Sample records for rat brain cortical

  1. Comparative proteomics of rat brain in the BCNU-induced model of cortical dysplasia



    Objective To screen the differential proteins in the brain(neocortex and hippocampus)between the rats with cortical dysplasia(CD)and control ones,and investigate the role of their alteration in the development of epilepsy in CD.Methods Cortical dysplasia was induced in rat pups via in utero delivery of BCNU.A two-dimensional electrophoresis

  2. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices

    Qing-shengXUE; Bu-weiYU; Ze-jianWANG; Hong-zhuanCHEN


    AIM: To compare the effects of ketamine, midazolam, thiopental, and propofol on brain ischemia by the model of oxygen-glucose deprivation (OGD) in rat cerebral cortical slices. METHODS: Cerebral cortical slices were incu-bated in 2 % 2,3,5-triphenyltetrazolium chloride (TTC) solution after OGD, the damages and effects of ketamine,midazolam, thiopental, and propofol were quantitativlye evaluated by ELISA reader of absorbance (A) at 490 nm,which indicated the red formazan extracted from slices, lactic dehydrogenase (LDH) releases in the incubated supernate were also measured. RESULTS: Progressive prolongation of OGD resulted in decreases of TTC staining.The percentage of tissue injury had a positive correlation with LDH releases, r=0.9609, P<0.01. Two hours of reincubation aggravated the decrease of TTC staining compared with those slices stained immediately after OGD(P<0.01). These four anesthetics had no effects on the TTC staining of slices. Ketamine completely inhibited thedecrease of A value induced by 10 min of OGD injury. High concentrations of midazolam (10 μmol/L) and thiopental (400μmol/L) partly attenuated this decrease. Propofol at high concentration (100 μmol/L) enhanced the decrease of A value induced by 10 min of OGD injury (P<0.01). CONCLUSION; Ketamine, high concentration of midazolam and thiopental have neuroprotective effects against OGD injury in rat cerebral cortical slices, while high concentration of propofol augments OGD injury in rat cerebral cortical slices.

  3. The Impact of CXCR4 Blockade on the Survival of Rat Brain Cortical Neurons

    Merino, José Joaquín; Garcimartín, Alba; López-Oliva, María Elvira; Benedí, Juana; González, María Pilar


    Background: Chemokine receptor type 4 (CXCR4) plays a role in neuronal survival/cell repair and also contributes to the progression of cancer and neurodegenerative diseases. Chemokine ligand 12 (CXCL12) binds to CXCR4. In this study, we have investigated whether CXCR4 blockade by AMD3100 (a CXCR4 antagonist, member of bicyclam family) may affect neuronal survival in the absence of insult. Thus, we have measured the mitochondrial membrane potential (MMP), Bax and Bcl-2 protein translocation, and cytochrome c release in AMD3100-treated brain cortical neurons at 7 DIV (days in vitro). Methods: For this aim, AMD3100 (200 nM) was added to cortical neurons for 24 h, and several biomarkers like cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) release, caspase-3/9 activity, proteins Bax and Bcl-2 translocation, and cytochrome c release were analyzed by immunoblot. Results: CXCR4 blockade by AMD3100 (200 nM, 24 h) induces mitochondrial hyperpolarization and increases caspase-3/9 hyperpolarization without affecting LDH release as compared to untreated controls. AMD3100 also increases cytochrome c release and promotes Bax translocation to the mitochondria, whereas it raises cytosolic Bcl-2 levels in brain cortical neurons. Conclusion: CXCR4 blockade induces cellular death via intrinsic apoptosis in rat brain cortical neurons in absence of insult. PMID:27916896

  4. Morphine enhances the release of /sup 3/H-purines from rat brain cerebral cortical prisms

    Wu, P.H.; Phillis, J.W.; Yuen, H.


    In vitro experiments have shown that /sup 3/H-purines can be released from /sup 3/H-adenosine preloaded rat brain cortical prisms by a KCl-evoked depolarization. The KCl-evoked release of /sup 3/H-purines is dependent on the concentration of KCl present in the superfusate. At concentrations of 10(-7) approximately 10(-5)M morphine did not influence the basal release of /sup 3/H-purines from the prisms, although it enhanced the KCl-evoked release of /sup 3/H-purines. The enhancement of KCl-evoked /sup 3/H-purine release by morphine was concentration-dependent and was antagonized by naloxone, suggesting the involvement of opiate receptors. Uptake studies with rat brain cerebral cortical synaptosomes show that morphine is a very weak inhibitor of adenosine uptake. Comparisons with dipyridamole, a potent inhibitor of adenosine uptake, suggest that this low level of inhibition of the uptake did not contribute significantly to the release of /sup 3/H-purine by morphine seen in our experiments. It is therefore suggested that morphine enhances KCl-evoked /sup 3/H-purine release by an interaction with opiate receptors and that the resultant increase in extracellular purine (adenosine) levels may account for some of the actions of morphine.

  5. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    Yuan, Z.; Du, C.; Yuan, Z.; Luo, Z.; Volkow, N.D.; Pan, Y.; Du, C.


    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 {micro}m, 10 Hz) and over a large field of view (3 x 5 mm{sup 2}). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 {+-} 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 {+-} 0.2 min, phase (2) lasting over 20 min whereas Ca{sup 2+} increased immediately (peaked at t = 4.1 {+-} 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 {+-} 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  6. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema.

    Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo


    BACKGROUND Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). MATERIAL AND METHODS TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. RESULTS We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (pATP (pATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA.

  7. Changes in electroencephalographic characteristics and blood-brain barrier permeability in WAG/Rij rats with cortical dysplasia.

    Sahin, Deniz; Yilmaz, Canan Ugur; Orhan, Nurcan; Arican, Nadir; Kaya, Mehmet; Gürses, Candan; Ates, Nurbay; Ahishali, Bulent


    This study investigated the effects of cortical dysplasia (CD) on electrophysiology and blood-brain barrier (BBB) permeability in WAG/Rij rats with genetic absence epilepsy. Pregnant WAG/Rij rats were exposed to 145cGy of gamma-irradiation on embryonic day 17 to induce CD. An electroencephalogram was recorded from cortices subdurally in the offspring of the pregnant animals. Horseradish peroxidase (HRP) was used as determinant of BBB permeability. A massive tissue loss in the cerebral cortex was seen in WAG/Rij rats with CD (prats with CD when compared with the properties of SWDs in intact WAG/Rij rats (prats was significantly higher than that of control values (prats with CD increased and was higher than that of the control and WAG/Rij animals (prats with CD, suggesting a shift in seizure pattern. The association of these alterations with significant loss of cortical thickness and increased BBB permeability to HRP tracer may represent a causal relation of the EEG abnormalities with cerebral structural changes in these animals. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Caffeine/nutrition interaction in the rat brain: Influence on latent inhibition and cortical spreading depression.

    de Aguiar, Márlison José Lima; de Aguiar, Cilene Rejane Ramos Alves; Guedes, Rubem Carlos Araújo


    Caffeine, like malnutrition, can produce behavioral and electrophysiological alterations. However, the interaction of both factors remains unclear. Here this interaction has been studied in male Wistar rats previously malnourished during the lactation period by feeding their dams the "regional basic diet" of Northeast Brazil, containing about 8% protein, predominantly from vegetable sources (RBD(8)). At 70-75days of life, a subset of the pups was treated intraperitoneally with 30mg/kg caffeine for 4days while being tested according to the behavioral model of latent inhibition. Another group was subjected to an electrophysiological recording of the phenomenon known as cortical spreading depression, and the effects of caffeine injected during the recording session were evaluated. Caffeine did not affect cortical spreading depression, but antagonized latent inhibition in both the RBD(8)-malnourished rats and in the well-nourished control group fed a chow diet with 22% protein. This effect of caffeine was not seen in malnourished rats fed a protein-supplemented RBD (protein increased to 22% by increasing the proportion of foodstuffs from vegetable origin; RBD(22) group), suggesting that the amino acid imbalance of this diet may modulate the caffeine effects on latent inhibition. The results indicate a differential effect of caffeine in the latent inhibition behavioral model, as compared to the cortical spreading depression phenomenon, and this effect is influenced by the early nutritional status of the animal. We suggest that caffeine may modulate dopaminergic subcortical receptors participating in attention processes, but does not interact at the cortical level, in a way that would affect cortical spreading depression.

  9. Neuroprotection afforded by diazepam against oxygen/glucose deprivation-induced injury in rat cortical brain slices.

    Ricci, Lorenzo; Valoti, Massimo; Sgaragli, Giampietro; Frosini, Maria


    The aim of the present investigation was to assess neuroprotection exerted by diazepam (0.1-25 microM) in rat cortical brain slices subjected to oxygen-glucose deprivation and reoxygenation. Neuronal injury and neuroprotection were assessed by measuring the release of glutamate and lactate dehydrogenase and tissue water content. Results demonstrate that diazepam exerted neuroprotective effects according to a "U-shaped", hormetic-like, concentration-response curve, with an efficacy window of 0.5-5 microM concentration. Flumazenil (20 microM) fully antagonised neuroprotection afforded by 5 microM diazepam. In conclusion, the hormetic response of diazepam should be taken into consideration when designing experiments aimed at assessing diazepam neuroprotection against ischemia/reoxygenation injury.

  10. Cortical neurogenesis in adult rats after ischemic brain injury:most new neurons fail to mature

    Qing-quan Li; Guan-qun Qiao; Jun Ma; Hong-wei Fan; Ying-bin Li


    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial ifbrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identiifed using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromode-oxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial ifbrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our ifndings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  11. Repetitive mild traumatic brain injury induces ventriculomegaly and cortical thinning in juvenile rats.

    Goddeyne, Corey; Nichols, Joshua; Wu, Chen; Anderson, Trent


    Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for nearly 75% of all TBI cases, yet its neuropathophysiology is still poorly understood. While even a single mTBI injury can lead to persistent deficits, repeat injuries increase the severity and duration of both acute symptoms and long-term deficits. In this study, to model pediatric repetitive mTBI (rmTBI) we subjected unrestrained juvenile animals (postnatal day 20) to repeat weight-drop impacts. Animals were anesthetized and subjected to sham injury or rmTBI once per day for 5 days. Magnetic resonance imaging (MRI) performed 14 days after injury revealed marked cortical atrophy and ventriculomegaly in rmTBI animals. Specifically, beneath the impact zone the thickness of the cortex was reduced by up to 46% and the area of the ventricles increased by up to 970%. Immunostaining with the neuron-specific marker NeuN revealed an overall loss of neurons within the motor cortex but no change in neuronal density. Examination of intrinsic and synaptic properties of layer II/III pyramidal neurons revealed no significant difference between sham-injured and rmTBI animals at rest or under convulsant challenge with the potassium channel blocker 4-aminopyridine. Overall, our findings indicate that the neuropathological changes reported after pediatric rmTBI can be effectively modeled by repeat weight drop in juvenile animals. Developing a better understanding of how rmTBI alters the pediatric brain may help improve patient care and direct "return to game" decision making in adolescents.

  12. A single dose of PPARγ agonist pioglitazone reduces cortical oxidative damage and microglial reaction following lateral fluid percussion brain injury in rats.

    Pilipović, Kristina; Župan, Željko; Dolenec, Petra; Mršić-Pelčić, Jasenka; Župan, Gordana


    Neuroprotective actions of the peroxisome proliferator-activated receptor-γ (PPARγ) agonists have been observed in various animal models of the brain injuries. In this study we examined the effects of a single dose of pioglitazone on oxidative and inflammatory parameters as well as on neurodegeneration and the edema formation in the rat parietal cortex following traumatic brain injury (TBI) induced by the lateral fluid percussion injury (LFPI) method. Pioglitazone was administered in a dose of 1mg/kg at 10min after the brain trauma. The animals of the control group were sham-operated and injected by vehicle. The rats were decapitated 24h after LFPI and their parietal cortices were analyzed by biochemical and histological methods. Cortical edema was evaluated in rats sacrificed 48h following TBI. Brain trauma caused statistically significant oxidative damage of lipids and proteins, an increase of glutathione peroxidase (GSH-Px) activity, the cyclooxygenase-2 (COX-2) overexpression, reactive astrocytosis, the microglia activation, neurodegeneration, and edema, but it did not influence the superoxide dismutase activity and the expressions of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha in the rat parietal cortex. Pioglitazone significantly decreased the cortical lipid and protein oxidative damage, increased the GSH-Px activity and reduced microglial reaction. Although a certain degree of the TBI-induced COX-2 overexpression, neurodegeneration and edema decrease was detected in pioglitazone treated rats, it was not significant. In the injured animals, cortical reactive astrocytosis was unchanged by the tested PPARγ agonist. These findings demonstrate that pioglitazone, administered only in a single dose, early following LFPI, reduced cortical oxidative damage, increased antioxidant defense and had limited anti-inflammatory effect, suggesting the need for further studies of this drug in the treatment of TBI.

  13. Effect of. cap alpha. -,. beta. -adrenergic receptor agonists and antagonists of the efflux of /sup 22/Na and uptake of /sup 42/K by rat brain cortical slices

    Phillis, J.W.; Wu, P.H.; Thierry, D.L.


    The effects of norepinephrine on ion fluxes in rat brain cortical slices have now been ascertained. /sup 22/Na efflux and /sup 42/K influx are enhanced by norepinephrine. The increase in ion fluxes can be blocked by ouabain, phentolamine and propranolol, suggesting that the catecholamine activates a membrane sodium pump by a receptor-mediated step. The facilitation of /sup 22/Na efflux is stereospecific as demonstrated by the very weak action of D-norepinephrine at 10/sup -5/ M concentration. Various ..cap alpha..-adrenergic and ..beta..-adrenergic receptor agonists, including oxymetazoline, naphazoline, clonidine, tramazoline, methoxamine, phenylephrine, L-isoproterenol and methoxyphenamine are potent stimulants of the sodium pump as demonstrated by their enhancement of ion fluxes in rat brain cortical slices. The results are consistent with the hypothesis that norepinephrine hyperpolarizes central neurons by activating an ouabain-sensitive, receptor-mediated sodium pump.

  14. Repeated mild lateral fluid percussion brain injury in the rat causes cumulative long-term behavioral impairments, neuroinflammation, and cortical loss in an animal model of repeated concussion.

    Shultz, Sandy R; Bao, Feng; Omana, Vanessa; Chiu, Charlotte; Brown, Arthur; Cain, Donald Peter


    There is growing evidence that repeated brain concussion can result in cumulative and long-term behavioral symptoms, neuropathological changes, and neurodegeneration. Little is known about the factors and mechanisms that contribute to these effects. The current study addresses the need to investigate and better understand the effects of repeated concussion through the development of an animal model. Male Long-Evans rats received 1, 3, or 5 mild lateral fluid percussion injuries or sham injuries spaced 5 days apart. After the final injury, rats received either a short (24 h) or long (8 weeks) post-injury recovery period, followed by a detailed behavioral analysis consisting of tests for rodent anxiety-like behavior, cognition, social behavior, sensorimotor function, and depression-like behavior. Brains were examined immunohistochemically to assess neuroinflammation and cortical damage. Rats given 1, 3, or 5 mild percussion injuries displayed significant short-term cognitive impairments. Rats given repeated mild percussion injuries displayed significantly worse short- and long-term cognitive impairments. Rats given 5 mild percussion injuries also displayed increased anxiety- and depression-like behaviors. Neuropathological analysis revealed short-term neuroinflammation in 3-injury rats, and both short- and long-term neuroinflammation in 5-injury rats. There was also evidence that repeated injuries induced short- and long-term cortical damage. These cumulative and long-term changes are consistent with findings in human patients suffering repeated brain concussion, provide support for the use of repeated mild lateral fluid percussion injuries to study repeated concussion in the rat, and suggest that neuroinflammation may be important for understanding the cumulative and chronic effects of repeated concussion.

  15. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    Luiten, PGM; deJong, GI; VanderZee, EA; vanDijken, H; Dijken, H. van


    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a genera

  16. Effect of vitamin E on cerebral cortical oxidative stress and brain-derived neurotrophic factor gene expression induced by hypoxia and exercise in rats.

    Sakr, H F; Abbas, A M; El Samanoudy, A Z


    Brain-derived neurotrophic factor (BDNF) is involved in the proliferation of neurons, and its expression increases significantly with exercise. We aimed to investigate the effects of chronic exercise (swimming) and sustained hypoxia on cortical BDNF expression in both the presence and absence of vitamin E. Sixty four male Sprague-Dawley rats were divided into two equal groups; a normoxic group and a hypoxic group. Both groups were equally subdivided into four subgroups: sedentary, sedentary with vitamin E, chronic exercise either with or without vitamin E supplementation. Arterial PO(2), and the levels of cortical malondialdehyde (MDA), antioxidants (reduced glutathione GSH, superoxide dismutase (SOD), catalase (CAT) and vitamin E) and BDNF gene expression were investigated. Hypoxia significantly increased MDA production and BDNF gene expression and decreased the antioxidants compared to control rats. Chronic exercise in hypoxic and normoxic rats increased MDA level and BDNF gene expression and decreased the antioxidants. Providing vitamin E supplementation to the hypoxic and normoxic rats significantly reduced MDA and BDNF gene expression and increased antioxidants. We conclude that sustained hypoxia and chronic exercise increased BDNF gene expression and induced oxidative stress. Moreover, vitamin E attenuated the oxidative stress and decreased BDNF gene expression in sustained hypoxia and chronic exercise which confirms the oxidative stress-induced stimulation of BDNF gene expression.

  17. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Lee, Jae Sung; Park, Kwang Suk [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea); Seoul National University College of Medicine, Department of Biomedical Engineering, Seoul (Korea); Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul [Seoul National University College of Medicine, Department of Otolaryngology, Head and Neck Surgery, Seoul (Korea); Lee, Dong Soo; Jeong, Jae Min [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea)


    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-{sup 14}C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in

  18. Topiramate reduces blood-brain barrier disruption and inhibits seizure activity in hyperthermia-induced seizures in rats with cortical dysplasia.

    Gürses, Candan; Orhan, Nurcan; Ahishali, Bulent; Yilmaz, Canan Ugur; Kemikler, Gonul; Elmas, Imdat; Cevik, Aydin; Kucuk, Mutlu; Arican, Nadir; Kaya, Mehmet


    We investigated the effects of topiramate (TPM), a novel broad spectrum anticonvulsant, on seizure severity, survival rate and blood-brain barrier (BBB) integrity during hyperthermic seizures in rats with cortical dysplasia (CD). Offsprings of irradiated mothers were used in this study. To show the functional and morphological alterations in BBB integrity, quantitative analysis of Evans blue (EB) extravasation, immunohistochemistry and electron microscopic assessment of horseradish peroxidase (HRP) permeability were performed. Rats with CD exposed to hyperthermia exhibited seizures with mean Racine's scores of 3.92 ± 1.2. Among the rats with CD pretreated with TPM, 21 of 24 rats showed no sign of seizure activity upon exposure to hyperthermia (pseizures increased BBB permeability to EB in animals with CD, but TPM pretreatment decreased the penetration of the tracer into the brain in these animals (pseizures, and TPM pretreatment prevented the development of HRP reaction products in these animals. The results of this study suggest that TPM inhibits seizure activity and maintains BBB integrity in the course of febrile seizures in the setting of CD. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Monitoring stroke progression: in vivo imaging of cortical perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model.

    Schoknecht, Karl; Prager, Ofer; Vazana, Udi; Kamintsky, Lyn; Harhausen, Denise; Zille, Marietta; Figge, Lena; Chassidim, Yoash; Schellenberger, Eyk; Kovács, Richard; Heinemann, Uwe; Friedman, Alon


    Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood-brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood-brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex.

  20. Prooxidant versus antioxidant brain action of ascorbic acid in well-nourished and malnourished rats as a function of dose: a cortical spreading depression and malondialdehyde analysis.

    Mendes-da-Silva, Rosângela Figueiredo; Lopes-de-Morais, Andréia Albuquerque Cunha; Bandim-da-Silva, Maria Eduarda; Cavalcanti, Gabriela de Araujo; Rodrigues, Ana Rafaela Oliveira; Andrade-da-Costa, Belmira Lara da Silveira; Guedes, Rubem Carlos Araújo


    Although ascorbic acid (AA) is an antioxidant, under certain conditions it can facilitate oxidation, which may underlie the opposite actions of AA on brain excitability in distinct seizure models. Here, we investigated whether chronic AA administration during brain development alters cortical excitability as a function of AA dose, as indexed by cortical spreading depression (CSD) and by the levels of lipid peroxidation-induced malondialdehyde. Well-nourished and early-malnourished rats received per gavage 30, 60, or 120 mg/kg/d of AA, saline, or no gavage treatment (naïve group) at postnatal days 7-28. CSD propagation and malondialdehyde levels were analyzed at 30-40 days. Confirming previous observations, CSD velocities were significantly higher in the early-malnourished groups than in the well-nourished groups. AA dose was important: 30 mg/kg/d AA decelerated CSD and reduced malondialdehyde levels, whereas 60 mg/kg/d and 120 mg/kg/d accelerated CSD and augmented malondialdehyde levels compared with the corresponding saline and naïve groups. Our findings reinforce previous suggestion that AA acts as an antioxidant in the brain when administered at low doses, but as a prooxidant at high doses, as indicated by CSD propagation and malondialdehyde levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel


    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic

  2. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Yu-Hao ePeng


    Full Text Available Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC on a flattened cortical map. A graphic user interface Cx-2D allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex–-changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and

  3. Forced arm use is superior to voluntary training for motor recovery and brain plasticity after cortical ischemia in rats.

    Schneider, Armin; Rogalewski, Andreas; Wafzig, Oliver; Kirsch, Friederike; Gretz, Norbert; Krüger, Carola; Diederich, Kai; Pitzer, Claudia; Laage, Rico; Plaas, Christian; Vogt, Gerhard; Minnerup, Jens; Schäbitz, Wolf-Rüdiger


    Both the immobilization of the unaffected arm combined with physical therapy (forced arm use, FAU) and voluntary exercise (VE) as model for enriched environment are promising approaches to enhance recovery after stroke. The genomic mechanisms involved in long-term plasticity changes after different means of rehabilitative training post-stroke are largely unexplored. The present investigation explored the effects of these physical therapies on behavioral recovery and molecular markers of regeneration after experimental ischemia. 42 Wistar rats were randomly treated with either forced arm use (FAU, 1-sleeve plaster cast onto unaffected limb at 8/10 days), voluntary exercise (VE, connection of a freely accessible running wheel to cage), or controls with no access to a running wheel for 10 days starting at 48 hours after photothrombotic stroke of the sensorimotor cortex. Functional outcome was measured using sensorimotor test before ischemia, after ischemia, after the training period of 10 days, at 3 and 4 weeks after ischemia. Global gene expression changes were assessed from the ipsi- and contralateral cortex and the hippocampus. FAU-treated animals demonstrated significantly improved functional recovery compared to the VE-treated group. Both were superior to cage control. A large number of genes are altered by both training paradigms in the ipsi- and contralateral cortex and the hippocampus. Overall, the extent of changes observed correlated well with the functional recovery obtained. One category of genes overrepresented in the gene set is linked to neuronal plasticity processes, containing marker genes such as the NMDA 2a receptor, PKC ζ, NTRK2, or MAP 1b. We show that physical training after photothrombotic stroke significantly and permanently improves functional recovery after stroke, and that forced arm training is clearly superior to voluntary running training. The behavioral outcomes seen correlate with patterns and extent of gene expression changes in all

  4. Divergent temporal expression of hyaluronan metabolizing enzymes and receptors with craniotomy vs. controlled cortical impact injury in rat brain: A pilot study

    Guoqiang eXing


    Full Text Available Traumatic brain injury triggers many secondary changes in tissue biology which ultimately determine the extent of injury and clinical outcome. Hyaluronan (hyaluronic acid, HA is a protective cementing gel present in the intercellular spaces whose degradation has been reported as a causative factor in tissue damage. Yet little is known about the expression and activities of genes involved in HA catabolism after TBI. Young adult male Sprague-Dawley rats were assigned to three groups: naïve control, craniotomy and, controlled-cortical impact-induced TBI (CCI-TBI. Four animals per group were sacrificed at 4h, 1d, 3d and 7d post CCI. The mRNA expression of hyaluronan synthases (HAS1-3, hyaluronidases (enzymes for HA degradation, HYAL 1-4 & PH20 and CD44 and RHAMM (membrane receptors for HA signaling and removal were determined using real-time PCR. Compared to the naïve controls, expression of HAS1 and HAS2 mRNA, but not HAS3 mRNA increased significantly following craniotomy alone and following CCI with differential kinetics. Expression of HAS2 mRNA increased significantly in the ipsilateral brain at 1d and 3d post CCI. HYAL1 mRNA expression also increased significantly in the craniotomy group and in the contralateral CCI at 1d and 3d post CCI. CD44 mRNA expression increased significantly in the ipsilateral CCI at 4h, 1d, 3d and 7d post CCI (up to 25 fold increase. These data suggest a dynamic regulation and role for HA metabolism in secondary responses to traumatic brain injury.

  5. SIRT3 Expression Decreases with Reactive Oxygen Species Generation in Rat Cortical Neurons during Early Brain Injury Induced by Experimental Subarachnoid Hemorrhage

    Huang, Wei; Huang, Yong; Huang, Ren-qiang; Gu, Jin-mao; Dong, Yan


    Sirtuin3 (SIRT3) is an important protein deacetylase which predominantly presents in mitochondria and exhibits broad bioactivities including regulating energy metabolism and counteracting inflammatory effect. Since inflammatory cascade was proved to be critical for pathological damage following subarachnoid hemorrhage (SAH), we investigated the overall expression and cell-specific distribution of SIRT3 in the cerebral cortex of Sprague-Dawley rats with experimental SAH induced by internal carotid perforation. Results suggested that SIRT3 was expressed abundantly in neurons and endothelia but rarely in gliocytes in normal cerebral cortex. After experimental SAH, mRNA and protein expressions of SIRT3 decreased significantly as early as 8 hours and dropped to the minimum value at 24 h after SAH. By contrast, SOD2 expression increased slowly as early as 12 hours after experimental SAH, rose up sharply at the following 12 hours, and then was maintained at a higher level. In conclusion, attenuated SIRT3 expression in cortical neurons was associated closely with enhanced reactive oxygen species generation and cellular apoptosis, implying that SIRT3 might play an important neuroprotective role during early brain injury following SAH. PMID:28053989

  6. β-Secretase inhibitor increases amyloid-β precursor protein level in rat brain cortical primary neurons induced by okadaic acid

    YU Chun-Jiang; WANG Wei-zhi; LIU Wei


    Background Senile plaques and neurofibrillary tangles (NFTs) represent two of the major histopathological hallmarks of Alzheimer's disease (AD). The plaques are primarily composed of aggregated amyloid β (Aβ) peptides. The processing of amyloid-β precursor protein (AβPP) in okadaic acid (OA)-induced tau phosphorylation primary neurons was studied.Methods Primary cultures of rat brain cortical neurons were treated with OA and β-secretase inhibitor. Neurons' viability was measured. AβPP processing was examined by immunocytochemistry and Western blotting with specific antibodies against the AβPP-N-terminus (NT) and AβPP-C-terminus (CT).Results Ten nrnol/L OA had a time-dependent suppression effect on primary neurons' viability. The suppression effect was alleviated markedly by pretreatment with β-secretase inhibitor. After OA treatment, both AβPP and β-C-terminal fragment (βCTF) were significantly increased in neurons. AβPP level was increased further in neurons pretreated with β-secretase inhibitor.Conclusions In OA-induced tau phosphorylation cell model, inhibition of β-secretase may protect neurons from death induced by OA. Because of increased accumulation of AβPP in neurons after OA treatment, more AβPP turns to be cleaved by β-secretase, producing neurotoxic βCTF. As a potential effective therapeutic target, β-secretase is worth investigating further.

  7. Cortical complexity in cetacean brains.

    Hof, Patrick R; Chanis, Rebecca; Marino, Lori


    Cetaceans (dolphins, whales, and porpoises) have a long, dramatically divergent evolutionary history compared with terrestrial mammals. Throughout their 55-60 million years of evolution, cetaceans acquired a compelling set of characteristics that include echolocation ability (in odontocetes), complex auditory and communicative capacities, and complex social organization. Moreover, although cetaceans have not shared a common ancestor with primates for over 90 million years, they possess a set of cognitive attributes that are strikingly convergent with those of many primates, including great apes and humans. In contrast, cetaceans have evolved a highly unusual combination of neurobiological features different from that of primates. As such, cetacean brains offer a critical opportunity to address questions about how complex behavior can be based on very different neuroanatomical and neurobiological evolutionary products. Cetacean brains and primate brains are arguably most meaningfully conceived as alternative evolutionary routes to neurobiological and cognitive complexity. In this article, we summarize data on brain size and hemisphere surface configuration in several cetacean species and present an overview of the cytoarchitectural complexity of the cerebral cortex of the bottlenose dolphin.

  8. Primary cortical brain cells influence osteoblast activity.

    Anissian, Lucas; Kirby, Michael; Stark, André


    The presence of neuropeptides and neuroreceptors in the bone have been reported in several studies. Bone turn-over seems to be controlled by the nervous system. The actual pathway or the control mechanism is still under investigation. In this study we investigate the changes in osteoblast cells if they are in co-culture with primary cortical brain cells. After seven days in co-culture with the primary fetal brain cells the osteoblast cells exhibited hypertrophic morphological changes and showed stronger ALP activity.

  9. Impairments in brain-derived neurotrophic factor-induced glutamate release in cultured cortical neurons derived from rats with intrauterine growth retardation: possible involvement of suppression of TrkB/phospholipase C-γ activation.

    Numakawa, Tadahiro; Matsumoto, Tomoya; Ooshima, Yoshiko; Chiba, Shuichi; Furuta, Miyako; Izumi, Aiko; Ninomiya-Baba, Midori; Odaka, Haruki; Hashido, Kazuo; Adachi, Naoki; Kunugi, Hiroshi


    Low birth weight due to intrauterine growth retardation (IUGR) is suggested to be a risk factor for various psychiatric disorders such as schizophrenia. It has been reported that developmental cortical dysfunction and neurocognitive deficits are observed in individuals with IUGR, however, the underlying molecular mechanisms have yet to be elucidated. Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are associated with schizophrenia and play a role in cortical development. We previously demonstrated that BDNF induced glutamate release through activation of the TrkB/phospholipase C-γ (PLC-γ) pathway in developing cultured cortical neurons, and that, using a rat model for IUGR caused by maternal administration of thromboxane A2, cortical levels of TrkB were significantly reduced in IUGR rats at birth. These studies prompted us to hypothesize that TrkB reduction in IUGR cortex led to impairment of BDNF-dependent glutamatergic neurotransmission. In the present study, we found that BDNF-induced glutamate release was strongly impaired in cultured IUGR cortical neurons where TrkB reduction was maintained. Impairment of BDNF-induced glutamate release in IUGR neurons was ameliorated by transfection of human TrkB (hTrkB). Although BDNF-stimulated phosphorylation of TrkB and of PLC-γ was decreased in IUGR neurons, the hTrkB transfection recovered the deficits in their phosphorylation. These results suggest that TrkB reduction causes impairment of BDNF-stimulated glutamatergic function via suppression of TrkB/PLC-γ activation in IUGR cortical neurons. Our findings provide molecular insights into how IUGR links to downregulation of BDNF function in the cortex, which might be involved in the development of IUGR-related diseases such as schizophrenia.

  10. Activation of expression of brain-derived neurotrophic factor at the site of implantation of allogenic and xenogenic neural stem (progenitor) cells in rats with ischemic cortical stroke.

    Chekhonin, V P; Lebedev, S V; Volkov, A I; Pavlov, K A; Ter-Arutyunyants, A A; Volgina, N E; Savchenko, E A; Grinenko, N F; Lazarenko, I P


    Ischemic stroke was modeled in the sensorimotor zone of the brain cortex in adult rats. Rat embryonic nervous tissue, neural stem cells from human olfactory epithelium, and rat fibroblasts (cell control) were implanted into the peri-infarction area of rats of different groups immediately after stroke modeling. Expression of BDNF mRNA was analyzed 7 days after surgery by real-time PCR. BDNF expression in cell preparation before their implantation was minimum. The expression of BDNF mRNA increased by 5-6 times in the areas of implantation of rat fibroblasts and human olfactory epithelium and by 23 times in the area of implantation of rat embryonic nervous tissue compared to periinfarction areas without cell implantation. These findings confirm the possibility of realization of the therapeutic effects of neural stem cells via expression of trophic factors.

  11. [Study of distribution of protein of the spine apparatus synaptopodin in cortical brain parts of rats submitted to hypoxia at different periods of embryogenesis].

    Vasil'ev, D S; Tumanova, N L; Zhuravin, I A


    A comparative study of the nervous tissue and distribution of the spine apparatus protein synaptopodin was performed in all layers of the brain sensorymotor cortex and hippocampal CA1 area in control rats and in the rats submitted to hypoxia at E14 and E18. It was found that beginning from the 20th day of postnatal development, in rats submitted to hypoxia both at E14 and E18 there was observed a statistically significant decrease of the mean number of labile synaptopodin-positive spines in the stratum radiatum molecular of the hippocampus area CA1. The decrease of the number of labile spines in the sensorymotor brain cortex was revealed only in the I layer beginning from the 20th day after birth in the rats submitted to hypoxia at E14. Maximal differences in the studied brain areas were observed in adult rats (exposed to hypoxia at E14: in the neocortex--a decrease by 23 +/- 10%, in hippocampus--by 24 +/- 8%, respectively). In adult animals, the increased degeneration of neuzons was not detected. It is suggested that disturbances in cognitive functions and in the capability for learning observed in rats after prenatal hypoxia can be due to a decrease of the amount of the labile synaptopodin-positive spines, which leads to a change of the structural-functional properties of neuronal networks and to a decrease of their plasticity.

  12. Cortical hierarchy governs rat claustrocortical circuit organization.

    White, Michael G; Cody, Patrick A; Bubser, Michael; Wang, Hui-Dong; Deutch, Ariel Y; Mathur, Brian N


    The claustrum is a telencephalic gray matter structure with various proposed functions, including sensory integration and attentional allocation. Underlying these concepts is the reciprocal connectivity of the claustrum with most, if not all, areas of the cortex. What remains to be elucidated to inform functional hypotheses further is whether a pattern exists in the strength of connectivity between a given cortical area and the claustrum. To this end, we performed a series of retrograde neuronal tract tracer injections into rat cortical areas along the cortical processing hierarchy, from primary sensory and motor to frontal cortices. We observed that the number of claustrocortical projections increased as a function of processing hierarchy; claustrum neurons projecting to primary sensory cortices were scant and restricted in distribution across the claustrum, whereas neurons projecting to the cingulate cortex were densely packed and more evenly distributed throughout the claustrum. This connectivity pattern suggests that the claustrum may preferentially subserve executive functions orchestrated by the cingulate cortex. J. Comp. Neurol. 525:1347-1362, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Increased brain cortical thickness associated with visceral fat in adolescents.

    Saute, R L; Soder, R B; Alves Filho, J O; Baldisserotto, M; Franco, A R


    There has been a growing amount of evidence indicating that excess visceral fat is associated with alterations in brain structure and function, including brain cortical thinning in adults. This study aims to investigate the relationship between brain cortical thickness with obesity assessments, in adolescents. In this study, we measured three different obesity assessments within an adolescent population (aged 15 - 18 years): body mass index (BMI), visceral fat ratio measured with an MRI and hepatorenal gradient measured with an ultrasound. Volunteers also underwent an MRI scan to measure brain structure. Results indicated that there was no relationship of BMI or hepatorenal gradient with brain cortical dimensions. However, there was a significant association between visceral fat ratio and an increase of cortical thickness throughout the brain. These results suggest that visceral fat, but not BMI, is correlated with cortical thickening in adolescence. © 2016 World Obesity Federation.

  14. The action of pulse-modulated GSM radiation increases regional changes in brain activity and c-Fos expression in cortical and subcortical areas in a rat model of picrotoxin-induced seizure proneness.

    López-Martín, E; Bregains, J; Relova-Quinteiro, J L; Cadarso-Suárez, C; Jorge-Barreiro, F J; Ares-Pena, F J


    The action of the pulse-modulated GSM radiofrequency of mobile phones has been suggested as a physical phenomenon that might have biological effects on the mammalian central nervous system. In the present study, GSM-exposed picrotoxin-pretreated rats showed differences in clinical and EEG signs, and in c-Fos expression in the brain, with respect to picrotoxin-treated rats exposed to an equivalent dose of unmodulated radiation. Neither radiation treatment caused tissue heating, so thermal effects can be ruled out. The most marked effects of GSM radiation on c-Fos expression in picrotoxin-treated rats were observed in limbic structures, olfactory cortex areas and subcortical areas, the dentate gyrus, and the central lateral nucleus of the thalamic intralaminar nucleus group. Nonpicrotoxin-treated animals exposed to unmodulated radiation showed the highest levels of neuronal c-Fos expression in cortical areas. These results suggest a specific effect of the pulse modulation of GSM radiation on brain activity of a picrotoxin-induced seizure-proneness rat model and indicate that this mobile-phone-type radiation might induce regional changes in previous preexcitability conditions of neuronal activation.

  15. Consistent Reconstruction of Cortical Surfaces from Longitudinal Brain MR Images

    Li, Gang; Nie, Jingxin; Wu, Guorong; Wang, Yaping; Shen, Dinggang


    Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR images is of great importance in studying longitudinal subtle change of the cerebral cortex. This paper presents a novel deformable surface method for consistent and accurate reconstruction of inner, central and outer cortical surfaces from longitudinal brain MR images. Specifically, the cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject are first reconstr...

  16. Cortical peroxynitration of nerve growth factor in aged and cognitively impaired rats.

    Bruno, Martin A; Cuello, A Claudio


    Basal forebrain cholinergic neurons (BFCN), a system involved in learning and memory processes, are highly dependent on a continuous supply of biologically active nerve growth factor (NGF). Age-related cholinergic atrophy and cell loss in normal brains is apparently not complemented by reductions in the levels of NGF as could be expected. In the present work, cortical proNGF/NGF were immunoprecipitated from cortical brain homogenates from young and aged and behaviorally characterized rats and resolved with antinitrotyrosine antibodies to reveal nitration of tyrosine residues in proteins. Cortical proNGF in aged and cognitively impaired rats was found to be a target for peroxynitrite-mediated oxidative damage with correlative impact on decrease in choline acetyltransferase activity. These studies provide evidence for oxidative stress damage of NGF molecules in the cerebral cortex of cognitively impaired aged rats as previously shown in AD human brains. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Workbench surface editor of brain cortical surface

    Dow, Douglas E.; Nowinski, Wieslaw L.; Serra, Luis


    We have developed a 3D reach-in tool to manually reconstruct 3D cortical surface patches from 2D brain atlas images. The first application of our cortex editor is building 3D functional maps, specifically Brodmann's areas. This tool may also be useful in clinical practice to adjust incorrectly mapped atlas regions due to the deforming effect of lesions. The cortex editor allows a domain expert to control the correlation of control points across slices. Correct correlation has been difficult for 3D reconstruction algorithms because the atlas slices are far apart and because of the complex topology of the cortex which differs so much from slice to slice. Also, higher precision of the resulting surfaces is demanded since these define 3D brain atlas features upon which future stereotactic surgery may be based. The cortex editor described in this paper provides a tool suitable for a domain expert to use in defining the 3D surface of a Brodmann's area.

  18. Modelling Human Cortical Network in Real Brain Space

    ZHAO Qing-Bai; FENG Hong-Bo; TANG Yi-Yuan


    Highly specific structural organization is of great significance in the topology of cortical networks.We introduce a human cortical network model.taking the specific cortical structure into account,in which nodes are brain sites placed in the actual positions of cerebral cortex and the establishment of edges depends on the spatial path length rather than the linear distance.The resulting network exhibits the essential features of cortical connectivity,properties of small-world networks and multiple clusters structure.Additionally.assortative mixing is also found in this roodel.All of these findings may be attributed to the spedtic cortical architecture.

  19. Consistent Reconstruction of Cortical Surfaces from Longitudinal Brain MR Images

    Li, Gang; Nie, Jingxin; Shen, Dinggang


    Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR images is of great importance in studying subtle morphological changes of the cerebral cortex. This paper presents a new deformable surface method for consistent and accurate reconstruction of inner, central and outer cortical surfaces from longitudinal MR images. Specifically, the cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject are first reconstructed ...

  20. The distribution of radioactivity in brains of rats given (N-methyl- sup 11 C)PK 11195 in vivo after induction of a cortical ischaemic lesion

    Cremer, J.E.; Hume, S.P.; Cullen, B.M.; Myers, R.; Manjil, L.G.; Turton, D.R.; Luthra, S.K.; Bateman, D.M.; Pike, V.W. (Hammersmith Hospital, London (United Kingdom). M.R.C. Cyclotron Unit)


    PK 11195 is a selective ligand for the peripheral-type benzodiazepine bindings site (PTBBS). There are few sites in normal brain but their number increases in association with tissue necrosis. The time-course of appearance of PTBBS around a focally induced ischaemic lesion in frontal cortex of rat brain was established by autoradiography using (N-methyl-{sup 3} H )PK 11195. Using this information and the same experimental model of ischaemia, the distribution of radioactivity after injection of carbon-11 labelled PK 11195 was studied. The purpose was to synthesize (N-methyl-{sup 11}C)PK 11195 and to test its suitability as a tracer for depicting the presence of PTBB in ischaemic lesions. The time-profiles of distribution of radioactivity in brain regions after intravenous injection of tracer and the ratio of radioactivity in lesioned compared with unlesioned cortex were determined. Data for the temporal (days after lesion induction) and for the regional retention of radioactivity were consistent with independent evidence (autoradiographic and immunohistochemical) for the occurence of increased numbers of PTBBS, predominantly in association with macrophages, in areas undergoing necrosis. (Author).

  1. Age at developmental cortical injury differentially Alters corpus callosum volume in the rat

    Rosen Glenn D


    Full Text Available Abstract Background Freezing lesions to developing rat cortex induced between postnatal day (P one and three (P1 – 3 lead to malformations similar to human microgyria, and further correspond to reductions in brain weight and cortical volume. In contrast, comparable lesions on P5 do not produce microgyric malformations, nor the changes in brain weight seen with microgyria. However, injury occurring at all three ages does lead to rapid auditory processing deficits as measured in the juvenile period. Interestingly, these deficits persist into adulthood only in the P1 lesion case 1. Given prior evidence that early focal cortical lesions induce abnormalities in cortical morphology and connectivity 1234, we hypothesized that the differential behavioral effects of focal cortical lesions on P1, P3 or P5 may be associated with underlying neuroanatomical changes that are sensitive to timing of injury. Clinical studies indicate that humans with perinatal brain injury often show regional reductions in corpus callosum size and abnormal symmetry, which frequently correspond to learning impairments 567. Therefore, in the current study the brains of P1, 3 or 5 lesion rats, previously evaluated for brain weight, and cortical volume changes and auditory processing impairments (P21-90, were further analyzed for changes in corpus callosum volume. Results Results showed a significant main effect of Treatment on corpus callosum volume [F (1,57 = 10.2, P Conclusion Decrements in corpus callosum volume in the P1 and 3 lesion groups are consistent with the reductions in brain weight and cortical volume previously reported for microgyric rats 18. Current results suggest that disruption to the cortical plate during early postnatal development may lead to more widely dispersed neurovolumetric anomalies and subsequent behavioral impairments 1, compared with injury that occurs later in development. Further, these results suggest that in a human clinical setting decreased

  2. Acetaminophen induces apoptosis in rat cortical neurons.

    Inmaculada Posadas

    Full Text Available BACKGROUND: Acetaminophen (AAP is widely prescribed for treatment of mild pain and fever in western countries. It is generally considered a safe drug and the most frequently reported adverse effect associated with acetaminophen is hepatotoxicity, which generally occurs after acute overdose. During AAP overdose, encephalopathy might develop and contribute to morbidity and mortality. Our hypothesis is that AAP causes direct neuronal toxicity contributing to the general AAP toxicity syndrome. METHODOLOGY/PRINCIPAL FINDINGS: We report that AAP causes direct toxicity on rat cortical neurons both in vitro and in vivo as measured by LDH release. We have found that AAP causes concentration-dependent neuronal death in vitro at concentrations (1 and 2 mM that are reached in human plasma during AAP overdose, and that are also reached in the cerebrospinal fluid of rats for 3 hours following i.p injection of AAP doses (250 and 500 mg/kg that are below those required to induce acute hepatic failure in rats. AAP also increases both neuronal cytochrome P450 isoform CYP2E1 enzymatic activity and protein levels as determined by Western blot, leading to neuronal death through mitochondrial-mediated mechanisms that involve cytochrome c release and caspase 3 activation. In addition, in vivo experiments show that i.p. AAP (250 and 500 mg/kg injection induces neuronal death in the rat cortex as measured by TUNEL, validating the in vitro data. CONCLUSIONS/SIGNIFICANCE: The data presented here establish, for the first time, a direct neurotoxic action by AAP both in vivo and in vitro in rats at doses below those required to produce hepatotoxicity and suggest that this neurotoxicity might be involved in the general toxic syndrome observed during patient APP overdose and, possibly, also when AAP doses in the upper dosing schedule are used, especially if other risk factors (moderate drinking, fasting, nutritional impairment are present.

  3. Distribution of Alox15 in the Rat Brain and Its Role in Prefrontal Cortical Resolvin D1 Formation and Spatial Working Memory.

    Shalini, Suku-Maran; Ho, Christabel Fung-Yih; Ng, Yee-Kong; Tong, Jie-Xin; Ong, Eng-Shi; Herr, Deron R; Dawe, Gavin S; Ong, Wei-Yi


    Docosahexaenoic acid (DHA) is enriched in membrane phospholipids of the central nervous system (CNS) and has a role in aging and neuropsychiatric disorders. DHA is metabolized by the enzyme Alox15 to 17S-hydroxy-DHA, which is then converted to 7S-hydroperoxy,17S-hydroxy-DHA by a 5-lipoxygenase, and thence via epoxy intermediates to the anti-inflammatory molecule, resolvin D1 (RvD1 or 7S,8R,17S-trihydroxy-docosa-Z,9E,11E,13Z,15E,19Z-hexaenoic acid). In this study, we investigated the distribution and function of Alox15 in the CNS. RT-PCR of the CNS showed that the prefrontal cortex exhibits the highest Alox15 mRNA expression level, followed by the parietal association cortex and secondary auditory cortex, olfactory bulb, motor and somatosensory cortices, and the hippocampus. Western blot analysis was consistent with RT-PCR data, in that the prefrontal cortex, cerebral cortex, hippocampus, and olfactory bulb had high Alox15 protein expression. Immunohistochemistry showed moderate staining in the olfactory bulb, cerebral cortex, septum, striatum, cerebellar cortex, cochlear nuclei, spinal trigeminal nucleus, and dorsal horn of the spinal cord. Immuno-electron microscopy showed localization of Alox15 in dendrites, in the prefrontal cortex. Liquid chromatography mass spectrometry analysis showed significant decrease in resolvin D1 levels in the prefrontal cortex after inhibition or antisense knockdown of Alox15. Alox15 inhibition or antisense knockdown in the prefrontal cortex also blocked long-term potentiation of the hippocampo-prefrontal cortex pathway and increased errors in alternation, in the T-maze test. They indicate that Alox15 processing of DHA contributes to production of resolvin D1 and LTP at hippocampo-prefrontal cortical synapses and associated spatial working memory performance. Together, results provide evidence for a key role of anti-inflammatory molecules generated by Alox15 and DHA, such as resolvin D1, in memory. They suggest that neuroinflammatory

  4. Monitoring Stroke Progression: In Vivo Imaging of Cortical Perfusion, Blood—Brain Barrier Permeability and Cellular Damage in the Rat Photothrombosis Model

    Schoknecht, Karl; Prager, Ofer; Vazana, Udi; Kamintsky, Lyn; Harhausen, Denise; Zille, Marietta; Figge, Lena; Chassidim, Yoash; Schellenberger, Eyk; Kovács, Richard; Heinemann, Uwe; Friedman, Alon


    .... Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis...

  5. Effects of acupuncture on cortical expression of Wnt3a, β-catenin and Sox2 in a rat model of traumatic brain injury.

    Zhang, Yi-min; Dai, Qiu-fu; Chen, Wei-hao; Jiang, Shu-ting; Chen, Sheng-xin; Zhang, Yu-juan; Tang, Chun-zhi; Cheng, Shao-bing


    To observe the effects of acupuncture treatment on the expression of Wnt/β-catenin signalling pathway-related genes (Wnt3a, β-catenin and Sox2) in the injured cerebral cortex of rats with traumatic brain injury (TBI). A controlled impact model of TBI was established using Feeney's free-drop method. Seventy-eight Sprague-Dawley rats were randomly divided into the following three groups: a normal group (n=18) that was left untreated; a model group (n=30) that received no treatment after TBI; and an acupuncture group (n=30) that received acupuncture (at LI4, GV20, GV26 and GV16) after TBI. Rats in each group were randomly and equally divided into 3-day, 7-day and 14-day subgroups according to the duration of therapy. Real-time fluorescence quantitative PCR (RT-qPCR) was used to measure mRNA expression of Wnt3a, β-catenin and Sox2. Western blots were performed to determine the expression levels of WNT3a, β-Catenin and SOX2. Wnt3a mRNA was upregulated in the 7-day and 14-day acupuncture subgroups compared with the corresponding model subgroups (pacupuncture subgroups compared with the corresponding model subgroups (pacupuncture subgroups, Sox2 expression was significantly higher than that in the normal and model groups (pAcupuncture exerts a regulatory effect on the Wnt/β-catenin signalling pathway, which may in turn influence the proliferation and differentiation of endogenous neural stem cells. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  6. Osteocyte lacunar properties in rat cortical bone

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann


    to osteocyte function, osteocyte lacunar properties such as volume, shape, orientation, and density are now frequently reported in studies investigating osteocyte activity. Despite this increasing interest in lacunar morphometrics, many studies show a large spread in such values, suggesting a large inter......-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...... radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values...

  7. Differential cortical neurotrophin and cytogenetic adaptation after voluntary exercise in normal and amnestic rats.

    Hall, J M; Vetreno, R P; Savage, L M


    Voluntary exercise (VEx) has profound effects on neural and behavioral plasticity, including recovery of CNS trauma and disease. However, the unique regional cortical adaption to VEx has not been elucidated. In a series of experiments, we first examined whether VEx would restore and retain neurotrophin levels in several cortical regions (frontal cortex [FC], retrosplenial cortex [RSC], occipital cortex [OC]) in an animal model (pyrithiamine-induced thiamine deficiency [PTD]) of the amnestic disorder Wernicke-Korsakoff syndrome. In addition, we assessed the time-dependent effect of VEx to rescue performance on a spontaneous alternation task. Following 2-weeks of VEx or stationary housing conditions (Stat), rats were behaviorally tested and brains were harvested either the day after VEx (24-h) or after an additional 2-week period (2-wk). In both control pair-fed (PF) rats and PTD rats, all neurotrophin levels (brain-derived neurotrophic factor [BDNF], nerve growth factor [NGF], and vascular endothelial growth factor) increased at the 24-h period after VEx in the FC and RSC, but not OC. Two-weeks following VEx, BDNF remained elevated in both FC and RSC, whereas NGF remained elevated in only the FC. Interestingly, VEx only recovered cognitive performance in amnestic rats when there was an additional 2-wk adaptation period after VEx. Given this unique temporal profile, Experiment 2 examined the cortical cytogenetic responses in all three cortical regions following a 2-wk adaptation period after VEx. In healthy (PF) rats, VEx increased the survival of progenitor cells in both the FC and RSC, but only increased oligodendrocyte precursor cells (OLPs) in the FC. Furthermore, VEx had a selective effect of only recovering OLPs in the FC in PTD rats. These data reveal the therapeutic potential of exercise to restore cortical plasticity in the amnestic brain, and that the FC is one of the most responsive cortical regions to VEx.

  8. Decoding Brain States Based on Magnetoencephalography From Prespecified Cortical Regions.

    Zhang, Jinyin; Li, Xin; Foldes, Stephen T; Wang, Wei; Collinger, Jennifer L; Weber, Douglas J; Bagić, Anto


    Brain state decoding based on whole-head MEG has been extensively studied over the past decade. Recent MEG applications pose an emerging need of decoding brain states based on MEG signals originating from prespecified cortical regions. Toward this goal, we propose a novel region-of-interest-constrained discriminant analysis algorithm (RDA) in this paper. RDA integrates linear classification and beamspace transformation into a unified framework by formulating a constrained optimization problem. Our experimental results based on human subjects demonstrate that RDA can efficiently extract the discriminant pattern from prespecified cortical regions to accurately distinguish different brain states.

  9. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro


    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action.

  10. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes.

    Vaz, Sandra H; Jørgensen, Trine N; Cristóvão-Ferreira, Sofia; Duflot, Sylvie; Ribeiro, Joaquim A; Gether, Ulrik; Sebastião, Ana M


    The γ-aminobutyric acid (GABA) transporters (GATs) are located in the plasma membrane of neurons and astrocytes and are responsible for termination of GABAergic transmission. It has previously been shown that brain derived neurotrophic factor (BDNF) modulates GAT-1-mediated GABA transport in nerve terminals and neuronal cultures. We now report that BDNF enhances GAT-1-mediated GABA transport in cultured astrocytes, an effect mostly due to an increase in the V(max) kinetic constant. This action involves the truncated form of the TrkB receptor (TrkB-t) coupled to a non-classic PLC-γ/PKC-δ and ERK/MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope was incorporated into the second extracellular loop. An increase in plasma membrane of HA-rGAT-1 as well as of rGAT-1 was observed when both HA-GAT-1-transduced astrocytes and rGAT-1-overexpressing astrocytes were treated with BDNF. The effect of BDNF results from inhibition of dynamin/clathrin-dependent constitutive internalization of GAT-1 rather than from facilitation of the monensin-sensitive recycling of GAT-1 molecules back to the plasma membrane. We therefore conclude that BDNF enhances the time span of GAT-1 molecules at the plasma membrane of astrocytes. BDNF may thus play an active role in the clearance of GABA from synaptic and extrasynaptic sites and in this way influence neuronal excitability.

  11. Enrichment and training improve cognition in rats with cortical malformations.

    Kyle R Jenks

    Full Text Available Children with malformations of cortical development (MCD frequently have associated cognitive impairments which reduce quality of life. We hypothesized that cognitive deficits associated with MCD can be improved with environmental manipulation or additional training. The E17 methylazoxymethanol acetate (MAM exposure model bears many anatomical hallmarks seen in human MCDs as well as similar behavioral and cognitive deficits. We divided control and MAM exposed Sprague-Dawley rats into enriched and non-enriched groups and tested performance in the Morris water maze. Another group similarly divided underwent sociability testing and also underwent Magnetic Resonance Imaging (MRI scans pre and post enrichment. A third group of control and MAM rats without enrichment were trained until they reached criterion on the place avoidance task. MAM rats had impaired performance on spatial tasks and enrichment improved performance of both control and MAM animals. Although MAM rats did not have a deficit in sociability they showed similar improvement with enrichment as controls. MRI revealed a whole brain volume decrease with MAM exposure, and an increase in both MAM and control enriched volumes in comparison to non-enriched animals. In the place avoidance task, MAM rats required approximately 3 times as long to reach criterion as control animals, but with additional training were able to reach control performance. Environmental manipulation and additional training can improve cognition in a rodent MCD model. We therefore suggest that patients with MCD may benefit from appropriate alterations in educational strategies, social interaction and environment. These factors should be considered in therapeutic strategies.

  12. Temporal lobe cortical thickness correlations differentiate the migraine brain from the healthy brain.

    Todd J Schwedt

    Full Text Available Interregional cortical thickness correlations reflect underlying brain structural connectivity and functional connectivity. A few prior studies have shown that migraine is associated with atypical cortical brain structure and atypical functional connectivity amongst cortical regions that participate in sensory processing. However, the specific brain regions that most accurately differentiate the migraine brain from the healthy brain have yet to be determined. The aim of this study was to identify the brain regions that comprised interregional cortical thickness correlations that most differed between migraineurs and healthy controls.This was a cross-sectional brain magnetic resonance imaging (MRI investigation of 64 adults with migraine and 39 healthy control subjects recruited from tertiary-care medical centers and their surrounding communities. All subjects underwent structural brain MRI imaging on a 3T scanner. Cortical thickness was determined for 70 brain regions that cover the cerebral cortex and cortical thickness correlations amongst these regions were calculated. Cortical thickness correlations that best differentiated groups of six migraineurs from controls and vice versa were identified.A model containing 15 interregional cortical thickness correlations differentiated groups of migraineurs from healthy controls with high accuracy. The right temporal pole was involved in 13 of the 15 interregional correlations while the right middle temporal cortex was involved in the other two.A model consisting of 15 interregional cortical thickness correlations accurately differentiates the brains of small groups of migraineurs from those of healthy controls. Correlations with the right temporal pole were highly represented in this classifier, suggesting that this region plays an important role in migraine pathophysiology.

  13. 大鼠液压脑损伤后皮层微血管改变与脑水肿的关系%Association of the changes of cortical capillaries with brain edema after lateral fluid percussion brain injury in adult rat

    马迎辉; 刘绍明; 邢国祥


    目的 探讨大鼠液压脑损伤后皮层微血管损伤情况及其与伤后脑水肿的关系.方法 成年SD大鼠30只,随机分为正常组(n=6)、假手术组(n=6)、损伤组(n=18),其中损伤组分为伤后6h、24 h、72 h三亚组,每亚组6只.利用液压冲击法建立大鼠颅脑损伤模型,显微镜下观察直接损伤侧和非直接损伤侧皮层微血管损伤情况,CD34标记血管内皮细胞评价血管密度改变,干湿重法检测脑组织含水量的变化.结果 大鼠皮层微血管损伤后6h可见血管支行迂曲、扩张、充血,伤后24 h可见少量血栓形成,损伤后72 h可见有较多血栓形成.损伤组CD34阳性细胞数明显低于假手术组和对照组(P<0.05),而脑组织含水量明显高于假手术组和对照组(P<0.05),而后两组无统计学差异(P>0.05).损伤组直接损伤侧皮层微血管损伤较非直接损伤组严重,而且伤后24h较伤后6、72 h严重.结论 颅脑损伤后脑微血管损伤为全脑性血管损伤,这可能是伤后脑水肿形成的机制之一.%Objective To investigate the changes of the cortical capillaries and brain edema after lateral fluid percussion brain injury in adult rat and their relationship.Methods Thirty adult Sprague-Dawley rats were randomly divided into three groups,i.e.,normal group (n=6),sham-operated group (n=6) and injured group (n=18).The rat model was made by lateral fluid percussion brain injury with an impact of 2.3 kPa.The rats in injured group were killed 6,24 and 72 hours after injury with six rats in each time point.The pathological changes of cerebral tissues were detected by HE staining.The changes of cortical capillaries were evaluated by counting the number of CD34 marked vascular endothelial cells.The brain water content was calculated by wet and dry method.Results The HE staining showed that many cortical capillaries with no congestion and endothelial cells with normal shape could be seen in normal group and sham-operated group

  14. Heterotopic neurogenesis in a rat with cortical heterotopia.

    Lee, K S; Collins, J L; Anzivino, M J; Frankel, E A; Schottler, F


    Early cellular development was studied in the neocortex of the tish rat. This neurological mutant is seizure-prone and displays cortical heterotopia similar to those observed in certain epileptic patients. The present study demonstrates that a single cortical preplate is formed in a typical superficial position of the developing tish neocortex. In contrast, two cortical plates are formed: one in a normotopic position and a second in a heterotopic position in the intermediate zone. As the normotopic cortical plate is formed, it characteristically separates the subplate cells from the superficial Cajal-Retzius cells. In contrast, the heterotopic cortical plate is not intercalated between the preplate cells because of its deeper position in the developing cortex. Cellular proliferation occurs in two zones of the developing tish cortex. One proliferative zone is located in a typical position in the ventricular/subventricular zone. A second proliferative zone is located in a heterotopic position in the superficial intermediate zone, i.e., between the two cortical plates. This misplaced proliferative zone may contribute cells to both the normotopic and heterotopic cortical plates. Taken together, these findings indicate that misplaced cortical plate cells, but not preplate cells, comprise the heterotopia of the tish cortex. Heterotopic neurogenesis is an early developmental event that is initiated before the migration of most cortical plate cells. It is concluded that misplaced cellular proliferation, in addition to disturbed neuronal migration, can play a key role in the formation of large cortical heterotopia.

  15. Cortical laminar necrosis in brain infarcts: serial MRI

    Siskas, N.; Lefkopoulos, A.; Ioannidis, I.; Charitandi, A.; Dimitriadis, A.S. [Radiology Department, AHEPA University Hospital, Aristotele University of Thessaloniki (Greece)


    High-signal cortical lesions are observed on T1-weighted images in cases of brain infarct. Histological examination has demonstrated these to be ''cortical laminar necrosis'', without haemorrhage or calcification. We report serial MRI in this condition in 12 patients with brain infarcts. We looked at high-signal lesions on T1-weighted images, chronological changes in signal intensity and contrast enhancement. High-signal cortical lesions began to appear about 2 weeks after the ictus, were prominent at 1 - 2 months, then became less evident, but occasionally remained for up to 1.5 years. They gave high signal or were isointense on T2-weighted images and did not give low signal at any stage. Contrast enhancement of these lesions was prominent at 1 - 2 months, and less apparent from 3 months, but was seen up to 5 months. (orig.)

  16. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia.

    Francesca Colciaghi

    Full Text Available Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.

  17. Cortical spreading depression-induced preconditioning in the brain

    Ping-ping Shen; Shuai Hou; Di Ma; Ming-ming Zhao; Ming-qin Zhu; Jing-dian Zhang; Liang-shu Feng; Li Cui; Jia-chun Feng


    Cortical spreading depression is a technique used to depolarize neurons. During focal or global ischemia, cortical spreading depression-induced preconditioning can enhance tolerance of further injury. Howev-er, the underlying mechanism for this phenomenon remains relatively unclear. To date, numerous issues exist regarding the experimental model used to precondition the brain with cortical spreading depression, such as the administration route, concentration of potassium chloride, induction time, duration of the protection provided by the treatment, the regional distribution of the protective effect, and the types of neurons responsible for the greater tolerance. In this review, we focus on the mechanisms underlying cor-tical spreading depression-induced tolerance in the brain, considering excitatory neurotransmission and metabolism, nitric oxide, genomic reprogramming, inlfammation, neurotropic factors, and cellular stress response. Speciifcally, we clarify the procedures and detailed information regarding cortical spreading de-pression-induced preconditioning and build a foundation for more comprehensive investigations in the ifeld of neural regeneration and clinical application in the future.

  18. Distinct Genetic Influences on Cortical and Subcortical Brain Structures

    Wen, Wei; Thalamuthu, Anbupalam; Mather, Karen A.; Zhu, Wanlin; Jiang, Jiyang; de Micheaux, Pierre Lafaye; Wright, Margaret J.; Ames, David; Sachdev, Perminder S.


    This study examined the heritability of brain grey matter structures in a subsample of older adult twins (93 MZ and 68 DZ twin pairs; mean age 70 years) from the Older Australian Twins Study. The heritability estimates of subcortical regions ranged from 0.41 (amygdala) to 0.73 (hippocampus), and of cortical regions, from 0.55 (parietal lobe) to 0.78 (frontal lobe). Corresponding structures in the two hemispheres were influenced by the same genetic factors and high genetic correlations were observed between the two hemispheric regions. There were three genetically correlated clusters, comprising (i) the cortical lobes (frontal, temporal, parietal and occipital lobes); (ii) the basal ganglia (caudate, putamen and pallidum) with weak genetic correlations with cortical lobes, and (iii) the amygdala, hippocampus, thalamus and nucleus accumbens grouped together, which genetically correlated with both basal ganglia and cortical lobes, albeit relatively weakly. Our study demonstrates a complex but patterned and clustered genetic architecture of the human brain, with divergent genetic determinants of cortical and subcortical structures, in particular the basal ganglia.

  19. Effects of ketamine,midazolam,thiopental,and propofol on brain ischemia injury in rat cerebral cortical slices%氯胺酮,咪唑安定,硫喷妥钠和异丙酚对大鼠皮层脑片缺血性损伤的作用

    薛庆生; 于布为; 王泽剑; 陈红专


    AIM: To compare the effects of ketamine, midazolam, thiopental, and propofol on brain ischemia by the model of oxygen-glucose deprivation (OGD) in rat cerebral cortical slices. METHODS: Cerebral cortical slices were incubated in 2 % 2,3,5-triphenyltetrazolium chloride (TTC) solution after OGD, the damages and effects of ketamine,midazolam, thiopental, and propofol were quantitativlye evaluated by ELISA reader of absorbance (A) at 490 nm,which indicated the red formazan extracted from slices, lactic dehydrogenase (LDH) releases in the incubated supernate were also measured. RESULTS: Progressive prolongation of OGD resulted in decreases of TTC staining.The percentage of tissue injury had a positive correlation with LDH releases, r=0.9609, P<0.01. Two hours of reincubation aggravated the decrease of TTC staining compared with those slices stained immediately after OGD (P<0.01). These four anesthetics had no effects on the TTC staining of slices. Ketamine completely inhibited the decrease of A value induced by 10 min of OGD injury. High concentrations of midazolam (10 μmol/L) and thiopental (400 μmol/L)partly attenuated this decrease. Propofol at high concentration (100 μmol/L) enhanced the decrease of A value induced by 10 min of OGD injury (P<0.01). CONCLUSION: Ketamine, high concentration of midazolam and thiopental have neuroprotective effects against OGD injury in rat cerebral cortical slices, while high concentration of propofol augments OGD injury in rat cerebral cortical slices.

  20. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes

    Vaz, Sandra H; Jørgensen, Trine Nygaard; Cristóvão-Ferreira, Sofia


    /MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope...

  1. Studies of aluminum in rat brain

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.


    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  2. The Cytokine Temporal Profile in Rat Cortex after Controlled Cortical Impact

    Clifton L Dalgard


    Full Text Available Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury. Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12 and 24 hours and extended (3, and 7 days timepoints post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemilumenscence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFNγ, IL4, and IL5 reached peak concentrations 4 hours post-injury and immediately returned to levels not different from control tissue. The levels of IL1b, IL13, and TNFa were also highest at 4 hours post-injury although their expression remained significantly above levels in uninjured tissue at extended time points. Additionally, IL1b and IL13 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in an anti-inflammatory process. Interestingly, CCL2 and CCL20 did not reach peak levels until 1 day post-injury. Peak CCL2 levels were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may provide increased insight into a number of secondary cascade events that are initiated or regulated by inflammatory responses.

  3. Cortical thickness and brain volumetric analysis in body dysmorphic disorder.

    Madsen, Sarah K; Zai, Alex; Pirnia, Tara; Arienzo, Donatello; Zhan, Liang; Moody, Teena D; Thompson, Paul M; Feusner, Jamie D


    Individuals with body dysmorphic disorder (BDD) suffer from preoccupations with perceived defects in physical appearance, causing severe distress and disability. Although BDD affects 1-2% of the population, the neurobiology is not understood. Discrepant results in previous volumetric studies may be due to small sample sizes, and no study has investigated cortical thickness in BDD. The current study is the largest neuroimaging analysis of BDD. Participants included 49 medication-free, right-handed individuals with DSM-IV BDD and 44 healthy controls matched by age, sex, and education. Using high-resolution T1-weighted magnetic resonance imaging, we computed vertex-wise gray matter (GM) thickness on the cortical surface and GM volume using voxel-based morphometry. We also computed volumes in cortical and subcortical regions of interest. In addition to group comparisons, we investigated associations with symptom severity, insight, and anxiety within the BDD group. In BDD, greater anxiety was significantly associated with thinner GM in the left superior temporal cortex and greater GM volume in the right caudate nucleus. There were no significant differences in cortical thickness, GM volume, or volumes in regions of interest between BDD and control subjects. Subtle associations with clinical symptoms may characterize brain morphometric patterns in BDD, rather than large group differences in brain structure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of cerebral lymphatic block on cerebral morphology and cortical evoked potential in rats

    Zuoli Xia; Baoling Sun; Mingfeng Yang; Dongmei Hu; Tong Zhao; Jingzhong Niu


    BACKGROUND: It has been shown that although brain does not contain lining endothelial lymphatic vessel,it has lymphatic drain.Anterior lymphatic vessel in brain tissue plays a key role in introducing brain interstitial fluid to lymphatic system;however,the significance of lymphatic drain and the affect on cerebral edema remains unclear.OBJECTIVE: To investigate the effect of cerebral lymphatic block on cerebral morphology and cortical evoked potential in rats.DESIGN: Randomized controlled animal study.SETTING: Institute of Cerebral Microcirulation of Taishan Medical College and Department of Neurology of Affiliated Hospital.MATERIALS:A total of 63 healthy adult male Wistar rats weighing 300-350 g were selected in this study.Forty-seven rats were used for the morphological observation induced by lymphatic drain and randomly divided into three groups:general observation group(n=12),light microscopic observation group(n=21)and electronic microscopic observation group(n=14).The rats in each group were divided into cerebral lymphatic block subgroup and sham-operation control subgroup.Sixteen rats were divided into cerebral the effect of cerebral lymphatic block on cortical evoked potential,in which the animals were randomly divided into sham-operation group(n=6)and cerebral lymphatic block group(n=10).METHODS:The experiment was carried out in the Institute of Cerebral Microcirculation of Taishan Medical College from January to August 2003.Rats in cerebral lymphatic block group were anesthetized and separated bilateral superficial and deep cervical lymph nodes under sterile condition. Superior and inferior boarders of lymph nodes were ligated the inputting and outputting channels, respectively, and then lymph node was removed so as to establish cerebral lymphatic drain disorder models. Rats in sham-operation control group were not ligated the lymphatic vessel and removed lymph nodes.and other operations were as the same as those in cerebral lymphatic block group

  5. Ibuprofen augments bilirubin toxicity in rat cortical neuronal culture.

    Berns, Monika; Toennessen, Margit; Koehne, Petra; Altmann, Rodica; Obladen, Michael


    Premature infants are at risk for bilirubin-associated brain damage. In cell cultures bilirubin causes neuronal apoptosis and necrosis. Ibuprofen is used to close the ductus arteriosus, and is often given when hyperbilirubinemia is at its maximum. Ibuprofen is known to interfere with bilirubin-albumin binding. We hypothesized that bilirubin toxicity to cultured rat embryonic cortical neurons is augmented by coincubation with ibuprofen. Incubation with ibuprofen above a concentration of 125 microg/mL reduced cell viability, measured by methylthiazole tetrazolium reduction, to 68% of controls (p < 0.05). Lactate dehydrogenase (LDH) release increased from 29 to 38% (p < 0.01). The vehicle solution did not affect cell viability. Coincubation with 10 microM unconjugated bilirubin (UCB)/human serum albumin in a molar ratio of 3:1 and 250 microg/mL ibuprofen caused additional loss of cell viability and increased LDH release (p < 0.01), DNA fragmentation, and activated caspase-3. Preincubation with the pan-caspase inhibitor z-val-ala-asp-fluoromethyl ketone abolished ibuprofen- and UCB-induced DNA fragmentation. The study demonstrates that bilirubin in low concentration of 10 microM reduces neuron viability and ibuprofen increases this effect. Apoptosis is the underlying cell death mechanism.

  6. Morphology and ontogeny of rat perirhinal cortical neurons.

    Furtak, Sharon Christine; Moyer, James Russell; Brown, Thomas Huntington


    Golgi-impregnated neurons from rat perirhinal cortex (PR) were classified into one of 15 distinct morphological categories (N = 6,891). The frequency of neurons in each cell class was determined as a function of the layer of PR and the age of the animal, which ranged from postnatal day 0 (P0) to young adulthood (P45). The developmental appearance of Golgi-impregnated neurons conformed to the expected "inside-out" pattern of development, meaning that cells populated in deep before superficial layers of PR. The relative frequencies of different cell types changed during the first 2 weeks of postnatal development. The largest cells, which were pyramidal and spiny multipolar neurons, appeared earliest. Aspiny stellate neurons were the last to appear. The total number of Golgi-impregnated neurons peaked at P10-12, corresponding to the time of eye-opening. This early increase in the number of impregnated neurons parallels observations in other cortical areas. The relative frequency of the 15 cell types remained constant between P14 to P45. The proportion of pyramidal neurons in PR ( approximately 50%) was much smaller than is typical of neocortex ( approximately 70%). A correspondingly larger proportion of PR neurons were nonpyramidal cells that are less common in neocortex. The relative frequency distribution of cell types creates an overall impression of considerable morphological diversity, which is arguably related to the particular manner in which this periallocortical brain region processes and stores information.

  7. Cortical hypoexcitation defines neuronal responses in the immediate aftermath of traumatic brain injury.

    Victoria Philippa Anne Johnstone

    Full Text Available Traumatic brain injury (TBI from a blow to the head is often associated with complex patterns of brain abnormalities that accompany deficits in cognitive and motor function. Previously we reported that a long-term consequence of TBI, induced with a closed-head injury method modelling human car and sporting accidents, is neuronal hyper-excitation in the rat sensory barrel cortex that receives tactile input from the face whiskers. Hyper-excitation occurred only in supra-granular layers and was stronger to complex than simple stimuli. We now examine changes in the immediate aftermath of TBI induced with same injury method. At 24 hours post-trauma significant sensorimotor deficits were observed and characterisation of the cortical population neuronal responses at that time revealed a depth-dependent suppression of neuronal responses, with reduced responses from supragranular layers through to input layer IV, but not in infragranular layers. In addition, increased spontaneous firing rate was recorded in cortical layers IV and V. We postulate that this early post-injury suppression of cortical processing of sensory input accounts for immediate post-trauma sensory morbidity and sets into train events that resolve into long-term cortical hyper-excitability in upper sensory cortex layers that may account for long-term sensory hyper-sensitivity in humans with TBI.

  8. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury


    lesion vi- cinity, from approximately 3.7 mm anterior to the bregma to 3.2 mm posterior to the bregma, were then collected using a cryostat ( Paxinos and...mice. J. Neurotrauma 25, 153–171. Paxinos , G., and Watson, C. (2007). The Rat Brain in Stereotaxic Coordinates, 6th ed. Academic Press: New York

  9. Ultrastructure of focal cerebral cortex tissue from rats with focal cortical dysplasia


    BACKGROUND:Developing a model of focal cortical dysplasia in microgyrus and observing the ultrastructure of focal tissue is of important significance for analyzing the pathology of cortical developmental disorder and the factors of structural changes. OBJECTIVE:This study was to observe the pathological characteristics of focal tissue around the microgyrus of rats with cortical developmental disorder using an electron microscope,so as to analyze the causes associated with cerebral cortical developmental disorder. DESIGN:A randomized controlled animal experiment. SETTING:The First Affiliated Hospital of Chongqing Medical University. MATERIALS:This study was carried out in the Chongqing Key Laboratory of Neurology,Room for Electron Microscope of Chongqing Medical University,and Laboratory Animal Center,Research Institute of Surgery,Daping Hospital,Third Military Medical University of Chinese PLA between January 2004 and August 2006.Eighteen healthy newborn male Wistar rats,weighing 3.0 - 6.0 g,provided by the Laboratory Animal Center,Daping Hospital,Third Military Medical University of Chinese PLA,were involved in this study.The protocol was carried out in accordance with animal ethics guidelines for the use and care of animals.Probes (Chongqing Wire & Cable Factory,China) were made of copper core wire with diameter of 1 mm.METHODS:The rats were randomly divided into 3 groups with 6 in each:normal control group,liquid nitrogen injured group and sham-operation group.①In the liquid nitrogen injured group,a blunt probe frozen by liquid nitrogen was placed on fronto-parietal crinial bone of rats for 8 s.A 3 - 5 cm of microgyrus was induced in the unilateral cerebral sensory cortical area.In the sham-operation group,probe was placed at the room temperature.In the normal control group,rats were untouched.② The conscious state and electrical activity of brain of rats in each group were observed.③ 2-3 mm thickness of hippocampal tissue with coronary section was taken

  10. Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal cerebral ischemia.

    Jacewicz, M; Brint, S; Tanabe, J; Pulsinelli, W A


    Focal cerebral infarction and edema were measured in rats (Wistar, Fisher 344, and spontaneously hypertensive strains) pretreated with nimodipine (2 micrograms/kg/min i.v.) or its vehicle and subjected to the tandem occlusion of the middle cerebral and common carotid arteries. Animals awoke from anesthesia 10-15 min after onset of ischemia and continued to receive treatment over a 24-h survival period. Cortical infarction and edema were quantified by image analysis of frozen brain sections processed for histology. Nimodipine-treated rats developed 20-60% smaller cortical infarct volumes than controls (p less than 0.002). Cortical edema was reduced proportionately to the decrease in infarct volume and constituted approximately 36% of the infarct volume. Nimodipine caused a mild hypotensive response that did not aggravate ischemic brain damage. The results indicate that continuous nimodipine treatment, started before induction of focal cerebral ischemia, can attenuate ischemic brain damage and edema as late as 24 h after the onset of ischemia.

  11. Therapeutic potential of the novel hybrid molecule JM-20 against focal cortical ischemia in rats

    Yanier Núñez Figueredo


    Full Text Available Context: Despite the great mortality and morbidity of stroke, treatment options remain limited. We previously showed that JM-20, a novel synthetic molecule, possessed a strong neuroprotective effect in rats subjected to transient middle cerebral artery occlusion. However, to verify the robustness of the pre-clinical neuroprotective effects of JM-20 to get good prognosis in the translation to the clinic, it is necessary to use other experimental models of brain ischemia. Aims: To evaluate the neuroprotective effects of JM-20 following the onset of permanent focal cerebral ischemia induced in rats by thermocoagulation of blood into pial blood vessels of cerebral cortices. Methods: Ischemic lesion was induced by thermocoagulation of blood into pial blood vessels of primary motor and somatosensory cortices. Behavioral performance was evaluated by the cylinder testing for a period of 2, 3 and 7 days after surgery, and was followed by histopathological study in brain cortex stained with hematoxylin- eosin. Results: Ischemic injury resulted in impaired function of the forelimb evidenced by high asymmetry punctuation, and caused histopathological alterations indicative of tissue damage at cerebral cortex. JM-20 treatment (4 and 8 mg/kg significantly decreased asymmetry scores and histological alterations with a marked preservation of cortical neurons. Conclusions: The effects of permanent brain ischemia were strongly attenuated by JM-20 administration, which expands and improves the current preclinical data of JM-20 as neuroprotector against cerebral ischemia, and strongly support the examination of its translation to the clinic to treat acute ischemic stroke.

  12. 皮质发育不良大鼠差异蛋白的筛选及其致痫作用的探讨%Comparative proteomics of rat brain in the BCNU-induced model of cortical dysplasia

    郭谊; 张曼曼; 丁瑶; 杨怡; 蒋艳; 呼建文; 丁美萍


    Objective To screen the differential proteins in the brain (neocortex and hippocampus) between the rats with cortical dysplasia (CD) and control ones,and investigate the role of their alteration in the development of epilepsy in CD.Methods Cortical dysplasia was induced in rat pups via in utero delivery of BCNU.A two-dimensional electrophoresis (2-DE)-based approach was used to construct the expression profiles of proteins in both the neocortex and hippocampus at different age groups (postnatal day 7 and 60) and to detect proteome changes between CD rats and control ones.Following gel image analysis,protein spots that differed in abundance between CD and control rats were identified by using Matrx-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and MS/MS.Results A total of 57 kinds of protein were screened out (P < 0.05),in which 35 were found up-regulated and 22 were down-regulated compared with the control,35 from neonatal stage (postnatal day 7) and others from adult stage.Finally,12 among them were identified,including tubulin,alpha-lB,Beta-actin,tubulin beta-2A,GAP-43,UbCKmit,GAPDH and TMBr-3,etc.Conclusions Changed expression of specific proteins which were found in our study are involved in construction of brain 's cytoskeleton,synaptic function,mitochondrial function and so forth.Thus,they may be related to the pathogenic mechanisms of epileptogenicity of CD.%目的 寻找皮质发育不良大鼠脑组织(皮质和海马)与正常对照组织在不同发育阶段的差异表达蛋白质,探讨这些蛋白质在皮质发育不良所致癫痫发生机制中的作用.方法 妊娠晚期(孕17d)Sprague-Dawley大鼠腹腔注射卡莫司汀(15 mg/kg)诱导仔鼠皮质发育不良.提取新生期(出生后7d,记作P7)及成年仔鼠(p60)新皮质及海马组织蛋白,运用双向凝胶电泳技术构建卡莫司汀诱导皮质发育不良鼠和正常鼠皮质及海马组织在新生期及成年期的蛋白质表达谱,通过比对分析筛

  13. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Huang Yen


    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  14. Correlation between Cortical State and Locus Coeruleus Activity: Implications for Sensory Coding in Rat Barrel Cortex

    Zeinab eFazlali


    Full Text Available Cortical state modulates the background activity of cortical neurons, and their evoked response to sensory stimulation. Multiple mechanisms are involved in switching between cortical states including various neuromodulatory systems. Locus Coeruleus (LC is one of the major neuromodulatory nuclei in the brainstem with widespread projections throughout the brain and modulates the activity of cells and networks. Here, we quantified the link between the LC spontaneous activity, cortical state and sensory processing in the rat vibrissal somatosensory barrel cortex (BC. We simultaneously recorded unit activity from LC and BC along with prefrontal EEG while presenting brief whisker deflections under urethane anesthesia. The ratio of low to high frequency components of EEG (referred to as the L/H ratio was employed to identify cortical state. We found that the spontaneous activity of LC units exhibited a negative correlation with the L/H ratio. Cross-correlation analysis revealed that changes in LC firing preceded changes in the cortical state: the correlation of the LC firing profile with the L/H ratio was maximal at an average lag of -1.2 s. We further quantified BC neuronal responses to whisker stimulation during the synchronized and desynchronized states. In the desynchronized state, BC neurons showed lower stimulus detection threshold, higher response fidelity, and shorter response latency. The most prominent change was observed in the late phase of BC evoked activity (100-400 ms post stimulus onset: almost every BC unit exhibited a greater late response during the desynchronized state. Categorization of the BC evoked responses based on LC activity (into high and low LC discharge rates resulted in highly similar response profiles compared to categorization based on the cortical state (low and high L/H ratios. These findings provide evidence for the involvement of the LC neuromodulatory system in desynchronization of cortical state and the consequent

  15. Brain segmentation and the generation of cortical surfaces

    Joshi, M.; Cui, J.; Doolittle, K.; Joshi, S.; Van Essen, D.; Wang, L.; Miller, M. I.


    This paper describes methods for white matter segmentation in brain images and the generation of cortical surfaces from the segmentations. We have developed a system that allows a user to start with a brain volume, obtained by modalities such as MRI or cryosection, and constructs a complete digital representation of the cortical surface. The methodology consists of three basic components: local parametric modeling and Bayesian segmentation; surface generation and local quadratic coordinate fitting; and surface editing. Segmentations are computed by parametrically fitting known density functions to the histogram of the image using the expectation maximization algorithm [DLR77]. The parametric fits are obtained locally rather than globally over the whole volume to overcome local variations in gray levels. To represent the boundary of the gray and white matter we use triangulated meshes generated using isosurface generation algorithms [GH95]. A complete system of local parametric quadratic charts [JWM+95] is superimposed on the triangulated graph to facilitate smoothing and geodesic curve tracking. Algorithms for surface editing include extraction of the largest closed surface. Results for several macaque brains are presented comparing automated and hand surface generation. Copyright 1999 Academic Press.

  16. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury


    Task 1 (Electronics Testing/Microsystem Packaging) 1.1 Conduct in vivo experiments in brain-injured monkeys using a fully assembled microsystem...rodent studies in constructing the microsystem for non- human primate (squirrel monkey ) studies. This is because the capabilities of the rat ASIC (e.g...Aplysia californica (see Appendix II). In Year 4, the SAR algorithm was integrated on an ASIC that combined spike recording, electrical microstimulation

  17. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities.

    Farley, M M; Swulius, M T; Waxham, M N


    Electron tomography and immunogold labeling were used to analyze similarities and differences in the morphology and protein composition of postsynaptic densities (PSDs) isolated from adult rat cerebella, hippocampi, and cortices. There were similarities in physical dimensions and gross morphology between cortical, hippocampal and most cerebellar PSDs, although the morphology among cerebellar PSDs could be categorized into three distinct groups. The majority of cerebellar PSDs were composed of dense regions of protein, similar to cortical and hippocampal PSDs, while others were either composed of granular or lattice-like protein regions. Significant differences were found in protein composition and organization across PSDs from the different brain regions. The signaling protein, βCaMKII, was found to be a major component of each PSD type and was more abundant than αCaMKII in both hippocampal and cerebellar PSDs. The scaffold molecule PSD-95, a major component of cortical PSDs, was found absent in a fraction of cerebellar PSDs and when present was clustered in its distribution. In contrast, immunogold labeling for the proteasome was significantly more abundant in cerebellar and hippocampal PSDs than cortical PSDs. Together, these results indicate that PSDs exhibit remarkable diversity in their composition and morphology, presumably as a reflection of the unique functional demands placed on different synapses.

  18. Persistent spatial working memory deficits in rats with bilateral cortical microgyria

    Rosen Glenn D


    Full Text Available Abstract Background Anomalies of cortical neuronal migration (e.g., microgyria (MG and/or ectopias are associated with a variety of language and cognitive deficits in human populations. In rodents, postnatal focal freezing lesions lead to the formation of cortical microgyria similar to those seen in human dyslexic brains, and also cause subsequent deficits in rapid auditory processing similar to those reported in human language impaired populations. Thus convergent findings support the ongoing study of disruptions in neuronal migration in rats as a putative model to provide insight on human language disability. Since deficits in working memory using both verbal and non-verbal tasks also characterize dyslexic populations, the present study examined the effects of neonatally induced bilateral cortical microgyria (MG on working memory in adult male rats. Methods A delayed match-to-sample radial water maze task, in which the goal arm was altered among eight locations on a daily basis, was used to assess working memory performance in MG (n = 8 and sham (n = 10 littermates. Results Over a period of 60 sessions of testing (each session comprising one pre-delay sample trial, and one post-delay test trial, all rats showed learning as evidenced by a significant decrease in overall test errors. However, MG rats made significantly more errors than shams during initial testing, and this memory deficit was still evident after 60 days (12 weeks of testing. Analyses performed on daily error patterns showed that over the course of testing, MG rats utilized a strategy similar to shams (but with less effectiveness, as indicated by more errors. Conclusion These results indicate persistent abnormalities in the spatial working memory system in rats with induced disruptions of neocortical neuronal migration.

  19. Progesterone Treatment Shows Benefit in Female Rats in a Pediatric Model of Controlled Cortical Impact Injury.

    Rastafa I Geddes

    Full Text Available We recently showed that progesterone treatment can reduce lesion size and behavioral deficits after moderate-to-severe bilateral injury to the medial prefrontal cortex in immature male rats. Whether there are important sex differences in response to injury and progesterone treatment in very young subjects has not been given sufficient attention. Here we investigated progesterone's effects in the same model of brain injury but with pre-pubescent females.Twenty-eight-day-old female Sprague-Dawley rats received sham (n = 14 or controlled cortical impact (CCI (n = 21 injury, were given progesterone (8 mg/kg body weight or vehicle injections on post-injury days (PID 1-7, and underwent behavioral testing from PID 9-27. Brains were evaluated for lesion size at PID 28.Lesion size in vehicle-treated female rats with CCI injury was smaller than that previously reported for similarly treated age-matched male rats. Treatment with progesterone reduced the effect of CCI on extent of damage and behavioral deficits.Pre-pubescent female rats with midline CCI injury to the frontal cortex have reduced morphological and functional deficits following progesterone treatment. While gender differences in susceptibility to this injury were observed, progesterone treatment produced beneficial effects in young rats of both sexes following CCI.

  20. Postnatal development of aminopeptidase (arylamidase) activity in rat brain.

    de Gandarias, J M; Ramírez, M; Zulaica, J; Iribar, C; Casis, L


    Changes in the activities of Leu- and Arg-arylamidase in rat frontal and parietal cortices and the subcortical area (including thalamus, hypothalamus, and striatum) were examined in the 2nd, 4th, 8th, 12th, and 24th weeks of life. Average levels found in the subcortical region were greater than those in the cortical areas. The most marked changes in enzymatic activity in the course of brain development were found in the subcortical structure. Leu-arylamidase activity increased from the 2nd week up to the 8th week, returning to the 2nd week level at the 12th and 24th weeks. The maximum levels of Arg-arylamidase activity were found at the 4th and 8th weeks. These data suggest that proteolytic activity is involved in the postnatal development of rat brain.

  1. Bilaminar co-culture of primary rat cortical neurons and glia.

    Shimizu, Saori; Abt, Anna; Meucci, Olimpia


    This video will guide you through the process of culturing rat cortical neurons in the presence of a glial feeder layer, a system known as a bilaminar or co-culture model. This system is suitable for a variety of experimental needs requiring either a glass or plastic growth substrate and can also be used for culture of other types of neurons. Rat cortical neurons obtained from the late embryonic stage (E17) are plated on glass coverslips or tissue culture dishes facing a feeder layer of glia grown on dishes or plastic coverslips (known as Thermanox), respectively. The choice between the two configurations depends on the specific experimental technique used, which may require, or not, that neurons are grown on glass (e.g. calcium imaging versus Western blot). The glial feeder layer, an astroglia-enriched secondary culture of mixed glia, is separately prepared from the cortices of newborn rat pups (P2-4) prior to the neuronal dissection. A major advantage of this culture system as compared to a culture of neurons only is the support of neuronal growth, survival, and differentiation provided by trophic factors secreted from the glial feeder layer, which more accurately resembles the brain environment in vivo. Furthermore, the co-culture can be used to study neuronal-glial interactions(1). At the same time, glia contamination in the neuronal layer is prevented by different means (low density culture, addition of mitotic inhibitors, lack of serum and use of optimized culture medium) leading to a virtually pure neuronal layer, comparable to other established methods(1-3). Neurons can be easily separated from the glial layer at any time during culture and used for different experimental applications ranging from electrophysiology(4), cellular and molecular biology(5-8), biochemistry(5), imaging and microscopy(4,6,7,9,10). The primary neurons extend axons and dendrites to form functional synapses(11), a process which is not observed in neuronal cell lines, although some

  2. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Brishna Soraya Kamal


    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  3. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    Timo Ruusuvirta

    Full Text Available Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN of event-related potentials (ERPs reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant was interspersed with a repeated tone (standard. Two standard-to-standard (SSI and standard-to-deviant (SDI intervals (200 ms vs. 500 ms were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses. Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical manifestation of MMN.

  4. Modulation of sensitivity to alcohol by cortical and thalamic brain regions.

    Jaramillo, Anel A; Randall, Patrick A; Frisbee, Suzanne; Besheer, Joyce


    The nucleus accumbens core (AcbC) is a key brain region known to regulate the discriminative stimulus/interoceptive effects of alcohol. As such, the goal of the present work was to identify AcbC projection regions that may also modulate sensitivity to alcohol. Accordingly, AcbC afferent projections were identified in behaviorally naïve rats using a retrograde tracer which led to the focus on the medial prefrontal cortex (mPFC), insular cortex (IC) and rhomboid thalamic nucleus (Rh). Next, to examine the possible role of these brain regions in modulating sensitivity to alcohol, neuronal response to alcohol in rats trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water was examined using a two-lever drug discrimination task. As such, rats were administered water or alcohol (1 g/kg, IG) and brain tissue was processed for c-Fos immunoreactivity (IR), a marker of neuronal activity. Alcohol decreased c-Fos IR in the mPFC, IC, Rh and AcbC. Lastly, site-specific pharmacological inactivation with muscimol + baclofen (GABAA agonist + GABAB agonist) was used to determine the functional role of the mPFC, IC and Rh in modulating the interoceptive effects of alcohol in rats trained to discriminate alcohol (1 g/kg, IG) vs. water. mPFC inactivation resulted in full substitution for the alcohol training dose, and IC and Rh inactivation produced partial alcohol-like effects, demonstrating the importance of these regions, with known projections to the AcbC, in modulating sensitivity to alcohol. Together, these data demonstrate a site of action of alcohol and the recruitment of cortical/thalamic regions in modulating sensitivity to the interoceptive effects of alcohol.

  5. Multidrug resistance-associated protein 1 decreases the concentrations of antiepileptic drugs in cortical extracellular fluid in amygdale kindling rats

    Ying-hui CHEN; Cui-cui WANG; Xia XIAO; Li WEI; Guoxiong XU


    Aim:To investigate whether multidrug resistance-associated protein 1 (MRP1) was responsible for drug resistence in refractory epilepsy in amygdale kindling rats.Methods:Rat amygdale kindling was used as a model of refractory epilepsy.The expression of MRP1 mRNA and protein in the brains was examined using RT-PCR and Western blot.MRP1-positive cells in the cortex and hippocampus were studied with immunohistochemical staining.The rats were intraperitoneally injected with phenytoin (50 mg/kg) or carbamazepine (20 mg/kg),and their concentrations in the cortical extracellular fluid were measured using microdialysis and HPLC.Probenecid,a MRP1 inhibitor (40 mmol/L,50 μL) was administered through an inflow tube into the cortex 30 min before injection of the antiepileptic drugs.Results:The expression of MRP1 mRNA and protein was significantly up-regulated in the cortex and hippocampus in amygdale kindling rats compared with the control group.Furthermore,the number of MRP1-positive cells in the cortex and hippocampus was also significantly increased in amygdale kindling rats.Microdialysis studies showed that the concentrations of phenytoin and carbamazepine in the cortical extracellular fluid were significantly decreased in amygdale kindling rats.Pre-administration of probenecid could restore the concentrations back to their control levels.Conclusion:Up-regulation of MRP1 is responsible for the resistance of brain cells to antiepileptic drugs in the amygdale kindling rats.

  6. Expression pattern of cadherins in the naked mole rat (Heterocephalus glaber) suggests innate cortical diversification of the cerebrum.

    Matsunaga, Eiji; Nambu, Sanae; Iriki, Atsushi; Okanoya, Kazuo


    The cerebral cortex is an indispensable region for higher cognitive function that is remarkably diverse among mammalian species. Although previous research has shown that the cortical area map in the mammalian cerebral cortex is formed by innate and activity-dependent mechanisms, it remains unknown how these mechanisms contribute to the evolution and diversification of the functional cortical areas in various species. The naked mole rat (Heterocephalus glaber) is a subterranean, eusocial rodent. Physiological and anatomical studies have revealed that the visual system is regressed and the somatosensory system is enlarged. To examine whether species differences in cortical area development are caused by intrinsic factors or environmental factors, we performed comparative gene expression analysis of neonatal naked mole rat and mouse brains. The expression domain of cadherin-6, a somatosensory marker, was expanded caudally and shifted dorsally in the cortex, whereas the expression domain of cadherin-8, a visual marker, was reduced caudally in the neonatal naked mole rat cortex. The expression domain of cadherin-8 was also reduced in other visual areas, such as the lateral geniculate nucleus and superior colliculus. Immunohistochemical analysis of thalamocortical fibers further suggested that somatosensory input did not affect cortical gene expression in the neonatal naked mole rat brain. These results suggest that the development of the somatosensory system and the regression of the visual system in the naked mole rat cortex are due to intrinsic genetic mechanisms as well as sensory input-dependent mechanisms. Intrinsic genetic mechanisms thus appear to contribute to species diversity in cortical area formation. Copyright © 2011 Wiley-Liss, Inc.

  7. In vivo optical imaging of cortical spreading depression in rat

    Chen, Shangbin; Li, Pengcheng; Luo, Weihua; Gong, Hui; Cheng, Haiying; Luo, Qingming


    Intrinsic optical signals imaging (IOSI) and laser speckle imaging (LSI) are both novel techniques for functional neuroimaging in vivo. Combining them to study cortical spreading depression (CSD) which is an important disease model for migraine and other neurological disorders. CSD were induced by pinprick in Sprague-Dawley rats. Intrinsic optical signals (IOS) at 540 nm showed CSD evolution happened in one hemisphere cortex at speeds of 3.7+/-0.4 mm/min, and the vasodilation closely correlated a four-phasic response. By LSI, we observed a transient and significant increase cerebral blood flow (CBF). In this paper, optical imaging would be showed as a powerful tool for describing the hemodynamic character during CSD in rat.

  8. The Relation of Focal Lesions to Cortical Thickness in Pediatric Traumatic Brain Injury.

    Bigler, Erin D; Zielinski, Brandon A; Goodrich-Hunsaker, Naomi; Black, Garrett M; Huff, B S Trevor; Christiansen, Zachary; Wood, Dawn-Marie; Abildskov, Tracy J; Dennis, Maureen; Taylor, H Gerry; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Yeates, Keith Owen


    In a sample of children with traumatic brain injury, this magnetic resonance imaging (MRI)-based investigation examined whether presence of a focal lesion uniquely influenced cortical thickness in any brain region. Specifically, the study explored the relation of cortical thickness to injury severity as measured by Glasgow Coma Scale score and length of stay, along with presence of encephalomalacia, focal white matter lesions or presence of hemosiderin deposition as a marker of shear injury. For comparison, a group of children without head injury but with orthopedic injury of similar age and sex were also examined. Both traumatic brain injury and orthopedic injury children had normally reduced cortical thickness with age, assumed to reflect neuronal pruning. However, the reductions observed within the traumatic brain injury sample were similar to those in the orthopedic injury group, suggesting that in this sample traumatic brain injury, per se, did not uniquely alter cortical thickness in any brain region at the group level. Injury severity in terms of Glasgow Coma Scale or longer length of stay was associated with greater reductions in frontal and occipitoparietal cortical thickness. However, presence of focal lesions were not related to unique changes in cortical thickness despite having a prominent distribution of lesions within frontotemporal regions among children with traumatic brain injury. Because focal lesions were highly heterogeneous, their association with cortical thickness and development appeared to be idiosyncratic, and not associated with group level effects.

  9. Early malnutrition, but not age, modulates in the rat the L-Arginine facilitating effect on cortical spreading depression.

    Frazão, Marília Ferreira; Silva de Seixas Maia, Luciana Maria; Guedes, Rubem Carlos Araújo


    Nutritional factors acting during brain development can permanently alter brain electrophysiology. L-Arginine is the precursor of nitric oxide synthesis, which can modulate brain function. Here we investigated the effect of early-in-life administration (during postnatal days 7-28) of L-Arginine (300 mg/(kg day)) on cortical spreading depression (CSD), recorded in well-nourished and malnourished (large litters technique) rats aged 30-40 days (young) and 90-110 days (adult). Compared to water-treated controls, well-nourished L-Arginine-treated rats, but not the malnourished ones, displayed higher CSD velocities (Pbrain weights. It is concluded that early L-Arginine treatment long lastingly increased brain CSD-susceptibility and this effect is abolished by early malnutrition.

  10. Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth.

    Pedroni, Silvia M A; Gonzalez, Juan M; Wade, Jean; Jansen, Maurits A; Serio, Andrea; Marshall, Ian; Lennen, Ross J; Girardi, Guillermina


    Premature babies are particularly vulnerable to brain injury. In this study we focus on cortical brain damage associated with long-term cognitive, behavioral, attentional or socialization deficits in children born preterm. Using a mouse model of preterm birth (PTB), we demonstrated that complement component C5a contributes to fetal cortical brain injury. Disruption of cortical dendritic and axonal cytoarchitecture was observed in PTB-mice. Fetuses deficient in C5aR (-/-) did not show cortical brain damage. Treatment with antibody anti-C5, that prevents generation of C5a, also prevented cortical fetal brain injury in PTB-mice. C5a also showed a detrimental effect on fetal cortical neuron development and survival in vitro. Increased glutamate release was observed in cortical neurons in culture exposed to C5a. Blockade of C5aR prevented glutamate increase and restored neurons dendritic and axonal growth and survival. Similarly, increased glutamate levels - measured by (1)HMRS - were observed in vivo in PTB-fetuses compared to age-matched controls. The blockade of glutamate receptors prevented C5a-induced abnormal growth and increased cell death in isolated fetal cortical neurons. Simvastatin and pravastatin prevented cortical fetal brain developmental and metabolic abnormalities -in vivo and in vitro. Neuroprotective effects of statins were mediated by Akt/PKB signaling pathways. This study shows that complement activation plays a crucial role in cortical fetal brain injury in PTL and suggests that complement inhibitors and statins might be good therapeutic options to improve neonatal outcomes in preterm birth. © 2013.

  11. Methylphenidate and the juvenile brain: enhancement of attention at the expense of cortical plasticity?

    Urban, Kimberly R; Gao, Wen-Jun


    Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug for juveniles and adolescents. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, it has been regarded as a relatively safe medication for the past several decades. However, a thorough review of the literature reveals that the age-dependent activities of the drug, as well as potential developmental effects, are largely ignored. In addition, the diagnosis of ADHD is subjective, leaving open the possibility of misdiagnosis and excessive prescription of the drug. Recent studies have suggested that early life exposure of healthy rodent models to methylphenidate resulted in altered sleep/wake cycle, heightened stress reactivity, and, in fact, a dosage previously thought of as therapeutic depressed neuronal function in juvenile rats. Furthermore, juvenile rats exposed to low-dose methylphenidate displayed alterations in neural markers of plasticity, indicating that the drug might alter the basic properties of prefrontal cortical circuits. In this review of the current literature, we propose that juvenile exposure to methylphenidate may cause abnormal prefrontal function and impaired plasticity in the healthy brain, strengthening the case for developing a more thorough understanding of methylphenidate's actions on the developing, juvenile brain, as well as better diagnostic measures for ADHD.

  12. Curved planar reconstruction of MR images in focal cortical dysplasia of the brain

    Chung, Gyung Ho; Lee, Sang Yong; Kim, Chong So; Kim, Young Kon; Lee, Young Hwan; Jeong, Su Hyun [Medical School of Chonbuk National Univ., Chonju (Korea, Republic of)


    To describe curved planar reconstruction imaging (CPR) and determine its usefulness in the evaluation of focal cortical dysplasia of the brain. In 17 cases of focal cortical dysplasia (cortical dysplasia (n=9)), schizencephaly (n=5), and heterotopia (n=3), CPR images were created using a multiplanar reconstruction program and imaging data obtained during T1 magnetization prepared rapid acquisition gradient-echo MR imaging. We assessed the precise configuration of abnormalities and their relation to adjacent gyri and sulci. CPRI showed the brain cortex as a 2D panoramic image, demonstrating the precise configurations and locations of dysplasia-associated abnormalities and their relation to adjacent gyri and sulci, and the precise shape of the gray-white matter interface. CPRI can provide important radiological information about the extension and configuration of focal cortical dysplasia, and its relation to neighboring cortical structures. We believe that CPRI should form an essential part of the routine investigation os suspected cases of focal cortical dysplasia.

  13. Incidental Diagnosis of Cerebral Cortical Venous Thrombosis in Postdural Puncture Headache on Brain Computed Tomography.

    Humbertjean, Lisa; Ducrocq, Xavier; Lacour, Jean-Christophe; Mione, Gioia; Richard, Sébastien


    Diagnosis of cerebral cortical venous thrombosis in patients with postdural puncture headache (PDPH) is usually secondary to changes in headache pattern or cerebral infarctions. Nevertheless, incidental discovery of asymptomatic forms on brain imaging has never been reported before and its management thus remains ill-defined. We describe 2 cases of patients with asymptomatic cortical vein thrombosis in the context of PDPH. In both cases, brain computed tomography (CT) scans showed an isolated cortical vein thrombosis without cerebral damage. Neurological examination revealed the typical orthostatic feature of PDPH, independently of cortical vein thrombosis which was considered as a radiological incidental finding. Clinical and radiological signs resolved after bed rest, oral caffeine, and anticoagulation therapy. Asymptomatic cortical vein thrombosis may be found on radiological exploration, even basic like brain CT scan without contrast, of PDPH. Utility of anticoagulation therapy, which could increase the risk of cerebral hemorrhagic complications in this specific context, has to be assessed.

  14. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun


    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  15. Reduced cortical thickness of brain areas involved in pain processing in patients with chronic pancreatitis.

    Frokjaer, J.B.; Bouwense, S.A.W.; Olesen, S.S.; Lundager, F.H.; Eskildsen, S.F.; Goor, H. van; Wilder-Smith, O.H.G.; Drewes, A.M.


    BACKGROUND & AIMS: Patients with painful chronic pancreatitis (CP) might have abnormal brain function. We assessed cortical thickness in brain areas involved in visceral pain processing. METHODS: We analyzed brain morphologies of 19 patients with painful CP and compared them with 15 healthy individu

  16. Information content in cortical spike trains during brain state transitions.

    Arnold, Maria M; Szczepanski, Janusz; Montejo, Noelia; Amigó, José M; Wajnryb, Eligiusz; Sanchez-Vives, Maria V


    Even in the absence of external stimuli there is ongoing activity in the cerebral cortex as a result of recurrent connectivity. This paper attempts to characterize one aspect of this ongoing activity by examining how the information content carried by specific neurons varies as a function of brain state. We recorded from rats chronically implanted with tetrodes in the primary visual cortex during awake and sleep periods. Electro-encephalogram and spike trains were recorded during 30-min periods, and 2-4 neuronal spikes were isolated per tetrode off-line. All the activity included in the analysis was spontaneous, being recorded from the visual cortex in the absence of visual stimuli. The brain state was determined through a combination of behavior evaluation, electroencephalogram and electromyogram analysis. Information in the spike trains was determined by using Lempel-Ziv Complexity. Complexity was used to estimate the entropy of neural discharges and thus the information content (Amigóet al. Neural Comput., 2004, 16: 717-736). The information content in spike trains (range 4-70 bits s(-1) ) was evaluated during different brain states and particularly during the transition periods. Transitions toward states of deeper sleep coincided with a decrease of information, while transitions to the awake state resulted in an increase in information. Changes in both directions were of the same magnitude, about 30%. Information in spike trains showed a high temporal correlation between neurons, reinforcing the idea of the impact of the brain state in the information content of spike trains.

  17. Slow cortical rhythms: from single-neuron electrophysiology to whole-brain imaging in vivo

    Olcese, U.; Faraguna, U.


    The slow cortical oscillation is the major brain rhythm occurring during sleep, and has been the object of thorough investigation for over thirty years. Despite all these efforts, the function and the neuronal mechanisms behind slow cortical rhythms remain only partially understood. In this review

  18. Slow cortical rhythms: from single-neuron electrophysiology to whole-brain imaging in vivo

    U. Olcese; U. Faraguna


    The slow cortical oscillation is the major brain rhythm occurring during sleep, and has been the object of thorough investigation for over thirty years. Despite all these efforts, the function and the neuronal mechanisms behind slow cortical rhythms remain only partially understood. In this review w

  19. Patterns of social-experience-related c-fos and Arc expression in the frontal cortices of rats exposed to saccharin or moderate levels of ethanol during prenatal brain development.

    Hamilton, Derek A; Candelaria-Cook, Felicha T; Akers, Katherine G; Rice, James P; Maes, Levi I; Rosenberg, Martina; Valenzuela, C Fernando; Savage, Daniel D


    Recent findings from our laboratory indicate that alterations in frontal cortex function, structural plasticity, and related social behaviors are persistent consequences of exposure to moderate levels of ethanol during prenatal brain development [24]. Fetal-ethanol-related reductions in the expression of the immediate early genes (IEGs) c-fos and Arc and alterations in dendritic spine density in ventrolateral and medial aspects of frontal cortex suggest a dissociation reminiscent of that described by Kolb et al. [38] in which these aspects of frontal cortex undergo reciprocal experience-dependent changes. In addition to providing a brief review of the available data on social behavior and frontal cortex function in fetal-ethanol-exposed rats, the present paper presents novel data on social-experience-related IEG expression in four regions of frontal cortex (Zilles LO, VLO, Fr1, Fr2) that are evaluated alongside our prior data from AID and Cg3. Social experience in normal rats was related to a distinct pattern of IEG expression in ventrolateral and medial aspects of frontal cortex, with generally greater expression observed in ventrolateral frontal cortex. In contrast, weaker expression was observed in all aspects of frontal cortex in ethanol-exposed rats, with the exception of an experience-related increase in the medial agranular cortex. Behaviors related to social investigation and wrestling/boxing were differentially correlated with patterns of activity-related IEG expression in the regions under investigation for saccharin- and ethanol-exposed rats. These observations suggest that recruitment and expression of IEGs in frontal cortex following social experience are potentially important for understanding the long-term consequences of moderate prenatal ethanol exposure on frontal cortex function, synaptic plasticity, and related behaviors.

  20. Cortical regulation of striatal projection neurons and interneurons in a Parkinson's disease rat model

    Jia-jia Wu


    Full Text Available Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 kDa, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.

  1. Cross-approximate entropy of cortical local field potentials quantifies effects of anesthesia - a pilot study in rats

    Schwarz Cornelius


    Full Text Available Abstract Background Anesthetics dose-dependently shift electroencephalographic (EEG activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks. Additionally, they uncouple brain areas in higher (gamma frequency ranges possibly underlying conscious perception. It is currently thought that both effects may impair brain function by impeding proper information exchange between cortical areas. But what happens at the local network level? Local networks with strong excitatory interconnections may be more resilient towards global changes in brain rhythms, but depend heavily on locally projecting, inhibitory interneurons. As anesthetics bias cortical networks towards inhibition, we hypothesized that they may cause excessive synchrony and compromise information processing already on a small spatial scale. Using a recently introduced measure of signal independence, cross-approximate entropy (XApEn, we investigated to what degree anesthetics synchronized local cortical network activity. We recorded local field potentials (LFP from the somatosensory cortex of three rats chronically implanted with multielectrode arrays and compared activity patterns under control (awake state with those at increasing concentrations of isoflurane, enflurane and halothane. Results Cortical LFP signals were more synchronous, as expressed by XApEn, in the presence of anesthetics. Specifically, XApEn was a monotonously declining function of anesthetic concentration. Isoflurane and enflurane were indistinguishable; at a concentration of 1 MAC (the minimum alveolar concentration required to suppress movement in response to noxious stimuli in 50% of subjects both volatile agents reduced XApEn by about 70%, whereas halothane was less potent (50% reduction. Conclusions The results suggest that anesthetics strongly diminish the independence of operation of local cortical neuronal populations, and that the

  2. Responses to Gamma-Aminobutyric Acid of Rat Visual Cortical Neurons in Tissue Slices


    Neurol. 234: 242-263. Peters, A. and Proskauer, c. C. (1980) Synaptic relationships between a multipolar stellate cell and a pyramidal neuron in rat...APR 1986 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Responses to Gamma-Aminobutyric Acid of Rat Visual Cortical Neurons in...AIR FORCE MEDICAL CENTER Title of Thesis: Responses to Gamma-Aminobutyric Acid of Rat Visual Cortical Neurons in Tissue Slices Name of Candidate

  3. Neuroprotective effects of L-carnitine against oxygenglucose deprivation in rat primary cortical neurons

    Yu Jin Kim


    Full Text Available &lt;b&gt;Purpose:&lt;/b&gt; Hypoxic-ischemic encephalopathy is an important cause of neonatal mortality, as this brain injury disrupts normal mitochondrial respiratory activity. Carnitine plays an essential role in mitochondrial fatty acid transport and modulates excess acyl coenzyme A levels. In this study, we investigated whether treatment of primary cultures of rat cortical neurons with L-carnitine was able to prevent neurotoxicity resulting from oxygen-glucose deprivation (OGD. &lt;b&gt;Methods:&lt;/b&gt; Cortical neurons were prepared from Sprague-Dawley rat embryos. L-Carnitine was applied to cultures just prior to OGD and subsequent reoxygenation. The numbers of cells that stained with acridine orange (AO and propidium iodide (PI were counted, and lactate dehydrogenase (LDH activity and reactive oxygen species (ROS levels were measured. The 3-(4,5-dimethylthiazol-2-yl-2,5- diphenyltetrazolium bromide assay and the terminal uridine deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were performed to evaluate the effect of L-carnitine (1 μM, 10 μM, and 100 μM on OGD-induced neurotoxicity. &lt;B&gt;Results:&lt;/b&gt; Treatment of primary cultures of rat cortical neurons with L-carnitine significantly reduced cell necrosis and prevented apoptosis after OGD. L-Carnitine application significantly reduced the number of cells that died, as assessed by the PI/AO ratio, and also reduced ROS release in the OGD groups treated with 10 μM and 100 μM of L-carnitine compared with the untreated OGD group (P&lt;0.05. The application of L-carnitine at 100 μM significantly decreased cytotoxicity, LDH release, and inhibited apoptosis compared to the untreated OGD group (P&lt;0.05. &lt;B&gt;Conclusion:&lt;/b&gt; L-Carnitine has neuroprotective benefits against OGD in rat primary cortical neurons in vitro.

  4. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue


    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  5. State-dependent changes in auditory sensory gating in different cortical areas in rats.

    Renli Qi

    Full Text Available Sensory gating is a process in which the brain's response to a repetitive stimulus is attenuated; it is thought to contribute to information processing by enabling organisms to filter extraneous sensory inputs from the environment. To date, sensory gating has typically been used to determine whether brain function is impaired, such as in individuals with schizophrenia or addiction. In healthy subjects, sensory gating is sensitive to a subject's behavioral state, such as acute stress and attention. The cortical response to sensory stimulation significantly decreases during sleep; however, information processing continues throughout sleep, and an auditory evoked potential (AEP can be elicited by sound. It is not known whether sensory gating changes during sleep. Sleep is a non-uniform process in the whole brain with regional differences in neural activities. Thus, another question arises concerning whether sensory gating changes are uniform in different brain areas from waking to sleep. To address these questions, we used the sound stimuli of a Conditioning-testing paradigm to examine sensory gating during waking, rapid eye movement (REM sleep and Non-REM (NREM sleep in different cortical areas in rats. We demonstrated the following: 1. Auditory sensory gating was affected by vigilant states in the frontal and parietal areas but not in the occipital areas. 2. Auditory sensory gating decreased in NREM sleep but not REM sleep from waking in the frontal and parietal areas. 3. The decreased sensory gating in the frontal and parietal areas during NREM sleep was the result of a significant increase in the test sound amplitude.

  6. A Modified Technique for Culturing Primary Fetal Rat Cortical Neurons

    Sui-Yi Xu


    Full Text Available The study explored a modified primary culture system for fetal rat cortical neurons. Day E18 embryos from pregnant Sprague Dawley rats were microdissected under a stereoscope. To minimize enzymatic damage to the cultured neurons, we applied a sequential digestion protocol using papain and Dnase I. The resulting sifted cell suspension was seeded at a density of 50,000 cells per cm2 onto 0.1 mg/mL L-PLL-covered vessels. After a four-hour incubation in high-glucose Dulbecco’s Modified Eagle’s Medium (HG-DMEM to allow the neurons to adhere, the media was changed to neurobasal medium that was refreshed by changing half of the volume after three days followed by a complete medium change every week. The cells displayed progressively robust neurite extension, and nonneuronal-like cells could barely be detected by five days in vitro (DIV; cell growth was still substantial at 14 DIV. Neurons were identified by β-tubulin III immunofluorescence, and neuronal purity within the cultures was assessed at over 95% by both flow cytometry and by dark-field counting of β-tubulin III-positive cells. These results suggest that the protocol was successful and that the high purity of neurons in this system could be used as the basis for generating various cell models of neurological disease.

  7. Brain cortical thickness in male adolescents with serious substance use and conduct problems

    Chumachenko, Serhiy Y.; Sakai, Joseph T.; Dalwani, Manish S.; Mikulich-Gilbertson, Susan K.; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K.; Banich, Marie T.; Crowley, Thomas J.


    Background Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. Objectives To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. Methods We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Results Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right>left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Conclusion Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches. PMID:26337200

  8. Brain cortical thickness in male adolescents with serious substance use and conduct problems.

    Chumachenko, Serhiy Y; Sakai, Joseph T; Dalwani, Manish S; Mikulich-Gilbertson, Susan K; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K; Banich, Marie T; Crowley, Thomas J


    Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right > left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches.

  9. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury.

    Roux, Aurelie; Muller, Ludovic; Jackson, Shelley N; Post, Jeremy; Baldwin, Katherine; Hoffer, Barry; Balaban, Carey D; Barbacci, Damon; Schultz, J Albert; Gouty, Shawn; Cox, Brian M; Woods, Amina S


    Mild traumatic brain injury (TBI) is a common public health issue that may contribute to chronic degenerative disorders. Membrane lipids play a key role in tissue responses to injury, both as cell signals and as components of membrane structure and cell signaling. This study demonstrates the ability of high resolution mass spectrometry imaging (MSI) to assess sequences of responses of lipid species in a rat controlled cortical impact model for concussion. A matrix of implanted silver nanoparticles was implanted superficially in brain sections for matrix-assisted laser desorption (MALDI) imaging of 50μm diameter microdomains across unfixed cryostat sections of rat brain. Ion-mobility time-of-flight MS was used to analyze and map changes over time in brain lipid composition in a rats after Controlled Cortical Impact (CCI) TBI. Brain MS images showed changes in sphingolipids near the CCI site, including increased ceramides and decreased sphingomyelins, accompanied by changes in glycerophospholipids and cholesterol derivatives. The kinetics differed for each lipid class; for example ceramides increased as early as 1 day after the injury whereas other lipids changes occurred between 3 and 7 days post injury. Silver nanoparticles MALDI matrix is a sensitive new tool for revealing previously undetectable cellular injury response and remodeling in neural, glial and vascular structure of the brain. Lipid biochemical and structural changes after TBI could help highlighting molecules that can be used to determine the severity of such injuries as well as to evaluate the efficacy of potential treatments. Copyright © 2016. Published by Elsevier B.V.

  10. Physical exercise versus fluoxetine: antagonistic effects on cortical spreading depression in Wistar rats.

    Mirelle Costa Monteiro, Heloísa; Lima Barreto-Silva, Nathália; Elizabete Dos Santos, Gracyelle; de Santana Santos, Amanda; Séfora Bezerra Sousa, Mariana; Amâncio-Dos-Santos, Ângela


    The antidepressant fluoxetine and physical exercise exert similar effects on the serotoninergic system by increasing brain serotonin availability, and both show antagonistic action on cortical excitability. Here we provide the first assessment of the interaction of the two together on cortical spreading depression (CSD) in young adult rats. Wistar rats (40-60 days of life) received fluoxetine (10mg/kg/d, orogastrically) or an equivalent volume of water. Half of the animals from each condition were assigned to perform physical exercise in a treadmill, and the other half formed the sedentary (non-treadmill) control groups. Body parameters (Lee index and thoracic and abdominal circumferences) and the velocity of CSD propagation were investigated. Fluoxetine+exercise animals had less weight gain (78.68±3.19g) than either the fluoxetine-only (93.34±4.77g) or exercise-only group (97.04±3.48g), but body parameters did not differ among them. The velocity of CSD propagation was reduced in the fluoxetine-only and exercise-only groups compared to sedentary water controls (3.24±0.39mm/min). For the fluoxetine+exercise group, CSD velocity values were significantly lower (2.92±0.22mm/min) than for fluoxetine only (3.03±0.35mm/min); however, they were similar to values for the exercise-only group (2.96±0.23mm/min). These findings confirm the similar effects of fluoxetine and exercise and suggest a greater effect of physical exercise in reducing brain excitability.

  11. Cortical laminar necrosis in brain infarcts: chronological changes on MRI

    Komiyama, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Nishikawa, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Yasui, T. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan)


    We studied the MRI characteristics of cortical laminar necrosis in ischaemic stroke. We reviewed 13 patients with cortical laminar high signal on T1-weighted images to analyse the chronological changes in signal intensity and contrast enhancement. High-density cortical lesions began to appear on T1-weighted images about 2 weeks after the ictus. At 1-2 months they were prominent. They began to fade from 3 months but could be seen up to 11 months. These cortical lesions showed isointensity or high intensity on T2-weighted images and did not show low intensity at any stage. Contrast enhancement of the laminar lesions was prominent at 1-2 months and became less apparent from 3 months, but could be seen up to 8 months. (orig.). With 6 figs., 1 tab.

  12. Prediction of brain maturity based on cortical thickness at different spatial resolutions.

    Khundrakpam, Budhachandra S; Tohka, Jussi; Evans, Alan C


    Several studies using magnetic resonance imaging (MRI) scans have shown developmental trajectories of cortical thickness. Cognitive milestones happen concurrently with these structural changes, and a delay in such changes has been implicated in developmental disorders such as attention-deficit/hyperactivity disorder (ADHD). Accurate estimation of individuals' brain maturity, therefore, is critical in establishing a baseline for normal brain development against which neurodevelopmental disorders can be assessed. In this study, cortical thickness derived from structural magnetic resonance imaging (MRI) scans of a large longitudinal dataset of normally growing children and adolescents (n=308), were used to build a highly accurate predictive model for estimating chronological age (cross-validated correlation up to R=0.84). Unlike previous studies which used kernelized approach in building prediction models, we used an elastic net penalized linear regression model capable of producing a spatially sparse, yet accurate predictive model of chronological age. Upon investigating different scales of cortical parcellation from 78 to 10,240 brain parcels, we observed that the accuracy in estimated age improved with increased spatial scale of brain parcellation, with the best estimations obtained for spatial resolutions consisting of 2560 and 10,240 brain parcels. The top predictors of brain maturity were found in highly localized sensorimotor and association areas. The results of our study demonstrate that cortical thickness can be used to estimate individuals' brain maturity with high accuracy, and the estimated ages relate to functional and behavioural measures, underscoring the relevance and scope of the study in the understanding of biological maturity.

  13. Magnesium lithospermate B ameliorates renal cortical microperfusion in rats

    Chun-guang CHEN; Yi-ping WANG


    Aim: To investigate the effects of magnesium lithospermate B (MLB) isolated from Salviae miltiorrhizae on renal microcirculation, and renal and systemic hemodynamics in Sprague-Dawley rats. Methods: MLB (10, 30, and 60 mg/kg) was injected intravenously and renal blood flow (RBF), renal cortical microperfusion (RCM), and systemic hemodynamic function parameters including heart rate (HR),mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), and maximal velocity of pressure increase (dp/dtmax) were measured for 45 min after administration. Results: Intravenous MLB at doses of 10, 30, and 60 mg/kg increased RCM significantly, but had no obvious effects on RBF or systemic hemodynamics. The effect of MLB on RCM reached its peak 15 min after injection and returned to baseline after 45 min. Up to60 mg/kg MLB increased RCM by 62.4%±20.2% (changes from baseline, P<0.01),whereas RBF (3.7%±9.7% vs baseline) and renal vascular resistance (-1.4%±9.1%vs baseline) did not obviously change. Conclusion: These results indicate that MLB ameliorates renal microcirculation in a dose-dependent manner, which may be related to the renoprotective effects of MLB.

  14. Axon guidance of rat cortical neurons by microcontact printed gradients.

    Fricke, Rita; Zentis, Peter D; Rajappa, Lionel T; Hofmann, Boris; Banzet, Marko; Offenhäusser, Andreas; Meffert, Simone H


    Substrate-bound gradients expressed in numerous spatio-temporal patterns play a crucial role during the development of complex neural circuits. A deeper understanding of the axon guidance mechanism is provided by studying the effect of a defined substrate-bound cue on a confined neural network. In this study, we constructed a discontinuous substrate-bound gradient to control neuronal cell position, the path of neurite growth, and axon directionality. A variety of gradient patterns, with slight changes in slope, width, and length were designed and fabricated by microcontact printing using laminin/poly-l-lysine (PLL) or PLL alone. The gradients were tested for neurite growth and their impact on axon guidance of embryonic rat cortical neurons. The neurite length was determined and the axon was evaluated by Tau-1 immunostaining. We found that the microgradients of laminin/PLL and PLL directed neurons' adhesion, differentially controlled the neurite growth, and guided up to 84% of the axons. The effect of the protein micropattern on axon guidance and neurite growth depended on the protein and geometric parameters used. Our approach proved to be very successful in guiding axons of single multipolar neurons with very high efficiency. It could thereby be useful to engineer defined neural networks for analyzing signal processing of functional circuits, as well as to unravel fundamental questions of the axon guidance mechanism.

  15. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)


    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  16. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions.

    Gonen, Tal; Gazit, Tomer; Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi


    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping.

  17. Cortical neuron loss in post-traumatic higher brain dysfunction using (123)I-iomazenil SPECT.

    Nakagawara, Jyoji; Kamiyama, Kenji; Takahashi, Masaaki; Nakamura, Hirohiko


    In patients with higher brain dysfunction (HBD) after mild traumatic brain injury (MTBI), diagnostic imaging of cortical neuron loss in the frontal lobes was studied using SPECT with (123)I-iomazenil (IMZ), as a radioligand for central benzodiazepine receptor (BZR). Statistical imaging analysis using three-dimensional stereotactic surface projections (3D-SSP) for (123)I-IMZ SPECT was performed in 17 patients. In all patients with HBD defined by neuropsychological tests, cortical neuron loss was indicated in the bilateral medial frontal lobes in 14 patients (83 %). A comparison between the group of 17 patients and the normal database demonstrated common areas of cortical neuron loss in the bilateral medial frontal lobes involving the medial frontal gyrus (MFG) and the anterior cingulate gyrus (ACG). In an assessment of cortical neuron loss in the frontal medial cortex using the stereotactic extraction estimation (SEE) method (level 3), significant cortical neuron loss was observed within bilateral MFG in 9 patients and unilateral MFG in 4, and bilateral ACG in 12 and unilateral ACG in 3. Fourteen patients showed significant cortical neuron loss in bilateral MFG or ACG. In patients with MTBI, HBD seemed to correlate with selective cortical neuron loss within the bilateral MFG or ACG where the responsible lesion could be. 3D-SSP and SEE level 3 analysis for (123)I-IMZ SPECT could be valuable for diagnostic imaging of HBD after MTBI.

  18. Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact.

    Pareja, Jennifer C Munoz; Keeley, Kristen; Duhaime, Ann-Christine; Dodge, Carter P


    The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma.

  19. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang


    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  20. Hyperammonemia,brain edema and blood-brain barrier alterations in prehepatic portal hypertensive rats and paravrtamol intoxication

    Camila Scorticati; Juan P. Prestifilippo; Francisco X. Eizayaga; José L. Castro; Salvador Romay; Maria A. Fernández; Abraham Lemberg; Juan C. Perazzo


    AIM: To study the blood-brain barrier integrity, brain edema,animal behavior and ammonia plasma levels in prehepatic portal hypertensive rats with and without acute liver intoxication.METHODS: Adults male Wistar rats were divided into four groups. Group Ⅰ: sham operation; Ⅱ: Prehepatic portal hypertension, produced by partial portal vein ligation; Ⅲ:Acetaminophen intoxication and Ⅳ: Prehepatic portal hypertension plus acetaminophen. Acetaminophen was administered to produce acute hepatic injury. Portal pressure, liver serum enzymes and ammonia plasma levels were determined. Brain cortex water content was registered and trypan blue was utilized to study blood brain barrier integrity. Reflexes and behavioral tests were recorded.RESULTS: Portal hypertension was significantly elevated in groups Ⅱ and Ⅳ. Liver enzymes and ammonia plasma levels were increased in groups Ⅱ, Ⅳ and Ⅳ. Prehepatic portal hypertension (group Ⅱ), acetaminophen intoxication (group Ⅲ) and both (group Ⅳ) had changes in the blood brain-barrier integrity (trypan blue) and hyperammonemia. Cortical edema was present in rats with acute hepatic injury in groups Ⅲ and Ⅳ. Behavioral test (rota rod) was altered in group Ⅳ.CONCLUSION: These results suggest the possibility of another pathway for cortical edema production because blood brain barrier was altered (vasogenic) and hyperammonemia was registered (cytotoxic). Group Ⅳ, with behavioral altered test, can be considered as a model for study at an early stage of portal-systemic encephalopathy.

  1. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.


    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.

  2. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan


    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a short-arm human centrifuge as a countermeasure.

  3. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI.

    He, Yong; Chen, Zhang J; Evans, Alan C


    An important issue in neuroscience is the characterization for the underlying architectures of complex brain networks. However, little is known about the network of anatomical connections in the human brain. Here, we investigated large-scale anatomical connection patterns of the human cerebral cortex using cortical thickness measurements from magnetic resonance images. Two areas were considered anatomically connected if they showed statistically significant correlations in cortical thickness and we constructed the network of such connections using 124 brains from the International Consortium for Brain Mapping database. Significant short- and long-range connections were found in both intra- and interhemispheric regions, many of which were consistent with known neuroanatomical pathways measured by human diffusion imaging. More importantly, we showed that the human brain anatomical network had robust small-world properties with cohesive neighborhoods and short mean distances between regions that were insensitive to the selection of correlation thresholds. Additionally, we also found that this network and the probability of finding a connection between 2 regions for a given anatomical distance had both exponentially truncated power-law distributions. Our results demonstrated the basic organizational principles for the anatomical network in the human brain compatible with previous functional networks studies, which provides important implications of how functional brain states originate from their structural underpinnings. To our knowledge, this study provides the first report of small-world properties and degree distribution of anatomical networks in the human brain using cortical thickness measurements.

  4. Brain volumetrics, regional cortical thickness and radiographic findings in children with cyanotic congenital heart disease using quantitative magnetic resonance imaging

    Alsiagy A. Salama, M.D.


    Conclusions: Children with CCHD show MRI evidence of micro- and macro vascular injury, reduced brain volume and cortical thickness. Brain volume loss correlated with hsCRP, oxygen saturation and packed cell volume.

  5. Epileptiform synchronization and high-frequency oscillations in brain slices comprising piriform and entorhinal cortices.

    Hamidi, S; Lévesque, M; Avoli, M


    We employed field potential recordings in extended in vitro brain slices form Sprague-Dawley rats containing the piriform and entorhinal cortices (PC and EC, respectively) to identify the characteristics of epileptiform discharges and concomitant high-frequency oscillations (HFOs, ripples: 80-200Hz, fast ripples: 250-500Hz) during bath application of 4-aminopyridine (4AP, 50μM). Ictal-like discharges occurred in PC and EC either synchronously or independently of each other; synchronous ictal discharges always emerged from a synchronous "fast" interictal background whereas asynchronous ictal discharges were preceded by a "slow" interictal event. In addition, asynchronous ictal discharges had longer duration and interval of occurrence than synchronous ictal discharges, and contained a higher proportion of ripples and fast ripples. Cutting the connections between PC and EC made synchronicity disappear and increased ictal discharges duration in the EC but failed in changing HFO occurrence in both areas. Finally, antagonizing ionotropic glutamatergic receptors abolished ictal activity in all experiments, increased the duration and rate of occurrence of interictal discharges occurring in PC-EC interconnected slices while it did not influence the slow asynchronous interictal discharges in both areas. Our results identify some novel in vitro interactions between olfactory (PC) and limbic (EC) structures that presumably contribute to in vivo ictogenesis as well.

  6. A case of hypoglycemic brain injuries with cortical laminar necrosis.

    Lee, Byung-Wan; Jin, Eun Sun; Hwang, Hyung-Sik; Yoo, Hyung-Joon; Jeong, Je Hoon


    We report a case of 68-yr-old male who died from brain injuries following an episode of prolonged hypoglycemia. While exploring controversies surrounding magnetic resonance imaging (MRI) findings indicating the bad prognosis in patients with hypoglycemia-induced brain injuries, we here discuss interesting diffusion-MRI of hypoglycemic brain injuries and their prognostic importance focusing on laminar necrosis of the cerebral cortex.

  7. Relaxed genetic control of cortical organization in human brains compared with chimpanzees.

    Gómez-Robles, Aida; Hopkins, William D; Schapiro, Steven J; Sherwood, Chet C


    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution.

  8. Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture?

    Ricciardi, Emiliano; Bonino, Daniela; Pellegrini, Silvia; Pietrini, Pietro


    While most of the research in blind individuals classically has focused on the compensatory plastic rearrangements that follow loss of sight, novel behavioral, anatomical and functional brain studies in individuals born deprived of sight represent a powerful tool to understand to what extent the brain functional architecture is programmed to develop independently from any visual experience. Here we review work from our lab and others, conducted in sighted and congenitally blind individuals, whose results indicate that vision is not a mandatory prerequisite for the brain cortical organization to develop and function. Similar cortical networks subtend visual and/or non-visual perception of form, space and movement, as well as action recognition, both in sighted and in congenitally blind individuals. These findings support the hypothesis of a modality independent, supramodal cortical organization. Visual experience, however, does play a role in shaping specific cortical sub-regions, as loss of sight is accompanied also by cross-modal plastic phenomena. Altogether, studying the blind brain is opening our eyes on how the brain develops and works.

  9. Nimodipine posttreatment does not increase blood flow in rats with focal cortical ischemia.

    Dirnagl, U; Jacewicz, M; Pulsinelli, W


    We used laser-Doppler flowmetry to study the effect of nimodipine administered after the onset of focal cortical ischemia on regional cerebral blood flow in 16 halothane-anesthetized, mechanically ventilated Wistar rats. We selected the Wistar rats strain since it would provide a wide range of ischemia severities to test the vascular response to nimodipine. Laser-Doppler probes continuously recorded regional cerebral blood flow at two or three sites over the parietal cortex (dura intact) while brain temperature was regulated at 37 degrees C. Occlusion of the right middle cerebral and common carotid arteries reduced cerebral blood flow to a mean of 38% (range 13-77%) of baseline. Thirty minutes later, either 2 micrograms/kg/min nimodipine (n = 8) or its vehicle, polyethylene glycol 400 (n = 8), was administered by a continuous intravenous infusion. Over 60 minutes of treatment, both the nimodipine-treated and vehicle-treated groups showed a trivial (3%) mean increase in cerebral blood flow. Nimodipine failed to augment cerebral blood flow regardless of whether the cortex was severely, moderately, or mildly ischemic.

  10. Cortical Network Dynamics of Perceptual Decision-Making in the Human Brain

    Markus eSiegel


    Full Text Available Goal-directed behavior requires the flexible transformation of sensory evidence about our environment into motor actions. Studies of perceptual decision-making have shown that this transformation is distributed across several widely separated brain regions. Yet, little is known about how decision-making emerges from the dynamic interactions among these regions. Here, we review a series of studies, in which we characterized the cortical network interactions underlying a perceptual decision process in the human brain. We used magnetoencephalography (MEG to measure the large-scale cortical population dynamics underlying each of the sub-processes involved in this decision: the encoding of sensory evidence and action plan, the mapping between the two, and the attentional selection of task-relevant evidence. We found that these sub-processes are mediated by neuronal oscillations within specific frequency ranges. Localized gamma-band oscillations in sensory and motor cortices reflect the encoding of the sensory evidence and motor plan. Large-scale oscillations across widespread cortical networks mediate the integrative processes connecting these local networks: Gamma- and beta-band oscillations across frontal, parietal and sensory cortices serve the selection of relevant sensory evidence and its flexible mapping onto action plans. In sum, our results suggest that perceptual decisions are mediated by oscillatory interactions within overlapping local and large-scale cortical networks.

  11. Adolescent brain maturation and cortical folding: evidence for reductions in gyrification.

    Daniel Klein

    Full Text Available Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM, increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla magnetic resonance imaging (MRI data from 79 healthy subjects (34 males and 45 females between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI. In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development.

  12. 4D segmentation of brain MR images with constrained cortical thickness variation.

    Li Wang

    Full Text Available Segmentation of brain MR images plays an important role in longitudinal investigation of developmental, aging, disease progression changes in the cerebral cortex. However, most existing brain segmentation methods consider multiple time-point images individually and thus cannot achieve longitudinal consistency. For example, cortical thickness measured from the segmented image will contain unnecessary temporal variations, which will affect the time related change pattern and eventually reduce the statistical power of analysis. In this paper, we propose a 4D segmentation framework for the adult brain MR images with the constraint of cortical thickness variations. Specifically, we utilize local intensity information to address the intensity inhomogeneity, spatial cortical thickness constraint to maintain the cortical thickness being within a reasonable range, and temporal cortical thickness variation constraint in neighboring time-points to suppress the artificial variations. The proposed method has been tested on BLSA dataset and ADNI dataset with promising results. Both qualitative and quantitative experimental results demonstrate the advantage of the proposed method, in comparison to other state-of-the-art 4D segmentation methods.

  13. Serial MR observation of cortical laminar necrosis caused by brain infarction

    Komiyama, M.; Nakajima, H.; Nishikawa, M.; Yasui, T. [Department of Neurosurgery, Osaka City General Hospital (Japan)


    To examine the chronological changes characteristic of cortical laminar necrosis caused by brain infarction, 16 patients were repeatedly examined using T1-, T2-weighted spin-echo, T2{sup *}-weighted gradient echo, fluid attenuated inversion recovery (FLAIR) images, and contrast enhanced T1-weighted images at 1.0 or 1.5 T. High intensity cortical lesions were visible on the T1-weighted images from 2 weeks after ictus and became prominent at 1 to 3 months, then became less apparent, but occasionally remained at high intensity for 2 years. High intensity cortical lesions on FLAIR images became prominent from 1 month, and then became less prominent from 1 year, but occasionally remained at high intensity for 2 years. Subcortical lesions did not display high intensity on T1-weighted images at any stage. On FLAIR images, subcortical lesions initially showed slightly high intensity and then low intensity from 6 months due to encephalomalacia. Cortical lesions showed prominent contrast enhancement from 2 weeks to 3 months, but subcortical lesions were prominent from 2 weeks only up to 1 month. T2*-weighted images disclosed haemosiderin in 3 of 7 patients, but there was no correlation with cortical short T1 lesions. Cortical laminar necrosis showed characteristic chronological signal changes on T1-weighted images and FLAIR images. Cortical short T1 lesions were found not to be caused by haemorrhagic infarction. (orig.) With 5 figs., 1 tab., 9 refs.


    Zhang Yuelin; Qiu Shudong; Zhang Pengbo; Shi Wei


    Objective To investigate the proliferative response and time course of endogenous neural stem/progenitor cells after cerebral cortical concis in the adult rats. Methods Eighty adult male Sprague-Dawley rats were used in this study. Cumulative BrdU labeling was employed to detect the proliferating cells. At 1 d, 3 d, 7 d, 14 d, and 21 d after cerebral cortical concis, the rats were killed for BrdU immunohistochemical staining and cell counting in the injured ipsilateral SVZ. Results Little BrdU immunoreactivity cells was present in SVZ of the control rats from day 7 to day 21 after sham operation. The number of BrdU immunoreactivity cells in the injured ipsilateral SVZ increased at day 1 and peaked at day 7 after cerebral cortical concis. Conclusion After cerebral cortical concis of the adult rats, neural stem/progenitor cells in the injured ipsilateral SVZ markedly proliferated with a peak at day 7. This finding may be important for manipulating SVZ cells to promote the recovery from cerebral cortical concis.

  15. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    Meda, Shashwath A; Pryweller, Jennifer R; Thornton-Wells, Tricia A


    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex

  16. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    Shashwath A Meda

    Full Text Available Williams syndrome (WS is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and

  17. Targeted enhancement of cortical-hippocampal brain networks and associative memory.

    Wang, Jane X; Rogers, Lynn M; Gross, Evan Z; Ryals, Anthony J; Dokucu, Mehmet E; Brandstatt, Kelly L; Hermiller, Molly S; Voss, Joel L


    The influential notion that the hippocampus supports associative memory by interacting with functionally distinct and distributed brain regions has not been directly tested in humans. We therefore used targeted noninvasive electromagnetic stimulation to modulate human cortical-hippocampal networks and tested effects of this manipulation on memory. Multiple-session stimulation increased functional connectivity among distributed cortical-hippocampal network regions and concomitantly improved associative memory performance. These alterations involved localized long-term plasticity because increases were highly selective to the targeted brain regions, and enhancements of connectivity and associative memory persisted for ~24 hours after stimulation. Targeted cortical-hippocampal networks can thus be enhanced noninvasively, demonstrating their role in associative memory.

  18. Cortical geometry as a determinant of brain activity eigenmodes: Neural field analysis

    Gabay, Natasha C.; Robinson, P. A.


    Perturbation analysis of neural field theory is used to derive eigenmodes of neural activity on a cortical hemisphere, which have previously been calculated numerically and found to be close analogs of spherical harmonics, despite heavy cortical folding. The present perturbation method treats cortical folding as a first-order perturbation from a spherical geometry. The first nine spatial eigenmodes on a population-averaged cortical hemisphere are derived and compared with previous numerical solutions. These eigenmodes contribute most to brain activity patterns such as those seen in electroencephalography and functional magnetic resonance imaging. The eigenvalues of these eigenmodes are found to agree with the previous numerical solutions to within their uncertainties. Also in agreement with the previous numerics, all eigenmodes are found to closely resemble spherical harmonics. The first seven eigenmodes exhibit a one-to-one correspondence with their numerical counterparts, with overlaps that are close to unity. The next two eigenmodes overlap the corresponding pair of numerical eigenmodes, having been rotated within the subspace spanned by that pair, likely due to second-order effects. The spatial orientations of the eigenmodes are found to be fixed by gross cortical shape rather than finer-scale cortical properties, which is consistent with the observed intersubject consistency of functional connectivity patterns. However, the eigenvalues depend more sensitively on finer-scale cortical structure, implying that the eigenfrequencies and consequent dynamical properties of functional connectivity depend more strongly on details of individual cortical folding. Overall, these results imply that well-established tools from perturbation theory and spherical harmonic analysis can be used to calculate the main properties and dynamics of low-order brain eigenmodes.

  19. Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age.

    Karama, S; Bastin, M E; Murray, C; Royle, N A; Penke, L; Muñoz Maniega, S; Gow, A J; Corley, J; Valdés Hernández, M del C; Lewis, J D; Rousseau, M-É; Lepage, C; Fonov, V; Collins, D L; Booth, T; Rioux, P; Sherif, T; Adalat, R; Starr, J M; Evans, A C; Wardlaw, J M; Deary, I J


    Associations between brain cortical tissue volume and cognitive function in old age are frequently interpreted as suggesting that preservation of cortical tissue is the foundation of successful cognitive aging. However, this association could also, in part, reflect a lifelong association between cognitive ability and cortical tissue. We analyzed data on 588 subjects from the Lothian Birth Cohort 1936 who had intelligence quotient (IQ) scores from the same cognitive test available at both 11 and 70 years of age as well as high-resolution brain magnetic resonance imaging data obtained at approximately 73 years of age. Cortical thickness was estimated at 81 924 sampling points across the cortex for each subject using an automated pipeline. Multiple regression was used to assess associations between cortical thickness and the IQ measures at 11 and 70 years. Childhood IQ accounted for more than two-third of the association between IQ at 70 years and cortical thickness measured at age 73 years. This warns against ascribing a causal interpretation to the association between cognitive ability and cortical tissue in old age based on assumptions about, and exclusive reference to, the aging process and any associated disease. Without early-life measures of cognitive ability, it would have been tempting to conclude that preservation of cortical thickness in old age is a foundation for successful cognitive aging when, instead, it is a lifelong association. This being said, results should not be construed as meaning that all studies on aging require direct measures of childhood IQ, but as suggesting that proxy measures of prior cognitive function can be useful to take into consideration.

  20. Macrophagic and microglial responses after focal traumatic brain injury in the female rat

    Turtzo, L. Christine; Lescher, Jacob; Janes, Lindsay; Dean, Dana D.; Budde, Matthew D.; Joseph A Frank


    Background After central nervous system injury, inflammatory macrophages (M1) predominate over anti-inflammatory macrophages (M2). The temporal profile of M1/M2 phenotypes in macrophages and microglia after traumatic brain injury (TBI) in rats is unknown. We subjected female rats to severe controlled cortical impact (CCI) and examined the postinjury M1/M2 time course in their brains. Methods The motor cortex (2.5 mm left laterally and 1.0 mm anteriorly from the bregma) of anesthetized female ...

  1. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury

    Jace B. King


    Full Text Available In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral. Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05. These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05. These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.

  2. Higher cortical modulation of pain perception in the human brain: Psychological determinant.

    Chen, Andrew Cn


    Pain perception and its genesis in the human brain have been reviewed recently. In the current article, the reports on pain modulation in the human brain were reviewed from higher cortical regulation, i.e. top-down effect, particularly studied in psychological determinants. Pain modulation can be examined by gene therapy, physical modulation, pharmacological modulation, psychological modulation, and pathophysiological modulation. In psychological modulation, this article examined (a) willed determination, (b) distraction, (c) placebo, (d) hypnosis, (e) meditation, (f) qi-gong, (g) belief, and (h) emotions, respectively, in the brain function for pain modulation. In each, the operational definition, cortical processing, neuroimaging, and pain modulation were systematically deliberated. However, not all studies had featured the brain modulation processing but rather demonstrated potential effects on human pain. In our own studies on the emotional modulation on human pain, we observed that emotions could be induced from music melodies or pictures perception for reduction of tonic human pain, mainly in potentiation of the posterior alpha EEG fields, likely resulted from underneath activities of precuneous in regulation of consciousness, including pain perception. To sum, higher brain functions become the leading edge research in all sciences. How to solve the information bit of thinking and feeling in the brain can be the greatest challenge of human intelligence. Application of higher cortical modulation of human pain and suffering can lead to the progress of social humanity and civilization.

  3. Direct cortical stimulation but not transcranial electrical stimulation motor evoked potentials detect brain ischemia during brain tumor resection.

    Li, Fenghua; Deshaies, Eric M; Allott, Geoffrey; Canute, Gregory; Gorji, Reza


    Motor evoked potentials (MEPs) elicited by both direct cortical stimulation (DCS) and transcranial electrical stimulation are used during brain tumor resection. Parallel use of direct cortical stimulation motor evoked potentials (DCS-MEPs) and transcranial electrical stimulation motor evoked potentials (TCeMEPs) has been practiced during brain tumor resection. We report that DCS-MEPs elicited by direct subdural grid stimulation, but not TCeMEPs, detected brain ischemia during brain tumor resection. Following resection of a brainstem high-grade glioma in a 21-year-old, the threshold of cortical motor-evoked-potentials (cMEPs) increased from 13 mA to 20 mA while amplitudes decreased. No changes were noted in transcranial motor evoked potentials (TCMEPs), somatosensory evoked potentials (SSEPs), auditory evoked potentials (AEPs), anesthetics, or hemodynamic parameters. Our case showed the loss of cMEPs and SSEPs, but not TCeMEPs. Permanent loss of DCS-MEPs and SSEPs was correlated with permanent left hemiplegia in our patient even when appropriate action was taken. Parallel use of DCS- and TCeMEPs with SSEPs improves sensitivity of intraoperative detection of motor impairment. DCS may be superior to TCeMEPs during brain tumor resection.

  4. 脑血流低灌注老龄大鼠中脑皮质血流的改变与血清总胆固醇和高密度脂蛋白的动态变化%Dynamic changes of cortical blood flow and serum total cholesterol and high density lipoprotein in brains of aging rat during cerebral hypoperfusion

    王林辉; 田茗源; 滕志朋; 王晨; 李昱


    目的:通过建立脑血流低灌注模型,观察老龄大鼠脑血流的变化以及在脑血流低灌注下血清中总胆固醇(Total cholesterol,TC)和高密度脂蛋白(High density lipoprotein,HDL)的动态变化.方法:采用持久性双侧颈总动脉结扎法(2Vo)致老龄大鼠脑血流灌注不足,测定术后7、14、21、28d大鼠脑皮质血流;检测、比较术后不同时间段大鼠血清中TC和HDL浓度差异.结果:术后第14天大鼠脑颞区血流出现明显减少;术后21、28d大鼠脑局部皮质血管有再生侧支形成,大鼠脑颞区血流仍未恢复;术后第14天血清中HDL、TC含量明显高于假手术组(P<0.05),随着缺血时间延长,又逐渐降低.结论:血清TC和HDL浓度在脑缺血灌注不足的不同时间段经历了先增强后减弱的动态变化,提示脑血流低灌注老龄大鼠因大脑血流灌注不足可出现体内胆固醇代谢失衡并出现应激调节现象.%Objective: To investigate the change of cortical blood flow and the dynamic changes of serum total cholesterol(TC ) and high density lipoprotein(HDL) in brains of aging rat during cerebral ischemic injury. Methods:The model of aging rats with cerebral hy-poperfusion was successfully constructed by persistent bilateral common carotid artery ligation(2V0). The cortical blood flow and the concentration of serum TC and HDL at different time points were determined and compared. Results: Compared with the sham-operated group,the temporal blood flow was significantly decreased in 14 d group. But the collateral vessels were gradually regenerated and formed in local brain,while the temporal blood flow was restored in 21 d and 28 d group. The concentration of HDL and TC was significantly higher in 14 d group than in the sham-operated group (P<0.05), and both of them were decreased with the extention of ischemia time. Conclusions:The serum TC and HDL concentration undergo dynamic changes-increasing first and then decreasing during the process

  5. Neuroblast Distribution After Cortical Impact is Influenced by White Matter Injury in the Immature Gyrencephalic Brain.

    Sabrina Taylor


    Full Text Available Cortical contusions are a common type of traumatic brain injury (TBI in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND 7, BrdU 2 days prior to (PND 5 and 6 or after injury (PND 7 and 8, and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU+ neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of

  6. The slowed brain: cortical oscillatory activity in hepatic encephalopathy.

    Butz, Markus; May, Elisabeth S; Häussinger, Dieter; Schnitzler, Alfons


    Oscillatory activity of the human brain has received growing interest as a key mechanism of large-scale integration across different brain regions. Besides a crucial role of oscillatory activity in the emergence of other neurological and psychiatric diseases, recent evidence indicates a key role in the pathophysiology of hepatic encephalopathy (HE). This review summarizes the current knowledge on pathological alterations of oscillatory brain activity in association with liver dysfunction and HE in the context of spontaneous brain activity, motor symptoms, sensory processing, and attention. The existing literature demonstrates a prominent slowing of the frequency of oscillatory activity as shown for spontaneous brain activity at rest, with respect to deficits of motor behavior and motor symptoms, and in the context of visual attention processes. The observed slowing extends across different subsystems of the brain and has been confirmed across different frequency bands, providing evidence for ubiquitous changes of oscillatory activity in HE. For example, the frequency of cortico-muscular coherence in HE patients appears at the frequency of the mini-asterixis (⩽12Hz), while cirrhotics without overt signs of HE show coherence similar to healthy subjects, i.e. at 13-30Hz. Interestingly, the so-called critical flicker frequency (CFF) as a measure of the processing of an oscillating visual stimulus has emerged as a useful tool to quantify HE disease severity, correlating with behavioral and neurophysiological alterations. Moreover, the CFF reliably distinguishes patients with manifest HE from cirrhotics without any signs of HE and healthy controls using a cut-off frequency of 39Hz. In conclusion, oscillatory activity is globally slowed in HE in close association with HE symptoms and disease severity. Although the underlying causal mechanisms are not yet understood, these results indicate that pathological changes of oscillatory activity play an important role in the

  7. Cortical Evolution: Judge the Brain by Its Cover

    Geschwind, Daniel H.; Rakic, Pasko


    To understand the emergence of human higher cognition, we must understand its biological substrate—the cerebral cortex, which considers itself the crowning achievement of evolution. Here, we describe how advances in developmental neurobiology, coupled with those in genetics, including adaptive protein evolution via gene duplications and the emergence of novel regulatory elements, can provide insights into the evolutionary mechanisms culminating in the human cerebrum. Given that the massive expansion of the cortical surface and elaboration of its connections in humans originates from developmental events, understanding the genetic regulation of cell number, neuronal migration to proper layers, columns, and regions, and ultimately their differentiation into specific phenotypes, is critical. The pre- and postnatal environment also interacts with the cellular substrate to yield a basic network that is refined via selection and elimination of synaptic connections, a process that is prolonged in humans. This knowledge provides essential insight into the pathogenesis of human-specific neuropsychiatric disorders. PMID:24183016

  8. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze


    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP......) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...

  9. Quantitative autoradiography of (/sup 3/H)corticosterone receptors in rat brain

    Sapolsky, R.M.; McEwen, B.S. (Rockefeller Univ., New York (USA)); Rainbow, T.C. (Pennsylvania Univ., Philadelphia (USA). School of Medicine)


    The authors have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 (/sup 3/H)corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradiographic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue.

  10. Cortical spreading depression in traumatic brain injuries: is there a role for astrocytes?

    Torrente, Daniel; Cabezas, Ricardo; Avila, Marco Fidel; García-Segura, Luis Miguel; Barreto, George E; Guedes, Rubem Carlos Araújo


    Cortical spreading depression (CSD) is a presumably pathophysiological phenomenon that interrupts local cortical function for periods of minutes to hours. This phenomenon is important due to its association with different neurological disorders such as migraine, malignant stroke and traumatic brain injury (TBI). Glial cells, especially astrocytes, play an important role in the regulation of CSD and in the protection of neurons under brain trauma. The correlation of TBI with CSD and the astrocytic function under these conditions remain unclear. This review discusses the possible link of TBI and CSD and its implication for neuronal survival. Additionally, we highlight the importance of astrocytic function for brain protection, and suggest possible therapeutic strategies targeting astrocytes to improve the outcome following TBI-associated CSD.

  11. A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep.

    Cona, F; Lacanna, M; Ursino, M


    Cortico-thalamic interactions are known to play a pivotal role in many brain phenomena, including sleep, attention, memory consolidation and rhythm generation. Hence, simple mathematical models that can simulate the dialogue between the cortex and the thalamus, at a mesoscopic level, have a great cognitive value. In the present work we describe a neural mass model of a cortico-thalamic module, based on neurophysiological mechanisms. The model includes two thalamic populations (a thalamo-cortical relay cell population, TCR, and its related thalamic reticular nucleus, TRN), and a cortical column consisting of four connected populations (pyramidal neurons, excitatory interneurons, inhibitory interneurons with slow and fast kinetics). Moreover, thalamic neurons exhibit two firing modes: bursting and tonic. Finally, cortical synapses among pyramidal neurons incorporate a disfacilitation mechanism following prolonged activity. Simulations show that the model is able to mimic the different patterns of rhythmic activity in cortical and thalamic neurons (beta and alpha waves, spindles, delta waves, K-complexes, slow sleep waves) and their progressive changes from wakefulness to deep sleep, by just acting on modulatory inputs. Moreover, simulations performed by providing short sensory inputs to the TCR show that brain rhythms during sleep preserve the cortex from external perturbations, still allowing a high cortical activity necessary to drive synaptic plasticity and memory consolidation. In perspective, the present model may be used within larger cortico-thalamic networks, to gain a deeper understanding of mechanisms beneath synaptic changes during sleep, to investigate the specific role of brain rhythms, and to explore cortical synchronization achieved via thalamic influences.

  12. Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals.

    Klein, Denise; Mok, Kelvin; Chen, Jen-Kai; Watkins, Kate E


    We examined the effects of learning a second language (L2) on brain structure. Cortical thickness was measured in the MRI datasets of 22 monolinguals and 66 bilinguals. Some bilingual subjects had learned both languages simultaneously (0-3 years) while some had learned their L2 after achieving proficiency in their first language during either early (4-7 years) or late childhood (8-13 years). Later acquisition of L2 was associated with significantly thicker cortex in the left inferior frontal gyrus (IFG) and thinner cortex in the right IFG. These effects were seen in the group comparisons of monolinguals, simultaneous bilinguals and early and late bilinguals. Within the bilingual group, significant correlations between age of acquisition of L2 and cortical thickness were seen in the same regions: cortical thickness correlated with age of acquisition positively in the left IFG and negatively in the right IFG. Interestingly, the monolinguals and simultaneous bilinguals did not differ in cortical thickness in any region. Our results show that learning a second language after gaining proficiency in the first language modifies brain structure in an age-dependent manner whereas simultaneous acquisition of two languages has no additional effect on brain development.

  13. Brain volumes and regional cortical thickness in young females with anorexia nervosa.

    Fuglset, Tone Seim; Endestad, Tor; Hilland, Eva; Bang, Lasse; Tamnes, Christian Krog; Landrø, Nils Inge; Rø, Øyvind


    Anorexia nervosa (AN) is a severe mental illness, with an unknown etiology. Magnetic resonance imaging studies show reduced brain volumes and cortical thickness in patients compared to healthy controls. However, findings are inconsistent, especially concerning the anatomical location and extent of the differences. The purpose of this study was to estimate and compare brain volumes and regional cortical thickness in young females with AN and healthy controls. Magnetic resonance imaging data was acquired from young females with anorexia nervosa (n = 23) and healthy controls (n = 28). Two different scanner sites were used. BMI varied from 13.5 to 20.7 within the patient group, and 11 patients had a BMI > 17.5. FreeSurfer was used to estimate brain volumes and regional cortical thickness. There were no differences between groups in total cerebral cortex volume, white matter volume, or lateral ventricle volume. There were also no volume differences in subcortical grey matter structures. However the results showed reduced cortical thickness bilaterally in the superior parietal gyrus, and in the right inferior parietal and superior frontal gyri. The functional significance of the findings is undetermined as the majority of the included patients was already partially weight-restored. We discuss whether these regions could be related to predisposing factors of the illness, or whether they are regions that are more vulnerable to starvation, malnutrition or associated processes in AN.

  14. Measuring Brain Stimulation Induced Changes in Cortical Properties Using TMS-EEG.

    Chung, Sung Wook; Rogasch, Nigel C; Hoy, Kate E; Fitzgerald, Paul B


    Neuromodulatory brain stimulation can induce plastic reorganization of cortical circuits that persist beyond the period of stimulation. Most of our current knowledge about the physiological properties has been derived from the motor cortex. The integration of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a valuable method for directly probing excitability, connectivity and oscillatory dynamics of regions throughout the brain. Offering in depth measurement of cortical reactivity, TMS-EEG allows the evaluation of TMS-evoked components that may act as a marker for cortical excitation and inhibition. A growing body of research is using concurrent TMS and EEG (TMS-EEG) to explore the effects of different neuromodulatory techniques such as repetitive TMS and transcranial direct current stimulation on cortical function, particularly in non-motor regions. In this review, we outline studies examining TMS-evoked potentials and oscillations before and after, or during a single session of brain stimulation. Investigating these studies will aid in our understanding of mechanisms involved in the modulation of excitability and inhibition by neuroplasticity following different stimulation paradigms.

  15. The effect of a gap-junction blocker, carbenoxolone, on ischemic brain injury and cortical spreading depression.

    Tamura, K; Alessandri, B; Heimann, A; Kempski, O


    Cortical spreading depression (CSD) has been shown to cause secondary cell loss in experimental models of brain injury and in patients, and blocking of CSD is a potential neuroprotective strategy. Here we tested the hypothesis that gap junctions affect CSD under physiological conditions as well as infarct development in a rat two-vein occlusion model suited to study pathophysiology of the penumbra (n = 71). We applied the gap junction blocker carbenoxolone (CBX) or saline intra-ventricularly. Interestingly, CBX temporarily increased systemic blood pressure and cortical blood flow (41% and 53%, 15 min after 250 μg CBX). We induced CSD with cortical microinjection of potassium chloride (KCl), counted how many spontaneous CSDs after CSD induction were elicited and measured the propagation velocity. After 250 μg CBX administration, significant 37.5 ± 6.5 additional CSDs were seen. CSD velocity increased significantly after 50 μg and 250 μg CBX. Occlusion of two adjacent cortical veins using Rose Bengal dye and fiberoptic illumination followed by 250 μg CBX or saline showed a significant more than doubling of infarct volumes 7 days after CBX. The current experiments provide evidence that CBX can accelerate the initiation and propagation of CSD suggesting opening of gap junctions is not required for CSD propagation. Blocking gap junctions worsens outcome from focal cerebral ischemia. Hence, measures intended to improve spatial buffering via astroglial gap junctions could have therapeutic potential in disease processes involving CSD. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses.

    Guo, Bing-Bing; Zheng, Xiao-Lin; Lu, Zhen-Gang; Wang, Xing; Yin, Zheng-Qin; Hou, Wen-Sheng; Meng, Ming


    Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.

  17. Your Brain on Art: Emergent Cortical Dynamics During Aesthetic Experiences.

    Kontson, Kimberly L; Megjhani, Murad; Brantley, Justin A; Cruz-Garza, Jesus G; Nakagome, Sho; Robleto, Dario; White, Michelle; Civillico, Eugene; Contreras-Vidal, Jose L


    The brain response to conceptual art was studied with mobile electroencephalography (EEG) to examine the neural basis of aesthetic experiences. In contrast to most studies of perceptual phenomena, participants were moving and thinking freely as they viewed the exhibit The Boundary of Life is Quietly Crossed by Dario Robleto at the Menil Collection-Houston. The brain activity of over 400 subjects was recorded using dry-electrode and one reference gel-based EEG systems over a period of 3 months. Here, we report initial findings based on the reference system. EEG segments corresponding to each art piece were grouped into one of three classes (complex, moderate, and baseline) based on analysis of a digital image of each piece. Time, frequency, and wavelet features extracted from EEG were used to classify patterns associated with viewing art, and ranked based on their relevance for classification. The maximum classification accuracy was 55% (chance = 33%) with delta and gamma features the most relevant for classification. Functional analysis revealed a significant increase in connection strength in localized brain networks while subjects viewed the most aesthetically pleasing art compared to viewing a blank wall. The direction of signal flow showed early recruitment of broad posterior areas followed by focal anterior activation. Significant differences in the strength of connections were also observed across age and gender. This work provides evidence that EEG, deployed on freely behaving subjects, can detect selective signal flow in neural networks, identify significant differences between subject groups, and report with greater-than-chance accuracy the complexity of a subject's visual percept of aesthetically pleasing art. Our approach, which allows acquisition of neural activity "in action and context," could lead to understanding of how the brain integrates sensory input and its ongoing internal state to produce the phenomenon which we term aesthetic experience.

  18. Cortical inputs innervate calbindin-immunoreactive interneurons of the rat basolateral amygdaloid complex.

    Unal, Gunes; Paré, Jean-Francois; Smith, Yoland; Paré, Denis


    The present study was undertaken to shed light on the synaptic organization of the rat basolateral amygdala (BLA). The BLA contains multiple types of GABAergic interneurons that are differentially connected with extrinsic afferents and other BLA cells. Previously, it was reported that parvalbumin immunoreactive (PV(+) ) interneurons receive strong excitatory inputs from principal BLA cells but very few cortical inputs, implying a prevalent role in feedback inhibition. However, because prior physiological studies indicate that cortical afferents do trigger feedforward inhibition in principal cells, the present study aimed to determine whether a numerically important subtype of interneurons, expressing calbindin (CB(+) ), receives cortical inputs. Rats received injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) in the perirhinal cortex or adjacent temporal neocortex. Light and electron microscopic observations of the relations between cortical inputs and BLA neurons were performed in the lateral (LA) and basolateral (BL) nuclei. Irrespective of the injection site (perirhinal or temporal neocortex) and target nucleus (LA or BL), ~90% of cortical axon terminals formed asymmetric synapses with dendritic spines of principal BLA neurons, while 10% contacted the dendritic shafts of presumed interneurons, half of which were CB(+) . Given the previously reported pattern of CB coexpression among GABAergic interneurons of the BLA, these results suggest that a subset of PV-immunonegative cells that express CB, most likely the somatostatin-positive interneurons, are important mediators of cortically evoked feedforward inhibition in the BLA.

  19. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons.

    Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong


    Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.

  20. A quantitative in-vivo MR imaging study of brain dehydration in diabetic rats and rats treated with peptide hormones.

    Haraldseth, O; Jones, R A; Skottner, A


    The main aim of the study was to evaluate the combination of quantitative diffusion, T2 and Magnetisation Transfer Imaging of brain water homeostasis using untreated diabetes as an animal model of brain dehydration. In addition, experimental groups of diabetic rats treated with insulin and insulin-like growth factor (IGF-I) and normal rats treated with IGF-I and growth hormone were studied using the same MR imaging protocol. Untreated diabetes caused weight reduction and an increase in water intake, indicating a general body dehydration linked to chronic blood hyperosmolarity. In the investigated cortical gray matter untreated diabetes caused a significant reduction in the apparent diffusion coefficient of water (ADC) and an increase in T2 relaxtivity (R2) when compared to a control group. No significant changes were observed for the calculated magnetisation transfer parameters Kfor and T1sat. Both ADC and R2 normalized after appropriate insulin treatment whereas only ADC was normalized after IGF-I treatment. IGF-I treatment of normal rats caused significantly higher rate of increase in body weight compared to normal controls. There were, however, no significant changes in ADC, R2 nor the magnetisation transfer parameters measured in the cortical gray matter of the IGF-I treated normal rats. In conclusion, we found that changes in brain water homeostasis during diabetes were detected by quantitative MR imaging, and that the dehydration induced by diabetes was normalized by insulin treatment but not by IGF-I.

  1. Oxytocin biotransformation in the rat limbic brain

    Burbach, J.P.H.; Schotman, P.; Kloet, E.R. de


    Two peptide fragments of oxytocin were isolated by high-pressure liquid chromatography from digests of oxytocin obtained after exposure to a SPM preparation of the rat limbic brain. The structures of these peptides, being Gln-Asn-Cys(O)x-Pro-Leu-GlyNH2 and Gln-Asn-Cys(-S-S-Cys)-Pro-Leu-GlyNH2, were

  2. Neuroglobin in the rat brain: localization

    Hundahl, Christian Ansgar; Allen, Gregg C; Nyengaard, Jens Randel


    in the rat brain using immunohistochemistry, in situ hybridization, and quantitative real-time PCR (qRT-PCR). This revealed the interesting finding that Ngb expression is restricted to a few neurone populations, many of which are involved in the sleep-wake cycle, circadian regulation or food regulation...

  3. Correlations between brain cortical thickness and cutaneous pain thresholds are atypical in adults with migraine.

    Todd J Schwedt

    Full Text Available BACKGROUND/OBJECTIVE: Migraineurs have atypical pain processing, increased expectations for pain, and hypervigilance for pain. Recent studies identified correlations between brain structure and pain sensation in healthy adults. The objective of this study was to compare cortical thickness-to-pain threshold correlations in migraineurs to healthy controls. We hypothesized that migraineurs would have aberrant relationships between the anatomical neurocorrelates of pain processing and pain thresholds. METHODS: Pain thresholds to cutaneously applied heat were determined for 31 adult migraineurs and 32 healthy controls. Cortical thickness was determined from magnetic resonance imaging T1-weighted sequences. Regional cortical thickness-to-pain threshold correlations were determined for migraineurs and controls separately using a general linear model whole brain vertex-wise analysis. A pain threshold-by-group interaction analysis was then conducted to estimate regions where migraineurs show alterations in the pain threshold-to-cortical thickness correlations relative to healthy controls. RESULTS: Controls had negative correlations (p<0.01 uncorrected between pain thresholds and cortical thickness in left posterior cingulate/precuneus, right superior temporal, right inferior parietal, and left inferior temporal regions, and a negative correlation (p<0.01 Monte Carlo corrected with a left superior temporal/inferior parietal region. Migraineurs had positive correlations (p<0.01 uncorrected between pain thresholds and cortical thickness in left superior temporal/inferior parietal, right precuneus, right superior temporal/inferior parietal, and left inferior parietal regions. Cortical thickness-to-pain threshold correlations differed between migraine and control groups (p<0.01 uncorrected for right superior temporal/inferior parietal, right precentral, left posterior cingulate/precuneus, and right inferior parietal regions and (p<0.01 Monte Carlo corrected

  4. Cortical stimulation and tooth pulp evoked potentials in rats: a model of direct anti-nociception.

    Rusina, Robert; Barek, Stephane; Vaculin, Simon; Azérad, Jean; Rokyta, Richard


    While the effect of cortex stimulation on pain control is widely accepted, its physiological basis remains poorly understood. We chose an animal model of pain to study the influence of sensorimotor cortex stimulation on tooth pulp stimulation evoked potentials (TPEPs). Fifteen awake rats implanted with tooth pulp, cerebral cortex, and digastric muscle electrodes were divided into three groups, receiving 60 Hz, 40 Hz and no cortical stimulation, respectively. TPEPs were recorded before, one, three and five hours after continuous stimulation. We observed an inverse relationship between TPEP amplitude and latency with increasing tooth pulp stimulation. The amplitudes of the early components of TPEPs increased and their latency decreased with increasing tooth pulp stimulation intensity. Cortical stimulation decreased the amplitude of TPEPs; however, neither the latencies of TPEPs nor the jaw-opening reflex were changed after cortical stimulation. The decrease in amplitude of TPEPs after cortical stimulation may reflect its anti-nociceptive effect.

  5. Circumventing the blood-brain barrier: Local delivery of cyclosporin A stimulates stem cells in stroke-injured rat brain.

    Tuladhar, Anup; Morshead, Cindi M; Shoichet, Molly S


    Drug delivery to the central nervous system is limited by the blood-brain barrier, which can be circumvented by local delivery. In applications of stroke therapy, for example, stimulation of endogenous neural stem/progenitor cells (NSPCs) by cyclosporin A (CsA) is promising. However, current strategies rely on high systemic drug doses to achieve small amounts of CsA in the brain tissue, resulting in systemic toxicity and undesirable global immunosuppression. Herein we describe the efficacy of local CsA delivery to the stroke-injured rat brain using an epi-cortically injected hydrogel composed of hyaluronan and methylcellulose (HAMC). CsA was encapsulated in poly(lactic-co-glycolic acid) microparticles dispersed in HAMC, allowing for its sustained release over 14days in vivo. Tissue penetration was sufficient to provide sustained CsA delivery to the sub-cortical NSPC niche. In comparison to systemic delivery using an osmotic minipump, HAMC achieved higher CsA concentrations in the brain while significantly reducing drug exposure in other organs. HAMC alone was beneficial in the stroke-injured rat brain, significantly reducing the stroke infarct volume relative to untreated stroke-injured controls. The combination of HAMC and local CsA release increased the number of proliferating cells in the lateral ventricles - the NSPC niche in the adult brain. Thus, we demonstrate a superior method of drug delivery to the rat brain that provides dual benefits of tissue protection and endogenous NSPC stimulation after stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Reproducibility of brain-cognition relationships using three cortical surface-based protocols: An exhaustive analysis based on cortical thickness.

    Martínez, Kenia; Madsen, Sarah K; Joshi, Anand A; Joshi, Shantanu H; Román, Francisco J; Villalon-Reina, Julio; Burgaleta, Miguel; Karama, Sherif; Janssen, Joost; Marinetto, Eugenio; Desco, Manuel; Thompson, Paul M; Colom, Roberto


    People differ in their cognitive functioning. This variability has been exhaustively examined at the behavioral, neural and genetic level to uncover the mechanisms by which some individuals are more cognitively efficient than others. Studies investigating the neural underpinnings of interindividual differences in cognition aim to establish a reliable nexus between functional/structural properties of a given brain network and higher order cognitive performance. However, these studies have produced inconsistent results, which might be partly attributed to methodological variations. In the current study, 82 healthy young participants underwent MRI scanning and completed a comprehensive cognitive battery including measurements of fluid, crystallized, and spatial intelligence, along with working memory capacity/executive updating, controlled attention, and processing speed. The cognitive scores were obtained by confirmatory factor analyses. T1 -weighted images were processed using three different surface-based morphometry (SBM) pipelines, varying in their degree of user intervention, for obtaining measures of cortical thickness (CT) across the brain surface. Distribution and variability of CT and CT-cognition relationships were systematically compared across pipelines and between two cognitively/demographically matched samples to overcome potential sources of variability affecting the reproducibility of findings. We demonstrated that estimation of CT was not consistent across methods. In addition, among SBM methods, there was considerable variation in the spatial pattern of CT-cognition relationships. Finally, within each SBM method, results did not replicate in matched subsamples.

  7. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons

    Ullah Ikram


    -induced neuronal apoptosis in primary rat cortical neurons. The collective data demonstrated that Met and TQ have the potential to ameliorate ethanol neurotoxicity and revealed a possible protective target mechanism for the damaging effects of ethanol during early brain development.

  8. Cortical modulations increase in early sessions with brain-machine interface.

    Miriam Zacksenhouse

    Full Text Available BACKGROUND: During planning and execution of reaching movements, the activity of cortical motor neurons is modulated by a diversity of motor, sensory, and cognitive signals. Brain-machine interfaces (BMIs extract part of these modulations to directly control artificial actuators. However, cortical modulations that emerge in the novel context of operating the BMI are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we analyzed the changes in neuronal modulations that occurred in different cortical motor areas as monkeys learned to use a BMI to control reaching movements. Using spike-train analysis methods we demonstrate that the modulations of the firing-rates of cortical neurons increased abruptly after the monkeys started operating the BMI. Regression analysis revealed that these enhanced modulations were not correlated with the kinematics of the movement. The initial enhancement in firing rate modulations declined gradually with subsequent training in parallel with the improvement in behavioral performance. CONCLUSIONS/SIGNIFICANCE: We conclude that the enhanced modulations are related to computational tasks that are significant especially in novel motor contexts. Although the function and neuronal mechanism of the enhanced cortical modulations are open for further inquiries, we discuss their potential role in processing execution errors and representing corrective or explorative activity. These representations are expected to contribute to the formation of internal models of the external actuator and their decoding may facilitate BMI improvement.

  9. Spatial and temporal variations of cortical growth during gyrogenesis in the developing ferret brain.

    Knutsen, Andrew K; Kroenke, Christopher D; Chang, Yulin V; Taber, Larry A; Bayly, Philip V


    Spatial and temporal variations in cortical growth were studied in the neonatal ferret to illuminate the mechanisms of folding of the cerebral cortex. Cortical surface representations were created from magnetic resonance images acquired between postnatal day 4 and 35. Global measures of shape (e.g., surface area, normalized curvature, and sulcal depth) were calculated. In 2 ferrets, relative cortical growth was calculated between surfaces created from in vivo images acquired at P14, P21, and P28. The isocortical surface area transitions from a slower (12.7 mm(2)/day per hemisphere) to a higher rate of growth (36.7 mm(2)/day per hemisphere) approximately 13 days after birth, which coincides with the time of transition from neuronal proliferation to cellular morphological differentiation. Relative cortical growth increases as a function of relative geodesic distance from the origin of the transverse neurogenetic gradient and is related to the change in fractional diffusion anisotropy over the same time period. The methods presented here can be applied to study cortical growth during development in other animal models or human infants. Our results provide a quantitative spatial and temporal description of folding in cerebral cortex of the developing ferret brain, which will be important to understand the underlying mechanisms that drive folding.

  10. A proteomic survey of rat cerebral cortical synaptosomes.

    Witzmann, Frank A; Arnold, Randy J; Bai, Fengju; Hrncirova, Petra; Kimpel, Mark W; Mechref, Yehia S; McBride, William J; Novotny, Milos V; Pedrick, Nathan M; Ringham, Heather N; Simon, Jay R


    Previous findings from our laboratory and others indicate that two-dimensional gel electrophoresis (2-DE) can be used to study protein expression in defined brain regions, but mainly the proteins which are present in high abundance in glia are readily detected. The current study was undertaken to determine the protein profile in a synaptosomal subcellular fraction isolated from the cerebral cortex of the rat. Both 2-DE and liquid chromatography - tandem mass spectrometry (LC-MS/MS) procedures were used to isolate and identify proteins in the synaptosomal fraction and accordingly >900 proteins were detected using 2-DE; the 167 most intense gel spots were isolated and identified with matrix-assisted laser desorption/ionization - time of flight peptide mass fingerprinting or LC-MS/MS. In addition, over 200 proteins were separated and identified with the LC-MS/MS "shotgun proteomics" technique, some in post-translationally modified form. The following classes of proteins associated with synaptic function were detected: (a) proteins involved in synaptic vesicle trafficking-docking (e.g., SNAP-25, synapsin I and II, synaptotagmin I, II, and V, VAMP-2, syntaxin 1A and 1B, etc.); (b) proteins that function as transporters or receptors (e.g., excitatory amino acid transporters 1 and 2, GABA transporter 1); (c) proteins that are associated with the synaptic plasma membrane (e.g., post-synaptic density-95/synapse-associated protein-90 complex, neuromodulin (GAP-43), voltage-dependent anion-selective channel protein (VDACs), sodium-potassium ATPase subunits, alpha 2 spectrin, septin 7, etc.); and (d) proteins that mediate intracellular signaling cascades that modulate synaptic function (e.g., calmodulin, calcium-calmodulin-dependent protein kinase subunits, etc.). Other identified proteins are associated with mitochondrial or general cytosolic function. Of the two proteins identified as endoplasmic reticular, both interact with the synaptic SNARE complex to regulate vesicle

  11. Changes in Mice Brain Spontaneous Electrical Activity during Cortical Spreading Depression due to Mobile Phone Radiation

    Sallam, Samera M.; Mohamed, Ehab I.; Dawood, Abdel-Fattah B.


    The objective of the present study was to investigate changes in spontaneous EEG activity during cortical spreading depression (CSD) in mice brain. The cortical region of anaesthetized mice were exposed to the electromagnetic fields (EMFs) emitted from a mobile phone (MP, 935.2-960.2 MHz, 41.8 mW/cm2). The effect of EMFs on EEG was investigated before and after exposure to different stimuli (MP, 2% KCl, and MP & 2% KCl). The records of brain spontaneous EEG activity, slow potential changes (SPC), and spindle shaped firings were obtained through an interfaced computer. The results showed increases in the amplitude of evoked spindles by about 87%, 17%, and 226% for MP, 2% KCl, and MP & 2% KCl; respectively, as compared to values for the control group. These results showed that the evoked spindle is a more sensitive indicator of the effect of exposure to EMFs from MP. PMID:23675079

  12. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)


    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  13. The effect of different intensities of treadmill exercise on cognitive function deficit following a severe controlled cortical impact in rats.

    Shen, Xiafeng; Li, Aiping; Zhang, Yuling; Dong, Xiaomin; Shan, Tian; Wu, Yi; Jia, Jie; Hu, Yongshan


    Exercise has been proposed for the treatment of traumatic brain injury (TBI). However, the proper intensity of exercise in the early phase following a severe TBI is largely unknown. To compare two different treadmill exercise intensities on the cognitive function following a severe TBI in its early phase, rats experienced a controlled cortical impact (CCI) and were forced to treadmill exercise for 14 days. The results revealed that the rats in the low intensity exercise group had a shorter latency to locate a platform and a significantly better improvement in spatial memory in the Morris water maze (MWM) compared to the control group (p exercise group showed a longer latency and a mild improvement in spatial memory compared to the control group rats in the MWM; however, this difference was not statistically significant (p > 0.05). The brain-derived neurotrophic factor (BDNF) and p-CREB protein levels in the contralateral hippocampus were increased significantly in the low intensity exercise group. Our results suggest that 2 weeks of low intensity of treadmill exercise is beneficial for improving cognitive function and increasing hippocampal BDNF expression after a severe TBI in its early phase.

  14. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents.

    Insausti, R; Herrero, M T; Witter, M P


    The origins and terminations of entorhinal cortical projections in the rat were analyzed in detail with retrograde and anterograde tracing techniques. Retrograde fluorescent tracers were injected in different portions of olfactory, medial frontal (infralimbic and prelimbic areas), lateral frontal (motor area), temporal (auditory), parietal (somatosensory), occipital (visual), cingulate, retrosplenial, insular, and perirhinal cortices. Anterograde tracer injections were placed in various parts of the rat entorhinal cortex to demonstrate the laminar and topographical distribution of the cortical projections of the entorhinal cortex. The retrograde experiments showed that each cortical area explored receives projections from a specific set of entorhinal neurons, limited in number and distribution. By far the most extensive entorhinal projection was directed to the perirhinal cortex. This projection, which arises from all layers, originates throughout the entorhinal cortex, although its major origin is from the more lateral and caudal parts of the entorhinal cortex. Projections to the medial frontal cortex and olfactory structures originate largely in layers II and III of much of the intermediate and medial portions of the entorhinal cortex, although a modest component arises from neurons in layer V of the more caudal parts of the entorhinal cortex. Neurons in layer V of an extremely laterally located strip of entorhinal cortex, positioned along the rhinal fissure, give rise to the projections to lateral frontal (motor), parietal (somatosensory), temporal (auditory), occipital (visual), anterior insular, and cingulate cortices. Neurons in layer V of the most caudal part of the entorhinal cortex originate projections to the retrosplenial cortex. The anterograde experiments confirmed these findings and showed that in general, the terminal fields of the entorhinal-cortical projections were densest in layers I, II, and III, although particularly in the more densely

  15. Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons.

    Di Loreto, Silvia; Falone, Stefano; Caracciolo, Valentina; Sebastiani, Pierluigi; D'Alessandro, Antonella; Mirabilio, Alessandro; Zimmitti, Vincenzo; Amicarelli, Fernanda


    Large research activity has raised around the mechanisms of interaction between extremely low-frequency magnetic fields (ELF-MFs) and biological systems. ELF-MFs may interfere with chemical reactions involving reactive oxygen species (ROS), thus facilitating oxidative damages in living cells. Cortical neurons are particularly susceptible to oxidative stressors and are also highly dependent on the specific factors and proteins governing neuronal development, activity and survival. The aim of the present work was to investigate the effects of exposures to two different 50 Hz sinusoidal ELF-MFs intensities (0.1 and 1 mT) in maturing rat cortical neurons' major anti-oxidative enzymatic and non-enzymatic cellular protection systems, membrane peroxidative damage, as well as growth factor, and cytokine expression pattern. Briefly, our results showed that ELF-MFs affected positively the cell viability and concomitantly reduced the levels of apoptotic death in rat neuronal primary cultures, with no significant effects on the main anti-oxidative defences. Interestingly, linear regression analysis suggested a positive correlation between reduced glutathione (GSH) and ROS levels in 1 mT MF-exposed cells. On this basis, our hypothesis is that GSH could play an important role in the antioxidant defence towards the ELF-MF-induced redox challenge. Moreover, the GSH-based cellular response was achieved together with a brain-derived neurotrophic factor over-expression as well as with the interleukin 1beta-dependent regulation of pro-survival signaling pathways after ELF-MF exposure.

  16. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping


    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  17. Chronic monitoring of cortical hemodynamics in behaving, freely-moving rats using a miniaturized head-mounted optical microscope

    Sigal, Iliya; Gad, Raanan; Koletar, Margaret; Ringuette, Dene; Stefanovic, Bojana; Levi, Ofer


    Growing interest within the neurophysiology community in assessing healthy and pathological brain activity in animals that are awake and freely-behaving has triggered the need for optical systems that are suitable for such longitudinal studies. In this work we report label-free multi-modal imaging of cortical hemodynamics in the somatosensory cortex of awake, freely-behaving rats, using a novel head-mounted miniature optical microscope. The microscope employs vertical cavity surface emitting lasers (VCSELs) at three distinct wavelengths (680 nm, 795 nm, and 850 nm) to provide measurements of four hemodynamic markers: blood flow speeds, HbO, HbR, and total Hb concentration, across a > 2 mm field of view. Blood flow speeds are extracted using Laser Speckle Contrast Imaging (LSCI), while oxygenation measurements are performed using Intrinsic Optical Signal Imaging (IOSI). Longitudinal measurements on the same animal are made possible over the course of > 6 weeks using a chronic window that is surgically implanted into the skull. We use the device to examine changes in blood flow and blood oxygenation in superficial cortical blood vessels and tissue in response to drug-induced absence-like seizures, correlating motor behavior with changes in blood flow and blood oxygenation in the brain.

  18. Amphetamine administration improves neurochemical outcome of lateral fluid percussion brain injury in the rat.

    Dhillon, H S; Dose, J M; Prasad, R M


    This study examined the effects of the administration of D-amphetamine on the regional accumulation of lactate and free fatty acids (FFAs) after lateral fluid percussion (FP) brain injury in the rat. Rats were subjected to either FP brain injury of moderate severity (1.9 to 2.0 atm) or sham operation. At 5 min after injury, rats were treated with either d-amphetamine (4 mg/kg, i.p.) or saline. At 30 min and 60 min after brain injury, brains were frozen in situ, and cortices and hippocampi were excised at 0 degrees C. In the saline-treated brain injured rats, levels of lactate were increased in the ipsilateral left cortex and hippocampus at 30 min and 60 min after injury. These increases were attenuated by the administration of D-amphetamine at 5 min after lateral FP brain injury. At 30 and 60 min after FP brain injury, increases in the levels of all individual FFAs (palmitic, stearic, oleic and arachidonic acids) and of total FFAs were also observed in the ipsilateral cortex of the saline-treated injured rats. These increases in the ipsilateral cortex and hippocampus were also attenuated by the administration of d-amphetamine. Neither levels of lactate nor levels of FFAs were increased in the contralateral cortex in the saline-treated injured rats at 30 min or 60 min after FP brain injury. The levels of lactate and FFAs in the contralateral cortex were also unaffected by the administration of D-amphetamine. These results suggest that the attenuation of increases in the levels of lactate and FFAs in the ipsilateral cortex and hippocampus may be involved in the amphetamine-induced improvement in behavioral outcome after lateral FP brain injury.

  19. Effects of Dimeric PSD-95 Inhibition on Excitotoxic Cell Death and Outcome After Controlled Cortical Impact in Rats.

    Sommer, Jens Bak; Bach, Anders; Malá, Hana; Gynther, Mikko; Bjerre, Ann-Sofie; Gram, Marie Gajhede; Marschner, Linda; Strømgaard, Kristian; Mogensen, Jesper; Pickering, Darryl S


    Therapeutic effects of PSD-95 inhibition have been demonstrated in numerous studies of stroke; however only few studies have assessed the effects of PSD-95 inhibitors in traumatic brain injury (TBI). As the pathophysiology of TBI partially overlaps with that of stroke, PSD-95 inhibition may also be an effective therapeutic strategy in TBI. The objectives of the present study were to assess the effects of a dimeric inhibitor of PSD-95, UCCB01-144, on excitotoxic cell death in vitro and outcome after experimental TBI in rats in vivo. In addition, the pharmacokinetic parameters of UCCB01-144 were investigated in order to assess uptake of the drug into the central nervous system of rats. After a controlled cortical impact rats were randomized to receive a single injection of either saline or two different doses of UCCB01-144 (10 or 20 mg/kg IV) immediately after injury. Spatial learning and memory were assessed in a water maze at 2 weeks post-trauma, and at 4 weeks lesion volumes were estimated. Overall, UCCB01-144 did not protect against NMDA-toxicity in neuronal cultures or experimental TBI in rats. Important factors that should be investigated further in future studies assessing the effects of PSD-95 inhibitors in TBI are discussed.

  20. Cortical thickness maturation and duration of music training: health-promoting activities shape brain development.

    Hudziak, James J; Albaugh, Matthew D; Ducharme, Simon; Karama, Sherif; Spottswood, Margaret; Crehan, Eileen; Evans, Alan C; Botteron, Kelly N


    To assess the extent to which playing a musical instrument is associated with cortical thickness development among healthy youths. Participants were part of the National Institutes of Health (NIH) Magnetic Resonance Imaging (MRI) Study of Normal Brain Development. This study followed a longitudinal design such that participants underwent MRI scanning and behavioral testing on up to 3 separate visits, occurring at 2-year intervals. MRI, IQ, and music training data were available for 232 youths (334 scans), ranging from 6 to 18 years of age. Cortical thickness was regressed against the number of years that each youth had played a musical instrument. Next, thickness was regressed against an "Age × Years of Playing" interaction term. Age, gender, total brain volume, and scanner were controlled for in analyses. Participant ID was entered as a random effect to account for within-person dependence. False discovery rate correction was applied (p ≤ .05). There was no association between thickness and years playing a musical instrument. The "Age × Years of Playing" interaction was associated with thickness in motor, premotor, and supplementary motor cortices, as well as prefrontal and parietal cortices. Follow-up analysis revealed that music training was associated with an increased rate of thickness maturation. Results were largely unchanged when IQ and handedness were included as covariates. Playing a musical instrument was associated with more rapid cortical thickness maturation within areas implicated in motor planning and coordination, visuospatial ability, and emotion and impulse regulation. However, given the quasi-experimental nature of this study, we cannot rule out the influence of confounding variables. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation.

    Paul A Muller

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a widely-used method for modulating cortical excitability in humans, by mechanisms thought to involve use-dependent synaptic plasticity. For example, when low frequency rTMS (LF rTMS is applied over the motor cortex, in humans, it predictably leads to a suppression of the motor evoked potential (MEP, presumably reflecting long-term depression (LTD -like mechanisms. Yet how closely such rTMS effects actually match LTD is unknown. We therefore sought to (1 reproduce cortico-spinal depression by LF rTMS in rats, (2 establish a reliable animal model for rTMS effects that may enable mechanistic studies, and (3 test whether LTD-like properties are evident in the rat LF rTMS setup. Lateralized MEPs were obtained from anesthetized Long-Evans rats. To test frequency-dependence of LF rTMS, rats underwent rTMS at one of three frequencies, 0.25, 0.5, or 1 Hz. We next tested the dependence of rTMS effects on N-methyl-D-aspartate glutamate receptor (NMDAR, by application of two NMDAR antagonists. We find that 1 Hz rTMS preferentially depresses unilateral MEP in rats, and that this LTD-like effect is blocked by NMDAR antagonists. These are the first electrophysiological data showing depression of cortical excitability following LF rTMS in rats, and the first to demonstrate dependence of this form of cortical plasticity on the NMDAR. We also note that our report is the first to show that the capacity for LTD-type cortical suppression by rTMS is present under barbiturate anesthesia, suggesting that future neuromodulatory rTMS applications under anesthesia may be considered.

  2. Aquaporin 9 in rat brain after severe traumatic brain injury

    Hui Liu


    Full Text Available OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9 in rat brain, after severe traumatic brain injury (TBI. METHODS: Brain water content (BWC, tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC, immunofluorescence (IF, western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest peaks at 6 and 72 hours, and the blood brain barrier (BBB was severely destroyed at six hours after the TBI. The worst brain ischemia occurred at 72 hours after TBI. Widespread AQP9-positive astrocytes and neurons in the hypothalamus were detected by means of IHC and IF after TBI. The abundance of AQP9 and its mRNA increased after TBI and reached two peaks at 6 and 72 hours, respectively, after TBI. CONCLUSIONS: Increased AQP9 might contribute to clearance of excess water and lactate in the early stage of TBI. Widespread AQP9-positive astrocytes might help lactate move into neurons and result in cellular brain edema in the later stage of TBI. AQP9-positive neurons suggest that AQP9 plays a role in energy balance after TBI.

  3. Ultrastructural changes of rat cortical neurons following ligustrazine intervention for cerebral ischemia/reperfusion injury

    Hui Zhang; Jianfeng Dong; Qiuzhen Zhao; Wen Song; Aihua Bo


    BACKGROUND: Ligustrazine can reduce the production of free radicals and the content of malonaldehyde, and improve the enzymatic activity of adenosine-triphosphate in cerebral anoxia. It also can increase the expression of heat shock protein-70 and Bcl-2, thus alleviating brain tissue injury caused by cerebral ischemia/reperfusion. This study aimed to address the question of whether ligustrazine can protect the membrane structure of neurons.OBJECTIVE: To establish rat models of cerebral ischemia/reperfusion, observe the membrane structure and main organelles of neurons with electron microscope after ligustrazine intervention, and to analyze the dose-dependent effects of ligustrazine on neuronal changes.DESIGN: Arandomized controlled study.SETTING: Department of Anatomy Research and Electron Microscopy, Hebei North University. MATERIALS: Forty Wistar rats of SPS grade, weighing 180–250 g and equal proportion of female and male, were provided by Hebei Medical University Animal Center (No. 060126). The ligustrazine injection (40 g/L, No. 05012) was produced by Beijing Yongkang Yaoye. LKB4 Ultramicrotome was purchased from LKB Company in Sweden. JEM100CXII electron microscope was purchased from JEOL in Japan.METHODS: The experiment was performed in the Laboratory of the Department of Anatomy and Electron Microscopy, Hebei North University from June to August 2006. ① Wistar rats were allowed to adapt for 3 days, and were then randomly divided into four groups, according to the numeration table method: normal group, model group, low-dose ligustrazine group, and high-dose ligustrazine group. There were 10 rats in each group. ②Rats in the model group, low-dose ligustrazine group, and high-dose ligustrazine group un-derwent cerebral ischemia/reperfusion model, according to Bannister's method. The carotid artery was opened for reperfusion after 90 minutes of cerebral ischemia. Samples were collected from the cerebral cor-tex after 24 hours. Animals from the ligustrazine

  4. Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome.

    Tanja Karen

    Full Text Available BACKGROUND: Propofol is commonly used as sedative in newborns and children. Recent experimental studies led to contradictory results, revealing neurodegenerative or neuroprotective properties of propofol on the developing brain. We investigated neurodevelopmental short- and long-term effects of neonatal propofol treatment. METHODS: 6-day-old Wistar rats (P6, randomised in two groups, received repeated intraperitoneal injections (0, 90, 180 min of 30 mg/kg propofol or normal saline and sacrificed 6, 12 and 24 hrs following the first injection. Cortical and thalamic areas were analysed by Western blot and quantitative real-time PCR (qRT-PCR for expression of apoptotic and neurotrophin-dependent signalling pathways. Long-term effects were assessed by Open-field and Novel-Object-Recognition at P30 and P120. RESULTS: Western blot analyses revealed a transient increase of activated caspase-3 in cortical, and a reduction of active mitogen-activated protein kinases (ERK1/2, AKT in cortical and thalamic areas. qRT-PCR analyses showed a down-regulation of neurotrophic factors (BDNF, NGF, NT-3 in cortical and thalamic regions. Minor impairment in locomotive activity was observed in propofol treated adolescent animals at P30. Memory or anxiety were not impaired at any time point. CONCLUSION: Exposing the neonatal rat brain to propofol induces acute neurotrophic imbalance and neuroapoptosis in a region- and time-specific manner and minor behavioural changes in adolescent animals.

  5. Prostaglandin E2 Increased Rat Cortical Bone Mass When Administered Immediately Following Ovariectomy

    Ke, Hua Zhu; Jee, Webster S.S.; Zeng, Qing Qiang; Li, Mei; Lin, Bai Yun


    To investigate the effects of ovariectomy and the simultaneous administration of prostaglandin E2 (PGE2) on rat tibial shaft cortical bone histomorphometry, thirty-five 3 month-old female Sprague-Dawley rats were either ovariectomized (OVX), or sham ovariectomy (sham-OVX). The OVX rats were divided into three groups and treated with 0, 1 and 6 mg PGE2/kg/day for 90 days. The double fluorescent labeled undecalcified tibial shaft cross sections (proximal to the tibiofibular junction) of all the subjects were used for histomorphometry analysis. No differences in cross-sectional area and cortical bone area were found between sham-OVX and OVX controls, but OVX increased marrow area, intracortical porosity area and endocortical eroded perimeter. Periosteal and endocortical bone formation rates decreased with aging yet OVX prevented these changes. These OVX-induced increases in marrow area and endocortical eroded perimeter were prevented by 1 mg PGE2/kg/day treatment and added bone to periosteal and endocortical surfaces and to the marrow cavity. At the 6 mg/kg/day dose level, PGE2-treated OVX rats increased total tissue area, cortical bone area, marrow trabmular bone area, minimal cortical width and intracortical porosity area, and decreased marrow area compared to basal, sham-OVX and OVX controls. In addition, periosteal bone formation was elevated in the 6 mg PGE2/kg/day-treated OVX rats compared to OVX controls. Endocortical eroded perimeter increased from basal and sham-OVX control levels, but decreased from OVX control levels in the 6 mg PGE2/kg/day-treated OVX rats. Our study confirmed that ovariectomy does not cause osteopenia in tibial shaft cortical bone in rats, but it does stimulate endocortical bone resorption and enlarges marrow area. The new findings from the present study demonstrate that PGE2 prevents the OVX-induced increases in endocortical bone resorption and marrow area and adds additional bone to periosteal and endocortical surfaces and to marrow

  6. 101 labeled brain images and a consistent human cortical labeling protocol

    Arno eKlein


    Full Text Available We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The Desikan-Killiany-Tourville (DKT protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the website.

  7. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.

    Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M


    Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception.

  8. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation

    Alireza eGharabaghi


    Full Text Available Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.

  9. Functional localization of the cortical motor area in the brain Electrocorticogram analysis

    Tao Jiang; Xiaoming Wu; Binggang Ye; Sijuan Huang


    The method for rapidly,precisely and non-invasively localizing functional regions of the brain is a problem in neuromedicine research.Cortical electrostimulation is the optimal localization method during brain surgery,with a degree of accuracy of approximately 5 mm.However,electrostimulation can damage the cerebral cortex,trigger epilepsy,and extend the operation time.Studies are required to determine whether cortical motor regions can be localized by wavelet analysis from electrocorticograms.In this study,based on wavelet analysis of electrocorticograms,a selection of algorithms for classification of the mu rhythm in the motor regions utilizing experimental data was verified.Results demonstrated that a characteristic quantity of energy ratio in the reconstructed signal was filtered in the d6(7.81-15.62 Hz)band prior to and following motion events.A characteristic threshold was considered to be 40%.The accuracy of localization detection was 93%.The degree of accuracy was less than 5 mm.The present study avoided the problems of cerebral cortex injury and epilepsy onset,with an operation time of 60 seconds.Therefore,wavelet analysis on electrocorticogram is feasible for localizing cortical motor regions.Furthermore,this localization technique is accurate,safe and rapid.

  10. Assessment of quantitative cortical biomarkers in the developing brain of preterm infants

    Moeskops, Pim; Benders, Manon J. N. L.; Pearlman, Paul C.; Kersbergen, Karina J.; Leemans, Alexander; Viergever, Max A.; Išgum, Ivana


    The cerebral cortex rapidly develops its folding during the second and third trimester of pregnancy. In preterm birth, this growth might be disrupted and influence neurodevelopment. The aim of this work is to extract quantitative biomarkers describing the cortex and evaluate them on a set of preterm infants without brain pathology. For this study, a set of 19 preterm - but otherwise healthy - infants scanned coronally with 3T MRI at the postmenstrual age of 30 weeks were selected. In ten patients (test set), the gray and white matter were manually annotated by an expert on the T2-weighted scans. Manual segmentations were used to extract cortical volume, surface area, thickness, and curvature using voxel-based methods. To compute these biomarkers per region in every patient, a template brain image has been generated by iterative registration and averaging of the scans of the remaining nine patients. This template has been manually divided in eight regions, and is transformed to every test image using elastic registration. In the results, gray and white matter volumes and cortical surface area appear symmetric between hemispheres, but small regional differences are visible. Cortical thickness seems slightly higher in the right parietal lobe than in other regions. The parietal lobes exhibit a higher global curvature, indicating more complex folding compared to other regions. The proposed approach can potentially - together with an automatic segmentation algorithm - be applied as a tool to assist in early diagnosis of abnormalities and prediction of the development of the cognitive abilities of these children.

  11. The motor cortical representation of a muscle is not homogeneous in brain connectivity.

    Smith, Jo Armour; Albishi, Alaa; Babikian, Sarine; Asavasopon, Skulpan; Fisher, Beth E; Kutch, Jason J


    Functional connectivity patterns of the motor cortical representational area of single muscles have not been extensively mapped in humans, particularly for the axial musculature. Functional connectivity may provide a neural substrate for adaptation of muscle activity in axial muscles that have both voluntary and postural functions. The purpose of this study was to combine brain stimulation and neuroimaging to both map the cortical representation of the external oblique (EO) in primary motor cortex (M1) and supplementary motor area (SMA), and to establish the resting-state functional connectivity associated with this representation. Motor-evoked potentials were elicited from the EO muscle in stimulation locations encompassing M1 and SMA. The coordinates of locations with the largest motor-evoked potentials were confirmed with task-based fMRI imaging during EO activation. The M1 and SMA components of the EO representation demonstrated significantly different resting-state functional connectivity with other brain regions: the SMA representation of the EO muscle was significantly more connected to the putamen and cerebellum, and the M1 representation of the EO muscle was significantly more connected to somatosensory cortex and the superior parietal lobule. This study confirms the representation of a human axial muscle in M1 and SMA, and demonstrates for the first time that different parts of the cortical representation of a human axial muscle have resting-state functional connectivity with distinct brain regions. Future studies can use the brain regions of interest we have identified here to test the association between resting-state functional connectivity and control of the axial muscles.

  12. Calbindin distribution in cortical and subcortical brain structures of normal and rabies-infected mice.

    Torres-Fernández, Orlando; Yepes, Gloria E; Gómez, Javier E; Pimienta, Hernán J


    Rabies has been an enigmatic disease of the nervous system because microscopic findings in the brain tissue are not paralleled by the severity of the clinical illness. The calcium binding protein calbindin (CB) is a neuronal marker of great interest in neuroanatomy and neuropathology. CB-ir neurons in the striatum and cerebral cortex are gabaergic cells. In the present work CB-immunoreactivity was evaluated in brains of normal and rabies-infected mice. Rabies infection caused loss of CB-immunostaining in the cortical supragranular layers as well as in the striatum. Loss of CB in the brains of mice infected with rabies virus can produce impairment in Ca++ homeostasis and in the gabaergic neurotransmission.

  13. Molecular Correlates of Cortical Network Modulation by Long-Term Sensory Experience in the Adult Rat Barrel Cortex

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.


    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…

  14. Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats

    Kouchi, Hayet Y.; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S.; Bezin, Laurent


    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  15. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    Raafat P Fares

    Full Text Available Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage, which offers: (1 minimally stressful social interactions; (2 increased voluntary exercise; (3 multiple entertaining activities; (4 cognitive stimulation (maze exploration, and (5 novelty (maze configuration changed three times a week. The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.

  16. Clinical significance of ventricular enlargement and cortical atrophy in computed tomography of the brain

    Busse, O.; Agnoli, A.L.; Lippmann, R.; Schuetz, H.J.


    The diagnosis of atrophy of the brain based on the visual interpretation of CT findings appears questionable. In 56 patients there was no correlation between the CT findings of enlarged ventricles and sulci and clinical findings of psychoorganic syndromes. Only the group of 60 to 80 year old patients showed a statistically significant correlation between psychoorganic findings and the area of the lateral ventricles - measured planimetrically - and the diameter of the cella medica, but not the group of the 40 to 60 year old. There was no relationship between the number of cortical sulci and psychopathology. The morphological findings of ventricular enlargement and cortical atrophy in CT - even with exact measurements - do not allow any conclusions in regard to psychoorganic findings.

  17. Effects of coriaria lactone-activated, astrocyte-conditioned medium on estrogen receptor and progesterone receptor expression in rat cortical and hippocampal neurons

    Jie Rong; Shuhua Zhang


    BACKGROUND: Coriaria lactone-activated astrocytes released bioactive substances that eventually caused epilepsy.OBJECTIVE: It has been suggested that activated astrocytes alter the expression of the estrogen receptor and progesterone receptor by releasing bioactive substances during epilepsy, thereby affecting neuronal activity in the brain. This study was designed to observe the expression of the estrogen receptor and the progesterone receptor in rat brain following lateral ventricle injection of coriaria lactone-activated, astrocyte-conditioned medium.DESIGN AND SETTING: This immunohistochemical, randomized, controlled, animal study was conducted at the Department of Pathology, Hospital Affiliated to Binzhou Medical College, China.MATERIAL: Coriaria lactone was provided by Huaxi Pharmaceutical Factory, China.METHODS: Forty adult, healthy, male, Sprague Dawley rats were randomly assigned into two groups. Astrocyte-conditioned medium (10 μL) was injected into rat lateral ventricle in the control group (n = 8). Coriaria lactone-activated, astrocyte-conditioned medium (10 μL) was infused into the rat lateral ventricle in the coriaria lactone group (n = 32). At 2, 4, 8 and 12 hours following injection, rats were sacrificed and subjected to immunohistochemistry. Eight rats were studied at each time point.MAIN OUTCOME MEASURES: Behavioral changes were observed in rats of both groups. Expression of the estrogen receptor and the progesterone receptor in rat cortical and hippocampal neurons was measured using immunohistochemistry.RESULTS: Four hours after injection, estrogen receptor levels in rat cortical and hippocampal neurons were significantly higher in the coriaria lactone group than in the control group (P < 0.05). Progesterone receptor levels were significantly lower in the coriaria lactone group than in the control group (P < 0.05). Seizures were not observed in the control group. In the coriaria lactone group, convulsions appeared 30 minutes after injection

  18. The Effect of Different Intensities of Treadmill Exercise on Cognitive Function Deficit Following a Severe Controlled Cortical Impact in Rats

    Xiafeng Shen


    Full Text Available Exercise has been proposed for the treatment of traumatic brain injury (TBI. However, the proper intensity of exercise in the early phase following a severe TBI is largely unknown. To compare two different treadmill exercise intensities on the cognitive function following a severe TBI in its early phase, rats experienced a controlled cortical impact (CCI and were forced to treadmill exercise for 14 days. The results revealed that the rats in the low intensity exercise group had a shorter latency to locate a platform and a significantly better improvement in spatial memory in the Morris water maze (MWM compared to the control group (p 0.05. The brain-derived neurotrophic factor (BDNF and p-CREB protein levels in the contralateral hippocampus were increased significantly in the low intensity exercise group. Our results suggest that 2 weeks of low intensity of treadmill exercise is beneficial for improving cognitive function and increasing hippocampal BDNF expression after a severe TBI in its early phase.

  19. [Rat brain cells containing ezrin (cytovillin)].

    Korzhevskiĭ, D E; Kirik, O V; Giliarov, A V


    Ezrin (cytovillin or p81 protein) is an actin-binding protein, a member of ERM (ezrin, radixin and moesin) family, which species contribute to stabilization of the plasma membrane-formed structures. The aim of the present study was to demonstrate the ezrin-containing cells in the rat brain and to describe their topography and morphological features. The most pronounced immunohistochemical reaction to ezrin was found in the epithelium of the choroid plexus, cells of the subcommissural organ and ventricular ependyma. Moreover, ezrin staining was also detected in the unidentifiable cells in the subventricular zone, rostral migration pathway and astrocytes in various brain areas. Preferential ezrin localization in the brain cells contributing to formation of barrier structures suggests its involvement in transport processes in the CNS.

  20. K-shell decomposition reveals hierarchical cortical organization of the human brain

    Lahav, Nir; Ksherim, Baruch; Ben-Simon, Eti; Maron-Katz, Adi; Cohen, Reuven; Havlin, Shlomo


    In recent years numerous attempts to understand the human brain were undertaken from a network point of view. A network framework takes into account the relationships between the different parts of the system and enables to examine how global and complex functions might emerge from network topology. Previous work revealed that the human brain features ‘small world’ characteristics and that cortical hubs tend to interconnect among themselves. However, in order to fully understand the topological structure of hubs, and how their profile reflect the brain’s global functional organization, one needs to go beyond the properties of a specific hub and examine the various structural layers that make up the network. To address this topic further, we applied an analysis known in statistical physics and network theory as k-shell decomposition analysis. The analysis was applied on a human cortical network, derived from MRI\\DSI data of six participants. Such analysis enables us to portray a detailed account of cortical connectivity focusing on different neighborhoods of inter-connected layers across the cortex. Our findings reveal that the human cortex is highly connected and efficient, and unlike the internet network contains no isolated nodes. The cortical network is comprised of a nucleus alongside shells of increasing connectivity that formed one connected giant component, revealing the human brain’s global functional organization. All these components were further categorized into three hierarchies in accordance with their connectivity profile, with each hierarchy reflecting different functional roles. Such a model may explain an efficient flow of information from the lowest hierarchy to the highest one, with each step enabling increased data integration. At the top, the highest hierarchy (the nucleus) serves as a global interconnected collective and demonstrates high correlation with consciousness related regions, suggesting that the nucleus might serve as a

  1. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury

    Lauritzen, Martin; Dreier, Jens Peter; Fabricius, Martin


    Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence...... treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves....

  2. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    Lecrux, C; Hamel, E


    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  3. Pharmacological blockade of serotonin 5-HT₇ receptor reverses working memory deficits in rats by normalizing cortical glutamate neurotransmission.

    Pascal Bonaventure

    Full Text Available The role of 5-HT₇ receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT₇ antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg significantly reversed the deficits induced by MK-801 (0.1 mg/kg but augmented the deficit induced by scopolamine (0.06 mg/kg. The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT₇ receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.

  4. Disentangling How the Brain is "Wired" in Cortical (Cerebral) Visual Impairment.

    Merabet, Lotfi B; Mayer, D Luisa; Bauer, Corinna M; Wright, Darick; Kran, Barry S


    Cortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood–brain barrier permeability

    Oláh G


    Full Text Available Gáspár Oláh,1 Judit Herédi,1 Ákos Menyhárt,1 Zsolt Czinege,2 Dávid Nagy,1 János Fuzik,1 Kitti Kocsis,1 Levente Knapp,1 Erika Krucsó,1 Levente Gellért,1 Zsolt Kis,1 Tamás Farkas,1 Ferenc Fülöp,3 Árpád Párdutz,4 János Tajti,4 László Vécsei,4 József Toldi1 1Department of Physiology, Anatomy and Neuroscience, 2Department of Software Engineering, 3Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, 4Department of Neurology and MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary Abstract: Cortical spreading depression (CSD involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA and dizocilpine, on CSD and the related blood–brain barrier (BBB permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid. We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease

  6. Extremely low frequency magnetic fields induce oxidative stress in rat brain.

    Manikonda, Pavan K; Rajendra, Pilankatta; Devendranath, D; Gunasekaran, B; Channakeshava; Aradhya, Shivakumara R S; Sashidhar, Rao B; Subramanyam, Chivukula


    The present investigation was conducted to understand the influence of long-term exposure of rats to extremely low frequency magnetic fields (ELF-MF), focusing on oxidative stress (OS) on different regions of rat's brain. Male Wistar rats (21-day-old) were exposed to ELF-MF (50 Hz; 50 and 100 µT) for 90 days continuously; hippocampal, cerebellar and cortical regions from rats were analyzed for (i) reactive oxygen species (ROS), (ii) metabolites indicative of OS and (iii) antioxidant enzymes. In comparison to control group rats, the rats that were continuously exposed to ELF-MF caused OS and altered glutathione (GSH/GSSG) levels in dose-dependent manner in all the regions of the brain. Accumulation of ROS, lipid peroxidation end products and activity of superoxide dismutase in different regions was in the descending order of cerebellum glutathione peroxidase activity were in the descending order of hippocampus 50 µT. Varied influences observed in different regions of the brain, as documented in this study, may contribute to altered metabolic patterns in its related regions of the central nervous system, leading to aberrant neuronal functions.

  7. Schisandrin B protects rat cortical neurons against Abeta1-42-induced neurotoxicity.

    Wang, Bin; Wang, Xue-Mei


    In the present study, we investigated the neuroprotective effects of schisandrin B on amyloid-beta1-42-induced toxicity and its potential mechanisms in rat cortical neuron cells. Amyloid beta1-42 significantly reduced cell viability and increased apoptosis. Pretreatment with schisandrin B prior to amyloid-beta1-42 exposure significantly elevated cell viability and reduced apoptosis. The anti-apoptotic effect of schisandrin B in rat cortical neurons was mediated by up-regulation of the anti-apoptotic protein Bcl-2 and down-regulation of the pro-apoptotic protein Bax. Schisandrin B also reduced the release of mitochondrial cytochrome c into cytosol and decreased caspase-9 and caspase-3 activities. Furthermore, schisandrin B increased activities of anti-oxidant reduced glutathione and decreased production of oxidative glutathione. Taken together, these results suggest that schisandrin B protected primary cultures of rat cortical cells against amyloid-beta1-42-induced neurotoxicity through anti-apoptosis involved in a mitochondria-mediated pathway and anti-oxidant action. Schisandrin B may represent a potential treatment strategy for Alzheimer's disease.

  8. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.


    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  9. Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains

    Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi


    We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.

  10. Registering cortical surfaces based on whole-brain structural connectivity and continuous connectivity analysis.

    Gutman, Boris; Leonardo, Cassandra; Jahanshad, Neda; Hibar, Derrek; Eschenburg, Kristian; Nir, Talia; Villalon, Julio; Thompson, Paul


    We present a framework for registering cortical surfaces based on tractography-informed structural connectivity. We define connectivity as a continuous kernel on the product space of the cortex, and develop a method for estimating this kernel from tractography fiber models. Next, we formulate the kernel registration problem, and present a means to non-linearly register two brains' continuous connectivity profiles. We apply theoretical results from operator theory to develop an algorithm for decomposing the connectome into its shared and individual components. Lastly, we extend two discrete connectivity measures to the continuous case, and apply our framework to 98 Alzheimer's patients and controls. Our measures show significant differences between the two groups.

  11. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces microglial nitric oxide production and subsequent rat primary cortical neuron apoptosis through p38/JNK MAPK pathway.

    Li, Yuanye; Chen, Gang; Zhao, Jianya; Nie, Xiaoke; Wan, Chunhua; Liu, Jiao; Duan, Zhiqing; Xu, Guangfei


    It has been widely accepted that microglia, which are the innate immune cells in the brain, upon activation can cause neuronal damage. In the present study, we investigated the role of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in regulating microglial nitric oxide production and its role in causing neuronal damage. The study revealed that TCDD stimulates the expression of inducible nitric oxide synthase (iNOS) as well as the production of nitric oxide (NO) in a dose- and time-dependent manner. Further, a rapid activation of p38 and JNK MAPKs was found in HAPI microglia following TCDD treatment. Blockage of p38 and JNK kinases with their specific inhibitors, SB202190 and SP600125, significantly reduced TCDD-induced iNOS expression and NO production. In addition, it was demonstrated through treating rat primary cortical neurons with media conditioned with TCDD treated microglia that microglial iNOS activation mediates neuronal apoptosis. Lastly, it was also found that p38 and JNK MAPK inhibitors could attenuate the apoptosis of rat cortical neurons upon exposure to medium conditioned by TCDD-treated HAPI microglial cells. Based on these observations, we highlight that the p38/JNK MAPK pathways play an important role in TCDD-induced iNOS activation in rat HAPI microglia and in the subsequent induction of apoptosis in primary cortical neurons.

  12. Effect of HDAC inhibitors on neuroprotection and neurite outgrowth in primary rat cortical neurons following ischemic insult.

    Hasan, Mohammad Rakibul; Kim, Ji-Hye; Kim, Youn Jung; Kwon, Kyoung Ja; Shin, Chan Young; Kim, Hahn Young; Han, Seol-Heui; Choi, Dong-Hee; Lee, Jongmin


    Histone deacetylase inhibitors (HDACi)-valproic acid (VPA) and trichostatin A (TSA) promote neurogenesis, neurite outgrowth, synaptic plasticity and neuroprotection. In this study, we investigated whether VPA and TSA promote post-ischemic neuroprotection and neuronal restoration in rat primary cortical neurons. On 6 days in vitro (DIV), cortical neurons were exposed to oxygen-glucose deprivation for 90 min. Cells were returned to normoxic conditions and cultured for 1, 3, or 7 days with or without VPA and TSA. Control cells were cultured in normoxic conditions only. On 7, 9, and 13 DIV, cells were measured neurite outgrowth using the Axiovision program and stained with Tunel staining kit. Microtubule associated protein-2 immunostaining and tunel staining showed significant recovery of neurite outgrowth and post-ischemic neuronal death by VPA or TSA treatment. We also determined levels of acetylated histone H3, PSD95, GAP 43 and synaptophysin. Significant increases in all three synaptic markers and acetylated histone H3 were observed relative to non-treated cells. Post-ischemic HDACi treatment also significantly raised levels of brain derived neurotrophic factor (BDNF) expression and secreted BDNF. Enhanced BDNF expression by HDACi treatment might have been involved in the post-ischemic neuroprotection and neuronal restorative effects. Our findings suggest that both VPA and TSA treatment during reoxygenation after ischemia may help post-ischemic neuroprotection and neuronal regeneration via increased BDNF expression and activation.

  13. Involvement of MEK/ERK pathway in cephaloridine-induced injury in rat renal cortical slices.

    Kohda, Yuka; Hiramatsu, Jun; Gemba, Munekazu


    We have previously reported that free radical-mediated injury induced by cephaloridine (CER) is enhanced by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in rat renal cortical slices. We have also shown that PKC activation in mitochondria is involved in CER-induced nephrotoxicity in rats. We investigated the role of a downstream PKC pathway, a MEK/ERK pathway, in free radical-induced injury in rat renal cortical slices exposed to CER. Immediately after preparing slices from rat renal cortex, the slices were incubated in the medium containing MEK inhibitors. ERK1/2 activation was determined by Western blot analysis for phosphorylated ERK (pERK) 1/2 protein in nucleus fraction prepared from the slices exposed to CER. Prominently, CER caused not only increases in lipid peroxidation as an index of free radical generation and in LDH leakage as that of cell injury in the slices, but also marked activation of ERK1/2 in nucleus fraction. PD98059 and U0126, MEK1/2 inhibitors, significantly attenuated CER-induced increases in lipid peroxidation and LDH leakage in the slices. PD98059 also suppressed ERK1/2 activation in nucleus fraction prepared from the slices treated with CER. Inhibition of other MAP kinase pathways, p38 MAP kinase and c-Jun N-terminal kinase (JNK) had no effect on CER-induced increases in lipid peroxidation level and LDH leakage in the slices. The present results suggest that a MEK/ERK pathway down stream of a PKC pathway is probably involved in free radical-induced injury in rat renal cortical slices exposed to CER.

  14. Speech perception in the child brain: cortical timing and its relevance to literacy acquisition.

    Parviainen, Tiina; Helenius, Päivi; Poskiparta, Elisa; Niemi, Pekka; Salmelin, Riitta


    Speech processing skills go through intensive development during mid-childhood, providing basis also for literacy acquisition. The sequence of auditory cortical processing of speech has been characterized in adults, but very little is known about the neural representation of speech sound perception in the developing brain. We used whole-head magnetoencephalography (MEG) to record neural responses to speech and nonspeech sounds in first-graders (7-8-year-old) and compared the activation sequence to that in adults. In children, the general location of neural activity in the superior temporal cortex was similar to that in adults, but in the time domain the sequence of activation was strikingly different. Cortical differentiation between sound types emerged in a prolonged response pattern at about 250 ms after sound onset, in both hemispheres, clearly later than the corresponding effect at about 100 ms in adults that was detected specifically in the left hemisphere. Better reading skills were linked with shorter-lasting neural activation, speaking for interdependence of the maturing neural processes of auditory perception and developing linguistic skills. This study uniquely utilized the potential of MEG in comparing both spatial and temporal characteristics of neural activation between adults and children. Besides depicting the group-typical features in cortical auditory processing, the results revealed marked interindividual variability in children.

  15. [The expression of GFAP after brain concussion in rats].

    Zhang, Chun-Bing; Li, Yong-Hong


    To study the expression of GFAP and pathologic changes after rats brain concussion, so that to provide evidence on brain concussion for forensic identification. Forty-five SD rats were divided into 3, 6, 12, 24 h and 2, 4, 7, 10 d and normal control groups in terms of different wounding time after brain concussion model established, and the expression of GFAP after rats brain concussion were then observed by using SP immunohistochemical method. In normal control brain, low-level GFAP expressions could be observed. After six hours' brain concussion, GFAP positive cells increased obviously. The trend reached to the peak at 7d, partly declined at 10d, then decreased gradually. Brain concussion induced the expression of GFAP. The detection of GFAP could be useful for diagnosis of brain concussion on forensic pathology, and could be a reference index for timing of injury after brain concussion.

  16. Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury

    Lei Huang


    Full Text Available Repetitive mild traumatic brain injury (rmTBI is an important medical concern for adolescent athletes that can lead to long-term disabilities. Multiple mild injuries may exacerbate tissue damage resulting in cumulative brain injury and poor functional recovery. In the present study, we investigated the increased brain vulnerability to rmTBI and the effect of hyperbaric oxygen treatment using a juvenile rat model of rmTBI. Two episodes of mild cortical controlled impact (3 days apart were induced in juvenile rats. Hyperbaric oxygen (HBO was applied 1 hour/day × 3 days at 2 atmosphere absolute consecutively, starting at 1 day after initial mild traumatic brain injury (mTBI. Neuropathology was assessed by multi-modal magnetic resonance imaging (MRI and tissue immunohistochemistry. After repetitive mTBI, there were increases in T2-weighted imaging-defined cortical lesions and susceptibility weighted imaging-defined cortical microhemorrhages, correlated with brain tissue gliosis at the site of impact. HBO treatment significantly decreased the MRI-identified abnormalities and tissue histopathology. Our findings suggest that HBO treatment improves the cumulative tissue damage in juvenile brain following rmTBI. Such therapy regimens could be considered in adolescent athletes at the risk of repeated concussions exposures.

  17. Brain circuit-gene expression relationships and neuroplasticity of multisensory cortices in blind children.

    Ortiz-Terán, Laura; Diez, Ibai; Ortiz, Tomás; Perez, David L; Aragón, Jose Ignacio; Costumero, Victor; Pascual-Leone, Alvaro; El Fakhri, Georges; Sepulcre, Jorge


    Sensory deprivation reorganizes neurocircuits in the human brain. The biological basis of such neuroplastic adaptations remains elusive. In this study, we applied two complementary graph theory-based functional connectivity analyses, one to evaluate whole-brain functional connectivity relationships and the second to specifically delineate distributed network connectivity profiles downstream of primary sensory cortices, to investigate neural reorganization in blind children compared with sighted controls. We also examined the relationship between connectivity changes and neuroplasticity-related gene expression profiles in the cerebral cortex. We observed that multisensory integration areas exhibited enhanced functional connectivity in blind children and that this reorganization was spatially associated with the transcription levels of specific members of the cAMP Response Element Binding protein gene family. Using systems-level analyses, this study advances our understanding of human neuroplasticity and its genetic underpinnings following sensory deprivation.

  18. 通心络干预的脑微血管内皮细胞条件液对大鼠脑皮层神经元的影响%Effect of Tongxinluo Intervened Brain Microvascular Endothelial Cells Conditioned Medium on Cortical Neuron of Rats

    盖聪; 李澎涛; 孙红梅; 李卫红; 张振强; 李聪; 于慧玲; 贾静


    目的:观察通心络干预的脑微血管内皮细胞条件培养液对大鼠脑皮层神经元氧化应激反应的影响,探讨通心络在脑微血管内皮细胞缺血损伤状态下保护神经元的机制。方法:首先制备4种大鼠脑微血管内皮细胞(BMEC)条件培养液:①正常BMEC 条件液(N-CM);②正常 BMEC 加通心络药物血清条件液(NT-CM);③拟缺血损伤 BMEC 条件液(I-CM);④损伤 BMEC加通心络药物血清条件液(IT-CM)。将它们分别作用于正常和糖氧剥夺损伤(拟缺血)的大鼠皮层神经元后,测定神经元活性、超氧化物歧化酶(SOD)和丙二醛(MDA)含量。结果:① I-CM 可使正常神经元的活性和 SOD 活力下降,MDA 含量增加;与I-CM 相比,IT-CM 可提高神经元活性和 SOD 活力,降低 MDA 的含量。②与正常神经元比较,拟缺血神经元活性和 SOD 活力明显下降,MDA 含量增加;I-CM 进一步使拟缺血损伤神经元的活力下降;NT-CM 和 IT-CM 在一定程度上可阻抑损伤神经元活性和 SOD 活力的下降,并降低 MDA 含量。结论:大鼠脑微血管内皮细胞损伤后可能造成其旁分泌功能紊乱,进一步导致神经元的损伤。通心络可能通过调节内皮细胞的旁分泌功能保护神经元,该保护作用与减少神经元的氧化应激有关。%Objective:To explore the effect of conditioned medium of rat brain microvascular endothelial cells on oxidative stress of corti-cal neurons and the protective effect of Tongxinluo( TXL)on it. Methods:Four kinds of rats brain microvascular endothelial cell (BMEC)conditioned cultured medium were prepared:①conditioned medium of normal BMEC(N-CM);②conditioned medium of nor-mal BMEC with drug treatment( NT-CM);③ conditioned medium of ischemic BMEC( I-CM);④ conditioned medium of ischemic BMEC with drug treatment(IT-CM). Each type of conditioned medium were applied to BMEC of normal and sugar

  19. Venlafaxine treatment after endothelin-1-induced cortical stroke modulates growth factor expression and reduces tissue damage in rats.

    Zepeda, Rodrigo; Contreras, Valentina; Pissani, Claudia; Stack, Katherine; Vargas, Macarena; Owen, Gareth I; Lazo, Oscar M; Bronfman, Francisca C


    Neuromodulators, such as antidepressants, may contribute to neuroprotection by modulating growth factor expression to exert anti-inflammatory effects and to support neuronal plasticity after stroke. Our objective was to study whether early treatment with venlafaxine, a serotonin-norepinephrine reuptake inhibitor, modulates growth factor expression and positively contributes to reducing the volume of infarcted brain tissue resulting in increased functional recovery. We studied the expression of BDNF, FGF2 and TGF-β1 by examining their mRNA and protein levels and cellular distribution using quantitative confocal microscopy at 5 days after venlafaxine treatment in control and infarcted brains. Venlafaxine treatment did not change the expression of these growth factors in sham rats. In infarcted rats, BDNF mRNA and protein levels were reduced, while the mRNA and protein levels of FGF2 and TGF-β1 were increased. Venlafaxine treatment potentiated all of the changes that were induced by cortical stroke alone. In particular, increased levels of FGF2 and TGF-β1 were observed in astrocytes at 5 days after stroke induction, and these increases were correlated with decreased astrogliosis (measured by GFAP) and increased synaptophysin immunostaining at twenty-one days after stroke in venlafaxine-treated rats. Finally, we show that venlafaxine reduced infarct volume after stroke resulting in increased functional recovery, which was measured using ladder rung motor tests, at 21 days after stroke. Our results indicate that the early oral administration of venlafaxine positively contributes to neuroprotection during the acute and late events that follow stroke.

  20. Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons.

    Burkhalter, Julia; Fiumelli, Hubert; Allaman, Igor; Chatton, Jean-Yves; Martin, Jean-Luc


    Brain-derived neurotrophic factor (BDNF) promotes the biochemical and morphological differentiation of selective populations of neurons during development. In this study we examined the energy requirements associated with the effects of BDNF on neuronal differentiation. Because glucose is the preferred energy substrate in the brain, the effect of BDNF on glucose utilization was investigated in developing cortical neurons via biochemical and imaging studies. Results revealed that BDNF increases glucose utilization and the expression of the neuronal glucose transporter GLUT3. Stimulation of glucose utilization by BDNF was shown to result from the activation of Na+/K+-ATPase via an increase in Na+ influx that is mediated, at least in part, by the stimulation of Na+-dependent amino acid transport. The increased Na+-dependent amino acid uptake by BDNF is followed by an enhancement of overall protein synthesis associated with the differentiation of cortical neurons. Together, these data demonstrate the ability of BDNF to stimulate glucose utilization in response to an enhanced energy demand resulting from increases in amino acid uptake and protein synthesis associated with the promotion of neuronal differentiation by BDNF.

  1. Intraoperative Indocyanine Green-Based Cortical Perfusion Assessment in Patients Suffering from Severe Traumatic Brain Injury.

    Kamp, Marcel A; Sarikaya-Seiwert, Sevgi; Petridis, Athanasios K; Beez, Thomas; Cornelius, Jan Frederick; Steiger, Hans-Jakob; Turowski, Bernd; Slotty, Philipp J


    The pathophysiology of traumatic brain injury (TBI) largely involves the brains vascular structural integrity. We analyzed the value of an intraoperative cortical indocyanine green (ICG) angiography in patients with severe TBI and acute subdural hematoma who underwent decompressive craniectomy. ICG-derived fluorescence curves of cortex and cerebral vessels were recorded by the use of software integrated into a surgical microscope in 10 patients. The maximum intensity, rise time (RT), time to peak, and residual fluorescence intensity (FI) were estimated from cortical arteries, the parenchyma, and veins. ICG-derived fluorescence parameters were correlated with the short-term outcome 3 months after discharge. Five patients had a favorable and 5 an unfavorable outcome. Patients with a favorable outcome showed a significant longer RT in the arteries and a trend towards a significant longer RT in the veins. Overall mean residual FI was 47.5 ± 6.8% for the arteries, 45.0 ± 7% for the parenchyma and 57.6 ± 6% for the veins. The residual FI of the parenchyma and the veins was significantly greater in patients with an unfavorable clinical outcome. Patients with an unfavorable clinical outcome showed an altered shape of the ICG-derived fluorescence curve, a shorter increase of the ICG-derived fluorescence intensity in the cortical arteries, and significantly greater residual fluorescence intensity. These observations are likely a correlate of an increased intracranial pressure, a capillary leak, and venous congestion. Intraoperative quantification of the ICG-derived fluorescence might help to appreciate the clinical outcome in patients with severe TBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A new method to measure cortical growth in the developing brain.

    Knutsen, Andrew K; Chang, Yulin V; Grimm, Cindy M; Phan, Ly; Taber, Larry A; Bayly, Philip V


    Folding of the cerebral cortex is a critical phase of brain development in higher mammals but the biomechanics of folding remain incompletely understood. During folding, the growth of the cortical surface is heterogeneous and anisotropic. We developed and applied a new technique to measure spatial and directional variations in surface growth from longitudinal magnetic resonance imaging (MRI) studies of a single animal or human subject. MRI provides high resolution 3D image volumes of the brain at different stages of development. Surface representations of the cerebral cortex are obtained by segmentation of these volumes. Estimation of local surface growth between two times requires establishment of a point-to-point correspondence ("registration") between surfaces measured at those times. Here we present a novel approach for the registration of two surfaces in which an energy function is minimized by solving a partial differential equation on a spherical surface. The energy function includes a strain-energy term due to distortion and an "error energy" term due to mismatch between surface features. This algorithm, implemented with the finite element method, brings surface features into approximate alignment while minimizing deformation in regions without explicit matching criteria. The method was validated by application to three simulated test cases and applied to characterize growth of the ferret cortex during folding. Cortical surfaces were created from MRI data acquired in vivo at 14 days, 21 days, and 28 days of life. Deformation gradient and Lagrangian strain tensors describe the kinematics of growth over this interval. These quantitative results illuminate the spatial, temporal, and directional patterns of growth during cortical folding.

  3. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  4. [Olpadronate prevents cortical and trabecular bone loss induced by supraphysiological dosis of thyroxine in ovariectomized rats].

    Zeni, S N; Gómez Acotto, C; Di Gregorio, S


    The aim of the present report was to clarify the effect of excess T4 on axial and peripheral bone mineral density (BMD) in estrogen-depleted rats. The protective effect of olpadronate (Olpa) on axial and peripheral bone mass in thyroxine-treated rats was also investigated. Female Sprague-Dawley rats were used: SHAM, OVX + Vh, OVX + Olpa (0.3 mg/kg/week), OVX + T4 (250 micrograms/kg/day) and OVX + T4 + Olpa rats. OVX + Vh group presented a BMD lower than SHAM in the tibia (p < 0.01) but not in femur or lumbar spine; the middle tibia BMD did not change but it was lower at the distal (pns.) and proximal levels (p < 0.003) in OVX + Vh. OVX + T4 rats presented a BMD significantly lower than OVX + Vh rats in total tibia (p < 0.02), femur (p < 0.006) and lumbar spine (p < 0.006). Moreover the BMD was lower in all studied areas of the tibia, but it was statistically significant only at the middle level (p < 0.004). OVX + Olpa rats had a BMD higher than OVX + Vh rats in femur (p < 0.002), lumbar spine (p < 0.0001), total (p < 0.001) and proximal tibia (p < 0.001). Surprisingly, total and proximal tibia BMD values in OVX + Olpa rats presented a BMD significantly higher than OVX + T4 rats in femur (p < 0.001), lumbar spine (p < 0.001), tibia (p < 0.001) and proximal tibia (p < 0.0001). It is important to point out that OVX + T4 + Olpa BMD was significantly higher than in SHAM rats at the lumbar spine, total and proximal tibia (p < 0.01). The present study suggests that although supraphysiological thyroid hormone affected both cortical and trabecular bone, under estrogen-depleted conditions, the cortical bone appears to be more sensitive than the trabecular bone to T4 treatment. We also found that Olpa could prevent the peripheral and axial bone loss induced by thyroid hormone excess.

  5. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    Lauriane Jugé

    Full Text Available Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both, an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM and rearrangement of the cortical gray matter microstructure (P < 0.001, for both, while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both. During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001, while a decrease in space was observed for the ventral internal capsule (P < 0.001. For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001. To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions

  6. Representation of egomotion in rat's trident and E-row whisker cortices.

    Chorev, Edith; Preston-Ferrer, Patricia; Brecht, Michael


    The whisker trident, a three-whisker array on the rat's chin, has been implicated in egomotion sensing and might function as a tactile speedometer. Here we study the cortical representation of trident whiskers and E-row whiskers in barrel cortex. Neurons identified in trident cortex of anesthetized animals showed sustained velocity-sensitive responses to ground motion. In freely moving animals, about two-thirds of the units in the trident and E-row whisker cortices were tuned to locomotion speed, a larger fraction of speed-tuned cells than in the somatosensory dysgranular zone. Similarly, more units were tuned to acceleration and showed sensitivity to turning in trident and E-row whisker cortices than in the dysgranular zone. Microstimulation in locomoting animals evoked small but significant speed changes, and such changes were larger in the trident and E-row whisker representations than in the dysgranular zone. Thus, activity in trident and E-row cortices represents egomotion information and influences locomotion behavior.

  7. Subcortical cerebral blood flow and metabolic changes elicited by cortical spreading depression in rat

    Mraovitch, S.; Calando, Y.; Goadsby, P.J.; Seylaz, J. (Laboratoire de Recherches Cerebrovasculaire, Paris (France))


    Changes in cerebral cortical perfusion (CBF{sub LDF}), local cerebral blood flow (lCBF) and local cerebral glucose utilization (lCGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with {alpha}-chloralose. CBF{sub LDF} was recorded with laser Doppler flowmetry, while lCBF and lCGU were measured by the quantitative autoradiographic ({sup 14}C)iodoantipyrine and ({sup 14}C)-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical lCBF and lCGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the lCBF and lCGU in upper and lower brainstem persisted. The present results demonstrate that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome. 19 refs., 2 figs., 1 tab.

  8. Quetiapine attenuates cognitive impairment and decreases seizure susceptibility possibly through promoting myelin development in a rat model of malformations of cortical development.

    Ma, Lei; Yang, Feng; Zhao, Rui; Li, Li; Kang, Xiaogang; Xiao, Lan; Jiang, Wen


    Developmental delay, cognitive impairment, and refractory epilepsy are the most frequent consequences found in patients suffering from malformations of cortical development (MCD). However, therapeutic options for these psychiatric and neurological comorbidities are currently limited. The development of white matter undergoes dramatic changes during postnatal brain maturation, thus myelination deficits resulting from MCD contribute to its comorbid diseases. Consequently, drugs specifically targeting white matter are a promising therapeutic option for the treatment of MCD. We have used an in utero irradiation rat model of MCD to investigate the effects of postnatal quetiapine treatment on brain myelination as well as neuropsychological and cognitive performances and seizure susceptibility. Fatally irradiated rats were treated with quetiapine (10mg/kg, i.p.) or saline once daily from postnatal day 0 (P0) to P30. We found that postnatal administration of quetiapine attenuated object recognition memory impairment and improved long-term spatial memory in the irradiated rats. Quetiapine treatment also reduced the susceptibility and severity of pentylenetetrazol-induced seizures. Importantly, quetiapine treatment resulted in an inhibition of irradiation-induced myelin breakdown in the cerebral cortex and corpus callosum. These findings suggest that quetiapine may have beneficial, postnatal effects in the irradiated rats, strongly suggesting that improving MCD-derived white matter pathology is a possible underlying mechanism. Collectively, these results indicate that brain myelination represents an encouraging pharmacological target to improve the prognosis of patients with MCD. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Minimum conditions for the induction of cortical spreading depression in brain slices

    Tang, Yujie T.; Mendez, Jorge M.; Theriot, Jeremy J.; Sawant, Punam M.; López-Valdés, Héctor E.; Ju, Y. Sungtaek


    Cortical spreading depression (CSD) occurs during various forms of brain injury such as stroke, subarachnoid hemorrhage, and brain trauma, but it is also thought to be the mechanism of the migraine aura. It is therefore expected to occur over a range of conditions including the awake behaving state. Yet it is unclear how such a massive depolarization could occur under relatively benign conditions. Using a microfluidic device with focal stimulation capability in a mouse brain slice model, we varied extracellular potassium concentration as well as the area exposed to increased extracellular potassium to determine the minimum conditions necessary to elicit CSD. Importantly, we focused on potassium levels that are physiologically plausible (≤145 mM; the intracellular potassium concentration). We found a strong correlation between the threshold concentration and the slice area exposed to increased extracellular potassium: minimum area of exposure was needed with the highest potassium concentration, while larger areas were needed at lower concentrations. We also found that moderate elevations of extracellular potassium were able to elicit CSD in relatively small estimated tissue volumes that might be activated under noninjury conditions. Our results thus show that CSD may be inducible under the conditions that expected in migraine aura as well as those related to brain trauma. PMID:25122714

  10. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution.

    Cáceres, Mario; Suwyn, Carolyn; Maddox, Marcelia; Thomas, James W; Preuss, Todd M


    Thrombospondins are extracellular-matrix glycoproteins implicated in the control of synaptogenesis and neurite growth. Previous microarray studies suggested that one gene of this family, thrombospondin 4 (THBS4), was upregulated during human brain evolution. Using independent techniques to examine thrombospondin expression patterns in adult brain samples, we report approximately 6-fold and approximately 2-fold greater expression of THBS4 and THBS2 messenger RNA (mRNA), respectively, in human cerebral cortex compared with chimpanzees and macaques, with corresponding differences in protein levels. In humans and chimpanzees, thrombospondin expression differences were observed in the forebrain (cortex and caudate), whereas the cerebellum and most nonbrain tissues exhibited similar levels of the 2 mRNAs. Histological examination revealed THBS4 mRNA and protein expression in numerous pyramidal and glial cells in the 3 species but humans also exhibited very prominent immunostaining of the synapse-rich cortical neuropil. In humans, additionally, THBS4 antibodies labeled beta-amyloid containing plaques in Alzheimer's cases and some control cases. This is the first detailed characterization of gene-expression changes in human evolution that involve specific brain regions, including portions of cerebral cortex. Increased expression of thrombospondins in human brain evolution could result in changes in synaptic organization and plasticity, and contribute to the distinctive cognitive abilities of humans, as well as to our unique vulnerability to neurodegenerative disease.

  11. Towards a parts-based approach to sub-cortical brain structure parsing

    Gagneja, Digvijay; Xiong, Caiming; Corso, Jason J.


    The automatic localization and segmentation, or parsing, of neuroanatomical brain structures is a key step in many neuroscience tasks. However, the inherent variability in these brain structures and their appearance continues to challenge medical image processing methods. The state of the art primarily relies upon local voxelbased morphometry, Markov random field, and probabilistic atlas based approaches, which limits the ability to explicitly capture the parts-based structure inherent in the brain. We propose a method that defines a principled parts-based representation of the sub-cortical brain structures. Our method is based on the pictorial structures model and jointly models the appearance of each part as well as the layout of the parts as a whole. Inference is cast as a maximum a posteriori problem and solved in a steepest-descent manner. Experimental results on a 28-case data set demonstrate high accuracy of our method and substantiate our claim that there is significant promise in a parts-based approach to modeling medical imaging structures.

  12. Cortical epileptogenesis of slowly kindled freely moving rats

    Orbán-Kis K.


    Full Text Available Objective. Epilepsy is a neurological disorder that can be caused by many underlying pathologies. The epileptic and interictal manifestations that appear during the progression of chronic epilepsy are still not understood completely. One of the most frequent forms of this disease is temporal lobe epilepsy in which is clear involvement of the hippocampal formation. In order to study the electrografic progression of untreated seizures we used amygdala kindling in freely moving rats. Methods. Seven animals were implanted with bilateral hippocampal and prefrontal electrodes. A bipolar electrode, implanted in the lateral nuclei of the left amygdala was used for stimulation. The kindled group of animals was stimulated daily with the minimum current intensity needed to reach the afterdischarge threshold. Behavioral changes during kindling were scored according to the Racine scale. Results. The average seizure severity on the Racine scale was 2.6±0.4 by day 6 and 4.4±0.6 by day 20. The first spontaneous seizures appeared after 31 days of stimulation. During spontaneous seizures the preictal spike full width at half maximum increased gradually from 51±4msec to 110±5msec (p < 0.05 whereas the amplitude of the negative field potential deflection increased by 62% (p < 0.05. Conclusions. Our study showed that the progression of temporal lobe epilepsy, as seen in humans, can be reproduced in the kindling model with high fidelity. This study confirms in vivo the increase in preictal spike duration as well as the increase of the amplitude of negative field potential deflection during the preictal period.

  13. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    Jugé, Lauriane; Pong, Alice C; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E; Cheng, Shaokoon


    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development.

  14. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W


    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  15. Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol.

    Liu, Xiping; Pillay, Siveshigan; Li, Rupeng; Vizuete, Jeannette A; Pechman, Kimberly R; Schmainda, Kathleen M; Hudetz, Anthony G


    The dose-dependent effects of anesthetics on brain functional connectivity are incompletely understood. Resting-state functional magnetic resonance imaging (rsfMRI) is widely used to assess the functional connectivity in humans and animals. Propofol is an anesthetic agent with desirable characteristics for functional neuroimaging in animals but its dose-dependent effects on rsfMRI functional connectivity have not been determined. Here we tested the hypothesis that brain functional connectivity undergoes specific changes in distinct neural networks at anesthetic depths associated with loss of consciousness. We acquired spontaneous blood oxygen level-dependent (BOLD) signals simultaneously with electroencephalographic (EEG) signals from rats under steady-state, intravenously administered propofol at increasing doses from light sedation to deep anesthesia (20, 40, 60, 80, and 100 mg/kg/h IV). Power spectra and burst suppression ratio were calculated from the EEG to verify anesthetic depth. Functional connectivity was determined from the whole brain correlation of BOLD data in regions of interest followed by a segmentation of the correlation maps into anatomically defined regional connectivity. We found that propofol produced multiphasic, dose dependent changes in functional connectivity of various cortical and subcortical networks. Cluster analysis predicted segregation of connectivity into two cortical and two subcortical clusters. In one cortical cluster (somatosensory and parietal), the early reduction in connectivity was followed by transient reversal; in the other cluster (sensory, motor and cingulate/retrosplenial), this rebound was absent. The connectivity of the subcortical cluster (brainstem, hippocampal and caudate) was strongly reduced, whereas that of another (hypothalamus, medial thalamus and n. basalis) did not. Subcortical connectivity increased again in deep anesthesia associated with EEG burst suppression. Regional correlation analysis confirmed the

  16. Expression of Alzheimer-Type Neurofibrillary Epitopes in Primary Rat Cortical Neurons Following Infection with Enterococcus faecalis.

    Underly, Robert; Song, Mee-Sook; Dunbar, Gary L; Weaver, Charles L


    The neurofibrillary tau pathology and amyloid deposits seen in Alzheimer's disease (AD) also have been seen in bacteria-infected brains. However, few studies have examined the role of these bacteria in the generation of tau pathology. One suggested link between infection and AD is edentulism, the complete loss of teeth. Edentulism can result from chronic periodontal disease due to infection by Enterococcus faecalis. The current study assessed the ability to generate early Alzheimer-like neurofibrillary epitopes in primary rat cortical neurons through bacterial infection by E. faecalis. Seven-day old cultured neurons were infected with E. faecalis for 24 and 48 h. An upward molecular weight shift in tau by Western blotting (WB) and increased appearance of tau reactivity in cell bodies and degenerating neurites was found in the 48 h infection group for the antibody CP13 (phospho-Serine 202). A substantial increase in reactivity of Alz-50 was seen at 24 and 48 h after infection. Furthermore, extensive microtubule-associated protein 2 (MAP2) reactivity also was seen at 24 and 48 h post-infection. Our preliminary findings suggest a potential link between E. faecalis infection and intracellular changes that may help facilitate early AD-like neurofibrillary pathology. HighlightsEnterococcus faecalis used in the generation of AD neurofibrillary epitopes in rat.Infection increases Alz-50, phospho-Serine 202 tau, and MAP2 expression.Infection by Enterococcus may play a role in early Alzheimer neurofibrillary changes.

  17. Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats.

    Zhou, Fan; Liu, Jun; Yu, Yi; Tian, Xiang; Liu, Hui; Hao, Yaoyao; Zhang, Shaomin; Chen, Weidong; Dai, Jianhua; Zheng, Xiaoxiang


    A practical brain-machine interface (BMI) requires real-time decoding algorithms to be realised in a portable device rather than a personal computer. In this article, a field-programmable gate array (FPGA) implementation of a probabilistic neural network (PNN) is proposed and developed to decode motor cortical ensemble recordings in rats performing a lever-pressing task for water rewards. A chronic 16-channel microelectrode array was implanted into the primary motor cortex of the rat to record neural activity, and the pressure signal of the lever were recorded simultaneously. To decode the pressure value from neural activity, both Matlab-based and FPGA-based mapping algorithms using a PNN were implemented and evaluated. In the FPGA architecture, training data of the network were stored in random access memory (RAM) blocks and multiply-add operations were realised by on-chip DSP48E slices. In the approximation of the activation function, a Taylor series and a look-up table (LUT) are used to achieve an accurate approximation. The results of FPGA implementation are as accurate as the realisation of Matlab, but the running speed is 37.9 times faster. This novel and feasible method indicates that the performance of current FPGAs is competent for portable BMI applications.

  18. The dynamic brain: from spiking neurons to neural masses and cortical fields.

    Gustavo Deco


    Full Text Available The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space-time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI, electroencephalogram (EEG, and magnetoencephalogram (MEG. Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the

  19. ERK is involved in the reorganization of somatosensory cortical maps in adult rats submitted to hindlimb unloading.

    Erwan Dupont

    Full Text Available Sensorimotor restriction by a 14-day period of hindlimb unloading (HU in the adult rat induces a reorganization of topographic maps and receptive fields. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of intracellular MAPK signaling pathway since Extracellular-signal-Regulated Kinase 1/2 (ERK1/2 is known to play a significant role in the control of synaptic plasticity. In order to better understand the mechanisms underlying cortical plasticity in adult rats submitted to a sensorimotor restriction, we analyzed the time-course of ERK1/2 activation by immunoblot and of cortical reorganization by electrophysiological recordings, on rats submitted to hindlimb unloading over four weeks. Immunohistochemistry analysis provided evidence that ERK1/2 phosphorylation was increased in layer III neurons of the somatosensory cortex. This increase was transient, and parallel to the changes in hindpaw cortical map area (layer IV. By contrast, receptive fields were progressively enlarged from 7 to 28 days of hindlimb unloading. To determine whether ERK1/2 was involved in cortical remapping, we administered a specific ERK1/2 inhibitor (PD-98059 through osmotic mini-pump in rats hindlimb unloaded for 14 days. Results demonstrate that focal inhibition of ERK1/2 pathway prevents cortical reorganization, but had no effect on receptive fields. These results suggest that ERK1/2 plays a role in the induction of cortical plasticity during hindlimb unloading.

  20. Local neutrophil influx following lateral fluid-percussion brain injury in rats is associated with accumulation of complement activation fragments of the third component (C3) of the complement system.

    Keeling, K L; Hicks, R R; Mahesh, J; Billings, B B; Kotwal, G J


    Traumatic brain injury can lead to locally destructive secondary events mediated by several inflammatory components. Following lateral fluid-percussion (FP) brain injury in rats, we examined cortical and hippocampal sections for neutrophil infiltration and accumulation of complement component C3. Neutrophil influx into the brain after injury was detected by an improved myeloperoxidase (MPO) microassay and manual cell counting, while C3 accumulation was detected using immunocytochemistry. MPO levels were elevated in the injured cortical tissue, whereas C3 immunoreactivity was increased in both injured cortical and ipsilateral hippocampal sections. These results show that the FP model of head injury leads to an intense local inflammatory reaction and subsequent tissue destruction.

  1. A histological investigation on tissue responses to titanium implants in cortical bone of the rat femur.

    Ohtsu, A; Kusakari, H; Maeda, T; Takano, Y


    Implant materials are placed under various sites-including cortical bone, spongy bone, and bone marrow-at the same time according to the depth at implantation. Although cortical bone is an important site for the prognosis of implantation, detailed reports on tissue responses to implantation have been meager. The present study aims to reveal tissue responses to pure titanium implantation in rat femoris cortical bone. The rats received titanium bars surgically in their femurs and were sacrificed 1 day to 40 weeks post-implantation. The prepared tissue specimens were processed for light and transmission electron microscopy (TEM). Further histochemical detections were performed. One day post-implantation, empty osteocytic lacunae indicating degeneration of osteocytes were found in pre-existing cortical bone around the implant. Such pre-existing bone was replaced by new bone, but remained in part even 40 weeks post-implantation. Light microscopy showed that direct contact between the implant and new bone was identified 12 weeks post-implantation. Chronological and ultrastructural observation showed that new bone deposition appeared to proceed toward the implant, and that the intervening layer at the interface was derived from the degenerated debris of multinucleated giant cells and/or osteoblasts. Furthermore, it seemed that the width of intervening layer varied in relation to the distance from the blood vessels. The cells showing tartrate resistant acid phosphatase activity possessed cytological features of osteoclasts under TEM; they were frequently observed in perivascular sites near the implants even after osseointegration, suggesting that bone remodeling took place steadily around the implant.

  2. Inhibition of Histone Deacetylase 3 (HDAC3) Mediates Ischemic Preconditioning and Protects Cortical Neurons against Ischemia in Rats

    Wu, Qimei; Zhang, Lei; Feng, Linyin


    Brain ischemic preconditioning (PC) provides vital insights into the endogenous protection against stroke. Genomic and epigenetic responses to PC condition the brain into a state of ischemic tolerance. Notably, PC induces the elevation of histone acetylation, consistent with evidence that histone deacetylase (HDAC) inhibitors protect the brain from ischemic injury. However, less is known about the specific roles of HDACs in this process. HDAC3 has been implicated in several neurodegenerative conditions. Deletion of HDAC3 confers protection against neurotoxicity and neuronal injury. Here, we hypothesized that inhibition of HDAC3 may contribute to the neuronal survival elicited by PC. To address this notion, PC and transient middle cerebral artery occlusion (MCAO) were conducted in Sprague-Dawley rats. Additionally, primary cultured cortical neurons were used to identify the modulators and effectors of HDAC3 involved in PC. We found that nuclear localization of HDAC3 was significantly reduced following PC in vivo and in vitro. Treatment with the HDAC3-specific inhibitor, RGFP966, mimicked the neuroprotective effects of PC 24 h and 7 days after MCAO, causing a reduced infarct volume and less Fluoro-Jade C staining. Improved functional outcomes were observed in the neurological score and rotarod test. We further showed that attenuated recruitment of HDAC3 to promoter regions following PC potentiates transcriptional initiation of genes including Hspa1a, Bcl2l1, and Prdx2, which may underlie the mechanism of protection. In addition, PC-activated calpains were implicated in the cleavage of HDAC3. Pretreatment with calpeptin blockaded the attenuated nuclear distribution of HDAC3 and the protective effect of PC in vivo. Collectively, these results demonstrate that the inhibition of HDAC3 preconditions the brain against ischemic insults, indicating a new approach to evoke endogenous protection against stroke. PMID:27965534

  3. Inhibition of Histone Deacetylase 3 (HDAC3 Mediates Ischemic Preconditioning and Protects Cortical Neurons against Ischemia in Rats

    Xiaoyu Yang


    Full Text Available Brain ischemic preconditioning (PC provides vital insights into the endogenous protection against stroke. Genomic and epigenetic responses to PC condition the brain into a state of ischemic tolerance. Notably, PC induces the elevation of histone acetylation, consistent with evidence that histone deacetylase (HDAC inhibitors protect the brain from ischemic injury. However, less is known about the specific roles of HDACs in this process. HDAC3 has been implicated in several neurodegenerative conditions. Deletion of HDAC3 confers protection against neurotoxicity and neuronal injury. Here, we hypothesized that inhibition of HDAC3 may contribute to the neuronal survival elicited by PC. To address this notion, PC and transient middle cerebral artery occlusion (MCAO were conducted in Sprague-Dawley rats. Additionally, primary cultured cortical neurons were used to identify the modulators and effectors of HDAC3 involved in PC. We found that nuclear localization of HDAC3 was significantly reduced following PC in vivo and in vitro. Treatment with the HDAC3-specific inhibitor, RGFP966, mimicked the neuroprotective effects of PC 24 h and 7 d after MCAO, causing a reduced infarct volume and less Fluoro-Jade C staining. Improved functional outcomes were observed in the neurological score and rotarod test. We further showed that attenuated recruitment of HDAC3 to promoter regions following PC potentiates transcriptional initiation of genes including Hspa1a, Bcl2l1, and Prdx2, which may underlie the mechanism of protection. In addition, PC-activated calpains were implicated in the cleavage of HDAC3. Pretreatment with calpeptin blockaded the attenuated nuclear distribution of HDAC3 and the protective effect of PC in vivo. Collectively, these results demonstrate that the inhibition of HDAC3 preconditions the brain against ischemic insults, indicating a new approach to evoke endogenous protection against stroke.

  4. Blood-Brain Barrier Alterations Provide Evidence of Subacute Diaschisis in an Ischemic Stroke Rat Model

    Garbuzova-Davis, Svitlana; Rodrigues, Maria C. O.; Hernandez-Ontiveros, Diana G.; Tajiri, Naoki; Frisina-Deyo, Aric; Boffeli, Sean M.; Abraham, Jerry V.; Pabon, Mibel; Wagner, Andrew; Ishikawa, Hiroto; Shinozuka, Kazutaka; Haller, Edward; Sanberg, Paul R.; Kaneko, Yuji; Borlongan, Cesario V.


    Background Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB) competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas. Methodology/Principal Findings In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO), significant BBB alterations characterized by large Evans Blue (EB) parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices. Conclusions/Significance These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke. PMID:23675488

  5. Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model.

    Svitlana Garbuzova-Davis

    Full Text Available BACKGROUND: Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas. METHODOLOGY/PRINCIPAL FINDINGS: In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO, significant BBB alterations characterized by large Evans Blue (EB parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices. CONCLUSIONS/SIGNIFICANCE: These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke.

  6. Different effects of reducing agents on ω-conotoxin GVIA inhibition of [3H]-acetylcholine release from rat cortical slices and guinea-pig myenteric plexus

    Casali, T A A; Gomez, R S; Moraes-Santos, T; Romano-Silva, M A; Prado, M A M; Gomez, M V


    The effect of reducing reagents on ω-conotoxin GVIA (ω-CgTX) inhibition of the release of [3H]-acetylcholine ([3H]-ACh) induced by tityustoxin, K+ 50 mM and electrical stimulation was investigated in rat brain cortical slices.In cortical slices the inhibition of tityustoxin or electrically-stimulated [3H]-ACh release by ω-CgTX was dramatically increased by reducing reagents ascorbate or β-mercaptoethanol. Dehydroascorbic acid did not substitute for ascorbateDepolarization induced by K+ 50 mM caused [3H]-ACh release from cortical slices which was not inhibited by ω-CgTX, even in the presence of ascorbate.In the guinea-pig myenteric plexus, ω-CgTX inhibition of the tityustoxin induced release of [3H]-ACh was independent of ascorbate.It is suggested that N-type-like calcium channels in guinea-pig myenteric plexus may have pharmacological/biochemical diversity from similar channels of rat cerebral cortex. PMID:9117104

  7. Elemental distribution in brain of wistar rats by X-ray microfluorescence with synchrotron radiation

    Serpa, Renata F.B.; Jesus, Edgar F.O. de; Lopes, Ricardo T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Instrumentacao Nuclear]. E-mail:; Anjos, Marcelino J. dos; Oliveira, Luis F. de [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail:; Carmo, Maria da Graca T. do [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Nutricao]. E-mail:; Rocha, Monica S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Farmacologia]. E-mail:; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil]. E-mail:; Correa Junior, Jose D.; Martinez, Ana Maria B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Histologia]. E-mail:


    The main goal of this research is to study the changes in the elemental distribution in brain rats, due the knowledge of the spatial distribution and the local concentration of trace elements in tissues have great importance since trace elements are involved in many biological functions of living organisms. For perform this research, Wistar rats with different ages (3, 48 and 72 weeks) were used. The microfluorescence measurements were carried out in a standard geometry of 45 deg/45 deg, exciting with a white beam and using a conventional system collimation (orthogonal slits) in the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). The following elements were studied: P, S, Cl, K, Ca, Fe, and Zn. Among these elements, Fe and Zn are related with Parkinson and Alzheimer diseases, respectively. By the elemental maps, we can observe that the distribution of zinc was more pronounced in the hippocampus area, the distribution of iron was more conspicuous in the cortical region and bellows the thalamus and, moreover potassium and chlorine distributions were more present in the cortical area. Although, the small statistic, we can view that almost all measured elements are present in lower intensity in brains of rats with 3 weeks, and are usually the same for the other ages studied. (author)

  8. Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model.

    Arafa, Nadia M S; Marie, Mohamed-Assem S; AlAzimi, Sara Abdullah Mubarak


    The rapid economic development in the Arabian Gulf has resulted in lifestyle changes that have increased the prevalence of obesity and type 2 diabetes, with the greatest increases observed in Kuwait. Dyslipidemia and diabetes are risk factors for disruptions in cortical neurotransmitter homeostasis. This study investigated the effect of the antidiabetic medications canagliflozin (CAN) and metformin (MET) on the levels of cortical neurotransmitters in a diabetic rat model. The rats were assigned to the control (C) group, the diabetic group that did not receive treatment (D) or the diabetic group treated with either CAN (10 mg/kg) or MET (100 mg/kg) for 2 or 4 weeks. Blood and urine glucose levels and cortical acetylcholinesterase (AChE) activity were assayed, and amino acid and monoamine levels were measured using HPLC. The diabetic group exhibited a significant increase in AChE activity and a decrease in monoamine and amino acid neurotransmitter levels. In the CAN group, AChE was significantly lower than that in the D and D + MET groups after 2 weeks of treatment. In addition, a significant increase in some cortical monoamines and amino acids was observed in the D + MET and D + CAN groups compared with the D group. Histopathological analysis revealed the presence of severe focal hemorrhage, neuronal degeneration, and cerebral blood vessel congestion, with gliosis in the cerebrum of rats in the D group. The CAN-treated group exhibited severe cerebral blood vessel congestion after 2 weeks of treatment and focal gliosis in the cerebrum after 4 weeks of treatment. Focal gliosis in the cerebrum of rats in the MET-treated group was observed after 2 and 4 weeks of treatment. We conclude that the effect of CAN and MET on neurotransmitters is potentially mediated by their antihyperglycemic and antihyperlipidemic effects. In addition, the effects of CAN on neurotransmitters might be associated with its receptor activity, and the effect of MET on neurotransmitters

  9. An evolutionary theory of schizophrenia: cortical connectivity, metarepresentation, and the social brain.

    Burns, Jonathan Kenneth


    Schizophrenia is a worldwide, prevalent disorder with a multifactorial but highly genetic aetiology. A constant prevalence rate in the face of reduced fecundity has caused some to argue that an evolutionary advantage exists in unaffected relatives. Here, I critique this adaptationist approach, and review--and find wanting--Crow's "speciation" hypothesis. In keeping with available biological and psychological evidence, I propose an alternative theory of the origins of this disorder. Schizophrenia is a disorder of the social brain, and it exists as a costly trade-off in the evolution of complex social cognition. Paleoanthropological and comparative primate research suggests that hominids evolved complex cortical interconnectivity (in particular, frontotemporal and frontoparietal circuits) to regulate social cognition and the intellectual demands of group living. I suggest that the ontogenetic mechanism underlying this cerebral adaptation was sequential hypermorphosis and that it rendered the hominid brain vulnerable to genetic and environmental insults. I argue that changes in genes regulating the timing of neurodevelopment occurred prior to the migration of Homo sapiens out of Africa 100,000-150,000 years ago, giving rise to the schizotypal spectrum. While some individuals within this spectrum may have exhibited unusual creativity and iconoclasm, this phenotype was not necessarily adaptive in reproductive terms. However, because the disorder shared a common genetic basis with the evolving circuitry of the social brain, it persisted. Thus schizophrenia emerged as a costly trade-off in the evolution of complex social cognition.

  10. The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities☆

    Caligiore, Daniele; Pezzulo, Giovanni; Miall, R. Chris; Baldassarre, Gianluca


    Research on action understanding in cognitive neuroscience has led to the identification of a wide “action understanding network” mainly encompassing parietal and premotor cortical areas. Within this cortical network mirror neurons are critically involved implementing a neural mechanism according to which, during action understanding, observed actions are reflected in the motor patterns for the same actions of the observer. We suggest that focusing only on cortical areas and processes could be too restrictive to explain important facets of action understanding regarding, for example, the influence of the observer's motor experience, the multiple levels at which an observed action can be understood, and the acquisition of action understanding ability. In this respect, we propose that aside from the cortical action understanding network, sub-cortical processes pivoting on cerebellar and basal ganglia cortical loops could crucially support both the expression and the acquisition of action understanding abilities. Within the paper we will discuss how this extended view can overcome some limitations of the “pure” cortical perspective, supporting new theoretical predictions on the brain mechanisms underlying action understanding that could be tested by future empirical investigations. PMID:23911926

  11. Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice

    June Zhou


    Full Text Available Traumatic brain injury (TBI causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group underwent sham or unilateral controlled cortical impact (CCI injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1 mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK 1, pyruvate kinase, and pyruvate dehydrogenase (PDH] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2 capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3 astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4 HK2 (an isoform of hexokinase expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific

  12. An implantable VLSI architecture for real time spike sorting in cortically controlled Brain Machine Interfaces.

    Aghagolzadeh, Mehdi; Zhang, Fei; Oweiss, Karim


    Brain Machine Interface (BMI) systems demand real-time spike sorting to instantaneously decode the spike trains of simultaneously recorded cortical neurons. Real-time spike sorting, however, requires extensive computational power that is not feasible to implement in implantable BMI architectures, thereby requiring transmission of high-bandwidth raw neural data to an external computer. In this work, we describe a miniaturized, low power, programmable hardware module capable of performing this task within the resource constraints of an implantable chip. The module computes a sparse representation of the spike waveforms followed by "smart" thresholding. This cascade restricts the sparse representation to a subset of projections that preserve the discriminative features of neuron-specific spike waveforms. In addition, it further reduces telemetry bandwidth making it feasible to wirelessly transmit only the important biological information to the outside world, thereby improving the efficiency, practicality and viability of BMI systems in clinical applications.

  13. Cortical and brain stem changes in neural activity during static handgrip and postexercise ischemia in humans

    Sander, Mikael; Macefield, Vaughan G; Henderson, Luke A


    Static isometric exercise increases muscle sympathetic nerve activity (MSNA) and mean arterial pressure, both of which can be maintained at the conclusion of the exercise by occlusion of the arterial supply [postexercise ischemia (PEI)]. To identify the cortical and subcortical sites involved......, and to differentiate between central command and reflex inputs, we used blood oxygen level-dependent (BOLD) functional MRI (fMRI) of the whole brain (3 T). Subjects performed submaximal static handgrip exercise for 2 min followed by 6 min of PEI; MSNA was recorded on a separate day. During the contraction phase......, parallel increases in BOLD signal intensity occurred in the contralateral primary motor cortex and cerebellar nuclei and cortex; these matched the effort profile and ceased at the conclusion of the contraction. Progressive increases in the contralateral insula and primary and secondary somatosensory...

  14. Laminar Python: tools for cortical depth-resolved analysis of high-resolution brain imaging data in Python

    Julia Huntenburg


    Full Text Available Increasingly available high-resolution brain imaging data require specialized processing tools that can leverage their anatomical detail and handle their size. Here, we present user-friendly Python tools for cortical depth resolved analysis in such data. Our implementation is based on the CBS High-Res Brain Processing framework, and aims to make high-resolution data processing tools available to the broader community.

  15. ERP-based detection of brain pathology in rat models for preclinical Alzheimer's disease

    Nouriziabari, Seyed Berdia

    Early pathological features of Alzheimer's disease (AD) include the accumulation of hyperphosphorylated tau protein (HP-tau) in the entorhinal cortex and progressive loss of basal forebrain (BF) cholinergic neurons. These pathologies are known to remain asymptomatic for many years before AD is clinically diagnosed; however, they may induce aberrant brain processing which can be captured as an abnormality in event-related potentials (ERPs). Here, we examined cortical ERPs while a differential associative learning paradigm was applied to adult male rats with entorhinal HP-tau, pharmacological blockade of muscarinic acetylcholine receptors, or both conditions. Despite no impairment in differential associative and reversal learning, each pathological feature induced distinct abnormality in cortical ERPs to an extent that was sufficient for machine classifiers to accurately detect a specific type of pathology based on these ERP features. These results highlight a potential use of ERPs during differential associative learning as a biomarker for asymptomatic AD pathology.

  16. Treatment of Traumatic Brain Injury by Localized Application of Sub-atmospheric Pressure to the Site of Cortical Impact


    Resuscitation (MTR – the controlled application of vacuum) to the cerebral cortex following a controlled cortical impact (CCI) injury reduces brain... edema and the extent of injury, modulates metabolites in injured neuronal tissues, preserves neuronal tissue, and improves functional recovery. The...hyperintense region ipsilateral to the injured site. There was a large area of T2 hyperintensity ( edema ) sometimes associated with hypointensity

  17. Minor Functional Deficits in Basic Response Patterns for Reinforcement after Frontal Traumatic Brain Injury in Rats.

    Vonder Haar, Cole; Winstanley, Catharine A


    Traumatic brain injury (TBI) is a major contributor to numerous psychiatric conditions and chronic behavioral dysfunction. Recent studies in experimental brain injury have begun to adopt operant methodologies to assess these deficits, all of which rely on the process of reinforcement. No studies have directly examined how reinforced behaviors are affected by TBI, however. The current study assessed performance under the four most common schedules of reinforcement (fixed ratio, variable ratio, fixed interval, variable interval) and one higher order schedule assessing motivation (progressive ratio) after bilateral, pre-frontal controlled cortical impact injury. TBI-induced differences on the basic schedules were minor, with the exception of the variable ratio, where increased efficacy (more reinforcers, higher response rates, lower interresponse times) at higher requirements was observed as a result of brain injury. Performance on the progressive ratio schedule showed some gross differences between the groups, in that sham rats became more efficient under this schedule while injured rats perseverated in lever pressing. Further, injured rats were specifically impaired at lower response requirements on the progressive ratio. Taken together, these findings indicate that simple reinforced behaviors are mostly unaffected after TBI, except in the case of variable ratio schedules, but the altered performance on the higher-order progressive ratio schedule suggests changes involving motivation or potentially perseveration. These findings validate operant measures of more complex behaviors for brain injury, all of which rely on reinforcement and can be taken into consideration when adapting and developing novel functional assessments.

  18. Basal forebrain neurons suppress amygdala kindling via cortical but not hippocampal cholinergic projections in rats.

    Ferencz, I; Leanza, G; Nanobashvili, A; Kokaia, M; Lindvall, O


    Intraventricular administration of the immunotoxin 192 IgG-saporin in rats has been shown to cause a selective loss of cholinergic afferents to the hippocampus and cortical areas, and to facilitate seizure development in hippocampal kindling. Here we demonstrate that this lesion also accelerates seizure progression when kindling is induced by electrical stimulations in the amygdala. However, whereas intraventricular 192 IgG-saporin facilitated the development of the initial stages of hippocampal kindling, the same lesion promoted the late stages of amygdala kindling. To explore the role of various parts of the basal forebrain cholinergic system in amygdala kindling, selective lesions of the cholinergic projections to either hippocampus or cortex were produced by intraparenchymal injections of 192 IgG-saporin into medial septum/vertical limb of the diagonal band or nucleus basalis, respectively. Cholinergic denervation of the cortical regions caused acceleration of amygdala kindling closely resembling that observed after the more widespread lesion induced by intraventricular 192 IgG-saporin. In contrast, removal of the cholinergic input to the hippocampus had no effect on the development of amygdala kindling. These data indicate that basal forebrain cholinergic neurons suppress kindling elicited from amygdala, and that this dampening effect is mediated via cortical but not hippocampal projections.

  19. Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes.

    Christian Beaulé

    Full Text Available BACKGROUND: Circadian clocks control daily rhythms including sleep-wake, hormone secretion, and metabolism. These clocks are based on intracellular transcription-translation feedback loops that sustain daily oscillations of gene expression in many cell types. Mammalian astrocytes display circadian rhythms in the expression of the clock genes Period1 (Per1 and Period2 (Per2. However, a functional role for circadian oscillations in astrocytes is unknown. Because uptake of extrasynaptic glutamate depends on the presence of Per2 in astrocytes, we asked whether glutamate uptake by glia is circadian. METHODOLOGY/PRINCIPAL FINDINGS: We measured glutamate uptake, transcript and protein levels of the astrocyte-specific glutamate transporter, Glast, and the expression of Per1 and Per2 from cultured cortical astrocytes and from explants of somatosensory cortex. We found that glutamate uptake and Glast mRNA and protein expression were significantly reduced in Clock/Clock, Per2- or NPAS2-deficient glia. Uptake was augmented when the medium was supplemented with dibutyryl-cAMP or B27. Critically, glutamate uptake was not circadian in cortical astrocytes cultured from rats or mice or in cortical slices from mice. CONCLUSION/SIGNIFICANCE: We conclude that glutamate uptake levels are modulated by CLOCK, PER2, NPAS2, and the composition of the culture medium, and that uptake does not show circadian variations.

  20. Deep sensibility of the mystacial pad in the rat and its cortical representation.

    Fehér, O; Antal, A; Toldi, J; Wolff, J R


    The cortical representation of the rat's mystacial pad was examined with the aid of evoked field potentials and recording of single cell activity. Mechanical bending of the vibrissae activated the well-known area within the somato-sensory cortex. Electrical stimulation of the mystacial pad with inserted needle electrodes, bi- and monopolarly, caused a widespread activation extending practically to the whole exposed cortex, including visual, acoustic and motor areas (MSS potentials). The evoked field potentials were accompanied by well-recordable unit activity, mainly in the upper 1000 microns of the cortical depth. Capsaicin, injected into the mystacial pad on the 8th-10th postnatal day heavily impaired the MSS potentials as recorded at 2 months of age, and only moderately acted on the mechanically evoked potentials. So did also the acutely injected capsaicin. Peak latency of the MSS potentials seemed to be in correlation with the distance from the punctum maximum. The latencies of unit potentials, however, did not show such dependence, they were between 8 and 10 ms. MSS potentials are thought to represent cortical projection mainly of thermo- and nociceptive fibers, which play an important role in the early postnatal life.

  1. Hyperglycolysis is exacerbated after traumatic brain injury with fentanyl vs. isoflurane anesthesia in rats.

    Statler, Kimberly D; Janesko, Keri L; Melick, John A; Clark, Robert S B; Jenkins, Larry W; Kochanek, Patrick M


    Despite common use of narcotics in the clinical management of severe traumatic brain injury (TBI), in experimental models rats treated with fentanyl have exhibited worse functional outcome and more CA1 hippocampal death than rats treated with standard isoflurane anesthesia. We hypothesized that greater post-traumatic excitotoxicity, reflected by cerebral glucose utilization (CMRglu), may account for detrimental effects of fentanyl vs. isoflurane. Rats were anesthetized with either isoflurane (1% by inhalation) or fentanyl (10 mcg/kg iv bolus then 50 mcg/kg/h infusion). 14C-deoxyglucose autoradiography was performed 45 min after controlled cortical impact (CCI) to left parietal cortex (n=4 per anesthetic group) or in uninjured rats after 45 min of anesthesia (n=3 per anesthetic group). Uninjured rats treated with fentanyl vs. isoflurane showed 35-45% higher CMRglu in all brain structures (panesthesia. This post-traumatic hyperglycolysis suggests greater excitotoxicity and concurs with reports of worse functional outcome and more CA1 hippocampal death after TBI with fentanyl vs. isoflurane anesthesia.

  2. The Rat Homolog of the Schizophrenia Susceptibility Gene ZNF804A Is Highly Expressed during Brain Development, Particularly in Growth Cones

    Hinna, Katja Hvid; Rich, Karen; Fex Svenningsen, Åsa;


    A single nucleotide polymorphism in the ZNF804A gene, rs1344706, is associated with schizophrenia. The polymorphism has been suggested to alter fetal expression of ZNF804A. It has also been reported to be associated with altered cortical functioning and neural connectivity in the brain. Since...... developmental mechanisms are suggested in the pathophysiology for schizophrenia, expression of Zfp804A, the rat homolog of ZNF804A, was investigated in the developing rat brain. We found that expression of Zfp804A in most brain regions is developmentally regulated and peaks around birth, where after...

  3. Quantification of Filamentous Actin (F-actin) Puncta in Rat Cortical Neurons.

    Li, Hailong; Aksenova, Marina; Bertrand, Sarah J; Mactutus, Charles F; Booze, Rosemarie


    Filamentous actin protein (F-actin) plays a major role in spinogenesis, synaptic plasticity, and synaptic stability. Changes in dendritic F-actin rich structures suggest alterations in synaptic integrity and connectivity. Here we provide a detailed protocol for culturing primary rat cortical neurons, Phalloidin staining for F-actin puncta, and subsequent quantification techniques. First, the frontal cortex of E18 rat embryos are dissociated into low-density cell culture, then the neurons grown in vitro for at least 12-14 days. Following experimental treatment, the cortical neurons are stained with AlexaFluor 488 Phalloidin (to label the dendritic F-actin puncta) and microtubule-associated protein 2 (MAP2; to validate the neuronal cells and dendritic integrity). Finally, specialized software is used to analyze and quantify randomly selected neuronal dendrites. F-actin rich structures are identified on second order dendritic branches (length range 25-75 µm) with continuous MAP2 immunofluorescence. The protocol presented here will be a useful method for investigating changes in dendritic synapse structures subsequent to experimental treatments.

  4. Rapid functional reorganization of the forelimb cortical representation after thoracic spinal cord injury in adult rats.

    Sydekum, Esther; Ghosh, Arko; Gullo, Miriam; Baltes, Christof; Schwab, Martin; Rudin, Markus


    Thoracic spinal cord injured rats rely largely on forelimbs to walk, as their hindlimbs are dysfunctional. This increased limb use is accompanied by expansion of the cortical forelimb sensory representation. It is unclear how quickly the representational changes occur and whether they are at all related to the behavioral adaptation. Using blood oxygenation level dependent functional mangetic resonance imaging (BOLD-fMRI) we show that major plastic changes of the somato-sensory map can occur as early as one day after injury. The extent of map increase was variable between animals, and some animals showed a reduction in map size. However, at three or seven days after injury a significant enhancement of the forelimb representation was evident in all the animals. In a behavioral test for precise limb control, crossing of a horizontal ladder, the injured rats relied almost entirely on their forelimbs; they initially made more mistakes than at 7 days post injury. Remarkably, in the individual animals the behavioral performance seen at seven days was proportional to the physiological change present at one day after injury. The rapid increase in cortical representation of the injury-spared body part may provide the additional neural substrate necessary for high level behavioral adaptation.

  5. Calorie restriction aggravated cortical and trabecular bone architecture in ovariectomy-induced estrogen-deficient rats.

    Ahn, Hyejin; Seo, Dong-Hyun; Kim, Han Sung; Choue, Ryowon


    We hypothesized that calorie restriction (CR) and estrogen deficiency (ovariectomy [OVX]) would aggravate bone biomarkers and structural parameters in rats. Seven-week-old female Sprague-Dawley rats were randomized to sham-operated groups and fed either an ad libitum diet (SHAM-AL) or a CR diet (SHAM-CR); ovariectomy-operated groups were fed an ad libitum diet (OVX-AL) or a CR diet (OVX-CR). For 8 weeks, the OVX-AL and SHAM-AL groups were fed the same diet, whereas CR groups were fed a diet containing 50% fewer calories. Bone-related biomarkers and structural parameters (OC; deoxypyridinoline [DPD]; N-terminal telopeptide, NTx; architecture and mineralization; and microcomputed tomography images) were analyzed at the end of the experiment. The serum OC levels of calorie-restricted groups (SHAM-CR and OVX-CR) were significantly lower than those of the AL groups (SHAM-AL and OVX-AL) (P bone, the calorie-restricted and ovariectomized groups had lower values of bone volume to total volume, trabecular number, and bone mineral density, but higher values of trabecular separation than those of their counterparts (P bone, the calorie-restricted groups had reduced values of bone volume, mean polar moment of inertia, and cortical thickness compared to the AL groups (P bone; CR has detrimental effects on trabecular and cortical bone; and estrogen deficiency only had an effect on trabecular bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Chronic Hyperglycemia Modulates Rat Osteoporotic Cortical Bone Microarchitecture into Less Fragile Structures

    Cristina de Mello-Sampayo


    Full Text Available There is controversy concerning the diabetes impact on bone quality, notorious in type 2 diabetic postmenopausal women. One pointed cause might be uncontrolled glycemia. In this study, the effect of chronic hyperglycemia in bone turnover, morphology, and biomechanics was evaluated in female Wistar rats in the presence/absence of estrogens (ovariectomy. Animals (n=28 were divided into sham, ovariectomized (OVX, hyperglycemic (streptozotocin 40 mg/kg, single-dose i.p.-STZ, and hyperglycemic-ovariectomized (STZ + OVX animals. Blood biomarkers were estimated 60 days postovariectomy. Body weight, vertebral microarchitecture (L4-histomorphometry, femur biomechanical properties (bending tests, tibia ultrastructure (scanning electron microscopy, and femur and urinary calcium (atomic absorption were also evaluated. The increased PINP/CTX ratio of hyperglycemic animals and the similar ratio between STZ + OVX and healthy animals contrasting with the lower ratio of OVX (in line with its histomorphometric data suggest a tendency for improved bone formation in hyperglycemic-ovariectomized animals. The increased tibia medullar canal, which contrasts with the unaffected cortical thickness of both hyperglycemic groups while that of OVX decreased, was associated to the increased stiffness and strength of STZ + OVX bones compared to those of OVX, in line with the observed ultrastructure. Concluding, chronic hyperglycemia in ovariectomized female rats causes bone morphological changes that translate positively in the ultrastructure and mechanical properties of cortical bones.

  7. Statins Increase Neurogenesis in the Dentate Gyrus, Reduce Delayed Neuronal Death in the Hippocampal CA3 Region, and Improve Spatial Learning in Rat after Traumatic Brain Injury

    Lu, Dunyue; Qu, Changsheng; Goussev, Anton; Jiang, Hao; Lu, Chang; Schallert, Timothy; Mahmood, Asim; Chen, Jieli; Li, Yi; Chopp, Michael


    Traumatic brain injury (TBI) remains a major public health problem globally. Presently, there is no way to restore cognitive deficits caused by TBI. In this study, we seek to evaluate the effect of statins (simvastatin and atorvastatin) on the spatial learning and neurogenesis in rats subjected to controlled cortical impact. Rats were treated with atorvastatin and simvastatin 1 day after TBI and daily for 14 days. Morris water maze tests were performed during weeks 2 and 5 after TBI. Bromodeo...

  8. Acetylcholine modulates transient outward potassium channel in acutely isolated cerebral cortical neurons of rats

    Lanwei Cui; Tao Sun; Lihui Qu; Yurong Li; Haixia Wen


    BACKGROUND:The neuronal transient outward potassium channel has been shown to be highly associated with acetylcholine.However,the influence of acetylcholine on the transient outward potassium current in cerebral cortical neurons remains poorly understood.OBJECTIVE:To investigate acetylcholine modulation on transient outward potassium current in rat parietal cortical neurons using the whole-cell patch-clamp technique.DESIGN,TIME AND SETTING:A neuroelectrophysiology study was performed at the Department of Physiology,Harbin Medical University between January 2005 and January 2006.MATERIALS:Wistar rats were provided by the Animal Research Center,the Second Hospital of Harbin Medical University;PC-IIC patch-clamp amplifier and IBBClamp data collection analysis system were provided by Huazhong University for Science and Technology,Wuhan,China;PP-83 microelectrode puller was purchased from Narrishage,Japan.METHODS:The parietal somatosensory cortical neurons were acutely dissociated,and the modulation of acetylcholine (0.1,1,10,100 μmol/L) on transient outward potassium channel was recorded using the whole-cell patch-clamp technique.MAIN OUTCOME MEASURES:Influence of acetylcholine on transient outward potassium current,potassium channel activation,and inactivation.RESULTS:The inhibitory effect of acetylcholine on transient outward potassium current was dose- and voltage-dependent (P<0.01).Acetylcholine was found to significantly affect the activation process of transient outward potassium current,i.e.,the activation curve of transient outward potassium current was left-shifted,while the inactivation curve was shifted to hyperpolarization.Acetylcholine significantly prolonged the time constant of recovery from inactivation of transient outward potassium current (P<0.01).CONCLUSION:These results suggest that acetylcholine inhibits transient outward potassium current by regulating activation and inactivation processes of the transient outward potassium channel.

  9. The accumulation of brain water-free sodium is associated with ischemic damage independent of the blood pressure in female rats.

    Sumiyoshi, Manabu; Kitazato, Keiko T; Yagi, Kenji; Miyamoto, Takeshi; Kurashiki, Yoshitaka; Matsushita, Nobuhisa; Kinouchi, Tomoya; Kuwayama, Kazuyuki; Satomi, Junichiro; Nagahiro, Shinji


    Estrogen deficiency worsens ischemic stroke outcomes. In ovariectomized (OVX(+)) rats fed a high-salt diet (HSD), an increase in the body Na(+)/water ratio, which characterizes water-free Na(+) accumulation, was associated with detrimental vascular effects independent of the blood pressure (BP). We hypothesized that an increase in brain water-free Na(+) accumulation is associated with ischemic brain damage in OVX(+)/HSD rats. To test our hypothesis we divided female Wistar rats into 4 groups, OVX(+) and OVX(-) rats fed HSD or a normal diet (ND), and subjected them to transient cerebral ischemia. The brain Na(+)/water ratio was increased even in OVX(+)/ND rats and augmented in OVX(+)/HSD rats. The increase in the brain Na(+)/water ratio was positively correlated with expansion of the cortical infarct volume without affecting the BP. Interestingly, OVX(+) was associated with the decreased expression of ATP1α3, a subtype of the Na(+) efflux pump. HSD increased the expression of brain Na(+) influx-related molecules and the mineralocorticoid receptor (MR). The pretreatment of OVX(+)/HSD rats with the MR antagonist eplerenone reduced brain water-free Na(+) accumulation, up-regulated ATP1α3, down-regulated MR, and reduced the cortical infarct volume. Our findings show that the increase in the brain Na(+)/water ratio elicited by estrogen deficiency or HSD is associated with ischemic brain damage BP-independently, suggesting the importance of regulating the accumulation of brain water-free Na(+). The up-regulation of ATP1α3 and the down-regulation of MR may provide a promising therapeutic strategy to attenuate ischemic brain damage in postmenopausal women.

  10. Mismatch responses in the awake rat: evidence from epidural recordings of auditory cortical fields.

    Fabienne Jung

    Full Text Available Detecting sudden environmental changes is crucial for the survival of humans and animals. In the human auditory system the mismatch negativity (MMN, a component of auditory evoked potentials (AEPs, reflects the violation of predictable stimulus regularities, established by the previous auditory sequence. Given the considerable potentiality of the MMN for clinical applications, establishing valid animal models that allow for detailed investigation of its neurophysiological mechanisms is important. Rodent studies, so far almost exclusively under anesthesia, have not provided decisive evidence whether an MMN analogue exists in rats. This may be due to several factors, including the effect of anesthesia. We therefore used epidural recordings in awake black hooded rats, from two auditory cortical areas in both hemispheres, and with bandpass filtered noise stimuli that were optimized in frequency and duration for eliciting MMN in rats. Using a classical oddball paradigm with frequency deviants, we detected mismatch responses at all four electrodes in primary and secondary auditory cortex, with morphological and functional properties similar to those known in humans, i.e., large amplitude biphasic differences that increased in amplitude with decreasing deviant probability. These mismatch responses significantly diminished in a control condition that removed the predictive context while controlling for presentation rate of the deviants. While our present study does not allow for disambiguating precisely the relative contribution of adaptation and prediction error processing to the observed mismatch responses, it demonstrates that MMN-like potentials can be obtained in awake and unrestrained rats.

  11. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Dezhi Kang; Zhang Guo


    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  12. Involvement of mitogen-activated protein kinase pathways in expression of the water channel protein aquaporin-4 after ischemia in rat cortical astrocytes.

    Nito, Chikako; Kamada, Hiroshi; Endo, Hidenori; Narasimhan, Purnima; Lee, Yong-Sun; Chan, Pak H


    Brain edema after ischemic brain injury is a key determinant of morbidity and mortality. Aquaporin-4 (AQP4) plays an important role in water transport in the central nervous system and is highly expressed in brain astrocytes. However, the AQP4 regulatory mechanisms are poorly understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs), which are involved in changes in osmolality, might mediate AQP4 expression in models of rat cortical astrocytes after ischemia. Increased levels of AQP4 in primary cultured astrocytes subjected to oxygen-glucose deprivation (OGD) and 2 h of reoxygenation were observed, after which they immediately decreased at 0 h of reoxygenation. Astrocytes exposed to OGD injury had significantly increased phosphorylation of three kinds of MAPKs. Treatment with SB203580, a selective p38 MAPK inhibitor, or SP600125, a selective c-Jun N-terminal kinase inhibitor, significantly attenuated the return of AQP4 to its normal level, and SB203580, but not SP600125, significantly decreased cell death. In an in vivo study, AQP4 expression was upregulated 1-3 days after reperfusion, which was consistent with the time course of p38 phosphorylation and activation, and decreased by the p38 inhibition after transient middle cerebral artery occlusion (MCAO). These results suggest that p38 MAPK may regulate AQP4 expression in cortical astrocytes after ischemic injury.

  13. Multidimensional MRI-CT atlas of the naked mole-rat brain

    Fumiko eSeki


    Full Text Available Naked mole-rats have a variety of distinctive features such as the organisation of a hierarchical society (known as eusociality, extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI. Advanced MRI techniques such as diffusion tensor imaging (DTI, which generates high contrast images of fibre structures, can characterise unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography (CT were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualisation of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.

  14. Cortical mapping by functional magnetic resonance imaging in patients with brain tumors

    Majos, Agata; Stefanczyk, Ludomir; Goraj, Bozena [Medical University of Lodz, Department of Radiology, Lodz (Poland); Tybor, Krzysztof [Medical University of Lodz, Department of Neurosurgery, Lodz (Poland)


    The aim of our study was to establish the effectiveness of the functional MRI (fMRI) technique in comparison with intraoperative cortical stimulation (ICS) in planning cortex-saving neurosurgical interventions. The combination of sensory and motor stimulation during fMRI experiments was used to improve the exactness of central sulcus localization. The study subjects were 30 volunteers and 33 patients with brain tumors in the rolandic area. Detailed topographical relations of activated areas in fMRI and intraoperative techniques were compared. The agreement in the location defined by the two methods for motor centers was found to be 84%; for sensory centers it was 83%. When both kinds of activation are taken into account this agreement increases to 98%. A significant relation was found between fMRI and ICS for the agreement of the distance both for motor and sensory centers (p=0.0021-0.0024). Also a strong dependence was found between the agreement of the location and the agreement of the distance for both kinds of stimulation. The spatial correlation between fMRI and ICS methods for the sensorimotor cortex is very high. fMRI combining functional and structural information is very helpful for preoperative neurosurgical planning. The sensitivity of the fMRI technique in brain mapping increases when using both motor and sensory paradigms in the same patient. (orig.)

  15. Oxytocin receptors in brain cortical regions are reduced in haploinsufficient (+/-) reeler mice.

    Liu, Wensheng; Pappas, George D; Carter, C Sue


    Both oxytocin (OT) and reelin are particularly significant during development and the absence of either may interfere with normal brain development. In addition, reelin is critical to the development of the GABAergic system and GABA modulates the release of OT. Availability of the reelin haploinsufficient (+/-) reeler mouse (HRM) provides a model for examining the role of reelin in the development of the OT system and especially in the expression of the OT receptor (OTR). In this study we used immunocytochemistry and in situ hybridization in HRM versus wild-type (+/-) mice (WTM) to quantify OTR abundance in regions of the brain cortex. Our findings reveal that the oxytocin receptor (OTR), measured either by immunohistochemistry or in situ hybridization, is significantly lower in HRM. Areas showing significant deficits included the piriform cortex, neocortex, retrosplenial cortex and certain regions of the hippocampus. Both reelin and OT play a role in regulating affect and mood. Down-regulation of reelin has been strongly correlated with schizophrenia and it is proposed that HRM may serve as a model for neural deficits seen in both schizophrenia and autism. We report that HRM show regionally specific reductions in OTRs, especially in cortical areas, which previously have been implicated in social memory and cognitive functions. These findings offer support for the more general hypothesis that down-regulation of reelin, of either genetic or epigenetic origin, through associated reductions in the OTRs, contributes to the deficiencies in social behavior that are characteristic of both schizophrenia and autism.

  16. Auditory-evoked cortical activity: contribution of brain noise, phase locking, and spectral power.

    Harris, Kelly C; Vaden, Kenneth I; Dubno, Judy R


    The N1-P2 is an obligatory cortical response that can reflect the representation of spectral and temporal characteristics of an auditory stimulus. Traditionally,mean amplitudes and latencies of the prominent peaks in the averaged response are compared across experimental conditions. Analyses of the peaks in the averaged response only reflect a subset of the data contained within the electroencephalogram(EEG) signal. We used single-trial analyses techniques to identify the contribution of brain noise,neural synchrony, and spectral power to the generation of P2 amplitude and how these variables may change across age group. This information is important for appropriate interpretation of event-related potentials (ERPs) results and in understanding of age-related neural pathologies. EEG was measured from 25 younger and 25 older normal hearing adults. Age-related and individual differences in P2 response amplitudes, and variability in brain noise, phase locking value (PLV), and spectral power (4-8 Hz) were assessed from electrode FCz. Model testing and linear regression were used to determine the extent to which brain noise, PLV, and spectral power uniquely predicted P2 amplitudes and varied by age group. Younger adults had significantly larger P2 amplitudes, PLV, and power compared to older adults. Brain noise did not differ between age groups. The results of regression testing revealed that brain noise and PLV, but not spectral power were unique predictors of P2 amplitudes. Model fit was significantly better in younger than in older adults. ERP analyses are intended to provide a better understanding of the underlying neural mechanisms that contribute to individual and group differences in behavior. The current results support that age-related declines in neural synchrony contribute to smaller P2 amplitudes in older normal hearing adults. Based on our results, we discuss potential models in which differences in neural synchrony and brain noise can account for

  17. Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations.

    Oehmichen, Manfred; Walter, Till; Meissner, Christoph; Friedrich, Hans-Jürgen


    We examined 305 autopsied brains for histomorphological alterations to determine the time course of reactions in cortical hemorrhages following traumatic closed brain injury. Eighteen morphological criteria were considered: red blood cells (RBCs), polymorphonuclear leukocytes (PMNs), macrophages (Ms), RBC-containing Ms, hemosiderin, hematoidin, lipid-containing Ms, fibroblasts, endothelial cells, collagenous fibres, gemistocytic astrocytes, fibrillary gliosis, hemosiderin-containing astrocytes, neuronal damage, neuronophagy, axonal swelling (beta-amyloid precursor protein: beta-APP), axonal bulbs (van Gieson stain), and mineralisation of neurons. The interval between the time of brain injury and death ranged from 1 min to 58 years. Following routine staining and immunohistochemical staining of microglia (CD68), astrocytes (GFAP) and injured axons (beta-APP), paraffin sections were examined by light microscopy for the presence of the selected histomorphological features. For each cytomorphological phenomenon, the time at which it could be demonstrated for the first time and for the last time (observation period) was determined. The relative frequency of each criterion was established for each observation period. The limits of confidence for the respective relative frequencies were estimated with a reliability of 95% according to Clopper and Pearson. An apparent correlation was found between the frequency of a given histomorphological phenomenon and the length of the posttraumatic interval. To check for accuracy of prediction, half of the cases (group 1; n = 153) were used to develop a multistage evaluation model; half (group 2; n = 152) were used to evaluate the validity of the data of group 1. Applying this model, 117 of the 152 control group cases (76.97%) could be correctly classified and further 26 cases (17.11%) being assigned to an interval close to the correct interval. Thus, this model allows classification of the correct posttraumatic interval or an

  18. Brain cortical thickness and surface area correlates of neurocognitive performance in patients with schizophrenia, bipolar disorder, and healthy adults.

    Hartberg, C B; Sundet, K; Rimol, L M; Haukvik, U K; Lange, E H; Nesvåg, R; Dale, A M; Melle, I; Andreassen, O A; Agartz, I


    Relationships between cortical brain structure and neurocognitive functioning have been reported in schizophrenia, but findings are inconclusive, and only a few studies in bipolar disorder have addressed this issue. This is the first study to directly compare relationships between cortical thickness and surface area with neurocognitive functioning in patients with schizophrenia (n = 117) and bipolar disorder (n = 121) and healthy controls (n = 192). MRI scans were obtained, and regional cortical thickness and surface area measurements were analyzed for relationships with test scores from 6 neurocognitive domains. In the combined sample, cortical thickness in the right rostral anterior cingulate was inversely related to working memory, and cortical surface area in four frontal and temporal regions were positively related to neurocognitive functioning. A positive relationship between left transverse temporal thickness and processing speed was specific to schizophrenia. A negative relationship between right temporal pole thickness and working memory was specific to bipolar disorder. In conclusion, significant cortical structure/function relationships were found in a large sample of healthy controls and patients with schizophrenia or bipolar disorder. The differences that were found between schizophrenia and bipolar may indicate differential relationship patterns in the two disorders, which may be of relevance for understanding the underlying pathophysiology.

  19. Effects of aspirin on renal cortical and medullary tissues in rat embryos

    Seyed Homayoon Sadraie


    Full Text Available Background: Aspirin is the drug of the century, and is a multifunctional drug and one of the most prescribed drugs in the world. Aspirin is a safe drug at low doses but also it has life-threatening side effects when administered at high doses. This study investi-gates the effects of aspirin on renal cortical and medullary tissue in rat embryos.Methods: In this study, 30 pregnant female rats were randomly divided into 6 groups. Control group with no intervention, sham group received 2 ml distilled water (as a sol-vent of aspirin received from days 8 to 20 of pregnancy, and four experimental groups received different doses of 75, 100, 200 and 300 mg/kg of aspirin by gavage. Pregnant rats were sacrificed on the twenty days of pregnancy and the fetuses were removed. Weight of the fetuses and placenta and Crown-Rump length were measured. Fetal kid-neys were fixed in formalin processed, sectioned and stained with Hematoxylin- Eosin. Thickness of renal cortical and medullary tissue by using a Motic hardware and soft-ware system were measured and recorded. A significance level of 0.05 was predeter-mined for all statistical analyses.Results: No apparent fetal anomalies were observed in experimental groups. In addi-tion, no significant differences were shown in the mean of fetal weight, placental weight, mean of Crown-Rump length in experimental groups 75, 200 and 300 mg/kg compared to control and sham groups. Mean fetal and placental weight in experimental group 100 significantly increased compared to control and sham groups. Mean ratio of renal cortex to renal medulla in experimental group 75, 100 and 300 were significantly decreased compared to control and sham groups (respectively P= 0.03, P= 0.013, P= 0.03.Conclusion: It seems that maternal use of aspirin during pregnancy can not cause fetal abnormalities. However, it can cause some changes in renal cortical and medullary tis-sue of rat embryos.

  20. What is the optimal duration of middle-cerebral artery occlusion consistently resulting in isolated cortical selective neuronal loss in the spontaneously hypertensive rat?

    Sohail eEjaz


    Full Text Available Introduction and Objectives: Selective neuronal loss (SNL in the reperfused penumbra may impact clinical recovery and is thus important to investigate. Brief proximal middle cerebral artery occlusion (MCAo results in predominantly striatal SNL, yet cortical damage is more relevant given its behavioral implications and that thrombolytic therapy mainly rescues the cortex. Distal temporary MCAo (tMCAo does target the cortex, but the optimal occlusion duration that results in isolated SNL has not been determined. In the present study we assessed different distal tMCAo durations looking for consistently pure SNL.Methods: Microclip distal tMCAo (md-tMCAo was performed in ~6-month old male spontaneously hypertensive rats (SHRs. We previously reported that 45min md-tMCAo in SHRs results in pan-necrosis in the majority of subjects. Accordingly, three shorter MCAo durations were investigated here in decremental succession, namely 30, 22 and 15mins (n=3, 3 and 7 subjects, respectively. Recanalization was confirmed by MR angiography just prior to brain collection at 28 days and T2-weighted MRI was obtained for characterization of ischemic lesions. NeuN, OX42 and GFAP immunohistochemistry appraised changes in neurons, microglia and astrocytes, respectively. Ischemic lesions were categorized into three main types: 1 pan-necrosis; 2 partial infarction; and 3 SNL. Results: Pan-necrosis or partial infarction was present in all 30min and 22min subjects, but not in the 15min group (p < 0.001, in which isolated cortical SNL was consistently present. MRI revealed characteristic hyperintense abnormalities in all rats with pan-necrosis or partial infarction, but no change in any 15min subject. Conclusions: We found that 15min distal MCAo consistently resulted in pure cortical SNL, whereas durations equal or longer than 22min consistently resulted in infarcts. This model may be of use to study the pathophysiology of cortical SNL and its prevention by appropriate

  1. 26Al uptake and accumulation in the rat brain

    Yumoto, S.; Nagai, H.; Imamura, M.; Matsuzaki, H.; Hayashi, K.; Masuda, A.; Kumazawa, H.; Ohashi, H.; Kobayashi, K.


    To investigate the cause of Alzheimer's disease (senile dementia), 26Al incorporation in the rat brain was studied by accelerator mass spectrometry (AMS). When 26Al was injected into healthy rats, a considerable amount of 26Al entered the brain (cerebrum) through the blood-brain barrier 5 days after a single injection, and the brain 26Al level remained almost constant from 5 to 270 days. On the other hand, the level of 26Al in the blood decreased remarkably 75 days after injection. Approximately 89% of the 26Al taken in by the brain cell nuclei bound to chromatin. This study supports the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium (Al) in the brain, and brain cell nuclei.

  2. How concepts are encoded in the human brain: A modality independent, category-based cortical organization of semantic knowledge.

    Handjaras, Giacomo; Ricciardi, Emiliano; Leo, Andrea; Lenci, Alessandro; Cecchetti, Luca; Cosottini, Mirco; Marotta, Giovanna; Pietrini, Pietro


    How conceptual knowledge is represented in the human brain remains to be determined. To address the differential role of low-level sensory-based and high-level abstract features in semantic processing, we combined behavioral studies of linguistic production and brain activity measures by functional magnetic resonance imaging in sighted and congenitally blind individuals while they performed a property-generation task with concrete nouns from eight categories, presented through visual and/or auditory modalities. Patterns of neural activity within a large semantic cortical network that comprised parahippocampal, lateral occipital, temporo-parieto-occipital and inferior parietal cortices correlated with linguistic production and were independent both from the modality of stimulus presentation (either visual or auditory) and the (lack of) visual experience. In contrast, selected modality-dependent differences were observed only when the analysis was limited to the individual regions within the semantic cortical network. We conclude that conceptual knowledge in the human brain relies on a distributed, modality-independent cortical representation that integrates the partial category and modality specific information retained at a regional level.

  3. Oxidative stress and superoxide dismutase activity in brain of rats ...


    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ... SOD is an important enzyme family in living cells for maintaining ..... one unit of activity with oxidation rate of organic substrate in.

  4. The brain's router: a cortical network model of serial processing in the primate brain.

    Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R; Dehaene, Stanislas; Sigman, Mariano


    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100-500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a "router" network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates.

  5. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia.

    Jansen, Laura A; Mirzaa, Ghayda M; Ishak, Gisele E; O'Roak, Brian J; Hiatt, Joseph B; Roden, William H; Gunter, Sonya A; Christian, Susan L; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G; Shendure, Jay; Hevner, Robert F; Dobyns, William B


    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum. © The Author (2015). Published by Oxford University Press

  6. Algorithmic complexity as an index of cortical function in awake and pentobarbital-anesthetized rats.

    Shaw, F Z; Chen, R F; Tsao, H W; Yen, C T


    This study introduces algorithmic complexity to measure characteristics of brain functions. The EEG of the rat was recorded with implanted electrodes. The normalized complexity value was relatively independent of data length, and it showed a simpler and easier calculation characteristic than other non-linear indexes. The complexity index revealed significant differences among awake, asleep, and anesthetized states. It may be useful in tracking short-term and long-term changes in brain functions, such as anesthetized depth, drug effects, or sleep-wakefulness.

  7. Ketamine reduces the cell death following inflammatory pain in newborn rat brain.

    Anand, Kanwaljeet J S; Garg, Sarita; Rovnaghi, Cynthia R; Narsinghani, Umesh; Bhutta, Adnan T; Hall, Richard W


    Premature infants experience untreated repetitive pain that may alter their brain development. Effects of ketamine and repetitive pain on cellular death and subsequent behavior were studied in neonatal rats. Rat pups were randomized to undisturbed controls (C), 4% formalin injection (F), ketamine alone (K, 5 mg/kg) or formalin plus ketamine (KF) and were assessed for neuroactivation with Fos protein, cellular death with FluoroJade-B, cognition with the radial arm maze, and pain thresholds with the hot-plate. Greater Fos expression and cell death occurred in F vs. C groups in defined brain areas at 1 and 4 h in F compared with other groups. Cell death was accentuated 3.3-fold in cortical areas and 1.6-fold in subcortical areas in the F compared with the C group following repetitive pain and sacrifice 18-20 h later. These effects were ameliorated by ketamine. Compared with the F group, all other groups demonstrated greater exploratory and rearing behaviors and decreased time for bait consumption at 1-h and 3-h intervals. Significantly greater thermal pain latencies occurred in the KF and F groups. Repetitive neonatal pain accentuates neuronal excitation and cell death in developmentally regulated cortical and subcortical areas, which decreases the acquisition of visual-spatial clues, short-term and long-term memory, and increases pain latencies. Ketamine analgesia mitigates most of these effects.

  8. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease

    Diane eWhitmer


    Full Text Available Parkinson’s disease (PD is marked by excessive synchronous activity in the beta (8-35 Hz band throughout the cortico-basal ganglia network. The optimal location of high frequency deep brain stimulation (HF DBS within the subthalamic nucleus (STN region and the location of maximal beta hypersynchrony are currently matters of debate. Additionally, the effect of STN HF DBS on neural synchrony in functionally connected regions of motor cortex is unknown and of great interest. Scalp EEG studies demonstrated that stimulation of the STN can activate motor cortex antidromically, but the spatial specificity of this effect has not been examined. The present study examined the effect of STN HF DBS on neural synchrony within the cortico-basal ganglia network in patients with PD. We measured local field potentials dorsal to and within the STN of PD patients, and additionally in the motor cortex in a subset of these patients. We used diffusion tensor imaging (DTI to guide the placement of subdural cortical surface electrodes over the DTI-identified origin of the hyperdirect pathway between motor cortex and the STN. The results demonstrated that local beta power was attenuated during HF DBS both dorsal to and within the STN. The degree of attenuation was monotonic with increased DBS voltages in both locations, but this voltage-dependent effect was greater in the central STN than dorsal to the STN (p < 0.05. Cortical signals over the estimated origin of the hyperdirect pathway also demonstrated attenuation of beta hypersynchrony during DBS dorsal to or within STN, whereas signals from non-specific regions of motor cortex were not attenuated. The spatially specific suppression of beta synchrony in the motor cortex support the hypothesis that DBS may treat Parkinsonism by reducing excessive synchrony in the functionally connected sensorimotor network.

  9. Increased brain cortical activity during parabolic flights has no influence on a motor tracking task.

    Schneider, Stefan; Brümmer, Vera; Mierau, Andreas; Carnahan, Heather; Dubrowski, Adam; Strüder, Heiko K


    Previous studies showed that changing forces of gravity as they typically occur during parabolic flights might be responsible for adaptional processes of the CNS. However, until now it has not been differentiated between primary influences of weightlessness and secondary influences due to psycho-physiological factors (e.g., physical or mental strain). With the aim of detecting parabolic flight related changes in central cortical activity, a resting EEG was deduced in 16 subjects before, during and after parabolic flights. After subdividing EEG into alpha-, beta-,delta- and theta-wave bands, an increase in beta-power was noticeable inflight, whereas alpha(1)-power was increased postflight. No changes could be observed for the control group. To control possible effects of cortical activation, a manual tracking task with mirror inversion was performed during either the phase of weightlessness or during the normal gravity phase of a parabolic flight. No differences in performance nor in adaptation could be observed between both groups. A third group, performing under normal and stress-free conditions in a lab showed similar tracking values. We assume that the specific increase in brain activity is a sign of an increase in arousal inflight. This does support previous assumptions of non-specific stressors during parabolic flights and has to be considered as a relevant factor for experiments on central nerve adaptation. Although no influences of stress and/or weightlessness on motor performance and adaptation could be observed, we suggest that an "inflight" control group seems to be more adequate than a laboratory control group to investigate gravity-dependent changes in motor control.

  10. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    Jimmy eStehberg


    Full Text Available Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI and primary visual (VI. It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA and retrograde (CTb tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging and cortical parcellation are discussed.

  11. Expression of Alzheimer-type Neurofibrillary Epitopes in Primary Rat Cortical Neurons Following Infection with Enterococcus faecalis

    Robert eUnderly


    Full Text Available The neurofibrillary tau pathology and amyloid deposits seen in Alzheimer's disease (AD also have been seen in bacteria-infected brains. However, few studies have examined the role of these bacteria in the generation of tau pathology. One suggested link between infection and Alzheimer’s disease is edentulism, the complete loss of teeth. Edentulism can result from chronic periodontal disease due to infection by Enterococcus faecalis. The current study assessed the ability to generate early Alzheimer-like neurofibrillary epitopes in primary rat cortical neurons through bacterial infection by Enterococcus faecalis. Seven-day old cultured neurons were infected with Enterococcus faecalis for 24- and 48-hours. An upward molecular weight shift in tau by western blotting and increased appearance of tau reactivity in cell bodies and degenerating neurites was found in the 48-hour infection group for the antibody CP13 (phospho-Serine-202. A substantial increase in reactivity of Alz-50 was seen at 24- and 48- hours after infection. Furthermore, extensive MAP2 reactivity also was seen at 24- and 48-hours post-infection. Our preliminary findings suggest a potential link between Enterococcus faecalis infection and intracellular changes that may help facilitate early AD-like neurofibrillary pathology.

  12. Estrogen stimulates release of secreted amyloid precursor protein from primary rat cortical neurons via protein kinase C pathway

    Sun ZHANG; Ying HUANG; Yi-chun ZHU; Tai YAO


    Aim: To investigate the mechanism of the action of estrogen, which stimulates the release of secreted amyloid precursor protein α (sAPPα) and decreases the gen eration of amyloid-β protein (Aβ), a dominant component in senile plaques in the brains of Alzheimer's disease patients. Methods: Experiments were carried out inprimary rat cortical neurons, and Western blot was used to detect sAPPα in aculture medium and the total amount of cellular amyloid precursor protein (APP) in neurons. Results: 17β-Estradiol (but not 17α-estradiol) and β-estradiol 6-(Ocarboxymethyl) oxime: BSA increased the secretion of sAPPα and this effect was blocked by protein kinase C (PKC) inhibitor calphostin C, but not by the classical estrogen receptor antagonist ICI 182,780. Meanwhile, 17β-estradiol did not alter the synthesis of cellular APP. Conclusion: The effect of 17β-estradiol on sAPPα secretion is likely mediated through the membrane binding sites, and needs molecular configuration specificity of the ligand. Furthermore, the action of the PKC dependent pathway might be involved in estrogen-induced sAPPα secretion.

  13. Response to Deep Brain Stimulation in Three Brain Targets with Implications in Mental Disorders: A PET Study in Rats

    Casquero-Veiga, Marta; Hadar, Ravit; Pascau, Javier; Winter, Christine; Desco, Manuel; Soto-Montenegro, María Luisa


    Objective To investigate metabolic changes in brain networks by deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) and dorsomedial thalamus (DM) using positron emission tomography (PET) in naïve rats. Methods 43 male Wistar rats underwent stereotactic surgery and concentric bipolar platinum-iridium electrodes were bilaterally implanted into one of the three brain sites. [18F]-fluoro-2-deoxy-glucose-PET (18FDG-PET) and computed tomography (CT) scans were performed at the 7th (without DBS) and 9th day (with DBS) after surgery. Stimulation period matched tracer uptake period. Images were acquired with a small-animal PET-CT scanner. Differences in glucose uptake between groups were assessed with Statistical Parametric Mapping. Results DBS induced site-specific metabolic changes, although a common increased metabolic activity in the piriform cortex was found for the three brain targets. mPFC-DBS increased metabolic activity in the striatum, temporal and amygdala, and reduced it in the cerebellum, brainstem (BS) and periaqueductal gray matter (PAG). NAcc-DBS increased metabolic activity in the subiculum and olfactory bulb, and decreased it in the BS, PAG, septum and hypothalamus. DM-DBS increased metabolic activity in the striatum, NAcc and thalamus and decreased it in the temporal and cingulate cortex. Conclusions DBS induced significant changes in 18FDG uptake in brain regions associated with the basal ganglia-thalamo-cortical circuitry. Stimulation of mPFC, NAcc and DM induced different patterns of 18FDG uptake despite interacting with the same circuitries. This may have important implications to DBS research suggesting individualized target selection according to specific neural modulatory requirements. PMID:28033356

  14. Regulation of brain-derived neurotrophic factor exon IV transcription through calcium responsive elements in cortical neurons.

    Fei Zheng

    Full Text Available Activity-dependent transcription of brain-derived neurotrophic factor (BDNF has been studied as an important model to elucidate the mechanisms underlying numerous aspects of neuroplasticity. It has been extensively emphasized that Ca(2+ influx through different routes may have significantly different effects on BDNF transcription. Here, we examined the regulatory property of the major calcium responsive elements (CaRE in BDNF promoter IV in cultured rat cortical neurons. BDNF promoter IV, as well as CaRE1 and CaRE3, was significantly activated by Ca(2+ influx through L-type voltage-gated calcium channel (L-VGCC or NMDA receptor (NMDAR. However, the L-VGCC- and NMDAR-mediated activation of CaRE was differentially regulated by different Ca(2+-stimulated protein kinases. Specifically, PKA, CaMKI, and CaMKIV activity were required for L-VGCC-, but not NMDAR-mediated CaRE1 activation. CaMKI activity was required for NMDAR- but not L-VGCC-mediated CaRE3 activation. Surprisingly, the activation of CaRF, a previously identified transcription factor for CaRE1, was stimulated via L-VGCC but not NMDAR, and required MEK, PI3K and CaMKII activity. These results suggest a new working model that activity-dependent BDNF IV up-regulation may be coordinately mediated by CaRE1 and CaRE3 activity, which show different responses to Ca(2+-stimulated kinases. Our data also explain how the individual cis-element in BDNF promoter is distinctively coupled to different Ca(2+ routes.

  15. Effects of the muscarinic antagonists pirenzepine and gallamine on spontaneous and evoked responses of rat cerebral cortical neurones.

    Swanson, T. H.; Phillis, J. W.


    1. The muscarinic receptor antagonists gallamine and pirenzepine were iontophoretically applied to rat cerebral cortical cholinoceptive neurones, including corticospinal neurones, to assess their effects on spontaneous firing, and firing induced by: stimulation of the nucleus basalis magnocellularis (NBM); contralateral hindpaw stimulation; application of acetylcholine (ACh); and application of glutamate. 2. Both compounds potently inhibited firing induced by ACh iontophoresis, whilst neither compound consistently altered firing induced by application of glutamate. 3. Gallamine was very effective and pirenzepine less effective, at inhibiting both spontaneous firing and the delayed firing induced by NBM stimulation. The short-latency excitations elicited by NBM stimulation were enhanced by these muscarinic antagonists. 4. Gallamine and pirenzepine enhanced cortical cholinoceptive cell firing induced by contralateral hindpaw stimulation. 5. It is concluded that gallamine depresses spontaneous activity more than pirenzepine, and that both compounds can affect the cortical cell firing evoked by stimulation of the NBM and of thalamo-cortical afferent fibres. PMID:3401638

  16. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    Hansen, Henning Piilgaard


    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... two different sets of interneurons. Our data imply that for a given cortical area the amplitude of vascular signals will depend critically on the type of input and hence on the type of neurons activated. In the second study I investigated the effect of cortical spreading depression (CSD) on the evoked...... of neurovascular coupling after topical pretreatment with either inhibitor of CaN pathway (FK506), inhibitor of mPTP formation (NIM811) and combined inhibition of both pathways (FK506+NIM811 or cyclosporin A). A result indicating a potential new treatment aspect for disease states where CSD is known to be involved...

  17. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations.

    Wig, Gagan S; Laumann, Timothy O; Cohen, Alexander L; Power, Jonathan D; Nelson, Steven M; Glasser, Matthew F; Miezin, Francis M; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E


    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability-reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units.

  18. [The Effect of Cortical Spreading Depression Wave on EEG Spectral Power Anaesthesed and Conscious Rats].

    Koroleva, V I; Sakharov, D S; Bogdanov, A V


    EEG power changes in anaesthetized and conscious rats were studied (under repeated experiments) in wide frequency band (0.1-200 Hz) during cortical spreading depression wave (SD). In anaesthetized rats the decrease of EEG spectral power was shown through all diapasons under consideration. The most pronounced decay of the EEG power was marked in the 30-40 Hz band (27.3 ± 18.5, p = 2.46 x 10-(11)). In other frequency ranges the power decrease was less but its significance remained high. In conscious rats the simultaneous decay of the EEG power from 20 to 100 Hz range was also the most informative index of SD wave. The maximum power loss was found for band 30-40 Hz (11.2 ± 7.8, p = 2.55 x 10(-7)). It was shown that besides of EEG power decay the development of SD wave was characterized by the appearance of high frequency activity in front of SD and at the end of it. The increase of high-frequency activity in front of SD wave appeared in the ipsilateral hemisphere and moved along the cortex with the velocity of the SD wave itself. However the bursts of high frequency activity at the end of unilateral SD occurred simultaneously in both hemispheres and lasted 1.5-2.5 min. Findings contribute to detection of SD wave on basis of EEG spectral analysis.

  19. NR2A contributes to genesis and propagation of cortical spreading depression in rats.

    Bu, Fan; Du, Ruoxing; Li, Yi; Quinn, John P; Wang, Minyan


    Cortical spreading depression (CSD) is a transient propagating excitation of synaptic activity followed by depression, which is implicated in migraine. Increasing evidence points to an essential role of NR2A-containing NMDA receptors in CSD propagation in vitro; however, whether these receptors mediate CSD genesis in vivo requires clarification and the role of NR2A on CSD propagation is still under debate. Using in vivo CSD in rats with electrophysiology and in vitro CSD in chick retina with intrinsic optical imaging, we addressed the role of NR2A in CSD. We demonstrated that NVP-AAM077, a potent antagonist for NR2A-containing receptors, perfused through microdialysis probes, markedly reduced cortex susceptibility to CSD, but also reduced magnitude of CSD genesis in rats. Additionally, NVP-AAM077 at 0.3 nmol perfused into the contralateral ventricle, considerably suppressed the magnitude of CSD propagation wave and propagation rate in rats. This reduction in CSD propagation was also observed with TCN-201, a negative allosteric modulator selective for NR2A, at 3 μM, in the chick retina. Our data provides strong evidence that NR2A subunit contributes to CSD genesis and propagation, suggesting drugs selectively antagonizing NR2A-containing receptors might constitute a highly specific strategy treating CSD associated migraine with a likely better safety profile.

  20. Outer brain barriers in rat and human development

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld


    diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  1. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Hohman, Emily E; Weaver, Connie M


    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  2. Subcortical connections of normotopic and heterotopic neurons in sensory and motor cortices of the tish mutant rat.

    Schottler, F; Couture, D; Rao, A; Kahn, H; Lee, K S


    Orthograde and retrograde tracers were used to examine subcortical connections of neurons in the neurological mutant tish rat. This animal exhibits bilateral heterotopia similar to those observed in epileptic humans with subcortical band heterotopia. Terminal varicosities were labeled in the striatum, thalamus, brainstem, and spinal cord following injections of the anterograde tracer biotinylated dextran amine (BDA) into the heterotopic cortex. The general topography of corticothalamic projections was evaluated by injecting the retrograde tracer Fluoro-Gold (FG) into ventral thalamic nuclei. Retrograde labeling of small-to-medium sized neurons was observed in layer VI of topographically restricted portions of the normotopic cortex. Similar appearing cells were labeled in the neighboring portions of the underlying heterotopia; however, these neurons did not display characteristic lamination or radial orientation. Thalamocortical terminals labeled by injecting BDA into the ventroposterolateral nucleus (VPL) were observed primarily in layer IV of the medial aspect of the normotopic somatosensory cortex. In contrast, a radial column of terminals was present in the underlying heterotopia. Typical barrel labeling was found in the lateral aspect of the normotopic somatosensory cortex after injecting the ventroposteromedial nucleus (VPM), whereas more diffuse patches of labeling were observed in the underlying heterotopia. Heterotopic neurons in the tish cortex, thus, exhibit characteristic features of subcortical connectivity. Both normotopic and heterotopic neurons in the tish brain project to appropriate subcortical sites and establish bidirectional topographic connections with the thalamus. These results suggest that primary sensory-motor information is represented in a parallel manner in the normotopic and heterotopic cortices of the tish rat.

  3. Humanin rescues cultured rat cortical neurons from NMDA-induced toxicity through the alleviation of mitochondrial dysfunction

    Cui A


    Full Text Available Ai-Ling Cui,1 Ying-Hua Zhang,2 Jian-Zhong Li,3 Tianbin Song,4 Xue-Min Liu,1 Hui Wang,2 Ce Zhang,5 Guo-Lin Ma,6 Hui Zhang,7 Kefeng Li8 1Anatomy Department, Changzhi Medical College, Changzhi, Shanxi, 2Key Laboratory of Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, Henan, 3Clinical Laboratory of Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 4Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 5Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, 6Department of Radiology, China-Japan Friendship Hospital, Beijing, 7Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China; 8School of Medicine, University of California – San Diego, San Diego, CA, USA Abstract: N-methyl-D-aspartate (NDMA receptor-mediated excitotoxicity has been implicated in a variety of pathological situations such as Alzheimer’s disease (AD and Parkinson’s disease. However, no effective treatments for the same have been developed so far. Humanin (HN is a 24-amino acid peptide originally cloned from the brain of patients with AD and it prevents stress-induced cell death in many cells/tissues. In our previous study, HN was found to effectively rescue rat cortical neurons. It is still not clear whether HN protects the neurons through the attenuation of mitochondrial dysfunction. In this study, excitatory toxicity was induced by NMDA, which binds the NMDA receptor in primarily cultured rat cortical neurons. We found that NMDA (100 µmol/L dramatically induced the decrease of cell viability and caused mitochondrial dysfunction. Pretreatment of the neurons with HN (1 µmol/L led to significant increases of mitochondrial succinate dehydrogenase (SDH activity and membrane potential. In addition, HN pretreatment significantly reduced the excessive production of both reactive oxygen species (ROS and nitric

  4. Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors.

    López Rodríguez, Ana Belén; Mateos Vicente, Beatriz; Romero-Zerbo, Silvana Y; Rodriguez-Rodriguez, Noé; Bellini, María José; Rodriguez de Fonseca, Fernando; Bermudez-Silva, Francisco Javier; Azcoitia, Iñigo; Garcia-Segura, Luis M; Viveros, María-Paz


    The neuroactive steroid estradiol reduces reactive astroglia after brain injury by mechanisms similar to those involved in the regulation of reactive gliosis by endocannabinoids. In this study, we have explored whether cannabinoid receptors are involved in the effects of estradiol on reactive astroglia. To test this hypothesis, the effects of estradiol, the cannabinoid CB1 antagonist/inverse agonist AM251, and the cannabinoid CB2 antagonist/inverse agonist AM630 were assessed in the cerebral cortex of male rats after a stab wound brain injury. Estradiol reduced the number of vimentin immunoreactive astrocytes and the number of glial fibrillary acidic protein immunoreactive astrocytes in the proximity of the wound. The effect of estradiol was significantly inhibited by the administration of either CB1 or CB2 receptor antagonists. The effect of estradiol may be in part mediated by alterations in endocannabinoid signaling because the hormone increased in the injured cerebral cortex the messenger RNA levels of CB2 receptors and of some of the enzymes involved in the synthesis and metabolism of endocannabinoids. These findings suggest that estradiol may decrease reactive astroglia in the injured brain by regulating the activity of the endocannabinoid system.

  5. Modifications of 5-HT4 receptor expression in rat brain during memory consolidation.

    Manuel-Apolinar, L; Rocha, L; Pascoe, D; Castillo, E; Castillo, C; Meneses, A


    Pharmacological evidence indicates a specific role of 5-HT(4) receptors on memory function. These receptors are members of G-protein-coupled 7-transmembrane domain receptor superfamily, are positively coupled to adenylyl cyclase, and are heterogeneously located in some structures important for memory, such as the hippocampus and cortical regions. To further clarify 5-HT(4) receptors' role in memory, the expression of these receptors in passive (P3) untrained and autoshaping (A3) trained (3 sessions) adult (3 months) and old (P9 or A9; 9 months) male rats was determined by autoradiography. Adult trained (A3) rats showed a better memory respect to old trained (A9). Using [(3)H] GR113808 as ligand (0.2 nM specific activity 81 Ci/mmol) for 5-HT(4) receptor expression, 29 brain areas were analyzed, 16 areas of A3 and 17 of A9 animals displayed significant changes. The medial mammillary nucleus of A3 group showed diminished 5-HT(4) receptor expression, and in other 15 brain areas of A3 or 10 of A9 animals, 5-HT(4) receptors were increased. Thus, for A3 rats, 5-HT(4) receptors were augmented in olfactory lobule, caudate putamen, fundus striatum, CA2, retrosplenial, frontal, temporal, occipital, and cingulate cortex. Also, 5-HT(4) receptors were increased in olfactory tubercule, hippocampal CA1, parietal, piriform, and cingulate cortex of A9. However, hippocampal CA2 and CA3 areas, and frontal, parietal, and temporal cortex of A9 rats, expressed less 5-HT(4) receptors. These findings suggest that serotonergic activity, via 5-HT(4) receptors in hippocampal, striatum, and cortical areas, mediates memory function and provides further evidence for a complex and regionally specific regulation over 5-HT receptor expression during memory formation.

  6. Selective ablation of rat brain tumors by boron neutron capture therapy

    Coderre, J.; Joel, D. (Brookhaven National Lab., Upton, NY (United States)); Rubin, P.; Freedman, A.; Hansen, J.; Wooding, T.S. Jr.; Gash, D. (Univ. of Rochester School of Medicine, NY (United States))


    Damage to the surrounding normal brain tissue limits the amount of radiation that can be delivered to intracranial tumors. Boron neutron capture therapy (BNCT) is a binary treatment that allows selective tumor irradiation. This study evaluates the damage imparted to the normal brain during BNCT or x-irradiation. The brains of rats with implanted 9L gliosarcomas were examined 1 year after tumor-curative doses of either 250 kV X-rays or BNCT. Histopathologic techniques included hematoxylin and eosin staining, horseradish peroxidase perfusion, and electron microscopy. Longterm X-ray survivors showed extensive cortical atrophy, loss of neurons, and widespread leakage of the blood-brain barrier (BBB), particularly around the tumor scar. In contrast, the brains and the BBB of longterm BNCT survivors appeared relatively normal under both light- and electron-microscopic examination. Intact blood vessels were observed running directly through the avascular, collagenous tumor scar. The selective therapeutic effect of BNCT is evident in comparison to x-irradiation. Both groups of animals showed no evidence of residual tumor at 1 year. However, with x-irradiation there is no therapeutic ratio and tumor eradication severely injuries the remaining brain parenchyma. These observations indicate a substantial therapeutic gain for BNCT. 50 refs., 8 figs., 1 tab.

  7. Effects of Exercise Following Lateral Fluid Percussion Brain Injury in Rats.

    Hicks, Ramona R.; Boggs, Arden; Leider, Denise; Kraemer, Philip; Brown, Russell; Scheff, Stephen W.; Seroogy, Kim B.


    Previous studies have suggested that brain-derived neurotrophic factor (BDNF) is involved in memory and learning, and may be neuroprotective following various brain insults. Exercise has been found to increase BDNF mRNA levels in various brain regions, including specific subpopulations of hippocampal neurons. In the present study, we were interested in whether following traumatic brain injury, exercise could increase BDNF mRNA expression, attenuate neuropathology, and improve cognitive and neuromoter performance. We subjected adult male Sprague-Dawley rats to a fluid percussion brain injury, followed by either 18 days of treadmill exercise or handling. Spatial memory was evaluated in a Morris Water Maze (MWM) and motor function was evaluated with a battery of neuromotor tests. Neuropathology was evaluated by measuring the cortical lesion volume and the extent of neuronal loss in the hipocampus. Expression of BDNF mRNA in the hippocampus was assessed with in situ hybridization and densitometry. Hybridization signal for BDNF mRNA was significantly increased bilaterally in the exercise group in hippocampal regions CA1 and CA3 (p<0.05), but not in the granule cell layer of the dentate gyrus. No significant differences were observed between the groups in neuropathology, spatial memory, or motor performance. This study suggests that after traumatic brain injury, exercise elevates BDNF mRNA in specific regions of the hippocampus.

  8. Alpha II Spectrin breakdown products in immature Sprague Dawley rat hippocampus and cortex after traumatic brain injury.

    Schober, Michelle E; Requena, Daniela F; Davis, Lizeth J; Metzger, Ryan R; Bennett, Kimberly S; Morita, Denise; Niedzwecki, Christian; Yang, Zhihui; Wang, Kevin K W


    After traumatic brain injury (TBI), proteolysis of Alpha II Spectrin by Calpain 1 produces 145 Spectrin breakdown products (SBDPs) while proteolysis by Caspase 3 produces 120 SBDPs. 145 and 120 SBDP immunoblotting reflects the relative importance of caspase-dependent apoptosis or calpain-dependent excitotoxic/necrotoxic cell death in brain regions over time. In the adult rat, controlled cortical impact (CCI) increased 120 SBDPs in the first hours, lasting a few days, and increased 145 SBDPs within the first few days lasting up to 14 days after injury. Little is known about SBDPs in the immature brain after TBI. Since development affects susceptibility to apoptosis after TBI, we hypothesized that CCI would increase 145 and 120 SBDPs in the immature rat brain relative to SHAM during the first 3 and 5 days, respectively. SBDPs were measured in hippocampi and cortices at post injury days (PID) 1, 2, 3, 5, 7 and 14 after CCI or SHAM surgery in the 17 day old Sprague Dawley rat. 145 SBDPs increased in both brain tissues ipsilateral to injury during the first 3 days, while changes in contralateral tissues were limited to PID2 cortex. 145 SBDPs elevations were more marked and enduring in hippocampus than in cortex. Against expectations, 120 SBDPs only increased in PID1 hippocampus and PID2 cortex. 145 SBDPs elevations occurred early after CCI, similar to previous studies in the adult rat, but resolved more quickly. The minimal changes in 120 SBDPs suggest that calpain-dependent, but not caspase-dependent, cell death predominates in the 17 day old rat after CCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Prevalence, and Intellectual Outcome of Unilateral Focal Cortical Brain Damage as a Function of Age, Sex and Aetiology

    C. M. J. Braun


    Full Text Available Neurologists and neuropsychologists are aware that aging men are more at risk than women for brain damage, principally because of the well known male-predominant risk for cardiovascular disease and related cerebrovascular accidents. However, a disproportion in prevalence of brain damage between the sexes in childhood may be less suspected. Furthermore, sex-specific risk for other aetiologies of brain damage may be little known, whether in the pediatric or adult populations. Proposals of a sex difference in cognitive recovery from brain damage have also been controversial. Six hundred and thirty five “consecutive” cases with cortical focal lesions including cases of all ages and both sexes were reviewed. Aetiology of the lesion was determined for each case as was postlesion IQ. Risk was highly male prevalent in all age groups, with a predominance of cardiovascular aetiology explaining much of the adult male prevalence. However, several other aetiological categories were significantly male prevalent in juveniles (mitotic, traumatic, dysplasic and adults (mitotic, traumatic. There was no sex difference in outcome (i.e., postlesion IQ of these cortical brain lesions for the cohort as a whole, after statistical removal of the influence of lesion extent, aetiology and presence of epilepsy. Mechanisms potentially responsible for sex differences in prevalence, aetiology of brain damage, and recovery, are reviewed and discussed.

  10. Waxholm Space atlas of the Sprague Dawley rat brain

    Papp, Eszter A.; Trygve B. Leergaard; Calabrese, Evan; Johnson, G. Allan; Bjaalie, Jan G.


    Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 µm isotropic voxels for the MRI volume and 78 µm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in ...

  11. STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes.

    Moreno, Claudia; Sampieri, Alicia; Vivas, Oscar; Peña-Segura, Claudia; Vaca, Luis


    In astrocytes, thrombin leads to cytoplasmic Ca(2+) elevations modulating a variety of cytoprotective and cytotoxic responses. Astrocytes respond to thrombin stimulation with a biphasic Ca(2+) increase generated by an interplay between ER-Ca(2+) release and store-operated Ca(2+) entry (SOCE). In many cell types, STIM1 and Orai1 have been demonstrated to be central components of SOCE. STIM1 senses the ER-Ca(2+) depletion and binds Orai1 to activate Ca(2+) influx. Here we used immunocytochemistry, overexpression and siRNA assays to investigate the role of STIM1 and Orai1 in the thrombin-induced Ca(2+) response in primary cultures of rat cortical astrocytes. We found that STIM1 and Orai1 are endogenously expressed in cortical astrocytes and distribute accordingly with other mammalian cells. Importantly, native and overexpressed STIM1 reorganized in puncta under thrombin stimulation and this reorganization was reversible. In addition, the overexpression of STIM1 and Orai1 increased by twofold the Ca(2+) influx evoked by thrombin, while knockdown of endogenous STIM1 and Orai1 significantly decreased this Ca(2+) influx. These results indicate that STIM1 and Orai1 underlie an important fraction of the Ca(2+) response that astrocytes exhibit in the presence of thrombin. Thrombin stimulation in astrocytes leads to ER-Ca(2+) release which causes STIM1 reorganization allowing the activation of Orai1 and the subsequent Ca(2+) influx. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Flow velocity change in the cortical vein during motor activation and its effect on functional brain MRI

    Nakajima, Kazuhiro [Kyoto Prefectural Univ. of Medicine (Japan)


    On the brain functional magnetic resonance imaging (fMRI) using the gradient-recalled echo technique with clinical MR scanner, the activated areas nearly correspond with the cortical veins. This suggests that the fMRI signal mainly originates from the cortical veins. In this study, we analyzed the flow velocity in the cortical vein quantitatively during brain activation and resting status using 2 dimensional time-of-flight cine MR venography (2D-TOF-cine-MRV) and 2 dimensional phase contrast MRV (2D-PC-MRV) techniques, and demonstrated that the flow velocity increased in the cortical vein corresponding to the activated area during activation status. The increase of flow velocity was calculated to be about 20%. The reason for the increased flow velocity is probably due to the increased regional cerebral blood flow and volume in the activated area. We should be careful to analyze the data of the fMRI because the flow velocity affects the fMRI signal such as the inflow effect and the oblique flow effect. When using the gradient echo method, the effect of the flow velocity is one of the important factors of the fMRI signal. (author)

  13. Actin purification from a gel of rat brain extracts.

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J


    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  14. Analytical characterization of spontaneous firing in networks of developing rat cultured cortical neurons

    Tateno, Takashi; Kawana, Akio; Jimbo, Yasuhiko


    We have used a multiunit electrode array in extracellular recording to investigate changes in the firing patterns in networks of developing rat cortical neurons. The spontaneous activity of continual asynchronous firing or the alternation of asynchronous spikes and synchronous bursts changed over time so that activity in the later stages consisted exclusively of synchronized bursts. The spontaneous coordinated activity in bursts produced a variability in interburst interval (IBI) sequences that is referred to as ``form.'' The stochastic and nonlinear dynamical analysis of IBI sequences revealed that these sequences reflected a largely random process and that the form for relatively immature neurons was largely oscillatory while the form for the more mature neurons was Poisson-like. The observed IBI sequences thus showed changes in form associated with both the intrinsic properties of the developing cells and the neural response to correlated synaptic inputs due to interaction between the developing neural circuits.

  15. Perirhinal cortex relays auditory information to the frontal motor cortices in the rat.

    Kyuhou, Shin-ichi; Matsuzaki, Ryuichi; Gemba, Hisae


    Auditory evoked potentials (AEPs) were recorded in the motor cortices (MC) with chronically implanted electrodes in the rat. Some of the AEPs in the MC, namely negative potentials on the surface and positive ones at a depth of 2 mm at latencies of about 50-150 ms, were abolished by limited bilateral lesions of the anterior perirhinal cortex (PERa) which was responsive to auditory stimulus, indicating that the AEPs in the MC were at least partially relayed in the PERa. The auditory response in the MC was prominently enhanced when water was supplied or the medial forebrain bundle was stimulated after auditory stimulus. These results indicate that the MC receives the reward associated auditory information from the PERa.

  16. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces

    Li, Simin; Li, Jie; Li, Zheng


    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well. PMID:28066170

  17. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.

    Li, Simin; Li, Jie; Li, Zheng


    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

  18. Decreased GABABR expression and increased neuronal cell death in developing rat brain after PTZ-induced seizure.

    Naseer, Muhammad Imran; Ullah, Ikram; Al-Qahtani, Mohammed H; Karim, Sajjad; Ullah, Najeeb; Ansari, Shakeel Ahmed; Kim, Myeong Ok; Bibi, Fehmida


    The objective of this study was to evaluate the PTZ-induced seizures effects on GABAB receptor (R) expression and to observe its neurodegenerative effect in hippocampal part of developing rat brain. In the present study, high dose of pentylenetetrazol (PTZ 40 mg/kg) was injected in developing rats of age 5 weeks having average weight of 60-65 g for 4 days. Further, baclofen (B 3 mg/kg i.p) agonist and phaclofen (P 30 μg/rat) antagonist of GABABR were injected along with PTZ. Western blot analysis was used to elucidate expression of GABABR protein upon PTZ, baclofen and phaclofen exposure in the developing rat brain. Furthermore, PTZ-induced apoptotic neurodegeneration was also observed through the release of caspase-3 antibody and propidium iodide (PI) staining using confocal microscopy. Seizure was confirmed using electroencephalography (EEG) data obtained from the Laxtha EEG-monitoring device in the EEG recording room and EEG was monitored 5-15 min after PTZ injection. The results of the present study showed that PTZ-induced seizure significantly decreased GABABR expression and induced neuronal apoptosis in cortical and hippocampal part of brain. While, baclofen reverse the effect of PTZ by increasing the expression of GABABR as compared to the PTZ- , PTZ plus B- and PTZ plus P-treated groups. Our findings indicated that PTZ-induced seizure showed not only decrease in GABABR expression but also cause neuronal apoptosis in the developing rat brain.

  19. Olanzapine treatment of adolescent rats causes enduring specific memory impairments and alters cortical development and function.

    Jean A Milstein

    Full Text Available Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug treatment. Most antipsychotic drugs are potent antagonists or partial agonists of dopamine D2 receptors; atypical antipsychotic drugs also antagonize type 2A serotonin receptors. Dopamine and serotonin regulate many neurodevelopmental processes. Thus, early life antipsychotic drug treatment can, potentially, perturb these processes, causing long-term behavioral- and neurobiological impairments. Here, we treated adolescent, male rats with olanzapine on post-natal days 28-49. As adults, they exhibited impaired working memory, but normal spatial memory, as compared to vehicle-treated control rats. They also showed a deficit in extinction of fear conditioning. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, parietal cortex, nucleus accumbens core and dentate gyrus, adolescent olanzapine treatment altered the developmental dynamics and mature values of dendritic spine density in a region-specific manner. Measures of motor activity and skill, habituation to an open field, and affect were normal. In the orbital- and medial prefrontal cortices, D1 binding was reduced and binding of GABA(A receptors with open Cl(- channels was increased. In medial prefrontal cortex, D2 binding was also increased. The persistence of these changes underscores the importance of improved understanding of the enduring sequelae of pediatric APD treatment as a basis for weighing the benefits and risks of adolescent antipsychotic drug therapy, especially prophylactic treatment in high risk, asymptomatic patients. The long-term changes in neurotransmitter receptor binding and neural circuitry induced by adolescent APD treatment may also cause enduring changes in behavioral- and

  20. Corticalization of motor control in humans is a consequence of brain scaling in primate evolution.

    Herculano-Houzel, Suzana; Kaas, Jon H; de Oliveira-Souza, Ricardo


    Control over spinal and brainstem somatomotor neurons is exerted by two sets of descending fibers, corticospinal/pyramidal and extrapyramidal. Although in nonhuman primates the effect of bilateral pyramidal lesions is mostly limited to an impairment of the independent use of digits in skilled manual actions, similar injuries in humans result in the locked-in syndrome, a state of mutism and quadriplegia in which communication can be established only by residual vertical eye movements. This behavioral contrast makes humans appear to be outliers compared with other primates because of our almost total dependence on the corticospinal/pyramidal system for the effectuation of movement. Here we propose, instead, that an increasing preponderance of the corticospinal/pyramidal system over motor control is an expected consequence of increasing brain size in primates because of the faster scaling of the number of neurons in the primary motor cortex over the brainstem and spinal cord motor neuron pools, explaining the apparent uniqueness of the corticalization of motor control in humans. © 2015 Wiley Periodicals, Inc.

  1. Visual imagery influences brain responses to visual stimulation in bilateral cortical blindness.

    de Gelder, Beatrice; Tamietto, Marco; Pegna, Alan J; Van den Stock, Jan


    Mental imagery is a powerful mechanism that may facilitate visual perception as well as compensate for it. The role of V1 in mental imagery is still a matter of debate. Our goal here was to investigate whether visual imagery was still possible in case of bilateral V1 destruction behaviorally evidenced by total clinical blindness and if so, whether it might boost residual visual perception. In a factorial fMRI design, faces, scenes or scrambled images were presented while a rare patient with cortical blindness over the whole visual field due to bilateral V1-lesions (TN) was instructed to imagine either an angry person or a neutral object (tree). The results show that visual imagery of a person activates frontal, parietal and occipital brain regions similar to control subjects and hence suggest that V1 is not necessary for visual imagery. In addition, the combination of visual stimulation and visual imagery of socio-emotional stimuli triggers activation in superior parietal lobule (SPL) and ventromedial (vmPFC) and dorsolateral prefrontal cortex (DLPFC). Finally, activation during residual vision, visual imagery and their interaction overlapped in the SPL, arguing for a central role of feeling in V1-independent vision and imagery.

  2. Cortical Brain Connectivity and B-Type Natriuretic Peptide in Patients With Congestive Heart Failure.

    Vecchio, Fabrizio; Miraglia, Francesca; Valeriani, Lavinia; Scarpellini, Maria Gabriella; Bramanti, Placido; Mecarelli, Oriano; Rossini, Paolo M


    The brain has a high level of complexity and needs continuous oxygen supply. So it is clear that any pathological condition, or physiological (aging) change, in the cardiovascular system affects functioning of the central nervous system. We evaluated linear aspects of the relationship between the slowness of cortical rhythms, as revealed by the modulation of a graph connectivity parameter, and congestive heart failure (CHF), as a reflection of neurodegenerative processes. Eyes-closed resting electroencephalographic (EEG) data of 10 patients with CHF were recorded by 19 electrodes positioned according the international 10-20 system. Graph theory function (normalized characteristic path length λ) was applied to the undirected and weighted networks obtained by lagged linear coherence evaluated by eLORETA software, therefore getting rid of volumetric propagation influences. The EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-40 Hz). The analysis between B-type natriuretic peptide (BNP) values and λ showed positive correlation in delta, associated with a negative correlation in alpha 2 band. Namely, the higher the severity of the disease (as revealed by the BNP vales), the higher the λ in delta, and lower in alpha 2 band. Results suggest that delta and alpha λ indices are good markers of the severity of CHF.

  3. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain

    Hiroaki Tsukano; Masao Horie; Ryuichi Hishida; Kuniyuki Takahashi; Hirohide Takebayashi; Katsuei Shibuki


    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory ...

  4. Global and regional cortical connectivity maturation index (CCMI) of developmental human brain with quantification of short-range association tracts

    Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao


    From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.

  5. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm


    lacunar properties in rat cortical bone. Femora of 14 to 42-week-old female Wistar rats were investigated using multiple complementary techniques including X-ray micro-computed tomography and biomechanical testing. The body weight, femoral length, aBMD, load to fracture, tissue volume, bone volume......, and tissue density were found to increase rapidly with age at 14–30 weeks. At the age of 30–42 weeks, the growth rate appeared to decrease. However, no accompanying changes were found in osteocyte lacunar properties such as lacunar volume, ellipsoidal radii, lacunar stretch, lacunar oblateness, or lacunar...... orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...

  6. A comparison of brain volume and cortical thickness in excoriation (skin picking) disorder and trichotillomania (hair pulling disorder) in women.

    Roos, Annerine; Grant, Jon E; Fouche, Jean-Paul; Stein, Dan J; Lochner, Christine


    Skin picking disorder (SPD) and trichotillomania (hair pulling disorder, or HPD) significantly overlap in terms of clinical features. However, few studies have directly compared structural brain data in these disorders. The aim of this study was to compare volumes of brain structures and cortical thickness in patients with SPD and HPD, and determine involvement of fronto-striatal pathways. Seventeen female SPD, 17 HPD and 15 healthy age-matched controls underwent clinical assessment and structural MRI imaging. Group differences were determined in brain volume and cortical thickness, controlling for illness severity. Participants with SPD had greater volume of the ventral striatum bilaterally; and reduced cortical thickness in right hemisphere frontal areas, and greater thickness of the cuneus bilaterally compared to HPD and control participants. HPD participants demonstrated reduced thickness of the right parahippocampal gyrus compared to SPD and control participants. The findings here are partially consistent with previous structural work in SPD, and suggest some differences in the neurobiology of SPD and HPD. The more extensive involvement of the ventral striatum in SPD may suggest greater involvement of the reward system, while the more extensive involvement of the parahippocampal gyrus in HPD may be consistent with the dissociative symptoms often seen in these patients.

  7. Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain.

    Scudiero, Rosaria; Cigliano, Luisa; Verderame, Mariailaria


    Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed.

  8. The Estimation of Cortical Activity for Brain-Computer Interface: Applications in a Domotic Context

    Babiloni, F.; Cincotti, F; M. Marciani; Salinari, S.; Astolfi, L.; A. Tocci; Aloise, F.; De Mattia, D.; De Vico Fallani, F.; Bufalari, S.


    In order to analyze whether the use of the cortical activity, estimated from noninvasive EEG recordings, could be useful to detect mental states related to the imagination of limb movements, we estimate cortical activity from high-resolution EEG recordings in a group of healthy subjects by using realistic head models. Such cortical activity was estimated in region of interest associated with the subject's Brodmann areas by using a depth-weighted minimum norm...

  9. Cu/Zn superoxide dismutase expression in the postnatal rat brain following an excitotoxic injury

    Faiz Maryam


    Full Text Available Abstract Background In the nervous system, as in other organs, Cu/Zn superoxide dismutase (Cu/Zn SOD is a key antioxidant enzyme involved in superoxide detoxification in normal cellular metabolism and after cell injury. Although it has been suggested that immature brain has a different susceptibility to oxidative damage than adult brain, the distribution and cell-specific expression of this enzyme in immature brain and after postnatal brain damage has not been documented. Methods In this study, we used immunohistochemistry and western blot to analyze the expression of Cu/Zn SOD in intact immature rat brain and in immature rat brain after an NMDA-induced excitotoxic cortical injury performed at postnatal day 9. Double immunofluorescence labelling was used to identify Cu/Zn SOD-expressing cell populations. Results In intact immature brain, Cu/Zn SOD enzyme was widely expressed at high levels in neurons mainly located in cortical layers II, III and V, in the sub-plate, in the pyriform cortex, in the hippocampus, and in the hypothalamus. Glial fibrillary acidic protein-positive cells only showed Cu/Zn SOD expression in the glia limitans and in scattered cells of the ventricle walls. No expression was detected in interfascicular oligodendroglia, microglia or endothelial cells. Following excitotoxic damage, neuronal Cu/Zn SOD was rapidly downregulated (over 2–4 hours at the injection site before neurodegeneration signals and TUNEL staining were observed. Later, from 1 day post-lesion onward, an upregulation of Cu/Zn SOD was found due to increased expression in astroglia. A further increase was observed at 3, 5 and 7 days that corresponded to extensive induction of Cu/Zn SOD in highly reactive astrocytes and in the astroglial scar. Conclusion We show here that, in the intact immature brain, the expression of Cu/Zn SOD was mainly found in neurons. When damage occurs, a strong and very rapid downregulation of this enzyme precedes neuronal degeneration

  10. Macrostructural brain changes in patients with longstanding type 1 diabetes mellitus - a cortical thickness analysis study

    Frøkjær, J B; Brock, C; Søfteland, E


    with longstanding (average 24.6 years) type 1 DM and 20 healthy controls were studied in a 3T magnetic resonance scanner. Using an automated surface based cortical segmentation method, cortical thickness was assessed in anatomical regions including total and lobe-wise grey and white matter volumes. Also.......03) and superior parietal gyrus (P=0.008) in patients. The cortical thickness of these regions was not associated with diabetes duration, age at diabetes onset or to HbA1c (all P>0.08). Patients with peripheral neuropathy showed reduced right postcentral gyrus cortical thickness compared to patients without...

  11. Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties

    Adam J. Schwarz


    Full Text Available Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.

  12. Three months of chronic ethanol administration and the behavioral outcome of rats after lateral fluid percussion brain injury.

    Masse, J; Billings, B; Dhillon, H S; Mace, D; Hicks, R; Barron, S; Kraemer, P J; Dendle, P; Prasad, R M


    This study examined the effects of 3 months of chronic ethanol administration (CEAn) on the behavioral outcome in rats after lateral fluid percussion (FP) brain injury. Rats were given either an ethanol liquid diet (ethanol diet groups) or a pair-fed isocaloric sucrose control diet (control diet groups) for 3 months. Then, rats from both diet groups were subjected to either lateral FP brain injury of moderate severity (1.8 atm) or to sham operation. Postinjury behavioral measurements revealed that brain injury caused significant spatial learning disability in both diet groups. There were no significant differences in spatial learning ability in the sham or brain-injured animals between the control and ethanol diets. However, a trend towards cognitive impairment in the sham animals and a trend towards reduced deficits in the brain-injured animals were observed in the ethanol diet group. Histologic analysis of injured animals from both diet groups revealed similar extents of ipsilateral cortical and hippocampal CA3 damage. These results, in general, suggest that 3 months of CEAn does not significantly alter the behavioral and morphologic outcome of experimental brain injury.

  13. Brain glucose content in fetuses of ethanol-fed rats

    Pullen, G.; Singh, S.P.; Snyder, A.K.; Hoffen, B.


    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4 and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.

  14. Protective effects of isoatriplicolide tiglate from Paulownia coreana against glutamate-induced neurotoxicity in primary cultured rat cortical cells.

    Chung, Ill-Min; Kim, Eun-Hye; Jeon, Hyun-Seok; Moon, Hyung-In


    To examine the neuroprotective effects of Paulownia coreana, we tested its protection against the glutamate-induced neurotoxicity to primary cultured cortical neurons. An aqueous extract of the plants exhibited significant protection against glutamate-induced toxicity in primary cultured rat cortical cells. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. By such fractionation, one bioactive sesquiterpene lactone, isoatriplicolide tiglate, was isolated, which exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50%, at concentrations ranging from 0.1 microM to 10 microM.

  15. A Fully Implantable, Programmable and Multimodal Neuroprocessor for Wireless, Cortically Controlled Brain-Machine Interface Applications.

    Zhang, Fei; Aghagolzadeh, Mehdi; Oweiss, Karim


    Reliability, scalability and clinical viability are of utmost importance in the design of wireless Brain Machine Interface systems (BMIs). This paper reports on the design and implementation of a neuroprocessor for conditioning raw extracellular neural signals recorded through microelectrode arrays chronically implanted in the brain of awake behaving rats. The neuroprocessor design exploits a sparse representation of the neural signals to combat the limited wireless telemetry bandwidth. We demonstrate a multimodal processing capability (monitoring, compression, and spike sorting) inherent in the neuroprocessor to support a wide range of scenarios in real experimental conditions. A wireless transmission link with rate-dependent compression strategy is shown to preserve information fidelity in the neural data. At 32 channels, the neuroprocessor has been fully implemented on a 5mm×5mm nano-FPGA, and the prototyping resulted in 5.19 mW power consumption, bringing its performance within the power-size constraints for clinical use. The optimal design for compression and sorting performance was evaluated for multiple sampling frequencies, wavelet basis choice and power consumption.

  16. Non-signalling energy use in the developing rat brain.

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N; Attwell, David


    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain.

  17. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.


    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  18. The Unique Brain Anatomy of Meditation Practitioners: Alterations in Cortical Gyrification

    Eileen eLuders


    Full Text Available Several cortical regions are reported to vary in meditation practitioners. However, since prior analyses were focused on examining gray matter or cortical thickness, additional effects with respect to other cortical features might have remained undetected. Gyrification (the pattern and degree of cortical folding is an important cerebral characteristic related to the geometry of the brain’s surface. Cortical folding occurs early in development and might be linked to behavioral traits. Thus, exploring cortical gyrification in long-term meditators may provide additional clues with respect to the underlying anatomical correlates of meditation. This study examined cortical gyrification in a large sample (n=100 of meditators and controls, carefully matched for sex and age. Cortical gyrification was established via calculating mean curvature across thousands of vertices on individual cortical surface models. Pronounced group differences indicating larger gyrification in meditators were evident within the left precentral gyrus, right fusiform gyrus, right cuneus, as well as left and right anterior dorsal insula (the latter representing the global significance maximum. Although the exact functional implications of larger cortical gyrification remain to be established, these findings suggest the insula to be a key structure involved in aspects of meditation. For example, variations in insular complexity could affect the regulation of well-known distractions in the process of meditation, such as daydreaming, mind-wandering, and projections into past or future. Moreover, given that meditators are masters in introspection, awareness, and emotional control, increased insular gyrification may reflect an ideal integration of autonomic, affective, and cognitive processes. Due to the cross-sectional nature of this study, further research is necessary determine the relative contribution of nature and nurture to links between cortical gyrification and meditation.

  19. In vivo occupancy of female rat brain estrogen receptors by 17beta-estradiol and tamoxifen.

    Pareto, D; Alvarado, M; Hanrahan, S M; Biegon, A


    Estrogens or antiestrogens are currently used by millions of women, but the interaction of these hormonal agents with brain estrogen receptors (ER) in vivo has not been characterized to date. Our goal was to assess, in vivo, the extent and regional distribution of brain ER occupancy in rats chronically exposed to 17beta-estradiol (E(2)) or tamoxifen (TAM). For that purpose, female ovariectomized Sprague-Dawley rats were implanted with subcutaneous pellets containing either placebo (OVX), E(2), or TAM for 3 weeks. ER occupancy in grossly dissected regions was quantified with 16alpha-[(18)F]fluoroestradiol ([(18)F]FES). Both E(2) and TAM produced significant decreases in radioligand uptake in the brain although the effect of E(2) was larger and more widespread than the effect of TAM. Detailed regional analysis of the interaction was then undertaken using a radioiodinated ligand, 11beta-methoxy-16alpha-[(125)I]iodo-estradiol ([(125)I]MIE(2)), and quantitative ex vivo autoradiography. E(2) treatment resulted in near-complete (86.6 +/- 17.5%) inhibition of radioligand accumulation throughout the brain, while ER occupancy in the TAM group showed a marked regional distribution such that percentage inhibition ranged from 40.5 +/- 15.6 in the ventrolateral part of the ventromedial hypothalamic nucleus to 84.6 +/- 4.5 in the cortical amygdala. These results show that exposure to pharmacologically relevant levels of TAM produces a variable, region-specific pattern of brain ER occupancy, which may be influenced by the regional proportion of ER receptor subtypes. These findings may partially explain the highly variable and region-specific effects observed in neurochemical, metabolic, and functional studies of the effects of TAM in the brain of experimental animals as well as human subjects.

  20. Cortical network dynamics with time delays reveals functional connectivity in the resting brain.

    Ghosh, A.; Rho, Y.; McIntosh, A.R.; Kotter, R.; Jirsa, V.K.


    In absence of all goal-directed behavior, a characteristic network of cortical regions involving prefrontal and cingulate cortices consistently shows temporally coherent fluctuations. The origin of these fluctuations is unknown, but has been hypothesized to be of stochastic nature. In the present pa

  1. Clinical, electrophysiological and brain imaging features during recurrent ictal cortical blindness associated with chronic liver failure.

    van Pesch, V; Hernalsteen, D; van Rijckevorsel, K; Duprez, Th; Boschi, A; Ivanoiu, A; Sindic, C J M


    Transient neuroimaging features indicating primary cortical and secondary subcortical white matter cytotoxic oedema have been described in association with prolonged or intense seizures. We describe the unusual condition of recurrent ictal cortical blindness due to focal occipital status epilepticus, in the context of chronic hepatic failure. There was a close association between the onset and disappearance of clinical, electrophysiological and magnetic resonance imaging abnormalities.

  2. Histamine H1 and endothelin ETB receptors mediate phospholipase D stimulation in rat brain hippocampal slices.

    Sarri, E; Picatoste, F; Claro, E


    Different neurotransmitter receptor agonists [carbachol, serotonin, noradrenaline, histamine, endothelin-1, and trans-(1S,3R)-aminocyclopentyl-1,3-dicarboxylic acid (trans-ACPD)], known as stimuli of phospholipase C in brain tissue, were tested for phospholipase D stimulation in [32P]Pi-prelabeled rat brain cortical and hippocampal slices. The accumulation of [32P]phosphatidylethanol was measured as an index of phospholipase D-catalyzed transphosphatidylation in the presence of ethanol. Among the six neurotransmitter receptor agonists tested, only noradrenaline, histamine, endothelin-1, and trans-ACPD stimulated phospholipase D in hippocampus and cortex, an effect that was strictly dependent of the presence of millimolar extracellular calcium concentrations. The effect of histamine (EC50 18 microM) was inhibited by the H1 receptor antagonist mepyramine with a Ki constant of 0.7 nM and was resistant to H2 and H3 receptor antagonists (ranitidine and tioperamide, respectively). Endothelin-1-stimulated phospholipase D (EC50 44 nM) was not blocked by BQ-123, a specific antagonist of the ETA receptor. Endothelin-3 and the specific ETB receptor agonist safarotoxin 6c were also able to stimulate phospholipase D with efficacies similar to that of endothelin-1, and EC50 values of 16 and 3 nM, respectively. These results show that histamine and endothelin-1 stimulate phospholipase D in rat brain through H1 and ETB receptors, respectively.

  3. Improved Discriminability of Spatiotemporal Neural Patterns in Rat Motor Cortical Areas as Directional Choice Learning Progresses

    Hongwei eMao


    Full Text Available Animals learn to choose a proper action among alternatives to improve their odds of success in food foraging and other activities critical for survival. Through trial-and-error, they learn correct associations between their choices and external stimuli. While a neural network that underlies such learning process has been identified at a high level, it is still unclear how individual neurons and a neural ensemble adapt as learning progresses. In this study, we monitored the activity of single units in the rat medial and lateral agranular (AGm and AGl, respectively areas as rats learned to make a left or right side lever press in response to a left or right side light cue. We noticed that rat movement parameters during the performance of the directional choice task quickly became stereotyped during the first 2-3 days or sessions. But learning the directional choice problem took weeks to occur. Accompanying rats’ behavioral performance adaptation, we observed neural modulation by directional choice in recorded single units. Our analysis shows that ensemble mean firing rates in the cue-on period did not change significantly as learning progressed, and the ensemble mean rate difference between left and right side choices did not show a clear trend of change either. However, the spatiotemporal firing patterns of the neural ensemble exhibited improved discriminability between the two directional choices through learning. These results suggest a spatiotemporal neural coding scheme in a motor cortical neural ensemble that may be responsible for and contributing to learning the directional choice task.

  4. Reduced cortical renal GLUT1 expression induced by angiotensin-converting enzyme inhibition in diabetic spontaneously hypertensive rats

    M.S. Souza


    Full Text Available Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16 was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g. Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14, 1 mg·kg-1·day-1 (D1, N = 9 or water (D, N = 11 for 15 days. Albumin and TGF-β1 (24-h urine, direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay, and GLUT1 and GLUT2 protein levels (Western blot, renal cortex were determined. Glycemia and glycosuria were higher (P < 0.05 in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%, which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001 and GLUT2 by 76% (P = 0.01, and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001. GLUT2 levels were reduced in D0.01 (P < 0.05 vs D. Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy.

  5. Homocysteine Aggravates Cortical Neural Cell Injury through Neuronal Autophagy Overactivation following Rat Cerebral Ischemia-Reperfusion

    Yaqian Zhao


    Full Text Available Elevated homocysteine (Hcy levels have been reported to be involved in neurotoxicity after ischemic stroke. However, the underlying mechanisms remain incompletely understood to date. In the current study, we hypothesized that neuronal autophagy activation may be involved in the toxic effect of Hcy on cortical neurons following cerebral ischemia. Brain cell injury was determined by hematoxylin-eosin (HE staining and TdT-mediated dUTP Nick-End Labeling (TUNEL staining. The level and localization of autophagy were detected by transmission electron microscopy, western blot and immunofluorescence double labeling. The oxidative DNA damage was revealed by immunofluorescence of 8-Hydroxy-2′-deoxyguanosine (8-OHdG. Hcy treatment aggravated neuronal cell death, significantly increased the formation of autophagosomes and the expression of LC3B and Beclin-1 in the brain cortex after middle cerebral artery occlusion-reperfusion (MCAO. Immunofluorescence analysis of LC3B and Beclin-1 distribution indicated that their expression occurred mainly in neurons (NeuN-positive and hardly in astrocytes (GFAP-positive. 8-OHdG expression was also increased in the ischemic cortex of Hcy-treated animals. Conversely, LC3B and Beclin-1 overexpression and autophagosome accumulation caused by Hcy were partially blocked by the autophagy inhibitor 3-methyladenine (3-MA. Hcy administration enhanced neuronal autophagy, which contributes to cell death following cerebral ischemia. The oxidative damage-mediated autophagy may be a molecular mechanism underlying neuronal cell toxicity of elevated Hcy level.

  6. Fluoxetine Enhances Neurogenesis in Aged Rats with Cortical Infarcts, but This is not Reflected in a Behavioral Recovery.

    Sun, Xiaoyu; Zhou, Zhike; Liu, Tingting; Zhao, Mei; Zhao, Shanshan; Xiao, Ting; Jolkkonen, Jukka; Zhao, Chuansheng


    Age is associated with poor outcome and impaired functional recovery after stroke. Fluoxetine, which is widely used in clinical practice, can regulate hippocampal neurogenesis in young rodents. As the rate of neurogenesis is dramatically reduced during aging, we studied the effect of post-stroke fluoxetine treatment on neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ) of dentate gyrus (DG) and whether this would be associated with any behavioral recovery after the cortical infarct in aged rats. Aged rats were randomly assigned to four groups: sham-operated rats, sham-operated rats treated with fluoxetine, rats subjected to cerebral ischemia, and rats with ischemia treated with fluoxetine. Focal cortical ischemia was induced by intracranial injection of vasoconstrictive peptide, endothelin-1 (ET-1). Fluoxetine was administered in the drinking water for 3 weeks starting 1 week after ischemia at a dose of 18 mg/kg/day. Behavioral recovery was evaluated on post-stroke days 29 to 31 after which the survival rate and fate of proliferating cells in the SVZ and DG were assessed by immunohistochemistry. Apoptosis was measured with the TUNEL assay. The results indicated that chronic fluoxetine treatment after stroke enhanced the proliferation of newborn neurons in the SVZ, but not in SGZ, and it suppressed perilesional apoptosis. Fluoxetine treatment did not affect the survival or differentiation of newly generated cells in the SVZ i.e., the enhanced neurogenesis was not translated into a behavioral outcome.

  7. Selective retrograde transport of D-aspartate in spinal interneurons and cortical neurons of rats

    Rustioni, A.; Cuenod, M. (Zurich Univ. (Switzerland))


    Retrograde labeling of neuronal elements in the brain and spinal cord has been investigated by autoradiographic techniques following injections of D-(/sup 3/H)aspartate (asp), (/sup 3/H)..gamma..-aminobutyric acid (GABA) or horseradish peroxidase (HRP) in the medulla and spinal cord of rats. Twenty-four hours after D-(/sup 3/H)asp injections focused upon the cuneate nucleus, autoradiographic labeling is present over fibers in the pyramidal tract, internal capsule and over layer V pyramids in the forelimb representation of the sensorimotor cortex. After (/sup 3/H)GABA injections in the same nucleus no labeling attributable to retrograde translocation can be detected in spinal segments, brain stem or cortex. Conversely, injections of 30% HRP in the cuneate nucleus label neurons in several brain stem nuclei, in spinal gray and in layer V of the sensorimotor cortex. D-(/sup 3/H)Asp injections focused on the dorsal horn at cervical segments label a fraction of perikarya of the substantia gelatinosa and a sparser population of larger neurons in laminae IV to VI for a distance of 3-5 segments above and below the injection point. No brain stem neuronal perikarya appear labeled following spinal injections of D-(/sup 3/H)asp although autoradiographic grains overlie pyramidal tract fibers on the side contralateral to the injection.

  8. Cortical brain morphology in young, estrogen-naive, and adolescent, estrogen-treated girls with Turner syndrome.

    Lepage, Jean-Francois; Mazaika, Paul K; Hong, David S; Raman, Mira; Reiss, Allan L


    Turner syndrome (TS) is a genetic condition that permits direct investigation of the complex interaction among genes, hormones, behavior, and brain development. Here, we used automated segmentation and surface-based morphometry to characterize the differences in brain morphology in children (n = 30) and adolescents (n = 16) with TS relative to age- and sex-matched control groups (n = 21 and 24, respectively). Our results show that individuals with TS, young and adolescent, present widespread reduction of gray matter volume, white matter volume and surface area (SA) over both parietal and occipital cortices bilaterally, as well as enlarged amygdala. In contrast to the young cohort, adolescents with TS showed significantly larger mean cortical thickness and significantly smaller total SA compared with healthy controls. Exploratory developmental analyses suggested aberrant regional brain maturation in the parahippocampal gyrus and orbitofrontal regions from childhood to adolescence in TS. These findings show the existence of abnormal brain morphology early in development in TS, but also suggest the presence of altered neurodevelopmental trajectories in some regions, which could potentially be the consequences of estrogen deficiency, both pre- and postnatally.

  9. Neurotoxicity of Ecstasy metabolites in rat cortical neurons, and influence of hyperthermia.

    Capela, João Paulo; Meisel, Andreas; Abreu, Artur Reis; Branco, Paula Sério; Ferreira, Luísa Maria; Lobo, Ana Maria; Remião, Fernando; Bastos, Maria Lurdes; Carvalho, Félix


    3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") is a widely abused, psychoactive recreational drug. There is growing evidence that the MDMA neurotoxic profile may be highly dependent on both its hepatic metabolism and body temperature. Metabolism of MDMA involves N-demethylation to 3,4-methylenedioxyamphetamine (MDA), which is also a drug of abuse. MDMA and MDA are O-demethylenated to N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA) and alpha-methyldopamine (alpha-MeDA), respectively, both of which are catechols that can undergo oxidation to the corresponding ortho-quinones. In the presence of glutathione (GSH), ortho-quinones may be conjugated with GSH to form glutathionyl adducts. In this study, we evaluated the neurotoxicity of MDMA and three of its metabolites obtained by synthesis, N-Me-alpha-MeDA, alpha-MeDA, and 5-(GSH)-alpha-MeDA [5-(glutathion-S-yl)-alpha-methyldopamine] in rat cortical neuronal serum-free cultures under normal (36.5 degrees C) and hyperthermic (40 degrees C) conditions. Cell viability was assessed, and the mechanism of cell death was also evaluated. Our study shows that these metabolites are more neurotoxic [5-(GSH)-alpha-MeDA being the most toxic] than the parent compound MDMA. The neurotoxicity of MDMA metabolites was partially prevented by the antioxidants N-acetylcystein and also, in a minor extent, by alpha-phenyl-N-tert-butyl nitrone. All the tested compounds induced apoptotic cell death in cortical neurons, and their neurotoxic effect was potentiated under hyperthermic conditions. These data suggest that MDMA metabolites, especially under hyperthermic conditions, contribute to MDMA-induced neurotoxicity.

  10. Tunes stuck in your brain: The frequency and affective evaluation of involuntary musical imagery correlate with cortical structure.

    Farrugia, Nicolas; Jakubowski, Kelly; Cusack, Rhodri; Stewart, Lauren


    Recent years have seen a growing interest in the neuroscience of spontaneous cognition. One form of such cognition is involuntary musical imagery (INMI), the non-pathological and everyday experience of having music in one's head, in the absence of an external stimulus. In this study, aspects of INMI, including frequency and affective evaluation, were measured by self-report in 44 subjects and related to variation in brain structure in these individuals. Frequency of INMI was related to cortical thickness in regions of right frontal and temporal cortices as well as the anterior cingulate and left angular gyrus. Affective aspects of INMI, namely the extent to which subjects wished to suppress INMI or considered them helpful, were related to gray matter volume in right temporopolar and parahippocampal cortices respectively. These results provide the first evidence that INMI is a common internal experience recruiting brain networks involved in perception, emotions, memory and spontaneous thoughts. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Effect of cholecystokinin-8 on in vitro cultured rat cortical neurons against apoptosis

    Ying Liu; Jiangbao Zhou


    BACKGROUND: Cholecystokinin (CCK-8) can regulate the synthesis of NO, release of amino acid substance and suppress Ca2+ inflow. It is unknown about neuroprotection of CCK-8 on neuronal apoptosis and its relationship with nerve growth factor (NGF).OBJECTryE: To investigate the protective effect of CCK-8 on in vitro cultured rat cortical neurons against apoptosis induced by glutamate, and explore its effect on expression of NGF in the neurons during apoptosis.DESIGN: Randomized controlled experiment on the basis of cells.SETTING: Children's Research Institute Affiliated to Children Hospital of Chongqing Medical University.MATERIALS: Eighty SD rats of 1-day old; DMEM/F12 culture medium (Biochrom Company, Germany);Fetal bovine serum (TBD Company, Tianjin); CCK-8 (Sigma Company, USA). Glutamate (Bioengineering Company, Shanghai); TUNEL kit and NGF- in situ hybridization kit (Boster Bioengineering Company,Wuhan); anti-NGF polyclonal antibody (Santa-Cluz Company); NGF immunocytochemistry kit (Zhongshan Company, Beijing).METHODS: The experiments were carried out in Children's Research Institute Affiliated to Children Hospital of Chongqing Medical University from December 2004 to September 2005. Primary cultured cortical neurons from SD rats of 1-day oldwere incubated for 7 days. The cultured cells were divided randomly into 3 groups:experimental group, model group and control group. Neurons in experimental groups were added CCK-8 of 1 ×10-6, 1 ×10-7, 1 ×10-8 μ mol/L respectively, and then added 50 μmol/L glutamate solution a hour later. Neurons in model groups were treated with 50 μ mol/L glutamate solution. In the control group, cells were treated with normal medium. Apoptosis of cultured cortical neurons were observed by fluorescent microscope, the expression of NGF protein and mRNA were determined respectively by immunocytochemistry and in situ hybridization, and apoptosis of cortical neurons was detected with terminal deoxynucleotidyl transferase-mediated nick

  12. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing


    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p ACM produced a significant increase in BKα1 and BKβ3 expression (p  0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons.

  13. Neuroglobin expression in rats after traumatic brain injury

    Xin Lin; Min Li; Aijia Shang; Yazhuo Hu; Xiao Yang; Ling Ye; Suyan Bian; Zhongfeng Wang; Dingbiao Zhou


    In this study, we used a rat model of severe closed traumatic brain injury to explore the relationship between neuroglobin, brain injury and neuronal apoptosis. Real-time PCR showed that neuroglobin mRNA expression rapidly increased in the rat cerebral cortex, and peaked at 30 minutes and 48 hours following traumatic brain injury. Immunohistochemical staining demonstrated that neuroglobin expression increased and remained high 2 hours to 5 days following injury. The rate of increase in the apoptosis-related Bax/Bcl-2 ratio greatly decreased between 30 minutes and 1 hour as well as between 48 and 72 hours post injury. Expression of neuroglobin and the anti-apoptotic factor Bcl-2 greatly increased, while that of the proapoptotic factor decreased, in the cerebral cortex post severe closed traumatic brain injury. It suggests that neuroglobin might protect neurons from apoptosis after traumatic injury by regulating Bax/Bcl-2 pathway.

  14. Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis.

    Luyan Guo

    Full Text Available Curcumin is a molecule found in turmeric root that has anti-inflammatory, antioxidant, and anti-tumor properties and has been widely used as both an herbal drug and a food additive to treat or prevent neurodegenerative diseases. To explore whether curcumin is able to ameliorate HIV-1-associated neurotoxicity, we treated a murine microglial cell line (N9 and primary rat cortical neurons with curcumin in the presence or absence of neurotoxic HIV-1 gp120 (V3 loop protein. We found that HIV-1 gp120 profoundly induced N9 cells to produce reactive oxygen species (ROS, tumor necrosis factor-α (TNF-α and monocyte chemoattractant protein-1 (MCP-1. HIV-1 gp120 also induced apoptosis of primary rat cortical neurons. Curcumin exerted a powerful inhibitory effect against HIV-1 gp120-induced neuronal damage, reducing the production of ROS, TNF-α and MCP-1 by N9 cells and inhibiting apoptosis of primary rat cortical neurons. Curcumin may exert its biological activities through inhibition of the delayed rectification and transient outward potassium (K(+ current, as curcumin effectively reduced HIV-1 gp120-mediated elevation of the delayed rectification and transient outward K(+ channel current in neurons. We conclude that HIV-1 gp120 increases ROS, TNF-α and MCP-1 production in microglia, and induces cortical neuron apoptosis by affecting the delayed rectification and transient outward K(+ channel current. Curcumin reduces production of ROS and inflammatory mediators in HIV-1-gp120-stimulated microglia, and protects cortical neurons against HIV-1-mediated apoptosis, most likely through inhibition of HIV-1 gp120-induced elevation of the delayed rectification and transient outward K(+ current.

  15. Potentiation of N-methyl-D-aspartate-induced currents by the nootropic drug nefiracetam in rat cortical neurons.

    Moriguchi, Shigeki; Marszalec, William; Zhao, Xilong; Yeh, Jay Z; Narahashi, Toshio


    Nefiracetam is a new pyrrolidone nootropic drug being developed for the treatment of Alzheimer's type and post-stroke vascular-type dementia. In the brain of Alzheimer's disease patients, down-regulation of both cholinergic and glutamatergic systems has been found and is thought to play an important role in impairment of cognition, learning and memory. We have previously shown that the activity of neuronal nicotinic acetylcholine receptors is potently augmented by nefiracetam. The present study was undertaken to elucidate the mechanism of action of nefiracetam on glutamatergic receptors. Currents were recorded from rat cortical neurons in long-term primary culture using the whole-cell patch-clamp technique at a holding potential of -70 mV in Mg2+-free solutions. N-Methyl-D-aspartate (NMDA)-evoked currents were greatly and reversibly potentiated by bath application of nefiracetam resulting in a bell-shaped dose-response curve. The minimum effective nefiracetam concentration was 1 nM, and the maximum potentiation to 170% of the control was produced at 10 nM. Nefiracetam potentiation occurred at high NMDA concentrations that evoked the saturated response, and in a manner independent of NMDA concentrations ranging from 3 to 1,000 microM. Glycine at 3 microM potentiated NMDA currents but this effect was attenuated with an increasing concentration of nefiracetam from 1 to 10,000 nM. 7-Chlorokynurenic acid at 1 microM prevented nefiracetam from potentiating NMDA currents. Nefiracetam at 10 nM shifted the dose-response relationship for the 7-chlorokynurenic acid inhibition of NMDA currents in the direction of higher concentrations. Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid- and kainate-induced currents were not significantly affected by application of 10 nM nefiracetam. It was concluded that nefiracetam potentiated NMDA currents through interactions with the glycine binding site of the NMDA receptor.

  16. The effects of anesthetics on cortical spreading depression elicitation and c-fos expression in rats.

    Kitahara, Y; Taga, K; Abe, H; Shimoji, K


    The effects of anesthetics on the generation of cortical spreading depression (CSD) were investigated. Volatile anesthetics halothane, isoflurane, sevoflurane (0.5, 1.0, and 2.0 MAC), and the intravenous anesthetic pentobarbital were studied. Cortical spreading depression was induced by 3M-KCl applied to a surface of brain cortex for 30 minutes. Direct current (DC) potential was recorded, and the number, amplitude, and duration of CSDs were observed. With increasing concentrations of each volatile anesthetic, there was a dose-related reduction in CSD frequency but not in CSD amplitude. At 2.0 MAC of sevoflurane the suppression of CSD was less than with the other volatile anesthetics. In addition, the influence of anesthetics on expression of c-fos mRNA was investigated. Additional animals anesthetized by isoflurane or sevoflurane were studied. Five CSDs were elicited by electric stimulation (0.5 mV, 1 second) in each animal. In situ hybridization with 35S-labeled oligonucleotides was used to evaluate the level of c-fos mRNA. The expression of c-fos was observed in the hemisphere in which CSD was elicited, but there was no difference in expression of c-fos among the groups. We conclude that volatile anesthetics can induce suppression of CSD elicitation in a dose dependent manner, but that at high concentrations sevoflurane is significantly less effective than other volatile agents. Pentobarbital has the least effect on KCl-induced CSD. These data suggest that the choice of anesthetics can impact the results of studies examining membrane depolarization and the ionic changes initiated by CSD.

  17. Potential protection of green tea polyphenols against 1800 MHz electromagnetic radiation-induced injury on rat cortical neurons.

    Liu, Mei-Li; Wen, Jian-Qiang; Fan, Yu-Bo


    Radiofrequency electromagnetic fields (EMF) are harmful to public health, but the certain anti-irradiation mechanism is not clear yet. The present study was performed to investigate the possible protective effects of green tea polyphenols against electromagnetic radiation-induced injury in the cultured rat cortical neurons. In this study, green tea polyphenols were used in the cultured cortical neurons exposed to 1800 MHz EMFs by the mobile phone. We found that the mobile phone irradiation for 24 h induced marked neuronal cell death in the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide) and TUNEL (TdT mediated biotin-dUTP nicked-end labeling) assay, and protective effects of green tea polyphenols on the injured cortical neurons were demonstrated by testing the content of Bcl-2 Assaciated X protein (Bax) in the immunoprecipitation assay and Western blot assay. In our study results, the mobile phone irradiation-induced increases in the content of active Bax were inhibited significantly by green tea polyphenols, while the contents of total Bax had no marked changes after the treatment of green tea polyphenols. Our results suggested a neuroprotective effect of green tea polyphenols against the mobile phone irradiation-induced injury on the cultured rat cortical neurons.

  18. Effects of Anthopleurin-Q on the Intracellular Free Ca2+ Concentration in Cultured Rat Cortical Astrocytes


    Objective: To investigate the effect of anthopleurin-Q (AP-Q) on the intracellular Ca2+ concentration ([Ca2+ ]i) in cultured cortical astrocytes of rats. Methods: The [Ca2+ ]i was monitored by calcium imaging with Ca2+ sensitive fluorescent probe fura-2. Results: A concentration of 300 nmol/L AP-Q increased the [Ca2+ ]i in astrocytes by (136.98%±35.63%) (n=28),when compared with the baseline level. Furthermore, the elevation of [Ca2+]i was prevented by extracellular calcium free solution or when the extracellular Na+ was replaced by NMDG+ , and was decreased by Ni+ ,a non-specific antagonist of Na+/Ca2+ exchanger. Conclusion: AP-Q induced the intracellular [Ca2+ ]i elevation in cultured rat cortical astrocytes via activating the reverse mode of Na+/Ca2+ exchanger. AP-Q may be a useful tool to develop experimental model of seizures.

  19. Cortical field potentials preceding self-paced forelimb movements and influences of cerebellectomy upon them in rats.

    Ohishi, Hiroko; Ichikawa, Jun; Matsuzaki, Ryuichi; Kyuhou, Shin ichi; Matsuura-Nakao, Kazuko; Seki, Tomomi; Gemba, Hisae


    Seven rats were well trained to move lever to the left by right forelimb at self-pace (self-paced forelimb movements). Cortical field potentials associated with self-paced forelimb movements were recorded by electrodes implanted chronically on the surface and at a 2.0 mm depth in the forelimb motor cortex on the left side. A surface-negative, depth-positive potential starting about 1.0 s prior to the movement was recorded in the rostral part of the forelimb motor cortex. Further we found that the premovement potential was eliminated by the cerebellar hemispherectomy on the right side. This suggests the participation of the cerebellar hemisphere in preparing the activity of the motor cortex before self-paced forelimb movements in rats, by cerebello-thalamo-cortical projections.

  20. Optical coherence tomography reveals in vivo cortical structures of adult rats in response to cerebral ischemia injury

    Ni, Yi-rong; Guo, Zhou-yi; Shu, So-yun; Bao, Xin-min


    Optical coherence tomography(OCT) is a high resolution imaging technique which uses light to directly image living tissue. we investigate the potential use of OCT for structural imaging of the ischemia injury mammalian cerebral cortex. And we examine models of middle cerebral artery occlusion (MCAO) in rats in vivo using OCT. In particular, we show that OCT can perform in vivo detection of cortex and differentiate normal and abnormal cortical anatomy. This OCT system in this study provided an axial resolution of 10~15μ m, the transverse resolution of the system is about 25 μm. OCT can provide cross-sectional images of cortical of adult rats in response to cerebral ischemia injury.We conclude that OCT represents an exciting new approach to visualize, in real-time, pathological changes in the cerebral cortex structures and may offer a new tool for Possible neuroscience clinical applications.

  1. Distribution of nimodipine in brain following intranasal administration in rats

    Qi-zhi ZHANG; Xin-guo JIANG; Chun-hua WU


    AIM: To determine whether nasally applied nimodipine (NM) could improve its systemic bioavailability and be transported directly from the nasal cavity to the brain. METHODS: NM was administered nasally, intravenously (iv), and orally to male Sprague-Dawley rats. At different times post dose, blood, cerebrospinal fluid (CSF), and brain tissue samples were collected, and the concentrations of NM in the samples were analyzed by HPLC. RESULTS:Oral systemic bioavailability of NM in rats was 1.17 %, nasal dosing improved bioavailibility to 67.4 %. Following intranasal administration, NM concentrations in olfactory bulb (OB) within 30 min post dose were found significant higher than in the other brain tissues. However, similar NM levels in different brain regions were observed after iv injection. AUC in CSF and OB from the nasal route was 1.26 and 1.39 fold compared with the iv route, respectively.The brain-to-plasma AUC ratios were significantly higher after nasal administration than after iv administration (P<0.01). CONCLUSION: Nasally administered NM could markedly improve the bioavailability and a fraction of the NM dose could be transported into brain via the olfactory pathway in rats.

  2. Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices

    Ze-jian WANG; Guang-mei LI; Wen-lu TANG; Ming YIN


    Aim: To observe the effects of stearic acid, a long-chain saturated fatty acid consisting of 18 carbon atoms, on brain (cortical or hippocampal) slices insulted by oxygen-glucose deprivation (OGD), glutamate or sodium azide (NaN3) in vitro.Methods: The activities of hippocampal slices were monitored by population spikes recorded in the CA1 region. In vitro injury models of brain slice were induced by 10 min of OGD, 1 mmol/L glutamate or 10 mmol/L NaN3. After 30 min of preincubation with stearic acid (3-30 μmol/L), brain slices (cortical or hippocampal)were subjected to OGD, glutamate or NaN3, and the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride method. MK886 [5 mmol/L;a noncompetitive inhibitor of proliferator-activated receptor (PPAR-α)] or BADGE (bisphenol A diglycidyl ether; 100 μmol/L; an antagonist of PPAR-γ) were tested for their effects on the neuroprotection afforded by stearic acid. Results: Viability of brain slices was not changed significantly after direct incubation with stearic acid. OGD, glutamate and NaN3 injury significantly decreased the viability of brain slices. Stearic acid (3-30 μmol/L) dose-dependently protected brain slices from OGD and glutamate injury but not from NaN3 injury, and its neuroprotective effect was completely abolished by BADGE. Conclusion: Stearic acid can protect brain slices (cortical or hippocampal) against injury induced by OGD or glutamate.Its neuroprotective effect may be mainly mediated by the activation of PPAR-γ.

  3. Analysis of Small Ischemic Lesions in the Examinees of a Brain Dock and Neurological Examination of Animals Subjected to Cortical or Basal Ganglia Photothrombotic Infarction.

    Kuroiwa, Toshihiko; Tabata, Hitoshi; Xi, Guohua; Hua, Ya; Schallert, Timothy; Keep, Richard F


    We analyzed cases of small brain ischemic lesions found in examinees of a brain dock (neurological health screening center). Small cerebral infarction was found in 17 % of the examinees (733 cases). White matter lesions were found in 24 %. Infarctions were located in the cortex or subcortical white matter in 31 % and in the basal ganglia in 44 % of cases. Infratentorial infarction was found in 1.6 %. We have developed an animal model of small infarction in the cortex or basal ganglia induced by photothrombosis in rodents. Sprague-Dawley rats or Mongolian gerbils were anesthetized and photothrombotic infarction was induced in the left caudate nucleus or parietal cortex by light exposure via an optic fiber and intravenous Rose Bengal dye injection. Histological examination revealed development of a small spherical infarction surrounding the tip of the optic fiber. The lesion turned to a cyst by 6 weeks after lesioning. Neurological deficits were found in animals both with cortical and caudate infarction. Behavioral changes in an open field test differed with the lesion site. Neurological deficits were sustained longer in animals with larger infarctions. Thus, photothrombotic infarction is useful for analyzing location-dependent and size-dependent neurological and neuropathological changes after cerebral infarction.

  4. Pharmacological characterization of the native store-operated calcium channels of cortical neuronal from embryonic mouse brain

    Sylvain Chauvet


    Full Text Available In the murine brain, the first post-mitotic cortical neurons formed during embryogenesis express store-operated channels (SOCs sensitive to Pyr3, initially proposed as a blocker of transient receptor potential channel of C type 3 (TRPC3 channel. However Pyr3 does not discriminate between Orai and TRPC3 channels, questioning the contribution of TRPC3 in SOCs. This study was undertaken to precise the molecular identity and the pharmacological profile of native SOCs from E13 cortical neurons. The mRNA expression of STIM1-2, Orai1-3 was assessed by quantitative reverse transcription polymerase chain reaction (RT-PCR. E13 cortical neurons expressed STIM1-2 mRNAs, with STIM2 being the predominant isoform. Only transcripts of Orai2 were found but no Orai1 and Orai3 mRNAs. Blockers of Orai and TRPC channels (Pyr6, Pyr10, EVP4593, SAR7334, GSK-7975A were used to further characterize the endogenous SOCs. Their activity was recorded using the fluorescent Ca2+ probe Fluo-4. Cortical SOCs were sensitive to the Orai blockers Pyr6, GSK-7975A, and also to EVP4593, zinc, copper and gadolinium ions, the latter one being the most potent SOCs blocker tested (IC50 ~10 nM. SOCs were insensitive to the TRPC channel blockers Pyr10 and SAR7334. In addition, preventing the mitochondrial Ca2+ uptake inhibited SOCs which were unaffected by inhibitors of the Ca2+-independent phospholipase A2 (iPLA2. Altogether, Orai2 channels are present at the beginning of the embryonic murine cortico-genesis and form the core component of native SOCs in the immature cortex. This Ca2+ route is likely to play a role in the formation of the brain cortex.

  5. Pharmacological Characterization of the Native Store-Operated Calcium Channels of Cortical Neurons from Embryonic Mouse Brain

    Chauvet, Sylvain; Jarvis, Louis; Chevallet, Mireille; Shrestha, Niroj; Groschner, Klaus; Bouron, Alexandre


    In the murine brain, the first post-mitotic cortical neurons formed during embryogenesis express store-operated channels (SOCs) sensitive to Pyr3, initially proposed as a blocker of the transient receptor potential channel of C type 3 (TRPC3 channel). However, Pyr3 does not discriminate between Orai and TRPC3 channels, questioning the contribution of TRPC3 in SOCs. This study was undertaken to clarify the molecular identity and the pharmacological profile of native SOCs from E13 cortical neurons. The mRNA expression of STIM1-2 and Orai1-3 was assessed by quantitative reverse transcription polymerase chain reaction. E13 cortical neurons expressed STIM1-2 mRNAs, with STIM2 being the predominant isoform. Only transcripts of Orai2 were found but no Orai1 and Orai3 mRNAs. Blockers of Orai and TRPC channels (Pyr6, Pyr10, EVP4593, SAR7334, and GSK-7975A) were used to further characterize the endogenous SOCs. Their activity was recorded using the fluorescent Ca2+ probe Fluo-4. Cortical SOCs were sensitive to the Orai blockers Pyr6 and GSK-7975A, as well as to EVP4593, zinc, copper, and gadolinium ions, the latter one being the most potent SOCs blocker tested (IC50 ∼10 nM). SOCs were insensitive to the TRPC channel blockers Pyr10 and SAR7334. In addition, preventing mitochondrial Ca2+ uptake inhibited SOCs which were unaffected by inhibitors of the Ca2+-independent phospholipase A2. Altogether, Orai2 channels are present at the beginning of the embryonic murine cortico-genesis and form the core component of native SOCs in the immature cortex. This Ca2+ route is likely to play a role in the formation of the brain cortex. PMID:28018223

  6. A new rapid kindling variant for induction of cortical epileptogenesis in freely moving rats

    Juan Carlos Morales


    Full Text Available Kindling, one of the most used models of experimental epilepsy is based on daily electrical stimulation in several brain structures. Unlike the classic or slow kindling protocols (SK, the rapid kindling types (RK described until now require continuous stimulation at suprathreshold intensities applied directly to the same brain structure used for subsequent electrophysiological and inmunohistochemical studies, usually the hippocampus. However, the cellular changes observed in these rapid protocols, such as astrogliosis and neuronal loss, could be due to experimental manipulation more than to epileptogenesis-related alterations. Here, we developed a new RK protocol in order to generate an improved model of temporal lobe epilepsy (TLE which allows gradual progression of the epilepsy as well as obtaining an epileptic hippocampus, thus avoiding direct surgical manipulation and electric stimulation over this structure. This new protocol consists of basolateral amygdala (BLA stimulation with 10 trains of biphasic pulses (10s;50Hz per day with 20 minutes-intervals, during 3 consecutive days, using a subconvulsive and subthreshold intensity, which guarantees tissue integrity. The progression of epileptic activity was evaluated in freely moving rats through EEG recordings from cortex and amygdala, accompanied with synchronized video recordings. Moreover, we assessed the effectiveness of RK protocol and the establishment of epilepsy by evaluating cellular alterations of hippocampal slices from kindled rats. RK protocol induced convulsive states similar to SK protocols but in 3 days, with persistently lowered threshold to seizure induction and epileptogenic-dependent cellular changes in amygdala projection areas. We concluded that this novel RK protocol introduces a new variant of the chronic epileptogenesis models in freely moving rats, which is faster, highly reproducible and causes minimum cell damage with respect to that observed in other experimental

  7. A new rapid kindling variant for induction of cortical epileptogenesis in freely moving rats

    Morales, Juan Carlos; Álvarez-Ferradas, Carla; Roncagliolo, Manuel; Fuenzalida, Marco; Wellmann, Mario; Nualart, Francisco Javier; Bonansco, Christian


    Kindling, one of the most used models of experimental epilepsy is based on daily electrical stimulation in several brain structures. Unlike the classic or slow kindling protocols (SK), the rapid kindling types (RK) described until now require continuous stimulation at suprathreshold intensities applied directly to the same brain structure used for subsequent electrophysiological and immunohistochemical studies, usually the hippocampus. However, the cellular changes observed in these rapid protocols, such as astrogliosis and neuronal loss, could be due to experimental manipulation more than to epileptogenesis-related alterations. Here, we developed a new RK protocol in order to generate an improved model of temporal lobe epilepsy (TLE) which allows gradual progression of the epilepsy as well as obtaining an epileptic hippocampus, thus avoiding direct surgical manipulation and electric stimulation over this structure. This new protocol consists of basolateral amygdala (BLA) stimulation with 10 trains of biphasic pulses (10 s; 50 Hz) per day with 20 min-intervals, during 3 consecutive days, using a subconvulsive and subthreshold intensity, which guarantees tissue integrity. The progression of epileptic activity was evaluated in freely moving rats through electroencephalographic (EEG) recordings from cortex and amygdala, accompanied with synchronized video recordings. Moreover, we assessed the effectiveness of RK protocol and the establishment of epilepsy by evaluating cellular alterations of hippocampal slices from kindled rats. RK protocol induced convulsive states similar to SK protocols but in 3 days, with persistently lowered threshold to seizure induction and epileptogenic-dependent cellular changes in amygdala projection areas. We concluded that this novel RK protocol introduces a new variant of the chronic epileptogenesis models in freely moving rats, which is faster, highly reproducible and causes minimum cell damage with respect to that observed in other

  8. Cortical depth-dependent temporal dynamics of the BOLD response in the human brain

    Siero, Jeroen CW; Petridou, Natalia; Hoogduin, Hans; Luijten, Peter R; Ramsey, Nick F


    .... In this study, we characterize the temporal dynamics of the hemodynamic response (HDR) across cortical depth in the human primary motor and visual cortex, at 7T and using very short stimuli and with high spatial and temporal resolution...

  9. Early effects of lipopolysaccharide-induced inflammation on foetal brain development in rat

    Cristina A Ghiani


    Full Text Available Studies in humans and animal models link maternal infection and imbalanced levels of inflammatory mediators in the foetal brain to the aetiology of neuropsychiatric disorders. In a number of animal models, it was shown that exposure to viral or bacterial agents during a period that corresponds to the second trimester in human gestation triggers brain and behavioural abnormalities in the offspring. However, little is known about the early cellular and molecular events elicited by inflammation in the foetal brain shortly after maternal infection has occurred. In this study, maternal infection was mimicked by two consecutive intraperitoneal injections of 200 μg of LPS (lipopolysaccharide/kg to timed-pregnant rats at GD15 (gestational day 15 and GD16. Increased thickness of the CP (cortical plate and hippocampus together with abnormal distribution of immature neuronal markers and decreased expression of markers for neural progenitors were observed in the LPS-exposed foetal forebrains at GD18. Such effects were accompanied by decreased levels of reelin and the radial glial marker GLAST (glial glutamate transporter, and elevated levels of pro-inflammatory cytokines in maternal serum and foetal forebrains. Foetal inflammation elicited by maternal injections of LPS has discrete detrimental effects on brain development. The early biochemical and morphological changes described in this work begin to explain the sequelae of early events that underlie the neurobehavioural deficits reported in humans and animals exposed to prenatal insults.

  10. Early Effects of Lipopolysaccharide-Induced Inflammation on Foetal Brain Development in Rat

    Cristina A Ghiani


    Full Text Available Studies in humans and animal models link maternal infection and imbalanced levels of inflammatory mediators in the foetal brain to the aetiology of neuropsychiatric disorders. In a number of animal models, it was shown that exposure to viral or bacterial agents during a period that corresponds to the second trimester in human gestation triggers brain and behavioural abnormalities in the offspring. However, little is known about the early cellular and molecular events elicited by inflammation in the foetal brain shortly after maternal infection has occurred. In this study, maternal infection was mimicked by two consecutive intraperitoneal injections of 200 μg of LPS (lipopolysaccharide/kg to timed-pregnant rats at GD15 (gestational day 15 and GD16. Increased thickness of the CP (cortical plate and hippocampus together with abnormal distribution of immature neuronal markers and decreased expression of markers for neural progenitors were observed in the LPS-exposed foetal forebrains at GD18. Such effects were accompanied by decreased levels of reelin and the radial glial marker GLAST (glial glutamate transporter, and elevated levels of pro-inflammatory cytokines in maternal serum and foetal forebrains. Foetal inflammation elicited by maternal injections of LPS has discrete detrimental effects on brain development. The early biochemical and morphological changes described in this work begin to explain the sequelae of early events that underlie the neurobehavioural deficits reported in humans and animals exposed to prenatal insults.

  11. The effects of sex on brain iron status in rats

    HAO Qian; CHANG Yanzhong


    Objective:Iron plays essential roles in the human body. Studies have shown that iron is dis-tributed differently in male and female Rats in liver, spleen, bone marrow, kidney, heart. However, the effects of sex on iron distribution in central nervous system are not well established. Methods:To explore the effects of the above mentioned, in this study, female and male Sprague Dawley rats were used at 4 months of age. The synthesis of ferritin light chain (FTL), transferrin receptor1 (TfR1), ferroportin 1 (FPN1), divalent metal transporter 1 ( DMT1) in the cortex, hippocampus, striatum, cerebellum, and olfactory bulb was determined by Western blot a-nalysis. Results:The results showed that the levels of FTL protein in the cortex, hippocampus, striatum, cerebel-lum, and olfactory bulb were higher in female rats than in male rats, but the levels of TfR1 protein were lower in female rats than in male rats. There was no significant change in FPN1 and DMT1 expression in brain. Conclu-sions:These data suggest that sex have effects on brain iron status. Iron is distributed differently in central nervous system in male and female rats. However, the precise mechanisms need further study.

  12. Oxidative damage to rat brain in iron and copper overloads.

    Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Semprine, Jimena; Fuda, Julián; Torti, Horacio; Boveris, Alberto; Repetto, Marisa G


    This study reports on the acute brain toxicity of Fe and Cu in male Sprague-Dawley rats (200 g) that received 0 to 60 mg kg(-1) (ip) FeCl2 or CuSO4. Brain metal contents and time-responses were determined for rat survival, in situ brain chemiluminescence and phospholipid and protein oxidation products. Metal doses hyperbolically defined brain metal content. Rat survival was 91% and 60% after Fe and Cu overloads. Brain metal content increased from 35 to 114 μg of Fe per g and from 3.6 to 34 μg of Cu per g. Brain chemiluminescence (10 cps cm(-2)) increased 3 and 2 times after Fe and Cu overloads, with half maximal responses (C50) of 38 μg of Fe per g of brain and 15 μg of Cu per g of brain, and with half time responses (t1/2) of 12 h for Fe and 20 h for Cu. Phospholipid peroxidation increased by 56% and 31% with C50 of 40 μg of Fe per g and 20 μg of Cu per g and with t1/2 of 9 h and 14 h. Protein oxidation increased by 45% for Fe with a C50 of 40 μg of Fe per g and 18% for Cu with a C50 of 10 μg of Cu per g and a t1/2 of 12 h for both metals. Fe and Cu brain toxicities are likely mediated by Haber-Weiss type HO˙ formation with subsequent oxidative damage.

  13. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains

    Lissa eVentura-Antunes


    Full Text Available Expansion of the cortical grey matter in evolution has been accompanied by an even faster expansion of the subcortical white matter volume and by folding of the grey matter surface, events traditionally considered to occur homogeneously across mammalian species. Here we investigate how white matter expansion and cortical folding scale across species of rodents and primates as the grey matter gains neurons. We find very different scaling rules of white matter expansion across the two orders, favoring volume conservation and smaller propagation times in primates. For a similar number of cortical neurons, primates have a smaller connectivity fraction and less white matter volume than rodents; moreover, as the cortex gains neurons, there is a much faster increase in white matter volume and in its ratio to grey matter volume in rodents than in primates. Order-specific scaling of the white matter can be attributed to different scaling of average fiber caliber and neuronal connectivity in rodents and primates. Finally, cortical folding increases as different functions of the number of cortical neurons in rodents and primates, scaling faster in the latter than in the former. While the neuronal rules that govern grey and white matter scaling are different across rodents and primates, we find that they can be explained by the same unifying model, with order-specific exponents. The different scaling of the white matter has implications for the scaling of propagation time and computational capacity in evolution, and calls for a reappraisal of developmental models of cortical expansion in evolution.

  14. Effects of six weeks of chronic ethanol administration on the behavioral outcome of rats after lateral fluid percussion brain injury.

    Zhang, L; Maki, A; Dhillon, H S; Barron, S; Clerici, W J; Hicks, R; Kraemer, P J; Butcher, J; Prasad, R M


    This study examined the effects of 6 weeks of chronic ethanol administration on the behavioral outcome in rats after lateral fluid percussion (FP) brain injury. Rats were given either an ethanol liquid diet (ethanol diet-groups) or a pair-fed isocaloric sucrose control diet (control diet groups) for 6 weeks. After 6 weeks, the ethanol diet was discontinued for the ethanol diet rats and they were then given the control sucrose diet for 2 days. During those 2 days, the rats were trained to perform a beam-walking task and subjected to either lateral FP brain injury of low to moderate severity (1.8 atm) or to sham operation. In both the control diet and the ethanol diet groups, lateral FP brain injury caused beam-walking impairment on days 1 and 2 and spatial learning disability on days 7 and 8 after brain injury. There were no significant differences in beam-walking performance and spatial learning disability between brain injured animals from the control and ethanol diet groups. However, a trend towards greater behavioral deficits was observed in brain injured animals in the ethanol diet group. Histologic analysis of both diet groups after behavioral assessment revealed comparable ipsilateral cortical damage and observable CA3 neuronal loss in the ipsilateral hippocampus. These results only suggest that chronic ethanol administration, longer than six weeks of administration, may worsen behavioral outcome following lateral FP brain injury. For more significant behavioral and/or morphological change to occur, we would suggest that the duration of chronic ethanol administration must be increased.

  15. Demonstration of endogenous imipramine like material in rat brain

    Rehavi, M.; Ventura, I.; Sarne, Y.


    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  16. Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules

    Schafer, J.A.; Troutman, S.L.


    Unidirectional fluxes of 86Rb+ were measured as an indicator of potassium transport in isolated rat cortical collecting tubules perfused and bathed at 38 degrees C with isotonic solutions in which Rb+ replaced K+. Under control conditions the lumen-to-bath flux (Jl----b) was significantly less than the bath-to-lumen flux (Jb----l), indicating net Rb+ secretion. Net secretion increased approximately 180% after addition of 100 microU/ml of arginine vasopressin (ADH) to the bathing solution, due to a rapid and reversible increase in Jb----l from 4.6 +/- 0.8 to 9.0 +/- 1.9 pmol X min-1 X mm-1 with no significant change in Jl----b. The ADH effect was completely inhibited by 2 mM luminal Ba2+. The average transepithelial voltage (Ve) was not significantly different from zero in the control period but became lumen negative (-5 to -10 mV) after ADH. With 10(-5) M amiloride in the lumen Ve was lumen positive (+2 to +4 mV) and was unaltered by ADH or Ba2+, yet ADH produced a significant but attentuated increase in Jb----l with no change in Jl----b. The results indicate that ADH augments net K+ secretion either by an increase in the Ba2+-sensitive conductance of the apical membrane or by an increase in the electrochemical potential driving force for net Rb+ secretion through this pathway.

  17. Functional states of rat cortical circuits during the unpredictable availability of a reward-related cue.

    Fernández-Lamo, Iván; Sánchez-Campusano, Raudel; Gruart, Agnès; Delgado-García, José M


    Proper performance of acquired abilities can be disturbed by the unexpected occurrence of external changes. Rats trained with an operant conditioning task (to press a lever in order to obtain a food pellet) using a fixed-ratio (1:1) schedule were subsequently placed in a Skinner box in which the lever could be removed randomly. Field postsynaptic potentials (fPSPs) were chronically evoked in perforant pathway-hippocampal CA1 (PP-CA1), CA1-subiculum (CA1-SUB), CA1-medial prefrontal cortex (CA1-mPFC), mPFC-nucleus accumbens (mPFC-NAc), and mPFC-basolateral amygdala (mPFC-BLA) synapses during lever IN and lever OUT situations. While lever presses were accompanied by a significant increase in fPSP slopes at the five synapses, the unpredictable absence of the lever were accompanied by decreased fPSP slopes in all, except PP-CA1 synapses. Spectral analysis of local field potentials (LFPs) recorded when the animal approached the corresponding area in the lever OUT situation presented lower spectral powers than during lever IN occasions for all recording sites, apart from CA1. Thus, the unpredictable availability of a reward-related cue modified the activity of cortical and subcortical areas related with the acquisition of operant learning tasks, suggesting an immediate functional reorganization of these neural circuits to address the changed situation and to modify ongoing behaviors accordingly.

  18. The effect of chemotherapy on rat brain PET: preliminary study

    Kim, Jin Su; Kim, Il Han; Yu, A Ram; Park, Ji Ae; Woo, Sang Keun; Kim, Jong Guk; Cheon, Gi Jeong; Kim, Byeong Il; Choi, Chang Woon; Lim, Sang Moo; Kim, Hee Joung; Kim, Kyeong Min [Korea Institute Radiological and Medical Science, Seoul (Korea, Republic of)


    Chemotherapy was widely used for the therapy of cancer patients. When chemotherapy was performed, transient cognitive memory problem was occurred. This cognitive problem in brain was called as chemobrain. In this study, we have developed rat model for chemobrain. Cerebral glucose metabolism after chemotherapy was assessed using animal PET and voxel based statistical analysis method


    Boris Đinđić


    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  20. Effects of β-Aescin on the expression of nuclear factor-κB and tumor necrosis factor-α after traumatic brain injury in rats

    XIAO Guo-min; WEI Jing


    To investigate the inhibiting effect of β-Aescin on nuclear factor-κB (NF-κB) activation and the expression of tumor necrosis factor-α (TNF-α) protein after traumatic brain injury (TBI) in the rat brain, 62 SD rats were subjected to lateral cortical impact injury caused by a free-falling object and divided randomly into four groups: (1) sham operated (Group A); (2) injured (Group B); (3) β-Aescin treatment (Group C); (4) pyrrolidine dithocarbamate (PDTC) treatment (Group D). β-Aescin was administered in Group C and PDTC treated in Group D immediately after injury. A series of brain samples were obtained directly 6h, 24 h and 3 d respectively after trauma in four groups. NF-κB activation was examined by Electrophoretic Mobility Shift Assay (EMSA); the levels of TNF-α protein were measured by radio-immunoassay (RIA); the water content of rat brain was measured and pathomorphological observation was carried out. NF-κB activation, the levels of TNF-α protein and the water content of rat brain were significantly increased (P<0.01) following TBI in rats. Compared with Group B, NF-κB activation (P<0.01), the levels of TNF-α protein (P<0.01) and the water content of brain (P<0.05) began to decrease obviously after injury in Groups C and D.β-Aescin could dramatically inhibit NF-κB activation and the expression of TNF-α protein in the rat brain, alleviate rat brain edema, and that could partially be the molecular mechanism by which β-Aescin attenuates traumatic brain edema.

  1. Brain tumors induced in rats by human adenovirus type 12



    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  2. Effects of magnesium sulfate on traumatic brain edema in rats

    冯东福; 朱志安; 卢亦成


    Objective: To investigate the effects of magnesium sulfate on traumatic brain edema and explore its possible mechanism.Methods: Forty-eight Sprague-Dawley ( SD ) rats were randomly divided into three groups: Control, Trauma and Treatment groups. In Treatment group, magnesium sulfate was intraperitoneally administered immediately after the induction of brain trauma. At 24 h after trauma, total tissue water content and Na + , K + , Ca2 + , Mg2+ contents were measured. Permeability of blood-brain barrier (BBB)was assessed quantitatively by Evans Blue (EB) dye technique. The pathological changes were also studied.Results: Water, Na + , Ca2 + and EB contents in Treatment group were significantly lower than those in Trauma group ( P < 0. 05 ). Results of light microscopy and electron microscopy confirmed that magnesium sulfate can attenuate traumatic brain injury and relieve BBB injury.Conclusions: Treatment with MgSO4 in the early stage can attenuate traumatic brain edema and prevent BBB injury.

  3. Reestablishing speech understanding through musical ear training after cochlear implantation: a study of the potential cortical plasticity in the brain

    Petersen, Bjørn; Mortensen, Malene V; Gjedde, Albert


    Cochlear implants (CIs) provide impressive speech perception for persons with severe hearing loss, but many CI recipients fail in perceiving speech prosody and music. Successful rehabilitation depends on cortical plasticity in the brain and postoperative measures. The present study evaluates...... the behavioral and neurologic effects of musical ear training on CI users' speech and music perception. The goal is to find and work out musical methods to improve CI users' auditory capabilities and, in a longer perspective, provide an efficient strategy for improving speech understanding for both adults...

  4. ischemic brain injury in neonatal rats

    Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants,. Inflammatory markers .... were then moved back to their respective dams and immediately ..... various pro-inflammatory cytokines is stimulated.

  5. Distinct regulation of activity-dependent transcription of immediate early genes in cultured rat cortical neurons.

    Fukuchi, Mamoru; Sanabe, Tomofumi; Watanabe, Toshifumi; Kubota, Takane; Tabuchi, Akiko; Tsuda, Masaaki


    The activity-regulated expression of immediate early genes (IEGs) contributes to long-lasting neuronal functions underlying long-term memory. However, their response properties following neuronal activity are unique and remain poorly understood. To address this knowledge gap, here we further investigated the response properties of two representative IEGs, c-fos and brain-derived neurotrophic factor (Bdnf). Treatment of cultured cortical cells with KCl produces a depolarization process that results in the increase of intracellular calcium concentration in a KCl concentration-dependent manner. Consistent with this increase, c-fos expression was induced in a KCl concentration-dependent manner. In contrast, however, Bdnf expression was optimally activated by both 25 and 50 mM concentration of KCl. Similar results were observed when the cells were treated with okadaic acid, which inhibits protein phosphatases and elicits the hyper-phosphorylation of signaling molecules. Thus, Bdnf expression is strictly regulated by a neuronal activity threshold in an all or nothing manner, whereas c-fos expression is activated in a neuronal activity-dependent manner. Our findings also suggest that these differential responses might be due to the presence or absence of a TATA box. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    Ogneva, Irina V; Biryukov, Nikolay S


    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and

  7. Inducible gene manipulations in brain serotonergic neurons of transgenic rats.

    Tillmann Weber

    Full Text Available The serotonergic (5-HT system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP, in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.

  8. Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat.

    Hicks, R; Soares, H; Smith, D; McIntosh, T


    The pattern of neuronal injury following lateral fluid-percussion (FP) brain injury in the rat was systematically characterized at sequential time points to identify selectively vulnerable regions and to determine the temporal contribution of primary and delayed neuropathological events. Male Sprague-Dawley rats (n = 28) were killed 10 min, 2 h, 12 h, 24 h, 4 days, and 7 days following a lateral FP brain injury of moderate severity (2.2 atm), or 24 h after a sham injury. Brain sections were stained and analyzed using Nissl, acid fuchsin, and silver staining methods to identify regions with injured neurons or with visible lesions. Extensive numbers of acid fuchsin or silver-stained neurons were observed as early as 10 min after the FP brain injury in regions extending from the caudate/putamen to the pons. The frequency of injured neurons was greatest in the ipsilateral cortex, hippocampus, and thalamus, and a visible loss of Nissl-stained neurons was observed in these regions beginning at 12 h after the FP brain injury. Acid fuchsin-stained neurons were restricted to the same brain regions for all of the survival periods and gradually decreased in numbers between 24 h and 7 days after injury. These findings suggest that lateral FP brain injury in the rat produces a combination of focal cortical contusion and diffuse subcortical neuronal injury, which is present within minutes of the impact, progresses to a loss of neurons by 12 h, and does not markedly expand into other brain regions with survival periods up to 7 days. Furthermore, the acute onset and rapid evolution of the neuronal injury process may have important implications when considering a window of opportunity for pharmacological intervention.

  9. Vascular calcification is associated with cortical bone loss in chronic renal failure rats with and without ovariectomy: the calcification paradox.

    De Schutter, Tineke M; Neven, Ellen; Persy, Veerle P; Behets, Geert J; Postnov, Andrei A; De Clerck, Nora M; D'Haese, Patrick C


    Increased bone loss has been associated with the development of vascular calcification in patients with chronic renal failure (CRF). In this study, the effect of impaired bone metabolism on aortic calcifications was investigated in uremic rats with or without ovariectomy. CRF was induced by administration of a 0.75% adenine/2.5% protein diet for 4 weeks. In one group, osteoporosis was induced by ovariectomy (CRF-OVX), while the other group underwent a sham-operation instead (CRF). A third group consisted of ovariectomized rats with normal renal function (OVX). At regular time intervals throughout the study, bone status and aortic calcifications were evaluated by in vivo micro-CT. At sacrifice after 6 weeks of CRF, bone histomorphometry was performed and vascular calcification was assessed by bulk calcium analysis and Von Kossa staining. Renal function was significantly impaired in the CRF-OVX and CRF groups. Trabecular bone loss was seen in all groups. In the CRF-OVX and CRF groups, trabecular bone density was restored after adenine withdrawal, which coincided with cortical bone loss and the development of medial calcifications in the aorta. No significant differences with regard to the degree of aortic calcifications were seen between the two CRF groups. Neither cortical bone loss nor calcifications were seen in the OVX group. Cortical bone loss significantly correlated with the severity of vascular calcification in the CRF-OVX and CRF groups, but no associations with trabecular bone changes were found. Cortical rather than trabecular bone loss is associated with the process of calcification in rats with adenine- induced CRF. Copyright © 2011 S. Karger AG, Basel.

  10. Erythropoietin improved cognitive function and decreased hippocampal caspase activity in rat pups after traumatic brain injury.

    Schober, Michelle E; Requena, Daniela F; Block, Benjamin; Davis, Lizeth J; Rodesch, Christopher; Casper, T Charles; Juul, Sandra E; Kesner, Raymond P; Lane, Robert H


    Traumatic brain injury (TBI) is a leading cause of acquired neurologic disability in children. Erythropoietin (EPO), an anti-apoptotic cytokine, improved cognitive outcome in adult rats after TBI. To our knowledge, EPO has not been studied in a developmental TBI model. We hypothesized that EPO would improve cognitive outcome and increase neuron fraction in the hippocampus in 17-day-old (P17) rat pups after controlled cortical impact (CCI). EPO or vehicle was given at 1, 24, and 48 h after CCI and at post injury day (PID) 7. Cognitive outcome at PID14 was assessed using Novel Object Recognition (NOR). Hippocampal EPO levels, caspase activity, and mRNA levels of the apoptosis factors Bcl2, Bax, Bcl-xL, and Bad were measured during the first 14 days after injury. Neuron fraction and caspase activation in CA1, CA3, and DG were studied at PID2. EPO normalized recognition memory after CCI. EPO blunted the increased hippocampal caspase activity induced by CCI at PID1, but not at PID2. EPO increased neuron fraction in CA3 at PID2. Brain levels of exogenous EPO appeared low relative to endogenous. Timing of EPO administration was associated with temporal changes in hippocampal mRNA levels of EPO and pro-apoptotic factors. Conclusion/Speculation: EPO improved recognition memory, increased regional hippocampal neuron fraction, and decreased caspase activity in P17 rats after CCI. We speculate that EPO improved cognitive outcome in rat pups after CCI as a result of improved neuronal survival via inhibition of caspase-dependent apoptosis early after injury.

  11. Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain.

    Spain, Aisling; Howarth, Clare; Khrapitchev, Alexandre A; Sharp, Trevor; Sibson, Nicola R; Martin, Chris


    The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N=6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data.

  12. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles.

    Takeshi Hashimoto

    Full Text Available To evaluate the presence of components of a putative Intracellular Lactate Shuttle (ILS in neurons, we attempted to determine if monocarboxylate (e.g. lactate transporter isoforms (MCT1 and -2 and lactate dehydrogenase (LDH are coexpressed in neuronal mitochondria of rat brains. Immunohistochemical analyses of rat brain cross-sections showed MCT1, MCT2, and LDH to colocalize with the mitochondrial inner membrane marker cytochrome oxidase (COX in cortical, hippocampal, and thalamic neurons. Immunoblotting after immunoprecipitation (IP of mitochondria from brain homogenates supported the histochemical observations by demonstrating that COX coprecipitated MCT1, MCT2, and LDH. Additionally, using primary cultures from rat cortex and hippocampus as well as immunohistochemistry and immunocoprecipitation techniques, we demonstrated that MCT2 and LDH are coexpressed in mitochondria of cultured neurons. These findings can be interpreted to mean that, as in skeletal muscle, neurons contain a mitochondrial lactate oxidation complex (mLOC that has the potential to facilitate both intracellular and cell-cell lactate shuttles in brain.

  13. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas.

    Jiménez de la Peña, M; Gil Robles, S; Recio Rodríguez, M; Ruiz Ocaña, C; Martínez de Vega, V


    To describe the detection of cortical areas and subcortical pathways involved in language observed in MRI activation studies and tractography in a 3T MRI scanner and to correlate the findings of these functional studies with direct intraoperative cortical and subcortical stimulation. We present a series of 14 patients with focal brain tumors adjacent to eloquent brain areas. All patients underwent neuropsychological evaluation before and after surgery. All patients underwent MRI examination including structural sequences, perfusion imaging, spectroscopy, functional imaging to determine activation of motor and language areas, and 3D tractography. All patients underwent cortical mapping through cortical and subcortical stimulation during the operation to resect the tumor. Postoperative follow-up studies were done 24 hours after surgery. The correlation of motor function and of the corticospinal tract determined by functional MRI and tractography with intraoperative mapping of cortical and subcortical motor areas was complete. The eloquent brain areas of language expression and reception were strongly correlated with intraoperative cortical mapping in all but two cases (a high grade infiltrating glioma and a low grade glioma located in the frontal lobe). 3D tractography identified the arcuate fasciculus, the lateral part of the superior longitudinal fasciculus, the subcallosal fasciculus, the inferior fronto-occipital fasciculus, and the optic radiations, which made it possible to mark the limits of the resection. The correlation with the subcortical mapping of the anatomic arrangement of the fasciculi with respect to the lesions was complete. The best treatment for brain tumors is maximum resection without associated deficits, so high quality functional studies are necessary for preoperative planning. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  14. Non-Invasive Brain Stimulation to Enhance Upper Limb Motor Practice Poststroke: A Model for Selection of Cortical Site

    Michelle L. Harris-Love


    Full Text Available Motor practice is an essential part of upper limb motor recovery following stroke. To be effective, it must be intensive with a high number of repetitions. Despite the time and effort required, gains made from practice alone are often relatively limited, and substantial residual impairment remains. Using non-invasive brain stimulation to modulate cortical excitability prior to practice could enhance the effects of practice and provide greater returns on the investment of time and effort. However, determining which cortical area to target is not trivial. The implications of relevant conceptual frameworks such as Interhemispheric Competition and Bimodal Balance Recovery are discussed. In addition, we introduce the STAC (Structural reserve, Task Attributes, Connectivity framework, which incorporates patient-, site-, and task-specific factors. An example is provided of how this framework can assist in selecting a cortical region to target for priming prior to reaching practice poststroke. We suggest that this expanded patient-, site-, and task-specific approach provides a useful model for guiding the development of more successful approaches to neuromodulation for enhancing motor recovery after stroke.

  15. Changes in intracellular calcium in brain cells of aged rats

    Yu Li; Yunpeng Cao


    BACKGROUND: Studies have shown that voltage-dependent calcium influx, and enhancement of certain calcium-dependent processes in neurons, is related to aging. OBJECTIVE: To observe changes in intracellular calcium ([Ca2+]i) in neurons of aged rats, and to compare with young rats. DESIGN, TIME AND SETTING: A randomized control experiment of neurophysiology was performed at the Central Laboratory of School of Pharmaceutical Science, China Medical University from June to August 2004. MATERIALS: Ten male, healthy, Wistar rats, 19 months old, were selected for the aged group. Ten male, 3-month-old, Wistar rats were selected for the young control group. Fura-2/AM was provided by the Institute of Pharmaceutical Research of Chinese Academy of Medical Sciences, and the F-2000 fluorospectrophotometer was a product of Hitachi, Japan. METHODS: Fluorescence Fura-2 spectrophotometer was used to measure [Ca2+]i in acutely dissociated brain cells of aged and young rats. The concentration of extracellular potassium was controlled by adding different volumes of chloridated potassium solution of high concentration. MAIN OUTCOME MEASURES: [Ca2+]i in neurons of young and aged rats in the presence of 1 mmol/L extracellular calcium concentration and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium. Absolute increase of [Ca2+]i in neurons of young and aged rats when extraceUular potassium was 5,10,20, 40 mmol/L. RESULTS: In the presence of 1 mmol/L extracellular Ca2+ and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium, [Ca2+]i in the neurons of aged rats was significantly less than that in young rats (P 0.05). CONCLUSION: The overload of [Ca2+]i in neurons of aged rats is greater than that of young rats under the same circumstances.

  16. Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography

    Tian, Fenghua; Kozel, F. Andrew; Yennu, Amarnath; Croarkin, Paul E.; McClintock, Shawn M.; Mapes, Kimberly S.; Husain, Mustafa M.; Liu, Hanli


    Repetitive transcranial magnetic stimulation (rTMS) is a technology that stimulates neurons with rapidly changing magnetic pulses with demonstrated therapeutic applications for various neuropsychiatric disorders. Functional near-infrared spectroscopy (fNIRS) is a suitable tool to assess rTMS-evoked brain responses without interference from the magnetic or electric fields generated by the TMS coil. We have previously reported a channel-wise study of combined rTMS/fNIRS on the motor and prefrontal cortices, showing a robust decrease of oxygenated hemoglobin concentration (Δ[HbO2]) at the sites of 1-Hz rTMS and the contralateral brain regions. However, the reliability of this putative clinical tool is unknown. In this study, we develop a rapid optical topography approach to spatially characterize the rTMS-evoked hemodynamic responses on a standard brain atlas. A hemispherical approximation of the brain is employed to convert the three-dimensional topography on the complex brain surface to a two-dimensional topography in the spherical coordinate system. The test-retest reliability of the combined rTMS/fNIRS is assessed using repeated measurements performed two to three days apart. The results demonstrate that the Δ[HbO2] amplitudes have moderate-to-high reliability at the group level; and the spatial patterns of the topographic images have high reproducibility in size and a moderate degree of overlap at the individual level.

  17. C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation

    Christiane eAlbert-Weissenberger


    Full Text Available Traumatic brain injury (TBI induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 hour. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 hour after cryolesion reduced lesion volumes by ~75% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted antiinflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings.

  18. Wide spectrum of developmental brain disorders from megalencephaly to focal cortical dysplasia and pigmentary mosaicism caused by mutations of MTOR

    Solovieff, Nadia; Goold, Carleton; Jansen, Laura A.; Menon, Suchithra; Timms, Andrew E.; Conti, Valerio; Biag, Jonathan D.; Adams, Carissa; Boyle, Evan August; Collins, Sarah; Ishak, Gisele; Poliachik, Sandra; Girisha, Katta M.; Yeung, Kit San; Chung, Brian Hon Yin; Rahikkala, Elisa; Gunter, Sonya A.; McDaniel, Sharon S.; Macmurdo, Colleen Forsyth; Bernstein, Jonathan A.; Martin, Beth; Leary, Rebecca; Mahan, Scott; Liu, Shanming; Weaver, Molly; Doerschner, Michael; Jhangiani, Shalini; Muzny, Donna M.; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.; Shendure, Jay; Saneto, Russell P.; Novotny, Edward J.; Wilson, Christopher J.; Sellers, William R.; Morrissey, Michael; Hevner, Robert F.; Ojemann, Jeffrey G.; Guerrini, Renzo; Murphy, Leon O.; Winckler, Wendy; Dobyns, William B.


    Importance Focal cortical dysplasia (FCD), hemimegalencephaly (HMEG) and megalencephaly constitute a spectrum of malformations of cortical development with shared neuropathologic features. Collectively, these disorders are associated with significant childhood morbidity and mortality. FCD, in particular, represents the most frequent cause of intractable focal epilepsy in children. Objective To identify the underlying molecular etiology of FCD, HMEG, and diffuse megalencephaly. Design, Setting and Participants We performed whole exome sequencing (WES) on eight children with FCD or HMEG using standard depth (~50-60X) sequencing in peripheral samples (blood, saliva or skin) from the affected child and their parents, and deep (~150-180X) sequencing in affected brain tissue. We used both targeted sequencing and WES to screen a cohort of 93 children with molecularly unexplained diffuse or focal brain overgrowth (42 with FCD-HMEG, and 51 with diffuse megalencephaly). Histopathological and functional assays of PI3K-AKT-MTOR pathway activity in resected brain tissue and cultured neurons were performed to validate mutations. Main Outcomes and Measures Whole exome sequencing and targeted sequencing identified variants associated with this spectrum of developmental brain disorders. Results We identified low-level mosaic mutations of MTOR in brain tissue in four children with FCD type 2a with alternative allele fractions ranging from 0.012–0.086. We also identified intermediate level mosaic mutation of MTOR (p.Thr1977Ile) in three unrelated children with diffuse megalencephaly and pigmentary mosaicism in skin that resembles hypomelanosis of Ito. Finally, we identified a constitutional de novo mutation of MTOR (p.Glu1799Lys) in three unrelated children with diffuse megalencephaly and intellectual disability. Molecular and functional analysis in two children with FCD type 2a from whom multiple affected brain tissue samples were available revealed a gradient of alternate allele

  19. Neurodegenerative actions of interleukin-1 in the rat brain are mediated through increases in seizure activity.

    Patel, H C; Ross, F M; Heenan, L E; Davies, R E; Rothwell, N J; Allan, S M


    The cytokine interleukin-1 (IL-1) is an established and important mediator of diverse forms of neuronal injury in experimental animals. However, its mechanisms of action remain largely unknown. We have reported previously that IL-1 markedly enhances excitotoxic injury induced in the rat by striatal administration of the excitotoxin alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), leading to widespread neuronal loss throughout the ipsilateral cortex. Here we tested the hypothesis that IL-1 causes this injury through induction and/or enhancement of seizure activity in the rat. Consistently with this hypothesis, intrastriatal injection of AMPA or AMPA with IL-1 in the rat brain increased c-Fos expression in regions similar to those in which c-Fos has been reported previously in response to seizures. A significant increase in cortical neuronal activity (number of c-Fos positive cells) was observed in response to AMPA with IL-1 compared with AMPA (8 hr after injection). Increased seizure duration [3,522 +/- 660 sec (SEM) vs. 1,415 +/- 301 sec; P neuronal injury, including cerebral ischemia.

  20. Hydrogen Sulfide Ameliorates Early Brain Injury Following Subarachnoid Hemorrhage in Rats.

    Cui, Yonghua; Duan, Xiaochun; Li, Haiying; Dang, Baoqi; Yin, Jia; Wang, Yang; Gao, Anju; Yu, Zhengquan; Chen, Gang


    Increasing studies have demonstrated the neuroprotective effect of hydrogen sulfide (H2S) in central nervous system (CNS) diseases. However, the potential application value of H2S in the therapy of subarachnoid hemorrhage (SAH) is still not well known. This study was to investigate the potential effect of H2S on early brain injury (EBI) induced by SAH and explore the underlying mechanisms. The role of sodium hydrosulfide (NaHS), a donor of H2S, in SAH-induced EBI, was investigated in both in vivo and in vitro. A prechiasmatic cistern single injection model was used to produce experimental SAH in vivo. In vitro, cultured primary rat cortical neurons and human umbilical vein endothelial cells (HUVECs) were exposed to OxyHb at concentration of 10 μM to mimic SAH. Endogenous production of H2S in the brain was significantly inhibited by SAH. The protein levels of the predominant H2S-generating enzymes in the brain, including cystathionineb-synthase (CBS) and 3-mercaptopyruvate sulfur transferase (3MST), were also correspondingly reduced by SAH, while treatment with NaHS restored H2S production and the expressions of CBS and 3MST. More importantly, NaHS treatment could significantly attenuate EBI (including brain edema, blood-brain barrier disruption, brain cell apoptosis, inflammatory response, and cerebral vasospasm) after SAH. In vitro, H2S protects neurons and endothelial function by functioning as an antioxidant and antiapoptotic mediator. Our results suggest that NaSH as an exogenous H2S donor could significantly reduce EBI induced by SAH.

  1. Do Studies on Cortical Plasticity Provide a Rationale for Using Non-Invasive Brain Stimulation as a Treatment for Parkinson’s Disease Patients?

    Koch, Giacomo


    Animal models of Parkinson’s disease (PD) have shown that key mechanisms of cortical plasticity such as long-term potentiation (LTP) and long-term depression (LTD) can be impaired by the PD pathology. In humans protocols of non-invasive brain stimulation, such as paired associative stimulation (PAS) and theta-burst stimulation (TBS), can be used to investigate cortical plasticity of the primary motor cortex. Through the amplitude of the motor evoked potential these transcranial magnetic stimu...

  2. Local connections of excitatory neurons in motor-associated cortical areas of the rat

    Kaneko, Takeshi


    In spite of recent progress in brain sciences, the local circuit of the cerebral neocortex, including motor areas, still remains elusive. Morphological works on excitatory cortical circuitry from thalamocortical (TC) afferents to corticospinal neurons (CSNs) in motor-associated areas are reviewed here. First, TC axons of motor thalamic nuclei have been re-examined by the single-neuron labeling method. There are middle layer (ML)-targeting and layer (L) 1-preferring TC axon types in motor-associated areas, being analogous to core and matrix types, respectively, of Jones (1998) in sensory areas. However, the arborization of core-like motor TC axons spreads widely and disregards the columnar structure that is the basis of information processing in sensory areas, suggesting that motor areas adopt a different information-processing framework such as area-wide laminar organization. Second, L5 CSNs receive local excitatory inputs not only from L2/3 pyramidal neurons but also from ML spiny neurons, the latter directly processing cerebellar information of core-like TC neurons (TCNs). In contrast, basal ganglia information is targeted to apical dendrites of L2/3 and L5 pyramidal neurons through matrix TCNs. Third, L6 corticothalamic neurons (CTNs) are most densely innervated by ML spiny neurons located just above CTNs. Since CTNs receive only weak connections from L2/3 and L5 pyramidal neurons, the TC recurrent circuit composed of TCNs, ML spiny neurons and CTNs appears relatively independent of the results of processing in L2/3 and L5. It is proposed that two circuits sharing the same TC projection and ML neurons are embedded in the neocortex: one includes L2/3 and L5 neurons, processes afferent information in a feedforward way and sends the processed information to other cortical areas and subcortical regions; and the other circuit participates in a dynamical system of the TC recurrent circuit and may serve as the basis of autonomous activity of the neocortex. PMID

  3. Synchronous changes of cortical thickness and corresponding white matter microstructure during brain development accessed by diffusion MRI tractography from parcellated cortex

    Tina eJeon


    Full Text Available Cortical thickness (CT changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI, especially fractional anisotropy (FA. We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 to 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, includeing Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46 and 47, decreased significantly and heterogeneously; concurrently, significant and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for

  4. Cortical Connectivity Maps Reveal Anatomically Distinct Areas in the Parietal Cortex of the Rat

    Aaron eWilber


    Full Text Available A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into up to four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas.

  5. Influence of chronic fluorosis on the expression of mitochondrial fission protein dynamin-related 1 in the cortical neurons of rats



    Objective To explore the changes of protein expression of mito-fission gene dynaminrelated 1 (Drp 1) in the cortical neurons of rats with chronic fluorosis.MethodsA total of 120 one-month-old SD rats (each weighing approximately 100—120 g at the beginning of the

  6. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V


    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  7. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats

    Carvalho, Ana Carolina Bergmann de; Henriques, Helene Nara [Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Fernandes, Gustavo Vieira Oliveira [Postgraduate Program in Medical Sciences, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lima, Inaya; Oliveira, Davi Ferreira de; Lopes, Ricardo Tadeu [Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), RJ (Brazil); Pantaleao, Jose Augusto Soares [Maternal and Child Department, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Granjeiro, Jose Mauro [Department of Cellular and Molecular Biology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Silva, Maria Angelica Guzman [Department of Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)


    Purpose: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). Methods: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographs of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. Results: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. Conclusion: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head. (author)

  8. Genetic regulation of microglia activation, complement expression, and neurodegeneration in a rat model of traumatic brain injury.

    Bellander, Bo-Michael; Lidman, Olle; Ohlsson, Marcus; Meijer, Britt; Piehl, Fredrik; Svensson, Mikael


    Secondary brain damage following traumatic brain injury in part depends on neuroinflammation, a process where genetic factors may play an important role. We examined the response to a standardized cortical contusion in two different inbred rat strains, Dark Agouti (DA) and Piebald Virol Glaxo (PVG). Both are well characterized in models of autoimmune neuroinflammation, where DA is susceptible and PVG resistant. We found that infiltration of polymorphonuclear granulocytes (PMN) at 3-day postinjury was more pronounced in PVG. DA was more infiltrated by T cells at 3-day postinjury, showed an enhanced glial activation at 7-day postinjury and higher expression of C3 complement at 7-day postinjury. Neurodegeneration, assessed by Fluoro-Jade, was also more pronounced in the DA strain at 30-day postinjury. These results demonstrate differences in the response to cortical contusion injury attributable to genetic influences and suggest a link between injury-induced inflammation and neurodegeneration. Genetic factors that regulate inflammation elicited by brain trauma may be important for the development of secondary brain damage.

  9. Cortical activity in the left and right hemispheres during language-related brain functions

    Lassen, N A; Larsen, B


    The blood flow to a given brain region increases as the level of neural activity is augmented. Hence mapping of variations in regional cerebral blood flow affords a means of imaging the activity of various brain regions during various types of brain work. The paper summarizes the patterns...

  10. Interleukin-1 receptor antagonist suppresses neurotrophin response in injured rat brain.

    DeKosky, S T; Styren, S D; O'Malley, M E; Goss, J R; Kochanek, P; Marion, D; Evans, C H; Robbins, P D


    Traumatic brain injury (TBI) induces astrocytic and microglial activation and proliferation and augmented production of the cytokine interleukin-1 beta (IL-1 beta) and nerve growth factor (NGF). The increase in NGF temporally follows the increase in IL-1 beta, suggesting that the IL-1 beta up-regulation after trauma directly induces the increase in NGF. We examined the effect of IL-1 receptor antagonist protein (IL-1ra) on microglial proliferation and NGF production in rat cortex, following two different models of TBI. Rabbit fibroblasts infected with a retroviral vector containing the human IL-1ra gene were implanted into the wound cavity immediately following a cortical stab wound or 6 hours after a weight drop-induced trauma. Both microglial proliferation and NGF up-regulation were decreased significantly in animals receiving IL-1ra-expressing cells compared with animals receiving naive (untransfected) fibroblasts. These data demonstrate that the increase in NGF after central nervous system trauma is directly mediated through IL-1 beta and that blocking IL-1 beta following brain injury leads to suppression of an NGF-mediated reparative response. Such blockade of inflammation, however, may prove to be of significant therapeutic benefit in human brain injury and other inflammatory states.

  11. Regional and directional anisotropy of apparent diffusion coefficient in rat brain.

    Hoehn-Berlage, M; Eis, M; Schmitz, B


    Quantitative diffusion maps were recorded in normal rat brain. In multi-slice sections covering the whole brain, strong variation of the apparent diffusion coefficient (ADC) was observed depending on slice position at constant gradient direction. Furthermore, a varying difference between apparent diffusion coefficients depending on gradient direction was found, reaching 32% in the cortex of the ventral-most horizontal sections while showing equal ADC on the dorsal cortex side. The regional variation and directional anisotropy of the ADC was not restricted to white matter but was described for both cortical and subcortical brain tissue. From diffusion coefficients along the three major field gradient directions (ADCx, ADCy, ADCz), the average ADC (ADCaverage) was determined from the trace of the diffusion tensor (D) as 653+/-28 microm2/s for parietal cortex and 671+/-32 microm2/s for lateral cortex, independent of position along the sagittal direction. From these observations about the regional diffusion anisotropy, a more stringent protocol for the description of ischemic ADC changes is proposed.

  12. Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain's source space.

    Gernot G Supp

    Full Text Available The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz elicited by familiar (meaningful objects is well established in electroencephalogram (EEG research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar

  13. The Estimation of Cortical Activity for Brain-Computer Interface: Applications in a Domotic Context

    F. Babiloni


    Full Text Available In order to analyze whether the use of the cortical activity, estimated from noninvasive EEG recordings, could be useful to detect mental states related to the imagination of limb movements, we estimate cortical activity from high-resolution EEG recordings in a group of healthy subjects by using realistic head models. Such cortical activity was estimated in region of interest associated with the subject's Brodmann areas by using a depth-weighted minimum norm technique. Results showed that the use of the cortical-estimated activity instead of the unprocessed EEG improves the recognition of the mental states associated to the limb movement imagination in the group of normal subjects. The BCI methodology presented here has been used in a group of disabled patients in order to give them a suitable control of several electronic devices disposed in a three-room environment devoted to the neurorehabilitation. Four of six patients were able to control several electronic devices in this domotic context with the BCI system.

  14. The estimation of cortical activity for brain-computer interface: applications in a domotic context.

    Babiloni, F; Cincotti, F; Marciani, M; Salinari, S; Astolfi, L; Tocci, A; Aloise, F; De Vico Fallani, F; Bufalari, S; Mattia, D


    In order to analyze whether the use of the cortical activity, estimated from noninvasive EEG recordings, could be useful to detect mental states related to the imagination of limb movements, we estimate cortical activity from high-resolution EEG recordings in a group of healthy subjects by using realistic head models. Such cortical activity was estimated in region of interest associated with the subject's Brodmann areas by using a depth-weighted minimum norm technique. Results showed that the use of the cortical-estimated activity instead of the unprocessed EEG improves the recognition of the mental states associated to the limb movement imagination in the group of normal subjects. The BCI methodology presented here has been used in a group of disabled patients in order to give them a suitable control of several electronic devices disposed in a three-room environment devoted to the neurorehabilitation. Four of six patients were able to control several electronic devices in this domotic context with the BCI system.

  15. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data

    Greve, Douglas N; Svarer, Claus; Fisher, Patrick M


    intersubject variance than when volume smoothing was used. This translates into more than 4 times fewer subjects needed in a group analysis to achieve similarly powered statistical tests. Surface-based smoothing has less bias and variance because it respects cortical geometry by smoothing the PET data only...

  16. P-glycoprotein alters blood–brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy

    Ma A


    Full Text Available Aimei Ma,1,* Cuicui Wang,2,3,* Yinghui Chen,2,3 Weien Yuan4 1Department of Neurology, The People's Hospital of Shanxi Province, Taiyuan, 2Department of Neurology, Jinshan Hospital, Fudan University, 3Department of Neurology, Shanghai Medical College, Shanghai, 4School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: P-glycoprotein is one of the earliest known multidrug transporters and plays an important role in resistance to chemotherapeutic drugs. In this study, we detected levels of P-glycoprotein and its mRNA expression in a rat brain model of medically intractable epilepsy established by amygdala kindling and drug selection. We investigated whether inhibition of P-glycoprotein affects the concentration of antiepileptic drugs in cortical extracellular fluid. We found that levels of P-glycoprotein and its mRNA expression were upregulated in epileptic cerebral tissue compared with cerebral tissue from normal rats. The concentrations of two antiepileptic drugs, carbamazepine and phenytoin, were very low in the cortical extracellular fluid of rats with medically intractable epilepsy, and were restored after blockade of P-glycoprotein by verapamil. These results show that increased P-glycoprotein levels alter the ability of carbamazepine and phenytoin to penetrate the blood–brain barrier and reduce the concentrations of these agents in extracellular cortical fluid. High P-glycoprotein levels may be involved in resistance to antiepileptic drugs in medically intractable epilepsy. Keywords: P-glycoprotein, medically intractable epilepsy, antiepileptic drugs, amygdala kindling, verapamil

  17. Expression of neuropeptide Y in rat brain ischemia

    Babović Siniša S.


    Full Text Available Introduction. The immunohistochemical method was used to follow the expression of neuropeptide Y in the course of pre ischemia of the rat brain. The aim of the study was to define all the areas of expression of this protein, show their localization, their map of distribution and histological types. Material and Methods. All the sections of telencephalon, diencephalon and midbrain were studied in resistant, and transitory ischemia, which enabled us to observe the reaction of neurons to an ischemic attack or to repeated attacks. The mapping was done for all three proteins by introducing our results into the maps of rat brain atlas, George Paxinos, Charles Watson. Photographing and protein expression was done using Analysis program. Results. The results of this research show that there is a differens in reaction between the resistant and transitory ischemia groups of rats, especially in the caudoputamen, gyrus dentatus, corpus amygdaloideum, particularly in the medial nucleus. The mapping shows the reaction in caudoputamen, gyrusdentatus, corpus amygdaloideum - especially in the central nucleus, then in the sensitive and secondary auditory cortex, mostly in the laminae V/VI, but less in neuron groups CA1, CA2, CA3 of hippocampus. Discussion. The phylogenetically older parts of the brain-rhinencephalon, also showed reaction, which lead us to conclude that both newer and older brain structures reacted immunohistochemically. Histological data have shown that small neurons are most commonly found while the second most common ones are big pyramidal cells of multipolar and bipolar type, with a different body shape. Conclusion. Our findings have confirmed the results obtained in some rare studies dealing with this issue, and offered a precise and detailed map of cells expressing neuropeptide Y in the rat brain following ischemic attack.

  18. Nerve growth factor receptor molecules in rat brain

    Taniuchi, M.; Schweitzer, J.B.; Johnson, E.M. Jr.


    The authors have developed a method to immunoprecipitate rat nerve growth factor (NGF) receptor proteins and have applied the method to detect NGF receptor molecules in the rat brain. Crosslinking /sup 125/I-labeled NGF to either PC12 cells or cultured rat sympathetic neurons yielded two radiolabeled molecules (90 kDa and 220 kDa) that were immunoprecipitated by monoclonal antibody 192-IgG. Further, 192-IgG precipitated two radiolabeled proteins, with the expected sizes (80 kDa and 210 kDa) of noncrosslinked NGF receptor components, from among numerous surface-iodinated PC12 cell proteins. These results demonstrate the specific immunoprecipitation of NGF receptor molecules by 192-IgG. They applied the /sup 125/I-NGF crosslinking and 192-IgG-mediated immunoprecipitation procedures to plasma membrane preparations of rat brain: NGF receptor molecules of the same molecular masses as the peripheral receptor components were consistently detected in all regions and in preparations from whole brains. Removal of the peripheral sympathetic innervation of the brain did not eliminate these NGF receptor proteins, indicating that the receptor is endogenous to central nervous system tissues. They also observed retrograde transport of /sup 125/I-labeled 192-IgG from the parietal cortex to the nucleus basalis and from the hippocampus to the nucleus of the diagonal band of Broca and the medial septal nucleus. These findings demonstrate the presence in brain of NGF receptor molecules indistinguishable from those of the peripheral nervous system.

  19. Preserved modular network organization in the sedated rat brain.

    Dany V D'Souza

    Full Text Available Translation of resting-state functional connectivity (FC magnetic resonance imaging (rs-fMRI applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40 under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility. Fully-connected large-scale complex networks of positively and negatively weighted connections were constructed based on Pearson partial correlation analysis between the time courses of 36 brain regions encompassing almost the entire brain. Applying recently proposed complex network analysis measures, we show that the rat FCN exhibits a modular architecture, comprising six modules with a high between subject reproducibility. In addition, we identified network hubs with strong connections to diverse brain regions. Overall our results obtained under a straight medetomidine protocol show for the first time that the community structure of the rat brain is preserved under pharmacologically induced sedation with a network modularity contrasting from the one reported for deep anesthesia but closely resembles the organization described for the rat in conscious state.

  20. Effect of glycolysis inhibition on mitochondrial function in rat brain.

    Cano-Ramírez, D; Torres-Vargas, C E; Guerrero-Castillo, S; Uribe-Carvajal, S; Hernández-Pando, R; Pedraza-Chaverri, J; Orozco-Ibarra, M


    Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.

  1. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. (Tufs Univ., Boston, MA (USA))


    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  2. Structure, function, and cortical representation of the rat submandibular whisker trident.

    Thé, Lydia; Wallace, Michael L; Chen, Christopher H; Chorev, Edith; Brecht, Michael


    Although the neurobiology of rodent facial whiskers has been studied intensively, little is known about sensing in other vibrissae. Here we describe the under-investigated submandibular "whisker trident" on the rat's chin. In this three-whisker array, a unique unpaired midline whisker is laterally flanked by two slightly shorter whiskers. All three whiskers point to the ground and are curved backwards. Unlike other whiskers, the trident is not located on an exposed body part. Trident vibrissae are not whisked and do not touch anything over long stretches of time. However, trident whiskers engage in sustained ground contact during head-down running while the animal is exploring or foraging. In biomechanical experiments, trident whiskers follow caudal ground movement more smoothly than facial whiskers. Remarkably, deflection angles decrease with increasing ground velocity. We identified one putative trident barrel in the left somatosensory cortex and two barrels in the right somatosensory cortex. The elongated putative trident-midline barrel is the longest and largest whisker barrel, suggesting that the midline trident whisker is of great functional significance. Cortical postsynaptic air-puff responses in the trident representation show much less temporal precision than facial whisker responses. Trident whiskers do not provide as much high-resolution information about object contacts as facial whiskers. Instead, our observations suggest an idiothetic function: their biomechanics allow trident whiskers to derive continuous measurements about ego motion from ground contacts. The midline position offers unique advantages in sensing heading direction in a laterally symmetric manner. The changes in trident deflection angle with velocity suggest that trident whiskers might function as a tactile speedometer.

  3. Graded defragmentation of cortical neuronal firing during recovery of consciousness in rats.

    Vizuete, J A; Pillay, S; Ropella, K M; Hudetz, A G


    State-dependent neuronal firing patterns reflect changes in ongoing information processing and cortical function. A disruption of neuronal coordination has been suggested as the neural correlate of anesthesia. Here, we studied the temporal correlation patterns of ongoing spike activity, during a stepwise reduction of the volatile anesthetic desflurane, in the cerebral cortex of freely moving rats. We hypothesized that the recovery of consciousness from general anesthesia is accompanied by specific changes in the spatiotemporal pattern and correlation of neuronal activity. Sixty-four contact microelectrode arrays were chronically implanted in the primary visual cortex (contacts spanning 1.4-mm depth and 1.4-mm width) for recording of extracellular unit activity at four steady-state levels of anesthesia (8-2% desflurane) and wakefulness. Recovery of consciousness was defined as the regaining of the righting reflex (near 4%). High-intensity firing (HI) periods were segmented using a threshold (200-ms) representing the minimum in the neurons' bimodal interspike interval histogram under anesthesia. We found that the HI periods were highly fragmented in deep anesthesia and gradually transformed to a near-continuous firing pattern at wakefulness. As the anesthetic was withdrawn, HI periods became longer and increasingly correlated among the units both locally and across remote recording sites. Paradoxically, in 4 of 8 animals, HI correlation was also high at the deepest level of anesthesia (8%) when local field potentials (LFP) were burst-suppressed. We conclude that recovery from desflurane anesthesia is accompanied by a graded defragmentation of neuronal activity in the cerebral cortex. Hypersynchrony during deep anesthesia is an exception that occurs only with LFP burst suppression. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats.

    Dong, Da-Wei; Zhang, Yu-Sheng; Yang, Wan-Yong; Wang-Qin, Run-Qi; Xu, An-Ding; Ruan, Yi-Wen


    Hyperphosphorylation of tau has been considered as an important risk factor for neurodegenerative diseases. It has been found also in the cortex after focal cerebral ischemia. The present study is aimed at investigating changes of tau protein expression in the ipsilateral thalamus remote from the primary ischemic lesion site after distal middle cerebral artery occlusion (MCAO). The number of neurons in the ventroposterior thalamic nucleus (VPN) was evaluated using Nissl staining and neuronal nuclei (NeuN) immunostaining. Total tau and phosphorylated tau at threonine 231 (p-T231-tau) and serine 199 (p-S199-tau) levels, respectively, in the thalamus were measured using immunostaining and immunoblotting. Moreover, apoptosis was detected with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay. It was found that the numbers of intact neurons and NeuN(+) cells within the ipsilateral VPN were reduced significantly compared with the sham-operated group, but the levels of p-T231-tau and p-S199-tau in the ipsilateral thalamus were increased significantly in rats subjected to ischemia for 3 days, 7 days and 28 days. Furthermore, the number of TUNEL-positive cells was increased in the ipsilateral VPN at 7 days and 28 days after MCAO. Thus, hyperphosphorylated tau protein is observed in ipsilateral thalamus after focal cerebral infarction in this study. Our findings suggest that the expression of hyperphosphorylated tau protein induced by ischemia may be associated with the secondary thalamic damage after focal cortical infarction via an apoptotic pathway.

  5. Normotopic and heterotopic cortical representations of mystacial vibrissae in rats with subcortical band heterotopia.

    Schottler, F; Fabiato, H; Leland, J M; Chang, L Y; Lotfi, P; Getachew, F; Lee, K S


    The tish rat is a neurological mutant exhibiting bilateral cortical heterotopia similar to those found in certain epileptic patients. Previous work has shown that thalamocortical fibers originating in the ventroposteromedial nucleus, which in normal animals segregate as 'barrel' representations for individual whiskers, terminate in both normotopic and heterotopic areas of the tish cortex (Schottler et al., 1998). Thalamocortical innervation terminates as barrels in layer IV and diffusely in layer VI of the normotopic area. Discrete patches of terminals are also observed in the underlying heterotopic area suggesting that representations of individual vibrissa may be present in the heterotopic somatosensory areas. The present study examines this issue by investigating the organization of the vibrissal somatosensory system in the tish cortex. Staining for cytochrome oxidase or Nissl substance reveals a normal complement of vibrissal barrels in the normotopic area of the tish cortex. Dense patches of cytochrome oxidase staining are also found in the underlying lateral portions of the heterotopic area (i.e. the same area that is innervated by the ventroposteromedial nucleus). Injections of retrograde tracers into vibrissal areas of either the normotopic or heterotopic area produce topographically organized labeling of neurons restricted to one or a small number of barreloids within the ventroposteromedial nucleus of the thalamus. Physical stimulation of a single whisker (D3 or E3) elicits enhanced uptake of [(14)C]2-deoxyglucose in restricted zones of both the normotopic and heterotopic areas, demonstrating that single whisker stimulation can increase functional activity in both normotopic and heterotopic neurons. These findings indicate that the barrels are intact in the normotopic area and are most consistent with the hypothesis that at least some of the individual vibrissae are 'dually' represented in normotopic and heterotopic positions in the primary somatosensory

  6. Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays.

    Ito, D; Tamate, H; Nagayama, M; Uchida, T; Kudoh, S N; Gohara, K


    To investigate the minimum neuron and neurite densities required for synchronized bursts, we cultured rat cortical neurons on planar multi-electrode arrays (MEAs) at five plating densities (2500, 1000, 500, 250, and 100 cells/mm(2)) using two culture media: Neuron Culture Medium and Dulbecco's Modified Eagle Medium supplemented with serum (DMEM/serum). Long-term recording of spontaneous electrical activity clarified that the cultures exhibiting synchronized bursts required an initial plating density of at least 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum. Immediately after electrical recording, immunocytochemistry of microtubule-associated protein 2 (MAP2) and Neurofilament 200 kD (NF200) was performed directly on MEAs to investigate the actual densities of neurons and neurites forming the networks. Immunofluorescence observation revealed that the construction of complicated neuronal networks required the same initial plating density as for synchronized bursts, and that overly sparse cultures showed significant decreases of neurons and neurites. We also found that the final densities of surviving neurons at 1 month decreased greatly compared with the initial plating densities and became saturated in denser cultures. In addition, the area of neurites and the number of nuclei were saturated in denser cultures. By comparing both the results of electrophysiological recording and immunocytochemical observation, we revealed that there is a minimum threshold of neuron densities that must be met for the exhibition of synchronized bursts. Interestingly, these minimum densities of MAP2-positive final neurons did not differ between the two culture media; the density was approximately 50 neurons/mm(2). This value was obtained in the cultures with the initial plating densities of 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum.

  7. Carbenoxolone inhibits volume-regulated anion conductance in cultured rat cortical astroglia.

    Benfenati, Valentina; Caprini, Marco; Nicchia, Grazia Paola; Rossi, Andrea; Dovizio, Melania; Cervetto, Chiara; Nobile, Mario; Ferroni, Stefano


    Accumulating evidence indicate that the gap-junction inhibitor carbenoxolone (CBX) regulates neuronal synchronization, depresses epileptiform activity and has a neuroprotective action. These CBX effects do not depend solely on its ability to inhibit gap junction channels formed by connexins (Cx), but the underlying mechanisms remain to be elucidated. Here we addressed the questions whether CBX modulates volume-regulated anion channels (VRAC) involved in the regulatory volume decrease and regulates the associated release of excitatory amino acids in cultured rat cortical astrocytes. We found that CBX inhibits VRAC conductance with potency comparable to that able to depress the activity of the most abundant astroglial gap junction protein connexin43 (Cx43). However, the knock down of Cx43 with small interfering RNA (siRNA) oligonucleotides and the use of various pharmacological tools revealed that VRAC inhibition was not mediated by interaction of CBX with astroglial Cx proteins. Comparative experiments in HEK293 cells stably expressing another putative target of CBX, the purinergic ionotropic receptor P2X7, indicate that the presence of this receptor was not necessary for CBX-mediated depression of VRAC. Finally, we show that in COS-7 cells, which are not endowed with pannexin-1 protein, another astroglial plasma membrane interactor of CBX, VRAC current retained its sensitivity to CBX. Complementary analyses indicate that the VRAC-mediated release of excitatory amino acid aspartate was decreased by CBX. Collectively, these findings support the notion that CBX could affect astroglial ability to modulate neuronal activity by suppressing excitatory amino acid release through VRAC, thereby providing a possible mechanistic clue for the neuroprotective effect of CBX in vivo.

  8. Noninvasive method to assess the electrical brain activity from rats

    Rosana Ferrari


    Full Text Available This research presents a noninvasive method for the acquisition of brain electrical signal in rat. Was used an electroencephalography (EEG system developed for bovine and adapted to rats. The bipolar electrode system (needle electrodes was glued on the surface of the head of the animal without surgical procedures and the other electrode was glued to the tail, as ground. The EEG activity was sampled at 120Hz for an hour. The accuracy and precision of the EEG measurement was performed using Fourier analysis and signal energy. For this, the digital signal was divided into sections successive of 3 seconds and was decomposed into four frequency bands: delta (0.3 to 4Hz, theta (4-8Hz, alpha (8-12Hz and beta (12-30Hz and energy (µV² of the series of time filtered were calculated. The method allowed the acquisition of non-invasive electrical brain signals in conscious rats and their frequency patterns were in agreement with previous studies that used surgical procedures to acquire EEG in rats. This system showed accuracy and precision and will allow further studies on behavior and to investigate the action of drugs on the central nervous system in rats without surgical procedures.

  9. Prostaglandin E2 metabolism in rat brain: Role of the blood-brain interfaces

    Strazielle Nathalie


    Full Text Available Abstract Background Prostaglandin E2 (PGE2 is involved in the regulation of synaptic activity and plasticity, and in brain maturation. It is also an important mediator of the central response to inflammatory challenges. The aim of this study was to evaluate the ability of the tissues forming the blood-brain interfaces to act as signal termination sites for PGE2 by metabolic inactivation. Methods The specific activity of 15-hydroxyprostaglandin dehydrogenase was measured in homogenates of microvessels, choroid plexuses and cerebral cortex isolated from postnatal and adult rat brain, and compared to the activity measured in peripheral organs which are established signal termination sites for prostaglandins. PGE2 metabolites produced ex vivo by choroid plexuses were identified and quantified by HPLC coupled to radiochemical detection. Results The data confirmed the absence of metabolic activity in brain parenchyma, and showed that no detectable activity was associated with brain microvessels forming the blood-brain barrier. By contrast, 15-hydroxyprostaglandin dehydrogenase activity was measured in both fourth and lateral ventricle choroid plexuses from 2-day-old rats, albeit at a lower level than in lung or kidney. The activity was barely detectable in adult choroidal tissue. Metabolic profiles indicated that isolated choroid plexus has the ability to metabolize PGE2, mainly into 13,14-dihydro-15-keto-PGE2. In short-term incubations, this metabolite distributed in the tissue rather than in the external medium, suggesting its release in the choroidal stroma. Conclusion The rat choroidal tissue has a significant ability to metabolize PGE2 during early postnatal life. This metabolic activity may participate in signal termination of centrally released PGE2 in the brain, or function as an enzymatic barrier acting to maintain PGE2 homeostasis in CSF during the critical early postnatal period of brain development.

  10. Buffer capacity of rat cortical tissue as well as of cultured neurons and astrocytes.

    Katsura, K; Mellergård, P; Theander, S; Ouyang, Y B; Siesjö, B K


    The primary objective of this work was to assess the intrinsic nonbicarbonate buffer capacity (beta i) of cultured neurons and astrocytes and to compare the beta i values obtained to those of neocortical tissue. A second objective was to determine the pH dependence of beta i. Titration of homogenates of whole-brain cortical tissue and cultured neurons with NaOH and HCl gave beta i values of 25-30 mmol.l-1 x pH-1. The buffer capacity was essentially constant in the pH range of 6-7. Astrocytes showed a higher buffer capacity and a clear relationship between beta i and pH. However, beta i decreased when pH was reduced from 7 to 6. The beta i values derived from microspectrofluorometric studies on neurons and astrocytes were surprisingly variable, ranging from 10 to 50 mmol.l-1 x pH-1. The ammonia "step method" suggested that beta i increased dramatically when pH was lowered from 7 to 6 but the propionic "step method" failed to reveal such a pH dependence. Some techniques obviously give erroneous values for beta i, presumably because changes in buffer base concentration (due to transmembrane fluxes of H+, HCO3-, NH4+ or anions of weak acids) violate the principles upon which the calculations are based. From the results obtained by direct titration and with the propionate technique, we tentatively conclude that beta i in neurons and astrocytes are approximately 20 and 30 mmol.l-1 x pH-1, respectively. We further suggest that the term "intrinsic buffer capacity", as commonly used, is redefined.

  11. Concentration-Dependent Dual Role of Thrombin In Protection of Cultured Rat Cortical Neurons

    García, Paul S.; Ciavatta, Vincent T.; Fidler, Jonathan A.; Woodbury, Anna; Levy, Jerrold H.; Tyor, William R.


    Background Thrombin’s role in the nervous system is not well understood. Under conditions of blood-brain barrier compromise (e.g., neurosurgery or stroke), thrombin can result in neuroapoptosis and the formation of glial scars. Despite this, preconditioning with thrombin has been found to be neuroprotective in models of cerebral ischemia and intracerebral hemorrhage. Methods We investigated the effects of physiologically relevant concentrations of thrombin on cortical neurons using two culture-based assays. We examined thrombin’s effect on neurites by quantitative analysis of fluorescently labeled neurons. To characterize thrombin’s effects on neuron survival, we spectrophotometrically measured changes in enzymatic activity. Using receptor agonists and thrombin inhibitors, we separately examined the role of thrombin and its receptor in neuroprotection. Results We found that low concentrations of thrombin (1 nM) enhances neurite growth and branching, neuron viability, and protects against excitotoxic damage. In contrast, higher concentrations of thrombin (100 nM) are potentially detrimental to neuronal health as evidenced by inhibition of neurite growth. Lower concentrations of thrombin resulted in equivalent neuroprotection as the antifibrinolytic, aprotinin, and the direct thrombin inhibitor, argatroban. Interestingly, exogenous application of the species-specific thrombin inhibitor, antithrombin III, was detrimental to neuronal health; suggesting that some endogenous thrombin is necessary for optimal neuron health in our culture system. Activation of the thrombin receptor, protease-activated receptor - 1 (PAR-1), via micromolar concentrations of the thrombin receptor agonist peptide, TRAP, did not adversely affect neuronal viability. Conclusions An optimal concentration of thrombin exists to enhance neuronal health. Neurotoxic effects of thrombin do not involve activation of PAR receptors and thus separate pharmacologic manipulation of thrombin’s receptor

  12. Differential Expression of Sirtuins in the Ageing Rat Brain

    Gilles J. Guillemin


    Full Text Available Although there are seven mammalian sirtuins (SIRT1-7, little is known about their expression in the ageing brain. To characterise the change(s in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of ‘physiologically’ aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy ageing.

  13. Reduced anesthetic requirements in aged rats: association with altered brain synaptic plasma membrane Ca(2+)-ATPase pump and phospholipid methyltransferase I activities.

    Horn, J L; Janicki, P K; Singh, G; Wamil, A W; Franks, J J


    Aging is associated with a decrease in anesthetic requirements. Animal models of aging manifest alteration of brain Ca2+ homeostasis and increased methyltransferase I (PLMTI) activity. In this study we evaluated concurrently anesthetic requirements and brain plasma membrane Ca(2+)-ATPase (PMCA) and PLMTI activities in young and aged rats. Halothane, desflurane, isoflurane and xenon MEDs (lowest partial pressures that suppress a pain response) were measured in 2 and 25 month old, male Fisher-344 rats. Halothane MED was also measured in 2 and 30 month old F344/BNF1 rats, a strain that undergoes aging with less debilitation. PMCA pumping and PLMTI activities were measured in synaptic plasma membranes (SPM) prepared from the cortex and diencephalon-mesencephalon (DM). For aged Fisher-344 rats, MEDs for halothane, desflurane, isoflurane and xenon were reduced to 81%, 82%, 67% and 86%, respectively, of young controls; PMCA activity was diminished to 91% in cortical SPM and 82% in DM SPM; and cortical and DM PLMTI activities were increased to 131% and 114% of young control. For F344/BNF1 rats, MED for halothane was reduced to 87%, PMCA activity was diminished to 90% in cortical SPM and 72% DM SPM, and PLMTI activity was increased to 133% in cortical SPM and 112% in DM SPM. The strong association between age and reduced anesthetic requirements for inhalational agents on the one hand and altered PMCA and PLMTI activity on the other lends support to the underlying hypothesis that PMCA and PLMTI may be involved in the production of the anesthetic state.

  14. Effects of acupoint versus non-acupoint electroacupuncture on cerebral cortical neuronal Bcl-2,Bax and caspase-3 expression in a rat model of focal cerebral ischemia

    Jun Wang; Junming Fan; Yongshu Dong; Xia Huang; Hongxia Zhang


    BACKGROUND: Several studies have demonstrated that electroacupuncture by acupoint selection can inhibit cerebral cortical neuronal apoptosis following cerebral ischemia/reperfusion.OBJECTIVE: To validate the effects of electroacupuncture by acupoint selection on the expression level of cortical neuronal anti-apoptotic Bcl-2 protein and the apoptotic executive protein, caspase-3, in rat models of focal cerebral ischemia/reperfusion.DESIGN, TIME AND SETTING: This randomized grouping, neural cell and molecular biology animal experiment was performed at the Laboratory of Pharmacology of Traditional Chinese Medicine and the Laboratory Animal Center of Henan Institute of Traditional Chinese Medicine between November 2006 and May 2007.MATERIALS: Atotal of 40 healthy male adult Sprague-Dawley rats were randomly and evenly divided into four groups: sham-operated, model, electroacupuncture and non-acupoint control. G6895 electro-acupuncture instruments were purchased from Shanghai Huayi Instrument Factory, China. Caspase-3, Bcl-2 and Bax kits were provided by Wuhan Boster Bioengineering Co., Ltd., China.METHODS: Middle cerebral artery occlusion was induced in the model, electroacupuncture and non-acupoint groups. In the electroacupuncture group, the acupoints Jianyu (LI15), Waiguan (SJ5), Biguan (ST31), and Zusanli (ST36) were given electroacupuncture. In the non-acupoint control group, at each time point (immediately after ischemia and after reperfusion, or 2 hours after reperfusion), electroacupuncture was performed at the midpoints of Tianquan (PC2)-Quze (PC 3) line, Quze (PC 3)-Ximen (PC4) line, Zuwuli (LRlO)-Yinbao (LRg) line, and Xiguan (LR7)-Zhongdu (LR6) line. Electroacupuncture parameters were set with a continuous wave with a frequency of 10 Hz, wave width 0.6 ms, voltage 1.5-3.0 V, and a duration of 10 minutes. The sham-operated and model groups received only animal fixation without electroacupuncture procedure.MAIN OUTCOME MEASURES: Five rats were selected from

  15. Influence of ovarian hormones on cortical spreading depression and its suppression by L-kynurenine in rat.

    Virginie Chauvel

    Full Text Available Migraine is sexually dimorphic and associated in 20-30% of patients with an aura most likely caused by cortical spreading depression (CSD. We have previously shown that systemic L-kynurenine (L-KYN, the precursor of kynurenic acid, suppresses CSD and that this effect depends on the stage of the estrous cycle in female rats. The objectives here are to determine the influence of ovarian hormones on KCl-induced CSD and its suppression after L-KYN by directly modulating estradiol or progesterone levels in ovariectomized rats. Adult female rats were ovariectomized and subcutaneously implanted with silastic capsules filled with progesterone or 17β-estradiol mixed with cholesterol, with cholesterol only or left empty. Two weeks after the ovariectomy/capsule implantation, the animals received an i.p. injection of L-KYN (300 mg/kg or NaCl as control. Thirty minutes later CSDs were elicited by applying KCl over the occipital cortex and recorded by DC electrocorticogram for 1 hour. The results show that both estradiol and progesterone increase CSD frequency after ovariectomy. The suppressive effect of L-KYN on CSD frequency, previously reported in normal cycling females, is not found anymore after ovariectomy, but reappears after progesterone replacement therapy. Taken together, these results emphasize the complex role of sex hormones on cortical excitability. The CSD increase by estradiol and, more surprisingly, progesterone may explain why clinically migraine with aura appears or worsens during pregnancy or with combined hormonal treatments.

  16. Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report.

    Adelson, P D; Whalen, M J; Kochanek, P M; Robichaud, P; Carlos, T M


    We sought to investigate the course and magnitude of blood brain barrier (BBB) permeability following focal and diffuse traumatic brain injury (TBI) in immature rats and examine the time course of markers of acute inflammation (neutrophil accumulation and E-selectin [E-sel] expression) following these two types of injury. We measured BBB permeability using i.v. injection Evans Blue (EB) and the extent of inflammation using immunohistochemical techniques identifying neutrophils (monoclonal antibody RP-3) and the endothelial adhesion molecule, E-selectin. Male Sprague-Dawley immature (17 day-old) rats (30-45 g, n = 80) were subjected to a controlled cortical impact (CCI: 2 mm, 4 m/s), a closed head diffuse injury (DI: 150 g/2m) or a corresponding sham procedure (with or without craniotomy). EB was injected i.v. at 30 min before sacrifice, which occurred at 1 h, 4 h, or 24 h after injury. BBB permeability was observed in both the CCI and DI rats at 1 h after injury which largely resolved by 24 h. In the CCI, EB extravasation was seen within and around the contusion. In DI, diffuse BBB permeability was seen. DI was not associated with acute inflammation since there was neither neutrophil accumulation nor E-selectin expression. The CCI rats though had 5.1 +/- 2.2 neutrophils/hpf and 3.0 +/- 0.4 endothelial cells/hpf expressing E-selectin (mean +/- SEM) (both p < 0.05 vs sham and DI). These data suggest that BBB breakdown occurs in the immature rat after both focal and diffuse TBI. This early BBB permeability was not associated with acute inflammation in DI but was in CCI. These data also suggest that contusion is a key factor in the development of a traditional acute inflammatory response after TBI in the immature rat.

  17. Differential effects of selective lesions of cholinergic and dopaminergic neurons on serotonin-type 1 receptors in rat brain

    Quirion, R.; Richard, J.


    Serotonin (5-HT)-type1 receptor binding sites are discretely distributed in rat brain. High densities of (3H)5-HT1 binding sites are especially located in areas enriched with cholinergic and dopaminergic innervation, such as the substantia innominata/ventral pallidum, striatum, septal nuclei, hippocampus and substantia nigra. The possible association of (3H)5-HT1 binding sites with cholinergic or dopaminergic cell bodies and/or nerve fiber terminals was investigated by selective lesions of the substantia innominata/ventral pallidum-cortical and septohippocampal cholinergic pathways and the nigrostriatal dopaminergic projection. (3H)5-HT1 receptor binding sites are possibly located on cholinergic cell bodies in the ventral pallidum-cortical pathway since (3H)5-HT1 binding in the substantia innominata/ventral pallidal area was markedly decreased following kainic acid lesions. Fimbriaectomies markedly decreased (3H)5-HT1 binding in the hippocampus, suggesting the presence of 5-HT1 binding sites on cholinergic nerve fiber terminals in the septohippocampal pathway. Lesions of the nigrostriatal dopaminergic projection did not modify (3H)5-HT1 binding in the substantia nigra and the striatum, suggesting that 5-HT1 receptors are not closely associated with dopaminergic cell bodies and nerve terminals in this pathway. These results demonstrate differential association between 5-HT1 receptors and cholinergic and dopaminergic innervation in rat brain.

  18. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu


    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  19. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D


    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...... of other immediate early genes. BDNF induced a very strong increase (around 100 fold) in Arc mRNA and the maximal effect seen at 25 ng/ml. The effect was dose-dependent with EC50 around 1.6 ng/ml. The time profile revealed a significant effect after 25 min. BDNF also increased levels of c-Fos, neuritin...... and BDNF mRNA, but not COX-2 mRNA. The pharmacological profile of NMDA and AMPA-induced arc gene expression in frontal cortical neurons was compared to BDNF. NMDA and AMPA increased Arc mRNA but their maximal effect did not exceed 20-fold. The effect of AMPA was completely blocked by the NMDA receptor...

  20. Brain-derived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons.

    Inagaki, Tsuyoshi; Begum, Tahamina; Reza, Faruque; Horibe, Shoko; Inaba, Mie; Yoshimura, Yumiko; Komatsu, Yukio


    High-frequency stimulation (HFS) induces long-term potentiation (LTP) at inhibitory synapses of layer 5 pyramidal neurons in developing rat visual cortex. This LTP requires postsynaptic Ca2+ rise for induction, while the maintenance mechanism is present at the presynaptic site, suggesting presynaptic LTP expression and the necessity of retrograde signaling. We investigated whether the supposed signal is mediated by brain-derived neurotrophic factor (BDNF), which is expressed in pyramidal neurons but not inhibitory interneurons. LTP did not occur when HFS was applied in the presence of the Trk receptor tyrosine kinase inhibitor K252a in the perfusion medium. HFS produced LTP when bath application of K252a was started after HFS or when K252a was loaded into postsynaptic cells. LTP did not occur in the presence of TrkB-IgG scavenging BDNF or function-blocking anti-BDNF antibody in the medium. In cells loaded with the Ca2+ chelator BAPTA, the addition of BDNF to the medium enabled HFS to induce LTP without affecting baseline synaptic transmission. These results suggest that BDNF released from postsynaptic cells activates presynaptic TrkB, leading to LTP. Because BDNF, expressed activity dependently, regulates the maturation of cortical inhibition, inhibitory LTP may contribute to this developmental process, and hence experience-dependent functional maturation of visual cortex.

  1. A novel dehydroepiandrosterone analog improves functional recovery in a rat traumatic brain injury model.

    Malik, Amir S; Narayan, Raj K; Wendling, Woodrow W; Cole, Russell W; Pashko, Laura L; Schwartz, Arthur G; Strauss, Kenneth I


    The purpose of this study was to investigate the efficacy of a novel steroid, fluasterone (DHEF, a dehydroepiandrosterone (DHEA) analog), at improving functional recovery in a rat model of traumatic brain injury (TBI). The lateral cortical impact model was utilized in two studies of efficacy and therapeutic window. DHEF was given (25 mg/kg, intraperitoneally) at the initial time point and once a day for 2 more days. Study A included four groups: sham injury, vehicle treated (n = 22); injured, vehicle treated (n = 30); injured, pretreated (5-10 min prior to injury, n = 24); and injured, posttreated (initial dose 30 min postinjury, n = 15). Study B (therapeutic window) included five groups: sham injury, vehicle treated (n = 17); injured, vehicle treated (n = 26); and three posttreatment groups: initial dose at 30 min (n = 18), 2 h (n = 23), or 12 h (n = 16) postinjury. Three criteria were used to grade functional recovery. In study A, DHEF improved beam walk performance both with pretreatment (79%) and 30-min posttreatment group (54%; p memory (Morris water maze) and neurological reflexes both revealed significant improvements in all DHEF treatment groups. In cultured rat mesangial cells, DHEF (and DHEA) potently inhibited interleukin-1beta-induced cyclooxygenase-2 (COX2) mRNA and prostaglandin (PGE2) production. In contrast, DHEF treatment did not alter injury-induced COX2 mRNA levels in the cortex or hippocampus. However, DHEF (and DHEA) relaxed ex vivo bovine middle cerebral artery preparations by about 30%, with an IC(50) approximately 40 microM. This was a direct effect on the vascular smooth muscle, independent of the endothelial cell layer. Fluasterone (DHEF) treatments improved functional recovery in a rat TBI model. Possible mechanisms of action for this novel DHEA analog are discussed. These findings suggest an exciting potential use for this agent in the clinical treatment of traumatic brain injury.

  2. Math anxiety: Brain cortical network changes in anticipation of doing mathematics.

    Klados, Manousos A; Pandria, Niki; Micheloyannis, Sifis; Margulies, Daniel; Bamidis, Panagiotis D


    Following our previous work regarding the involvement of math anxiety (MA) in math-oriented tasks, this study tries to explore the differences in the cerebral networks' topology between self-reported low math-anxious (LMA) and high math-anxious (HMA) individuals, during the anticipation phase prior to a mathematical related experiment. For this reason, multichannel EEG recordings were adopted, while the solution of the inverse problem was applied in a generic head model, in order to obtain the cortical signals. The cortical networks have been computed for each band separately, using the magnitude square coherence metric. The main graph theoretical parameters, showed differences in segregation and integration in almost all EEG bands of the HMAs in comparison to LMAs, indicative of a great influence of the anticipatory anxiety prior to mathematical performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Spontaneous mentalizing captures variability in the cortical thickness of social brain regions

    Rice, Katherine; Redcay, Elizabeth


    .... "In this story, what does Steve think Julia believes?"). Neuroanatomical measures may provide a way to explore the brain bases of individual differences in more naturalistic everyday mentalizing...

  4. The brain responses to different frequencies of binaural beat sounds on QEEG at cortical level.

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan


    Beat phenomenon is occurred when two slightly different frequency waves interfere each other. The beat can also occur in the brain by providing two slightly different frequency waves separately each ear. This is called binaural beat. The brain responses to binaural beat are in discussion process whether the brain side and the brain area. Therefore, this study aims to figure out the brain responses to binaural beat by providing different binaural beat frequencies on 250 carrier tone continuously for 30 minutes to participants and using quantitative electroencephalography (QEEG) to interpret the data. The result shows that different responses appear in different beat frequency. Left hemisphere dominance occur in 3 Hz beat within 15 minutes and 15 Hz beat within 5 minutes. Right hemisphere dominance occurs in 10 Hz beat within 25 minute. 6 Hz beat enhances all area of the brain within 10 minutes. 8 Hz and 25 Hz beats have no clearly responses while 40 Hz beat enhances the responses in frontal lobe. These brain responses can be used for brain modulation application to induce the brain activity in further studies.

  5. Coronary artery disease affects cortical circuitry associated with brain-heart integration during volitional exercise.

    Norton, Katelyn N; Badrov, Mark B; Barron, Carly C; Suskin, Neville; Heinecke, Armin; Shoemaker, J Kevin


    This study tested the hypothesis that coronary artery disease (CAD) alters the cortical circuitry associated with exercise. Observations of changes in heart rate (HR) and in cortical blood oxygenation level-dependent (BOLD) images were made in 23 control subjects [control; 8 women; 63 ± 11 yr; mean arterial pressure (MAP): 90 ± 9 mmHg] (mean ± SD) and 17 similarly aged CAD patients (4 women; 59 ± 9 yr; MAP: 87 ± 10 mmHg). Four repeated bouts each of 30%, 40%, and 50% of maximal voluntary contraction (MVC) force (LAB session), and seven repeated bouts of isometric handgrip (IHG) at 40% MVC force (fMRI session), were performed, with each contraction lasting 20 s and separated by 40 s of rest. There was a main effect of group (P = 0.03) on HR responses across all IHG intensities. Compared with control, CAD demonstrated less task-dependent deactivation in the posterior cingulate cortex and medial prefrontal cortex, and reduced activation in the right anterior insula, bilateral precentral cortex, and occipital lobe (P < 0.05). When correlated with HR, CAD demonstrated reduced activation in the bilateral insula and posterior cingulate cortex, and reduced deactivation in the dorsal anterior cingulate cortex, and bilateral precentral cortex (P < 0.05). The increased variability in expected autonomic regions and decrease in total cortical activation in response to the IHG task are associated with a diminished HR response to volitional effort in CAD. Therefore, relative to similarly aged and healthy individuals, CAD impairs the heart rate response and modifies the cortical patterns associated with cardiovascular control during IHG.

  6. Rapid Changes in Cortical and Subcortical Brain Regions after Early Bilateral Enucleation in the Mouse.

    Olga O Kozanian

    Full Text Available Functional sensory and motor areas in the developing mammalian neocortex are formed through a complex interaction of cortically intrinsic mechanisms, such as gene expression, and cortically extrinsic mechanisms such as those mediated by thalamic input from the senses. Both intrinsic and extrinsic mechanisms are believed to be involved in cortical patterning and the establishment of areal boundaries in early development; however, the nature of the interaction between intrinsic and extrinsic processes is not well understood. In a previous study, we used a perinatal bilateral enucleation mouse model to test some aspects of this interaction by reweighting sensory input to the developing cortex. Visual deprivation at birth resulted in a shift of intraneocortical connections (INCs that aligned with ectopic ephrin A5 expression in the same location ten days later at postnatal day (P 10. A prevailing question remained: Does visual deprivation first induce a change in gene expression, followed by a shift in INCs, or vice versa? In the present study, we address this question by investigating the neuroanatomy and patterns of gene expression in post-natal day (P 1 and 4 mice following bilateral enucleation at birth. Our results demonstrate a rapid reduction in dorsal lateral geniculate nucleus (dLGN size and ephrin A5 gene expression 24-hours post-enucleation, with more profound effects apparent at P4. The reduced nuclear size and diminished gene expression mirrors subtle changes in ephrin A5 expression evident in P1 and P4 enucleated neocortex, 11 and 8 days prior to natural eye opening, respectively. Somatosensory and visual INCs were indistinguishable between P1 and P4 mice bilaterally enucleated at birth, indicating that perinatal bilateral enucleation initiates a rapid change in gene expression (within one day followed by an alteration of sensory INCs later on (second postnatal week. With these results, we gain a deeper understanding of how gene

  7. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    SunLi-Sha; XuJiang-ping


    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  8. Effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury

    许民辉; 代文光; 邓洵鼎


    Objective: To study the effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury and the possible mechanism.Methods: The middle degree brain injury in rats was made by BIM-III multi-function impacting machine. The brain mitochondrial respiratory function was measured with oxygen electrode and the ultra-structural changes were observed with transmission electron microscope (TEM).Results: 1. The brain mitochondrial respiratory stage III and respiration control rate reduced significantly in the untreated groups within 24 and 72 hours. But treated Group A showed certain degree of recovery of respiratory function; treated Group B showed further improvement. 2. Untreated Group, treated Groups A and B had different degrees of mitochondrial ultra-structural damage respectively, which could be attenuated after the treatment with magnesium sulfate.Conclusions: The mitochondrial respiratory function decreases significantly after traumatic brain injury. But it can be apparently improved after magnesium sulfate management along with the attenuated damage of mitochondria discovered by TEM. The longer course of treatment can obtain a better improvement of mitochondrial respiratory function.

  9. Multiple opiate receptors in the brain of spontaneously hypertensive rats

    Das, S.; Bhargava, H.N.


    The characteristics of, delta and kappa -opiate receptors in the brain of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats were determined using the receptor binding assays. The ligands used were /sup 3/H-naltrexone (, /sup 3/H-ethylketocyclazocine (EKC, kappa) and /sup 3/H-Tyr-D-Ser-Gly-Phe-Leu-Thr (DSTLE, delta). Since EKC binds to and delta receptors in addition to kappa, the binding was done in the presence of 100 nM each of DAGO and DADLE to suppress and delta sites, respectively. All three ligands bound to brain membranes of WKY rats at a single high affinity site with the following B/sub max/ (fmol/mg protein) and K/sub d/ (nM) values: /sup 3/H-