was carried out to investigate the potential role of ferulic acid (FA) against Aluminium chloride (AlCl 3 ), γ- radiation either alone or combination induced oxidative stress in brain tissue of Wistar rats. The period of the experiment was eight weeks. Animals were administrated by aluminium chloride at a dose of 8.5 mg/kg/day and exposed to a single dose (4 Gy) of γ-radiation. FA was administered orally (50 mg/Kg body weight)/day. Histopathological observations and myeloid protein distribution were recorded in brain tissue. Induction of oxidative stress was recorded after all exposures. Brain tissue of AlCl 3 and γ- irradiation treatments either alone or combined revealed many altered changes and myeloid protein distribution. Also a decrease in serotonin concentration was recorded. An increase in Malonaldialdahyde (MDA) and acetylcholinesterase activity and percentage of saturated fatty acids in plasma and brain tissue was recorded. Reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) in blood and brain showed a significant decrease. Treatment of AlCl 3 loaded animals by FA showed simple atrophy as shrunken morphology saw in amyotrophic lateral sclerosis and a decrease in myeloid protein deposition. FA treatment of AlCl 3 loaded or irradiated animals represented a significant increase in serotonin concentration and ameliorated affects on oxidative stress markers, acetylcholinesterase activity and percentage of saturated fatty acids in plasma and brain tissue. In conclusion FA has a role in reducing the oxidative stress of AlCl 3 and γ- irradiation on brain tissue of rats

  20. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat.

    Science.gov (United States)

    Samini, Fariborz; Samarghandian, Saeed; Borji, Abasalt; Mohammadi, Gholamreza; bakaian, Mahdi

    2013-09-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow coloring principle in turmeric, is a polyphenolic and a major active constituent. Besides anti-inflammatory, thrombolytic and anti-carcinogenic activities, curcumin also possesses strong antioxidant property. The neuroprotective effects of curcumin were evaluated in a weight drop model of cortical contusion trauma in rat. Male Wistar rats (350-400 g, n=9) were anesthetized with sodium pentobarbital (60 mg/kg i.p.) and subjected to head injury. Five days before injury, animals randomly received an i.p. bolus of either curcumin (50 and 100 mg/kg/day, n=9) or vehicle (n=9). Two weeks after the injury and drug treatment, animals were sacrificed and a series of brain sections, stained with hematoxylin and eosin (H&E) were evaluated for quantitative brain lesion volume. Two weeks after the injury, oxidative stress parameter (malondialdehyde) was also measured in the brain. Curcumin (100 mg/kg) significantly reduced the size of brain injury-induced lesions (Pcurcumin (100 mg/kg). Curcumin treatment significantly improved the neurological status evaluated during 2 weeks after brain injury. The study demonstrates the protective efficacy of curcumin in rat traumatic brain injury model. © 2013 Elsevier Inc. All rights reserved.

  1. Substitution effects of a carbonated hydroxyapatite biomaterial against intoxication chloride nickel-exposed rats.

    Science.gov (United States)

    Boulila, Salha; Elfeki, Abdelfattah; Oudadesse, Hassane; Elfeki, Hafed

    2015-03-01

    This study aimed to investigate the potential effects of a synthetic apatite (carbonated hydroxyapatite) on the detoxification of a group of male "Wistar" rats exposed to nickel chloride. Toxicity was evaluated by rats' bioassay of nickel chloride. Wistar rats received this metal daily by gavage for seven days (4 mg/ml nickel chloride/200 g body weight, BW). To detoxify this organism, a subcutaneous implantation of the apatite is made. The results revealed that exposure to nickel induced oxidative stress, disorders in the balances of ferric phosphocalcic, renal failures, liver toxicity and significant increase in nickel rates in the bones of intoxicated rats. The application of the carbonated hydroxyapatite presented in this study restored those disorders back to normal. The synthetic apatite protected the rats against the toxic effects of nickel by lowering the levels of lipid peroxidation markers and improving the activities of defense enzymes. It also amended ferric and phosphocalcic equilibriums, protected liver and kidney functions and reduced the nickel rate in the bones of the rats. Overall, the results provided strong support for the protective role of carbonated hydroxyapatite in the detoxification of rats exposed to nickel. Those beneficial effects were further confirmed by physico-chemical characterization (X-ray diffraction and infrared spectroscopy), which revealed its property of anionic and cationic substitution, thus supporting its promising candidacy for future biomedical application. The hydroxyapatite is an effective biomaterial to solve health problems, particularly detoxification against metals (nickel).

  2. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    Science.gov (United States)

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.

  3. Cigarette smoking accelerated brain aging and induced pre-Alzheimer-like neuropathology in rats.

    Directory of Open Access Journals (Sweden)

    Yuen-Shan Ho

    Full Text Available Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD. To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP processing by increasing the production of sAPPβ and accumulation of β-amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia.

  4. Cigarette Smoking Accelerated Brain Aging and Induced Pre-Alzheimer-Like Neuropathology in Rats

    Science.gov (United States)

    Ho, Yuen-Shan; Yang, Xifei; Yeung, Sze-Chun; Chiu, Kin; Lau, Chi-Fai; Tsang, Andrea Wing-Ting; Mak, Judith Choi-Wo; Chang, Raymond Chuen-Chung

    2012-01-01

    Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD). To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD) rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP) processing by increasing the production of sAPPβ and accumulation of β–amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia. PMID:22606286

  5. Early and Later Life Stress Alter Brain Activity and Sleep in Rats

    Science.gov (United States)

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857

  6. Dynamic Metabolic Disruption in Rats Perinatally Exposed to Low Doses of Bisphenol-A.

    Directory of Open Access Journals (Sweden)

    Marie Tremblay-Franco

    Full Text Available Along with the well-established effects on fertility and fecundity, perinatal exposure to endocrine disrupting chemicals, and notably to xeno-estrogens, is strongly suspected of modulating general metabolism. The metabolism of a perinatally exposed individual may be durably altered leading to a higher susceptibility of developing metabolic disorders such as obesity and diabetes; however, experimental designs involving the long term study of these dynamic changes in the metabolome raise novel challenges. 1H-NMR-based metabolomics was applied to study the effects of bisphenol-A (BPA, 0; 0.25; 2.5, 25 and 250 μg/kg BW/day in rats exposed perinatally. Serum and liver samples of exposed animals were analyzed on days 21, 50, 90, 140 and 200 in order to explore whether maternal exposure to BPA alters metabolism. Partial Least Squares-Discriminant Analysis (PLS-DA was independently applied to each time point, demonstrating a significant pair-wise discrimination for liver as well as serum samples at all time-points, and highlighting unequivocal metabolic shifts in rats perinatally exposed to BPA, including those exposed to lower doses. In BPA exposed animals, metabolism of glucose, lactate and fatty acids was modified over time. To further explore dynamic variation, ANOVA-Simultaneous Component Analysis (A-SCA was used to separate data into blocks corresponding to the different sources of variation (Time, Dose and Time*Dose interaction. A-SCA enabled the demonstration of a dynamic, time/age dependent shift of serum metabolome throughout the rats' lifetimes. Variables responsible for the discrimination between groups clearly indicate that BPA modulates energy metabolism, and suggest alterations of neurotransmitter signaling, the latter finding being compatible with the neurodevelopmental effect of this xenoestrogen. In conclusion, long lasting metabolic effects of BPA could be characterized over 200 days, despite physiological (and thus metabolic changes

  7. Dietary Virgin Olive Oil Reduces Blood Brain Barrier Permeability, Brain Edema, and Brain Injury in Rats Subjected to Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Fatemeh Mohagheghi

    2010-01-01

    Full Text Available Recent studies suggest that dietary virgin olive oil (VOO reduces hypoxia-reoxygenation injury in rat brain slices. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each consisting of 18 Wistar rats, were studied. One group (control received saline, while three treatment groups received oral VOO (0.25, 0.5, and 0.75 mL/kg/day, respectively. After 30 days, blood lipid profiles were determined, before a 60-min period of middle cerebral artery occlusion (MCAO. After 24-h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. VOO reduced the LDL/HDL ratio in doses of 0.25, 0.5, and 0.75 mL/kg/day in comparison to the control group (p < 0.05, and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 0.25 vs. 0.5 vs. 0.75 mL/kg/day, attenuated corrected infarct volumes were 207.82 ± 34.29 vs. 206.41 ± 26.23 vs. 124.21 ± 14.73 vs. 108.46 ± 31.63 mm3; brain water content of the infarcted hemisphere was 82 ±± 0.25 vs. 81.5 ± 0.56 vs. 80.5 ± 0.22 vs. 80.5 ± 0.34%; and blood brain barrier permeability of the infarcted hemisphere was 11.31 ± 2.67 vs. 9.21 ± 2.28 vs. 5.83 ± 1.6 vs. 4.43 ± 0.93 µg/g tissue (p < 0.05 for measures in doses 0.5 and 0.75 mL/kg/day vs. controls. Oral administration of VOO reduces infarct volume, brain edema, blood brain barrier permeability, and improves neurologic deficit scores after transient MCAO in rats.

  8. Rat Brain Biogenic Amine Levels during Acute and Sub- acute ...

    African Journals Online (AJOL)

    User

    2011-05-20

    May 20, 2011 ... substances in rat brain regions are altered during acute and sub-acute .... Different areas of the brain such as cerebral cortex (CC), cerebellum (CB), .... dopamine metabolism and differential motor behavioral tolerance.

  9. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat.

    Science.gov (United States)

    Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A

    2018-01-01

    HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain

  10. Lifelong consumption of sodium selenite: gender differences on blood-brain barrier permeability in convulsive, hypoglycemic rats.

    Science.gov (United States)

    Seker, F Burcu; Akgul, Sibel; Oztas, Baria

    2008-07-01

    The aim of this study was to compare the effects of hypoglycemia and induced convulsions on the blood-brain barrier permeability in rats with or without lifelong administration of sodium selenite. There is a significant decrease of the blood-brain barrier permeability in three brain regions of convulsive, hypoglycemic male rats treated with sodium selenite when compared to sex-matched untreated rats (p0.05). The blood-brain barrier permeability of the left and right hemispheres of untreated, moderately hypoglycemic convulsive rats of both genders was better than their untreated counterparts (peffect against blood-brain barrier permeability during convulsions and that the effects of sodium selenite are gender-dependent.

  11. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    International Nuclear Information System (INIS)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T.

    2007-01-01

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process

  12. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    Energy Technology Data Exchange (ETDEWEB)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T. [Dept. of Obstetrics and Gynecology, Dept. of Pediatrics, and Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital (Finland)

    2007-02-15

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process.

  13. Brain receptors for thyrotropin releasing hormone in morphine tolerant-dependent rats

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, H.N.; Das, S.

    1986-03-01

    The effect of chronic treatment of rats with morphine and its subsequent withdrawal on the brain receptors for thyrotropin releasing hormone (TRH) labeled with /sup 3/H-(3MeHis/sup 2/)TRH (MeTRH). Male Sprague Dawley rats were implanted with 4 morphine pellets (each containing 75 mg morphine base) during a 3-day period. Placebo pellet implanted rats served as controls. Both tolerance to and dependence on morphine developed as a result of this procedure. For characterization of brain TRH receptors, the animals were sacrificed 72 h after the implantation of first pellet. In another set of animals the pellets were removed and were sacrificed 24 h later. The binding of /sup 3/H-MeTRH to membranes prepared from brain without the cerebellum was determined. /sup 3/H-MeTRH bound to brain membranes prepared from placebo pellet implanted rats at a single high affinity site with a B/sub max/ value of 33.50 +/- 0.97 fmol/mg protein and a K/sub d/ of 5.18 +/- 0.21 nM. Implantation of morphine pellets did not alter the B/sub max/ value of /sup 3/H-MeTRH but decreased the K/sub d/ value significantly. Abrupt or naloxone precipitated withdrawal of morphine did not alter B/sub max/ or the K/sub d/ values. The binding of /sup 3/H-MeTRH to brain areas was also determined. The results suggest that the development of tolerance to morphine is associated with enhanced sensitivity of brain TRH receptors, however abrupt withdrawal of morphine does not change the characteristics of brain TRH receptors.

  14. Development of I-123-labeled amines for brain studies: localization of I-123 iodophenylalkyl amines in rat brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Baldwin, R.M.; Lin, T.H.

    1980-01-01

    Localization in rat brain of forty iodophenylalkyl amines labeled with I-123 was evaluated in an attempt to develop I-123-labeled amines useful for brain studies. For the amines studied, the highest activity in brain and the brain-to-blood activity ratios ranked p > m > o as related to iodine position on the benzene ring: for alkyl groups the rank order was α-methylethyl > ethyl > methyl > none; for N additions it was single lipophilic group > H > two lipophilic groups. It is suggested that introduction of a halogen into the ring structure of many amines results in greater concentration of the agent in brain than is seen with the nonhalogenated parent compound. The agent N-isopropyl-p-iodoamphetamine was chosen for further study because, in the rat, it showed high brain activity (1.57%/g) and brain-blood ratio (12.6) at 5 min

  15. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  16. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  17. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    Science.gov (United States)

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  18. Reduction in brain immunoreactive corticotropin-releasing factor (CRF) in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hashimoto, K.; Hattori, T.; Murakami, K.; Suemaru, S.; Kawada, Y.; Kageyama, J.; Ota, Z.

    1985-01-01

    The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125 I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neurointermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR

  19. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    International Nuclear Information System (INIS)

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  20. Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Sharma, Pushpa; Su, Yan A; Barry, Erin S; Grunberg, Neil E; Lei, Zhang

    2012-09-01

    Mild traumatic brain injury (mTBI) represents a major health problem in civilian populations as well as among the military service members due to (1) lack of effective treatments, and (2) our incomplete understanding about the progression of secondary cell injury cascades resulting in neuronal cell death due to deficient cellular energy metabolism and damaged mitochondria. The aim of this study was to identify and delineate the mitochondrial targeted genes responsible for altered brain energy metabolism in the injured brain. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed up for 7 days. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed for 7 days. The severity of brain injury was evaluated by the neurological severity scale-revised (NSS-R) at 3 and 5 days post TBI and immunohistochemical analyses at 7 days post TBI. The expression profiles of mitochondrial-targeted genes across the hippocampus from TBI and naïe rats were also examined by oligo-DNA microarrays. NSS-R scores of TBI rats (5.4 ± 0.5) in comparison to naïe rats (3.9 ± 0.5) and H and E staining of brain sections suggested a mild brain injury. Bioinformatics and systems biology analyses showed 31 dysregulated genes, 10 affected canonical molecular pathways including a number of genes involved in mitochondrial enzymes for oxidative phosphorylation, mitogen-activated protein Kinase (MAP), peroxisome proliferator-activated protein (PPAP), apoptosis signaling, and genes responsible for long-term potentiation of Alzheimer's and Parkinson's diseases. Our results suggest that dysregulated mitochondrial-focused genes in injured brains may have a clinical utility for the development of future therapeutic strategies aimed at the treatment of TBI.

  1. Aging and sex influence the permeability of the blood-brain barrier in the rat

    International Nuclear Information System (INIS)

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer [ 14 C]-α-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels

  2. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ..... on the brain and nervous system of humans as handlers and ... environment may be at higher health risk in that their internal ...

  3. Physiological and Histopathological Investigations on the Effects of -Lipoic Acid in Rats Exposed to Malathion

    Directory of Open Access Journals (Sweden)

    Atef M. Al-Attar

    2010-01-01

    Full Text Available The present study was designed to evaluate the influence of -lipoic acid treatment in rats exposed to malathion. Forty adult male rats were used in this study and distributed into four groups. Animals of group 1 were untreated and served as control. Rats of group 2 were orally given malathion at a dose level of 100 mg/kg body weight (BW for a period of one month. Experimental animals of group 3 were orally given -lipoic acid at a dose level of 20 mg/kg BW and after 3 hours exposed to malathion at the same dose given to group 2. Rats of group 4 were supplemented with -lipoic acid at the same dose given to group 3. The activities of serum glutamic oxaloacetic acid transaminase (GOT, glutamic pyruvic acid transaminase (GPT, alkaline phosphatase (ALP, and acid phosphatase (ACP, and the values of creatinine, urea, and uric acid were statistically increased, while the values of total protein and total albumin were significantly decreased in rats exposed to malathion. Moreover, administration of malathion for one month resulted in damage of liver and kidney structures. Administration of -lipoic acid before malathion exposure to rat can prevent severe alterations of hematobiochemical parameters and disruptions of liver and kidney structures. In conclusion, this study obviously demonstrated that pretreatment with -lipoic acid significantly attenuated the physiological and histopathological alterations induced by malathion. Also, the present study identifies new areas of research for development of better therapeutic agents for liver, kidney, and other organs' dysfunctions and diseases.

  4. Paroxetine ameliorates changes in hippocampal energy metabolism in chronic mild stress-exposed rats

    Directory of Open Access Journals (Sweden)

    Khedr LH

    2015-11-01

    Full Text Available Lobna H Khedr, Noha N Nassar, Ezzeldin S El-Denshary, Ahmed M Abdel-tawab 1Department of Pharmacology, Faculty of Pharmacy, Misr International University, 2Department of Pharmacology, Faculty of Pharmacy, Cairo University, 3Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt Abstract: The molecular mechanisms underlying stress-induced depression have not been fully outlined. Hence, the current study aimed at testing the link between behavioral changes in chronic mild stress (CMS model and changes in hippocampal energy metabolism and the role of paroxetine (PAROX in ameliorating these changes. Male Wistar rats were divided into three groups: vehicle control, CMS-exposed rats, and CMS-exposed rats receiving PAROX (10 mg/kg/day intraperitoneally. Sucrose preference, open-field, and forced swimming tests were carried out. Corticosterone (CORT was measured in serum, while adenosine triphosphate and its metabolites, cytosolic cytochrome-c (Cyt-c, caspase-3 (Casp-3, as well as nitric oxide metabolites (NOx were measured in hippocampal tissue homogenates. CMS-exposed rats showed a decrease in sucrose preference as well as body weight compared to control, which was reversed by PAROX. The latter further ameliorated the CMS-induced elevation of CORT in serum (91.71±1.77 ng/mL vs 124.5±4.44 ng/mL, P<0.001 as well as the changes in adenosine triphosphate/adenosine diphosphate (3.76±0.02 nmol/mg protein vs 1.07±0.01 nmol/mg protein, P<0.001. Furthermore, PAROX reduced the expression of Cyt-c and Casp-3, as well as restoring NOx levels. This study highlights the role of PAROX in reversing depressive behavior associated with stress-induced apoptosis and changes in hippocampal energy metabolism in the CMS model of depression. Keywords: rats, CMS, hippocampus, paroxetine, apoptosis, adenine nucleotides, cytochrome-c, caspase-3

  5. Effect of MgSO4 on the contents of Ca2+ in brain cell and NO in brain tissue of rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Yuan Wenjia; Cui Fengmei; Liu Ping; He Chao; Tu Yu; Wang Lili

    2009-01-01

    The work is to explore the protection of magnesium sulfate(MgSO 4 ) on radiation-induced acute brain injury. Thirty six mature Sprague-Dawley(SD) rats were randomly divided into 3 groups of control, experimental control and experimental therapy group. The whole brains of SD rats of experimental control and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. MgSO 4 was injected into the abdomen of experimental therapy rats group 1 day before, immediately and continue for 5 days after irradiation respectively. The brain tissues were taken on 3, 10, 17 and 24 d after irradiation. Ca 2+ content in brain cell was measured by laser scanning confocal microscopy, and the NO content in brain tissue was detected by the method of nitric acid reductase. Compared with the blank control group, the contents of Ca 2+ in brain cell and NO in brain tissue of the experimental control group increase (P 4 used in early stage can inhibit the contents of Ca 2+ in brain cell and NO in brain tissue after radiation-induced acute brain injury. It means that MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  6. Inhibition of Mammary Cancer Progression in Fetal Alcohol Exposed Rats by β-Endorphin Neurons.

    Science.gov (United States)

    Zhang, Changqing; Franklin, Tina; Sarkar, Dipak K

    2016-01-01

    Fetal alcohol exposure (FAE) increases the susceptibility to carcinogen-induced mammary cancer progression in rodent models. FAE also decreases β-endorphin (β-EP) level and causes hyperstress response, which leads to inhibition of immune function against cancer. Previous studies have shown that injection of nanosphere-attached dibutyryl cyclic adenosine monophosphate (dbcAMP) into the third ventricle increases the number of β-EP neurons in the hypothalamus. In this study, we assessed the therapeutic potential of stress regulation using methods to increase hypothalamic levels of β-EP, a neuropeptide that inhibits stress axis activity, in treatment of carcinogen-induced mammary cancer in fetal alcohol exposed rats. Fetal alcohol exposed and control Sprague Dawley rats were given a dose of N-Nitroso-N-methylurea (MNU) at postnatal day 50 to induce mammary cancer growth. Upon detection of mammary tumors, the animals were either transplanted with β-EP neurons or injected with dbcAMP-delivering nanospheres into the hypothalamus to increase β-EP peptide production. Spleen cytokines were detected using reverse transcription polymerase chain reaction assays. Metastasis study was done by injecting mammary cancer cells MADB106 into jugular vein of β-EP-activated or control fetal alcohol exposed animals. Both transplantation of β-EP neurons and injection of dbcAMP-delivering nanospheres inhibited MNU-induced mammary cancer growth in control rats, and reversed the effect of FAE on the susceptibility to mammary cancer. Similar to the previously reported immune-enhancing and stress-suppressive effects of β-EP transplantation, injection of dbcAMP-delivering nanospheres increased the levels of interferon-γ and granzyme B and decreased the levels of epinephrine and norepinephrine in fetal alcohol exposed rats. Mammary cancer cell metastasis study also showed that FAE increased incidence of lung tumor retention, while β-EP transplantation inhibited lung tumor growth in

  7. Wistar-Kyoto Female Rats Are More Susceptible to Develop Sugar Binging: A Comparison with Wistar Rats

    Directory of Open Access Journals (Sweden)

    Helena Papacostas-Quintanilla

    2017-05-01

    Full Text Available The hedonic component of the feeding behavior involves the mesolimbic reward system and resembles addictions. Nowadays, the excessive consumption of sucrose is considered addictive. The Wistar-Kyoto (WKY rat strain is prone to develop anxiety and addiction-like behavior; nevertheless, a lack of information regarding their vulnerability to develop sugar binging-like behavior (SBLB and how it affects the reward system persist. Therefore, the first aim of the present study was to compare the different predisposition of two rat strains, Wistar (W and WKY to develop the SBLB in female and male rats. Also, we studied if the SBLB-inducing protocol produces changes in anxiety-like behavior using the plus-maze test (PMT and, analyzed serotonin (5-HT and noradrenaline (NA concentrations in brain areas related to anxiety and ingestive behavior (brain stem, hypothalamus, nucleus accumbens, and amygdala. Finally, we evaluated whether fluoxetine, a drug that has been effective in reducing the binge-eating frequency, body weight, and severity of binge eating disorder, could also block this behavior. Briefly, WKY and W female rats were exposed to 30% sucrose solution (2 h, 3 days/week for 4 weeks, and fed up ad libitum. PMT was performed between the last two test periods. Immediately after the last test where sucrose access was available, rats were decapitated and brain areas extracted for high-performance liquid chromatography analysis. The results showed that both W and WKY female and male rats developed the SBLB. WKY rats consumed more calories and ingested a bigger amount of sucrose solution than their W counterpart. This behavior was reversed by using fluoxetine, rats exposed to the SBLB-inducing protocol presented a rebound effect during the washout period. On female rats, the SBLB-inducing protocol induced changes in NA concentrations on WKY, but not on W rats. No changes were found in 5-HT levels. Finally, animals that developed SBLB showed increased

  8. Clinical course of brain stroke in the persons exposed to ionizing radiation under the production conditions

    International Nuclear Information System (INIS)

    Bouchmanov, A.

    2000-01-01

    The purpose was to study the risk factors and clinical course of brain strokes in professionally exposed workers being employed in plutonium production in comparison with a control group. The method and materials of study -clinical supervision and clinical database creation on 162 cases of brain stroke (128 males and 34 females) developed among professionally exposed workers. Age of patient varied from 21 to 68 years (in average -51.6 y.). The control group consisted of patients with the same diagnosis, worked on the same enterprise, but non-exposed to radiation. Data on the totally accumulated dose of external gamma radiation were received on the base of the individual dosimeters (from 0.1 cSv to 52 cSv, in average about 13 cSv); the plutonium-239 body content was estimated accordingly to the level of urine radionuclide excretion (from 0.4 kBq to 1.6 kBq, in average about 0.33 kBq). Muscle's hypertinsion and pathological great-toe reflexes in paretic legs and hands, hemianopsia, impressive and ataxic aphasia prevailed in the patients with ischemic brain strokes in system of internal carotid artery, exposed to radiation. The changes of muscle's tension, ataxia and nystagmus were marked more often in the professionals with ischemic brain strokes in system of vertebrobasilar artery. The illness proceeded more easy and with smaller frequency of frustration of consciousness and algesthesia, irrespective of a type ischemic brain strokes in the people exposed to ionizing radiation, than in patients of non-irradiated group. It was found that the arterial hypertension appeared to be the main risk factor for the brain stroke in both groups of patients (in 81.48% and 91.15% of cases). There was no marked differences in significance of risk factors and in main clinical parameters of various types of ischemic brain strokes among the patients professionally exposed to radiation in comparison with a control group. (author)

  9. Clinical course of brain stroke in the persons exposed to ionizing radiation under the production conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bouchmanov, A. [State Research Center of Russia, Moscow (Russian Federation). Inst. of Biophysics

    2000-05-01

    The purpose was to study the risk factors and clinical course of brain strokes in professionally exposed workers being employed in plutonium production in comparison with a control group. The method and materials of study -clinical supervision and clinical database creation on 162 cases of brain stroke (128 males and 34 females) developed among professionally exposed workers. Age of patient varied from 21 to 68 years (in average -51.6 y.). The control group consisted of patients with the same diagnosis, worked on the same enterprise, but non-exposed to radiation. Data on the totally accumulated dose of external gamma radiation were received on the base of the individual dosimeters (from 0.1 cSv to 52 cSv, in average about 13 cSv); the plutonium-239 body content was estimated accordingly to the level of urine radionuclide excretion (from 0.4 kBq to 1.6 kBq, in average about 0.33 kBq). Muscle's hypertinsion and pathological great-toe reflexes in paretic legs and hands, hemianopsia, impressive and ataxic aphasia prevailed in the patients with ischemic brain strokes in system of internal carotid artery, exposed to radiation. The changes of muscle's tension, ataxia and nystagmus were marked more often in the professionals with ischemic brain strokes in system of vertebrobasilar artery. The illness proceeded more easy and with smaller frequency of frustration of consciousness and algesthesia, irrespective of a type ischemic brain strokes in the people exposed to ionizing radiation, than in patients of non-irradiated group. It was found that the arterial hypertension appeared to be the main risk factor for the brain stroke in both groups of patients (in 81.48% and 91.15% of cases). There was no marked differences in significance of risk factors and in main clinical parameters of various types of ischemic brain strokes among the patients professionally exposed to radiation in comparison with a control group. (author)

  10. Increased Arousal Levels and Decreased Sleep by Brain Music in Rats

    Institute of Scientific and Technical Information of China (English)

    Guang-Zhan Fang; Chun-Peng Zhang; Dan Wu; Yang Xia; Yong-Xiu Lai; De-Zhong Yao

    2009-01-01

    More and more studies have been reported on whether music and other types of auditory stimulation would improve the quality of sleep.Many of these studies have found significant results,but others argue that music is not significantly better than the tones or control conditions in improving sleep.For further understanding the relationship between music and sleep or music and arousal,the present study therefore examines the effects of brain music on sleep and arousal by means of biofeedback.The music is from the transformation of rapid eye movement (REM) sleep electroencephalogram (EEG) of rats using an algorithm in the Chengdu Brain Music (CBM) system.When the brain music was played back to rats,EEG data were recorded to assess the efficacy of music to induce or improve sleep,or increase arousal levels by sleep staging,etc.Our results demonstrate that exposure to the brain music increases arousal levels and decreases sleep in rats,and the underlying mechanism of decreased non-rapid eye movement (NREM) and REM sleep may be different.

  11. Protective/detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses

    Directory of Open Access Journals (Sweden)

    H. N. Shiyntum

    2015-09-01

    Full Text Available Cadmiumclassified as a major carcinogen is considered a poisonous and unwanted heavy metal to a lot of tissues in many organisms. Of many publications already available, the general consensus is that the cadmium attenuating element is metallothionein (MT through its interchangeable mechanism with Zn triggered by the presence of Cd, providing binding sites for Cd ions. MT was first discovered in the kidney cortex of the horse; it represents a low molecular weight protein, rich in cysteine residues which effectively bind with metals. Its functions consist in detoxification of heavy metals like mercury, arsenic, cadmium, homeostasis of essential metals including copper and zinc, anti-oxidation against reactive oxygen species, protection against DNA damage, oxidative stress, cell survival, angiogenesis, apoptosis, and increase of proliferation. In this work, we sought to highlight the protective function of MT in the brain and serum of rats by means of detoxification under induced effects of controlled Cd doses. We have done this by exposing Wistar rats to Cd at different doses in drinking water at different time intervals. In two independent experiments, 58 rats were subjected to 0.1 or 1.0 µg Cd2+/kg of body weight for 15 or 36 days under different conditions. The obtained data indicates the different functioning systems for the brain and the blood for MT metabolism under Cd effect. Our results indicate significant loss of metallothionein level in the brain and important increases in the amount of MT in serum proving that even minimal ingestion of toxic Cd is enough to trigger the release of MT protein in blood.

  12. In vivo genotoxicity assessment in rats exposed to Prestige-like oil by inhalation.

    Science.gov (United States)

    Valdiglesias, Vanessa; Kiliç, Gözde; Costa, Carla; Amor-Carro, Óscar; Mariñas-Pardo, Luis; Ramos-Barbón, David; Méndez, Josefina; Pásaro, Eduardo; Laffon, Blanca

    2012-01-01

    One of the largest oil spill disasters in recent times was the accident of the oil tanker Prestige in front of the Galician coast in 2002. Thousands of people participated in the cleanup of the contaminated areas, being exposed to a complex mixture of toxic substances. Acute and prolonged respiratory symptoms and genotoxic effects were reported, although environmental exposure measurements were restricted to current determinations, such that attribution of effects observed to oil exposure is difficult to establish. The aim of this study was to analyze peripheral blood leukocytes (PBL) harvested from a rat model of subchronic exposure to a fuel oil with similar characteristics to that spilled by the Prestige tanker, in order to determine potential genotoxic effects under strictly controlled, in vivo exposure. Wistar Han and Brown Norway rats were exposed to the oil for 3 wk, and micronucleus test (MN) and comet assay, standard and modified with 8-oxoguanine DNA glycosylase (OGG1) enzyme, were employed to assess genotoxicity 72 h and 15 d after the last exposure. In addition, the potential effects of oil exposure on DNA repair capacity were determined by means of mutagen sensitivity assay. Results obtained from this study showed that inhalation oil exposure induced DNA damage in both Brown Norway and Wistar Han rats, especially in those animals evaluated 15 d after exposure. Although alterations in the DNA repair responses were noted, the sensitivity to oil substances varied depending on rat strain. Data support previous positive genotoxicity results reported in humans exposed to Prestige oil during cleanup tasks.

  13. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  14. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies.

    Directory of Open Access Journals (Sweden)

    Yannick Béjot

    Full Text Available BACKGROUND: Whereas brain-derived neurotrophic factor (BDNF levels are measured in the brain in animal models of stroke, neurotrophin levels in stroke patients are measured in plasma or serum samples. The present study was designed to investigate the meaning of circulating BDNF levels in stroke patients. METHODS AND RESULTS: Unilateral ischemic stroke was induced in rats by the injection of various numbers of microspheres into the carotid circulation in order to mimic the different degrees of stroke severity observed in stroke patients. Blood was serially collected from the jugular vein before and after (4 h, 24 h and 8 d embolization and the whole brains were collected at 4, 24 h and 8 d post-embolization. Rats were then selected from their degree of embolization, so that the distribution of stroke severity in the rats at the different time points was large but similar. Using ELISA tests, BDNF levels were measured in plasma, serum and brain of selected rats. Whereas plasma and serum BDNF levels were not changed by stroke, stroke induced an increase in brain BDNF levels at 4 h and 24 h post-embolization, which was not correlated with stroke severity. Individual plasma BDNF levels did not correlate with brain levels at any time point after stroke but a positive correlation (r = 0.67 was observed between individual plasma BDNF levels and stroke severity at 4 h post-embolization. CONCLUSION: Circulating BDNF levels do not mirror brain BDNF levels after stroke, and severe stroke is associated with high plasma BDNF in the very acute stage.

  15. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D.; Morris, G.M.

    2000-01-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED 50 ) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  16. Immature rat brain slices exposed to oxygen-glucose deprivation as an in vitro model of neonatal hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Fernández-López, David; Martínez-Orgado, José; Casanova, Ignacio; Bonet, Bartolomé; Leza, Juan Carlos; Lorenzo, Pedro; Moro, Maria Angeles; Lizasoain, Ignacio

    2005-06-30

    To analyze whether exposure to oxygen-glucose deprivation (OGD) of immature rat brain slices might reproduce the main pathophysiologic events leading to neuronal death in neonatal hypoxic-ischemic encephalopathy (NHIE), 500 microm-thick brain slices were obtained from 7-day-old Wistar rats, and incubated in oxygenated physiological solution. In OGD group, oxygen and glucose were removed from the medium for 10-30 min (n = 25); then, slices were re-incubated in normal medium. In control group the medium composition remained unchanged (CG, n = 30). Medium samples were obtained every 30 min for 3 h. To analyze neuronal damage, slices were stained with Nissl and CA1 area of hippocampus and cortex were observed under microscopy. In addition, neuronal death was quantified as LDH released to the medium determined by spectrophotometry. Additionally, medium glutamate (Glu) levels were determined by HPLC and those of TNFalpha by ELISA, whereas inducible nitric oxide synthase expression was determined by Western blot performed on slices homogenate. Optimal OGD time was established in 20 min. After OGD, a significant decrease in the number of neurones in hippocampus and cortex was observed. LDH release was maximal at 30 min, when it was five-fold greater than in CG. Furthermore, medium Glu concentrations were 200 times greater than CG levels at the end of OGD period. A linear relationship between Glu and LDH release was demonstrated. Finally, 3 h after OGD a significant induction of iNOS as well as an increase in TNFalpha release were observed. In conclusion, OGD appears as a feasible and reproducible in vitro model, leading to a neuronal damage, which is physiopathologically similar to that found in NHIE.

  17. Expression and Localization of TRK-Fused Gene Products in the Rat Brain and Retina

    International Nuclear Information System (INIS)

    Maebayashi, Hisae; Takeuchi, Shigako; Masuda, Chiaki; Makino, Satoshi; Fukui, Kenji; Kimura, Hiroshi; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It has been reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. However, no information regarding the localization of Tfg in rat tissues is available. In this study, we investigated the expression of Tfg mRNA in normal rat tissues using reverse transcription-polymerase chain reaction (RT-PCR). We also produced an antibody against Tfg gene products and examined the localization of TFG in the rat brain and retina. The RT-PCR experiments demonstrated that two types of Tfg mRNA were expressed in rat tissues: the conventional form of Tfg (cTfg) and a novel variant form, retinal Tfg (rTfg). RT-PCR analyses demonstrated that cTfg was ubiquitously expressed in rat tissues, while rTfg was predominantly expressed in the brain and retina. Western blot analysis demonstrated two bands with molecular weights of about 30 kDa and 50 kDa in the rat brain. Immunohistochemistry indicated that TFG proteins were predominantly expressed by neurons in the brain. In the rat retina, intense TFG-immunoreactivity was detected in the layer of rods and cones and the outer plexiform layer

  18. Effects of maternal exposure to trichloroethylene on glucose uptake and nucleic acid and protein levels in the brains of developing rat pups

    International Nuclear Information System (INIS)

    Gerbec, E.A.N.

    1985-01-01

    Trichloroethylene (TCE) is a widespread contaminant of drinking water sources. This study examined several biochemical aspects of the hippocampus and cerebellum of rat pups that were exposed prenatally (gestational) and postnatally (lactational) to TCE via their dams' drinking water. The effects of TCE on glucose uptake, and on nucleic and protein levels in brain tissue were examined in these pups. Glucose uptake in the cerebellum, hippocampus and whole brain of the pups during the first 21 days of life was measured using the tritium-labeled 2-deoxy-D-glucose (2-DG) dissection/scintillation counting technique. The author determined that 312 mg TCE/I in drinking water (total dam exposure was 684 mg) significantly depressed 2-DG uptake in the whole brains and cerebella of 7- to 21-day old pups. This concentration also reduced 2-DG uptake in the hippocampus of exposed pups at 7, 11, and 16 days, but the uptake returned to control levels by 21 days. No overt toxicity, such as lower body or brain weight, was observed at this exposure level. This decrease in 2-DG uptake is a reflection of a decreased relative glucose uptake in the TCE exposed animals. Total DNA and RNA were extracted and measured using a modification of the Schmidt-Thannhauser procedure and Schneider technique, respectively. Proteins were determined based on the method of Bradford (1976)

  19. Proteomic analysis of post-nuclear supernatant fraction and percoll-purified membranes prepared from brain cortex of rats exposed to increasing doses of morphine

    Czech Academy of Sciences Publication Activity Database

    Ujčíková, Hana; Eckhardt, Adam; Kagan, Dmytro; Roubalová, Lenka; Svoboda, Petr

    2014-01-01

    Roč. 12, Feb 14 (2014), s. 11 ISSN 1477-5956 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : morphine * long-term exposure * rat brain cortex * isolated plasma membranes * post-nuclear supernatant * 2D electrophoresis Subject RIV: CE - Biochemistry Impact factor: 1.725, year: 2014

  20. Perinatal exposure to methadone affects central cholinergic activity in the weanling rat.

    Science.gov (United States)

    Robinson, S E; Mo, Q; Maher, J R; Wallace, M J; Kunko, P M

    1996-06-01

    Pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (initial dose, 9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that they were exposed to methadone prenatally and/or postnatally. Perinatal methadone exposure disrupted cholinergic activity on postnatal day 21 as measured by the turnover rate of acetylcholine (TRACh) in both female and male rats, although there were some sexually-dimorphic responses. The most profoundly affected brain region was the striatum, where prenatal exposure to methadone increased ACh turnover, whether or not the rats continued to be exposed to methadone postnatally. It appears unlikely that neonatal withdrawal contributes to brain regional changes in ACh turnover, as continued postnatal exposure to methadone did not prevent the prenatal methadone induced changes.

  1. Failure to produce taste-aversion learning in rats exposed to static electric fields and air ions

    Energy Technology Data Exchange (ETDEWEB)

    Creim, J.A.; Lovely, R.H.; Weigel, R.J.; Forsythe, W.C.; Anderson, L.E. [Pacific Northwest Labs., Richland, WA (United States)

    1995-12-01

    Taste-aversion (TA) learning was measured to determine whether exposure to high-voltage direct current (HVdc) static electric fields can produce TA learning in male Long Evans rats. Fifty-six rats were randomly distributed into four groups of 14 rats each. All rats were placed on a 20 min/day drinking schedule for 12 consecutive days prior to receiving five conditioning trials. During the conditioning trials, access to 0.1% sodium saccharin-flavored water was given for 20 min, followed 30 min later by one of four treatments. Two groups of 14 rats each were individually exposed to static electric fields and air ions, one group to +75 kV/m (+2 {times} 10{sup 5} air ions/cm{sup 3}) and the other group to {minus}75 kV/m ({minus}2 {times} 10{sup 5} air ions/cm{sup 3}). Two other groups of 14 rats each served as sham-exposed controls, with the following variation in one of the sham-exposed groups: this group was subdivided into two subsets of seven rats each, so that a positive control group could be included to validate the experimental design. The positive control group (n = 7) was injected with cyclophosphamide 25 mg/kg, i.p., 30 min after access to saccharin-flavored water on conditioning days, whereas the other subset of seven rats was similarly injected with an equivalent volume of saline. Access to saccharin-flavored water on conditioning days was followed by the treatments described above and was alternated daily with water recovery sessions in which the rats received access to water for 20 min in the home cage without further treatment. Following the last water-recovery session, a 20 min, two-bottle preference test (between water and saccharin-flavored water) was administered to each group. The positive control group did show TA learning, thus validating the experimental protocol.

  2. Effects of Various Kynurenine Metabolites on Respiratory Parameters of Rat Brain, Liver and Heart Mitochondria

    Directory of Open Access Journals (Sweden)

    Halina Baran*

    2016-01-01

    Full Text Available Previously, we demonstrated that the endogenous glutamate receptor antagonist kynurenic acid dose-dependently and significantly affected rat heart mitochondria. Now we have investigated the effects of L-tryptophan, L-kynurenine, 3-hydroxykynurenine and kynurenic, anthranilic, 3-hydroxyanthranilic, xanthurenic and quinolinic acids on respiratory parameters (ie, state 2, state 3, respiratory control index (RC and ADP/oxygen ratio in brain, liver and heart mitochondria of adult rats. Mitochondria were incubated with glutamate/malate (5 mM or succinate (10 mM and in the presence of L-tryptophan metabolites (1 mM or in the absence, as control. Kynurenic and anthranilic acids significantly reduced RC values of heart mitochondria in the presence of glutamate/malate. Xanthurenic acid significantly reduced RC values of brain mitochondria in the presence of glutamate/malate. Furthermore, 3-hydroxykynurenine and 3-hydroxyanthranilic acid decreased RC values of brain, liver and heart mitochondria using glutamate/malate. In the presence of succinate, 3-hydroxykynurenine and 3-hydroxyanthranilic acid affected RC values of brain mitochondria, whereas in liver and heart mitochondria only 3-hydroxykynurenine lowered RC values significantly. Furthermore, lowered ADP/oxygen ratios were observed in brain mitochondria in the presence of succinate with 3-hydroxykynurenine and 3-hydroxyanthranilic acid, and to a lesser extent with glutamate/malate. In addition, 3-hydroxyanthranilic acid significantly lowered the ADP/oxygen ratio in heart mitochondria exposed to glutamate/malate, while in the liver mitochondria only a mild reduction was found. Tests of the influence of L-tryptophan and its metabolites on complex I in liver mitochondria showed that only 3-hydroxykynurenine, 3-hydroxyanthranilic acid and L-kynurenine led to a significant acceleration of NADH-driven complex I activities. The data indicate that L-tryptophan metabolites had different effects on brain, liver

  3. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation.

    Science.gov (United States)

    Anwar, M M; Moustafa, M A

    2001-05-01

    We investigated the influence of exogenously administered melatonin on adult rats eye lenses exposed to ultraviolet radiation (UV) A and B ranging from 356-254 nm irradiation at 8 microW/cm(2). Rats exposed to this range of UV for 15 min for one week showed a significant (PUV-radiation significantly (PUV irradiation, may be the main cause of lens opacification. Melatonin injection with radiation significantly reduced (Pradiation, SOD and GSH-Px enzyme activities increased significantly (PUV radiation was as effective as melatonin treatment concurrent with UV irradiation. We conclude that melatonin may protect the eye lens from the damaging effects of UV exposure, and its actions protect lens from oxidative stress, elevating Ca(2+) levels, which are considered as an important causes of cataractogenesis.

  4. Liver polyribosome distribution in intact and adrenalectomized rats exposed to. gamma. radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yatvin, M B; Abdel-Halim, M N [Wisconsin Univ., Madison (USA). Dept. of Radiology; Wisconsin Univ., Madison (USA). Dept. of Human Oncology)

    1978-06-01

    The mechanism(s) by which gamma radiation influences liver polyribosome distribution was studied in groups of intact and adrenalectomized male rats. A shift from light to heavy aggregates occurred in the polyribosomes of both intact and adrenalectomized rats after they were exposed to gamma rays. In irradiated adrenalectomized rats, however, the shift to heavier aggregates was not as great as that which occurred in irradiated adrenal-intact animals. Subcutaneous injection of cortisone acetate (10 mg/100 g body weight) also altered the liver polyribosome patterns of both intact and adrenalectomized rats within 8 hours of its administration. The shift which occurred following cortisone administration, however, was less striking than that seen after irradiation only. Thus, although adrenal glucocorticoids contribute to the radiation-indu ied shift in liver polyribosomes in adrenal-intact rats, other factors appear to be involved, since the shift is also obtained in adrenalectomized animals.

  5. Multidimensional MRI-CT atlas of the naked mole-rat brain

    Directory of Open Access Journals (Sweden)

    Fumiko eSeki

    2013-12-01

    Full Text Available Naked mole-rats have a variety of distinctive features such as the organisation of a hierarchical society (known as eusociality, extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI. Advanced MRI techniques such as diffusion tensor imaging (DTI, which generates high contrast images of fibre structures, can characterise unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography (CT were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualisation of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.

  6. Improved apparatus for neutron capture therapy of rat brain tumors

    International Nuclear Information System (INIS)

    Liu, Hungyuan B.; Joel, D.D.; Slatkin, D.N.; Coderre, J.A.

    1994-01-01

    The assembly for irradiating tumors in the rat brain at the thermal neutron beam port of the Brookhaven Medical Research Reactor was redesigned to lower the average whole-body dose from different components of concomitant radiation without changing the thermal neutron fluence at the brain tumor. At present, the tumor-bearing rat is positioned in a rat holder that functions as a whole-body radiation shield. A 2.54 cm-thick collimator with a centered conical aperture, 6 cm diameter tapering to 2 cm diameter, is used to restrict the size of the thermal neutron field. Using the present holder and collimator as a baseline design, Monte Carlo calculations and mixed-field dosimetry were used to assess new designs. The computations indicate that a 0.5 cm-thick plate, made of 6 Li 2 CO 3 dispersed in polyethylene (Li-poly), instead of the existing rat holder, will reduce the whole-body radiation dose. Other computations show that a 10.16 cm-thick (4 inches) Li-poly collimator, having a centered conical aperture of 12 cm diameter tapering to 2 cm diameter, would further reduce the whole-body dose. The proposed irradiation apparatus of tumors in the rat brain, although requiring a 2.3-fold longer irradiation time, would reduce the average whole-body dose to less than half of that from the existing irradiation assembly. 7 refs., 4 figs., 7 tabs

  7. Alteration in plasma corticosterone levels following long term oral administration of lead produces depression like symptoms in rats.

    Science.gov (United States)

    Haider, Saida; Saleem, Sadia; Tabassum, Saiqa; Khaliq, Saima; Shamim, Saima; Batool, Zehra; Parveen, Tahira; Inam, Qurat-ul-ain; Haleem, Darakhshan J

    2013-03-01

    Lead toxicity is known to induce a broad range of physiological, biochemical and behavioral dysfunctions that may result in adverse effects on several organs, including the central nervous system. Long-term exposure to low levels of lead (Pb(2+)) has been shown to produce behavioral deficits in rodents and humans by affecting hypothalamic-pituitary-adrenal (HPA) axis. These deficits are thought to be associated with altered brain monoamine neurotransmission and due to changes in glucocorticoids levels. This study was designed to investigate the effects of Pb(2+)exposure on growth rate, locomotor activity, anxiety, depression, plasma corticosterone and brain serotonin (5-HT) levels in rats. Rats were exposed to lead in drinking water (500 ppm; lead acetate) for 5 weeks. The assessment of depression was done using the forced swimming test (FST). Estimation of brain 5-HT was determined by high-performance liquid chromatography with electrochemical detection. Plasma corticosterone was determined by spectrofluorimetric method. The present study showed that long term exposure to Pb(2+) significantly decreased the food intake followed by the decrease in growth rate in Pb(2+)exposed rats as compared to control group. No significant changes in open field activity were observed following Pb(2+)exposure while significant increase in anxiogenic effect was observed. Increased plasma corticosterone and decreased 5-HT levels were exhibited by Pb(2+)exposed rats as compared to controls. A significant increase in depressive like symptoms was exhibited by Pb(2+)exposed rats as compared to control rats. The results are discussed in the context of Pb(2+) inducing a stress-like response in rats leading to changes in plasma corticosterone and brain 5-HT levels via altering tryptophan pyrrolase activity.

  8. Brain, lung, and heart oxidative stress assessment of an over-the ...

    African Journals Online (AJOL)

    We evaluated the brain, lung, and heart oxidative stress in rats exposed to aerosol of an over-thecounter pyrethroid insecticide product in Nigeria. The experimental animals were randomly divided into four groups: group I (control) was not exposed to the insecticide aerosol, while groups II, III, and IV were exposed to 6.0 mL ...

  9. Cloning and expression of a rat brain α2B-adrenergic receptor

    International Nuclear Information System (INIS)

    Flordellis, C.S.; Handy, D.E.; Bresnahan, M.R.; Zannis, V.I.; Gavras, H.

    1991-01-01

    The authors isolated a cDNA clone (RBα 2B ) and its homologous gene (GRα 2B ) encoding an α 2B -adrenergic receptor subtype by screening a rat brain cDNA and a rat genomic library. Nucleotide sequence analysis showed that both clones code for a protein of 458 amino acids, which is 87% homologous to the human kidney glycosylated adrenergic receptor (α 2 -C4) and divergent from the rat kidney nonglycosylated α 2B subtype (RNGα 2 ). Transient expression of RBα 2B in COS-7 cells resulted in high-affinity saturable binding for [ 3 H]rauwolscine and a high receptor number in the membranes of transfected COS-7 cells. Pharmacological analysis demonstrated that the expressed receptor bound adrenergic ligands with the following order of potency: rauwolscine > yohimbine > prazosin > oxymetazoline, with a prazosin-to-oxymetazoline K i ratio of 0.34. This profile is characteristic of the α 2B -adrenergic receptor subtype. Blotting analysis of rat brain mRNA gave one major and two minor mRNA species, and hybridization with strand-specific probes showed that both DNA strands of GRα 2B may be transcriptionally active. These findings show that rat brain expresses an α 2B -adrenergic receptor subtype that is structurally different from the rat kidney nonglycosylated α 2B subtype. Thus the rat expresses at least two divergent α 2B -adrenergic receptors

  10. Volumetric abnormalities of the brain in a rat model of recurrent headache.

    Science.gov (United States)

    Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan

    2018-01-01

    Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.

  11. Resveratrol exerts anti-inflammatory and neuroprotective effects to prevent memory deficits in rats exposed to chronic unpredictable mild stress.

    Science.gov (United States)

    Yazir, Yusufhan; Utkan, Tijen; Gacar, Nejat; Aricioglu, Feyza

    2015-01-01

    A number of studies have recently focused on the neuroprotective and anti-inflammatory effects of resveratrol. In prior studies, we described its beneficial effects on scopolamine-induced learning deficits in rats. The aim of this study was to investigate the effects of resveratrol on emotional and spatial cognitive functions, neurotropic factor expression, and plasma levels of proinflammatory cytokines in rats exposed to chronic unpredictable mild stress (CUMS), which is known to induce cognitive deficits. Resveratrol (5 or 20mg/kg) was administered intraperitoneally for 35 days. Rats in the CUMS group and in the 5mg/kg resveratrol+CUMS group performed poorly in tasks designed to assess emotional and spatial learning and memory. The 20mg/kg resveratrol+CUMS group showed improved performance compared to the CUMS group. In addition, the CUMS procedure induced lower expression of brain-derived neurotrophic factor and c-Fos in hippocampal CA1 and CA3 and in the amygdala of stressed rats. These effects were reversed by chronic administration of resveratrol (20mg/kg). In addition, plasma levels of tumor necrosis factor-alpha and interleukin-1 beta were increased by CUMS, but were restored to normal by resveratrol. These results indicate that resveratrol significantly attenuates the deficits in emotional learning and spatial memory seen in chronically stressed rats. These effects may be related to resveratrol-mediated changes in neurotrophin factor expression in hippocampus and in levels of proinflammatory cytokines in circulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Changes in some Hematological Parameters and Thyroid Hormones in Rats Exposed to Pulsed Electromagnetic Field

    International Nuclear Information System (INIS)

    EL-Abiad, N.M.; Marzook, E.A.; EI-Aragi, G.M.

    2007-01-01

    In the present study pulsed electromagnetic spectrum was used to evaluate the effect of exposure on some biochemical and hematological parameters in male albino rats. Three groups of rats (10 each) were exposed to 10, 15, 20 pulses of electromagnetic spectrum 3 times per week for 3 weeks, the unexposed group was considered as the control group. At the end of experiment, serum levels of thyroid hormones triiodothryronine and thyroxine (T 3 ,T 4 ) and some hematological parameters were estimated. The hematological studies revealed that exposure to electromagnetic spectrum induced significant reduction in red blood cell count(RBC),and also in hemoglobin concentration(Hb), while reticulocytic count(Ret.) was elevated in the three exposed groups, platelets count was increased only on the second exposed group, while leukocytic count (WBC's), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MGH), mean corpuscular hemoglobin concentration (MCHC) were not affected, lymphocytic count was decreased only on the second exposed group, the impairment of thyroid functions was noticed by elevation of T 3 and T 4 in the three exposed groups

  13. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats.

    Science.gov (United States)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S; Simonsen, Mette; Ott, Peter; Vilstrup, Hendrik; Sørensen, Michael

    2014-03-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine, and aspartate and incorporation of (15)NH(4)(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation of (15)NH(4)(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH(4)(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined but only in brain was an increased incorporation of (15)N-ammonia into alanine observed. Liver and kidney were important for metabolizing blood-borne ammonia.

  14. Oxidative stress induces the decline of brain EPO expression in aging rats.

    Science.gov (United States)

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (paging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (paging could result in the decline of EPO in the hippocampus and oxidative stress might be the main reason for the decline of brain EPO in aging rats, involved with the decrease of HIF-2α stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats

    Science.gov (United States)

    Kouchi, Hayet Y.; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S.; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  16. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    Directory of Open Access Journals (Sweden)

    Raafat P Fares

    Full Text Available Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage, which offers: (1 minimally stressful social interactions; (2 increased voluntary exercise; (3 multiple entertaining activities; (4 cognitive stimulation (maze exploration, and (5 novelty (maze configuration changed three times a week. The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.

  17. Blood-ocular and blood-brain barrier function in streptozocin-induced diabetes in rats

    International Nuclear Information System (INIS)

    Maeepea, O.; Karlsson, C.; Alm, A.

    1984-01-01

    Edetic acid labeled with chromium 51 was injected intravenously in normal rats and in rats with streptozocin-induced diabetes. One hour after the injection the animals were killed and the concentrations of edetic acid 51Cr in vitreous body, retina, and brain were determined. No significant difference was observed between the two groups for either tissue. In a second series, a mixture of tritiated 1-glucose and aminohippuric acid tagged with carbon 14 was injected instead of edetic acid. A substantial accumulation of aminohippuric acid 14C compared with tritiated 1-glucose was observed in the vitreous body and the brain of diabetic rats in comparison with the control group. It is concluded that untreated streptozocin-induced diabetes in rats for one to two weeks will not cause a generalized increase in the permeability of the blood-ocular or the blood-brain barriers, but organic acids may accumulate in the vitreous body as well as in the brain as a consequence of reduced outward transport through these barriers

  18. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Figlewicz, D.F.; Kahn, S.E.; Baskin, D.G.; Greenwood, M.R.; Porte, D. Jr.

    1990-01-01

    In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals

  19. Comparison of Trazodone, Diazepame and Dibenzepine Influences on Rat Brain Beta-Endorphins Content

    Directory of Open Access Journals (Sweden)

    Radivoj Jadrić

    2007-08-01

    Full Text Available The aim of our study was to establish the extent of influence of different psychotropic drugs to brain β-endorphins in experimental animals. The study was performed on albino Wistar rats (weight 250 g, treated with different psychoactive drugs. RIA technique was employed for quantification of brain β-endorphins. Brain β-endorphins were higher in experiment group treated with trazodone (929 pg/g ± 44,43; X±SD, and dibenzepine (906,63 pg/g ± 74,06, yet with lower brain content in rats treated with diazepame (841,55 pg/g ± 68,47, compared to brain β-endorphins content of control group treated with saline solution (0,95% NaCl (873,5 pg/g ± 44,89. Significant differences were obtained comparing brain β-endorphins of trazodone vs. diaze-pame treated animals, with diazepame group having lower values (p<0,02. This study showed differences in changes of rat brain β-endorphins contents when different psy-choactive drugs are used. Therefore, we consider that β-endorphins could be used for evaluation of effects of psychoactive drugs, as a useful parameter in therapy with these psycho pharmaceuticals.

  20. [11C]befloxatone brain kinetics is not influenced by Bcrp function at the blood-brain barrier: A PET study using Bcrp TGEM knockout rats

    International Nuclear Information System (INIS)

    Hosten, Benoit; Jacob, Aude; Saubamea, Bruno; Scherrmann, Jean-Michel; Boisgard, Raphael; Goutal, Sebastien; Dolle, Frederic; Tournier, Nicolas; Cisternino, Salvatore

    2013-01-01

    Knockout (KO) animals are useful tools with which to assess the interplay between P-glycoprotein (P-gp; Abcb1) and the breast cancer resistance protein (Bcrp, Abcg2), two major ABC-transporters expressed at the blood-brain barrier (BBB). However, one major drawback of such deficient models is the possible involvement of compensation between transporters. In the present study, P-gp and Bcrp distribution in the brain as well as P-gp expression levels at the BBB were compared between the Bcrp TGEM KO rat model and the wild-type (WT) strain. Therefore, we used confocal microscopy of brain slices and western blot analysis of the isolated brain microvessels forming the BBB. This deficient rat model was used to assess the influence of Bcrp on the brain and peripheral kinetics of its substrate [ 11 C]befloxatone using positron emission tomography (PET). The influence of additional P-gp inhibition was tested using elacridar (GF120918) 2 mg/kg in Bcrp KO rats. The distribution pattern of P-gp in the brain as well as P-gp expression levels at the BBB was similar in Bcrp-deficient and WT rats. Brain and peripheral kinetics of [ 11 C]befloxatone were not influenced by the lack of Bcrp. Neither was the brain uptake of [ 11 C]befloxatone in Bcrp-deficient rats influenced by the inhibition of P-gp. In conclusion, the Bcrp-deficient rat strain, in which we detected no compensatory mechanism or modification of P-gp expression as compared to WT rats, is a suitable model to study Bcrp function separately from that of P-gp at the BBB. However, although selectively transported by BCRP in vitro, our results suggest that [ 11 C]befloxatone PET imaging might not be biased by impaired function of this transporter in vivo. (authors)

  1. Effects of an acute and a sub-chronic 900 MHz GSM exposure on brain activity and behaviors of rats

    International Nuclear Information System (INIS)

    Elsa Brillaud; Aleksandra Piotrowski; Anthony Lecomte; Franck Robidel; Rene de Seze

    2006-01-01

    Radio frequencies are suspected to produce health effects. Concerning the mobile phone technology, according to position during use (close to the head), possible effects of radio frequencies on the central nervous system have to be evaluated. Previous works showed contradictory results, possibly due to experimental design diversity. In the framework of R.A.M.P. 2001 project, we evaluated possible effect of a 900 MHz GSM exposure on the central nervous system of rat at a structural, a functional and a behavioral level after acute or sub-chronic exposures. Rats were exposed using a loop antenna system to different S.A.R. levels and durations, according to results of the French C.O.M.O.B.I.O. 2001 project. A functional effect was found (modification of the cerebral activity and increase of the glia surface) after an acute exposure, even at a low level of brain averaged S.A.R. (1.5 W/kg). No cumulative effect was observed after a sub-chronic exposure (same amplitude of the effect). No structural or behavioral consequence was noted. We do not conclude on the neurotoxicity of the 900 MHz GSM exposure on the rat brain. Our results do not indicate any health risk. (authors)

  2. Effects of an acute and a sub-chronic 900 MHz GSM exposure on brain activity and behaviors of rats

    Energy Technology Data Exchange (ETDEWEB)

    Elsa Brillaud; Aleksandra Piotrowski; Anthony Lecomte; Franck Robidel; Rene de Seze [Toxicology Unit, INERIS, Verneuil en Halatte (France)

    2006-07-01

    Radio frequencies are suspected to produce health effects. Concerning the mobile phone technology, according to position during use (close to the head), possible effects of radio frequencies on the central nervous system have to be evaluated. Previous works showed contradictory results, possibly due to experimental design diversity. In the framework of R.A.M.P. 2001 project, we evaluated possible effect of a 900 MHz GSM exposure on the central nervous system of rat at a structural, a functional and a behavioral level after acute or sub-chronic exposures. Rats were exposed using a loop antenna system to different S.A.R. levels and durations, according to results of the French C.O.M.O.B.I.O. 2001 project. A functional effect was found (modification of the cerebral activity and increase of the glia surface) after an acute exposure, even at a low level of brain averaged S.A.R. (1.5 W/kg). No cumulative effect was observed after a sub-chronic exposure (same amplitude of the effect). No structural or behavioral consequence was noted. We do not conclude on the neurotoxicity of the 900 MHz GSM exposure on the rat brain. Our results do not indicate any health risk. (authors)

  3. Immunotoxic effects of iodine-131 in prenatally exposed rats

    International Nuclear Information System (INIS)

    Cole, D.A.; Stevens, R.H.; Lindholm, P.A.; Cheng, H.F.

    1985-01-01

    Present results suggest that offspring exposed in utero to radioactive iodine-131 develop a measureable cell-mediated immune (CMI) response. Regnant Fischer F344 inbred rats were exposed to 370 kBg to 3.7 MBg (10 to 100 μCi) Na 131I on 16 to 18 days of gestation and evaluated for CMI responsiveness 2 to 3 months post exposure using an 125I radiolabeled membrane release assay. Current data suggest that not only the F1, but also the F2 pups develop a measureable CMI response. In order to determine whether other immune functions are altered studies have been initiated to evaluate the immunotoxic effect of prenatal exposure to 131I. These studies include the evaluation of the delayed hypersensitivity response and the blastogenic responses to phytoheemagglutinin, concanavalin A, and lipopolysaccharide

  4. Effect of cadmium on lipid metabolism of brain

    International Nuclear Information System (INIS)

    Gulati, S.; Gill, K.D.; Nath, R.

    1987-01-01

    The effect of early postnatal cadmium exposure on the in vivo incorporation of (1- 14 C) sodium acetate into various lipid classes of the weanling rat brain was studied. A stimulated incorporation of the label was observed in total lipids, phospholipids, cholesterol, cerebrosides and sulphatides of the brain of Cd-exposed animals compared to controls. (author)

  5. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    Science.gov (United States)

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  6. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    Science.gov (United States)

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  7. Intrauterine Exposure to Maternal Stress Alters Bdnf IV DNA Methylation and Telomere Length in the Brain of Adult Rat Offspring

    Science.gov (United States)

    Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn; Tulbert, Christine; Bollinger, Justin; Ronca Finco, April E.; Roth, Tania L.

    2017-01-01

    DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavioral outcomes. Here, we measured methylation of Brain-derived neurotrophic factor (Bdnf), a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed controls. Further, prenatally-stressed males had shorter telomeres than controls in the mPFC. This study provides the first evidence in a rodent model of an association between prenatal stress exposure and subsequent shorter brain telomere length. Together findings indicate a long-term impact of prenatal stress on DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational epigenetic alterations and changes in telomere length.

  8. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  9. Estrone is neuroprotective in rats after traumatic brain injury.

    Science.gov (United States)

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (pcerebral cortical levels of TUNEL-positive staining (pprotective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  10. Impairments of learning and memory in the rats after brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Nobuhiko [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-06-01

    Clinical trials of hadrontherapy have been carried out world wide at several facilities including National Institute of Radiological Sciences (NIRS). Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumors. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We investigated and reported here the early consequences of brain damages caused by proton beam. The animals that had memorized the location of the standard position were locally irradiated to brain with either 70 MeV protons or 290 MeV carbon ions. At 24 hr after irradiation, impairment of the long-term memory was not observed in the irradiated rats compared to control. Irradiated animals, however, required substantially longer time finding out the standard position than control rats when the standard platform displaced to a position different from memorized position. This follows that a single doses of 30 Gy, either protons or carbon ions, impairs the working memory of animals. Function of muscarinic acetylcholine receptors was analyzed by an in vivo binding assay using radioligand quinuclidinyl benzilate (QNB). Irradiated rats were intravenously injected with 5.5 MBq of {sup 3}H-QNB 24 hr after the irradiation, and decapitated 60 min after tracer injection. The autoradiographic studies showed an transitional increase of {sup 3}H-QNB in vivo binding in the early phase after proton irradiation, even though no change in in-vitro {sup 3}H-QNB binding was see in brain autoradiograms of irradiated rats. The cerebral blood flow and the histrogical features of brain were also changed at 3 months post-irradiation. These results indicate that the memory impairment caused by radiation is closely related to the early change of acetylcholine receptor in vivo. (author)

  11. Impairments of learning and memory in the rats after brain irradiation

    International Nuclear Information System (INIS)

    Takai, Nobuhiko

    2002-01-01

    Clinical trials of hadrontherapy have been carried out world wide at several facilities including National Institute of Radiological Sciences (NIRS). Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumors. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We investigated and reported here the early consequences of brain damages caused by proton beam. The animals that had memorized the location of the standard position were locally irradiated to brain with either 70 MeV protons or 290 MeV carbon ions. At 24 hr after irradiation, impairment of the long-term memory was not observed in the irradiated rats compared to control. Irradiated animals, however, required substantially longer time finding out the standard position than control rats when the standard platform displaced to a position different from memorized position. This follows that a single doses of 30 Gy, either protons or carbon ions, impairs the working memory of animals. Function of muscarinic acetylcholine receptors was analyzed by an in vivo binding assay using radioligand quinuclidinyl benzilate (QNB). Irradiated rats were intravenously injected with 5.5 MBq of 3 H-QNB 24 hr after the irradiation, and decapitated 60 min after tracer injection. The autoradiographic studies showed an transitional increase of 3 H-QNB in vivo binding in the early phase after proton irradiation, even though no change in in-vitro 3 H-QNB binding was see in brain autoradiograms of irradiated rats. The cerebral blood flow and the histrogical features of brain were also changed at 3 months post-irradiation. These results indicate that the memory impairment caused by radiation is closely related to the early change of acetylcholine receptor in vivo. (author)

  12. [Alterations of glial fibrillary acidic protein in rat brain after gamma knife irradiation].

    Science.gov (United States)

    Ma, Z M; Jiang, B; Ma, J R

    2001-08-28

    To study glial fibrillary acidic protein (GFAP) immunoreactivity in different time and water content of the rat brain treated with gamma knife radiotherapy and to understand the alteration course of the brain lesion after a single high dose radiosurgical treatment. In the brains of the normal rats were irradiated by gamma knife with 160 Gy-high dose. The irradiated rats were then killed on the 1st day, 7th day, 14th day, and 28th day after radiotherapy, respectively. The positive cells of GFAP in brain tissue were detected by immunostaining; the water content of the brain tissue was measured by microgravimetry. The histological study of the irradiated brain tissue was performed with H.E. and examined under light microscope. The numbers of GFAP-positive astrocytes began to increase on the 1st day after gamma knife irradiation. It was enlarged markedly in the number and size of GFAP-stained astrocytes over the irradiated areas. Up to the 28th day, circumscribed necrosis foci (4 mm in diameter) was seen in the central area of the target. In the brain tissue around the necrosis, GFAP-positive astrocytes significantly increased (P gravity in the irradiated brain tissue the 14th and 28th day after irradiation. The results suggest that GFAP can be used as a marker for the radiation-induced brain injury. The brain edema and disruption of brain-blood barrier can be occurred during the acute stage after irradiation.

  13. Restoring susceptibility induced MRI signal loss in rat brain at 9.4 T: A step towards whole brain functional connectivity imaging.

    Directory of Open Access Journals (Sweden)

    Rupeng Li

    Full Text Available The aural cavity magnetic susceptibility artifact leads to significant echo planar imaging (EPI signal dropout in rat deep brain that limits acquisition of functional connectivity fcMRI data. In this study, we provide a method that recovers much of the EPI signal in deep brain. Needle puncture introduction of a liquid-phase fluorocarbon into the middle ear allows acquisition of rat fcMRI data without signal dropout. We demonstrate that with seeds chosen from previously unavailable areas, including the amygdala and the insular cortex, we are able to acquire large scale networks, including the limbic system. This tool allows EPI-based neuroscience and pharmaceutical research in rat brain using fcMRI that was previously not feasible.

  14. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    International Nuclear Information System (INIS)

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-01-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of [ 3 H]-antagonist as well as of the labeled natural neurotransmitter, [ 3 H]-acetylcholine [( 3 H]-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of [ 3 H]-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity [ 3 H]-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with [ 3 H]-antagonist represent a loss of low-affinity agonist binding sites. In contrast, [ 3 H]-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms

  15. Uranium XAFS analysis of kidney from rats exposed to uranium.

    Science.gov (United States)

    Kitahara, Keisuke; Numako, Chiya; Terada, Yasuko; Nitta, Kiyohumi; Shimada, Yoshiya; Homma-Takeda, Shino

    2017-03-01

    The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U L III -edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate.

  16. Effects of anesthesia on [11C]raclopride binding in the rat brain

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Simonsen, Mette; Møller, Arne

    Background Very often rats are anesthetized prior to micro positron emission tomography (microPET) brain imaging in order to prevent head movements. Anesthesia can be administered by inhalation agents, such as isoflurane, or injection mixtures, such as fentanyl-fluanisone-midazolam. Unfortunately......, anesthesia affects a variety of physiological variables, including in the brain. Aim The aim of this study was to compare the effects of inhalation and injection anesthesia on the binding potential of the dopaminergic D2/3 tracer [11C]raclopride used for PET brain imaging in human and animal studies....... Materials & Methods Nine male Lew/Mol rats were assigned to either inhalation (isoflurane; N=4) or injection (fentanyl-fluanisone-midazolam; N=5) anesthesia. Catheters were surgically placed in femoral arteries and veins for blood sampling and tracer injection. After a short attenuation scan, the rats were...

  17. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie, E-mail: ettieg@iibr.gov.il

    2016-11-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  18. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    International Nuclear Information System (INIS)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie

    2016-01-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  19. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  20. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    International Nuclear Information System (INIS)

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-01-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation

  1. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    Science.gov (United States)

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  2. Fragmentation of Protein Kinase N (PKN) in the Hydrocephalic Rat Brain

    International Nuclear Information System (INIS)

    Okii, Norifumi; Amano, Taku; Seki, Takahiro; Matsubayashi, Hiroaki; Mukai, Hideyuki; Ono, Yoshitaka; Kurisu, Kaoru; Sakai, Norio

    2007-01-01

    PKN (protein kinase N; also called protein kinase C-related kinase (PRK-1)), is a serine/threonine protein kinase that is ubiquitously expressed in several organs, including the brain. PKN has a molecular mass of 120 kDa and has two domains, a regulatory and a catalytic domain, in its amino-terminals and carboxyl-terminus, respectively. Although the role of PKN has not been fully elucidated, previous studies have revealed that PKN is cleaved to a constitutively active catalytic fragment of 55 kDa in response to apoptotic signals. Hydrocephalus is a pathological condition caused by insufficient cerebrospinal fluid (CSF) circulation and subsequent excess of CSF in the brain. In this study, in order to elucidate the role of PKN in the pathophysiology of hydrocephalus, we examined PKN fragmentation in hydrocephalic model rats. Hydrocephalus was induced in rats by injecting kaolin into the cisterna magna. Kaolin-induced rats (n=60) were divided into three groups according to the observation period after treatment (group 1: 3–6 weeks, group 2: 7–12 weeks, and group 3: 13–18 weeks). Sham-treated control rats, injected with sterile saline (n=20), were similarly divided into three groups. Spatial learning ability was estimated by a modified water maze test. Thereafter, brains were cut into slices and ventricular dilatation was estimated. Fragmentation of PKN was observed by Western blotting in samples collected from the parietal cortex, striatum, septal nucleus, hippocampus, and periaqueductal gray matter. All kaolin-induced rats showed ventricular dilatation. Most of them showed less spatial learning ability than those of sham-treated controls. In most regions, fragmentation of PKN had occurred in a biphasic manner more frequently than that in controls. The appearance of PKN fragmentation in periaqueductal gray matter was correlated with the extent of ventricular dilation and spatial learning disability. These results revealed that PKN fragmentation was observed in

  3. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    Science.gov (United States)

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  4. Imaging of water distribution in the rat brain by activation autoradiography

    International Nuclear Information System (INIS)

    Kogure, K.; Kawashima, K.; Iwata, R.; Ido, T.

    1990-01-01

    Regional water distribution in the rat brain was obtained autoradiographically by activation analysis. The autoradiogram obtained for the normal rat brain showed high accumulation of water in the areas of sensory-motor cortex, hippocampus, thalamus, and amygdaloid cortex, whereas corpus callosum and internal capsule showed low water contents as expected. The estimated values of water content were 78.6 +/- 4.9 weight % for gray matter, and 73.5 +/- 4.9 weight % for white matter, respectively. The mean values of the water content were consistent with those obtained by a conventional drying-weighing method

  5. Influence of age on the passage of paraquat through the blood-brain barrier in rats: a distribution and pathological examination

    International Nuclear Information System (INIS)

    Widdowson, P.S.; Farnworth, M.J.; Simpson, M.G.; Lock, E.A.

    1996-01-01

    Experiments were performed to determine the extent of paraquat entry into the brain of neonatal and elderly rats, as compared with adult rats, which may be dependent on the efficacy of the blood-brain barrier. A single, median lethal dose (20 mg/kg s.c.) of paraquat containing [14C]paraquat was administered to neonatal (10 day old), adult (3 month old) and elderly (18 month old) rats. In contrast to the adult and elderly rats where paraquat levels fell over the 24 h post-dosing period to negligible levels, paraquat concentrations in neonatal brains did not decrease with time between 0.5 and 24 h following dosing. The distribution of [14C]paraquat was measured in selective brain regions using quantitative autoradiography in all three age groups of rats, 30 min and 24 h following dosing. Autoradiography demonstrated that brain paraquat distributions were similar in the rat age groups. Most of the paraquat was confined to regions outside the blood-brain barrier and to brain regions that lack a complete blood-brain barrier e.g. dorsal hypothalamus, area postrema and the anterior olfactory bulb. Between 0.5 h and 24 h following dosing, paraquat concentrations in deeper brain structures, some distance away from the sites of entry, began to slowly increase in all the rat age groups. By 24 h following dosing, a majority of brain regions examined using quantitative autoradiography revealed significantly higher paraquat concentrations in neonatal brains as compared to brain regions of adult and elderly rats. Despite increased paraquat entry into neonatal brain, we could find no evidence for paraquat-induced neuronal cell damage following a detailed histopathological examination of perfused-fixed brains. In conclusion, impaired blood-brain barrier integrity in neonatal brain thus permitting more paraquat to enter than in adult brain, did not result in neuronal damage

  6. A STUDY OF FISCHER 344 RATS EXPOSED TO SILICA DUST FOR SIX MONTHS AT CONCENTRATIONS OF 0, 2, 10 OR 20 MG / M3.

    Energy Technology Data Exchange (ETDEWEB)

    KUTZMAN,R.S.

    1984-02-01

    The major objective of this study was to relate the results of a series of functional tests to the compositional and structural alterations in the rat lung induced by subchronic exposure to silica dust. Fischer-344 rats were exposed for 6 hours/day, 5 days/week for 6 months to either 0, 2, 10, or 20 mg SiO{sub 2}/m{sup 3}. The general appearance of the exposed rats was not different from that of the controls. Interestingly, female rats exposed to silica dust, at all tested concentrations, gained more weight than the controls. The lung weight and the lung-to-body weight ratio was greater in the male rats exposed to the highest concentration of silica dust.

  7. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    International Nuclear Information System (INIS)

    Schindler, Matthew K.; Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-01-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals

  8. Utilization of 14C-tyrosine in brain and peripheral tissues of developmentally protein malnourished rats

    International Nuclear Information System (INIS)

    Miller, M.; Leahy, J.P.; McConville, F.; Morgane, P.J.; Resnick, O.

    1978-01-01

    Prior studies of developmentally protein malnourished rats have reported substantial changes in brain and peripheral utilization of 14 C-leucine, 14 C-phenylalanine, and 14 C-tryptophan. In the present study rats born to dams fed a low protein diet (8% casein) compared to the offspring of control rats fed a normal diet (25% casein) showed few significant differences in the uptake and incorporation of 14 C-tyrosine into brain and peripheral tissues from birth to age 21 days. At birth, the 8% casein pups exhibited significant decreases in brain and peripheral tissue incorporation of tracer only at short post-injection times (10 and 20 min), but not at longer intervals (90 and 180 min). During ontogenetic development (Days 5-21), the 8% casein rats showed significant increases in uptake of 14 C-tyrosine into the brain and peripheral tissues on Day 11 and a significantly higher percent incorporation of tracer into brain protein on Day 21 as compared to the 25% casein rats. For the most part, there were no significant changes in incorporation of radioactivity in peripheral tissues for the 2 diet groups on these post-birth days. Overall, the data indicates that developmental protein malnutrition causes relatively fewer changes in brain and peripheral utilization of the semi-essential amino acid tyrosine than those observed in previous studies with essential amino acids

  9. Dose-response study in F344 rats exposed to (U,Pu)O2 or PuO2

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Eidson, A.F.; Hahn, F.F.; Scott, B.R.; Seiler, F.A.; Boecker, B.B.

    1987-01-01

    The relationship of radiation dose to lung and the biological effect observed was investigated following inhalation of two types of plutonium-containing particulate materials in rats. Bulk powder samples of the two materials were obtained from within gloveboxes used in the routine manufacture of mixed plutonium and uranium oxide nuclear fuel. The materials were a solid solution of uranium and plutonium treated at 1750 0 C and a PuO 2 feedstock. Groups of rats received a single inhalation exposure to a material to achieve one of three levels of initial pulmonary burden. Rats were maintained for their lifespan to observe the biological effects produced. These effects were observed in the lungs of rats exposed to either type of particle. The same types of lung cancer were produced by both particulate materials. The incidences of cancers were also similar at comparable levels of initial pulmonary burden for the two materials. The crude incidence of lung cancers for rats exposed to these materials was not different than those reported for similar studies that used laboratory-produced aerosols of PuO 2 . Using a linear dose-effect model, the relative risk of lung cancer for rats exposed to these industrial materials was 2.3 +- 1.0 (SE) at a lung dose of 100 rad. The doubling dose for lung cancers was 78 +- 63 rad to lung to median life span. 21 refs., 9 figs., 10 tabs

  10. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    Science.gov (United States)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  11. Disruption of behavior and brain metabolism in artificially reared rats.

    Science.gov (United States)

    Aguirre-Benítez, Elsa L; Porras, Mercedes G; Parra, Leticia; González-Ríos, Jacquelina; Garduño-Torres, Dafne F; Albores-García, Damaris; Avendaño, Arturo; Ávila-Rodríguez, Miguel A; Melo, Angel I; Jiménez-Estrada, Ismael; Mendoza-Garrido, Ma Eugenia; Toriz, César; Diaz, Daniel; Ibarra-Coronado, Elizabeth; Mendoza-Ángeles, Karina; Hernández-Falcón, Jesús

    2017-12-01

    Early adverse life stress has been associated to behavioral disorders that can manifest as inappropriate or aggressive responses to social challenges. In this study, we analyzed the effects of artificial rearing on the open field and burial behavioral tests and on GFAP, c-Fos immunoreactivity, and glucose metabolism measured in anxiety-related brain areas. Artificial rearing of male rats was performed by supplying artificial milk through a cheek cannula and tactile stimulation, mimicking the mother's licking to rat pups from the fourth postnatal day until weaning. Tactile stimulation was applied twice a day, at morning and at night, by means of a camel brush on the rat anogenital area. As compared to mother reared rats, greater aggressiveness, and boldness, stereotyped behavior (burial conduct) was observed in artificially reared rats which occurred in parallel to a reduction of GFAP immunoreactivity in somatosensory cortex, c-Fos immunoreactivity at the amygdala and primary somatosensory cortex, and lower metabolism in amygdala (as measured by 2-deoxi-2-[ 18 fluoro]-d-glucose uptake, assessed by microPET imaging). These results could suggest that tactile and/or chemical stimuli from the mother and littermates carry relevant information for the proper development of the central nervous system, particularly in brain areas involved with emotions and social relationships of the rat. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1413-1429, 2017. © 2017 Wiley Periodicals, Inc.

  12. Quantitative determination of deoxyribonucleic acid in rat brain

    Science.gov (United States)

    Penn, N. W.; Suwalski, R.

    1969-01-01

    1. A procedure is given for spectrophotometric analysis of rat brain DNA after its resolution into component bases. Amounts of tissue in the range 50–100mg. can be used. 2. The amount of DNA obtained by the present method is 80% greater than that reported for rat brain by a previous procedure specific for DNA thymine. Identity of the material is established by the base ratios of purines and pyrimidines. The features responsible for the higher yield are the presence of dioxan during alkaline hydrolysis of tissue, the determination of the optimum concentration of potassium hydroxide in this step and omission of organic washes of the initial acid-precipitated residues. 3. The requirement for dioxan during alkaline hydrolysis suggests a possible association of brain DNA with lipid. The concentration of potassium hydroxide that gives maximum yield is 0·1m, indicating that there may be internucleotide linkages in this DNA that are more sensitive to alkali than those of liver or thymus DNA. 4. This procedure gives low yields of DNA from liver. It is not suitable for analysis of the DNA from this tissue. PMID:5353529

  13. Lead poisoning and the blood-brain barrier

    International Nuclear Information System (INIS)

    Hertz, M.H.; Bolwig, T.G.; Grandjean, P.; Westergaard, E.

    1981-01-01

    Lead exposure may produce varying degrees of neuropsychiatric manifestations from discrete phenomena, quite often seen in children and as an occupational disease, to the rare fulminant lead encephalopathy. It was determined whether or not damage of the blood-brain barrier permeability in adult rats, as has been demonstr rated in neonatal animals exposed to lead, could also play a role. Massive lead exposure did not induce any change in the transfer (facilitated diffusion) of phenylalanine and tyrosine measured by means of the indicator dilution technique. Ultrastructural examination, after application of horseradish peroxidase, did not reveal any pahtological changes in the permeability to the tracer. It is concluded that in adult rats, in contrast to neonatal anmials, the observed pathological signs clearly seen in the chronically exposed animals must be ascribed to a noxious influence of lead on the extravascular side of the blood-brain barrier. (author)

  14. Effect of sildenafil citrate (Viagra®) on trace element concentration in serum and brain of rats.

    Science.gov (United States)

    Fayed, Abdel-Hasseb A; Gad, Shereen B

    2011-12-01

    As a vasodilator with good hemodynamic effects, sildenafil has been successfully used in the treatment of patients with pulmonary hypertension and cardiovascular diseases. By selectively inhibiting phosphodiestrase type 5 (PDE-5) and thus effectively reducing the breakdown of c GMP, sildenafil administration can markedly improve the erectile dysfunction. Sildenafil also elevates localized cerebral blood flow in rat brain. The objective of the present study was to investigate the effect of sildenafil on the level of trace elements (Zinc (Zn), copper (Cu), iron (Fe), selenium (Se), cobalt (Co), and chromium (Cr)) in blood and brain of rats. Sixteen male albino rats weighing 180-200 g were divided into two groups (8 rats/group). Sildenafil (Viagra, Pfizer Inc.) was dissolved in saline and administered at a dose of 10mg/kg i.p. (0.5 ml volume) to rats in the treated group every 72 h for 12 injections. Rats in the control group were administered the same volume of saline as in treated group. All rats were sacrificed 24h after the last injection. Blood samples were collected and serum was separated and stored at -20°C. Brains were dissected and stored frozen until analysis. Trace elements concentrations were determined by flame emission atomic absorption spectrophotometer. Results showed that sildenafil injection significantly (P<0.05) increased serum and brain Se and Cu concentrations. Moreover, sildenafil increased the Cr concentration in the brain tissue. It was concluded that sildenafil citrate administration increased serum Se and Cu as well as, increased brain Se, Cu, and Cr concentrations in rats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Effect of glycyrrhizin on traumatic brain injury in rats and its mechanism

    Directory of Open Access Journals (Sweden)

    Gu Xiangjin

    2014-02-01

    Full Text Available 【Abstract】Objective: To investigate the neuroprotective effects of glycyrrhizin (Gly as well as its effect on expression of high-mobility group box 1 (HMGB1 in rats after traumatic brain injury (TBI. Methods: Male Sprague-Dawley rats were randomly divided into three groups: sham group, TBI group, and TBI+Gly group (n=36 per group. Rat TBI model was made by using the modified Feeney’s method. In TBI+Gly group, Gly was administered intravenously at a dosage of 10 mg/kg 30 min after TBI. At 24 h after TBI, motor function and brain water content were evaluated. Meanwhile, HMGB1/HMGB1 receptors including toll-like receptor 4 (TLR4 and receptor for advanced glycation end products (RAGE/nuclear factor- κB(NF- κB signaling pathway and inflammatory cytokines in the injured brain tissues were detected using quantitative real-time polymerase chain reaction, western blot, electrophoretic mobility shift assay and enzyme-linked immunosorbent assay. Furthermore, HMGB1, RAGE and TLR4 immunohistochemistry and apoptosis were analyzed. Results: Beam walking performance impairment and brain edema were significantly reduced in TBI+Gly group compared with TBI group; meanwhile, the over-expressions of HMGB1/HMGB1 receptors (TLR4 and RAGE/NF-κB DNA-binding activity and inflammatory cytokines were inhibited. The percentages of HMGB1, RAGE and TLR4- positive cells and apoptotic cells were respectively 58.37%±5.06%, 54.15%±4.65%, 65.50%± 4.83%, 52.02%± 4.63% in TBI group and 39.99%±4.99%, 34.87%±5.02%, 43.33%±4.54%, 37.84%±5.16% in TBI+Gly group (all P<0.01 compared with TBI group. Conclusion: Gly can reduce secondary brain injury and improve outcomes in rat following TBI by down-regulation of HMGB1/HMGB1 receptors (TLR4 and RAGE/NF-κB - mediated inflammatory responses in the injured rat brain.

  16. Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats.

    Science.gov (United States)

    Haas, Clarissa B; Kalinine, Eduardo; Zimmer, Eduardo R; Hansel, Gisele; Brochier, Andressa W; Oses, Jean P; Portela, Luis V; Muller, Alexandre P

    2016-11-01

    Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-β, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.

  17. The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinsons disease rats

    OpenAIRE

    Chen, Yuan; Lian, Yajun; Ma, Yunqing; Wu, Chuanjie; Zheng, Yake; Xie, Nanchang

    2017-01-01

    The expression and significance of tyrosine hydroxylase (TH) in brain tissue of rats with Parkinson's disease (PD) were explored and analyzed. A total of 120 clean-grade and healthy adult Wistar rats weighing 180–240 g were randomly divided equally into four groups according to the random number table method. Rats were sacrificed before and after the model establishment for 3, 6 or 8 weeks. The number of revolutions in rats was observed and the relative expression of TH mRNA in brain tissue w...

  18. Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats.

    Science.gov (United States)

    Vasatkova, Anna; Krizova, Sarka; Krystofova, Olga; Adam, Vojtech; Zeman, Ladislav; Beklova, Miroslava; Kizek, Rene

    2009-01-01

    The aim of this study is to determine level of metallothioneins (MTs) in brain tissues of rats administered by feed mixtures with different content of mouldy wheat or fungi. Selected male laboratory rats of Wistar albino at age of 28 days were used in our experiments. The rats were administered by feed mixtures with different content of vitamins, naturally mouldy wheat or fungi for 28 days. At the very end of the experiment, the animals were put to death and brains were sampled. MT level was determined by differential pulse voltammetry Brdicka reaction. We found that MTs' level in brain tissues from rats administered by standard feed mixtures was significantly higher compared to the level of MTs in rats supplemented by vitamins. Further we studied the effect of supplementation of naturally mouldy wheat on MTs level in rats. In mouldy wheat we detected the presence of following fungi species: Mucor spp., Absidia spp., Penicillium spp., Aspergillus spp. and Fusarium spp. Moreover we also identified and quantified following mycotoxins - deoxynivalenol, zearalenone, T2-toxin and aflatoxins. Level of MTs determined in rats treated with 33 or 66% of mouldy wheat was significantly lower compared to control ones. On the other hand rats treated with 100% of mouldy wheat had less MTs but not significantly. Supplementation of vitamins to rats fed by mouldy wheat had adverse effect on MTs level compared to rats with no other supplementation by vitamins. Moreover vitamins supplementation has no effect on MTs level in brain tissues of rats treated or non-treated with Ganoderma lucidum L. Both mycotoxins and vitamins have considerable effect on level of MTs in brain tissues. It can be assumed that the administered substances markedly influence redox metabolism, which could negatively influence numerous biochemical pathways including those closely related with MTs.

  19. Insulin-like growth factor II messenger ribonucleic acids are synthesized in the choroid plexus of the rat brain

    International Nuclear Information System (INIS)

    Hynes, M.A.; Brooks, P.J.; Van Wyk, J.J.; Lund, P.K.

    1988-01-01

    Previous studies demonstrating the presence of immunoreactive insulin-like growth factors (IGFs) and their receptors in the brain suggest a role of the IGFs in the central nervous system. IGF-II has been implicated as the predominant IGF in brain of mature animals based on studies of immunoreactive peptide and of IGF-II mRNAs. To obtain information about the sites of synthesis of IGF-II in adult rat brain, a 32 P-labeled 31 base long synthetic oligodeoxyribonucleotide complementary in sequence to trailer peptide coding sequences in rat IGF-II mRNA (IGF-II 31 mer) was hybridized with coronal sections of fixed rat brain. The IGF-II 31 mer showed specific hybridization with the choroid plexus throughout rat brain, whereas in other brain regions, structures or cells, hybridization was not discernibly above background. These findings suggest that the choroid plexus is a primary site of synthesis of IGF-II, a probable source of IGF-II in cerebrospinal fluid, and a potential source of IGF-II for actions on target cells within the adult rat brain

  20. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  1. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats.

    Science.gov (United States)

    Abolaji, Amos O; Ojo, Mercy; Afolabi, Tosin T; Arowoogun, Mary D; Nwawolor, Darlinton; Farombi, Ebenezer O

    2017-05-25

    Chlorpyrifos (CPF) is an organophosphorus pesticide widely used in agricultural applications and household environments. 6-Gingerol-rich fraction from Zingiber officinale (Ginger, 6-GRF) has been reported to possess potent anti-oxidative, anti-inflammatory and anti-apoptotic properties. Here, we investigated the protective properties of 6-GRF on CPF-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Five groups of rats containing 14 rats/group received corn oil (control), CPF (5 mg/kg), 6-GRF (100 mg/kg), CPF (5 mg/kg) + 6-GRF (50 mg/kg) and CPF (5 mg/kg) + 6-GRF (100 mg/kg) through gavage once per day for 35 days respectively. The results showed that 6-GRF protected against CPF-induced increases in oxidative stress ((hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA)), inflammatory (myeloperoxidase (MPO), nitric oxide (NO) and tumour necrosis factor-α (TNF- α)), and apoptotic (caspase-3) markers. Also, 6-GRF improved the activities of antioxidant enzymes catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) as well as glutathione (GSH) level in the brain, ovary and uterus of rats exposed to CPF (p < 0.05). Overall, the protective effects of 6-GRF on CPF-induced toxicity in the brain and reproductive organs of rats may be due to its potent antioxidative, anti-inflammatory and antiapoptotic properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Study of uranium transfer across the blood-brain barrier

    Energy Technology Data Exchange (ETDEWEB)

    Lemercier, V.; Millot, X.; Ansoborlo, E.; Menetrier, F.; Fluery-Herard, A.; Rousselle, Ch.; Scherrmann, J.M

    2003-07-01

    Uranium is a heavy metal which, following accidental exposure, may potentially be deposited in human tissues and target organs, the kidneys and bones. A few published studies have described the distribution of this element after chronic exposure and one of them has demonstrated an accumulation in the brain. In the present study, using inductively coupled plasma mass spectrometry (ICP-MS) for the quantification of uranium, uranium transfer across the blood-brain barrier (BBB) has been assessed using the in situ brain perfusion technique in the rat. For this purpose, a physiological buffered bicarbonate saline at pH 7.4 containing natural uranium at a given concentration was perfused. After checking the integrity of the BBB during the perfusion, the background measurement of uranium in control rats without uranium in the perfusate was determined. The quantity of uranium in the exposed rat hemisphere, which appeared to be significantly higher than that in the control rats, was measured. Finally, the possible transfer of the perfused uranium not only in the vascular space but also in the brain parenchyma is discussed. (author)

  3. Relationship between catalase activity and uptake of elemental mercury by rat brain

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1983-01-01

    Uptake of mercury by brain after intravenous injection of elemental mercury was investigated in the rat. Catalase activity was inhibited by aminotriazole either by intraperitoneal affecting catalase in most tissues of the animal or by intraventricular injections affecting catalase in the brain selectively. Uptake of elemental mercury by rat brain was not influenced by intraperitoneal administration of aminotriazole resulting in 50% inhibition of brain catalase. However, when the inhibitor was injected intraventricularly in concentrations to give a 50% inhibition of brain catalase, it was shown that the mercury uptake by brain was significantly decreased. In the latter case when only brain catalase was inhibited and the supply of elemtal mercury to brain was maintained, mercury uptake by brain was proportional to the activity of catalase in brain tissue and to the injected amount of elemental mercury. Contrary to the intraventricular injection of aminotriazole, in animals recieving aminotriazole intraperitoneally prior to elemental mercury injection, we suggest that the lower activity of brain catalse is compensated by an increased supply of elemtal mercury caused by the generally lower oxidation rate in the animal. This view is supported by the finding that mercury uptake by liver increased due to aminotriazole intraperitoneally although activity of catalase was depressed. (author)

  4. Demonstration of endogenous imipramine like material in rat brain

    International Nuclear Information System (INIS)

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-01-01

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits [ 3 H] imipramine specific binding and mimics the inhibitory effect of imipramine on [ 3 H] serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits [ 3 H] imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum

  5. Measurement of tritiated norepinephrine metabolism in intact rat brain

    International Nuclear Information System (INIS)

    Levitt, M.; Kowalik, S.; Barkai, A.I.

    1983-01-01

    A procedure for the study of NE metabolism in the intact rat brain is described. The method involves ventriculocisternal perfusion of the adult male rat with artificial CSF containing [ 3 H]NE. Radioactivity in the perfusate associated with NE and its metabolites 3,4-dihydroxymandelic acid (DOMA), 3,4-dihydroxphenylethyleneglycol (DHPG), 3-methoxy-4-hydroxymandelic acid (VMA), 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), and normetanephrine (NMN) is separated using high-performance liquid chromatography (HPLC). After 80 min the radioactivity in the perfusate reaches an apparent steady-state. Analysis of the steady-state samples shows higher activity in the fractions corresponding to DHPG and MHPG than in those corresponding to DOMA and VMA, confirming glycol formation as the major pathway of NE metabolism in rat brain. Pretreatment with an MAO inhibitor (tranylcypromine) results in a marked decrease in the deaminated metabolites DHPG and MHPG and a concurrent increase in NMN. The results indicate this to be a sensitive procedure for the in vivo determination of changes in NE metabolism. (Auth.)

  6. Protective Effects of Hydroalcoholic Extract of Nasturtium officinale on Rat Blood Cells Exposed to Arsenic

    Directory of Open Access Journals (Sweden)

    Felor Zargari

    2015-06-01

    Full Text Available Background: Arsenic is one of the most toxic metalloids. Anemia and leukopenia are common results of poisoning with arsenic, which may happen due to a direct hemolytic or cytotoxic effect on blood cells. The aim of this study was to examine the effects of hydroalcoholic extract of Nasturtium officinale on blood cells and antioxidant enzymes in rats exposed to sodium (metaarsenite. Methods: 32 Male Sprague Dawley rats were randomly divided into four groups; Group I (normal healthy rats, Group II (treated with 5.5mg/kg of body weight of NaAsO2, Group III (treated with 500mg/kg of body weight of hydro-alcoholic extract of N. officinale, and Group IV (treated with group II and III supplementations. Blood samples were collected and red blood cell, white blood cell, hematocrit, hemoglobin, platelet, total protein and albumin levels and total antioxidant capacity were measured. Data was analyzed with Mann-Whitney U test. Results: WBC, RBC and Hct were decreased in the rats exposed to NaAsO2 (p<0.05. A significant increase was seen in RBC and Hct after treatment with the plant extract (p<0.05. There was no significant decrease in serum albumin and total protein in the groups exposed to NaAsO2 compared to the group I, but NaAsO2 decreased the total antioxidant capacity, significantly. Conclusion: The Nasturtium officinale extract have protective effect on arsenic-induced damage of blood cells.

  7. Effects of acupuncture on tissue oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1978-04-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by smypathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture points (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible and was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase in inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes increased brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients.

  8. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats.

    Science.gov (United States)

    Shumake, Jason; Colorado, Rene A; Barrett, Douglas W; Gonzalez-Lima, F

    2010-07-09

    Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for the treatment of affective disorders. We hypothesized that fluoxetine antidepressant effects may be mediated by decreasing metabolism in the habenula and increasing metabolism in the ventral tegmental area. We measured the effects of fluoxetine on forced swim behavior and regional brain cytochrome oxidase activity in congenitally helpless rats treated for 2 weeks with fluoxetine (5mg/kg, i.p., daily). Fluoxetine reduced immobility in the forced swim test as anticipated, but congenitally helpless rats responded in an atypical manner, i.e., increasing climbing without affecting swimming. As hypothesized, fluoxetine reduced metabolism in the habenula and increased metabolism in the ventral tegmental area. In addition, fluoxetine reduced the metabolism of the hippocampal dentate gyrus and dorsomedial prefrontal cortex. This study provided the first detailed mapping of the regional brain effects of an antidepressant drug in congenitally helpless rats. All of the effects were consistent with previous studies that have metabolically mapped the effects of serotonergic antidepressants in the normal rat brain, and were in the predicted direction of metabolic normalization of the congenitally helpless rat for all affected brain regions except the prefrontal cortex. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    Science.gov (United States)

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  10. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain.

    Science.gov (United States)

    Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2014-03-01

    Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

  11. Oxytocin biotransformation in the rat limbic brain

    NARCIS (Netherlands)

    Burbach, J.P.H.; Schotman, P.; Kloet, E.R. de

    2006-01-01

    Two peptide fragments of oxytocin were isolated by high-pressure liquid chromatography from digests of oxytocin obtained after exposure to a SPM preparation of the rat limbic brain. The structures of these peptides, being Gln-Asn-Cys(O)x-Pro-Leu-GlyNH2 and Gln-Asn-Cys(-S-S-Cys)-Pro-Leu-GlyNH2, were

  12. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring

    DEFF Research Database (Denmark)

    Petersen, Marta Axelstad; Boberg, Julie; Vinggaard, Anne Marie

    2013-01-01

    Thyroid disrupting chemicals can potentially disrupt brain development. Two studies investigating the effect of the antibacterial compound triclosan on thyroxine (T4) levels in rats are reported. In the first, Wistar rat dams were gavaged with 75, 150 or 300 mg triclosan/kg bw/day throughout gest...

  13. Concentration and distribution of 210Po in rats exposed to radon

    International Nuclear Information System (INIS)

    Pan Peng; Yang Zhanshan; Wang Tianchang; Tong Jian; Zhou Jianwei

    2007-01-01

    Objective: To study the concentration and distribution of 210 Po in rats exposed to radon and its daughters. Methods: Fifteen male wistar rats were randomly divided into three groups, including one control group and two radon exposed groups with the cumulative doses of 100 WLM (low dose) and 200 WLM (high dose), respectively. Tissue samples containing 210 Po were spontaneously deposited onto silvery discs with the diameter of 20 mm by means of wet ashing and electrodeposition. The concentration of 210 Po in tissues were measured by α spectroscopy, and tissue burden were calculated. Results: The concentrations of 210 Po were significantly different among the three dose groups in femur, liver, sex gland and hair (P 210 Po were different between the exposed groups and the control group in lung and soleus muscle (P 210 Po in lung, spleen and hair were higher than that in liver, bone and sex gland, the lowest was in intestine. The tissue burdens of liver, bone and sex gland were significantly different from those in other organs or tissues. Conclusions: 210 Po was mainly distributed in lung, liver, spleen, femur and sex gland. The concentrations of 210 Po in organs or tissues and the tissue burdens were correspondingly increased with the exposure dose of radon and its daughters. The results of this experiment provide a dosimetric basis for further studies on the carcinogenic effect of radon and its daughters. (authors)

  14. Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA.

    Science.gov (United States)

    Ons, Sheila; Martí, Octavi; Armario, Antonio

    2004-06-01

    Arc is an effector immediate early gene whose expression is induced in situations of increased neuronal activity. However, there is no report on the influence of stress on Arc expression. Here, we compared the induction of both c-fos and Arc mRNAs in the brain of rats exposed to one of three different stressful situations: novel environment, forced swimming and immobilization. An absent or weak c-fos mRNA signal was observed in control rats, whereas those exposed to one of three stressors showed enhanced c-fos expression in a wide range of brain areas. Constitutive Arc expression was observed in some areas such as cortex, striatum, hippocampus, reticular thalamic nucleus and cerebellar cortex. In response to stressors, a strong induction of Arc was observed, but the pattern was different from that of c-fos. For instance, activation of Arc but not c-fos was observed in the nucleus accumbens after immobilization and in the hippocampus after novel environment. No Arc induction was observed in diencephalic and brainstem areas. The present data show that Arc has a neuroanatomically restricted pattern of induction in the brain after emotional stress. Telencephalic activation suggests that a more intense induction of synaptic plasticity is occurring in this area after exposure to emotional stressors.

  15. Pathological and MRI study on experimental heroin-induced brain damage in rats

    International Nuclear Information System (INIS)

    Long Yu; Kong Xiangquan; Xu Haibo; Liu Dingxi; Yuan Ren; Yu Qun; Xiong Yin; Deng Xianbo

    2005-01-01

    Objective: To study the pathological characteristics of the heroin-induced brain damage in rats, and to assess the diagnostic value of MRI. Methods: A total of 40 adult Wistar rats were studied, 32 rats were used for injecting heroin as heroin group and 8 were used for injecting saline as control group. The heroin dependent rat model was established by administering heroin (ip) in the ascending dosage schedule (0.5 mg/kg), three times a day (at 8:00, 12:00, and 18:00). The control group was established by the same way by injection with saline. The withdrawal scores were evaluated with imp roved criterion in order to estimate the degree of addiction after administering naloxone. Based on the rat model of heroin dependence, the rat model of heroin-induced brain damage was established by the same way with increasing heroin dosage everyday. Two groups were examined by using MRI, light microscope, and electron microscope, respectively in different heroin accumulated dosage (918, 1580, 2686, 3064, 4336, and 4336 mg/kg withdrawal after 2 weeks). Results: There was statistically significant difference (t=9.737, P<0.01) of the withdrawal scores between the heroin dependent group and the saline group (23.0 ± 4.4 and 1.4 ± 0.5, respectively). It suggested that the heroin dependent rat model be established successfully. In different accumulated dosage ( from 1580 mg/kg to 4336 mg/kg), there were degeneration and death of nerve cells in cerebrum and cerebellum of heroin intoxicated rats, and it suggested that the rat model of heroin-induced brain damage was established successfully. The light microscope and electron microscope features of heroin-induced brain damage in rats included: (1) The nerve cells of cerebral cortex degenerated and died. According to the heroin accumulated dosage, there were statistically significant difference of the nerve cell deaths between 4336 mg/kg group and 1580 mg/kg group or control group (P=0.024 and P=0.032, respectively); (2) The main

  16. Proteinase activity in cell nuclei of rats exposed to γ-radiation and methyl nitrosourea

    International Nuclear Information System (INIS)

    Malakhova, L.V.; Surkenova, G.N.; Gaziev, A.I.

    1990-01-01

    Activity of nuclear proteinases in blood and liver cells of rats exposed to whole-body γ-irradiation (10 Gy) has been comparatively studied by the capacity of splitting the caseic substrate. Proteinase activity in nuclei of irradiated rat leukocytes was shown to increase by 2.5 times and to gradually decrease after 48 h reaching 150-160% as compared to the control. Two hours following a single injection of methyl nitrosourea the alteration in the activity of proteinases in nuclei of rat hepatocytes and leukocytes was different from the alteration of this index after γ-irradiation

  17. Vitamin-C protect ethanol induced apoptotic neuro degeneration in postnatal rat brain

    International Nuclear Information System (INIS)

    Naseer, M.I.; Najeebullah; Ikramullah; Zubair, H.; Hassan, M.; Yang, B.C.

    2010-01-01

    Objective: To evaluate ethanol effects to induced activation of caspsae-3, and to observe the protective effects of Vitamin C (vit-C) on ethanol-induced apoptotic neuro degeneration in rat cortical area of brain. Methodology: Administration of a single dose of ethanol in 7-d postnatal (P7) rats triggers activation of caspase-3 and widespread apoptotic neuronal death. Western blot analysis, cells counting and Nissl staining were used to elucidate possible protective effect of vit-C against ethanol-induced apoptotic neuro degeneration in brain. Results: The results showed that ethanol significantly increased caspase-3 expression and neuronal apoptosis. Furthermore, the co-treatment of vit-C along with ethanol showed significantly decreased expression of caspase-3 as compare to control group. Conclusion: Our findings indicate that vit-C can prevent some of the deleterious effect of ethanol on developing rat brain when given after ethanol exposure and can be used as an effective protective agent for Fetal Alcohol Syndrome (FAS). (author)

  18. Specific binding of 125I-salmon calcitonin to rat brain

    International Nuclear Information System (INIS)

    Nakamuta, Hiromichi; Furukawa, Shinichi; Koida, Masao; Yajima, Haruaki; Orlowski, R.C.

    1981-01-01

    Rat brain particulate fraction was found to contain binding sites for 125 I-Salmon Calcitonin-I ( 125 I-SCT). Maximum binding occurred in the physiological pH range of 7.25 - 7.5. The binding reaction proceeded in a temperature-dependent manner. Binding sites were broadly distributed among the various rat brain regions and considerable regional differences existed in the affinity and density as detected by Scatchard analysis. The highest affinity was recorded in the case of the hypothalamus and the lowest in the case of the cerebellum. The KD (nM) and Bmax (pmole/mg protein) estimated for the binding to four regions were as follows: hypothalamus: 1.4 and 0.19, midbrain, hippocampus plus striatum: 1.5 and 0.08, pon plus medulla oblongata: 3.0 and 0.15 and cerebellum: 8.3 and 0.20. Using a particulate fraction of rat brain void of cerebellum and cortices, a binding assay for calcitonins was developed. Binding of 125 I-SCT was inhibited by unlabeled salmon, [Asu sup(1,7)]-eel and porcine calcitonins in a dose-dependent manner and the IC50s were 2.0, 8.0 and 30 nM, respectively. The IC50s were comparable to those estimated using a kidney particulate fraction. Human calcitonin, β-endorphin and substance P were weak inhibitors of the binding. Other peptides, drugs and putative neurotransmitters tested (totally 23 substances) failed to inhibit the binding at concentrations of 1.0 μM. The physiological significance of brain binding sites for calcitonin, with the possibility that the brain may possess endogenous ligands for these sites are discussed. (author)

  19. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain

    Directory of Open Access Journals (Sweden)

    Debora Coimbra-Costa

    2017-08-01

    Full Text Available Acute hypoxia increases the formation of reactive oxygen species (ROS in the brain. However, the effect of reoxygenation, unavoidable to achieve full recovery of the hypoxic organ, has not been clearly established. The aim of the present study was to evaluate the effects of exposition to acute severe respiratory hypoxia followed by reoxygenation on the evolution of oxidative stress and apoptosis in the brain. We investigated the effect of in vivo acute severe normobaric hypoxia (rats exposed to 7% O2 for 6 h and reoxygenation in normoxia (21% O2 for 24 h or 48 h on oxidative stress markers, the antioxidant system and apoptosis in the brain. After respiratory hypoxia we found increased levels of HIF-1α expression, lipid peroxidation, protein oxidation and nitric oxide in brain extracts. Antioxidant defence systems such as superoxide dismutase (SOD, reduced glutathione (GSH and glutathione peroxidase (GPx and the reduced/oxidized glutathione (GSH/GSSG ratio were significantly decreased in the brain. After 24 h of reoxygenation, oxidative stress parameters and the anti-oxidant system returned to control values. Regarding the apoptosis parameters, acute hypoxia increased cytochrome c, AIF and caspase 3 activity in the brain. The apoptotic effect is greatest after 24 h of reoxygenation. Immunohistochemistry suggests that CA3 and dentate gyrus in the hippocampus seem more susceptible to hypoxia than the cortex. Severe acute hypoxia increases oxidative damage, which in turn could activate apoptotic mechanisms. Our work is the first to demonstrate that after 24 h of reoxygenation oxidative stress is attenuated, while apoptosis is maintained mainly in the hippocampus, which may, in fact, be the cause of impaired brain function. Keywords: Antioxidants, Apoptosis, Normobaric hypoxia, Oxidative stress, Reoxygenation

  20. Cytoskeletal protein translation and expression in the rat brain are stressor-dependent and region-specific.

    Directory of Open Access Journals (Sweden)

    Petra Sántha

    Full Text Available Stress is an integral component of life that can sometimes cause a critical overload, depending on the qualitative and quantitative natures of the stressors. The involvement of actin, the predominant component of dendritic integrity, is a plausible candidate factor in stress-induced neuronal cytoskeletal changes. The major aim of this study was to compare the effects of three different stress conditions on the transcription and translation of actin-related cytoskeletal genes in the rat brain. Male Wistar rats were exposed to one or other of the frequently used models of physical stress, i.e. electric foot shock stress (EFSS, forced swimming stress (FSS, or psychosocial stress (PSS for periods of 3, 7, 14, or 21 days. The relative mRNA and protein expressions of β-actin, cofilin and mitogen-activated protein kinase 1 (MAPK-1 were determined by qRT- PCR and western blotting from hippocampus and frontal cortex samples. Stressor-specific alterations in both β-actin and cofilin expression levels were seen after stress. These alterations were most pronounced in response to EFSS, and exhibited a U-shaped time course. FSS led to a significant β-actin mRNA expression elevation in the hippocampus and the frontal cortex after 3 and 7 days, respectively, without any subsequent change. PSS did not cause any change in β-actin or cofilin mRNA or protein expression in the examined brain regions. EFSS, FSS and PSS had no effect on the expression of MAPK-1 mRNA at any tested time point. These findings indicate a very delicate, stress type-dependent regulation of neuronal cytoskeletal components in the rat hippocampus and frontal cortex.

  1. Soft-food diet induces oxidative stress in the rat brain.

    Science.gov (United States)

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. A Survey of the Relationship Between Noised Pollution, Honey and Vitamin E and Plasma Level of Blood Sexual Hormones in Noise-Exposed Rats

    Directory of Open Access Journals (Sweden)

    Kenani

    2015-02-01

    Full Text Available Background This study was conducted to examine the efficacy of honey and vitamin E on fertilization capacity of noise-exposed rats by assessing whether the plasma sexual hormones levels i.e. follicle stimulating hormone (FSH, luteinizing hormone (LH and testosterone are altered in relation with noise stress. Objectives Therefore, this study aimed to evaluate the effects of honey and vitamin E on the levels of sex hormones and male fertilization capacity of noise-exposed rats. Materials and Methods This study targeted 24 male rats that were randomly divided into four equal groups including the control group that were not exposed to noise and experimental groups 1, 2 and 3 that were the untreated, honey treated and vitamin E treated groups, respectively; all of which were exposed to noise for 50 days. Next, in order to measure serum sexual hormones, blood samples of experimental and control groups were taken and analyzed. Also in order to investigate the fertility capacity of rats, the male rats of all groups were coupled with female rats. Results The results showed that in the male rats exposed to the noise stress, the levels of FSH and LH rose and the testosterone secretion fell sharply compared to not exposed rats. Additionally, the continuing effects of noise stress injury could reduce the weight of the fetus and the number of live fetuses and survival rate of the fetus. However, honey and vitamin E improved serum testosterone concentration, while declined plasma FSH and LH secretion in noise-exposed rats and enhanced fertility rate by increasing the rate of healthy alive fetuses. Conclusions It seems that noise pollution has harmful effects on the fertility of males. Also these findings may suggest the use of a natural curative approach rather than pharmaceutical drugs to optimize both neuroendocrine gonadal axis and testicular integrity induced by pathogenesis stress, and enhance fertility capacity in men.

  3. Response of rat brain protein synthesis to ethanol and sodium barbital

    International Nuclear Information System (INIS)

    Tewari, S.; Greenberg, S.A.; Do, K.; Grey, P.A.

    1987-01-01

    Central nervous system (CNS) depressants such as ethanol and barbiturates under acute or chronic conditions can induce changes in rat brain protein synthesis. While these data demonstrate the individual effects of drugs on protein synthesis, the response of brain protein synthesis to alcohol-drug interactions is not known. The goal of the present study was to determine the individual and combined effects of ethanol and sodium barbital on brain protein synthesis and gain an understanding of the mechanisms by which these alterations in protein synthesis are produced. Specifically, the in vivo and in vitro effects of sodium barbital (one class of barbiturates which is not metabolized by the hepatic tissue) were examined on brain protein synthesis in rats made physically dependent upon ethanol. Using cell free brain polysomal systems isolated from Control, Ethanol and 24 h Ethanol Withdrawn rats, data show that sodium barbital, when intubated intragastrically, inhibited the time dependent incorporation of 14 C) leucine into protein by all three groups of ribosomes. Under these conditions, the Ethanol Withdrawn group displayed the largest inhibition of the 14 C) leucine incorporation into protein when compared to the Control and Ethanol groups. In addition, sodium barbital when added at various concentrations in vitro to the incubation medium inhibited the incorporation of 14 C) leucine into protein by Control and Ethanol polysomes. The inhibitory effects were also obtained following preincubation of ribosomes in the presence of barbital but not cycloheximide. Data suggest that brain protein synthesis, specifically brain polysomes, through interaction with ethanol or barbital are involved in the functional development of tolerance. These interactions may occur through proteins or polypeptide chains or alterations in messenger RNA components associated with the ribosomal units

  4. Metabolic fate of 13N-labeled ammonia in rat brain

    International Nuclear Information System (INIS)

    Cooper, A.J.L.; McDonald, J.M.; Gelbard, A.S.; Gledhill, R.F.; Duffy, T.E.

    1979-01-01

    After infusion of physiological concentrations of [ 13 N]ammonia for 10 min via one internal carotid artery, the relative specific activities of glutamate, glutamine (α-amino), and glutamine (amide) in rat brain were approximately 1:5:400, respectively. Analysis of metabolites, after infusion of [ 13 N]ammonia into one lateral cerebral ventricle, indicated that ammonia entering the brain from the cerebrospinal fluid is also metabolized in a small glutamate pool. Pretreatment with methionine sulfoximine led to a decrease in the label present in brain glutamine following carotid artery infusion of [ 13 N]ammonia. 13 N activity in brain glutamate was greater than in the α-amino group of glutamine. The amount of label recovered in the right cerebral hemisphere, 5 s after a rapid bolus injection of [ 13 N]ammonia via the right common carotid artery, was independent of concentration within the bolus over a 1000-fold range indicating that ammonia enters the brain largely by diffusion. In normal rats approximately 60% of the label recovered in brain was incorporated into glutamine, indicating that the t 1 /sub// 2 for conversion of ammonia to glutamine in the small pool is in the range of 1 to 3 s or less. The data emphasize the importance of the small pool glutamine synthetase as a metabolic trap for the detoxification of blood-borne and endogenously produced brain ammonia. The possibility that the astrocytes represent the anatomical site of the small pool is considered

  5. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    Science.gov (United States)

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  6. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    Directory of Open Access Journals (Sweden)

    Najmeh Kabiri

    2016-09-01

    Full Text Available The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99. Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly higher than the Sham group, although right hemispheres in all of the treated groups illustrated higher brain water content than the left ones. Brain anti-oxidant capacity elevated in the ischemic rats treated with Kombucha and in the Sham group. Brain and plasma malondialdehyde concentrations significantly decreased in both of the ischemic groups injected with Kombucha. The findings suggest that Kombucha tea could be useful for the prevention of cerebral damage.

  7. The Effect of Hydroxylated Fullerene Nanoparticles on Antioxidant Defense System in Brain Ischemia Rat

    Directory of Open Access Journals (Sweden)

    2017-05-01

    Full Text Available Background and Objectives: According to the previous findings, brain ischemia attenuates the brain antioxidant defense system. This study aimed to investigate the effect of hydroxylated fullerene nanoparticle on antioxidant defense system in ischemic brain rat. Methods: In this Experimental study, rats were divided into three groups (n=6 in each group: sham, ischemic control, and ischemic treatment group. Brain ischemia was induced by middle cerebral artery (MCA occlusion for 90 minutes followed by a 24-hour reperfusion. Ischemic treatment animals received fullerene nanoparticles intraperitoneally at a dose of 10mg/kg immediately after the end of MCA occlusion. After 24-h reperfusion period, brain catalase and superoxide dismutase (SOD, and glutathione activities were assessed by biochemical methods. The data were analyzed using one-way ANOVA and Tukey post-hoc test. Results: The mean glutathione level and catalase and SOD activities in sham animals were 1±0.18%, 1±0.20%, and 1±0.04%, respectively. Induction of brain ischemia decreased the value of glutathione level and catalase and SOD activities in control ischemic rats and their values were obtained to be 0.55±0.09%, 0.44±0.05%, and 0.86±0.02%, respectively. Fullerene significantly increased the activities of catalase (0.93±0.29% and SOD (1.33±0.22% in ischemic treatment group compared to ischemic control rats, but did not change the glutathione level (0.52±0.25%. Conclusion: The results of this study showed that treatment with fullerene nanoparticles improves the brain antioxidant defense system, which is weakened during brain ischemia, through increasing catalase and SOD activities.

  8. Effects of acupuncture on tissue-oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1977-01-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by sympathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex of the animals through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture loci (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible. The effect was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase of inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes an increase of brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients. Dilatation of cerebral vascular vessels and improvement of autoregulation in the brain by acupuncture stimulation may also explain the effectiveness of acupuncture in the treatment of migraine headache.

  9. Determination of μ-, δ- and κ-opioid receptors in forebrain cortex of rats exposed to morphine for 10 days: Comparison with animals after 20 days of morphine withdrawal.

    Science.gov (United States)

    Ujcikova, Hana; Hlouskova, Martina; Cechova, Kristina; Stolarova, Katerina; Roubalova, Lenka; Svoboda, Petr

    2017-01-01

    Chronic exposure of mammalian organism to morphine results in adaption to persistent high opioid tone through homeostatic adjustments. Our previous results indicated that in the frontal brain cortex (FBC) of rats exposed to morphine for 10 days, such a compensatory adjustment was detected as large up-regulation of adenylylcyclases I (8-fold) and II (2.5-fold). The other isoforms of AC (III-IX) were unchanged. Importantly, the increase of ACI and ACII was reversible as it disappeared after 20 days of morphine withdrawal. Changes of down-stream signaling molecules such as G proteins and adenylylcyclases should respond to and be preceded by primary changes proceeding at receptor level. Therefore in our present work, we addressed the problem of reversibility of the long-term morphine effects on μ-, δ- and κ-OR protein levels in FBC. Rats were exposed to increasing doses of morphine (10-40 mg/kg) for 10 days and sacrificed either 24 h (group +M10) or 20 days (group +M10/-M20) after the last dose of morphine in parallel with control animals (groups -M10 and -M10/-M20). Post-nuclear supernatant (PNS) fraction was prepared from forebrain cortex, resolved by 1D-SDS-PAGE under non-dissociated (-DTT) and dissociated (+DTT) conditions, and analyzed for the content of μ-, δ- and κ-OR by immunoblotting with C- and N-terminus oriented antibodies. Significant down-regulation of δ-OR form exhibiting Mw ≈ 60 kDa was detected in PNS prepared from both (+M10) and (+M10/-M20) rats. However, the total immunoblot signals of μ-, δ- and κ-OR, respectively, were unchanged. Plasma membrane marker Na, K-ATPase, actin and GAPDH were unaffected by morphine in both types of PNS. Membrane-domain marker caveolin-1 and cholesterol level increased in (+M10) rats and this increase was reversed back to control level in (+M10/-M20) rats. In FBC, prolonged exposure of rats to morphine results in minor (δ-OR) or no change (μ- and κ-OR) of opioid receptor content. The reversible increases

  10. Determination of μ-, δ- and κ-opioid receptors in forebrain cortex of rats exposed to morphine for 10 days: Comparison with animals after 20 days of morphine withdrawal.

    Directory of Open Access Journals (Sweden)

    Hana Ujcikova

    Full Text Available Chronic exposure of mammalian organism to morphine results in adaption to persistent high opioid tone through homeostatic adjustments. Our previous results indicated that in the frontal brain cortex (FBC of rats exposed to morphine for 10 days, such a compensatory adjustment was detected as large up-regulation of adenylylcyclases I (8-fold and II (2.5-fold. The other isoforms of AC (III-IX were unchanged. Importantly, the increase of ACI and ACII was reversible as it disappeared after 20 days of morphine withdrawal. Changes of down-stream signaling molecules such as G proteins and adenylylcyclases should respond to and be preceded by primary changes proceeding at receptor level. Therefore in our present work, we addressed the problem of reversibility of the long-term morphine effects on μ-, δ- and κ-OR protein levels in FBC.Rats were exposed to increasing doses of morphine (10-40 mg/kg for 10 days and sacrificed either 24 h (group +M10 or 20 days (group +M10/-M20 after the last dose of morphine in parallel with control animals (groups -M10 and -M10/-M20. Post-nuclear supernatant (PNS fraction was prepared from forebrain cortex, resolved by 1D-SDS-PAGE under non-dissociated (-DTT and dissociated (+DTT conditions, and analyzed for the content of μ-, δ- and κ-OR by immunoblotting with C- and N-terminus oriented antibodies.Significant down-regulation of δ-OR form exhibiting Mw ≈ 60 kDa was detected in PNS prepared from both (+M10 and (+M10/-M20 rats. However, the total immunoblot signals of μ-, δ- and κ-OR, respectively, were unchanged. Plasma membrane marker Na, K-ATPase, actin and GAPDH were unaffected by morphine in both types of PNS. Membrane-domain marker caveolin-1 and cholesterol level increased in (+M10 rats and this increase was reversed back to control level in (+M10/-M20 rats.In FBC, prolonged exposure of rats to morphine results in minor (δ-OR or no change (μ- and κ-OR of opioid receptor content. The reversible increases

  11. Regulation of brain aromatase activity in rats

    International Nuclear Information System (INIS)

    Roselli, C.E.; Ellinwood, W.E.; Resko, J.A.

    1984-01-01

    The distribution and regulation of aromatase activity in the adult rat brain with a sensitive in vitro assay that measures the amount of 3 H 2 O formed during the conversion of [1 beta- 3 H]androstenedione to estrone. The rate of aromatase activity in the hypothalamus-preoptic area (HPOA) was linear with time up to 1 h, and with tissue concentrations up to 5 mgeq/200 microliters incubation mixture. The enzyme demonstrated a pH optimum of 7.4 and an apparent Michaelis-Menten constant (Km) of 0.04 microns. The greatest amount of aromatase activity was found in amygdala and HPOA from intact male rats. The hippocampus, midbrain tegmentum, cerebral cortex, cerebellum, and anterior pituitary all contained negligible enzymatic activity. Castration produced a significant decrease in aromatase activity in the HPOA, but not in the amygdala or cerebral cortex. The HPOAs of male rats contained significantly greater aromatase activity than the HPOAs of female rats. In females, this enzyme activity did not change during the estrous cycle or after ovariectomy. Administration of testosterone to gonadectomized male and female rats significantly enhanced HPOA aromatase activities to levels approximating those found in HPOA from intact males. Therefore, the results suggest that testosterone, or one of its metabolites, is a major steroidal regulator of HPOA aromatase activity in rats

  12. Cerebellar level of neurotransmitters in rats exposed to paracetamol during development.

    Science.gov (United States)

    Blecharz-Klin, Kamilla; Joniec-Maciejak, Ilona; Jawna-Zboińska, Katarzyna; Pyrzanowska, Justyna; Piechal, Agnieszka; Wawer, Adriana; Widy-Tyszkiewicz, Ewa

    2016-12-01

    The present study was designed to clarify the effect of prenatal and postnatal paracetamol administration on the neurotransmitter level and balance of amino acids in the cerebellum. Biochemical analysis to determine the concentration of neurotransmitters in this brain structure was performed on two-month-old Wistar male rats previously exposed to paracetamol in doses of 5 (P5, n=10) or 15mg/kg (P15, n=10) throughout the entire prenatal period, lactation and until the completion of the second month of life, when the experiment was terminated. Control animals were given tapped water (Con, n=10). The cerebellar concentration of monoamines, their metabolites and amino acids were assayed using High Performance Liquid Chromatography (HPLC). The present experiment demonstrates that prenatal and postnatal paracetamol exposure results in modulation of cerebellar neurotransmission with changes concerning mainly 5-HIAA and MHPG levels. The effect of paracetamol on monoaminergic neurotransmission in the cerebellum is reflected by changes in the level of catabolic end-products of serotonin (5-HIAA) and noradrenaline (MHPG) degradation. Further work is required to define the mechanism of action and impact of prenatal and postnatal exposure to paracetamol in the cerebellum and other structures of the central nervous system (CNS). Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    Science.gov (United States)

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.

  14. Imaging of aromatase distribution in rat and rhesus monkey brains with [11C]vorozole

    International Nuclear Information System (INIS)

    Takahashi, Kayo; Bergstroem, Mats; Fraendberg, Pernilla; Vesstroem, Eva-Lotta; Watanabe, Yasuyoshi; Langstroem, Bengt

    2006-01-01

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [ 11 C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K d of [ 11 C]vorozole binding to aromatase in MA was determined to be 0.60±0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [ 11 C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons

  15. Effects of ebselen on ischemia/reperfusion injury in rat brain.

    Science.gov (United States)

    Aras, M; Altaş, M; Meydan, S; Nacar, E; Karcıoğlu, M; Ulutaş, K T; Serarslan, Y

    2014-10-01

    Interruption of blood flow may result in considerable tissue damage via ischemia/reperfusion (I/R) injury-induced oxidative stress in brain tissues. The aim of the present study was to investigate the effects of Ebselen treatment in short-term global brain I/R injury in rats. The study was carried out on 27 Wistar-albino rats, divided into three groups including Sham group (n = 11), I/R group (n = 8) and I/R+Ebselen group (n = 8). Malondialdehyde (MDA) levels were significantly increased in I/R group in comparison with the Sham group and I/R+Ebselen group (p Ebselen (p Ebselen group when compared with Sham group (p Ebselen group when compared with Sham (p Ebselen showed morphological improvement. Ebselen has neuron-protective effects due to its antioxidant properties as shown by the decrease in MDA overproduction, increase in SOD activity and the histological improvement after administration of Ebselen to I/R in brain tissue.

  16. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    Science.gov (United States)

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  17. Changes in markers of oxidative stress and membrane properties in synaptosomes from rats exposed prenatally to toluene

    DEFF Research Database (Denmark)

    Edelfors, Sven; Hass, Ulla; Hougaard, Karin S.

    2002-01-01

    for the experiments, Synaptosomes from rats exposed prenatally to toluene exhibited an increased level of oxidative stress when incubated with toluene in vitro compared to synaptosomes from unexposed offspring. Also the cell membrane was affected, as the calcium leakage was more increased from exposed synaptosomes...

  18. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    Science.gov (United States)

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat

  19. The effect of steroids on experimental brain edema induced by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, M [Kobe Univ. (Japan). School of Medicine; Kakei, M

    1975-04-01

    In order to study the effect of steroids on brain edema, complicated by radiotherapy to brain tumors, an experiment was carried out in rats. Five thousand rads of cobalt-60 were irradiated to the head only of a rat, and 20 mg/kg of water-soluble prednine was given intraperitoneally. A single administration of the whole dose increased the amount of brain fluid to 79.35 +- 0.30 g/ 100 g wet wt.. This value was not significantly different from that of the rat which had received only the 5,000 rad irradiation. In a rat which received prednine in 6 divided doses at intervals of 4 hours, the fluid amount reached 78.33 +- 0.52 g/ 100 g wet wt. and was clearly lower than that of the rat which had been irradiated only, 79.51 +- 0.23 g/ 100 g wet wt. neither was the value significantly different from that of a normal rat which had not been exposed 78.72 +- 0.82 g/ 100 g wet wt.. Therefore, fractional administration of prednine was demonstrated to be effective.

  20. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Science.gov (United States)

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  1. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    International Nuclear Information System (INIS)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-01-01

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife

  2. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats

    DEFF Research Database (Denmark)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne

    2014-01-01

    , and aspartate and incorporation of (15)NH4(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation...... of (15)NH4(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH4(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined...

  3. Neurotoxicity of carbonyl sulfide in F344 rats following inhalation exposure for up to 12 weeks

    International Nuclear Information System (INIS)

    Morgan, Daniel L.; Little, Peter B.; Herr, David W.; Moser, Virginia C.; Collins, Bradley; Herbert, Ronald; Johnson, G. Allan; Maronpot, Robert R.; Harry, G. Jean; Sills, Robert C.

    2004-01-01

    Carbonyl sulfide (COS), a high-priority Clean Air Act chemical, was evaluated for neurotoxicity in short-term studies. F344 rats were exposed to 75-600 ppm COS 6 h per day, 5 days per week for up to 12 weeks. In rats exposed to 500 or 600 ppm for up to 4 days, malacia and microgliosis were detected in numerous neuroanatomical regions of the brain by conventional optical microscopy and magnetic resonance microscopy (MRM). After a 2-week exposure to 400 ppm, rats were evaluated using a functional observational battery. Slight gait abnormality was detected in 50% of the rats and hypotonia was present in all rats exposed to COS. Decreases in motor activity, and forelimb and hindlimb grip strength were also detected. In rats exposed to 400 ppm for 12 weeks, predominant lesions were in the parietal cortex area 1 (necrosis) and posterior colliculus (neuronal loss, microgliosis, hemorrhage), and occasional necrosis was present in the putamen, thalamus, and anterior olivary nucleus. Carbonyl sulfide specifically targeted the auditory system including the olivary nucleus, nucleus of the lateral lemniscus, and posterior colliculus. Consistent with these findings were alterations in the amplitude of the brainstem auditory evoked responses (BAER) for peaks N 3 , P 4 , N 4 , and N 5 that represented changes in auditory transmission between the anterior olivary nucleus to the medial geniculate nucleus in animals after exposure for 2 weeks to 400 ppm COS. A concentration-related decrease in cytochrome oxidase activity was detected in the posterior colliculus and parietal cortex of exposed rats as early as 3 weeks. Cytochrome oxidase activity was significantly decreased at COS concentrations that did not cause detectable lesions, suggesting that disruption of the mitochondrial respiratory chain may precede these brain lesions. Our studies demonstrate that this environmental air contaminant has the potential to cause a wide spectrum of brain lesions that are dependent on the degree

  4. Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks

    Energy Technology Data Exchange (ETDEWEB)

    Gagnaire, Francois; Langlais, Cristina; Grossmann, Stephane; Wild, Pascal [Institut National de Recherche et de Securite, Departement Polluants et Sante, Vandoeuvre Cedex (France)

    2007-02-15

    Male Sprague-Dawley rats were exposed to ethylbenzene (200, 400, 600 and 800 ppm) and to two mixed xylenes (250, 500, 1,000 and 2,000 ppm total compounds) by inhalation, 6 h/day, 6 days/week for 13 weeks and sacrificed for morphological investigation 8 weeks after the end of exposure. Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Ethylbenzene produced moderate to severe ototoxicity in rats exposed to the four concentrations studied. Increased thresholds were observed at 2, 4, 8 and 16 kHz in rats exposed to 400, 600 and 800 ppm ethylbenzene. Moderate to severe losses of outer hair cells of the organ of Corti occurred in animals exposed to the four concentrations studied. Exposure to both mixed xylenes produced ototoxicity characterized by increased auditory thresholds and losses of outer hair cells. Ototoxicity potentiation caused by ethylbenzene was observed. Depending on the mixed xylene studied and the area of the concentration-response curves taken into account, the concentrations of ethylbenzene in mixed xylenes necessary to cause a given ototoxicity were 1.7-2.8 times less than those of pure ethylbenzene. Given the high ototoxicity of ethylbenzene, the safety margin of less or equal to two (LOAEL/TWA) might be too small to protect workers from the potential risk of ototoxicity. Moreover, the enhanced ototoxicity of ethylbenzene and para-xylene observed in mixed xylenes should encourage the production of mixed xylenes with the lowest possible concentrations of ethylbenzene and para-xylene. (orig.)

  5. Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks.

    Science.gov (United States)

    Gagnaire, François; Langlais, Cristina; Grossmann, Stéphane; Wild, Pascal

    2007-02-01

    Male Sprague-Dawley rats were exposed to ethylbenzene (200, 400, 600 and 800 ppm) and to two mixed xylenes (250, 500, 1,000 and 2,000 ppm total compounds) by inhalation, 6 h/day, 6 days/week for 13 weeks and sacrificed for morphological investigation 8 weeks after the end of exposure. Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Ethylbenzene produced moderate to severe ototoxicity in rats exposed to the four concentrations studied. Increased thresholds were observed at 2, 4, 8 and 16 kHz in rats exposed to 400, 600 and 800 ppm ethylbenzene. Moderate to severe losses of outer hair cells of the organ of Corti occurred in animals exposed to the four concentrations studied. Exposure to both mixed xylenes produced ototoxicity characterized by increased auditory thresholds and losses of outer hair cells. Ototoxicity potentiation caused by ethylbenzene was observed. Depending on the mixed xylene studied and the area of the concentration-response curves taken into account, the concentrations of ethylbenzene in mixed xylenes necessary to cause a given ototoxicity were 1.7-2.8 times less than those of pure ethylbenzene. Given the high ototoxicity of ethylbenzene, the safety margin of less or equal to two (LOAEL/TWA) might be too small to protect workers from the potential risk of ototoxicity. Moreover, the enhanced ototoxicity of ethylbenzene and para-xylene observed in mixed xylenes should encourage the production of mixed xylenes with the lowest possible concentrations of ethylbenzene and para-xylene.

  6. Comparison of rats and dogs exposed to 239PuO2

    International Nuclear Information System (INIS)

    Mahaffey, J.A.; Sanders, C.L.; Park, J.F.; Dagle, G.E.

    1979-01-01

    Rats and dogs inhaled aerosols of 239 PuO 2 at comparable ages relative to their lifespan. Both received a single exposure. The estimated lung doses at death in dogs were between 1100 and 11,000 rad. From two inhalation experiments, rats receiving doses in this range were chosen from the high-level exposed animals for comparison. Based on this data base, several comparisons were investigated. Metabolism of the material was compared for all animals and for animals which developed lung tumors. The differences in histopathology and tumor incidence in the lung were also reviewed. Although there were several differences between species, there were also many similarities. On-going research in dogs should produce data which will allow clarification of these relationships

  7. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats

    Directory of Open Access Journals (Sweden)

    Tortella Frank C

    2009-08-01

    Full Text Available Abstract Background Inflammatory cytokines play a crucial role in the pathophysiology of traumatic brain injury (TBI, exerting either deleterious effects on the progression of tissue damage or beneficial roles during recovery and repair. NNZ-2566, a synthetic analogue of the neuroprotective tripeptide Glypromate®, has been shown to be neuroprotective in animal models of brain injury. The goal of this study was to determine the effects of NNZ-2566 on inflammatory cytokine expression and neuroinflammation induced by penetrating ballistic-like brain injury (PBBI in rats. Methods NNZ-2566 or vehicle (saline was administered intravenously as a bolus injection (10 mg/kg at 30 min post-injury, immediately followed by a continuous infusion of NNZ-2566 (3 mg/kg/h, or equal volume of vehicle, for various durations. Inflammatory cytokine gene expression from the brain tissue of rats exposed to PBBI was evaluated using microarray, quantitative real time PCR (QRT-PCR, and enzyme-linked immunosorbent assay (ELISA array. Histopathology of the injured brains was examined using hematoxylin and eosin (H&E and immunocytochemistry of inflammatory cytokine IL-1β. Results NNZ-2566 treatment significantly reduced injury-mediated up-regulation of IL-1β, TNF-α, E-selectin and IL-6 mRNA during the acute injury phase. ELISA cytokine array showed that NZ-2566 treatment significantly reduced levels of the pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ in the injured brain, but did not affect anti-inflammatory cytokine IL-6 levels. Conclusion Collectively, these results suggest that the neuroprotective effects of NNZ-2566 may, in part, be functionally attributed to the compound's ability to modulate expression of multiple neuroinflammatory mediators in the injured brain.

  8. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes.

    Science.gov (United States)

    Abbott, N Joan; Dolman, Diana E M; Drndarski, Svetlana; Fredriksson, Sarah M

    2012-01-01

    In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2

  9. IL-4 and IL-5 Secretions Predominate in the Airways of Wistar Rats Exposed to Toluene Diisocyanate Vapor

    Directory of Open Access Journals (Sweden)

    Kouame Kouadio

    2014-01-01

    Full Text Available ObjectivesWe established a Wistar rat model of asthma caused by toluene diisocyanate (TDI exposure, and investigated the relationship between TDI exposure concentrations and respiratory hypersensitivity, airway inflammation, and cytokine secretions in animals, to better understand the mechanism of TDI induced occupational asthma.MethodsWistar rats were exposed to two different concentrations of TDI vapor four hours a day for five consecutive days. Bronchoalveolar lavage (BAL was performed, and differential leucocytes from the BAL fluid were analyzed. Lung histopathological examination was carried out to investigate the inflammatory status in the airways. Production of cytokines interleukin (IL-4 and IL-5 productions in the BAL fluid in vivo was determined with enzyme-linked immunosorbent assay kits.ResultsThe TDI-exposed rats exhibited greater airway hypersensitivity symptoms than the control rats. The BAL differential cell count and lung histopathological examination demonstrated that inflammation reactions were present in both the central and peripheral airways, characterized with marked infiltration of eosinophils in the TDI-exposed rats. The cytokine assay showed that IL-4 and IL-5 were predominantly produced in the BAL fluid in vivo.ConclusionsThese findings imply that TDI exposure concentrations may greatly affect the occurrence and extent of inflammatory events and that Th2 type cytokines may play an important role in the immunopathogenesis of TDI-induced occupational respiratory hypersensitivity.

  10. The effects of ecstasy (MDMA on brain serotonin transporters are dependent on age-of-first exposure in recreational users and animals.

    Directory of Open Access Journals (Sweden)

    Anne Klomp

    Full Text Available RATIONALE AND OBJECTIVE: Little is known on the effects of ecstasy (MDMA, a potent 5-HT-releaser and neurotoxin exposure on brain development in teenagers. The objective of this study was to investigate whether in humans, like previous observations made in animals, the effects of MDMA on the 5-HT system are dependent on age-of-first exposure. METHODS: 5-HT transporter (SERT densities in the frontal cortex and midbrain were assessed with [(123I]β-CIT single photon emission computed tomography in 33 users of ecstasy. Subjects were stratified for early-exposed users (age-at-first exposure 14-18 years; developing brain, and late-exposed users (age-at-first exposure 18-36 years; mature brain. In parallel, we investigated the effects of age experimentally with MDMA in early-exposed (adolescent rats and late-exposed (adult rats using the same radioligand. RESULTS: On average, five years after first exposure, we found a strong inverse relationship, wherein age-at-first exposure predicted 79% of the midbrain SERT variability in early (developing brain exposed ecstasy users, whereas this was only 0.3% in late (mature brain exposed users (p=0.007. No such effect was observed in the frontal cortex. In rats, a significant age-BY-treatment effect (p<0.01 was observed as well, however only in the frontal cortex. CONCLUSIONS: These age-related effects most likely reflect differences in the maturational stage of the 5-HT projection fields at age-at-first exposure and enhanced outgrowth of the 5-HT system due to 5-HT's neurotrophic effects. Ultimately, our findings stress the need for more knowledge on the effects of pharmacotherapies that alter brain 5-HT levels in the pediatric population.

  11. Fingolimod against endotoxin-induced fetal brain injury in a rat model.

    Science.gov (United States)

    Yavuz, And; Sezik, Mekin; Ozmen, Ozlem; Asci, Halil

    2017-11-01

    Fingolimod is a sphingosine-1-phosphate receptor modulator used for multiple sclerosis treatment and acts on cellular processes such as apoptosis, endothelial permeability, and inflammation. We hypothesized that fingolimod has a positive effect on alleviating preterm fetal brain injury. Sixteen pregnant rats were divided into four groups of four rats each. On gestational day 17, i.p. endotoxin was injected to induce fetal brain injury, followed by i.p. fingolimod (4 mg/kg maternal weight). Hysterotomy for preterm delivery was performed 6 h after fingolimod. The study groups included (i) vehicle controls (i.p. normal saline only); (ii) positive controls (endotoxin plus saline); (iii) saline plus fingolimod; and (iv) endotoxin plus fingolimod treatment. Brain tissues of the pups were dissected for evaluation of interleukin (IL)-6, caspase-3, and S100β on immunohistochemistry. Maternal fingolimod treatment attenuated endotoxin-related fetal brain injury and led to lower immunoreactions for IL-6, caspase-3, and S100β compared with endotoxin controls (P < 0.0001 for all comparisons). Antenatal maternal fingolimod therapy had fetal neuroprotective effects by alleviating preterm birth-related fetal brain injury with inhibitory effects on inflammation and apoptosis. © 2017 Japan Society of Obstetrics and Gynecology.

  12. Multidimensional MRI-CT atlas of the naked mole-rat brain (Heterocephalus glaber).

    Science.gov (United States)

    Seki, Fumiko; Hikishima, Keigo; Nambu, Sanae; Okanoya, Kazuo; Okano, Hirotaka J; Sasaki, Erika; Miura, Kyoko; Okano, Hideyuki

    2013-01-01

    Naked mole-rats have a variety of distinctive features such as the organization of a hierarchical society (known as eusociality), extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI). Advanced MRI techniques such as diffusion tensor imaging (DTI), which generates high contrast images of fiber structures, can characterize unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D) images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualization of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.

  13. Fast and Accurate Rat Head Motion Tracking With Point Sources for Awake Brain PET.

    Science.gov (United States)

    Miranda, Alan; Staelens, Steven; Stroobants, Sigrid; Verhaeghe, Jeroen

    2017-07-01

    To avoid the confounding effects of anesthesia and immobilization stress in rat brain positron emission tomography (PET), motion tracking-based unrestrained awake rat brain imaging is being developed. In this paper, we propose a fast and accurate rat headmotion tracking method based on small PET point sources. PET point sources (3-4) attached to the rat's head are tracked in image space using 15-32-ms time frames. Our point source tracking (PST) method was validated using a manually moved microDerenzo phantom that was simultaneously tracked with an optical tracker (OT) for comparison. The PST method was further validated in three awake [ 18 F]FDG rat brain scans. Compared with the OT, the PST-based correction at the same frame rate (31.2 Hz) reduced the reconstructed FWHM by 0.39-0.66 mm for the different tested rod sizes of the microDerenzo phantom. The FWHM could be further reduced by another 0.07-0.13 mm when increasing the PST frame rate (66.7 Hz). Regional brain [ 18 F]FDG uptake in the motion corrected scan was strongly correlated ( ) with that of the anesthetized reference scan for all three cases ( ). The proposed PST method allowed excellent and reproducible motion correction in awake in vivo experiments. In addition, there is no need of specialized tracking equipment or additional calibrations to be performed, the point sources are practically imperceptible to the rat, and PST is ideally suitable for small bore scanners, where optical tracking might be challenging.

  14. Impact of drug permeability of blood-brain barrier after whole brain conventional fractionation irradiation

    International Nuclear Information System (INIS)

    Zhang Longzhen; Cao Yuandong; Chen Yong; Yu Changzhou; Zhuang Ming

    2006-01-01

    Objective: To explore the effect of drug permeability in rat blood-brain barrier(BBB) after different doses of whole brain conventional fractionation irradiation in rats and provide the experimental basis for the optimum time of clinical chemotherapy. Methods: According to different irradiation doses, 100 adult Sprague-Dowley rats were divided randomly into 5 groups: the normal control group(0 Gy); 10 Gy; 20 Gy; 30 Gy; and 40 Gy group. All rats were exposed to conventional fractionation(2 Gy/d, 5 d/w) with 60 Co γ-ray. MTX(25 mg/kg) was injected through the tail mainline 16 hours after whole brain irradiation. Cerebrospinal fluid(CSF) and blood were collected 2 hours later. Those samples were used to assay MTX concentration using RP-HPLC. Results: MTX mean concentrations in CSF was 0.07, 0.08, 0.12, 0.24, 0.23 mg/L in the control, 10 Gy, 20 Gy, 30 Gy, 40 Gy groups, respectively. All the data was analyzed with rank test of transform. MTX concentration of CSF was significantly different except the control and 10 Gy, 30 Gy and 40 Gy group. MTX concentration of blood was not significantly different in all groups (P>0.05). Conclusions: Irradiation can directly damage the function of BBB. BBB would be opened gradually following the increase of irradiation dose. It could be considered as the optimum time of chemotherapy when the whole brain irradiation ranges from 20 Gy to 30 Gy. (authors)

  15. Antioxidant potential properties of mushroom extract (Agaricus bisporus) against aluminum-induced neurotoxicity in rat brain.

    Science.gov (United States)

    Waly, Mostafa I; Guizani, Nejib

    2014-09-01

    Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.

  16. Assessment of bioaccumulation and neurotoxicity in rats with portacaval anastomosis and exposed to manganese phosphate: a pilot study.

    Science.gov (United States)

    Salehi, F; Carrier, G; Normandin, L; Kennedy, G; Butterworth, R F; Hazell, A; Therrien, G; Mergler, D; Philippe, S; Zayed, J

    2001-12-01

    The use of the additive methylcyclopentadienyl manganese tricarbonyl in unleaded gasoline has resulted in increased attention to the potential toxic effects of manganese (Mn). Hypothetically, people with chronic liver disease may be more sensitive to the adverse neurotoxic effects of Mn. In this work, bioaccumulation of Mn, as well as histopathology and neurobehavioral damage, in end-to-side portacaval anastomosis (PCA) rats exposed to Mn phosphate via inhalation was investigated. During the week before the PCA operation, 4 wk after the PCA operation, and at the end of exposure, the rats were subjected to a locomotor evaluation (day-night activities) using a computerized autotrack system. Then a group of 6 PCA rats (EXP) was exposed to 3050 microg m(-3) (Mn phosphate) for 8 h/day, 5 days/wk for 4 consecutive weeks and compared to a control group (CON), 7 PCA rats exposed to 0.03 microg m(-3). After exposure, the rats were euthanized and Mn content in tissues and organs was determined by neutron activation analysis. The manganese concentrations in blood (0.05 microg/g vs. 0.02 microg/g), lung (1.32 microg/g vs. 0.24 microg/g), cerebellum (0.85 microg/g vs. 0.64 microg/g), frontal cortex (0.87 microg/g vs. 0.61 microg/g), and globus pallidus (3.56 microg/g vs. 1.33 microg/g) were significantly higher in the exposed group compared to the control group (p locomotor activities did not reveal any significant difference. This study constitutes a first step toward our understanding of the potential adverse effects of Mn in sensitive populations.

  17. Cerebral microbleeds in a neonatal rat model.

    Directory of Open Access Journals (Sweden)

    Brianna Carusillo Theriault

    Full Text Available In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oligodendrocyte progenitors (pre-oligodendrocytes dominate in the rat brain. We hypothesized that two independent pro-angiogenic stimuli in utero would be associated with a high likelihood of perinatal microbleeds that would be severely damaging to white matter.Pregnant Wistar rats were subjected to intrauterine ischemia (IUI and low-dose maternal lipopolysaccharide (mLPS at embryonic day (E 19. Pups were born vaginally or abdominally at E21-22. Brains were evaluated for angiogenic markers, microhemorrhages, myelination and axonal development. Neurological function was assessed out to 6 weeks.mRNA (Vegf, Cd31, Mmp2, Mmp9, Timp1, Timp2 and protein (CD31, MMP2, MMP9 for angiogenic markers, in situ proteolytic activity, and collagen IV immunoreactivity were altered, consistent with an angiogenic response. Vaginally delivered pups exposed to prenatal IUI+mLPS had spontaneous cerebral microbleeds, abnormal neurological function, and dysmorphic, hypomyelinated white matter and axonopathy. Pups exposed to the same pro-angiogenic stimuli in utero but delivered abdominally had minimal cerebral microbleeds, preserved myelination and axonal development, and neurological function similar to naïve controls.In rats, pro-angiogenic stimuli in utero can predispose to vascular fragility and lead to cerebral microbleeds. The study of microbleeds in the neonatal rat brain at full gestation may give insights into the consequences of microbleeds in human preterm infants during critical periods of white matter development.

  18. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Alejandro Lorón-Sánchez

    2016-01-01

    Full Text Available The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group or 0.01 mg/kg epinephrine (TBI-Epi group or no injection (TBI-0 and Sham-0 groups. Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal.

  19. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Science.gov (United States)

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  20. Fetal hypothalamic transplants into brain irradiated rats: Graft morphometry and host behavioral responses

    International Nuclear Information System (INIS)

    Pearlman, S.H.; Rubin, P.; White, H.C.; Wiegand, S.J.; Gash, D.M.

    1990-01-01

    This study was designed to test the hypothesis that neural implants can ameliorate or prevent some of the long-term changes associated with CNS irradiation. Using a rat model, the initial study focused on establishing motor, regulatory, and morphological changes associated with brain radiation treatments. Secondly, fetal hypothalamic tissue grafts were placed into the third ventricle of rats which had been previously irradiated. Adult male Long Evans rats received one of three radiation doses (15, 22.5, ampersand 30 Gy) or no radiation. Three days after irradiation, 7 animals in each dose group received an embryonic day 17 hypothalamic graft into the third ventricle while the remaining 8-9 animals in each group received injections of vehicle solution (sham). Few changes were observed in the 15 and 22.5 Gy animals, however rats in the 30 Gy treatment group showed stereotypic and ambulatory behavioral hyperactivity 32 weeks after irradiation. Regulatory changes in the high dose group included decreased growth rate and decreased urine osmolalities, but these measures were extremely variable among animals. Morphological results demonstrated that 30 Gy irradiated animals showed extensive necrosis primarily in the fimbria, which extended into the internal capsule, optic nerve, hippocampus, and thalamus. Hemorrhages were found in the hippocampus, thalamus, and fimbria. Defects in the blood-brain barrier also were evident by entry of intravascularly injected horseradish peroxidase into the parenchyma of the brain. Animals in the 30 Gy grafted group showed fewer behavioral changes and less brain damage than their sham grafted counterparts. Specifically, activity measures were comparable to normal levels, and a dilute urine was not found in the 30 Gy implanted rats. Morphological changes support these behavioral results since only two 30 Gy implanted rats showed necrosis

  1. Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome.

    Directory of Open Access Journals (Sweden)

    Tanja Karen

    Full Text Available BACKGROUND: Propofol is commonly used as sedative in newborns and children. Recent experimental studies led to contradictory results, revealing neurodegenerative or neuroprotective properties of propofol on the developing brain. We investigated neurodevelopmental short- and long-term effects of neonatal propofol treatment. METHODS: 6-day-old Wistar rats (P6, randomised in two groups, received repeated intraperitoneal injections (0, 90, 180 min of 30 mg/kg propofol or normal saline and sacrificed 6, 12 and 24 hrs following the first injection. Cortical and thalamic areas were analysed by Western blot and quantitative real-time PCR (qRT-PCR for expression of apoptotic and neurotrophin-dependent signalling pathways. Long-term effects were assessed by Open-field and Novel-Object-Recognition at P30 and P120. RESULTS: Western blot analyses revealed a transient increase of activated caspase-3 in cortical, and a reduction of active mitogen-activated protein kinases (ERK1/2, AKT in cortical and thalamic areas. qRT-PCR analyses showed a down-regulation of neurotrophic factors (BDNF, NGF, NT-3 in cortical and thalamic regions. Minor impairment in locomotive activity was observed in propofol treated adolescent animals at P30. Memory or anxiety were not impaired at any time point. CONCLUSION: Exposing the neonatal rat brain to propofol induces acute neurotrophic imbalance and neuroapoptosis in a region- and time-specific manner and minor behavioural changes in adolescent animals.

  2. BDNF/TrkB Pathway Mediates the Antidepressant-Like Role of H2S in CUMS-Exposed Rats by Inhibition of Hippocampal ER Stress.

    Science.gov (United States)

    Wei, Le; Kan, Li-Yuan; Zeng, Hai-Ying; Tang, Yi-Yun; Huang, Hong-Lin; Xie, Ming; Zou, Wei; Wang, Chun-Yan; Zhang, Ping; Tang, Xiao-Qing

    2018-06-01

    Our previous works have shown that hydrogen sulfide (H 2 S) significantly attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors and hippocampal endoplasmic reticulum (ER) stress. Brain-derived neurotrophic factor (BDNF) generates an antidepressant-like effect by its receptor tyrosine protein kinase B (TrkB). We have previously found that H 2 S upregulates the expressions of BDNF and p-TrkB in the hippocampus of CUMS-exposed rats. Therefore, the present work was to explore whether BDNF/TrkB pathway mediates the antidepressant-like role of H 2 S by blocking hippocampal ER stress. We found that treatment with K252a (an inhibitor of BDNF/TrkB pathway) significantly increased the immobility time in the forced swim test and tail suspension test and increased the latency to feed in the novelty-suppressed feeding test in the rats cotreated with sodium hydrosulfide (NaHS, a donor of H 2 S) and CUMS. Similarly, K252a reversed the protective effect of NaHS against CUMS-induced hippocampal ER stress, as evidenced by increases in the levels of ER stress-related proteins, glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12. Taken together, our results suggest that BDNF/TrkB pathway plays an important mediatory role in the antidepressant-like action of H 2 S in CUMS-exposed rats, which is by suppression of hippocampal ER stress. These data provide a novel mechanism underlying the protection of H 2 S against CUMS-induced depressive-like behaviors.

  3. Changes in operant behavior of rats exposed to lead at the accepted no-effect level.

    Science.gov (United States)

    Gross-Selbeck, E; Gross-Selbeck, M

    1981-11-01

    After weaning, male and female Wistar rats were fed a daily diet containing 1 g lead acetate/kg food until a level of about 20 micrograms/100 mL blood was obtained. The male rats were subjected to the different behavioral tests, whereas the females were mated to untreated males and further exposed until weaning of the offspring. Behavioral testing of the male offspring was performed between 3 and 4 months of age. General behavior of both groups was tested in the open-field task including locomotion, local movements, and emotionality. The conditioned instrumental behavior was tested in the Skinner box from simple to more complex programs. The blood-lead level was measured by flameless atomic absorption spectrometry. No behavioral changes became apparent in the open-field task and in the preliminary operant training. In the more complex programs (DRH = Differential Reinforcement of High Rates), the rats exposed to lead after weaning showed slight changes of DRH performance. By contrast, in pre- and neonatally exposed animals, DRH performance was significantly increased, although blood-lead levels had returned to normal at the time of testing. A comparison of lead effects in animals to possible effects in man is discussed in this paper, and it is concluded that lead exposure to man at doses which presently are suggested to be innocuous may result in subclinical functional changes of the central nervous system.

  4. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Alterations in apoptotic caspases and antioxidant enzymes in arsenic exposed rat brain regions: reversal effect of essential metals and a chelating agent.

    Science.gov (United States)

    Kadeyala, Praveen Kumar; Sannadi, Saritha; Gottipolu, Rajarami Reddy

    2013-11-01

    Arsenic (As) widely studied for its effects as a neurotoxicant. The present study was designed to evaluate the protective effect of calcium, zinc or monoisoamyl dimercaptosuccinic acid (MiADMSA), either individually or in combination on As induced oxidative stress and apoptosis in brain regions (cerebral cortex, hippocampus and cerebellum) of postnatal day (PND) 21, 28 and 3 months old rats. Arsenic exposure significantly decreased the activities of superoxide dismutase (SOD) isoforms, catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) with increase in glutathione s transferase (GST) while lipid peroxidation (LPx), arsenic levels, mRNA expression of caspase 3 and 9 were significantly increased in different brain regions. Arsenic induced alterations in these parameters were greater in PND 28 and more pronounced in cerebral cortex. From the results it is evident that combined supplementation of calcium and zinc along with MiADMSA would be most effective compared to individual administration in reducing arsenic induced neurotoxicity. Copyright © 2013. Published by Elsevier B.V.

  6. An HPLC tracing of the enhancer regulation in selected discrete brain areas of food-deprived rats.

    Science.gov (United States)

    Miklya, I; Knoll, B; Knoll, J

    2003-05-09

    The recent discovery of the enhancer regulation in the mammalian brain brought a different perspective to the brain-organized realization of goal-oriented behavior, which is the quintessence of plastic behavioral descriptions such as drive or motivation. According to this new approach, 'drive' means that special endogenous enhancer substances enhance the impulse-propagation-mediated release of transmitters in a proper population of enhancer-sensitive neurons, and keep these neurons in the state of enhanced excitability until the goal is reached. However, to reach any goal needs the participation of the catecholaminergic machinery, the engine of the brain. We developed a method to detect the specific enhancer effect of synthetic enhancer substances [(-)-deprenyl, (-)-PPAP, (-)-BPAP] by measuring the release of transmitters from freshly isolated selected discrete brain areas (striatum, substantia nigra, tuberculum olfactorium, locus coeruleus, raphe) by the aid of HPLC with electrochemical detection. To test the validity of the working hypothesis that in any form of goal-seeking behavior the catecholaminergic and serotonergic neurons work on a higher activity level, we compared the amount of norepinephrine, dopamine, and serotonin released from selected discrete brain areas isolated from the brain of sated and food-deprived rats. Rats were deprived of food for 48 and 72 hours, respectively, and the state of excitability of their catecholaminergic and serotonergic neurons in comparison to that of sated rats was measured. We tested the orienting-searching reflex activity of the rats in a special open field, isolated thereafter selected discrete brain areas and measured the release of norepinephrine, dopamine, and serotonin from the proper tissue samples into the organ bath. The orienting-searching reflex activity of the rats increased proportionally to the time elapsed from the last feed and the amount of dopamine released from the striatum, substantia nigra and

  7. Effect of GSM-1800 and U.M.T.S. exposures on micro-glial activation and heat shock proteins induction in brain: a study on young adult and elderly rats

    Energy Technology Data Exchange (ETDEWEB)

    Laclau, M; Billaudel, B; Taxil, M; Haro, E; Ruffie, G; Sanchez, S; Poulletier De Gannes, F; Lagroye, I; Veyret, B [PIOM/Bioelecromagnetics Lab., ENSCPB/EPHE, 33 - Pessac (France)

    2006-07-01

    Contradictory results have emerged from recent studies describing low -level radiofrequency radiation (R.F.R.) as a hazardous factor for the central nervous system while others described such type of exposure as totally safe. In the brain, heat shock proteins (H.s.p.) are often induced under harmful conditions such as ischemia, traumatic injury, epilepsy, hyperthermia, drug administration, and neuro-degenerative diseases. Under those conditions, activation of the micro-glial cell population is often observed. In this work we studied the effect of two types of mobile phone signals, GSM-1800 and U.M.T.S. on the expression of two major H.s.p., induced in the brain under harmful conditions, H.s.p. 70 and H.s.p. 25. We also studied micro-glial activation in young adult (8 weeks) and elderly (17 months) Wistar rats. Height animals by group were exposed. Exposures were performed using a brain-averaged S.A.R. of 2 W/kg following two types of protocols: an acute exposure, with exposure lasting only two hours, and a sub chronic exposure in which the animals were exposed for two hours per day, five days per week, during four weeks. In all cases, rats were progressively habituated to the exposure setup (rockets) over two weeks to avoid stress and a sham group was exposed for each condition. Positive controls were performed by induction of a status epilepticus using a subcutaneous injection kainic acid (10 mg/kg). At the end of exposure, rats were anesthetized with isofluran and perfused from the heart with P.B.S. then paraformaldehyde prior to removing of the brain. Sections (10 m m thick) were prepared on slides for immunohistochemistry. Brain samples were coded and the analysis was performed in a blind manner. The sections were immuno-histo-chemically stained with antibodies raised in rabbits against H.s.p.25 and against the inducible form of H.s.p.70. The whole glial cell population was detected by its common cell surface glyco conjugates, which bind the plant Griffonia

  8. Effect of GSM-1800 and U.M.T.S. exposures on micro-glial activation and heat shock proteins induction in brain: a study on young adult and elderly rats

    International Nuclear Information System (INIS)

    Laclau, M.; Billaudel, B.; Taxil, M.; Haro, E.; Ruffie, G.; Sanchez, S.; Poulletier De Gannes, F.; Lagroye, I.; Veyret, B.

    2006-01-01

    Contradictory results have emerged from recent studies describing low -level radiofrequency radiation (R.F.R.) as a hazardous factor for the central nervous system while others described such type of exposure as totally safe. In the brain, heat shock proteins (H.s.p.) are often induced under harmful conditions such as ischemia, traumatic injury, epilepsy, hyperthermia, drug administration, and neuro-degenerative diseases. Under those conditions, activation of the micro-glial cell population is often observed. In this work we studied the effect of two types of mobile phone signals, GSM-1800 and U.M.T.S. on the expression of two major H.s.p., induced in the brain under harmful conditions, H.s.p. 70 and H.s.p. 25. We also studied micro-glial activation in young adult (8 weeks) and elderly (17 months) Wistar rats. Height animals by group were exposed. Exposures were performed using a brain-averaged S.A.R. of 2 W/kg following two types of protocols: an acute exposure, with exposure lasting only two hours, and a sub chronic exposure in which the animals were exposed for two hours per day, five days per week, during four weeks. In all cases, rats were progressively habituated to the exposure setup (rockets) over two weeks to avoid stress and a sham group was exposed for each condition. Positive controls were performed by induction of a status epilepticus using a subcutaneous injection kainic acid (10 mg/kg). At the end of exposure, rats were anesthetized with isofluran and perfused from the heart with P.B.S. then paraformaldehyde prior to removing of the brain. Sections (10 m m thick) were prepared on slides for immunohistochemistry. Brain samples were coded and the analysis was performed in a blind manner. The sections were immuno-histo-chemically stained with antibodies raised in rabbits against H.s.p.25 and against the inducible form of H.s.p.70. The whole glial cell population was detected by its common cell surface glyco conjugates, which bind the plant Griffonia

  9. [Quantitative analysis of urinary ethylene glycol in rats exposed to ethylene oxide].

    Science.gov (United States)

    Koga, M; Hori, H; Tanaka, I; Akiyama, T; Inoue, N

    1985-03-01

    A gas chromatographic method was used for determining ethylene glycol in urine. The analytical procedure is based on an azeotropic distillation and on esterification with n-butyl boronic acid. The linear calibration curve was obtained up to 500 micrograms/ml of ethylene glycol. The detection limit was estimated to be 10 micrograms/ml and relative standard deviation was 3.5% for 100 micrograms/ml of ethylene glycol. This method was applied to determine the urinary excretion of ethylene glycol in rats exposed to ethylene oxide at various concentrations (from 50 to 500 ppm). The excretion amounts of ethylene glycol were observed to be dependent on the concentration of ethylene oxide exposed.

  10. Impact of prenatal antimicrobial treatment on fetal brain damage due to autogenous fecal peritonitis in Wistar rats: A Histomorphometric Study

    Directory of Open Access Journals (Sweden)

    Neylane Gadelha

    2017-10-01

    Full Text Available Purpose: To investigate brain neuronal density in newborn rats whose mothers were subjected to fecal peritonitis and compare findings between rats born to mothers treated and not treated with antimicrobials. Methods: Peritonitis was induced with a 10% fecal suspension (4mL/kg in 2 pregnant rats. Of these, 1 received antimicrobial treatment 24 hours after peritonitis induction: moxifloxacin and dexamethasone plus 2 mL of the inner bark of the Schinus terebinthifolius raddi extract. One pregnant rat underwent no intervention and served as a control. Results: The newborn brains of rats born to mothers with fecal peritonitis were significantly smaller and of less firm consistency. Brain neuronal density was lower in the untreated group than in the control and treated groups (P<0.01. Conclusions: Untreated peritonitis caused brain damage in the offspring, which was averted by effective early antimicrobial treatment. This approach may provide an early avenue for translation of such therapy in humans. Keywords: peritonitis, brain injuries, rats

  11. Effect of Amphetamine on Adult Male and Female Rats Prenatally Exposed to Methamphetamine

    Directory of Open Access Journals (Sweden)

    Romana Šlamberová

    2014-01-01

    Full Text Available The aim of the present study was to examine the cross-sensitization induced by prenatal methamphetamine (MA exposure to adult amphetamine (AMP treatment in male and female rats. Rat mothers received a daily injection of MA (5 mg/kg or saline throughout the gestation period. Adult male and female offspring (prenatally MA- or saline-exposed were administered with AMP (5 mg/kg or saline (1 ml/kg in adulthood. Behaviour in unknown environment was examined in open field test (Laboras, active drug-seeking behaviour in conditioned place preference test (CPP, spatial memory in the Morris water maze (MWM, and levels of corticosterone (CORT were analyzed by enzyme immunoassay (EIA. Our data demonstrate that in Laboras test, AMP treatment in adulthood increased general locomotion (time and distance travelled regardless of the prenatal exposure and sex, while AMP increased exploratory activity (rearing only in prenatally MA-exposed animals. AMP induced sensitization only in male rats, but not in females when tested drug-seeking behaviour in the CPP test. In the spatial memory MWM test, AMP worsened the performance only in females, but not in males. On the other hand, males swam faster after chronic AMP treatment regardless of the prenatal drug exposure. EIA analysis of CORT levels demonstrated higher level in females in all measurement settings. In males, prenatal MA exposure and chronic adult AMP treatment decreased CORT levels. Thus, our data demonstrated that adult AMP treatment affects behaviour of adult rats, their spatial memory and stress response in sex-specific manner. The effect is also influenced by prenatal drug exposure.

  12. Ameliorative Effect of Honey and Propolis Mixture on Rats Exposed to Gamma Irradiation

    International Nuclear Information System (INIS)

    Hemieda, S.F.; Abd-El Nour, K.N.; Hassan, A.I.; Abdou, M.I.; Khalil, W.A.

    2016-01-01

    This study aims to evaluate the ameliorative effect of honey and propolis mixture treatment on some biochemical and biophysical parameters in rats exposed to oxidative stress of gamma irradiation. Male rats were exposed to a fractionated dose gamma irradiation of total 5 Gy in five successive days. A mixture of dose 250 mg/kg/day honey and 90 mg/kg/day propolis was administrated to rats, ten days before irradiation, five days during irradiation and 14 days post irradiation. Blood samples were collected at 1 st , 7 th and 14 th day post the 5 th day of irradiation. Biochemical parameters such as serum liver enzymes (ALT and AST), serum renal function as (BUN and Creatinine) and serum total antioxidants were estimated. Also biophysical studies including hemoglobin investigations (Hb absorption spectra and dielectric measurements) were investigated.The results demonstrated that the levels of AST, ALT, BUN and creatinine were significantly elevated, while levels of total antioxidants were significantly reduced post irradiation. Moreover the absolute values of permittivity ε', dielectric loss ε'' and ac - conductivity σ ac increased in addition to a pronounced decrease in the absorbance at Sort band after irradiation compared to control group.Treatment of the irradiated group with honey and propolis mixture showed significant amelioration in the levels of the biochemical parameters. Also, the values of ε', ε'' and σ ac were nearly close to those of control group. Finally, the average value of peak height of Sort band was significantly increased compared to irradiated rat.

  13. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Maronpot, Robert R; Torres-Jardon, Ricardo; Henríquez-Roldán, Carlos; Schoonhoven, Robert; Acuña-Ayala, Hilda; Villarreal-Calderón, Anna; Nakamura, Jun; Fernando, Reshan; Reed, William; Azzarelli, Biagio; Swenberg, James A

    2003-01-01

    Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NFkappaB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid(1-42) in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days-10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NFkappaB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and beta amyloid(1-42) in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer

  14. Effects of Vitamin C on Kidney and Bone of Rats Exposed to Low ...

    African Journals Online (AJOL)

    . Wister rats were exposed to cadmium (as CdSO4.8H2O), by sub-cutaneous injection, at doses of 1.0, 2.0 and 3.0 ìg/kg body weight, with or without vitamin C supplementation, for four weeks. Serum alkaline phosphatase activity of the group of ...

  15. Modulating efficacy of foeniculum vulgare mill. essential oil in rats exposed to oxidative stress

    International Nuclear Information System (INIS)

    Nada, A.S.; Amin, N.E.; Ahmed, O.M.; Abdel-Reheim, E.S.; Ali, M.M.

    2011-01-01

    This study was conducted to evaluate the modulating efficacy of prolonged oral administration of Foeniculum vulgare Mill. essential oil (FEO) against gamma irradiation-induced oxidative stress in male rats. To achieve the ultimate goal of this study, 32 male Swiss Albino rats were divided into 4 groups, each consists of 8 rats: Group 1 was normal control group, group 2 irradiated with a single dose (6.5 Gy), and sacrificed 7 days irradiation, group 3 received FEO (250 mg/kg body wt) for 28 successive days by intra-gastric gavages and group 4 received treatment of FEO for 21 days, then was exposed to gamma-radiation (6.5 Gy), followed by treatment with FEO 7 days later to be 28 days as group 3. Sacrifice of all animals was performed after 28 days from the beginning of the experiment. Liver and kidney glutathione (GSH) contents; lipid peroxidation (TBARS) and metallothioneins (MTs) levels were determined. In addition, levels of some trace elements (Fe, Cu, Zn and Se) in liver and kidney tissues were also estimated. Rats exposed to gamma radiation exhibited a profound elevation in TBARS and MTs level of liver and kidney tissues. Noticeable drop in liver and kidney glutathione contents were also observed. Tissue organs displayed some changes in trace element concentrations. Rats treated with fennel oil before and after whole body gamma irradiation showed significant modulation in the activity of antioxidants (GSH, MTs). FEO was also effective in minimizing the radiation-induced increase in TBARS as well as trace elements alteration in some tissue organs comparing with irradiated control rats. It could be concluded that FEO exerts a beneficial protective potential against radiation-induced biochemical perturbations and oxidative stress

  16. Two-hit model of schizophrenia induced by neonatal immune activation and peripubertal stress in rats: Study of sex differences and brain oxidative alterations.

    Science.gov (United States)

    Monte, Aline Santos; Mello, Bruna Stefânia Ferreira; Borella, Vládia Célia Moreira; da Silva Araujo, Tatiane; da Silva, Francisco Eliclécio Rodrigues; Sousa, Francisca Cléa F de; de Oliveira, Antônio Carlos Pinheiro; Gama, Clarissa Severino; Seeman, Mary V; Vasconcelos, Silvânia Maria Mendes; Lucena, David Freitas De; Macêdo, Danielle

    2017-07-28

    Schizophrenia is considered to be a developmental disorder with distinctive sex differences. Aiming to simulate the vulnerability of the third trimester of human pregnancy to the developmental course of schizophrenia, an animal model was developed, using neonatal poly(I:C) as a first-hit, and peripubertal stress as a second-hit, i.e. a two-hit model. Since, to date, there have been no references to sex differences in the two-hit model, our study sought to determine sex influences on the development of behavior and brain oxidative change in adult rats submitted to neonatal exposure to poly(I:C) on postnatal days 5-7 as well as peripubertal unpredictable stress (PUS). Our results showed that adult two-hit rats present sex-specific behavioral alterations, with females showing more pronounced deficits in prepulse inhibition of the startle reflex and hyperlocomotion, while males showing more deficits in social interaction. Male and female animals exhibited similar working memory deficits. The levels of the endogenous antioxidant, reduced glutathione, were decreased in the prefrontal cortex (PFC) of both male and female animals exposed to both poly(I:C) and poly(I:C)+PUS. Only females presented decrements in GSH levels in the striatum. Nitrite levels were increased in the PFC of male and in the striatum of female poly(I:C)+PUS rats. Increased lipid peroxidation was observed in the PFC of females and in the striatum of males and females exposed to poly(I:C) and poly(I:C)+PUS. Thus, the present study presents evidence for sex differences in behavior and oxidative brain change induced by a two-hit model of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Gadolinium neutron capture therapy for brain tumors. Biological aspects

    International Nuclear Information System (INIS)

    Takagaki, Masao; Oda, Yoshifumi; Matsumoto, Masato; Kikuchi, Haruhiko; Kobayashi, Tooru; Kanda, Keiji; Ujeno, Yowri.

    1994-01-01

    This study investigated the tumoricidal effect of gadolinium neutron capture therapy (Gd-NCT) in in vitro and in vivo systems using Gd-DTPA. In in vitro study, a certain amount of Gd-DTPA, yielding 5000 ppm Gd-n, was added to human glioma cells, T98G, upon which thermal neutrons were exposed. After irradiation, the cells were incubated and the colonies were counted 10 days later. In in vivo study, Fisher-344 rats with experimentally induced gliosarcoma cells (9L) were exposed to thermal neutrons at a fluence rate of 3E+9/s for 1 h immediately after iv injection of Gd-DTPA. Two weeks after irradiation, brain samples were histologically examined. Tumor clearance of Gd-DTPA was also determined. In vitro analysis showed that a 1% survival level was obtained at 3.75E+12 (n/cm 2 ) for the Gd (+) medium and 2.50E+13 (n/cm 2 ) for the Gd (-) medium. In in vivo analysis, the concentration of Gd in 9L-rat brain tumor after iv injection of 0.2 mg/kg Gd-DTPA was found to be less than 100 ppm, but Gd-NCT on 9L-rat brain tumor administered with a ten-fold dose showed a substantial killing effect on tumor without serious injury to the normal brain structure. The killing effect of Gd-NCT was confirmed in in vitro and in vivo systems. (N.K.)

  18. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    OpenAIRE

    Uhlig, S.; Nüsing, R.; von Bethmann, A.; Featherstone, R. L.; Klein, T.; Brasch, F.; Müller, K. M.; Ullrich, V.; Wendel, A.

    1996-01-01

    BACKGROUND: Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. MATERIALS AND METHODS: Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. RESULTS: LPS induced the release of T...

  19. Hypertension and Cardiovascular Remodelling in Rats Exposed to Continuous Light: Protection by ACE-Inhibition and Melatonin

    Directory of Open Access Journals (Sweden)

    Fedor Simko

    2014-01-01

    Full Text Available Exposure of rats to continuous light attenuates melatonin production and results in hypertension development. This study investigated whether hypertension induced by continuous light (24 hours/day exposure induces heart and aorta remodelling and if these alterations are prevented by melatonin or angiotensin converting enzyme inhibitor captopril. Four groups of 3-month-old male Wistar rats (10 per group were treated as follows for six weeks: untreated controls, exposed to continuous light, light-exposed, and treated with either captopril (100 mg/kg/day or melatonin (10 mg/kg/day. Exposure to continuous light led to hypertension, left ventricular (LV hypertrophy and fibrosis, and enhancement of the oxidative load in the LV and aorta. Increase in systolic blood pressure by continuous light exposure was prevented completely by captopril and partially by melatonin. Both captopril and melatonin reduced the wall thickness and cross-sectional area of the aorta and reduced the level of oxidative stress. However, only captopril reduced LV hypertrophy development and only melatonin reduced LV hydroxyproline concentration in insoluble and total collagen in rats exposed to continuous light. In conclusion, captopril prevented LV hypertrophy development in the continuous light-induced hypertension model, while only melatonin significantly reduced fibrosis. This antifibrotic action of melatonin may be protective in hypertensive heart disease.

  20. Long-term effects of a single exposure to immobilization: a c-fos mRNA study of the response to the homotypic stressor in the rat brain.

    Science.gov (United States)

    Vallès, Astrid; Martí, Octavi; Armario, Antonio

    2006-05-01

    A single exposure to a severe emotional stressor such as immobilization in wooden boards (IMO) causes long-term (days to weeks) peripheral and central desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor. However, the brain areas putatively involved in long-term desensitization are unknown. In the present experiment, adult male rats were subjected to 2 h of IMO and, 1 or 4 weeks later, exposed again to 1 h IMO together with stress-naive rats. C-fos mRNA activation just after IMO and 1 h after the termination of IMO (post-IMO) were evaluated by in situ hybridization. Whereas in most brain areas c-fos mRNA induction caused by the last IMO session was similar in stress-naive (controls) and previously immobilized rats, a few brain areas showed a reduced c-fos mRNA response: ventral lateral septum (LSv), medial amygdala (MeA), parvocellular region of the paraventricular hypothalamic nucleus (pPVN), and locus coeruleus (LC). In contrast, an enhanced expression was observed in the medial division of the bed nucleus stria terminalis (BSTMv). The present work demonstrates that a previous experience with a stressor can induce changes in c-fos mRNA expression in different brain areas in response to the homotypic stressor and suggests that LSv, MeA, and BSTMv may be important for providing signals to lower diencephalic (pPVN) and brainstem (LC) nuclei, which results in a lower physiological response to the homotypic stressor.

  1. Effect of aging on phosphate metabolites of rat brain as revealed by the in vivo and in vitro 31P NMR measurements

    International Nuclear Information System (INIS)

    Liu, Hsiuchih; Chi, Chinwen; Liu, Tsungyun; Liu, Lianghui; Luh, Wenming; Hsieh, Changhuain; Wu, Wenguey

    1991-01-01

    Changes of phosphate metabolism in brains of neonate, weaning and adult rats were compared using both in vivo and in vitro nuclear magnetic resonance spectra. Ratios of phosphocreatine/nucleoside triphosphate (PCr/NTP) were the same in neonatal brain in both in vivo and in vitro studies, but not in weaning and adult brains. This discrepancy may have resulted from extended cerebral hypoxia due to slowed freezing of the brain by the increased skull thickness and brain mass in the weaning and adult rats. Variations of in vitro extraction condition for this age-related study may lead to systematic errors in the adult rats. Nevertheless, the phosphomonoester/nucleoside triphosphate (PME/NTP) ratios in extracts of brain from neonatal rats were higher than those obtained in vivo. In addition, the glycerophosphorylethanolamine plus glycerophosphorylcholine/nucleoside triphosphate (GPE+GPC/NTP) ratios, which were not measurable in vivo, showed age-dependent increase in extracts of rat brain. Some of the phosphomonoester and phosphodiester molecules in rat brain may be undetectable in in vivo NMR analysis because of their interaction with cellular components. The total in vitro GPE and GPC concentration in brain from neonatal rat was estimated to be 0.34 mmole/g wet tissue

  2. Effect of 60Co-irradiation on normal and low protein diet fed rat brain

    International Nuclear Information System (INIS)

    Hasan, S.S.; Habibullah, M.

    1980-01-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain. (orig.) [de

  3. Melanin-concentrating hormone: unique peptide neuronal systems in the rat brain and pituitary gland

    International Nuclear Information System (INIS)

    Zamir, N.; Skofitsch, G.; Bannon, M.J.; Jacobowitz, D.M.

    1986-01-01

    A unique neuronal system was detected in the rat central nervous system by immunohistochemistry and radioimmunoassay with antibodies to salmon melanin-concentrating hormone (MCH). MCH-like immunoreactive (MCH-LI) cell bodies were confined to the hypothalamus. MCH-LI fibers were found throughout the brain but were most prevalent in hypothalamus, mesencephalon, and pons-medulla regions. High concentrations of MCH-LI were measured in the hypothalamic medial forebrain bundle (MFB), posterior hypothalamic nucleus, and nucleus of the diagonal band. Reversed-phase high-performance liquid chromatography of MFB extracts from rat brain indicate that MCH-like peptide from the rat has a different retention time than that of the salmon MCH. An osmotic stimuls (2% NaCl as drinking water for 120 hr) caused a marked increase in MCH-LI concentrations in the lateral hypothalamus and neurointermediate lobe. The present studies establish the presence of MCH-like peptide in the rat brain. The MCH-LI neuronal system is well situated to coordinate complex functions such as regulation of water intake

  4. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Biochemical parameters of pregnant rats and their offspring exposed to different doses of inorganic mercury in drinking water.

    Science.gov (United States)

    Oliveira, Cláudia S; Oliveira, Vitor A; Ineu, Rafael P; Moraes-Silva, Lucélia; Pereira, Maria E

    2012-07-01

    This work investigated the effects of low and high doses of inorganic mercury in drinking water on biochemical parameters of pregnant rats and their offspring. Female Wistar rats were treated during pregnancy with 0, 0.2, 0.5, 10 or 50 μg Hg(2+)/mL as HgCl(2). Rats were euthanized on day 20 of pregnancy. Pregnant rats presented a decrease in total water intake in all doses of mercury tested. At high doses, a decrease in the total food intake and in body weight gain was observed. Pregnant rats exposed to 50 μg Hg(2+)/mL presented an increase in kidney relative weight. Mercury exposure did not change serum urea and creatinine levels in any of the doses tested. Moreover, mercury exposure did not change porphobilinogen synthase activity of kidney, liver and placenta from pregnant rats in any of the doses tested, whereas fetuses of pregnant rats exposed to 50 μg Hg(2+)/mL presented an increase in the hepatic porphobilinogen synthase activity. In general, pregnant rats presented alterations due to HgCl(2) exposure in drinking water. However, only the dose 50 μg Hg(2+)/mL appeared to be enough to cross the blood-placenta barrier, since at this dose the fetuses presented change in the porphobilinogen synthase activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effects of Maternal Behavior Induction and Pup Exposure on Neurogenesis in Adult, Virgin Female Rats

    Science.gov (United States)

    Furuta, Miyako; Bridges, Robert S.

    2009-01-01

    The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure on neurogenesis in nulliparous rats were examined in order to determine whether maternal behavior itself, independent of pregnancy and lactation, might affect neurogenesis. Adult, nulliparous, Sprague-Dawley, female rats were exposed daily to foster young in order to induce maternal behavior. Following the induction of maternal behavior each maternal subject plus females that were exposed to pups for a comparable number of test days, but did not display maternal behavior, and subjects that had received no pup exposure were injected with bromodeoxyuridine (BrdU, 90 mg/kg, i.v.). Brain sections were double-labeled for BrdU and the neural marker, NeuN, to examine the proliferating cell population. Increases in the number of double-labeled cells were found in the maternal virgin brain when compared with the number of double-labeled cells present in non-maternal, pup-exposed nulliparous rats and in females not exposed to young. No changes were evident in the dentate gyrus of the hippocampus as a function of maternal behavior. These data indicate that in nulliparous female rats maternal behavior itself is associated with the stimulation of neurogenesis in the SVZ. PMID:19712726

  7. Characterization of rat brain NCAM mRNA using DNA oligonucleotide probes

    DEFF Research Database (Denmark)

    Andersson, A M; Gaardsvoll, H; Giladi, E

    1990-01-01

    A number of different isoforms of the neural cell adhesion molecule (NCAM) have been identified. The difference between these is due to alternative splicing of a single NCAM gene. In rat brain NCAM mRNAs with sizes of 7.4, 6.7, 5.2, 4.3 and 2.9 kb have been reported. We have synthesized six DNA...... oligonucleotides, that hybridize to different exons in the NCAM gene. Furthermore we have constructed three oligonucleotides, that exclusively hybridize to mRNAs lacking certain exons, by letting them consist of sequences adjacent to both sides of the splice sites. By means of these probes we have characterized...... the five NCAM mRNAs in rat brain....

  8. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development. PMID:26848844

  9. Effects of tetrahydrocannabinol on glucose uptake in the rat brain.

    Science.gov (United States)

    Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R

    2017-05-01

    Δ 9 -Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [ 18 F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Amphetamine in rat brain after intraperitoneal injection of N-alkylated analogues.

    Science.gov (United States)

    Nazarali, A J; Baker, G B; Coutts, R T; Pasutto, F M

    1983-01-01

    Three N-alkylated analogues of amphetamine were administered intraperitoneally to male Sprague-Dawley rats and whole brain levels of amphetamine (AM) and the N-alkyl analogue were determined one hour after injection of the N-alkylated compounds. The drugs administered were the N-2-cyanoethyl-(I) (fenproporex), the N-3-chloropropyl-(II) (mefenorex) and the N-n-propyl-(III) derivatives of AM: the first two of these are used clinically as anorexiants, and the latter has been used extensively to study aspects of metabolism of AM-like compounds. Analysis of AM, I, II and III was performed using electron-capture gas chromatography with a capillary column after reaction of compounds with pentafluorobenzoyl chloride under aqueous conditions. In a second comparative study, equimolar doses (0.05 mMole/kg) of I or AM were administered intraperitoneally to the rats and brain levels determined after one hour. Results indicate extensive N-dealkylation occurs for compounds I, II and III in the rat.

  11. Responsiveness of cerebral and hepatic cytochrome P450s in rat offspring prenatally exposed to lindane

    International Nuclear Information System (INIS)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2008-01-01

    ABSTRACT: Prenatal exposure to low doses of lindane has been shown to affect the ontogeny of xenobiotic metabolizing cytochrome P450s (CYPs), involved in the metabolism and neurobehavioral toxicity of lindane. Attempts were made in the present study to investigate the responsiveness of CYPs in offspring prenatally exposed to lindane (0.25 mg/kg b. wt.; 1/350th of LD 50 ; p. o. to mother) when challenged with 3-methylcholanthrene (MC) or phenobarbital (PB), inducers of CYP1A and 2B families or a sub-convulsant dose of lindane (30 mg/kg b. wt., p. o.) later in life. Prenatal exposure to lindane was found to produce an increase in the mRNA and protein expression of CYP1A1, 1A2, 2B1, 2B2 isoforms in brain and liver of the offspring at postnatal day 50. The increased expression of the CYPs in the offspring suggests the sensitivity of the CYPs during postnatal development, possibly, to low levels of lindane, which may partition into mother's milk. A higher increase in expression of CYP1A and 2B isoenzymes and their catalytic activity was observed in animals pretreated prenatally with lindane and challenged with MC (30 mg/kg, i. p. x 5 days) or PB (80 mg/kg, i. p. x 5 days) when young at age (approx. 7 weeks) compared to animals exposed to MC or PB alone. Further, challenge of the control and prenatally exposed offspring with a single sub-convulsant dose of lindane resulted in an earlier onset and increased incidence of convulsions in the offspring prenatally exposed to lindane have demonstrated sensitivity of the CYPs in the prenatally exposed offspring. Our data assume significance as the subtle changes in the expression profiles of hepatic and cerebral CYPs in rat offspring during postnatal development could modify the adult response to a later exposure to xenobiotics

  12. Effect of nephrotoxic treatment with gentamicin on rats chronically exposed to uranium

    International Nuclear Information System (INIS)

    Rouas, Caroline; Stefani, Johanna; Grison, Stephane; Grandcolas, Line; Baudelin, Cedric; Dublineau, Isabelle; Pallardy, Marc; Gueguen, Yann

    2011-01-01

    Uranium is a radioactive heavy metal with a predominantly chemical toxicity, affecting especially the kidneys and more particularly the proximal tubular structure. Until now, few experimental studies have examined the effect of chronic low-dose exposure to uranium on kidney integrity: these mainly analyse standard markers such as creatinine and urea, and none has studied the effect of additional co-exposure to a nephrotoxic agent on rats chronically exposed to uranium. The aim of the present study is to examine the potential cumulative effect of treating uranium-exposed rats with a nephrotoxic drug. Neither physiological indicators (diuresis and creatinine clearance) nor standard plasma and urine markers (creatinine, urea and total protein) levels were deteriorated when uranium exposure was combined with gentamicin-induced nephrotoxicity. A histological study confirmed the preferential impact of gentamicin on the tubular structure and showed that uranium did not aggravate the histopathological renal lesions. Finally, the use of novel markers of kidney toxicity, such as KIM-1, osteopontin and kallikrein, provides new knowledge about the nephrotoxicity threshold of gentamicin, and allows us to conclude that under our experimental conditions, low dose uranium exposure did not induce signs of nephrotoxicity or enhance renal sensitivity to another nephrotoxicant.

  13. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  14. Protective effects of edaravone on the radiation response of oligodendrocyte in rats following whole brain irradiation

    International Nuclear Information System (INIS)

    Chen Yingzhu; Tian Ye; Bao Shiyao; Bao Huan; Zhan Zhilin

    2007-01-01

    Objective: To investigate the changes of the oligodendrocyte lineage cells in the cortex following whole brain irradiation and the effects of the neotype free radical scavenger, edaravone on radiation response of oligodendrocyte in rats. Methods: 120 male Sprague Dawley rats were randomly divided into sham- irradiation group, irradiation group and edaravone group. The model of whole-brain irradiation was established with exposure of the whole brain of the rats to 4 MeV X-rays with a single-dose of 10 Gy. The rats were injected intraperitoneally with edaravone at 0.3, 1.0 and 3.0 mg/kg. Tissue microarray of irradiation-induced brain injury in rats was constructed. The expression of A2BS, oligodendrocyte market 4(O4) and 2', 3'-cyclic nucleotide 3'- phosphodiesterase (CNPase) in the cortex was examined by tissue microarray technology and immunohistochemistry. The positive cells were counted. Results: Compared with the sham-irradiation group, the number of A2BS-positive cells increased and the number of O4, CNPase-positive cells decreased significantly at certain time in the irradiation group(P<0.05). Compared with irradiation group, A2BS-positive cells decreased significantly after edaravone treatment, while O4-positive cells and CNPase-positive cells increased significantly (P<0.05, or P<0.01). Conclusions: The number of oligodendrocyte precursor cells in the cortex of rats increased reactively following whole brain irradiation and changed with time. Edaravone played a protective role in oligodendrocyte ischemic reaction in a dose-dependent manner. (authors)

  15. Protective effects of edaravone on the radiation response of oligodendrocyte in rats following whole brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yingzhu, Chen; Ye, Tian; Shiyao, Bao; Huan, Bao; Zhilin, Zhan [The Second Affiliated Hospital of Suzhou Univ., Suzhou (China)

    2007-08-15

    Objective: To investigate the changes of the oligodendrocyte lineage cells in the cortex following whole brain irradiation and the effects of the neotype free radical scavenger, edaravone on radiation response of oligodendrocyte in rats. Methods: 120 male Sprague Dawley rats were randomly divided into sham- irradiation group, irradiation group and edaravone group. The model of whole-brain irradiation was established with exposure of the whole brain of the rats to 4 MeV X-rays with a single-dose of 10 Gy. The rats were injected intraperitoneally with edaravone at 0.3, 1.0 and 3.0 mg/kg. Tissue microarray of irradiation-induced brain injury in rats was constructed. The expression of A2BS, oligodendrocyte market 4(O4) and 2', 3'-cyclic nucleotide 3'- phosphodiesterase (CNPase) in the cortex was examined by tissue microarray technology and immunohistochemistry. The positive cells were counted. Results: Compared with the sham-irradiation group, the number of A2BS-positive cells increased and the number of O4, CNPase-positive cells decreased significantly at certain time in the irradiation group(P<0.05). Compared with irradiation group, A2BS-positive cells decreased significantly after edaravone treatment, while O4-positive cells and CNPase-positive cells increased significantly (P<0.05, or P<0.01). Conclusions: The number of oligodendrocyte precursor cells in the cortex of rats increased reactively following whole brain irradiation and changed with time. Edaravone played a protective role in oligodendrocyte ischemic reaction in a dose-dependent manner. (authors)

  16. [Measurement of the blood flow in various areas of the rat brain by means of microspheres].

    Science.gov (United States)

    Deroo, J; Gerber, G B

    1976-01-01

    A method is described to measure regional blood flow in different structures of the rat brain. Microspheres (15 micron) are injected, the brain is sectioned, stained for myeline, radioautographs are prepared and the microspheres in the different structures are counted. The values obtained for different brain structures are counted. The values obtained for different brain regions (cortex, corpus callosum, thalamus hipocampus, hypothalamic region, colliculi, cerebellum, pons, medulla) compare well with those published by others on larger animals. In rats fed 1% of lead from birth, higher blood flow is found in the cortex and a lower one in the interior part of the brain compared to controls.

  17. Distribution of kappa opioid receptors in the brain of young and old male rats

    International Nuclear Information System (INIS)

    Maggi, R.; Limonta, P.; Dondi, D.; Martini, L.; Piva, F.

    1989-01-01

    The experiments to be described have been designed in order to: (a) provide new information on the concentrations of opioid kappa receptors in different regions of the brain of the male rats; and (b) to analyze whether the density of brain kappa receptors might be modified by the process of aging. The concentration of kappa receptors was investigated in the hypothalamus, amygdala, mesencephalon, corpus striatum, hippocampus, thalamus, frontal poles, anterior and posterior cortex collected from male rats of 2 and 19 months of age. 3 H-bremazocine (BRZ) was used as the ligand of kappa receptors, after protection of mu and delta receptors respectively with dihydromorphine and d-ala-d-leu-enkephalin. The results obtained show that: (1) in young male rats, the number of kappa opioid receptors is different in the various brain areas examined. (2) Aging exerts little influence on the number of kappa receptors in the majority of the brain structures considered. However in the amygdala and in the thalamus the number of kappa receptors was increased in old animals

  18. Differences in postmortem stability of sex steroid receptor immunoreactivity in rat brain

    NARCIS (Netherlands)

    Fodor, Mariann; van Leeuwen, Fred W.; Swaab, Dick F.

    2002-01-01

    Difficulties in demonstrating sex steroid receptors in the human brain by immunohistochemistry (IHC) may depend on postmortem delay and a long fixation time. The effect of different postmortem times was therefore studied in rat brain kept in the skull at room temperature for 0, 6, or 24 hr after

  19. Beneficial effects of enriched environment following status epilepticus in immature rats.

    Science.gov (United States)

    Faverjon, S; Silveira, D C; Fu, D D; Cha, B H; Akman, C; Hu, Y; Holmes, G L

    2002-11-12

    There is increasing evidence that enriching the environment can improve cognitive and motor deficits following a variety of brain injuries. Whether environmental enrichment can improve cognitive impairment following status epilepticus (SE) is not known. To determine whether the environment in which animals are raised influences cognitive function in normal rats and rats subjected to SE. Rats (n = 100) underwent lithium-pilocarpine-induced SE at postnatal (P) day 20 and were then placed in either an enriched environment consisting of a large play area with toys, climbing objects, and music, or in standard vivarium cages for 30 days. Control rats (n = 32) were handled similarly to the SE rats but received saline injections instead of lithium-pilocarpine. Rats were then tested in the water maze, a measure of visual-spatial memory. A subset of the rats were killed during exposure to the enriched or nonenriched environment and the brains examined for dentate granule cell neurogenesis using bromodeoxyuridine (BrdU) and phosphorylated cyclic AMP response element binding protein (pCREB) immunostaining, a brain transcription factor important in long-term memory. Both control and SE rats exposed to the enriched environment performed significantly better than the nonenriched group in the water maze. There was a significant increase in neurogenesis and pCREB immunostaining in the dentate gyrus in both control and SE animals exposed to the enriched environment compared to the nonenriched groups. Environmental enrichment resulted in no change in SE-induced histologic damage. Exposure to an enriched environment in weanling rats significantly improves visual-spatial learning. Even following SE, an enriched environment enhances cognitive function. An increase in neurogenesis and activation of transcription factors may contribute to this enhanced visual-spatial memory.

  20. Identification of a third form of NaK-ATPase catalytic subunit in rat brain by photoaffinity labeling

    International Nuclear Information System (INIS)

    Lowndes, J.M.; Millan, N.M.; Ruoho, A.E.; Hokin-Neaverson, M.

    1987-01-01

    Using photoaffinity labeling, they have found a form of the NaK-ATPase catalytic subunit, α(-), in the rat brain that is distinct from the α and α(+) forms. Strong radiolabeling of α(-) was obtained with [ 125 I]azido-iodophenethylamido-succinyl-cymarin (AISC). AISC is a new cardiotonic steroid photolabel which they have synthesized and characterized chemically and biochemically. This compound labels α(-) better than the photolabels that they have previously reported. SDS-PAGE (5%) of photolabeled rat brain microsomes showed that α(-) migrated with faster mobility than the dog kidney α subunit. The α(-) appears to have different specificity for different cardiotonic steroids than either α(+) or α. The radiolabeling of rat brain α(+) and dog kidney α with [ 125 I]AISC was protectable by ouabain; in contrast, 1 mM ouabain did not reduce the [ 125 I]AISC-labeling of α(-), although the labeling was protected with 200 μM cymarin or AISC. The results indicate that the α(-) form of the NaK-ATPase in rat brain binds cymarin and its derivative but has little affinity for ouabain. It is possible that α(-) may be the translation product of the rat brain α(III) mRNA which has recently been described

  1. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Heng-Chih Chang

    Full Text Available Brain ischemia leads to muscle inactivity-induced atrophy and may exacerbate motor function deficits. Intramuscular insulin-like growth factor I (IGF-I injection has been shown to alleviate the brain ischemia-induced muscle atrophy and thus improve the motor function. Motor function is normally gauged by the integrity and coordination of the central nervous system and peripheral muscles. Whether brain ischemic regions are adaptively changed by the intramuscular IGF-I injection is not well understood. In this study, the effect of intramuscular IGF-I injection was examined on the central nervous system of brain ischemic rats. Rats were divided into 4 groups: sham control, brain ischemia control, brain ischemia with IGF-I treatment, and brain ischemia with IGF-I plus IGF-I receptor inhibitor treatment. Brain ischemia was induced by right middle cerebral artery occlusion. IGF-I and an IGF-1 receptor inhibitor were injected into the affected calf and anterior tibialis muscles of the treated rats for 4 times. There was an interval of 2 days between each injection. Motor function was examined and measured at the 24 hours and 7 days following a brain ischemia. The affected hind-limb muscles, sciatic nerve, lumbar spinal cord, and motor cortex were collected for examination after euthanizing the rats. IGF-I expression in the central nervous system and affected muscles were significantly decreased after brain ischemia. Intramuscular IGF-I injection increased the IGF-I expression in the affected muscles, sciatic nerve, lumbar spinal cord, and motor cortex. It also increased the p-Akt expression in the affected motor cortex. Furthermore, intramuscular IGF-I injection decreased the neuronal apoptosis and improved the motor function. However, co-administration of the IGF-I receptor inhibitor eliminated these effects. Intramuscular IGF-I injection after brain ischemia attenuated or reversed the decrease of IGF-I in both central and peripheral tissues, and

  2. Multiple endocrine disrupting effects in rats perinatally exposed to butylparaben

    DEFF Research Database (Denmark)

    Boberg, Julie; Petersen, Marta Axelstad; Svingen, Terje

    2016-01-01

    ) expression was reduced in prepubertal, but not adult animals exposed to butylparaben. In adult testes, Nr5a1 expression was reduced at all doses, indicating persistent disruption of steroidogenesis. Prostate histology was altered at prepuberty and adult prostate weights were reduced in the high dose group......Parabens comprise a group of preservatives commonly added to cosmetics, lotions and other consumer products. Butylparaben has estrogenic and anti-androgenic properties and is known to reduce sperm counts in rats following perinatal exposure. Whether butylparaben exposure can affect other endocrine...

  3. Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis

    Energy Technology Data Exchange (ETDEWEB)

    Gui, C.Z.; Ran, L.Y.; Li, J.P.; Guan, Z.Z. [Guiyang Medical College, Guiyang (China). Dept. of Pathology

    2010-09-15

    The purpose of the investigation is to reveal the mechanism of the decreased ability of learning and memory induced by coal burning fluorosis. Ten offspring SD rats aged 30 days, who were born from the mothers with chronic coal burning fluorosis, and ten offspring with same age from the normal mothers as controls were selected. Spatial learning and memory of the rats were evaluated by Morris Water Maze test. Cholinesterase activity was detected by photometric method. The expressions of nicotinic acetylcholine receptors (nAChRs) at protein and mRNA levels were detected by Western blotting and Real-time PCR, respectively. The results showed that in the rat offspring exposed to higher fluoride as compared to controls, the learning and memory ability declined; the cholinesterase activities in the brains were inhibited; the protein levels of alpha 3, alpha 4 and alpha 7 nAChR subunits were decreased which showed certain significant correlations with the declined learning and memory ability; and the mRNA levels of alpha 3 and alpha 4 nAChRs were decreased, whereas the alpha 7 mRNA increased. The data indicated that coal burning fluorosis can induce the decreased ability of learning and memory of rat offspring, in which the mechanism might be connected to the changed nAChRs and cholinesterase.

  4. Rat brain digital stereotaxic white matter atlas with fine tract delineation in Paxinos space and its automated applications in DTI data analysis.

    Science.gov (United States)

    Liang, Shengxiang; Wu, Shang; Huang, Qi; Duan, Shaofeng; Liu, Hua; Li, Yuxiao; Zhao, Shujun; Nie, Binbin; Shan, Baoci

    2017-11-01

    To automatically analyze diffusion tensor images of the rat brain via both voxel-based and ROI-based approaches, we constructed a new white matter atlas of the rat brain with fine tracts delineation in the Paxinos and Watson space. Unlike in previous studies, we constructed a digital atlas image from the latest edition of the Paxinos and Watson. This atlas contains 111 carefully delineated white matter fibers. A white matter network of rat brain based on anatomy was constructed by locating the intersection of all these tracts and recording the nuclei on the pathway of each white matter tract. Moreover, a compatible rat brain template from DTI images was created and standardized into the atlas space. To evaluate the automated application of the atlas in DTI data analysis, a group of rats with right-side middle cerebral artery occlusion (MCAO) and those without were enrolled in this study. The voxel-based analysis result shows that the brain region showing significant declines in signal in the MCAO rats was consistent with the occlusion position. We constructed a stereotaxic white matter atlas of the rat brain with fine tract delineation and a compatible template for the data analysis of DTI images of the rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    Directory of Open Access Journals (Sweden)

    Yuejun Huang

    Full Text Available In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  6. Impact of Perinatal Systemic Hypoxic–Ischemic Injury on the Brain of Male Offspring Rats: An Improved Model of Neonatal Hypoxic–Ischemic Encephalopathy in Early Preterm Newborns

    Science.gov (United States)

    Xu, Hongwu; Wu, Weizhao; Lai, Xiulan; Ho, Guyu; Ma, Lian; Chen, Yunbin

    2013-01-01

    In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions. PMID:24324800

  7. Effects of sublethal doses of gamma radiation on the developing rat brain

    International Nuclear Information System (INIS)

    Cerda, H.; Carlsson, J.; Larsson, B.; Saefwenberg, J.O.

    1975-01-01

    Newborn rats were irradiated with 60 Co gamma rays. Doses of 0, 80 or 160 rads were given to the whole body. The whole body and brain weights, DNA and RNA contents of the brain and 3 H-thymidine or 3 H-uridine incorporated by the brain were measured at 5, 10 or 15 days after birth. A dose of 160 rads produced clear alterations in the brain but no clear effects could be detected when 80 rads were given. (author)

  8. Genotoxicity and fetal abnormality in streptozotocin-induced diabetic rats exposed to cigarette smoke prior to and during pregnancy.

    Science.gov (United States)

    Damasceno, D C; Volpato, G T; Sinzato, Y K; Lima, P H O; Souza, M S S; Iessi, I L; Kiss, A C I; Takaku, M; Rudge, M V C; Calderon, I M P

    2011-10-01

    Maternal hyperglycemia during early pregnancy is associated with increased risk of abnormalities in the offspring. Malformation rates among the offspring of diabetic mothers are 2-5-fold higher than that of the normal population, and congenital malformations are the major cause of mortality and morbidity in the offspring of diabetic mothers. Metabolic changes, such as hyperglycemia and the metabolites obtained from cigarettes both increase the production of reactive oxygen species (ROS) in the embryo or fetus, causing DNA damage. To evaluate the maternal and fetal genotoxicity, and to assess the incidence of fetal anomaly in diabetic female rats exposed to cigarette smoke at different stages of pregnancy in rats. Diabetes was induced by streptozotocin administration and cigarette smoke exposure was produced by a mechanical smoking device that generated mainstream smoke that was delivered into a chamber. Female Wistar rats were randomly assigned to: non-diabetic (ND) and diabetic (D) groups exposed to filtered air; a diabetic group exposed to cigarette smoke prior to and during pregnancy (DS) and a diabetic group only exposed to cigarette smoke prior to pregnancy (DSPP). On pregnancy day 21, blood samples were obtained for DNA damage analysis and fetuses were collected for congenital anomaly assessment. Statistical significance was set at p<0.05 for all analysis. Exposure of diabetic rats to tobacco smoke prior to pregnancy increased fetal DNA damage, but failed to induce teratogenicity. Thus, these results reinforce the importance for women to avoid exposure to cigarette smoke long before they become pregnant. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  9. Ultrastructure of rat cerebral vessels 4 months after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwanowski, L; Ostenda, M

    1975-01-01

    The purpose of this paper was to check the current opinion that one of the late postirradiation changes is early senility (Maxwell, Kruger, 1964). The postirradiation changes of the brain parenchyma are well known from the literature; therefore our investigation is limited to brain capillaries and their closest vicinity. This paper constitutes a fragment of a larger work on the role of connective tissue in the aging brain. Six Wistar male rats of the same brood, about 3 months old, were irradiated over the whole body with gamma rays. Three rats were exposed to a dose of 400 R and three to 800 R. The chosen doses were the lowest and the highest, provoking brain edema but still not lethal. Four months after the exposure the rats were perfused with 4% glutaraldehyde intracardiacly and decapitated. Brain specimens were taken from frontoparietal cortex, lateral ventricle wall, from corpus callosum and griseum pontis. The samples were routinely handled for ultrastructural studies. Observations were performed under electron microscopes showed that the cerebral vessels of both groups of animals were similar.

  10. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.

  11. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    Science.gov (United States)

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Synergistic Effect of Quercetin and α-Lipoic Acid on Aluminium Chloride Induced Neurotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Sooad Saud Al-Otaibi

    2018-01-01

    Full Text Available Objectives. The present study was carried out to study the protective effects of quercetin and α-lipoic acid alone and in combination against aluminum chloride induced neurotoxicity in rats. Materials and Methods. The study consisted of eight groups, namely, Group 1: control rats, Group 2: rats receiving aluminium chloride 7 mg/kg body weight intraperitoneal route (i.p for two weeks, Group 3: rats receiving quercetin 50 mg/kg body weight i.p. for two weeks, Group 4: rats receiving quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 5: rats receiving α-lipoic acid 20 mg/kg body weight i.p. for two weeks, Group 6: rats receiving lipoic acid 20 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 7: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight i.p. for two weeks, and Group 8: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks. The animals were killed after 24 hours of the last dose by cervical dislocation. Results. Aluminium chloride treatment of rats resulted in significant increases in lipid peroxidation, protein carbonyl levels, and acetylcholine esterase activity in the brain. This was accompanied with significant decreases in reduced glutathione, activities of the glutathione reductase, and superoxide dismutase. Pretreatment of AlCl3 exposed rats to either quercetin or α-lipoic acid also restored altered lipid peroxidation and superoxide dismutase to near normal levels. Quercetin or α-lipoic acid pretreatment of AlCl3 exposed rats improved the protein carbonyl and reduced glutathione, glutathione reductase, and acetylcholine esterase activities in rat brains towards normal levels. Combined pretreatment of AlCl3 exposed rats with quercetin and α-lipoic acid resulted in a

  13. Stereotactically-guided Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain.

    Science.gov (United States)

    Lamas, Verónica; Estévez, Sheila; Pernía, Marianni; Plaza, Ignacio; Merchán, Miguel A

    2017-10-11

    The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.

  14. Dynamic Multi-Coil Technique (DYNAMITE) Shimming of the Rat Brain at 11.7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Herman, Peter; Sanganahalli, Basavaraju G.; Brown, Peter B.; McIntyre, Scott; Nixon, Terence W.; Green, Dan; Hyder, Fahmeed; de Graaf, Robin A.

    2014-01-01

    The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation, however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task due to a multitude of complex, susceptibility-induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult-to-shim subcortical structures or for the entire brain. Based on the recently introduced multi-coil approach for magnetic field modeling, the DYNAmic Multi-coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient-echo echo-planar imaging (EPI) are demonstrated. An integrated multi-coil/radio-frequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF setup is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first through third order SH shapes. The EPI signal over the rat brain increased by 31% and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, along with the achievable large brain coverage of this method will be crucial when signal pathways, cortical circuitry or the brain’s default network are studied. Along with the efficiency gains of MC-based shimming compared to SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small bore animal

  15. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    Science.gov (United States)

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  16. Chronic contamination with 137Cesium affects Vitamin D3 metabolism in rats

    International Nuclear Information System (INIS)

    Tissandie, E.; Gueguen, Y.; Lobaccaro, J.M.A.; Aigueperse, J.; Gourmelon, P.; Paquet, F.; Souidi, M.

    2006-01-01

    Twenty years after Chernobyl disaster, many people are still chronically exposed to low dose of 137 Cs, mainly through the food consumption. A large variety of diseases have been described in highly exposed people with 137 Cs, which include bone disorders. The aim of this work was to investigate the biological effects of a chronic exposure to 137 Cs on Vitamin D 3 metabolism, a hormone essential in bone homeostasis. Rats were exposed to 137 Cs in their drinking water for 3 months at a dose of 6500 Bq/l (approximately 150 Bq/rat/day), a similar concentration ingested by the population living in contaminated territories in the former USSR countries. Cytochromes P450 enzymes involved in Vitamin D 3 metabolism, related nuclear receptors and Vitamin D 3 target genes were assessed by real time PCR in liver, kidney and brain. Vitamin D, PTH, calcium and phosphate levels were measured in plasma. An increase in the expression level of cyp2r1 (40%, p 137 Cs-exposed rats. However a significant decrease of Vitamin D (1,25(OH)D 3 ) plasma level (53%, p = 0.02) was observed. In brain, cyp2r1 mRNA level was decreased by 20% (p 137 Cs contamination. In conclusion, this study showed for the first time that chronic exposure with post-accidental doses of 137 Cs affects Vitamin D 3 active form level and induces molecular modifications of CYPs enzymes involved its metabolism in liver and brain, without leading to mineral homeostasis disorders

  17. Abilities in tactile discrimination of textures in adult rats exposed to enriched or impoverished environments.

    Science.gov (United States)

    Bourgeon, Stéphanie; Xerri, Christian; Coq, Jacques-Olivier

    2004-08-12

    In previous studies, we have shown that housing in enriched environment for about 3 months after weaning improved the topographic organization and decreased the size of the receptive fields (RFs) located on the glabrous skin surfaces in the forepaw maps of the primary somatosensory cortex (SI) in rats [Exp. Brain Res. 121 (1998) 191]. In contrast, housing in impoverished environment induced a degradation of the SI forepaw representation, characterized by topographic disruptions, a reduction of the cutaneous forepaw area and an enlargement of the glabrous RFs [Exp. Brain Res. 129 (1999) 518]. Based on these two studies, we postulated that these representational alterations could underlie changes in haptic perception. Therefore, the present study was aimed at determining the influence of housing conditions on the rat's abilities in tactile texture discrimination. After a 2-month exposure to enriched or impoverished environments, rats were trained to perform a discrimination task during locomotion on floorboards of different roughness. At the end of every daily behavioral session, rats were replaced in their respective housing environment. Rats had to discriminate homogeneous (low roughness) from heterogeneous floorboards (combination of two different roughness levels). To determine the maximum performance in texture discrimination, the roughness contrast of the heterogeneous texture was gradually reduced, so that homogeneous and heterogeneous floorboards became harder to differentiate. We found that the enriched rats learned the first steps of the behavioral task faster than the impoverished rats, whereas both groups exhibited similar performances in texture discrimination. An individual "predilection" for either homogeneous or heterogeneous floorboards, presumably reflecting a behavioral strategy, seemed to account for the absence of differences in haptic discrimination between groups. The sensory experience depending on the rewarded texture discrimination task

  18. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.

    Science.gov (United States)

    Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F

    2017-08-01

    Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat.

    Science.gov (United States)

    Fujikawa, Takahiko; Soya, Hideaki; Tamashiro, Kellie L K; Sakai, Randall R; McEwen, Bruce S; Nakai, Naoya; Ogata, Masato; Suzuki, Ikukatsu; Nakashima, Kunio

    2004-04-01

    Stress causes hypocalcemia and ulcerogenesis in rats. In rats under stressful conditions, a rapid and transient increase in circulating prolactin (PRL) is observed, and this enhanced PRL induces PRL receptors (PRLR) in the choroid plexus of rat brain. In this study we used restraint stress in water to elucidate the mechanism by which PRLR in the rat brain mediate the protective effect of PRL against stress-induced hypocalcemia and ulcerogenesis. We show that rat PRL acts through the long form of PRLR in the hypothalamus. This is followed by an increase in the long form of PRLR mRNA expression in the choroid plexus of the brain, which provides protection against restraint stress in water-induced hypocalcemia and gastric erosions. We also show that PRL induces the expression of PRLR protein and corticotropin-releasing factor mRNA in the paraventricular nucleus. These results suggest that the PRL levels increase in response to stress, and it moves from the circulation to the cerebrospinal fluid to act on the central nervous system and thereby plays an important role in helping to protect against acute stress-induced hypocalcemia and gastric erosions.

  20. Increased transfer of 45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats.

    Science.gov (United States)

    Murphy, V A; Rapoport, S I

    1988-06-28

    Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.

  1. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  2. Antidiabetic and Neuroprotective Effects of Trigonella Foenum-graecum Seed Powder in Diabetic Rat Brain

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2012-01-01

    Full Text Available Trigonella foenum-graecum seed powder (TSP has been reported to have hypoglycemic and hyperinsulinemic action. The objective of the study was to examine the antidiabetic and neuroprotective role of TSP in hyperglycemiainduced alterations in blood glucose, insulin levels and activities of membrane linked enzymes (Na+K+ATPase, Ca2+ATPase, antioxidant enzymes (superoxide dismutase, glutathione S-transferase, calcium (Ca2+ levels, lipid peroxidation, membrane fluidity and neurolipofuscin accumulation in the diabetic rat brain. Female Wistar rats weighing between 180 and 220 g were made diabetic by a single injection of alloxan monohydrate (15 mg/100 g body weight, diabetic rats were given 2 IU insulin, per day with 5% TSP in the diet for three weeks. A significant increase in lipid peroxidation was observed in diabetic brain. The increased lipid peroxidation following chronic hyperglycemia was accompanied with a significant increase in the neurolipofuscin deposition and Ca2+ levels with decreased activities of membrane linked ATPases and antioxidant enzymes in diabetic brain. A decrease in synaptosomal membrane fluidity may influence the activity of membrane linked enzymes in diabetes. The present study showed that TSP treatment can reverse the hyperglycemia induced changes to normal levels in diabetic rat brain. TSP administration amended effect of hyperglycemia on alterations in lipid peroxidation, restoring membrane fluidity, activities of membrane bound and antioxidant enzymes, thereby ameliorating the diabetic complications.

  3. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    Science.gov (United States)

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  4. Acute effects of organotins on brain, liver and kidney in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, R.S.; Kaur, G.; Srivastava, R.C.; Srivastava, T.N.

    1985-01-01

    Effects of dioctyltin oxide (DOTO) tricyclohexyltin hydroxide (TCHTOH) and tributyltin oxide (TBTO) were examined on some enzymic activities in liver and kidney and biogenic amines level in brain of rats at 24 hours after single subcutaneous administration (25 ..mu..mole/100 g B. Wt.). All the organotin compounds produced a significant increase in the activity of alkaline phosphatase and adenosin triphosphatase and decrease in monoamine oxidase in both liver and kidney. DOTO and TCHTOH were more effective in impairing the activity of succinate dehydrogenase in liver. Concentrations of ..gamma..-aminobutyric acid (GABA) and dopamine were found to be significantly decreased in brain however, acetylcholine concentration remained unaltered. These results suggest that organotin compounds DOTO and TCHTOH are more toxic to rats than TBTO. 30 references, 3 tables.

  5. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes.

    Science.gov (United States)

    Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-06-01

    Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.

  6. Effect of Piper betle leaf extract on alcoholic toxicity in the rat brain.

    Science.gov (United States)

    Saravanan, R; Rajendra Prasad, N; Pugalendi, K V

    2003-01-01

    The protective effect of Piper betle, a commonly used masticatory, has been examined in the brain of ethanol-administered Wistar rats. Brain of ethanol-treated rats exhibited increased levels of lipids, lipid peroxidation, and disturbances in antioxidant defense. Subsequent to the experimental induction of toxicity (i.e., the initial period of 30 days), aqueous P. betle extract was simultaneously administered in three different doses (100, 200, and 300 mg kg(-1)) for 30 days along with the daily dose of alcohol. P. betle coadministration resulted in significant reduction of lipid levels (free fatty acids, cholesterol, and phospholipids) and lipid peroxidation markers such as thiobarbituric acid reactive substances and hydroperoxides. Further, antioxidants, like reduced glutathione, vitamin C, vitamin E, superoxide dismutase, catalase, and glutathione peroxidase, were increased in P. betle-coadministered rats. The higher dose of extract (300 mg kg(-1)) was more effective, and these results indicate the neuroprotective effect of P. betle in ethanol-treated rats.

  7. Effects of acrylamide and acrylic acid on creatine kinase activity in the rat brain

    International Nuclear Information System (INIS)

    Kohriyama, Kazuaki; Matsuoka, Masato; Igisu, Hideki

    1994-01-01

    In vitro, both acrylamide and acrylic acid inhibited creatine kinase (CK) activity in rat brain homogenates, and acrylic acid was more potent than acrylamide. In vivo, however, when given i.p. 50 mg/kg per day for 8 days to rats, only acrylamide inhibited CK activity in the brain and caused apparent neurological signs. 14 C in the brain 24 h after the injection of 14 C-labelled chemicals was more than 7 times greater with acrylamide than with acrylic acid. The inhibition of CK activity by acrylamide varied in eight regions of the brain; from 54% in hypothalamus to 27% in cerebellar vermis. The regional difference of CK inhibition, however, did not agree well with either 14 C distribution or with the distribution in regions which appear clinically or pathologically vulnerable to acrylamide. (orig.)

  8. Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats.

    Science.gov (United States)

    Tong, Wenni; Chen, Wanqiu; Ostrowski, Robert P; Ma, Qingyi; Souvenir, Rhonda; Zhang, Lubo; Zhang, John H; Tang, Jiping

    2010-02-15

    A recent study has shown that increased activity of matrix metalloproteinases-2 and metalloproteinases-9 (MMP-2 and MMP-9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP-2 and MMP-9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP-2 and MMP-9 and the protein abundance of TIMP-1 and TIMP-2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP-2 at day 0, and increased MMP-9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP-2, MMP-9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals.

  9. Excitant and depressant drugs modulate effects of environment on brain weight and cholinesterases

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, E.L.; Rosenzweig, M.R.; Wu, S.Y.C.

    1973-01-01

    Certain excitant drugs can enhance the effects of enriched experience on weights of brain sections and on the activities of acetylcholinesterase and cholinesterase in the brain, and certain depressants can lessen the brain weight effects. Most experiments were performed with prepubertal male rats. Some rats were exposed in groups of 12 to an enriched environmental condition (EC), usually for 2 h per day and over a 30-day period; others remained in their individual home cages (HC) throughout. Some received a drug injection and others received a saline injection before the daily EC period; HC controls received similar injections. The drug injections had no significant effects on brain values of HC rats, but they altered effects of EC, probably by influencing the animals' reactions to the environment. Methamphetamine and d-amphetamine enhanced the EC effects; metrazol had small positive effects; and strychnine was without effects. Phenobarbital depressed the brain weight effects but increased the enzymatic effects. Use of methamphetamine made it possible to find EC effects with short daily periods (30 min) or with a shortened experimental duration (15 days). In experiments with adult rats, methamphetamine did not modulate the brain weight effects. The results of this study may bear on the use of stimulants to promote recovery from brain damage.

  10. Environmental Enrichment, Performance, and Brain Injury in Male and Female Rats

    National Research Council Canada - National Science Library

    Elliott, Brenda M

    2004-01-01

    ...) and physical enrichment (PE) on the cognitive performance of neurologically intact and brain-injured rats and to determine if there are gender differences in these effects. Measures of basic (i.e...

  11. Preparation and biocompatibility study of in situ forming polymer implants in rat brains.

    Science.gov (United States)

    Nasongkla, Norased; Boongird, Atthaporn; Hongeng, Suradej; Manaspon, Chawan; Larbcharoensub, Noppadol

    2012-02-01

    We describe the development of polymer implants that were designed to solidify once injected into rat brains. These implants comprised of glycofurol and copolymers of D: ,L: -lactide (LA), ε-caprolactone and poly(ethylene glycol) (PLECs). Scanning electron microscopy (SEM) and gel permeation chromatography (GPC) showed that the extent of implant degradation was increased with LA: content in copolymers. SEM analysis revealed the formation of porosity on implant surface as the degradation proceeds. PLEC with 19.3% mole of LA: was chosen to inject in rat brains at the volume of 10, 25 and 40 μl. Body weights, hematological and histopathological data of rats treated with implants were evaluated on day 3, 6, 14, 30 and 45 after the injection. Polymer solution at the injection volume of 10 μl were tolerated relatively well compared to those of 25 and 40 μl as confirmed by higher body weight and healing action (fibrosis tissue) 30 days after treatment. The results from this study suggest a possible application as drug delivery systems that can bypass the blood brain barrier.

  12. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    Science.gov (United States)

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  13. Imaging of aromatase distribution in rat and rhesus monkey brains with [{sup 11}C]vorozole

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kayo [Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala SE-75124 (Sweden); Uppsala Imanet, Uppsala SE-75109 (Sweden)]. E-mail: kayo.takahashi@uppsala.imanet.se; Bergstroem, Mats [Uppsala Imanet, Uppsala SE-75109 (Sweden); Department of Pharmaceutical Biosciences, Uppsala University, Uppsala SE-75124 (Sweden); Fraendberg, Pernilla [Uppsala Imanet, Uppsala SE-75109 (Sweden); Vesstroem, Eva-Lotta [Uppsala Imanet, Uppsala SE-75109 (Sweden); Watanabe, Yasuyoshi [Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585 (Japan); Langstroem, Bengt [Uppsala Imanet, Uppsala SE-75109 (Sweden)

    2006-07-15

    Aromatase is an enzyme that converts androgens to estrogens and may play a role in mood and mental status. The aim of this study was to demonstrate that brain aromatase distribution could be evaluated with a novel positron emission tomography (PET) tracer [{sup 11}C]vorozole. Vorozole is a nonsteroidal aromatase inhibitor that reversibly binds to the heme domain of aromatase. In vitro experiments in rat brain, using frozen section autoradiography, illustrated specific binding in the medial amygdala (MA), the bed nucleus of stria terminalis (BST) and the preoptic area (POA) of male rat brain. Specific binding in female rat brain was found in the MA and the BST; however, the signals were lower than those of males. The K {sub d} of [{sup 11}C]vorozole binding to aromatase in MA was determined to be 0.60{+-}0.06 nM by Scatchard plot analysis using homogenates. An in vivo PET study in female rhesus monkey brain demonstrated the uptake of [{sup 11}C]vorozole in the amygdala, where the uptake was blocked by the presence of excess amounts of unlabeled vorozole. Thus, this tracer has a high affinity for brain aromatase and could have a potential for in vivo aromatase imaging. This technique might enable the investigation of human brain aromatase in healthy and diseased persons.

  14. Corrigendum to “Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain" [Neurosci.Lett. 580 (2014) 12–16] A possible new animal model of autism

    DEFF Research Database (Denmark)

    Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen

    2015-01-01

    The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20 mg/kg or 100 mg/kg) continuously during the last 9......–12 days of pregnancy and during the lactation period until sacrifice on the 23rd postnatal day. Total number of neocortical neurons was estimated using the optical fraction at or and frontal cortical thicknesses were sampled in VPA exposed pups compared with an unexposed control group. We found that pups....... Pups exposed to 100 mg/kg, but not to 20 mg/kg VPA displayed a significant (p brain development by disturbing neocortical organization...

  15. Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability.

    Science.gov (United States)

    Xiaoli, Feng; Junrong, Wu; Xuan, Lai; Yanli, Zhang; Limin, Wei; Jia, Liu; Longquan, Shao

    2017-04-01

    To examine the neurotoxicity of prenatal exposure to ZnO nanoparticles on rat offspring. Pregnant Sprague-Dawley rats were exposed to ZnO nanoparticles (NPs) by gavage. Toxicity was assessed including zinc biodistribution, cerebral histopathology, antioxidant status and learning and memory capability. A significantly elevated concentration of zinc was detected in offspring brains. Transmission electron microscope observations showed abnormal neuron ultrastructures. Histopathologic changes such as decreased proliferation and higher apoptotic death were observed. An obvious imbalanced antioxidant status occurred in brains. Adult experimental offspring exhibited impaired learning and memory behavior in the Morris water maze test compared with control groups. These adverse effects on offspring brain may cause impaired learning and memory capabilities in adulthood, particularly in female rats.

  16. Impact of aspartame consumption on neurotransmitters in rat brain ...

    African Journals Online (AJOL)

    Background: Aspartame (APM), a common artificial sweetener, has been used for diabetic subjects and body weight control for a long time. The goal of the present study was to evaluate the impact of APM consumption on neurotransmitters and oxidative stress in rat's brain. Materials and Methods: Four groups of male ...

  17. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    Energy Technology Data Exchange (ETDEWEB)

    Netopilova, M; Drsata, J [Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 50005 Hradec Kralove (Czech Republic); Haugvicova, R; Kubova, H; Mares, P [Institute of Physiology, Czech Academy of Sciences, 14220 Prague (Czech Republic)

    1998-07-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using {sup 14}C-carboxyl-labelled glutamate and measurement of {sup 14}CO{sub 2} radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  18. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    International Nuclear Information System (INIS)

    Netopilova, M.; Drsata, J.; Haugvicova, R.; Kubova, H.; Mares, P.

    1998-01-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using 14 C-carboxyl-labelled glutamate and measurement of 14 CO 2 radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  19. The effects of honey and vitamin E administration on apoptosis in testes of rat exposed to noise stress

    Directory of Open Access Journals (Sweden)

    Masoud Hemadi

    2013-01-01

    Full Text Available Aims: A variety of stress factors are known to inhibit male reproductive functions. So this study was conducted in order to investigate the effects of honey and vitamin E on the germinative and somatic cells of testes of rats exposed to noise stress. Materials and Methods: Mature male wistar rats (n0 = 24 were randomly grouped as follows: Group 1 (honey + noise stress, 2 (vitamin E + noise stress, 3 (noise stress, and 4 as the control group. In groups 1, 2, and 3, rats were exposed to noise stress. In groups 1 and 2, rats also were given honey and vitamin E, respectively, orally for 50 days. After that, the germinative and somatic cells of testes parenchyma were isolated by digesting the whole testes by a standard method. Next, viability, apoptosis, and necrosis of the cells were evaluated by TUNEL kit and flow cytometry. Results: The rates of apoptosis and necrosis of the testicular cells were increased (P = 0.003 and P = 0.001, respectively, but viability of these cells decreased in testes of rats exposed to noise stress (P = 0.003. However, administration of honey and vitamin E were significantly helpful in keeping the cells of testis parenchyma alive, which suffers from noise pollution (P < 0.05 and P < 0.05, respectively. Conclusions: Noise stress has negative influences on the cells of testicular tissue by increasing apoptotic and necrotic cells. However, the associated enhancement in healthy cells suggests that honey and vitamin E have positive influences on the testis parenchyma.

  20. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE

    Directory of Open Access Journals (Sweden)

    Benjamin Harding

    2016-12-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI insult in neonatal rats via intracerebroventricular (ICV injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional

  1. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Bodsch, W; Huerter, T; Hossmann, K A [Max-Planck-Institut fuer Hirnforschung, Koeln (Germany, F.R.). Forschungsstelle fuer Hirnkreislauf-Forschung

    1982-10-07

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema.

  2. Immunochemical method for quantitative evaluation of vasogenic brain edema following cold injury of rat brain

    International Nuclear Information System (INIS)

    Bodsch, W.; Huerter, T.; Hossmann, K.-A.

    1982-01-01

    An immunochemical method is described for quantitative assessment of serum proteins and hemoglobin content in brain tissue homogenates. Using a combination of affinity chromatography and radioimmunoassay, the sensitivity of the method is 50 ng hemoglobin and 100 ng serum protein per assay, respectively. The method was used to measure cerebral hematocrit, blood volume and serum protein extravasation in rat brain at various times following cold injury. In control rats cerebral blood volume was 6.88 +- 0.15 ml/100 g and cerebral hematocrit 26.4 +- 0.86% (means +- S.E.). Following cold injury blood volume did not significantly change, but there was a gradual increase of extravasated serum proteins, reaching a maximum of 21.54 +- 2.76 mg/g d.w. after 8 hours. Thereafter protein content gradually declined, but even after 64 h it was distinctly increased. Protein extravasation was partly dissociated from the increase of brain water and sodium which reached a maximum already after 2 h and which normalized within 32 and 64 h, respectively. It is concluded that edema fluid associated with cold injury is not simply an ultrafiltrate of blood serum but consists of cytotoxic and vasogenic components which follow a different time course both during formation and resolution of edema. (Auth.)

  3. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model.

    Directory of Open Access Journals (Sweden)

    Zheng Ke

    Full Text Available BACKGROUND: Stroke rehabilitation with different exercise paradigms has been investigated, but which one is more effective in facilitating motor recovery and up-regulating brain neurotrophic factor (BDNF after brain ischemia would be interesting to clinicians and patients. Voluntary exercise, forced exercise, and involuntary muscle movement caused by functional electrical stimulation (FES have been individually demonstrated effective as stroke rehabilitation intervention. The aim of this study was to investigate the effects of these three common interventions on brain BDNF changes and motor recovery levels using a rat ischemic stroke model. METHODOLOGY/PRINCIPAL FINDINGS: One hundred and seventeen Sprague-Dawley rats were randomly distributed into four groups: Control (Con, Voluntary exercise of wheel running (V-Ex, Forced exercise of treadmill running (F-Ex, and Involuntary exercise of FES (I-Ex with implanted electrodes placed in two hind limb muscles on the affected side to mimic gait-like walking pattern during stimulation. Ischemic stroke was induced in all rats with the middle cerebral artery occlusion/reperfusion model and fifty-seven rats had motor deficits after stroke. Twenty-four hours after reperfusion, rats were arranged to their intervention programs. De Ryck's behavioral test was conducted daily during the 7-day intervention as an evaluation tool of motor recovery. Serum corticosterone concentration and BDNF levels in the hippocampus, striatum, and cortex were measured after the rats were sacrificed. V-Ex had significantly better motor recovery in the behavioral test. V-Ex also had significantly higher hippocampal BDNF concentration than F-Ex and Con. F-Ex had significantly higher serum corticosterone level than other groups. CONCLUSION/SIGNIFICANCE: Voluntary exercise is the most effective intervention in upregulating the hippocampal BDNF level, and facilitating motor recovery. Rats that exercised voluntarily also showed less

  4. Combined treatment with progesterone and magnesium sulfate positively affects traumatic brain injury in immature rats.

    Science.gov (United States)

    Uysal, Nazan; Baykara, Basak; Kiray, Muge; Cetin, Ferihan; Aksu, Ilkay; Dayi, Ayfer; Gurpinar, Tugba; Ozdemir, Durgul; Arda, M Nuri

    2013-01-01

    It is well known that head trauma results in damage in hippocampal and cortical areas of the brain and impairs cognitive functions. The aim of this study is to explore the neuroprotective effect of combination therapy with magnesium sulphate (MgSO4) and progesterone in the 7-days-old rat pups subjected to contusion injury. Progesterone (8 mg/kg) and MgSO4 (150 mg/kg) were injected intraperitoneally immediately after induction of traumatic brain injury. Half of groups were evaluated 24 hours later, the remaining animals 3 weeks after trauma or sham surgery. Anxiety levels were assessed with open field activity and elevated plus maze; learning and memory performance were evaluated with Morris Water maze in postnatal 27 days. Combined therapy with progesterone and magnesium sulfate significantly attenuated trauma-induced neuronal death, increased brain VEGF levels and improved spatial memory deficits that appear later in life. Brain VEGF levels were higher in rats that received combined therapy compared to rats that received either medication alone. Moreover, rats that received combined therapy had reduced hipocampus and prefrontal cortex apoptosis in the acute period. These results demonstrate that combination of drugs with different mechanisms of action may be preferred in the treatment of head trauma.

  5. AQP4 expression and its relationship with brain edema after gamma kife radiosurgery in rats

    International Nuclear Information System (INIS)

    Shen Guangjian; Xu Minhui; Zou Yongwen; Gen Mingying; Li Feipeng; Tang Wenyuan; Sun Shanquan

    2007-01-01

    Objective: To explore AQP4 expression and its relationship with brain edema after gamma knife radiosurgery (GKRS) in rats. Methods: Wistar rats were divided into two groups-the control group and experimental group. The experimental group model was established by radiating rat left rotral caudate nucleus with GKRS (100 Gy, 4 mm), and was examinded at interval times of 1 d, 3 d, 7 d, 15 d, 30 d and 45 d. Brain water content (BWC) was determined by wet-dry weighing method. AQP4 expression on mRNA and protein were measured by immunohistochemistry (ICH) and in situ hybridization (ISH). Results: In control group, AQP4 protein and its mRNA were expressed in subpial astrocytes, choroid plexus, ependyma and perivascular astrocytes. After GKRS, AQP4 protein and its mRNA in these sites were enhanced, and became most remarkable at 30 d. The positive corrlationship was showed between AQP4 and its mRNA, and AQP4 and BWC. Conclusions: AQP4 protein and its mRNA can be induced in some brain zone after irradiating rat left rotral caudate nucleus with GKRS. The increased expression of AQP4 and its mRNA may play a role in the ocurrence or development of brain edema after GKRS. (authors)

  6. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.

    Science.gov (United States)

    Iyyaswamy, Ashok; Rathinasamy, Sheeladevi

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  7. Influence of histidine on zinc transport into rat brain

    International Nuclear Information System (INIS)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto

    2000-01-01

    The brain of rats injected intravenously with 65 Zn-His or 65 ZnCl 2 was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from 65 Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from 65 Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of 65 Zn-His in the brain was similar to that of 65 ZnCl 2 group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the 65 Zn-His group from the blood was higher than that of the 65 ZnCl 2 group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  8. Effect of naloxone hydrochloride on c-fos protein expression in brain and plasma beta-endorphin level in rats with diffuse brain injury and secondary brain insult

    Directory of Open Access Journals (Sweden)

    Jun-jie JING

    2012-09-01

    Full Text Available Objective To observe the changes of c-fos protein expression in brain and beta-endorphin (β-EP level in blood plasma in rats with diffuse brain injury (DBI and secondary brain insult (SBI after intraperitoneal injection of naloxone hydrochloride, and explore the role of c-fos andβ-EP in development of SBI in rats. Methods Seventy health male SD rats were enrolled in the present study and randomly divided into group A (intraperitoneally injected with 0.9% saline after DBI and SBI model was reproduced, group B (injected intraperitoneally with 1.0mg/kg naloxone hydrochloride after DBI and SBI model was reproduced, and group C (intraperitoneally injected with 1.0mg/kg naloxone hydrochloride after DBI and before SBI model was reproduced. The animals were sacrificed 3, 24 and 48 hours after injury, and the number of c-fos positive cells in brain and content of β-EP in blood plasma were determined by immunohistochemistry and radioimmunoassay respectively, the water content and number of injured neurons in brain tissue were measured by pathomorphological observation of the brain tissue. Results No significant difference was observed between group B and C for all the detection parameters. In group B and C, the water content in brain tissue at 3h and 24h was found to be decreased, while the number of injured neurons at 24h and 48h increased, number of c-fos positive cells in brain at 3h, 24h and 48h decreased, and content of β-EP in blood plasma at 3h and 24h decreased when compared with group A(P < 0.05. Conclusion Naloxone hydrochloride could decrease the c-fos expression in brain and β-EP level in blood plasma, alleviate the nerve injury, and protect neural function. The therapeutic effect of naloxone administered either after DBI and SBI or after DBI and before SBI was similar.

  9. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury.

    Science.gov (United States)

    Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R

    2016-02-15

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.

  10. Inhibition of HMGB1 Translocation by Green Tea Extract in Rats Exposed to Environmental Tobacco Smoke

    Directory of Open Access Journals (Sweden)

    Sirintip Chaichalotornkul

    2012-01-01

    Full Text Available Environmental tobacco smoke (ETS exposure is linked to carcinogenic, oxidative and inflammatory cellular reactions. Green tea polyphenol reportedly plays a role in the prevention of inflammation-related diseases. To evaluate the effects of green tea extract (GTE on cellular location of High Mobility Group Box-1 (HMGB1 protein, we studied the lung tissue in rats exposed to cigarette smoke (CS. Rats were divided into three groups; CS, CSG, and C, which were groups of CS-treated only, CS-treated with GTE dietary supplement, and the control, respectively. Our findings by immunocytochemistry showed that abundant HMGB1 translocated from the nucleus to the cytoplasm in the lung tissues of rats that were exposed to CS, whereas HMGB1 was localized to the nuclei of CSG and C group. For in vitro studies, cotinine stimulated the secretion of HMGB1 in a dose and time dependent manner and the HMGB1 level was suppressed by GTE in murine macrophage cell lines. Our results could suggest that GTE supplementation which could suppress HMGB1 may offer a beneficial effect against diseases.

  11. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats.

    Science.gov (United States)

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2012-02-01

    Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Reduced number of alpha- and beta-adrenergic receptors in the myocardium of rats exposed to tobacco smoke

    Energy Technology Data Exchange (ETDEWEB)

    Larue, D.; Kato, G.

    1981-04-09

    The concentration of alpha- and beta-adrenergic receptors--as measured by specific (/sup 3/H)WB-4101 and (-)-(/sup 3/H)dihydroalprenolol binding--was diminished by 60% below control values in the hearts of rats exposed to tobacco smoke. These changes in receptor numbers took place almost immediately after tobacco smoke exposure and were rapidly reversible after termination of the exposure. The dissociation constant, KD, for (/sup 3/H)WB-4101 was identical in exposed (KD . 0.34 +/- 0.09 nM) and control (KD . 0.35 +/- 0.07 nM) hearts but was significantly different in the case of (-)-(3H)dihydroalprenolol binding (exposed, KD . 2.83 +/- 0.30 mM vs. control KD . 5.22 +/- 0.61 nM). For beta-receptor binding there was no significant difference between exposed and control animals in the Ki values for (-)-epinephrine, (-)-norepinephrine, (-)-alprenolol, (+/-)-propranolol or timolol. (-)-Isoproterenol, however, was found to bind with lower affinity in exposed compared with control hearts. For alpha-receptor binding there was no significant difference between control and 'smoked' animals in the Ki values for (-)-epinephrine, (-0)-norepinephrine or phentolamine. The decrease in alpha- and beta-adrenergic receptor concentration may be related to the phenomenon of receptor desensitization resulting from a release of catecholamines in rats exposed to tobacco smoke.

  13. DNA microarray unravels rapid changes in transcriptome of MK-801 treated rat brain

    Science.gov (United States)

    Kobayashi, Yuka; Kulikova, Sofya P; Shibato, Junko; Rakwal, Randeep; Satoh, Hiroyuki; Pinault, Didier; Masuo, Yoshinori

    2015-01-01

    AIM: To investigate the impact of MK-801 on gene expression patterns genome wide in rat brain regions. METHODS: Rats were treated with an intraperitoneal injection of MK-801 [0.08 (low-dose) and 0.16 (high-dose) mg/kg] or NaCl (vehicle control). In a first series of experiment, the frontoparietal electrocorticogram was recorded 15 min before and 60 min after injection. In a second series of experiments, the whole brain of each animal was rapidly removed at 40 min post-injection, and different regions were separated: amygdala, cerebral cortex, hippocampus, hypothalamus, midbrain and ventral striatum on ice followed by DNA microarray (4 × 44 K whole rat genome chip) analysis. RESULTS: Spectral analysis revealed that a single systemic injection of MK-801 significantly and selectively augmented the power of baseline gamma frequency (30-80 Hz) oscillations in the frontoparietal electroencephalogram. DNA microarray analysis showed the largest number (up- and down- regulations) of gene expressions in the cerebral cortex (378), midbrain (376), hippocampus (375), ventral striatum (353), amygdala (301), and hypothalamus (201) under low-dose (0.08 mg/kg) of MK-801. Under high-dose (0.16 mg/kg), ventral striatum (811) showed the largest number of gene expression changes. Gene expression changes were functionally categorized to reveal expression of genes and function varies with each brain region. CONCLUSION: Acute MK-801 treatment increases synchrony of baseline gamma oscillations, and causes very early changes in gene expressions in six individual rat brain regions, a first report. PMID:26629322

  14. Epileptic rat brain tissue analyzed by 2D correlation Raman spectroscopy

    Science.gov (United States)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Lewandowski, Marian H.; Kowalski, Rafał; Palus, Katarzyna; Chrobok, Łukasz; Moskal, Paulina; Birczyńska, Malwina; Sozańska, Agnieszka

    2018-01-01

    Absence epilepsy is the neurological disorder characterized by the pathological spike-and wave discharges present in the electroencephalogram, accompanying a sudden loss of consciousness. Experiments were performed on brain slices obtained from young male WAG/Rij rats (2-3 weeks old), so that they were sampled before the appearance of brain-damaging seizures symptoms. Two differing brain areas of the rats' brain tissue were studied: the somatosensory cortex (Sc) and the dorsal lateral geniculate nucleus of the thalamus (DLG). The Raman spectra of the fresh brain scraps, kept during measurements in artificial cerebrospinal fluid, were collected using as an excitation source 442 nm, 514.5 nm, 785 nm and 1064 nm laser line. The average spectra were analyzed by 2D correlation method regarding laser line as an external perturbation. In 2D synchronous spectra positive auto-peaks corresponding to the Cdbnd C stretching and amide I band vibrations show maxima at 1660 cm- 1 and 1662 cm- 1 for Sc and DLG, respectively. The prominent auto-peak at 2937 cm- 1, originated from the CH3 mode in DLG brain area, seems to indicate the importance of methylation, considered to be significant in epileptogenesis. Synchronous and asynchronous correlations peaks, glutamic acid and gamma-aminobutyric acid (GABA), appear in Sc and DLG, respectively. In the 1730-1600 cm- 1 range occur cross-peaks which appearance might be triggered by glial fibrillary acidic protein (GFAP) activation.

  15. Single whole-body exposure to sarin vapor in rats: Long-term neuronal and behavioral deficits

    International Nuclear Information System (INIS)

    Grauer, Ettie; Chapman, Shira; Rabinovitz, Ishai; Raveh, Lily; Weissman, Ben-Avi; Kadar, Tamar; Allon, Nahum

    2008-01-01

    Freely moving rats were exposed to sarin vapor (34.2 ± 0.8 μg/l) for 10 min. Mortality at 24 h was 35% and toxic sings in the surviving rats ranged from sever (prolonged convulsions) through moderate to almost no overt signs. Some of the surviving rats developed delayed, intermittent convulsions. All rats were evaluated for long-term functional deficits in comparison to air-exposed control rats. Histological analysis revealed typical cell loss at 1 week post inhalation exposure. Neuronal inflammation was demonstrated by a 20-fold increase in prostaglandin (PGE 2 ) levels 24 h following exposure that markedly decreased 6 days later. An additional, delayed increase in PGE 2 was detected at 1 month and continued to increase for up to 6 months post exposure. Glial activation following neural damage was demonstrated by an elevated level of peripheral benzodiazepine receptors (PBR) seen in the brain 4 and 6 months after exposure. At the same time muscarinic receptors were unaffected. Six weeks, four and six months post exposure behavioral evaluations were performed. In the open field, sarin-exposed rats showed a significant increase in overall activity with no habituation over days. In a working memory paradigm in the water maze, these same rats showed impaired working and reference memory processes with no recovery. Our data suggest long lasting impairment of brain functions in surviving rats following a single sarin exposure. Animals that seem to fully recover from the exposure, and even animals that initially show no toxicity signs, developed some adverse neural changes with time

  16. Effects of Junk Foods on Brain Neurotransmitters (Dopamine and Serotonin) and some Biochemical Parameters in Albino Rats

    International Nuclear Information System (INIS)

    Abd Elmonem, H.A.; Ali, E.A.

    2011-01-01

    Nutritional Habits have changed significantly and junk foods have become widely popular, in recent years. The present study aimed to shed the light on the effect of potato chips and / or ketchup consumption on some biochemical parameters. Sixty four male and female albino rats were used in the study. Animals were maintained on 0.25 g potato chips/ rat and / or 0.125 g ketchup / rat, 5 days a week for 4 weeks. Potato chips showed the lowest body wt gain in the male rats after 4 weeks but, ketchup modulated this negative effect of the potato chips in the group of male animals fed on potato chips plus ketchup. Potato chips significantly decreased brain serotonin, liver glutathione (GSH) and catalase (CAT) in both sexes; brain dopamine, serum total proteins, albumin, total globulins, α 2 - and β 1 -globulins in the females and serum thyroxine (T 4 ) in the male rats. Ketchup apparently affected serum T 4 and A / G ratio in both sexes, brain dopamine and liver GSH in the males in addition to brain serotonin, serum total globulins and ?1-globulin in the female rats. Potato chips plus ketchup significantly changed T 4 , dopamine, GSH, CAT, α 1 and α 2 -globulins in both sexes; serotonin and β 1 -globulin in the male rats, total proteins and albumin in the females. It could be concluded that potato chips consumption might induce numerous adverse effects in various body organs

  17. Respiratory tract toxicity in rats exposed to Mexico City air.

    Science.gov (United States)

    Moss, O R; Gross, E A; James, R A; Janszen, D B; Ross, P W; Roberts, K C; Howard, A M; Harkema, J R; Calderón-Garcidueñas, L; Morgan, K T

    2001-03-01

    The rat has been used extensively as a health sentinel, indicator, or monitor of environmental health hazards, but this model has not been directly validated against human exposures. Humans in Mexico City show upper respiratory tract lesions and evidence of pulmonary damage related to their environmental inhalation exposure. In this study, male and female F344 rats were exposed (23 hr/day) in Mexico City to local Mexico City air (MCA)* for up to seven weeks. Controls were maintained at the same location under filtered air. Prior to these exposures, several steps were taken. First, the nasal passages of normal male rats shipped from the United States and housed in Mexico City were examined for mycoplasma infection; no evidence of infection was found. In addition, a mobile exposure and monitoring system was assembled and, with an ozone (O3) exposure atmosphere, was tested along with supporting histopathology techniques and analysis of rat nasal and lung tissues. Last, the entire exposure model (equipment and animals) was transported to Mexico City and validated for a three-week period. During the seven-week study there were 18 one-hour intervals during which the average O3 concentration of MCA in the exposure chamber exceeded the US National Ambient Air Quality Standard (NAAQS) of 0.120 ppm 03 (hourly average, not to be exceeded more than once per year). This prolonged exposure of healthy F344 rats to MCA containing episodically low to moderate concentrations of 03 (as well as other urban air pollutants) did not induce inflammatory or epithelial lesions in the nasal airways or lung as measured by qualitative histologic techniques or quantitative morphometric techniques. These findings agree with those of previous controlled O3 inhalation studies, but they are in contrast to reports indicating that O3-polluted MCA causes significant nasal mucosal injury in adults and children living in southwestern Mexico City. Taken together, these findings may suggest that human

  18. Apoptosis Induced in The Brain and Liver of Fetuses And Placenta of Irradiated Pregnant Rats Treated With Antacid Containing Aluminum

    International Nuclear Information System (INIS)

    Ramadan, F.L.; Madkour, N.K.

    2012-01-01

    Aluminum (Al) is widely used in antacid medicine which frequently used by pregnant women. It is of great importance to increase the knowledge about its harmful effects on the fetuses. The present study clarified that administration of antacid containing Al and/or exposure to gamma radiation induced maternal and fetal detrimental impact. Pregnant albino rats were administered antacid containing Al on the gestational days 5th, 7th, 9th, 11th, 13th, 15th and 17th at a dose of 4.5 mg/g and exposed to whole body fractionated gamma radiation (2 Gy) at a dose of 0.5 Gy for 4 times on gestational days 6th, 8th, 10th and 12th of pregnancy. Morphological, biochemical and molecular changes were studied. The investigation was carried out one day prior to parturition (the 20th day of gestation). Antacid containing Al and/or radiation induced growth retardation, intrauterine death, malformations and embryonic resorption. The extent of lipid peroxidase formation as well as glutathione content in the brain and liver tissues of rat fetuses and placenta of pregnant rats were used as sensitive parameters to evaluate tissues damage. Antacid containing Al and/or radiation treatment resulted in decreased total protein content in the maternal placenta tissue. Moreover, the elevation in the lipid peroxidase (malondialdehyde; MDA) was accompanied with decline in the glutathione content (GSH) in the brain and liver tissues of rat fetuses. The activity of a key enzyme of apoptosis namely the caspase-3 was analyzed, which its activation represent a point of no return in apoptosis induction. Apoptosis was confirmed by another important hallmark of programmed cell death such as the DNA fragmentation. Treatment with antacid containing Al and/or gamma irradiation significantly increased caspase-3 activity and DNA fragmentation in maternal placental tissue and fetal brain and liver tissues as compared to control animals. In conclusion, the present investigation showed that the deleterious

  19. Brain maps 4.0-Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps.

    Science.gov (United States)

    Swanson, Larry W

    2018-04-15

    The fourth edition (following editions in 1992, 1998, 2004) of Brain maps: structure of the rat brain is presented here as an open access internet resource for the neuroscience community. One new feature is a set of 10 hierarchical nomenclature tables that define and describe all parts of the rat nervous system within the framework of a strictly topographic system devised previously for the human nervous system. These tables constitute a global ontology for knowledge management systems dealing with neural circuitry. A second new feature is an aligned atlas of bilateral flatmaps illustrating rat nervous system development from the neural plate stage to the adult stage, where most gray matter regions, white matter tracts, ganglia, and nerves listed in the nomenclature tables are illustrated schematically. These flatmaps are convenient for future development of online applications analogous to "Google Maps" for systems neuroscience. The third new feature is a completely revised Atlas of the rat brain in spatially aligned transverse sections that can serve as a framework for 3-D modeling. Atlas parcellation is little changed from the preceding edition, but the nomenclature for rat is now aligned with an emerging panmammalian neuroanatomical nomenclature. All figures are presented in Adobe Illustrator vector graphics format that can be manipulated, modified, and resized as desired, and freely used with a Creative Commons license. © 2018 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  20. Effect of /sup 60/Co-irradiation on normal and low protein diet fed rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S S [Garhwal Univ., Srinagar, Uttar Pradesh (India). Dept. of Zoology; Habibullah, M [Jawaharlal Nehru Univ., New Delhi (India). Neurobiology Lab.

    1980-06-01

    The effect of whole-body irradiation (Co-60) on the brain tissue in Holtzmann strain adult male rats was studied. Two doses of irradiation (450 R,950 R) were tried on animals which were fed on normal as well as low protein diets over a period of 10 generations. In the normal rats, 450 R initially caused a lowered total protein. DNA and RNA content in the brain. After 7 days a tendency towards normalcy was observed. In the 950 R irradiated normal rats the diminution of protein content appeared irreversible. In malnourished 450 R irradiated rats, the protein content rose less steeply over the 7 days of observation. A higher dose of 950 R enhanced this effect on protein and also lowered the DNA content on day 5. The RNA content in the 950 R group with malnutrition showed a marked increase towards or beyond control perhaps as an expression of uncoupled feedback control. The paper gives evidence that protein deficiency may interfere with cellular regeneration in irradiated brain.

  1. Brain maps 4.0—Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps

    Science.gov (United States)

    2018-01-01

    Abstract The fourth edition (following editions in 1992, 1998, 2004) of Brain maps: structure of the rat brain is presented here as an open access internet resource for the neuroscience community. One new feature is a set of 10 hierarchical nomenclature tables that define and describe all parts of the rat nervous system within the framework of a strictly topographic system devised previously for the human nervous system. These tables constitute a global ontology for knowledge management systems dealing with neural circuitry. A second new feature is an aligned atlas of bilateral flatmaps illustrating rat nervous system development from the neural plate stage to the adult stage, where most gray matter regions, white matter tracts, ganglia, and nerves listed in the nomenclature tables are illustrated schematically. These flatmaps are convenient for future development of online applications analogous to “Google Maps” for systems neuroscience. The third new feature is a completely revised Atlas of the rat brain in spatially aligned transverse sections that can serve as a framework for 3‐D modeling. Atlas parcellation is little changed from the preceding edition, but the nomenclature for rat is now aligned with an emerging panmammalian neuroanatomical nomenclature. All figures are presented in Adobe Illustrator vector graphics format that can be manipulated, modified, and resized as desired, and freely used with a Creative Commons license. PMID:29277900

  2. Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder.

    Science.gov (United States)

    Modi, Hiren R; Ma, Kaizong; Chang, Lisa; Chen, Mei; Rapoport, Stanley I

    2017-08-01

    Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. VCD like VPA will reduce brain AA turnover in unanaesthetized rats. A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1- 14 C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD. Published by Elsevier B.V.

  3. The effects of raloxifene treatment on oxidative status in brain tissues and learning process of ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Süreyya Osmanova

    2011-01-01

    Full Text Available Background: The effects of estrogene on central nervous system are still controversial. Objective: We aimed to investigate the effects of raloxifene on the antioxidant enzyme [superoxide dismutase (SOD and catalase (CAT] activities and malondialdehyde (MDA levels in brain homogenates of ovariectomized female rats and its effect on cognitive process of learning.Materials and Methods: Female Sprague Dawley rats (n=24 were divided into three groups. Three weeks after ovariectomy; nonovariectomized group (control group (n=8 was given physiological saline (SP as placebo. First ovariectomized group (n=8 received raloxifene 1mg/kg dissolved in a 1% solution of carboxymethylcellulose (CMC subcutaneusly (sc and second group of ovariectomized rats were given 1 % CMC 1mg/kg (sc every day for 14 days. Learning behaviors of rats were evaluated in active avoidence cage with using sound and electrical stimulation. The levels of oxidative stress (MDA and antioxidant enzymes (SOD, CAT in different regions of the brain homogenates were compared between three groups of decapitated rats.Results: Raloxifene had a significant attenuating effect on the levels of MDA in brain tissues suggesting raloxifene’s effect against lipid peroxidation at the end of training days. With the comparison of brain regions, cortex showed the highest average activity of SOD and CAT and cerebellum had the lowest average levels for both. Its effects on learning and cognitive process with active avoidence task were considered insignificant.Conclusion: Raloxifene treatment may have preventive effects for the brain against oxidative stress and lipid peroxidation in rats

  4. Analysis of Biotinylated Generation 4 Poly(amidoamine (PAMAM Dendrimer Distribution in the Rat Brain and Toxicity in a Cellular Model of the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Heather A. Bullen

    2013-09-01

    Full Text Available Dendrimers are highly customizable nanopolymers with qualities that make them ideal for drug delivery. The high binding affinity of biotin/avidin provides a useful approach to fluorescently label synthesized dendrimer-conjugates in cells and tissues. In addition, biotin may facilitate delivery of dendrimers through the blood-brain barrier (BBB via carrier-mediated endocytosis. The purpose of this research was to: (1 measure toxicity using lactate dehydrogenase (LDH assays of generation (G4 biotinylated and non-biotinylated poly(amidoamine (PAMAM dendrimers in a co-culture model of the BBB, (2 determine distribution of dendrimers in the rat brain, kidney, and liver following systemic administration of dendrimers, and (3 conduct atomic force microscopy (AFM on rat brain sections following systemic administration of dendrimers. LDH measurements showed that biotinylated dendrimers were toxic to cell co-culture after 48 h of treatment. Distribution studies showed evidence of biotinylated and non-biotinylated PAMAM dendrimers in brain. AFM studies showed evidence of dendrimers only in brain tissue of treated rats. These results indicate that biotinylation does not decrease toxicity associated with PAMAM dendrimers and that biotinylated PAMAM dendrimers distribute in the brain. Furthermore, this article provides evidence of nanoparticles in brain tissue following systemic administration of nanoparticles supported by both fluorescence microscopy and AFM.

  5. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  6. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats I: Magnetic resonance imaging.

    Science.gov (United States)

    van Vliet, Erwin A; Otte, Willem M; Wadman, Wytse J; Aronica, Eleonora; Kooij, Gijs; de Vries, Helga E; Dijkhuizen, Rick M; Gorter, Jan A

    2016-01-01

    The mammalian target of rapamycin (mTOR) pathway has received increasing attention as a potential antiepileptogenic target. Treatment with the mTOR inhibitor rapamycin after status epilepticus reduces the development of epilepsy in a rat model. To study whether rapamycin mediates this effect via restoration of blood-brain barrier (BBB) dysfunction, contrast-enhanced magnetic resonance imaging (CE-MRI) was used to determine BBB permeability throughout epileptogenesis. Imaging was repeatedly performed until 6 weeks after kainic acid-induced status epilepticus in rapamycin (6 mg/kg for 6 weeks starting 4 h after SE) and vehicle-treated rats, using gadobutrol as contrast agent. Seizures were detected using video monitoring in the week following the last imaging session. Gadobutrol leakage was widespread and extensive in both rapamycin and vehicle-treated epileptic rats during the acute phase, with the piriform cortex and amygdala as the most affected regions. Gadobutrol leakage was higher in rapamycin-treated rats 4 and 8 days after status epilepticus compared to vehicle-treated rats. However, during the chronic epileptic phase, gadobutrol leakage was lower in rapamycin-treated epileptic rats along with a decreased seizure frequency. This was confirmed by local fluorescein staining in the brains of the same rats. Total brain volume was reduced by this rapamycin treatment regimen. The initial slow recovery of BBB function in rapamycin-treated epileptic rats indicates that rapamycin does not reduce seizure activity by a gradual recovery of BBB integrity. The reduced BBB leakage during the chronic phase, however, could contribute to the decreased seizure frequency in post-status epilepticus rats treated with rapamycin. Furthermore, the data show that CE-MRI (using step-down infusion with gadobutrol) can be used as biomarker for monitoring the effect of drug therapy in rats. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  7. Proteomic Analysis of Parkin Isoforms Expression in Different Rat Brain Areas.

    Science.gov (United States)

    D'Amico, Agata Grazia; Maugeri, Grazia; Reitano, Rita; Cavallaro, Sebastiano; D'Agata, Velia

    2016-10-01

    PARK2 gene's mutations are related to the familial form of juvenile Parkinsonism, also known as the autosomic recessive juvenile Parkinsonism. This gene encodes for parkin, a 465-amino acid protein. To date, a large number of parkin isoforms, generated by an alternative splicing mechanism, have been described. Currently, Gene Bank lists 27 rat PARK2 transcripts, which matches to 20 exclusive parkin alternative splice variants. Despite the existence of these isoforms, most of the studies carried out so far, have been focused only on the originally cloned parkin. In this work we have analyzed the expression profile of parkin isoforms in some rat brain areas including prefrontal cortex, hippocampus, substantia nigra and cerebellum. To discriminate among these isoforms, we detected their localization through the use of two antibodies that are able to identify different domains of the parkin canonical sequence. Our analysis has revealed that at least fourteen parkin isoforms are expressed in rat brain with a various distribution in the regions analyzed. Our study might help to elucidate the pathophysiological role of these proteins in the central nervous system.

  8. Effect of a water-maze procedure on the redox mechanisms in brain parts of aged rats

    Directory of Open Access Journals (Sweden)

    Natalia Andreevna Krivova

    2015-03-01

    Full Text Available The Morris water maze (MWM is a tool for assessment of age-related cognitive deficits. In our work, MWM was used for appraisal of cognitive deficits in 11-month-old rats and investigation of the effect exerted by training in the Morris water maze on the redox mechanisms in rat brain parts. Young adult (3-month-old and aged (11-month-old male rats were trained in the water maze. Intact animals of the corresponding age were used as the reference groups. The level of pro- and antioxidant capacity in brain tissue homogenates was assessed using the chemiluminescence method.Cognitive deficits were found in 11-month-old rats: at the first day of training they showed only 30% of successful MWM trials. However, at the last training day the percentage of successful trials was equal for young adult and aged animals. This indicates that cognitive deficits in aged rats can be reversed by MWM training. Therewith, the MWM spatial learning procedure itself produces changes in different processes of redox homeostasis in 11-month-old and 3-month-old rats as compared to intact animals. Young adult rats showed a decrease in prooxidant capacity in all brain parts, while 11-month-old rats demonstrated an increase in antioxidant capacity in the olfactory bulb, pons + medulla oblongata and frontal lobe cortex. Hence, the MWM procedure activates the mechanisms that restrict the oxidative stress in brain parts. The obtained results may be an argument for further development of the animal training procedures aimed to activate the mechanisms responsible for age-related cognitive deficits. This may be useful not only for the development of training procedures applicable to human patients with age-related cognitive impairments, but also for their rehabilitation.

  9. Effect of nephrotoxic treatment with gentamicin on rats chronically exposed to uranium.

    Science.gov (United States)

    Rouas, Caroline; Stefani, Johanna; Grison, Stéphane; Grandcolas, Line; Baudelin, Cédric; Dublineau, Isabelle; Pallardy, Marc; Gueguen, Yann

    2011-01-11

    Uranium is a radioactive heavy metal with a predominantly chemical toxicity, affecting especially the kidneys and more particularly the proximal tubular structure. Until now, few experimental studies have examined the effect of chronic low-dose exposure to uranium on kidney integrity: these mainly analyse standard markers such as creatinine and urea, and none has studied the effect of additional co-exposure to a nephrotoxic agent on rats chronically exposed to uranium. The aim of the present study is to examine the potential cumulative effect of treating uranium-exposed rats with a nephrotoxic drug. Neither physiological indicators (diuresis and creatinine clearance) nor standard plasma and urine markers (creatinine, urea and total protein) levels were deteriorated when uranium exposure was combined with gentamicin-induced nephrotoxicity. A histological study confirmed the preferential impact of gentamicin on the tubular structure and showed that uranium did not aggravate the histopathological renal lesions. Finally, the use of novel markers of kidney toxicity, such as KIM-1, osteopontin and kallikrein, provides new knowledge about the nephrotoxicity threshold of gentamicin, and allows us to conclude that under our experimental conditions, low dose uranium exposure did not induce signs of nephrotoxicity or enhance renal sensitivity to another nephrotoxicant. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Brain damage among the prenatally exposed

    International Nuclear Information System (INIS)

    Otake, Masanori; Schull, W.J.; Yoshimaru, Hiroshi.

    1991-01-01

    Significant effects on the developing brain of exposure to ionizing radiation are seen among those individuals exposed in the 8th through the 25th week after fertilization. These effects, particularly in the most sensitive period, 8-15 weeks after fertilization, manifest themselves as an increased frequency of severe mental retardation (SMR), a diminution in IQ score and in school performance, and an increase in the occurrence of seizures. Of 30 SMR cases, 18 (60%) had small heads. About 10% of the individuals with small head sizes observed among the in utero clinical sample were mentally retarded. When all of the cases of mental retardation are included in the analysis, a linear dose-response model fits the data adequately and no evidence of a threshold emerges; however, if the two probable nonradiation-related cases of Down's syndrome are excluded from the 19 SMR cases exposed 8-15 weeks after fertilization, the evidence of a threshold is stronger. The 95% lower bound of the threshold based on the new dosimetry system appears to be in the range of 0.12-0.23 Gy. In the 16-25 week period, the 95% lower bound of the threshold is 0.21 Gy both with and without inclusion of two probable nonradiation-related retarded cases. In a regression analysis of IQ scores and school performance data, a greater linearity is suggested with the new dosimetry (DS86) than with the old (T65DR), but the mean IQ score and the mean school performance of those exposed in utero to doses under 0.10 Gy are similar, and not statistically different from the means in the control group. The risk ratios for unprovoked seizures, following exposure during the 8th through the 15th week after fertilization, are 4.4 (90% confidence interval: 0.5-40.9) after 0.10-0.49 Gy and 24.9 (4.1-191.6) after 0.50 Gy or more when the mentally retarded are included and 4.4 (0.5-40.9) and 14.5 (0.4-199.6), respectively, when they are excluded. (author)

  11. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  12. Study on serum metabonomics of rats exposed to low-dose ionizing radiation, carbon monoxide, benzene and noise

    Directory of Open Access Journals (Sweden)

    Qing-rong WANG

    2015-07-01

    Full Text Available Objective To investigate the combined effects of low-dose ionizing radiation, carbon monoxide, benzene and noise on serum metabolites and the mechanism of injury induced by these complex environmental factors in rats. Methods  Sixteen adult SD rats were randomly divided into control group and exposed group (8 each. The exposed group received the combined effect every day for 7 days. At the end of experiment, sera were collected from the abdominal aorta of rats. The metabolic fingerprint of serum was obtained by 1H nuclear magnetic resonance (1H NMR spectroscopy and determined with pattern recognition techniques of principal component analysis (PCA and orthogonal signal correction-partial least squares (OSC-PLS. The similarities and differences in metabolic profiles between two groups were visualized by SIMCA-P software. Results The rat serum 1H NMR spectra revealed different metabolic spectra between the control group and exposed group. The OSC-PLS plots of the serum samples presented respectively marked clustering between the two groups. Compared with the control group, the contents of lipid, high density lipoprotein, glycine/glucose, N-acetyl glycoprotein 1, N-acetyl glycoprotein 2, phosphatidyl choline and unsaturated fatty acid increased, while those of lactic acid, threonine/lipid, alanine, creatine, glycerylphosphorylcholine/ trimethylamine oxide, low density lipoprotein/high density lipoprotein, low density lipoprotein, very low density lipoprotein/ low density lipoprotein, very low density lipoprotein and saturated fatty acid decreased. Conclusions Combination of low-dose ionizing radiation, carbon monoxide, benzene and noise could induce changes of serum metabolites in rats, involving in immune function, renal function and energy metabolism. The NMR-based-metabonomics method has potential of application in research on combined biological effects of the complex environmental factors. DOI: 10.11855/j.issn.0577-7402.2015.07.09

  13. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism.

    Science.gov (United States)

    Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui

    2015-11-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

  14. Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Waagepetersen, Helle S; Schousboe, Arne

    2010-01-01

    Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affected...... by these conditions. [1-(13)C]glucose was administered to Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats. Sprague-Dawley (SprD), Zucker lean (ZL), and ZDF lean rats were used as controls. Several brain regions were analyzed for glycogen levels along with (13)C-labeling and content of glutamate, glutamine...... of glutamine and glutamate were decreased in the cerebellum of the ZO and the ZDF rats. Glycogen levels were also lower in this region. These results suggest that the obese and type 2 diabetic models were associated with lower brain glucose metabolism. Glucose metabolism through the TCA cycle was more...

  15. Fibrogenic response of hepatic stellate cells in ovariectomised rats exposed to ketogenic diet.

    Science.gov (United States)

    Bobowiec, R; Wojcik, M; Jaworska-Adamu, J; Tusinska, E

    2013-02-01

    The discrepancy about the role of estrogens in hepatic fibrogenesis and lack of studies addressed of ketogenic diet (KD) on hepatic stellate cells (HSC), prompted us to investigate the activity of HSC in control, KD- and thioacetamide (TAA)-administrated rats with different plasma concentration of estradiol (E2). HSC were isolated by the collagenase perfusion methods and separated by the Percoll gradient centrifugation. After the 4(th) and 8(th) day of incubation, lysates of HSC and the media were collected for further analysis. The HSC derived from KD-rats released remarkably more transforming growth factor (TGF)-β1 than cells obtained from animals fed with a standard diet. The ovariectomy of KD-rats markedly intensified the secretion of this fibrogenic cytokine on the 8(th) day of incubation (201.33 ±1 7.15 pg/ml). In HSC of rats exposed to E2, the TGF-β1 concentration did not exceed 157 ± 34.39 pg/ml. In respect to the collagen type I, the HSC obtained from ovariectomised KD-rats released an augmented amount of this ECM protein after the 8(th) day of culture (1.83 ± 0.14 U/ml). In the same time, higher quantities of ASMA appeared in the KD rats (1.41 ± 0.3 pg/mg protein). Exposition of rats to E2 did not markedly decrease the amount of ASMA. In summary, KD was able to induce morphological and functional changes in HSC, especially derived from rats deprived of ovarian estrogens. However, the preservation of E2 in ovariectomised rats didn't substantially alter the activation of HSC.

  16. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  17. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Izabela M. Zakiewicz

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  18. Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system.

    Science.gov (United States)

    McCaughey-Chapman, Amy; Connor, Bronwen

    2017-02-01

    Organotypic brain slice cultures are a useful tool to study neurological function as they provide a more complex, 3-dimensional system than standard 2-dimensional in vitro cell cultures. Building on a previously developed mouse brain slice culture protocol, we have developed a rat sagittal brain slice culture system as an ex vivo model of dopamine cell loss. We show that rat brain organotypic slice cultures remain viable for up to 6 weeks in culture. Using Fluoro-Gold axonal tracing, we demonstrate that the slice 3-dimensional cytoarchitecture is maintained over a 4 week culturing period, with particular focus on the nigrostriatal pathway. Treatment of the cultures with 6-hydroxydopamine and desipramine induces a progressive loss of Fluoro-Gold-positive nigral cells with a sustained loss of tyrosine hydroxylase-positive nigral cells. This recapitulates the pattern of dopaminergic degeneration observed in the rat partial 6-hydroxydopamine lesion model and, most importantly, the progressive pathology of Parkinson's disease. Our slice culture platform provides an advance over other systems, as we demonstrate for the first time 3-dimensional cytoarchitecture maintenance of rat nigrostriatal sagittal slices for up to 6 weeks. Our ex vivo organotypic slice culture system provides a long term cellular platform to model Parkinson's disease, allowing for the elucidation of mechanisms involved in dopaminergic neuron degeneration and the capability to study cellular integration and plasticity ex vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. PROFOUND AND SEXUALLY DIMORPHIC EFFECTS OF CLINICALLY-RELEVANT LOW DOSE SCATTER IRRADIATION ON THE BRAIN AND BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Anna eKovalchuk

    2016-06-01

    Full Text Available Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders. While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way.

  20. Effect of hyperbaric oxygen on lipid peroxidation and visual development in neonatal rats with hypoxia-ischemia brain damage.

    Science.gov (United States)

    Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting

    2016-07-01

    The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.

  1. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas

    Directory of Open Access Journals (Sweden)

    Giada Frenzilli

    2017-06-01

    Full Text Available Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum of Wistar rats. Rats were exposed to loud noise (100 dBA for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH combined with increased Bax and glial fibrillary acidic protein (GFAP. Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  2. Decreased resting functional connectivity after traumatic brain injury in the rat.

    Directory of Open Access Journals (Sweden)

    Asht Mangal Mishra

    Full Text Available Traumatic brain injury (TBI contributes to about 10% of acquired epilepsy. Even though the mechanisms of post-traumatic epileptogenesis are poorly known, a disruption of neuronal networks predisposing to altered neuronal synchrony remains a viable candidate mechanism. We tested a hypothesis that resting state BOLD-fMRI functional connectivity can reveal network abnormalities in brain regions that are connected to the lesioned cortex, and that these changes associate with functional impairment, particularly epileptogenesis. TBI was induced using lateral fluid-percussion injury in seven adult male Sprague-Dawley rats followed by functional imaging at 9.4T 4 months later. As controls we used six sham-operated animals that underwent all surgical operations but were not injured. Electroencephalogram (EEG-functional magnetic resonance imaging (fMRI was performed to measure resting functional connectivity. A week after functional imaging, rats were implanted with bipolar skull electrodes. After recovery, rats underwent pentyleneterazol (PTZ seizure-susceptibility test under EEG. For image analysis, four pairs of regions of interests were analyzed in each hemisphere: ipsilateral and contralateral frontal and parietal cortex, hippocampus, and thalamus. High-pass and low-pass filters were applied to functional imaging data. Group statistics comparing injured and sham-operated rats and correlations over time between each region were calculated. In the end, rats were perfused for histology. None of the rats had epileptiform discharges during functional imaging. PTZ-test, however revealed increased seizure susceptibility in injured rats as compared to controls. Group statistics revealed decreased connectivity between the ipsilateral and contralateral parietal cortex and between the parietal cortex and hippocampus on the side of injury as compared to sham-operated animals. Injured animals also had abnormal negative connectivity between the ipsilateral and

  3. GENE ARRAY ANALYSIS OF THE VENTRAL PROSTATE IN RATS EXPOSED TO EITHER VINCLOZOLIN OR PROCYMIDONE

    Science.gov (United States)

    GENE ARRAY ANALYSIS OF THE VENTRAL PROSTATE IN RATS EXPOSED TO EITHER VINCLOZOLIN OR PROCYMIDONE. MB Rosen, VS Wilson, JE Schmid, and LE Gray Jr. US EPA, ORD, NHEERL, RTP, NC.Vinclozolin (Vi) and procymidone (Pr) are antiandrogenic fungicides. While changes in gene expr...

  4. Distribution of [3H]diadenosine tetraphosphate binding sites in rat brain

    International Nuclear Information System (INIS)

    Miras-Portugal, M.T.; Palacios, J.M.; Torres, M.; Cortes, R.; Rodriguez-Pascual, F.

    1997-01-01

    The distribution of the diadenosine tetraphosphate high-affinity binding sites has been studied in rat brain by an autoradiographic method using [ 3 H]diadenosine tetraphosphate as the ligand. The binding characteristics are comparable to those described in studies performed on rat brain synaptosomes. White matter is devoid of specific binding. The range of binding site densities in gray matter varies from 3 to 15 fmol/mg of tissue, exhibiting a widespread but heterogeneous distribution. The highest densities correspond to the seventh cranial nerve, medial superior olive, pontine nuclei, glomerular and external plexiform layers of the olfactory bulb, and the granule cell layer of the cerebellar cortex. Intermediate density levels of binding correspond to different cortical areas, several nuclei of the amygdala, and the oriens and pyramidal layers of the hippocampal formation.The localization of diadenosine tetraphosphate binding sites in the brain may provide information on the places where diadenosine polyphosphate compounds can be expected to function in the central nervous system. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Sex-Specific Skeletal Muscle Fatigability and Decreased Mitochondrial Oxidative Capacity in Adult Rats Exposed to Postnatal Hyperoxia

    Directory of Open Access Journals (Sweden)

    Laura H. Tetri

    2018-03-01

    Full Text Available Premature birth affects more than 10% of live births, and is characterized by relative hyperoxia exposure in an immature host. Long-term consequences of preterm birth include decreased aerobic capacity, decreased muscular strength and endurance, and increased prevalence of metabolic diseases such as type 2 diabetes mellitus. Postnatal hyperoxia exposure in rodents is a well-established model of chronic lung disease of prematurity, and also recapitulates the pulmonary vascular, cardiovascular, and renal phenotype of premature birth. The objective of this study was to evaluate whether postnatal hyperoxia exposure in rats could recapitulate the skeletal and metabolic phenotype of premature birth, and to characterize the subcellular metabolic changes associated with postnatal hyperoxia exposure, with a secondary aim to evaluate sex differences in this model. Compared to control rats, male rats exposed to 14 days of postnatal hyperoxia then aged to 1 year demonstrated higher skeletal muscle fatigability, lower muscle mitochondrial oxidative capacity, more mitochondrial damage, and higher glycolytic enzyme expression. These differences were not present in female rats with the same postnatal hyperoxia exposure. This study demonstrates detrimental mitochondrial and muscular outcomes in the adult male rat exposed to postnatal hyperoxia. Given that young adults born premature also demonstrate skeletal muscle dysfunction, future studies are merited to determine whether this dysfunction as well as reduced aerobic capacity is due to reduced mitochondrial oxidative capacity and metabolic dysfunction.

  6. Dynamics of pathomorphological changes in rat brain as a function of γ-radiation dose

    International Nuclear Information System (INIS)

    Fedorov, V.P.

    1990-01-01

    Neurohistological, histochemical, electron-microscopic and biometric techniques were used to study the response of rat brain to irradiation within a wide range of doses. Nerve cells were shown to be highly radioresistant. At the same time, synapses and blood-brain barrier structures were highly radiosensitive. The pathomorphologic changes in different brain areas followed a dose-time function

  7. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study.

    Science.gov (United States)

    Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu

    2018-04-23

    Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Cárdenas-González, Mariana C.; Del Razo, Luz M. [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); Barrera-Chimal, Jonatan [Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D. F., México (Mexico); Jacobo-Estrada, Tania [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); López-Bayghen, Esther [Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); and others

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end of the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels.

  9. [Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].

    Science.gov (United States)

    Feng, Er-Cui; Jiang, Li

    2017-12-01

    To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (Pmemory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.

  10. The Impacts of Swimming Exercise on Hippocampal Expression of Neurotrophic Factors in Rats Exposed to Chronic Unpredictable Mild Stress

    Directory of Open Access Journals (Sweden)

    Pei Jiang

    2014-01-01

    Full Text Available Depression is associated with stress-induced neural atrophy in limbic brain regions, whereas exercise has antidepressant effects as well as increasing hippocampal synaptic plasticity by strengthening neurogenesis, metabolism, and vascular function. A key mechanism mediating these broad benefits of exercise on the brain is induction of neurotrophic factors, which instruct downstream structural and functional changes. To systematically evaluate the potential neurotrophic factors that were involved in the antidepressive effects of exercise, in this study, we assessed the effects of swimming exercise on hippocampal mRNA expression of several classes of the growth factors (BDNF, GDNF, NGF, NT-3, FGF2, VEGF, and IGF-1 and peptides (VGF and NPY in rats exposed to chronic unpredictable mild stress (CUMS. Our study demonstrated that the swimming training paradigm significantly induced the expression of BDNF and BDNF-regulated peptides (VGF and NPY and restored their stress-induced downregulation. Additionally, the exercise protocol also increased the antiapoptotic Bcl-xl expression and normalized the CUMS mediated induction of proapoptotic Bax mRNA level. Overall, our data suggest that swimming exercise has antidepressant effects, increasing the resistance to the neural damage caused by CUMS, and both BDNF and its downstream neurotrophic peptides may exert a major function in the exercise related adaptive processes to CUMS.

  11. Long-term evolution of cerebral hemodynamics after brain irradiation in the rat

    International Nuclear Information System (INIS)

    Keyeux, A.; Ochrymowicz-Bemelmans, D.

    1985-01-01

    Long-term evolution of radioisotope indices, evaluating respectively the cerebral blood flow (CBF), the cerebral blood volume (CBV) and the cephalic specific distribution space of iodoantipyrine (ΔIAP) of rat, was studied after brain irradiation at 20 Gy. Radioinduced hemodynamic alterations evidenced by this approach are biphasic and support the prominent role of circulation impairment in the genesis of delayed brain radionecrosis [fr

  12. Venous or arterial blood components trigger more brain swelling, tissue death after acute subdural hematoma compared to elderly atrophic brain with subdural effusion (SDE) model rats.

    Science.gov (United States)

    Wajima, Daisuke; Sato, Fumiya; Kawamura, Kenya; Sugiura, Keisuke; Nakagawa, Ichiro; Motoyama, Yasushi; Park, Young-Soo; Nakase, Hiroyuki

    2017-09-01

    Acute subdural hematoma (ASDH) is a frequent complication of severe head injury, whose secondary ischemic lesions are often responsible for the severity of the disease. We focused on the differences of secondary ischemic lesions caused by the components, 0.4ml venous- or arterial-blood, or saline, infused in the subdural space, evaluating the differences in vivo model, using rats. The saline infused rats are made for elderly atrophic brain with subdural effusion (SDE) model. Our data showed that subdural blood, both venous- and arterial-blood, aggravate brain edema and lesion development more than SDE. This study is the first study, in which different fluids in rats' subdural space, ASDH or SDE are compared with the extension of early and delayed brain damage by measuring brain edema and histological lesion volume. Blood constituents started to affect the degree of ischemia underneath the subdural hemorrhage, leading to more pronounced breakdown of the blood-brain barrier and brain damage. This indicates that further strategies to treat blood-dependent effects more efficiently are in view for patients with ASDH. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  14. Neuroglobin in the rat brain (II): co-localisation with neurotransmitters

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Dewilde, Sylvia

    2008-01-01

    In an accompanying article, we found that neuroglobin (Ngb) was expressed in a few well-defined nuclei in the rat brain. Here, we show by use of immunohistochemistry and in situ hybridisation (ISH) that Ngb co-localise with several specific neurotransmitters. Ngb co-localise consistently with tyr...

  15. The neuroprotective effects of an ethanolic turmeric (Curcuma longa L.) extract against trimethyltin-induced oxidative stress in rats.

    Science.gov (United States)

    Yuliani, Sapto; Mustofa; Partadiredja, Ginus

    2018-03-07

    Oxidative stress is known to contribute to the pathogenesis of neurodegenerative disorders. An ethanolic turmeric (Curcuma longa L.) extract containing curcumin has been reported to produce antioxidant effects. The present study aims to investigate the possible neuroprotective effects of the ethanolic turmeric extract against trimethyltin (TMT)-induced oxidative stress in Sprague Dawley rats. The ethanolic turmeric extract and citicoline were administered to the TMT exposed rats from day 1 to day 28 of the experiment. The TMT injection was administered on day 8 of the experiment. The plasma and brain malondialdehyde (MDA) and reduced glutathione (GSH) levels, and the activities of the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes in the brain were examined at the end of the experiment. The administration of 200 mg/kg bw of the ethanolic turmeric extract prevented oxidative stress by decreasing the plasma and brain MDA levels and increasing the SOD, CAT, and GPx enzyme activities and GSH levels in the brain. These effects seem to be comparable to those of citicoline. The ethanolic turmeric extract at a dose of 200 mg/kg bw may exert neuroprotective effects on TMT-exposed Sprague Dawley rats by preventing them from oxidative stress.

  16. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  17. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats.

    Science.gov (United States)

    Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua

    2018-06-05

    Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  19. In vivo study about specific captation of 125 I-insulin by rat brain structures

    International Nuclear Information System (INIS)

    Sanvitto, G.L.

    1986-01-01

    The specific captation of 125 I-insulin was evaluated by brain structures, as olfactory bulbous, hypothalamus and cerebellum in rats, from in vivo experiences that including two different aspects: captation measure of 125 I-insulin after the intravenous injection of the labelled hormone, in fed rats and in rats with 48 h of fast or convulsion, procedure by the pentylene tetrazole; captation measure of 125 I-insulin after intra-cerebral-ventricular injection of the labelled hormone in fed rats. (C.G.C.)

  20. The beneficial effects of l-cysteine on brain antioxidants of rats affected by sodium valproate.

    Science.gov (United States)

    Hamza, R Z; El-Shenawy, N S

    2017-11-01

    Oxidative stress caused by sodium valproate (SV) is known to play a key role in the pathogenesis of brain tissue. The present study was designed to evaluate the protective effect of l-cysteine (LC) on the antioxidants of brain tissue of rats. The animals were divided into six groups: control group 1 was treated with saline as vehicle, groups 2 and 3 were treated with low and high doses of SV (100 and 500 mg/kg, respectively), group 4 was treated with LC (100 mg/kg), and groups 5 and 6 were treated with low-dose SV + LC and high-dose SV + LC, respectively. All the groups were treated orally by gastric tube for 30 successive days. Some antioxidant parameters were determined. Brain tissue (cerebral cortex) of SV-treated animals showed an increase in lipid peroxidation (LPO) and reduction in activity of enzymatic antioxidant and total antioxidant levels. Histopathological examination of cerebral cortex of SV rats showed astrocytic swelling, inflammation, and necrosis. After 4 weeks of the combination treatment of SV and LC daily, results showed significant improvement in the activity of cathepsin marker enzymes and restored the structure of the brain. LC was able to ameliorate oxidative stress deficits observed in SV rats. LC decreased LPO level and was also able to restore the activity of antioxidant enzymes as well as structural deficits observed in the brain of SV animals. The protective effect of LC in SV-treated rats is mediated through attenuation of oxidative stress, suggesting a therapeutic role for LC in individuals treated with SV.