WorldWideScience

Sample records for rat brain attenuation

  1. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.

    Science.gov (United States)

    Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa; Lee, Jin Hwan; Ji, Xiaoya; Wei, Ling; Dix, Thomas A; Yu, Shan Ping

    2015-05-01

    Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201

  2. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats.

    Science.gov (United States)

    Zhao, Jinbing; Chen, Zhi; Xi, Guohua; Keep, Richard F; Hua, Ya

    2014-10-01

    Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm(3) in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm(3) in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.

  3. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  4. Cerebrolysin attenuates blood-brain barrier and brain pathology following whole body hyperthermia in the rat.

    Science.gov (United States)

    Sharma, Hari Shanker; Zimmermann-Meinzingen, Sibilla; Sharma, Aruna; Johanson, Conrad E

    2010-01-01

    The possibility that Cerebrolysin, a mixture of several neurotrophic factors, has some neuroprotective effects on whole body hyperthermia (WBH) induced breakdown of the blood-brain barrier (BBB), blood-CSF barrier (BCSFB), brain edema formation and neuropathology were examined in a rat model. Rats subjected to a 4 h heat stress at 38 degrees C in a biological oxygen demand (BOD) incubator exhibited profound increases in BBB and BCSFB permeability to Evans blue and radioiodine tracers compared to controls. Hippocampus, caudate nucleus, thalamus and hypothalamus exhibited pronounced increase in water content and brain pathology following 4 h heat stress. Pretreatment with Cerebrolysin (1, 2 or 5 mL/kg i.v.) 24 h before WBH significantly attenuated breakdown of the BBB or BCSFB and brain edema formation. This effect was dose dependent. Interestingly, the cell and tissue injury following WBH in cerebrolysin-treated groups were also considerably reduced. These novel observations suggest that cerebrolysin can attenuate WBH induced BBB and BCSFB damage resulting in neuroprotection.

  5. Cordycepin attenuates traumatic brain injury-induced impairments of blood-brain barrier integrity in rats.

    Science.gov (United States)

    Yuan, Jing; Wang, Aihua; He, Yan; Si, Zhihua; Xu, Shan; Zhang, Shanchao; Wang, Kun; Wang, Dawei; Liu, Yiming

    2016-10-01

    Loss of blood-brain barrier (BBB) integrity is a downstream event caused by traumatic brain injury (TBI). BBB integrity is affected by certain physiological conditions, including inflammation and oxidative stress. Cordycepin is a susbtance with anti-inflammatory and anti-oxidative effects. Therefore, it is necessary to investigate whether cordycepin affects TBI-induced impairments of BBB integrity. Using TBI rats as the in vivo model and applying multiple techniques, including stroke severity evaluation, Evans blue assessment, quantitative real-time PCR, Western blotting and ELISA, we investigated the dose-dependent protective effects of cordycepin on the TBI-induced impairments of BBB integrity. Cordycepin treatment attenuated the TBI-induced impairments in a dose-dependent manner, and played a role in protecting BBB integrity. Cordycepin was able to alleviate TBI-induced loss of tight junction proteins zonula occludens protein-1 (ZO-1) and occludin, which are important for BBB integrity. Moreover, cordycepin suppressed pro-inflammatory factors, including IL-1β, iNOS, MPO and MMP-9, and promoted anti-inflammation-associated factors arginase 1 and IL-10. Furthermore, cordycepin inhibited NADPH oxidase (NOX) expression and activity following TBI, probably through NOX1, but not NOX2 and NOX4. Cordycepin has protective effects against brain damages induced by TBI. The protection of cordycepin on BBB integrity was probably achieved through recovery of tight junction proteins, inhibition of local inflammation, and prevention of NOX activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels.

    Science.gov (United States)

    Wu, Wanqiang; Wang, Xin; Xiang, Qisen; Meng, Xu; Peng, Ye; Du, Na; Liu, Zhigang; Sun, Quancai; Wang, Chan; Liu, Xuebo

    2014-01-01

    Astaxanthin (AST) is a carotenoid pigment which possesses potent antioxidative, anti-inflammatory, and neuroprotective properties. The aim of this study was to investigate whether administration of AST had protective effects on D-galactose-induced brain aging in rats, and further examined its protective mechanisms. The results showed that AST treatment significantly restored the activities of glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD), and increased glutathione (GSH) contents and total antioxidant capacity (T-AOC), but decreased malondialdehyde (MDA), protein carbonylation and 8-hydroxy-2- deoxyguanosine (8-OHdG) levels in the brains of aging rats. Furthermore, AST increased the ratio of Bcl-2/Bax, but decreased the expression of Cyclooxygenase-2 (COX-2) in the brains of aging rats. Additionally, AST ameliorated histopathological changes in the hippocampus and restored brain derived neurotrophic factor (BDNF) levels in both the brains and hippocampus of aging rats. These results suggested that AST could alleviate brain aging, which may be due to attenuating oxidative stress, ameliorating hippocampus damage, and upregulating BDNF expression.

  7. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    Science.gov (United States)

    Jaiswal, Sunil Kumar; Sharma, Ashish; Gupta, Vivek Kumar; Singh, Rakesh Kumar; Sharma, Bechan

    2016-01-01

    The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight). The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin. PMID:27213055

  8. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Jaiswal

    2016-01-01

    Full Text Available The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight. The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin.

  9. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  10. Propofol Inhibits NLRP3 Inflammasome and Attenuates Blast-Induced Traumatic Brain Injury in Rats.

    Science.gov (United States)

    Ma, Jie; Xiao, Wenjing; Wang, Junrui; Wu, Juan; Ren, Jiandong; Hou, Jun; Gu, Jianwen; Fan, Kaihua; Yu, Botao

    2016-12-01

    Increasing evidence has demonstrated that inflammatory response plays a crucial role in the pathogenesis of secondary injury following blast-induced traumatic brain injury (bTBI). Propofol, a lipid-soluble intravenous anesthetic, has been shown to possess therapeutic benefit during neuroinflammation on various brain injury models. Recent findings have proved that the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome involved in the process of the inflammatory response following brain trauma, may probably be a promising target in the treatment of bTBI. Rats were randomly divided into six groups (n = 8): normal group; bTBI-12 and 24 h group; bTBI-12 h and bTBI-24 h group treated with propofol; and bTBI treated with control dimethyl sulfoxide (DMSO) group. The effect of propofol on the expression and activation of NLRP3 inflammasome and the degree of oxidative stress and inflammatory cascades, as well as the brain trauma biomarkers were evaluated in rats suffering from bTBI. The enhanced expressions and activation of NLRP3 inflammasome in the cerebral cortex of bTBI rats were substantially suppressed by the administration of propofol, which was paralleled with the decreased oxidative stress, cytokines production, and the amelioration of cerebral cortex damage. Our results have, for the first time, revealed that over-activation of NLRP3 inflammasome in the cerebral cortex may be involved in the process of neuroinflammation during the secondary injury of bTBI in rats. Propofol might relieve the inflammatory response and attenuate brain injury by inhibiting ROS and reluctant depressing NLRP3 inflammasome activation and pro-inflammatory cytokines maturation.

  11. Sarin-induced brain damage in rats is attenuated by delayed administration of midazolam.

    Science.gov (United States)

    Chapman, Shira; Yaakov, Guy; Egoz, Inbal; Rabinovitz, Ishai; Raveh, Lily; Kadar, Tamar; Gilat, Eran; Grauer, Ettie

    2015-07-01

    Sarin poisoned rats display a hyper-cholinergic activity including hypersalivation, tremors, seizures and death. Here we studied the time and dose effects of midazolam treatment following nerve agent exposure. Rats were exposed to sarin (1.2 LD50, 108 μg/kg, im), and treated 1 min later with TMB4 and atropine (TA 7.5 and 5 mg/kg, im, respectively). Midazolam was injected either at 1 min (1 mg/kg, im), or 1 h later (1 or 5 mg/kg i.m.). Cortical seizures were monitored by electrocorticogram (ECoG). At 5 weeks, rats were assessed in a water maze task, and then their brains were extracted for biochemical analysis and histological evaluation. Results revealed a time and dose dependent effects of midazolam treatment. Rats treated with TA only displayed acute signs of sarin intoxication, 29% died within 24h and the ECoG showed seizures for several hours. Animals that received midazolam within 1 min survived with only minor clinical signs but with no biochemical, behavioral, or histological sequel. Animals that lived to receive midazolam at 1h (87%) survived and the effects of the delayed administration were dose dependent. Midazolam 5 mg/kg significantly counteracted the acute signs of intoxication and the impaired behavioral performance, attenuated some of the inflammatory response with no effect on morphological damage. Midazolam 1mg/kg showed only a slight tendency to modulate the cognitive function. In addition, the delayed administration of both midazolam doses significantly attenuated ECoG compared to TA treatment only. These results suggest that following prolonged seizure, high dose midazolam is beneficial in counteracting adverse effects of sarin poisoning.

  12. CDP-choline (citicoline) attenuates brain damage in a rat model of birth asphyxia.

    Science.gov (United States)

    Fiedorowicz, Michał; Makarewicz, Dorota; Stańczak-Mrozek, Kinga I; Grieb, Paweł

    2008-01-01

    To estimate protective potential of citicoline in a model of birth asphyxia, the drug was given to 7-day old rats subjected to permanent unilateral carotid artery occlusion and exposed for 65 min to a hypoxic gas mixture. Daily citicoline doses of 100 or 300 m/kg, or vehicle, were injected intraperitoneally for 7 consecutive days beginning immediately after the end of the ischemic-hypoxic insult, and brain damage was assessed by gross zorphology score and weight deficit two weeks after the insult. Caspase-3, alpha-fodrin, Bcl-2, and Hsp70 levels were assessed at 0, 1, and 24 h after the end of the hypoxic insult in another group of rat pups subjected to the same insult and given a single dose of 300 m/kg of citicoline or the vehicle. Citicoline markedly reduced caspase-3 activation and Hsp70 expression 24 h after the insult, and dose-dependently attenuated brain damage. In the context of the well-known excellent safety profile of citicoline, these data suggest that clinical evaluation of the efficacy of the drug in human birth asphyxia may be warranted.

  13. Ethosuximide and phenytoin dose-dependently attenuate acute nonconvulsive seizures after traumatic brain injury in rats.

    Science.gov (United States)

    Mountney, Andrea; Shear, Deborah A; Potter, Brittney; Marcsisin, Sean R; Sousa, Jason; Melendez, Victor; Tortella, Frank C; Lu, Xi-Chun M

    2013-12-01

    Acute seizures frequently occur following severe traumatic brain injury (TBI) and have been associated with poor patient prognosis. Silent or nonconvulsive seizures (NCS) manifest in the absence of motor convulsion, can only be detected via continuous electroencephalographic (EEG) recordings, and are often unidentified and untreated. Identification of effective anti-epileptic drugs (AED) against post-traumatic NCS remains crucial to improve neurological outcome. Here, we assessed the anti-seizure profile of ethosuximide (ETX, 12.5-187.5 mg/kg) and phenytoin (PHT, 5-30 mg/kg) in a spontaneously occurring NCS model associated with penetrating ballistic-like brain injury (PBBI). Rats were divided between two drug cohorts, PHT or ETX, and randomly assigned to one of four doses or vehicle within each cohort. Following PBBI, NCS were detected by continuous EEG monitoring for 72 h post-injury. Drug efficacy was evaluated on NCS parameters of incidence, frequency, episode duration, total duration, and onset latency. Both PHT and ETX attenuated NCS in a dose-dependent manner. In vehicle-treated animals, 69-73% experienced NCS (averaging 9-10 episodes/rat) with average onset of NCS occurring at 30 h post-injury. Compared with control treatment, the two highest PHT and ETX doses significantly reduced NCS incidence to 13-40%, reduced NCS frequency (1.8-6.2 episodes/rat), and delayed seizure onset: <20% of treated animals exhibited NCS within the first 48 h. NCS durations were also dose-dependently mitigated. For the first time, we demonstrate that ETX and PHT are effective against spontaneously occurring NCS following PBBI, and suggest that these AEDs may be effective at treating post-traumatic NCS.

  14. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Rose, Marie E. [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurology, University of Pittsburgh School of Medicine, PA (United States); Culver, Sherman; Ma, Xiecheng; Dixon, C. Edward [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurosurgery, University of Pittsburgh, PA 15216 (United States); Department of Critical Care Medicine, University of Pittsburgh, PA 15216 (United States); Graham, Steven H., E-mail: Steven.Graham@va.gov [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurology, University of Pittsburgh School of Medicine, PA (United States)

    2016-04-15

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1–5 d, 14–20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. - Highlights: • Effects of rosiglitazone after CCI were evaluated using a rat TBI model. • Rosiglitazone suppressed production of TNFα at 24 h after CCI. • Rosiglitazone inhibited microglial activation at 21 d after CCI. • Rosiglitazone increased survival of CA3 neurons at 21 d after CCI. • Rosiglitazone-treated animals had improved performance in beam balance testing.

  15. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  16. Testosterone replacement attenuates cognitive decline in testosterone-deprived lean rats, but not in obese rats, by mitigating brain oxidative stress.

    Science.gov (United States)

    Pintana, Hiranya; Pongkan, Wanpitak; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-10-01

    Testosterone replacement improves metabolic parameters and cognitive function in hypogonadism. However, the effects of testosterone therapy on cognition in obese condition with testosterone deprivation have not been investigated. We hypothesized that testosterone replacement improves cognitive function in testosterone-deprived obese rats by restoring brain insulin sensitivity, brain mitochondrial function, and hippocampal synaptic plasticity. Thirty male Wistar rats had either a bilateral orchiectomy (ORX: O, n = 24) or a sham operation (S, n = 6). ORX rats were further divided into two groups fed with either a normal diet (NDO) or a high-fat diet (HFO) for 12 weeks. Then, ORX rats in each dietary group were divided into two subgroups (n = 6/subgroup) and were given either castor oil or testosterone (2 mg/kg/day, s.c.) for 4 weeks. At the end of this protocol, cognitive function, metabolic parameters, brain insulin sensitivity, hippocampal synaptic plasticity, and brain mitochondrial function were determined. We found that testosterone replacement increased peripheral insulin sensitivity, decreased circulation and brain oxidative stress levels, and attenuated brain mitochondrial ROS production in HFO rats. However, testosterone failed to restore hippocampal synaptic plasticity and cognitive function in HFO rats. In contrast, in NDO rats, testosterone decreased circulation and brain oxidative stress levels, attenuated brain mitochondrial ROS production, and restored hippocampal synaptic plasticity as well as cognitive function. These findings suggest that testosterone replacement improved peripheral insulin sensitivity and decreased oxidative stress levels, but failed to restore hippocampal synaptic plasticity and cognitive function in testosterone-deprived obese rats. However, it provided beneficial effects in reversing cognitive impairment in testosterone-deprived non-obese rats.

  17. Early transient mild hypothermia attenuates neurological deficits and brain damage after experimental subarachnoid hemorrhage in rats.

    Science.gov (United States)

    Lilla, Nadine; Rinne, Christoph; Weiland, Judith; Linsenmann, Thomas; Ernestus, Ralf-Ingo; Westermaier, Thomas

    2017-09-23

    Metabolic exhaustion in ischemic tissue is the basis for a detrimental cascade of cell damage. In the acute stage of subarachnoid hemorrhage (SAH), a sequence of global and focal ischemia occurs, threatening brain tissue to undergo ischemic damage. This study was conducted to investigate whether early therapy with moderate hypothermia can offer neuroprotection after experimental SAH. 20 male Sprague-Dawley rats were subjected to SAH and treated by active cooling (34° C) or served as controls by continuous maintenance of normothermia (37.0° C). Mean arterial blood pressure (MABP), intracranial pressure (ICP) and local cerebral blood flow (CBF) over both hemispheres were continuously measured. Neurological assessment was performed 24 hours later. Hippocampal damage was assessed by hematoxylin and eosin and Caspase-3 staining. By a slight increase of MABP in the cooling phase and a significant reduction of ICP, hypothermia improved cerebral perfusion pressure (CPP) in the first 60 minutes after SAH. Accordingly, a trend to increased CBF was observed during this period. The rate of injured neurons was significantly reduced in hypothermia-treated animals compared to normothermic controls. The results of this series cannot finally answer whether this form of treatment permanently attenuates or only delays ischemic damage. In the latter case, slowing down metabolic exhaustion by hypothermia may still be a valuable treatment during this state of ischemic brain damage and prolong the therapeutic window for possible causal treatments of the acute perfusion deficit. Therefore, it may be useful as a first-tier therapy in suspected SAH. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    Science.gov (United States)

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  19. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain

    Directory of Open Access Journals (Sweden)

    L.F. Nonato

    Full Text Available Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8 and non-trained (n=7 groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS levels (P0.05. Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05 and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  20. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    Science.gov (United States)

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (Pswimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  1. Propolis attenuates oxidative injury in brain and lung of nitric oxide synthase inhibited rats

    Directory of Open Access Journals (Sweden)

    Zeliha Selamoglu-Talas

    2015-10-01

    Full Text Available Background: The blocking of nitric oxide synthase (NOS activity may reason vasoconstriction with formation of reactive oxygen species. Propolis has biological and pharmacological properties, such as antioxidant. The aim of this study was to examine the antioxidant effects of propolis which natural product on biochemical parameters in brain and lung tissues of acute nitric oxide synthase inhibited rats by Nω-nitro-L-arginine methyl ester (L-NAME.Methods: Rats have been received L-NAME (40 mg/kg, intraperitoneally, NOS inhibitor for 15 days to produce hypertension and propolis (200mg/kg, by gavage the lastest 5 of 15 days.Results: There  were  the  increase  (P<0.001  in  the  malondialdehyde  levels  in  the  L-NAME treatment groups when compared to control rats, but the decrease (P<0.001 in the catalase activities in both brain and lung tissues. There were statistically changes (P<0.001 in these parameters of L-NAME+propolis treated rats as compared with L-NAME-treated group.Conclusion: The application of L-NAME to the Wistar rats resulted in well developed oxidative stress. Also, propolis may influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of hypertensive diseases and oxidative stress.

  2. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    Science.gov (United States)

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  3. Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model.

    Science.gov (United States)

    Tao, Yihao; Tang, Jun; Chen, Qianwei; Guo, Jing; Li, Lin; Yang, Liming; Feng, Hua; Zhu, Gang; Chen, Zhi

    2015-03-30

    Germinal matrix hemorrhage (GMH) is one of the most common and devastating cerebrovascular events that affect premature infants, resulting in a significant socioeconomic burden. However, GMH has been largely unpreventable, and clinical treatments are mostly inadequate. In the present study, we tested the hypothesis that JWH133, a selective CB2 receptor agonist, could attenuate brain injury and neurological deficits in a clostridial collagenase VII induced GMH model in seven-day-old (P7) S-D rat pups. Up to 1h post-injury, the administration of JWH133 (1mg/kg, intraperitoneal injection) significantly attenuated brain edema at 24h post-GMH, which was reversed by a selective CB2R antagonist, SR144528 (3mg/kg, intraperitoneal injection). Long-term brain morphology and neurofunctional outcomes were also improved. In contrast, JWH133 did not have a noticeable effect on the hematoma volume during the acute phase. These data also showed that microglia activation and inflammatory cytokine (TNF-α) release were significantly inhibited by JWH133 after GMH. This current study suggests a potential clinical utility for CB2R agonists as a potential therapy to reduce neurological injury and improve patient outcomes after GMH.

  4. Calcium-sensing receptor antagonist NPS2390 attenuates neuronal apoptosis though intrinsic pathway following traumatic brain injury in rats.

    Science.gov (United States)

    Xue, Zhaoliang; Song, Zhengfei; Wan, Yingfeng; Wang, Kun; Mo, Lianjie; Wang, Yirong

    2017-04-29

    Traumatic brain injury (TBI) initiates a complex cascade of neurochemical and signaling changes that leads to neuronal apoptosis, which contributes to poor outcomes for patients with TBI. Previous study indicates that calcium-sensing receptor (CaSR) activation contributes to neuron death in focal cerebral ischemia-reperfusion mice, however, its role in neuronal apoptosis after TBI is not well-established. Using a controlled cortical impact model in rats, the present study was designed to determine the effect of CaSR inhibitor NPS2390 upon neuronal apoptosis after TBI. Rats were randomly distributed into three groups undergoing the sham surgery or TBI procedure, and NPS2390 (1.5 mg/kg) was infused subcutaneously at 30 min and 120 min after TBI. All rats were sacrificed at 24 h after TBI. Our data indicated that NPS2390 significantly reduced the brain edema and improved the neurological function after TBI. In addition, NPS2390 decreased caspase-3 levels and the number of apoptotic neurons. Furthermore, NPS2390 up-regulated anti-apoptotic protein Bcl-2 expression and down-regulated pro-apoptotic protein Bax, and reduced subsequent release of cytochrome c into the cytosol. In summary, this study indicated that inhibition of CaSR by NPS2390 attenuates neuronal apoptosis after TBI, in part, through modulating intrinsic apoptotic pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cannabinoid type 2 receptor stimulation attenuates brain edema by reducing cerebral leukocyte infiltration following subarachnoid hemorrhage in rats.

    Science.gov (United States)

    Fujii, Mutsumi; Sherchan, Prativa; Krafft, Paul R; Rolland, William B; Soejima, Yoshiteru; Zhang, John H

    2014-07-15

    Early brain injury (EBI), following subarachnoid hemorrhage (SAH), comprises blood-brain barrier (BBB) disruption and consequent edema formation. Peripheral leukocytes can infiltrate the injured brain, thereby aggravating BBB leakage and neuroinflammation. Thus, anti-inflammatory pharmacotherapies may ameliorate EBI and provide neuroprotection after SAH. Cannabinoid type 2 receptor (CB2R) agonism has been shown to reduce neuroinflammation; however, the precise protective mechanisms remain to be elucidated. This study aimed to evaluate whether the selective CB2R agonist, JWH133 can ameliorate EBI by reducing brain-infiltrated leukocytes after SAH. Adult male Sprague-Dawley rats were randomly assigned to the following groups: sham-operated, SAH with vehicle, SAH with JWH133 (1.0mg/kg), or SAH with a co-administration of JWH133 and selective CB2R antagonist SR144528 (3.0mg/kg). SAH was induced by endovascular perforation, and JWH133 was administered 1h after surgery. Neurological deficits, brain water content, Evans blue dye extravasation, and Western blot assays were evaluated at 24h after surgery. JWH133 improved neurological scores and reduced brain water content; however, SR144528 reversed these treatment effects. JWH133 reduced Evans blue dye extravasation after SAH. Furthermore, JWH133 treatment significantly increased TGF-β1 expression and prevented an SAH-induced increase in E-selectin and myeloperoxidase. Lastly, SAH resulted in a decreased expression of the tight junction protein zonula occludens-1 (ZO-1); however, JWH133 treatment increased the ZO-1 expression. We suggest that CB2R stimulation attenuates neurological outcome and brain edema, by suppressing leukocyte infiltration into the brain through TGF-β1 up-regulation and E-selectin reduction, resulting in protection of the BBB after SAH.

  6. Protein kinase C inhibition attenuates vascular ETB receptor upregulation and decreases brain damage after cerebral ischemia in rat

    Directory of Open Access Journals (Sweden)

    Vikman Petter

    2007-01-01

    Full Text Available Abstract Background Protein kinase C (PKC is known to be involved in the pathophysiology of experimental cerebral ischemia. We have previously shown that after transient middle cerebral artery occlusion, there is an upregulation of endothelin receptors in the ipsilateral middle cerebral artery. The present study aimed to examine the effect of the PKC inhibitor Ro-32-0432 on endothelin receptor upregulation, infarct volume and neurology outcome after middle cerebral artery occlusion in rat. Results At 24 hours after transient middle cerebral artery occlusion (MCAO, the contractile endothelin B receptor mediated response and the endothelin B receptor protein expression were upregulated in the ipsilateral but not the contralateral middle cerebral artery. In Ro-32-0432 treated rats, the upregulated endothelin receptor response was attenuated. Furthermore, Ro-32-0432 treatment decreased the ischemic brain damage significantly and improved neurological scores. Immunohistochemistry showed fainter staining of endothelin B receptor protein in the smooth muscle cells of the ipsilateral middle cerebral artery of Ro-32-0432 treated rats compared to control. Conclusion The results suggest that treatment with Ro-32-0432 in ischemic stroke decreases the ischemic infarction area, neurological symptoms and associated endothelin B receptor upregulation. This provides a new perspective on possible mechanisms of actions of PKC inhibition in cerebral ischemia.

  7. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats.

    Science.gov (United States)

    Yan, Tingxu; Shang, Lei; Wang, Mengshi; Zhang, Chenning; Zhao, Xu; Bi, Kaishun; Jia, Ying

    2016-06-01

    The aim of this study was to explore the neuroprotective effects of active compounds from Schisandra chinensis (Trucz.) Baill. (Magnoliaceae) against the D-galactose (D-gal)-induced neurotoxicity in rat. The Wistar rats were subcutaneously injected with D-gal (150 mg/(kg day)) for six weeks and orally administered with water extract or 95 % ethanol extract (partitioned with petroleum ether (PE), chloroform (CF), ethyl acetate (EA) and n-Butanol (NB), respectively) of the fruits of Schisandra chinensis simultaneously. The alteration of cognitive functions was assessed by using Morris water maze and Step-down type passive avoidance test. The results demonstrated that PE fraction was the most effective fraction to ameliorate cognitive deficits. Further biochemical examination indicated that PE could attenuate the activities decreasing of superoxide dismutase (SOD), catalase (CAT), the total antioxidant (T-AOC) induced by D-gal, and maintain the normal levels of glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) in the serum, prefrontal cortex, striatum and hippocampus of the brain of related rat, selectively. Meanwhile, the compounds of PE fraction were also identified as mainly lignans, thus, these results suggest that lignans from the PE fraction of Schisandra chinensis represented a potential source of medicine for the treatment of the aging-associated neurodegenerative diseases.

  8. Overexpression cdc42 attenuates isoflurane-induced neurotoxicity in developmental brain of rats.

    Science.gov (United States)

    Fang, Xi; Li, Shiyong; Han, Qiang; Zhao, Yilin; Gao, Jie; Yan, Jing; Luo, Ailin

    2017-08-26

    Nowadays many children receive operations with general anesthesia. Isoflurane is a commonly-used general anesthetic. Numbers of studies demonstrated that isoflurane induced neurotoxicity and neurobehavioral deficiency in young rats, however, the underlying mechanism remained unknown. Cell division cycle 42 (cdc42) played an important role in regulating synaptic vesicle trafficking and actin dynamics in neuron, which closely linked to synaptic plasticity and dendritic spine formation. Meanwhile, cdc42 also involved in many neurodegenerative diseases. However, whether cdc42 provided a protective role in isoflurane induced synaptogenesis dysfunction still unknown. As the upstream of cdc42, calcium/Calmodulin-dependent protein kinase II (CaMKII) interacts with ion channels such as VDCCs and N-methyl-d-aspartate receptors (NMDARs), which closely associated with neuroapoptosis and cognitive deficiency in developing brain. The phosphorylation of CaMKIIα at Thr 286 plays an important role in introduction and maintenance of long-term potentiation (LTP). Therefore, we investigated the effect of isoflurane on cdc42 and its upstream Calcium/Calmodulin-dependent protein kinase II (CaMKII) and its downstream p21 activated kinase 3 (PAK3), then determined whether CaMKIIα/cdc42/PAK3 signaling pathway was involved in neurotoxicity and cognitive deficiency induced by isoflurane. Our study found that isoflurane induced neurotoxicity and resulted in cognitive impairment in young rats through suppressed CaMKIIα/cdc42/PAK3 signaling pathway. Cdc42 over-expression could reverse neurotoxicity and improve cognitive impairment induced by isoflurane. Copyright © 2017. Published by Elsevier Inc.

  9. Cerebrolysin treatment attenuates heat shock protein overexpression in the brain following heat stress: an experimental study using immunohistochemistry at light and electron microscopy in the rat.

    Science.gov (United States)

    Sharma, Hari Shanker; Muresanu, Dafin; Sharma, Aruna; Zimmermann-Meinzingen, Sibilla

    2010-06-01

    The possibility that overexpression of heat shock proteins (HSPs) in the CNS represents a neurodestructive signal following hyperthermia was examined in a rat model using a potent neuroprotective drug, Cerebrolysin (Ebewe Pharma, Austria). Rats subjected to four hours of heat stress in a biological oxygen demand incubator at 38 degrees C developed profound hyperthermia (41.23 +/- 0.14 degrees C) and overexpressed HSP 72 kD in several brain regions: cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, brain stem, and spinal cord compared to controls. This HSP overexpression closely correlated with the leakage of blood-brain barrier permeability and vasogenic edema formation in these brain areas. HSP positive cells are largely confined in the edematous brain regions showing Evans blue leakage. Pretreatment with Cerebrolysin (5 mL/kg, i.v.) 30 minutes before heat stress markedly attenuated hyperthermia (39.48 +/- 0.23 degrees C, P Cerebrolysin pretreatment. These results are the first to show that Cerebrolysin, if administered before heat stress, attenuates hyperthermia induced stress reaction and HSP 72 kD induction. Taken together, these novel observations suggest that upregulation of HSP 72 kD in brain represents neurodestructive signals and a reduction in cellular stress mechanisms leading to decline in HSP expression is neuroprotective in nature.

  10. Activation of angiotensin-(1-7)/Mas axis in the brain lowers blood pressure and attenuates cardiac remodeling in hypertensive transgenic (mRen2)27 rats.

    Science.gov (United States)

    Kangussu, Lucas M; Guimaraes, Priscila S; Nadu, Ana Paula; Melo, Marcos B; Santos, Robson A S; Campagnole-Santos, Maria Jose

    2015-10-01

    Activation of the peripheral angiotensin-(1-7)/Mas axis of the renin-angiotensin system produces important cardioprotective actions, counterbalancing the deleterious actions of an overactivity of Ang II/AT1 axis. In the present study we evaluated whether the chronic increase in Ang-(1-7) levels in the brain could ameliorate cardiac disorders observed in transgenic (mRen2)27 hypertensive rats through actions on Mas receptor. Sprague Dawley (SD) and transgenic (mRen2)27 hypertensive rats, instrumented with telemetry probe for arterial pressure (AP) measurement were subjected to 14 days of ICV infusion of Ang-(1-7) (200 ng/h) or Ang-(1-7) associated with Mas receptor antagonist (A779, 1 μg/h) or 0.9% sterile saline (0.5 μl/h) through osmotic mini-pumps. Ang-(1-7) infusion in (mRen2)27 rats reduced blood pressure, normalized the baroreflex control of HR, restored cardiac autonomic balance, reduced cardiac hypertrophy and pre-fibrotic alterations and decreased the altered imbalance of Ang II/Ang-(1-7) in the heart. In addition, there was an attenuation of the increased levels of atrial natriuretic peptide, brain natriuretic peptide, collagen I, fibronectin and TGF-β in the heart of (mRen2)27 rats. Furthermore, most of these effects were mediated in the brain by Mas receptor, since were blocked by its selective antagonist, A779. These data indicate that increasing Ang-(1-7) levels in the brain can attenuate cardiovascular disorders observed in (mRen2)27 hypertensive rats, probably by improving the autonomic balance to the heart due to centrally-mediated actions on Mas receptor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. 5′-Adenosine Monophosphate-Induced Hypothermia Attenuates Brain Ischemia/Reperfusion Injury in a Rat Model by Inhibiting the Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Yi-Feng Miao

    2015-01-01

    Full Text Available Hypothermia treatment is a promising therapeutic strategy for brain injury. We previously demonstrated that 5′-adenosine monophosphate (5′-AMP, a ribonucleic acid nucleotide, produces reversible deep hypothermia in rats when the ambient temperature is appropriately controlled. Thus, we hypothesized that 5′-AMP-induced hypothermia (AIH may attenuate brain ischemia/reperfusion injury. Transient cerebral ischemia was induced by using the middle cerebral artery occlusion (MCAO model in rats. Rats that underwent AIH treatment exhibited a significant reduction in neutrophil elastase infiltration into neuronal cells and matrix metalloproteinase 9 (MMP-9, interleukin-1 receptor (IL-1R, tumor necrosis factor receptor (TNFR, and Toll-like receptor (TLR protein expression in the infarcted area compared to euthermic controls. AIH treatment also decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL- positive neuronal cells. The overall infarct volume was significantly smaller in AIH-treated rats, and neurological function was improved. By contrast, rats with ischemic brain injury that were administered 5′-AMP without inducing hypothermia had ischemia/reperfusion injuries similar to those in euthermic controls. Thus, the neuroprotective effects of AIH were primarily related to hypothermia.

  12. Withania coagulans Extract Attenuates Histopathological Alteration and Apoptosis in Rat Brain Cortex Following Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Sarbishegi

    2016-01-01

    Full Text Available Background Cerebral ischemia and reperfusion (I/R is a pathological condition that arises by reduction or cessation in cerebral blood flow and return of oxygen and metabolites to brain cells, which cause oxidative damage. Objectives The aim of this study was to investigate the neuroprotective effects of Withania coagulans (WC extract on brain cortex in a rat model of I/R. Materials and Methods Thirty-two adult male Wistar rats weighing 280 - 300 g were used in this study. Animals were randomly divided to four groups (n = 8 as follow: sham operated group (I, I/R group (II, WCE500 + I/R (III and WCE1000 + I/R groups (IV. Pretreatment with WC extract (500, 1000 mg/kg was done by oral gavage for 30 days and global brain ischemia was induced by the common carotid occlusion for 30 minutes. After 72 hours, the animals were perfused transcardially and then the brains were prepared for histological study (H & E and TUNEL staining. Results The I/R group showed a significant increase in pycnotic (dying neurons and pretreatment with WC at doses of 500 mg/kg and 1000 mg/kg significantly reduced pycnotic and TUNEL positive neurons, in a dose dependent manner in ischemic brain cortex. Conclusions Our findings indicated that WC has neuroprotective effects and is able to reduce histopathological alterations and apoptosis in brain cortex I/R in rats.

  13. Attenuation of Brain Inflammatory Response after Focal Cerebral Ischemia/Reperfusion with Xuesaitong Injection(血塞通注射液) in Rats

    Institute of Scientific and Technical Information of China (English)

    HE Wei; XU Xiao-jun

    2006-01-01

    Objective: To investigate the neuro-protective effect of Xuesaitong Injection ( 血塞通注射液 ,XST) on brain inflammatory response after transient focal cerebral ischemia/reperfusion in rats. Methods:Focal cerebral ischemia/reperfusion models of male rats were induced by transient occlusion for 2 h of middle cerebral artery (MCA) which was followed by 24 h reperfusion. XST was administered through intraperitoneal injection of 25 mg/kg or 50 mg/kg at 4 h after the onset of ischemia. After reperfusion for 24 h, the neurological function score was evaluated, the brain edema was detected with dry-wet weight method, the myeloperoxidase (MPO) activity and the expression of intercellular adhesion molecule-1 (ICAM-1) of ischemic cerebral cortex and caudate putamen was determined by spectrophotometry and immunohistochemistry respectively. Results: XST not only lowered neurological function score at the dose of 50 mg/kg, but reduced brain edema and inhibited MPO activity and ICAM-1 expression as compared with the ischemia/reperfusion model group ( P<0.01 ). Conclusion: XST has a definite effect on inhibiting the expression of ICAM-1 and neutrophil infiltration in rats with cerebral ischemia/reperfusion when treatment started at 4 h after ischemia onset, and also attenuates inflammation in the infarcted cerebral area.neutrophil, intercellular adhesion molecule-1 of ischemic cerebral cortex and caudate putamen was determined by spectrophotometry and immunohistochemistry respectively. Results: XST not only lowered neurological function score at the dose of 50 mg/kg, but reduced brain edema and inhibited MPO activity and ICAM-1 expression as compared with the ischemia/reperfusion model group ( P<0.01 ). Conclusion: XST has a definite effect on inhibiting the expression of ICAM-1 and neutrophil infiltration in rats with cerebral ischemia/reperfusion when treatment started at 4 h after ischemia onset, and also attenuates inflammation in the infarcted cerebral area.

  14. Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats.

    Science.gov (United States)

    Vakili, Abedin; Mojarrad, Somye; Akhavan, Maziar Mohammad; Rashidy-Pour, Ali

    2011-03-04

    Cerebral edema is the most common cause of neurological deterioration and mortality during acute ischemic stroke. Despite the clinical importance of cerebral ischemia, the underlying mechanisms remain poorly understood. Recent studies suggest a role for TNF-α in the brain edema formation. To further investigate whether TNF-α would play a role in brain edema formation, we examined the effects of pentoxifylline (PTX, an inhibitor of TNF-α synthesis) on the brain edema and TNF-α levels in a model of transient focal cerebral ischemia. The right middle cerebral artery (MCA) of rats was occluded for 60 min using the intraluminal filament method. The animals received PTX (60 mg/kg) immediately, 1, 3, or 6h post-ischemic induction. Twenty-four hours after induction of ischemic injury, permeability of the blood-brain barrier (BBB) and brain edema were determined by in situ brain perfusion of Evans Blue (EB) and wet-to-dry weight ratio, respectively. TNF-α protein levels in ischemic cortex were also measured at 1, 4, and 24h after the beginning of an ischemic stroke by using an enzyme-linked immunosorbent assay method. The administration of PTX up to 6h after occlusion of the MCA significantly reduced the brain edema. Moreover, PTX significantly reduced the concentration of TNF-α in ischemic brain cortex up to 4h post-transient focal stroke (Pedema in a model of transient focal cerebral ischemia. The beneficial effects of PTX may be mediated, at least in part, through a decline in TNF-α production and BBB breakdown.

  15. Maternal prenatal omega-3 fatty acid supplementation attenuates hyperoxia-induced apoptosis in the developing rat brain.

    Science.gov (United States)

    Tuzun, Funda; Kumral, Abdullah; Ozbal, Seda; Dilek, Mustafa; Tugyan, Kazım; Duman, Nuray; Ozkan, Hasan

    2012-06-01

    Supraphysiologic amounts of oxygen negatively influences brain maturation and development. The aim of the present study was to evaluate whether maternal ω-3 long-chain polyunsaturated fatty acid (ω-3 FA) supplementation during pregnancy protects the developing brain against hyperoxic injury. Thirty-six rat pups from six different dams were divided into six groups according to the diet modifications and hyperoxia exposure. The groups were: a control group (standard diet+room air), a hyperoxia group (standard diet+80% O₂ exposure), a hyperoxia+high-dose ω-3 FA-supplemented group, a hyperoxia+low-dose ω-3 FA-supplemented group, a room air+low-dose ω-3 FA-supplemented+group, and a room air+high dose ω-3 FA-supplemented group. The ω-3 FA's were supplemented as a mixture of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) from the second day of pregnancy until birth. Rat pups in the hyperoxic groups were exposed to 80% oxygen from birth until postnatal day 5 (P5). At P5, all animals were sacrificed. Neuronal cell death and apoptosis were evaluated by cell count, TUNEL, and active Caspase-3 immunohistochemistry. Histopathological examination showed that maternally ω-3 FA deficient diet and postnatal hyperoxia exposure were associated with significantly lower neuronal counts and significantly higher apoptotic cell death in the selected brain regions. Ω-3 FA treatment significantly diminished apoptosis, in the selected brain regions, in a dose dependent manner. Our results suggest that the maternal ω-3 FA supply may protect the developing brain against hyperoxic injury. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. Neuroprotective Roles of l-Cysteine in Attenuating Early Brain Injury and Improving Synaptic Density via the CBS/H2S Pathway Following Subarachnoid Hemorrhage in Rats.

    Science.gov (United States)

    Li, Tong; Wang, Lingxiao; Hu, Quan; Liu, Song; Bai, Xuemei; Xie, Yunkai; Zhang, Tiantian; Bo, Shishi; Gao, Xiangqian; Wu, Shuhua; Li, Gang; Wang, Zhen

    2017-01-01

    l-Cysteine is a semi-essential amino acid and substrate for cystathionine-β-synthase (CBS) in the central nervous system. We previously reported that NaHS, an H2S donor, significantly alleviated brain damage after subarachnoid hemorrhage (SAH) in rats. However, the potential therapeutic value of l-cysteine and the molecular mechanism supporting these beneficial effects have not been determined. This study was designed to investigate whether l-cysteine could attenuate early brain injury following SAH and improve synaptic function by releasing endogenous H2S. Male Wistar rats were subjected to SAH induced by cisterna magna blood injection, and l-cysteine was intracerebroventricularly administered 30 min after SAH induction. Treatment with l-cysteine stimulated CBS activity in the prefrontal cortex (PFC) and H2S production. Moreover, l-cysteine treatment significantly ameliorated brain edema, improved neurobehavioral function, and attenuated neuronal cell death in the PFC; these effects were associated with a decrease in the Bax/Bcl-2 ratio and the suppression of caspase-3 activation 48 h after SAH. Furthermore, l-cysteine treatment activated the CREB-brain-derived neurotrophic factor (BDNF) pathway and intensified synaptic density by regulating synapse proteins 48 h after SAH. Importantly, all the beneficial effects of l-cysteine in SAH were abrogated by amino-oxyacetic acid, a CBS inhibitor. Based on these findings, l-cysteine may play a neuroprotective role in SAH by inhibiting cell apoptosis, upregulating CREB-BDNF expression, and promoting synaptic structure via the CBS/H2S pathway.

  17. Neuroprotective Roles of l-Cysteine in Attenuating Early Brain Injury and Improving Synaptic Density via the CBS/H2S Pathway Following Subarachnoid Hemorrhage in Rats

    Directory of Open Access Journals (Sweden)

    Gang Li

    2017-05-01

    Full Text Available l-Cysteine is a semi-essential amino acid and substrate for cystathionine-β-synthase (CBS in the central nervous system. We previously reported that NaHS, an H2S donor, significantly alleviated brain damage after subarachnoid hemorrhage (SAH in rats. However, the potential therapeutic value of l-cysteine and the molecular mechanism supporting these beneficial effects have not been determined. This study was designed to investigate whether l-cysteine could attenuate early brain injury following SAH and improve synaptic function by releasing endogenous H2S. Male Wistar rats were subjected to SAH induced by cisterna magna blood injection, and l-cysteine was intracerebroventricularly administered 30 min after SAH induction. Treatment with l-cysteine stimulated CBS activity in the prefrontal cortex (PFC and H2S production. Moreover, l-cysteine treatment significantly ameliorated brain edema, improved neurobehavioral function, and attenuated neuronal cell death in the PFC; these effects were associated with a decrease in the Bax/Bcl-2 ratio and the suppression of caspase-3 activation 48 h after SAH. Furthermore, l-cysteine treatment activated the CREB–brain-derived neurotrophic factor (BDNF pathway and intensified synaptic density by regulating synapse proteins 48 h after SAH. Importantly, all the beneficial effects of l-cysteine in SAH were abrogated by amino-oxyacetic acid, a CBS inhibitor. Based on these findings, l-cysteine may play a neuroprotective role in SAH by inhibiting cell apoptosis, upregulating CREB–BDNF expression, and promoting synaptic structure via the CBS/H2S pathway.

  18. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    Science.gov (United States)

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability.

  19. Resuscitation with Pooled and Pathogen-Reduced Plasma Attenuates the Increase in Brain Water Content following Traumatic Brain Injury and Hemorrhagic Shock in Rats

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Ostrowski, Sisse Rye;

    2017-01-01

    Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim o......)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma.......Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim...... of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG(®) [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. After fluid...

  20. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses.

    Science.gov (United States)

    Hall, Kelley D; Lifshitz, Jonathan

    2010-04-06

    Traumatic brain injury can initiate an array of chronic neurological deficits, effecting executive function, language and sensorimotor integration. Mechanical forces produce the diffuse pathology that disrupts neural circuit activation across vulnerable brain regions. The present manuscript explores the hypothesis that the extent of functional activation of brain-injured circuits is a consequence of initial disruption and consequent reorganization. In the rat, enduring sensory sensitivity to whisker stimulation directs regional analysis to the whisker barrel circuit. Adult, male rats were subjected to midline fluid percussion brain or sham injury and evaluated between 1day and 42days post-injury. Whisker somatosensory regions of the cortex and thalamus maintained cellular composition as visualized by Nissl stain. Within the first week post-injury, quantitatively less cFos activation was elicited by whisker stimulation, potentially due to axotomy within and surrounding the whisker circuit as visualized by amyloid precursor protein immunohistochemistry. Over six weeks post-injury, cFos activation after whisker stimulation showed a significant linear correlation with time in the cortex (r(2)=0.545; p=0.015), non-significant correlation in the thalamus (r(2)=0.326) and U-shaped correlation in the dentate gyrus (r(2)=0.831), all eventually exceeding sham levels. Ongoing neuroplastic responses in the cortex are evidenced by accumulating growth associated protein and synaptophysin gene expression. In the thalamus, the delayed restoration of plasticity markers may explain the broad distribution of neuronal activation extending into the striatum and hippocampus with whisker stimulation. The sprouting of diffuse-injured circuits into diffuse-injured tissue likely establishes maladaptive circuits responsible for behavioral morbidity. Therapeutic interventions to promote adaptive circuit restructuring may mitigate post-traumatic morbidity. Copyright 2010 Elsevier B.V. All

  1. Prostaglandin E2 EP4 Receptor Activation Attenuates Neuroinflammation and Early Brain Injury Induced by Subarachnoid Hemorrhage in Rats.

    Science.gov (United States)

    Xu, Jie; Xu, Zhen; Yan, Ai

    2017-02-27

    Activation of E prostanoid 4 receptor (EP4) shows neuroprotective effects in multiple central nervous system (CNS) lesions, but the roles of EP4 receptor in subarachnoid hemorrhage (SAH) are not explored. This study was designed to research the effects of EP4 modulation on early brain injury (EBI) after experimental SAH in rats. We found that the administration of EP4 selective agonist AE1-329 significantly improved neurological dysfunction, blood brain barrier (BBB) damage and brain edema at 24 h after SAH. Furthermore, AE1-329 obviously reduced the number of activated microglia and the mRNA and protein levels of pro-inflammatory cytokines, and increased Ser1177 phosphorylated endothelial nitric oxide synthase (Ser1177 p-eNOS). Moreover, AE1-329 significantly reduced the number of TUNEL-positive cells and active caspase-3 in cortex after SAH. The EP4 selective antagonist AE3-208 was also administrated and the opposite effects were achieved. Our results indicate that activation of EP4 protects brain from EBI through downregulating neuroinflammation reaction after SAH.

  2. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema.

    Science.gov (United States)

    Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo

    2016-12-13

    BACKGROUND Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). MATERIAL AND METHODS TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. RESULTS We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (pATP (pATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA.

  3. MMP-9 inhibitor SB-3CT attenuates behavioral impairments and hippocampal loss after traumatic brain injury in rat.

    Science.gov (United States)

    Jia, Feng; Yin, Yu Hua; Gao, Guo Yi; Wang, Yu; Cen, Lian; Jiang, Ji-Yao

    2014-07-01

    The aim of this study was to evaluate the potential efficacy of SB-3CT, a matrix metallopeptidase 9 inhibitor, on behavioral and histological outcomes after traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n=15/group): TBI with SB-3CT treatment, TBI with saline, and sham injury. The TBI model was induced by a fluid percussion TBI device. SB-3CT (50 mg/kg in 10% dimethyl sulfoxide) was administered intraperitoneally at 30 min, 6 h, and 12 h after the TBI. Motor function (beam-balance/beam-walk tests) and spatial learning/memory (Morris water maze) were assessed on post-operative Days 1-5 and 11-15, respectively. Fluoro-Jade staining, immunofluorescence, and cresyl violet-staining were carried out for histopathological evaluation at 24 h, 72 h, and 15 days after TBI, respectively. It was shown that TBI can result in significant behavioral deficit induced by acute neurodegeneration, increased expression of cleaved caspase-3, and long-term neuronal loss. SB-3CT intervention via the current regime provides robust behavioral protection and hippocampal neurons preservation from the deleterious effects of TBI. Hence, the efficacy of SB-3CT on TBI prognosis could be ascertained. It is believed that the current study adds to the growing literature in identifying SB-3CT as a potential therapy for human brain injury.

  4. Administration of a PTEN inhibitor BPV(pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats.

    Science.gov (United States)

    Chen, Yujie; Luo, Chunxia; Zhao, Mingyue; Li, Qiang; Hu, Rong; Zhang, John H; Liu, Zhi; Feng, Hua

    2015-02-19

    The aim of this study was to investigate whether the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor dipotassium bisperoxo(pyridine-2-carboxyl) oxovanadate (BPV(pic)) attenuates early brain injury by modulating α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor subunits after subarachnoid hemorrhage (SAH). A standard intravascular perforation model was used to produce the experimental SAH in Sprague-Dawley rats. BPV(pic) treatment (0.2mg/kg) was evaluated for effects on neurological score, brain water content, Evans blue extravasation, hippocampal neuronal death and AMPA receptor subunits alterations after SAH. We found that BPV(pic) is effective in attenuating BBB disruption, lowering edema, reducing hippocampal neural death and improving neurological outcomes. In addition, the AMPA receptor subunit GluR1 protein expression at cytomembrane was downregulated, whereas the expression of GluR2 and GluR3 was upregulated after BPV(pic) treatment. Our results suggest that PTEN inhibited by BPV(pic) plays a neuroprotective role in SAH pathophysiology, possibly by alterations in glutamate AMPA receptor subunits.

  5. Topiramate attenuates early brain injury following subarachnoid haemorrhage in rats via duplex protection against inflammation and neuronal cell death.

    Science.gov (United States)

    Tian, Yong; Guo, Song-Xue; Li, Jian-Ru; Du, Hang-Gen; Wang, Chao-Hui; Zhang, Jian-Min; Wu, Qun

    2015-10-05

    Early brain injury (EBI) following aneurysmal subarachnoid haemorrhage (SAH) insults contributes to the poor prognosis and high mortality observed in SAH patients. Topiramate (TPM) is a novel, broad-spectrum, antiepileptic drug with a reported protective effect against several brain injuries. The current study aimed to investigate the potential of TPM for neuroprotection against EBI after SAH and the possible dose-dependency of this effect. An endovascular perforation SAH model was established in rats, and TPM was administered by intraperitoneal injection after surgery at three different doses (20mg/kg, 40mg/kg, and 80mg/kg). The animals' neurological scores and brain water content were evaluated, and ELISA, Western blotting and immunostaining assays were conducted to assess the effect of TPM. The results revealed that TPM lowers the elevated levels of myeloperoxidase and proinflammatory mediators observed after SAH in a dose-related fashion, and the nuclear factor-kappa B (NF-κB) signalling pathway is the target of neuroinflammation regulation. In addition, TPM ameliorated SAH-induced cortical neuronal apoptosis by influencing Bax, Bcl-2 and cleaved caspase-3 protein expression, and the effect of TPM was enhanced in a dose-dependent manner. Various dosages of TPM also upregulated the protein expression of the γ-aminobutyric acid (GABA)-ergic signalling molecules, GABAA receptor (GABAAR) α1, GABAAR γ2, and K(+)-Cl(-) co-transporter 2 (KCC2) together and downregulated Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1) expression. Thus, TPM may be an effective neuroprotectant in EBI after SAH by regulating neuroinflammation and neuronal cell death.

  6. Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats.

    Science.gov (United States)

    Whitaker, Annie M; Farooq, Muhammad A; Edwards, Scott; Gilpin, Nicholas W

    2016-01-01

    Individuals with post-traumatic stress disorder (PTSD) avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal (HPA) axis activation at the time of stress. Our rodent model of stress mimics the avoidance symptom cluster of PTSD. Rats are classified as "Avoiders" or "Non-Avoiders" post-stress based on the avoidance of a predator-odor paired context. Previously, we found Avoiders exhibit an attenuated HPA stress response to predator odor. We hypothesized that corticosterone administration before stress would reduce the magnitude and incidence of stress-paired context avoidance. Furthermore, we also predicted that Avoiders would exhibit altered expression of glucocorticoid receptor (GR) signaling machinery elements, including steroid receptor co-activator (SRC)-1. Male Wistar rats (n = 16) were pretreated with corticosterone (25 mg/kg) or saline and exposed to predator-odor stress paired with a context and tested for avoidance 24 h later. A second group of corticosterone-naïve rats (n = 24) were stressed (or not), indexed for avoidance 24 h later, and killed 48 h post-odor exposure to measure phosphorylated GR, FKBP51 and SRC-1 levels in the paraventricular nucleus (PVN), central amygdala (CeA) and ventral hippocampus (VH), all brain sites that highly express GRs and regulate HPA function. Corticosterone pretreatment reduced the magnitude and incidence of avoidance. In Avoiders, predator-odor exposure led to lower SRC-1 expression in the PVN and CeA, and higher SRC-1 expression in the VH. SRC-1 expression in PVN, CeA and VH was predicted by prior avoidance behavior. Hence, a blunted HPA stress response may contribute to stress-induced neuroadaptations in central SRC-1 levels and behavioral dysfunction in Avoider rats.

  7. Spatial Working Memory Deficits in Male Rats Following Neonatal Hypoxic Ischemic Brain Injury Can Be Attenuated by Task Modifications

    Directory of Open Access Journals (Sweden)

    Amanda L. Smith

    2014-04-01

    Full Text Available Hypoxia-ischemia (HI; reduction in blood/oxygen supply is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA. Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P7, an age comparable to a term (GA 36–38 human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD—a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are

  8. Attenuation of lead-induced oxidative stress in rat brain, liver, kidney and blood of male Wistar rats by Moringa oleifera seed powder.

    Science.gov (United States)

    Velaga, Manoj Kumar; Daughtry, Lucius K; Jones, Angelica C; Yallapragada, Prabhakara Rao; Rajanna, Sharada; Rajanna, Bettaiya

    2014-01-01

    Moringa oleifera is a tree belonging to Moringaceae family and its leaves and seeds are reported to have ameliorative effects against metal toxicity. In the present investigation, M. oleifera seed powder was tested against lead-induced oxidative stress and compared against meso-2, 3-dimercaptosuccinic acid (DMSA) treatment. Male Wistar rats (100-120 g) were divided into four groups: control (2000 ppm of sodium acetate for 2 weeks), exposed (2000 ppm of lead acetate for 2 weeks), Moringa treated (500 mg/kg for 7 days after lead exposure), and DMSA treated (90 mg/kg for 7 days after lead exposure). After exposure and treatment periods, rats were sacrificed and the brain was separated into cerebellum, hippocampus, frontal cortex, and brain stem; liver, kidney, and blood were also collected. The data indicated a significant (poleifera restored all the parameters back to control, tissue-specifically, and also showed improvement in restoration better than DMSA treatment, indicating reduction of the negative effects of lead-induced oxidative stress.

  9. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in brain cells in vitro

    Science.gov (United States)

    The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defense in brain is a critical factor in the declining neural functions and cognitive deficits accompanying age. In aging, there are noticeable alterations in the membrane microenvironment,...

  10. Rose oil (from Rosa × damascena Mill.) vapor attenuates depression-induced oxidative toxicity in rat brain.

    Science.gov (United States)

    Nazıroğlu, Mustafa; Kozlu, Süleyman; Yorgancıgil, Emre; Uğuz, Abdülhadi Cihangir; Karakuş, Kadir

    2013-01-01

    Oxidative stress is a critical route of damage in various physiological stress-induced disorders, including depression. Rose oil may be a useful treatment for depression because it contains flavonoids which include free radical antioxidant compounds such as rutin and quercetin. We investigated the effects of absolute rose oil (from Rosa × damascena Mill.) and experimental depression on lipid peroxidation and antioxidant levels in the cerebral cortex of rats. Thirty-two male rats were randomly divided into four groups. The first group was used as control, while depression was induced in the second group using chronic mild stress (CMS). Oral (1.5 ml/kg) and vapor (0.15 ml/kg) rose oil were given for 28 days to CMS depression-induced rats, constituting the third and fourth groups, respectively. The sucrose preference test was used weekly to identify depression-like phenotypes during the experiment. At the end of the experiment, cerebral cortex samples were taken from all groups. The lipid peroxidation levels in the cerebral cortex in the CMS group were higher than in control whereas their levels were decreased by rose oil vapor exposure. The vitamin A, vitamin E, vitamin C and β-carotene concentrations in the cerebral cortex were lower in the CMS group than in the control group whereas their concentrations were higher in the rose oil vapor plus CMS group. The CMS-induced antioxidant vitamin changes were not modulated by oral treatment. Glutathione peroxidase activity and reduced glutathione did not change statistically in the four groups following CMS or either treatment. In conclusion, experimental depression is associated with elevated oxidative stress while treatment with rose oil vapor induced protective effects on oxidative stress in depression.

  11. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    Science.gov (United States)

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Attenuation of the bacterial load in blood by pretreatment with granulocyte-colony-stimulating factor protects rats from fatal outcome and brain damage during Streptococcus pneumoniae meningitis

    DEFF Research Database (Denmark)

    Brandt, Christian T; Lundgren, Jens D; Lund, Søren Peter

    2004-01-01

    A model of pneumococcal meningitis in young adult rats receiving antibiotics once the infection was established was developed. The intent was to mimic clinical and histopathological features of pneumococcal meningitis in humans. The primary aim of the present study was to evaluate whether medical...... of meningitis result in reduced risks of death and brain damage. This beneficial effect is most likely achieved through improved control of the systemic disease....... postinfection did not alter the clinical or histological outcome relative to that for non-G-CSF-treated rats. The magnitude of bacteremia and pretreatment with G-CSF were found to be prognostic factors for both outcome and brain damage. In summary, elevated neutrophil levels prior to the development...

  13. C1q/Tumor Necrosis Factor-related Protein-3 Attenuates Brain Injury after Intracerebral Hemorrhage via AMPK-dependent pathway in Rat

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-10-01

    Full Text Available C1q/tumor necrosis factor-related protein-3 (CTRP3 is a recently discovered adiponectin paralog with established metabolic regulatory properties. However, the role of CTRP3 in intracerebral hemorrhage (ICH is still mostly unresolved. The aim of the present report was to explore the possible neuroprotective effect of CTRP3 in an ICH rat model and to elucidate the fundamental mechanisms. ICH was induced in rats by intracerebral infusion of autologous arterial blood. The effects of exogenous CTRP3 (recombinant or lentivirus CTRP3 on brain injury were explored on day 7. Treatment with CTRP3 reduced brain edema, protected against disruption of the blood-brain barrier, improved neurological functions, and promoted angiogenesis. Furthermore, CTRP3 greatly intensified phosphorylation of AMP-activated protein kinase (AMPK in addition to expression of hypoxia inducing factor-1α (HIF-1α and vascular endothelial growth factor (VEGF. Finally, the protective effects of CTRP3 could be blocked by either AMPK or VEGF inhibitors. Our findings give the first evidence that CTRP3 is a new proangiogenic and neuroprotective adipokine, which may exert its protective effects at least partly through an AMPK/HIF-1α/ VEGF-dependent pathway, and suggest that CTRP3 may provide a new therapeutic strategy for ICH.

  14. Hyperbaric oxygen therapy or hydroxycobalamin attenuates surges in brain interstitial lactate and glucose; and hyperbaric oxygen improves respiratory status in cyanide-intoxicated rats

    DEFF Research Database (Denmark)

    Lawson-Smith, P; Olsen, Niels Vidiendal; Hyldegaard, O

    2011-01-01

    to four groups receiving potassium CN (KCN) 5.4 mg/kg or vehicle intra-arterially: 1) vehicle-treated control rats; 2) KCN-poisoned rats; 3) KCN-poisoned rats receiving hydroxycobalamin (25 mg); and 4) KCN-poisoned rats treated with HBO2 (284 kPa for 90 minutes). KCN alone caused a prompt increase...

  15. Attenuation of the bacterial load in blood by pretreatment with granulocyte-colony-stimulating factor protects rats from fatal outcome and brain damage during Streptococcus pneumoniae meningitis

    DEFF Research Database (Denmark)

    Brandt, Christian T; Lundgren, Jens D; Lund, Søren Peter

    2004-01-01

    A model of pneumococcal meningitis in young adult rats receiving antibiotics once the infection was established was developed. The intent was to mimic clinical and histopathological features of pneumococcal meningitis in humans. The primary aim of the present study was to evaluate whether medical...

  16. Hyperbaric oxygen therapy or hydroxycobalamin attenuates surges in brain interstitial lactate and glucose; and hyperbaric oxygen improves respiratory status in cyanide-intoxicated rats

    DEFF Research Database (Denmark)

    Lawson-Smith, P; Olsen, Niels Vidiendal; Hyldegaard, Ole

    2011-01-01

    Cyanide (CN) intoxication inhibits cellular oxidative metabolism and may result in brain damage. Hydroxycobalamin (OHCob) is one among other antidotes that may be used following intoxication with CN. Hyperbaric oxygen (HBO2) is recommended when supportive measures or antidotes fail. However...

  17. Effects of magnesium sulfate on traumatic brain edema in rats

    Institute of Scientific and Technical Information of China (English)

    冯东福; 朱志安; 卢亦成

    2004-01-01

    Objective: To investigate the effects of magnesium sulfate on traumatic brain edema and explore its possible mechanism.Methods: Forty-eight Sprague-Dawley ( SD ) rats were randomly divided into three groups: Control, Trauma and Treatment groups. In Treatment group, magnesium sulfate was intraperitoneally administered immediately after the induction of brain trauma. At 24 h after trauma, total tissue water content and Na + , K + , Ca2 + , Mg2+ contents were measured. Permeability of blood-brain barrier (BBB)was assessed quantitatively by Evans Blue (EB) dye technique. The pathological changes were also studied.Results: Water, Na + , Ca2 + and EB contents in Treatment group were significantly lower than those in Trauma group ( P < 0. 05 ). Results of light microscopy and electron microscopy confirmed that magnesium sulfate can attenuate traumatic brain injury and relieve BBB injury.Conclusions: Treatment with MgSO4 in the early stage can attenuate traumatic brain edema and prevent BBB injury.

  18. Electroacupuncture-attenuated ischemic brain injury increases insulin-like growth factor-1expression in a rat model of focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Huanmin Gao; Ling Wang; Yunliang Guo

    2010-01-01

    Acupuncture has recently gained popularity in many countries as an alternative and complementary therapeutic intervention.Previous studies have shown that changes in genes,proteins,and their metabolites were measureable during acupuncture for treatment of cerebral ischemia.Through the use of in situ hybridization and immunohistochemistry,the present study confirmed that electroacupuncture increased insulin-like growth factor-1 mRNA and protein expression in the corpus striatum following cerebral ischemia,reduced brain edema following middle cerebral artery occlusion repeffusion,and decreased infarct volume.Results suggested that electroacupuncture is effective in the relief of cerebral ischemia by increasing endogenous insulin-like growth factor-1 expression.

  19. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain.

    Science.gov (United States)

    Qu, Yi; Shi, Jing; Tang, Ying; Zhao, Fengyan; Li, Shiping; Meng, Junjie; Tang, Jun; Lin, Xuemei; Peng, Xiaodong; Mu, Dezhi

    2016-05-01

    Mixed lineage kinase domain-like protein (MLKL) is a critical molecule mediating cell necroptosis. However, its role in brain injury remains obscure. We first investigated the functions and mechanisms of MLKL in mediating neuronal damage in developing brain after hypoxia-ischemia. Neuronal necroptosis was induced by oxygen-glucose deprivation (OGD) plus caspase inhibitor zVAD treatment (OGD/zVAD). We found that two important necroptosis related proteins, receptor-interacting protein 1 and 3 (RIP1, RIP3) were upregulated. Furthermore, the interaction of RIP1-RIP3 with MLKL increased. Inhibition of MLKL through siRNA diminished RIP1-RIP3-MLKL interaction and attenuated neuronal death induced by OGD/zVAD. The translocation of oligomerized MLKL to the neuronal membrane leading to the injury of cellular membrane is the possible new mechanism of neuronal necroptosis. Animal experiment with neonatal rats further proved that MLKL inhibition attenuated brain damage induced by hypoxia-ischemia. These findings suggest that MLKL is a target to attenuate brain damage in developing brain.

  20. Environmental enrichment promotes neural remodeling in newborn rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Chuanjun Liu; Yankui Guo; Yalu Li; Zhenying Yang

    2011-01-01

    We evaluated the effect of hypoxic-ischemic brain damage and treatment with early environmental enrichment intervention on development of newborn rats, as evaluated by light and electron microscopy and morphometry. Early intervention with environmental enrichment intelligence training attenuated brain edema and neuronal injury, promoted neuronal repair, and increased neuronal plasticity in the frontal lobe cortex of the newborn rats with hypoxic-ischemic brain damage.

  1. 神经生长因子对颅脑外伤大鼠的抗炎作用机制%Intranasal delivery of nerve growth factor attenuates neuroinflammation following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    吕秋石; 郭芮兵; 姜永军; 叶瑞东; 樊新颖; 马敏敏; 李芸; 徐格林; 刘新峰

    2014-01-01

    目的:颅脑外伤(traumatic brain injury, TBI)后炎症反应会引发神经系统功能紊乱,文中旨在探讨经鼻给予神经生长因子( nerve growth factor , NGF)对 TBI后大鼠炎症反应的作用及其机制。方法36只健康SD大鼠按随机数字表法分为假手术组、TBI模型组、治疗组,每组12只,TBI模型组和治疗组采用自由落体法撞击建立脑外伤模型,假手术组仅采用开颅窗后用骨蜡封闭。治疗组TBI后6 h经鼻给予NGF(50 g/d),TBI模型组及假手术组给予等量磷酸盐缓冲液(PBS,pH 7.4~7.5),每天给药1次,持续给药至大鼠被处死。各组分别于TBI后12 h、24 h各处死6只大鼠。测定大鼠伤侧皮质内IL-1β、TNF-α的表达量、核因子-κB(nuclear factor kappa B,NF-κB)的DNA结合活性及β-淀粉样蛋白(amyloid-β,Aβ42)的表达。结果 TBI后12 h和24 h治疗组大鼠IL-1β的表达量[(37.51±1.92、36.23±2.99)pg/mg]较TBI模型组[(70.65±3.10、68.85±8.10)pg/mg]明显降低(P<0.05),TNF-α的表达量[(27.63±5.77、29.94±8.62)pg/mg]较TBI模型组[(47.12±7.38、56.15±11.20)pg/mg]显著减少(P<0.05),TBI后12 h、24 h,经鼻给予NGF后,治疗组大鼠NF-κB DNA结合活性(111.62±0.49、131.52±0.88)较TBI模型组(135.26±0.60、149.86±0.49)显著降低(P<0.05),伤侧皮质内Aβ42的表达(0.230±0.008、0.520±0.004)较TBI模型组(0.827±0.009、1.390±0.010)明显下降(P<0.05)。结论经鼻给予NGF可控制TBI大鼠脑内的炎症反应,该作用机制可能与调节Aβ42/NF-κB通路相关。%Objective Neuroinflammation following traumatic brain injury (TBI) may give rise to neurodisorder.This study aimed to investigate the effect of intranasal delivery of nerve growth factor ( NGF) on neuroinflammation following TBI and its action mechanism in rats

  2. Scatter and attenuation correction in Technetium-99m brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Jun [Keio Univ., Tokyo (Japan). School of Medicine

    1997-11-01

    The imaging in the nuclear medicine is inferior to other modalities in the spatial resolution, but it can quantitatively evaluate the biological function. The attempt to measure the absolute or the relative values of local functions quantitatively based on the SPECT of the brain or the heart, has become popular recently. It is not only necessary to introduce an appropriate analytical model for each radioisotope tracer for the correct quantification, but also to be equipped with the photographing system to measure correctly the accumulation of the tracer. The main cause to decrease the precision of the photographing system is the scatter and the absorption (attenuation) of photon. In the present study we attempted to enhance the quantification of the brain SPECT by the usable and practical correction method for the scatter and the attenuation in the daily clinical business. We used the triple-energy-window (TEW) method as the scatter correction and the attenuation calculation map obtained from the transmission scanning (TCT) by the external source as the attenuation correction. We examined the brain SPECT in combination with these two correction methods. We could not measure correctly the amount of the tracer accumulation by only one correction method, and obtain the excellent quantitative SPECT images in combination with both correction methods. We could get excellently stable data by collecting the emission and the transmission data simultaneously as well as separately, and the excellent images by the arithmetical treatment of data between the scatter beam and the detector correction when we used {sup 99m}Tc as the source which is economically cheap, and adopted the combination of the tracers labeled by the same kind of radioisotopes. Altogether we expect that our method is very practical and will contribute to enhance the accuracy in quantitative analysis of clinical brain SPECT imaging. (K.H.)

  3. Protocatechuic acid protects brain mitochondrial function in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Semaming, Yoswaris; Sripetchwandee, Jirapas; Sa-Nguanmoo, Piangkwan; Pintana, Hiranya; Pannangpetch, Patchareewan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-10-01

    Brain mitochondrial dysfunction has been demonstrated in diabetic animals with neurodegeneration. Protocatechuic acid (PCA), a major metabolite of anthocyanin, has been shown to exert glycemic control and oxidative stress reduction in the heart. However, its effects on oxidative stress and mitochondrial function in the brain under diabetic condition have never been investigated. We found that PCA exerted glycemic control, attenuates brain mitochondrial dysfunction, and contributes to the prevention of brain oxidative stress in diabetic rats.

  4. Effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    许民辉; 代文光; 邓洵鼎

    2002-01-01

    Objective: To study the effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury and the possible mechanism.Methods: The middle degree brain injury in rats was made by BIM-III multi-function impacting machine. The brain mitochondrial respiratory function was measured with oxygen electrode and the ultra-structural changes were observed with transmission electron microscope (TEM).Results: 1. The brain mitochondrial respiratory stage III and respiration control rate reduced significantly in the untreated groups within 24 and 72 hours. But treated Group A showed certain degree of recovery of respiratory function; treated Group B showed further improvement. 2. Untreated Group, treated Groups A and B had different degrees of mitochondrial ultra-structural damage respectively, which could be attenuated after the treatment with magnesium sulfate.Conclusions: The mitochondrial respiratory function decreases significantly after traumatic brain injury. But it can be apparently improved after magnesium sulfate management along with the attenuated damage of mitochondria discovered by TEM. The longer course of treatment can obtain a better improvement of mitochondrial respiratory function.

  5. Signal attenuation as a rat model of obsessive compulsive disorder.

    Science.gov (United States)

    Goltseker, Koral; Yankelevitch-Yahav, Roni; Albelda, Noa S; Joel, Daphna

    2015-01-09

    In the signal attenuation rat model of obsessive-compulsive disorder (OCD), lever-pressing for food is followed by the presentation of a compound stimulus which serves as a feedback cue. This feedback is later attenuated by repeated presentations of the stimulus without food (without the rat emitting the lever-press response). In the next stage, lever-pressing is assessed under extinction conditions (i.e., no food is delivered). At this stage rats display two types of lever-presses, those that are followed by an attempt to collect a reward, and those that are not. The latter are the measure of compulsive-like behavior in the model. A control procedure in which rats do not experience the attenuation of the feedback cue serves to distinguish between the effects of signal attenuation and of extinction. The signal attenuation model is a highly validated model of OCD and differentiates between compulsive-like behaviors and behaviors that are repetitive but not compulsive. In addition the measures collected during the procedure eliminate alternative explanations for differences between the groups being tested, and are quantitative, unbiased and unaffected by inter-experimenter variability. The major disadvantages of this model are the costly equipment, the fact that it requires some technical know-how and the fact that it is time-consuming compared to other models of OCD (11 days). The model may be used for detecting the anti- or pro-compulsive effects of pharmacological and non-pharmacological manipulations and for studying the neural substrate of compulsive behavior.

  6. Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats.

    Science.gov (United States)

    Abdel-Salam, O M E; Omara, E A; Mohammed, N A; Youness, E R; Khadrawy, Y A; Sleem, A A

    2013-12-01

    This study aimed to investigate the effect of cerebrolysin on oxidative stress in the brain and liver during systemic inflammation. Rats were intraperitoneally challenged with a single subseptic dose of lipopolysaccharide (LPS; 300 μg/kg) without or with cerebrolysin at doses of 21.5, 43 or 86 mg/kg. After 4 h, rats were euthanized and the brain and liver tissues were subjected to biochemical and histopathological analyses. Cerebrolysin revealed inhibitory effects on the elevation of lipid peroxidation and nitric oxide induced by LPS. In contrast, the decrease in reduced glutathione level and paraoxonase activity induced by LPS was attenuated by an injection of cerebrolysin in a dose-dependent manner. Moreover, cerebrolysin reduced LPS-induced activation of brain NF-κB and reversed LPS-induced decline of brain butyrylcholinesterase and acetylcholinesterase activities in a dose-dependent manner. Histopathological analyses revealed that neuronal damage and liver necrosis induced by LPS were ameliorated by cerebrolysin dose-dependently. Cerebrolysin treatment dose-dependently attenuated LPS-induced expressions in cyclooxygenase 2, inducible nitric oxide synthase, and caspase-3 in the cortex or striatum as well as the liver. These results suggest that cerebrolysin treatment might have beneficial therapeutic effects in cerebral inflammation. Cerebrolysin might also prove of value in liver disease and this possibility requires further exploration.

  7. Inhibition of thromboxane synthesis attenuates insulin hypertension in rats.

    Science.gov (United States)

    Keen, H L; Brands, M W; Smith, M J; Shek, E W; Hall, J E

    1997-10-01

    Chronic insulin infusion in rats increases mean arterial pressure (MAP) and reduces glomerular filtration rate (GFR), but the mechanisms for these actions are not known. This study tested whether thromboxane synthesis inhibition (TSI) would attenuate the renal and blood pressure responses to sustained hyperinsulinemia. Male Sprague-Dawley rats were instrumented with arterial and venous catheters, and MAP was measured 24 h/day. After 4 days of baseline measurements, endogenous synthesis of thromboxane was suppressed in 7 rats by infusing the thromboxane synthetase inhibitor, U63557A, intravenously (30 microg/kg/min) for the remainder of the experiment; 7 other rats received vehicle. Baseline MAP was not significantly different between vehicle and TSI rats (96 +/- 1 v 99 +/- 1 mm Hg). After 3 days of U63557A or vehicle, a 5-day control period was started, followed by a 7-day infusion of insulin (1.5 mU/kg/min, intravenously). Glucose (22 mg/kg/min, intravenously) was infused along with insulin to prevent hypoglycemia. In the control period, MAP was not different between vehicle and TSI rats (99 +/- 2 v 100 +/- 1 mm Hg), but MAP increased throughout the 7-day infusion period only in the vehicle rats with an average increase in blood pressure of 7 +/- 2 mm Hg. In the control period, GFR was lower in vehicle rats compared with TSI rats (2.5 +/- 0.1 v 3.1 +/- 0.2 mL/min, P = .06), and the decrease to 81% +/- 4% and 91% +/- 6% of control, respectively, during insulin was significant only in the vehicle rats. All variables returned toward control during a 6-day recovery period. These results suggest that full expression of hypertension and renal vasoconstriction during hyperinsulinemia in rats is dependent on a normal ability to synthesize thromboxane.

  8. LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fang, T.; Zhou, D.; Lu, L.; Tong, X.; Wu, J.; Yi, L. [Department of Neurology, Shenzhen Hospital, Peking University, Shenzhen (China)

    2016-08-01

    Inflammation plays a pivotal role in ischemic stroke, when activated microglia release excessive pro-inflammatory mediators. The inhibition of integrin αvβ3 improves outcomes in rat focal cerebral ischemia models. However, the mechanisms by which microglia are neuroprotective remain unclear. This study evaluated whether post-ischemic treatment with another integrin αvβ3 inhibitor, the cyclic arginine-glycine-aspartic acid (RGD) peptide-cGRGDdvc (LXW7), alleviates cerebral ischemic injury. The anti-inflammatory effect of LXW7 in activated microglia within rat focal cerebral ischemia models was examined. A total of 108 Sprague-Dawley rats (250–280 g) were subjected to middle cerebral artery occlusion (MCAO). After 2 h, the rats were given an intravenous injection of LXW7 (100 μg/kg) or phosphate-buffered saline (PBS). Neurological scores, infarct volumes, brain water content (BWC) and histology alterations were determined. The expressions of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], and Iba1-positive activated microglia, within peri-ischemic brain tissue, were assessed with ELISA, western blot and immunofluorescence staining. Infarct volumes and BWC were significantly lower in LXW7-treated rats compared to those in the MCAO + PBS (control) group. The LXW7 treatment lowered the expression of pro-inflammatory cytokines. There was a reduction of Iba1-positive activated microglia, and the TNF-α and IL-1β expressions were attenuated. However, there was no difference in the Zea Longa scores between the ischemia and LXW7 groups. The results suggest that LXW7 protected against focal cerebral ischemia and attenuated inflammation in activated microglia. LXW7 may be neuroprotective during acute MCAO-induced brain damage and microglia-related neurodegenerative diseases.

  9. Pre-existing interleukin 10 in cerebral arteries attenuates subsequent brain injury caused by ischemia/reperfusion.

    Science.gov (United States)

    Liang, Qiu-Juan; Jiang, Mei; Wang, Xin-Hong; Le, Li-Li; Xiang, Meng; Sun, Ning; Meng, Dan; Chen, Si-Feng

    2015-09-01

    Recurrent stroke is difficult to treat and life threatening. Transfer of anti-inflammatory gene is a potential gene therapy strategy for ischemic stroke. Using recombinant adeno-associated viral vector 1 (rAAV1)-mediated interleukin 10 (IL-10), we investigated whether transfer of beneficial gene into the rat cerebral vessels during interventional treatment for initial stroke could attenuate brain injury caused by recurrent stroke. Male Wistar rats were administered rAAV1-IL-10, rAAV1-YFP, or saline into the left cerebral artery. Three weeks after gene transfer, rats were subjected to occlusion of the left middle cerebral artery (MCAO) for 45 min followed by reperfusion for 24 h. IL-10 levels in serum were significantly elevated 3 weeks after rAAV1-IL-10 injection, and virus in the cerebral vessels was confirmed by in situ hybridization. Pre-existing IL-10 but not YFP decreased the neurological dysfunction scores, brain infarction volume, and the number of injured neuronal cells. AAV1-IL-10 transduction increased heme oxygenase (HO-1) mRNA and protein levels in the infarct boundary zone of the brain. Thus, transduction of the IL-10 gene in the cerebral artery prior to ischemia attenuates brain injury caused by ischemia/reperfusion in rats. This preventive approach for recurrent stroke can be achieved during interventional treatment for initial stroke.

  10. Transient cooling during early reperfusion attenuates delayed edema and infarct progression in the Spontaneously Hypertensive Rat. Distribution and time course of regional brain temperature change in a model of postischemic hypothermic protection.

    Science.gov (United States)

    Kurasako, Toshiaki; Zhao, Liang; Pulsinelli, William A; Nowak, Thaddeus S

    2007-12-01

    The temperature threshold for protection by brief postischemic cooling was evaluated in a model of transient focal ischemia in the Spontaneously Hypertensive Rat, using an array of epidural probes to monitor regional brain temperatures. Rats were subjected to 90 mins tandem occlusion of the right middle cerebral artery (MCA) and common carotid artery. Systemic cooling to 32 degrees C was initiated 5 mins before recirculation, with simultaneous brain cooling to temperatures ranging from 28 degrees C to 32 degrees C within the MCA territory by means of a temperature-controlled saline drip. Rewarming was initiated at 2 h recirculation and was complete within 30 mins. Tissue damage and edema volume showed clear temperature-dependent reductions when evaluated at 3 days survival, with no protection evident in the group at 32 degrees C but progressive effects on both parameters after deeper cooling. A particularly striking effect was the essentially complete elimination of edema progression between 1 and 3 days. Temperature at distal sites within the MCA territory better predicted reductions in lesion volume, indicating that protection required effective cooling of the penumbral regions destined to be spared. These results show that even brief cooling can be highly protective when initiated at the time of recirculation after focal ischemia, but indicate a substantially lower temperature threshold for hypothermic protection than has been reported for other strains, occlusion methods, and cooling durations.

  11. Phosphine-induced oxidative damage in rats: attenuation by melatonin.

    Science.gov (United States)

    Hsu, C; Han, B; Liu, M; Yeh, C; Casida, J E

    2000-02-15

    Phosphine (PH(3)), from hydrolysis of aluminum, magnesium and zinc phosphide, is an insecticide and rodenticide. Earlier observations on PH(3)-poisoned insects, mammals and a mammalian cell line led to the proposed involvement of oxidative damage in the toxic mechanism. This investigation focused on PH(3)-induced oxidative damage in rats and antioxidants as candidate protective agents. Male Wistar rats were treated ip with PH(3) at 2 mg/kg. Thirty min later the brain, liver, and lung were analyzed for glutathione (GSH) levels and lipid peroxidation (as malondialdehyde and 4-hydroxyalkenals) and brain and lung for 8-hydroxydeoxyguanosine (8-OH-dGuo) in DNA. PH(3) caused a significant decrease in GSH concentration and elevation in lipid peroxidation in brain (36-42%), lung (32-38%) and liver (19-25%) and significant increase of 8-OH-dGuo in DNA of brain (70%) and liver (39%). Antioxidants administered ip 30 min before PH(3) were melatonin, vitamin C, and beta-carotene at 10, 30, and 6 mg/kg, respectively. The PH(3)-induced changes were significantly or completely blocked by melatonin while vitamin C and beta-carotene were less effective or inactive. These findings establish that PH(3) induces and melatonin protects against oxidative damage in the brain, lung and liver of rats and suggest the involvement of reactive oxygen species in the genotoxicity of PH(3).

  12. Aerobic exercise attenuates inhibitory avoidance memory deficit induced by paradoxical sleep deprivation in rats.

    Science.gov (United States)

    Fernandes, Jansen; Baliego, Luiz Guilherme Zaccaro; Peixinho-Pena, Luiz Fernando; de Almeida, Alexandre Aparecido; Venancio, Daniel Paulino; Scorza, Fulvio Alexandre; de Mello, Marco Tulio; Arida, Ricardo Mario

    2013-09-05

    The deleterious effects of paradoxical sleep deprivation (SD) on memory processes are well documented. Physical exercise improves many aspects of brain functions and induces neuroprotection. In the present study, we investigated the influence of 4 weeks of treadmill aerobic exercise on both long-term memory and the expression of synaptic proteins (GAP-43, synapsin I, synaptophysin, and PSD-95) in normal and sleep-deprived rats. Adult Wistar rats were subjected to 4 weeks of treadmill exercise training for 35 min, five times per week. Twenty-four hours after the last exercise session, the rats were sleep-deprived for 96 h using the modified multiple platform method. To assess memory after SD, all animals underwent training for the inhibitory avoidance task and were tested 24h later. The aerobic exercise attenuated the long-term memory deficit induced by 96 h of paradoxical SD. Western blot analysis of the hippocampus revealed increased levels of GAP-43 in exercised rats. However, the expression of synapsin I, synaptophysin, and PSD-95 was not modified by either exercise or SD. Our results suggest that an aerobic exercise program can attenuate the deleterious effects of SD on long-term memory and that this effect is not directly related to changes in the expression of the pre- and post-synaptic proteins analyzed in the study.

  13. Intranasal pyrrolidine dithiocarbamate decreases brain inflammatory mediators and provides neuroprotection after brain hypoxia-ischemia in neonatal rats.

    Science.gov (United States)

    Wang, Zhi; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2013-11-01

    Brain injury due to birth asphyxia is the major cause of death and long-term disabilities in newborns. We determined whether intranasal pyrrolidine dithiocarbamate (PDTC) could provide neuroprotection in neonatal rats after brain hypoxia-ischemia (HI). Seven-day old male and female Sprague-Dawley rats were subjected to brain HI. They were then treated with intranasal PDTC. Neurological outcomes were evaluated 7 or 30 days after the brain HI. Brain tissues were harvested 6 or 24 h after the brain HI for biochemical analysis. Here, PDTC dose-dependently reduced brain HI-induced brain tissue loss with an effective dose (ED)50 at 27 mg/kg. PDTC needed to be applied within 45 min after the brain HI for this neuroprotection. This treatment reduced brain tissue loss and improved neurological and cognitive functions assessed 30 days after the HI. PDTC attenuated brain HI-induced lipid oxidative stress, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells, and various inflammatory mediators in the brain tissues. Inhibition of inducible nitric oxide synthase after brain HI reduced brain tissue loss. Our results suggest that intranasal PDTC provides neuroprotection possibly via reducing inflammation and oxidative stress. Intranasal PDTC may have a potential to provide neuroprotection to human neonates after birth asphyxia.

  14. Telmisartan attenuates hepatic fibrosis in bile duct-ligated rats

    Institute of Scientific and Technical Information of China (English)

    En-tong YI; Rui-xia LIU; Yan WEN; Cheng-hong YIN

    2012-01-01

    Aim: To evaluate the antifibrotic effect of telmisartan,an angiotensin Ⅱ receptor blocker,in bile duct-ligated rats.Methods: Adult Sprague-Dawley rats were allocated to 3 groups: sham-operated rats,model rats underwent common bile duct ligation (BDL),and BDL rats treated with telmisartan (8 mg/kg,po,for 4 weeks).The animals were sacrificed on d 29,and liver histology was examined,the Knodell and Ishak scores were assigned,and the expression of angiotensin-converting enzyme (ACE) and ACE2 was evaluated with immunohistochemical staining.The mRNAs and proteins associated with liver fibrosis were evaluated using RTQ-PCR and Western blot,respectively.Results: The mean fibrosis score of BDL rats treated with telmisartan was significantly lower than that of the model rats (1.66±0.87 vs 2.13±0.35,P=0.015).However,there was no significant difference in inflammation between the two groups,both of which showed moderate inflammation.Histologically,treatment with telmisartan significantly ameliorated BDL-caused the hepatic fibrosis.Treatment with telmisartan significantly upregulated the mRNA levels of ACE2 and MAS,and decreased the mRNA levels of ACE,angiotensin Ⅱ type 1 receptor (AT1-R),collagen type Ⅲ,and transforming growth factor β1 (TGF-β1).Moreover,treatment with telmisartan significantly increased the expression levels of ACE2 and MAS proteins,and inhibited the expression levels of ACE and AT1-R protein.Conclusion: Telmisartan attenuates liver fibrosis in bile duct-ligated rats via increasing ACE2 expression level.

  15. Genistein Attenuates Vascular Endothelial Impairment in Ovariectomized Hyperhomocysteinemic Rats

    Directory of Open Access Journals (Sweden)

    Panpan Zhen

    2012-01-01

    Full Text Available Hyperhomocysteinemia (HHcy is a well-known independent risk factor for vascular diseases in the general population. This study was to explore the effect of genistein (GST, a natural bioactive compound derived from legumes, on HHcy-induced vascular endothelial impairment in ovariectomized rats in vivo. Thirty-two adult female Wistar rats were assigned randomly into four groups (n=8: (a Con: control; (b Met: 2.5% methionine diet; (c OVX + Met: ovariectomy + 2.5% methionine diet; (d OVX + Met + GST: ovariectomy + 2.5% methionine diet + supplementation with genistein. After 12 wk of different treatment, the rats' blood, toracic aortas and liver samples were collected for analysis. Results showed that high-methionine diet induced both elevation of plasma Hcy and endothelial dysfunction, and ovariectomy deteriorated these injuries. Significant improvement of both functional and morphological changes of vascular endothelium was observed in OVX + Met + GST group; meanwhile the plasma Hcy levels decreased remarkably. There were significant elevations of plasma ET-1 and liver MDA levels in ovariectomized HHcy rats, and supplementation with genistein could attenuate these changes. These results implied that genistein could lower the elevated Hcy levels, and prevent the development of endothelial impairment in ovariectomized HHcy rats. This finding may shed a novel light on the anti-atherogenic activities of genistein in HHcy patients.

  16. Preconditioning of intravenous parecoxib attenuates focal cerebral ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Na; GUO Qu-lian; YE Zhi; XIA Ping-ping; WANG E; YUAN Ya-jing

    2011-01-01

    Background Several studies suggest that oyclooxygenase-2 (COX-2) contributes to the delayed progression of ischemic brain damage. This study was designed to investigate whether COX-2 inhibition with parecoxib reduces focal cerebral ischemia/reperfusion injury in rats.Methods Ninety male Sprague-Dawley rats were randomly assigned to three groups: the sham group, ischemia/reperfusion (I/R) group and parecoxib group. The parecoxib group received 4 mg/kg of parecoxib intravenously via the vena dorsalis penis 15 minutes before ischemia and again at 12 hours after ischemia. The neurological deficit scores (NDSs) were evaluated at 24 and 72 hours after reperfusion. The rats then were euthanized. Brains were removed and processed for hematoxylin and eosin staining, Nissl staining, and measurements of high mobility group Box 1 protein (HMGB1) and tumor necrosis factor-a (TNF-α) levels. Infarct volume was assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining.Results The rats in the I/R group had lower NDSs (P <0.05), larger infarct volume (P <0.05), lower HMGB1 levels (P<0.05), and higher TNF-α levels (P<0.05) compared with those in the sham group. Parecoxib administration significantly improved NDSs, reduced infarct volume, and decreased HMGB1 and TNF-α levels (P <0.05).Conclusions Pretreatment with intravenous parecoxib was neuroprotective. Its effects may be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory mediators.

  17. Amphetamine administration improves neurochemical outcome of lateral fluid percussion brain injury in the rat.

    Science.gov (United States)

    Dhillon, H S; Dose, J M; Prasad, R M

    1998-09-07

    This study examined the effects of the administration of D-amphetamine on the regional accumulation of lactate and free fatty acids (FFAs) after lateral fluid percussion (FP) brain injury in the rat. Rats were subjected to either FP brain injury of moderate severity (1.9 to 2.0 atm) or sham operation. At 5 min after injury, rats were treated with either d-amphetamine (4 mg/kg, i.p.) or saline. At 30 min and 60 min after brain injury, brains were frozen in situ, and cortices and hippocampi were excised at 0 degrees C. In the saline-treated brain injured rats, levels of lactate were increased in the ipsilateral left cortex and hippocampus at 30 min and 60 min after injury. These increases were attenuated by the administration of D-amphetamine at 5 min after lateral FP brain injury. At 30 and 60 min after FP brain injury, increases in the levels of all individual FFAs (palmitic, stearic, oleic and arachidonic acids) and of total FFAs were also observed in the ipsilateral cortex of the saline-treated injured rats. These increases in the ipsilateral cortex and hippocampus were also attenuated by the administration of d-amphetamine. Neither levels of lactate nor levels of FFAs were increased in the contralateral cortex in the saline-treated injured rats at 30 min or 60 min after FP brain injury. The levels of lactate and FFAs in the contralateral cortex were also unaffected by the administration of D-amphetamine. These results suggest that the attenuation of increases in the levels of lactate and FFAs in the ipsilateral cortex and hippocampus may be involved in the amphetamine-induced improvement in behavioral outcome after lateral FP brain injury.

  18. Captopril and Valsartan May Improve Cogniti ve Function Through Potentiation of the Brain Antioxidant Defense System and Attenuation of Oxidative/Nitrosative Damage in STZ - Induced Dementia in Rat

    Directory of Open Access Journals (Sweden)

    Yasaman Arjmand Abbassi

    2016-12-01

    Full Text Available Purpose: Previous findings have shown the crucial roles of brain renin-angiotensin system (RAS in pathogenesis of Alzheimer’s disease (AD. Since RAS inhibitors may have beneficial effects on dementia and cognitive function in elderly people, the aim of present study was to examine the neuroprotective actions of captopril and valsartan on memory function and neuronal damage in experimental model of AD. Methods: Adult forty male Wistar rats (220-280g were randomly divided into 5 groups; Control, Vehicle, Alzheimer and treatment groups. AD was induced by the injections of streptozotocin (3mg/kg, bilateral intracerebroventricular at days 1&3. Treated rats received orally captopril (50mg/kg/day and valsartan (30mg/kg/day. Memory function and histological assessments were done at termination of experiment. Finally, superoxide dismutase (SOD and catalase (CAT activities as well as malondialdehyde (MDA and NOx contents were determined. Results: There was a significant increase in the mean value of latency in Alzheimer group (66%. Captopril and valsartan considerably decreased this value in both treatment groups (45% and 72%, respectively. In Alzheimer group the activities of brain’s SOD and CAT reduced (40% and 47%, respectively in accompany with an increase in MDA and NOx contents (49% and 50%, respectively. Captopril and valsartan significantly increased the activities of brain’s SOD and CAT concomitant reduction in MDA and NOx contents. Also, histopathological damages noticeably decreased in both treatment groups. Conclusion: Our findings indicate that RAS inhibition by using captopril and valsartan potentiates the antioxidant defense system of brain and reduces oxidative/nitrosative stress in accompany with neuronal damage during AD.

  19. Magnesium nitrate attenuates blood pressure rise in SHR rats.

    Science.gov (United States)

    Vilskersts, Reinis; Kuka, Janis; Liepinsh, Edgars; Cirule, Helena; Gulbe, Anita; Kalvinsh, Ivars; Dambrova, Maija

    2014-01-01

    The administration of magnesium supplements and nitrates/nitrites decreases arterial blood pressure and attenuates the development of hypertension-induced complications. This study was performed to examine the effects of treatment with magnesium nitrate on the development of hypertension and its complications in spontaneously hypertensive (SHR) rats. Male SHR rats with persistent hypertension at the age of 12-13 weeks were allocated to two groups according to their arterial blood pressure. Rats from the control group received purified water, while the experimental animals from the second group received magnesium nitrate dissolved in purified water at a dose of 50 mg/kg. After four weeks of treatment, blood pressure was measured, the anatomical and functional parameters of the heart were recorded using an ultrasonograph, vascular reactivity was assayed in organ bath experiments and the cardioprotective effects of magnesium nitrate administration was assayed in an ex vivo experimental heart infarction model. Treatment with magnesium nitrate significantly increased the nitrate concentration in the plasma (from 62 ± 8 μmol/l to 111 ± 8 μmol/L), and attenuated the increase in the arterial blood pressure. In the control and magnesium nitrate groups, the blood pressure rose by 21 ± 3 mmHg and 6 ± 4 mmHg, respectively. The administration of magnesium nitrate had no effect on the altered vasoreactivity, heart function or the size of the heart infarction. In conclusion, our results demonstrate that magnesium nitrate effectively attenuates the rise in arterial blood pressure. However, a longer period of administration or earlier onset of treatment might be needed to delay the development of complications due to hypertension.

  20. Lesion of the tuberomammillary nucleus E2-region attenuates postictal seizure protection in rats.

    Science.gov (United States)

    Jin, Chun-Lei; Zhuge, Zheng-Bing; Wu, Deng-Chang; Zhu, Yuan-Yuan; Wang, Shuang; Luo, Jian-Hong; Chen, Zhong

    2007-03-01

    Postictal seizure protection (PSP) is an endogenous anticonvulsant phenomenon that follows an epileptic seizure and inhibits the induction of further seizures. The tuberomammillary nucleus (TM), located in the posterior hypothalamus, consists of five subregions and is the sole source of histaminergic neurons in the brain. To determine whether the TM is involved in PSP in rats, we tested the effects of bilateral electrolytic lesions of the TM E2-region on seizures induced by intermittent maximal electroshock (MES). The TM E2-region lesions significantly attenuated PSP during the intermittent MES procedure. Furthermore, intracerebroventricular injection of alpha-fluoromethylhistidine (100 microg), a selective and irreversible histidine decarboxylase inhibitor, mimicked the attenuation of PSP induced by the lesion of TM E2-region. In addition, neurochemical experiments revealed that the TM E2-region lesions markedly decreased basal histamine levels in the cortex, hippocampus, brainstem and hypothalamus, but had no significant effect on basal glutamate and GABA levels. Moreover, intermittent MES induced a persistent decrease of brain histamine levels in both sham-operated and lesioned rats. These results indicate that through its intrinsic histaminergic system, the TM may exert powerful inhibitory function during the intermittent MES procedure and actively participate in the mechanisms of PSP.

  1. Attenuated inflammatory response in aged mice brains following stroke.

    Directory of Open Access Journals (Sweden)

    Matthias W Sieber

    Full Text Available BACKGROUND: Increased age is a major risk factor for stroke incidence, post-ischemic mortality, and severe and long-term disability. Stroke outcome is considerably influenced by post-ischemic mechanisms. We hypothesized that the inflammatory response following an ischemic injury is altered in aged organisms. METHODS AND RESULTS: To that end, we analyzed the expression pattern of pro-inflammatory cytokines (TNF, IL-1α, IL-1β, IL-6, anti-inflammatory cytokines (IL-10, TGFβ1, and chemokines (Mip-1α, MCP-1, RANTES of adult (2 months and aged (24 months mice brains at different reperfusion times (6 h, 12 h, 24 h, 2 d, 7 d following transient occlusion of the middle cerebral artery. The infarct size was assessed to monitor possible consequences of an altered inflammatory response in aged mice. Our data revealed an increased neuro-inflammation with age. Above all, we found profound age-related alterations in the reaction to stroke. The response of pro-inflammatory cytokines (TNF, and IL-1β and the level of chemokines (Mip-1α, and MCP-1 were strongly diminished in the aged post-ischemic brain tissue. IL-6 showed the strongest age-dependent decrease in its post-ischemic expression profile. Anti-inflammatory cytokines (TGFβ1, and IL-10 revealed no significant age dependency after ischemia. Aged mice brains tend to develop smaller infarcts. CONCLUSION: The attenuated inflammatory response to stroke in aged animals may contribute to their smaller infarcts. The results presented here highlight the importance of using aged animals to investigate age-associated diseases like stroke, and should be considered as a major prerequisite in the development of age-adjusted therapeutic interventions.

  2. Combination of cilostazol and clopidogrel attenuates Rat critical limb ischemia

    Directory of Open Access Journals (Sweden)

    Sheu Jiunn-Jye

    2012-08-01

    Full Text Available Abstract Background and aim Procedural failure and untoward clinical outcomes after surgery remain problematic in critical limb ischemia (CLI patients. This study tested a clopidogrel-cilostazol combination treatment compared with either treatment alone in attenuating CLI and improving CLI-region blood flow in rats. Methods Male Sprague–Dawley rats (n = 40 were equally divided into five groups: control, CLI induction only, CL I + cilostazol (12.0 mg/day/kg, CLI + clopidogrel (8.0 mg/kg/day and CLI + combined cilostazol-clopidogrel. After treatment for 21 days, Laser Doppler imaging was performed. Results On day 21, the untreated CLI group had the lowest ratio of ischemic/normal blood flow (p  Conclusion Combined cilostazol-clopidogrel therapy is superior to either agent alone in improving ischemia in rodent CLI.

  3. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats.

    Science.gov (United States)

    Lv, Hongdi; Wang, Ling; Shen, Jinchang; Hao, Shaojun; Ming, Aimin; Wang, Xidong; Su, Feng; Zhang, Zhengchen

    2015-06-01

    Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling.

  4. Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats.

    Science.gov (United States)

    Shibaguchi, Tsubasa; Yamaguchi, Yusuke; Miyaji, Nobuyuki; Yoshihara, Toshinori; Naito, Hisashi; Goto, Katsumasa; Ohmori, Daijiro; Yoshioka, Toshitada; Sugiura, Takao

    2016-08-01

    Astaxanthin is a carotenoid pigment and has been shown to be an effective inhibitor of oxidative damage. We tested the hypothesis that astaxanthin intake would attenuate immobilization-induced muscle atrophy in rats. Male Wistar rats (14-week old) were fed for 24 days with either astaxanthin or placebo diet. After 14 days of each experimental diet intake, the hindlimb muscles of one leg were immobilized in plantar flexion position using a plaster cast. Following 10 days of immobilization, both the atrophic and the contralateral plantaris muscles were removed and analyzed to determine the level of muscle atrophy along with measurement of the protein levels of CuZn-superoxide dismutase (CuZn-SOD) and selected proteases. Compared with placebo diet animals, the degree of muscle atrophy in response to immobilization was significantly reduced in astaxanthin diet animals. Further, astaxanthin supplementation significantly prevented the immobilization-induced increase in the expression of CuZn-SOD, cathepsin L, calpain, and ubiquitin in the atrophied muscle. These results support the postulate that dietary astaxanthin intake attenuates the rate of disuse muscle atrophy by inhibiting oxidative stress and proteolysis via three major proteolytic pathways. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes

    Science.gov (United States)

    Neumann, I D; Johnstone, H A; Hatzinger, M; Liebsch, G; Shipston, M; Russell, J A; Landgraf, R; Douglas, A J

    1998-01-01

    The responsiveness of the rat hypothalamo-pituitary-adrenal (HPA) axis and hypothalamo-neurohypophysial system (HNS) to emotional (elevated plus-maze) and physical (forced swimming) stressors and to administration of synthetic corticotrophin-releasing hormone (CRH) was investigated during pregnancy and lactation. In addition to pregnancy-related adaptations at the adenohypophysial level, behavioural responses accompanying the neuroendocrine changes were studied. Whereas basal (a.m.) plasma corticosterone, but not corticotrophin (adrenocorticotrophic hormone; ACTH), levels were increased on the last day (i.e. on day 22) of pregnancy, the stress-induced rise in both plasma hormone concentrations was increasingly attenuated with the progression of pregnancy beginning on day 15 and reaching a minimum on day 21 compared with virgin control rats. A similar attenuation of responses to both emotional and physical stressors was found in lactating rats. Although the basal plasma oxytocin concentration was elevated in late pregnancy, the stress-induced rise in oxytocin secretion was slightly lower in day 21 pregnant rats. In contrast to vasopressin, oxytocin secretion was increased by forced swimming in virgin and early pregnant rats indicating a differential stress response of these neurohypophysial hormones. The blunted HPA response to stressful stimuli is partly due to alterations at the level of corticotrophs in the adenohypophysis, as ACTH secretion in response to CRH in vivo (40 ng kg−1, i.v.) was reduced with the progression of pregnancy and during lactation. In vitro measurement of cAMP levels in pituitary segments demonstrated reduced basal levels of cAMP and a lower increase after CRH stimulation (10 nm, 10 min) in day 21 pregnant compared with virgin rats, further indicating reduced corticotroph responsiveness to CRH in pregnancy. The reduced pituitary response to CRH in late pregnancy is likely to be a consequence of a reduction in CRH receptor binding as

  6. Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal cerebral ischemia.

    Science.gov (United States)

    Jacewicz, M; Brint, S; Tanabe, J; Pulsinelli, W A

    1990-01-01

    Focal cerebral infarction and edema were measured in rats (Wistar, Fisher 344, and spontaneously hypertensive strains) pretreated with nimodipine (2 micrograms/kg/min i.v.) or its vehicle and subjected to the tandem occlusion of the middle cerebral and common carotid arteries. Animals awoke from anesthesia 10-15 min after onset of ischemia and continued to receive treatment over a 24-h survival period. Cortical infarction and edema were quantified by image analysis of frozen brain sections processed for histology. Nimodipine-treated rats developed 20-60% smaller cortical infarct volumes than controls (p less than 0.002). Cortical edema was reduced proportionately to the decrease in infarct volume and constituted approximately 36% of the infarct volume. Nimodipine caused a mild hypotensive response that did not aggravate ischemic brain damage. The results indicate that continuous nimodipine treatment, started before induction of focal cerebral ischemia, can attenuate ischemic brain damage and edema as late as 24 h after the onset of ischemia.

  7. MR constrained simultaneous reconstruction of activity and attenuation maps in brain TOF-PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mehranian, Abolfazl; Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland)

    2014-07-29

    The maximum likelihood estimation of attenuation and activity (MLAA) algorithm has been proposed to jointly estimate activity and attenuation from emission data only. Salomon et al employed the MLAA to estimate activity and attenuation from time-of-flight PET data with spatial MR prior information on attenuation. Recently, we proposed a novel algorithm to impose both spatial and statistical constraints on attenuation estimation within the MLAA algorithm using Dixon MR images and a constrained Gaussian mixture model (GMM). In this study, we compare the proposed algorithm with MLAA and MLAA-Salomon in brain TOF-PET/MR imaging.

  8. Oxytocin biotransformation in the rat limbic brain

    NARCIS (Netherlands)

    Burbach, J.P.H.; Schotman, P.; Kloet, E.R. de

    2006-01-01

    Two peptide fragments of oxytocin were isolated by high-pressure liquid chromatography from digests of oxytocin obtained after exposure to a SPM preparation of the rat limbic brain. The structures of these peptides, being Gln-Asn-Cys(O)x-Pro-Leu-GlyNH2 and Gln-Asn-Cys(-S-S-Cys)-Pro-Leu-GlyNH2, were

  9. Neuroglobin in the rat brain: localization

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Allen, Gregg C; Nyengaard, Jens Randel

    2008-01-01

    in the rat brain using immunohistochemistry, in situ hybridization, and quantitative real-time PCR (qRT-PCR). This revealed the interesting finding that Ngb expression is restricted to a few neurone populations, many of which are involved in the sleep-wake cycle, circadian regulation or food regulation...

  10. Anti-RAGE antibody attenuates isoflurane-induced cognitive dysfunction in aged rats.

    Science.gov (United States)

    Shi, Chengmei; Yi, Duan; Li, Zhengqian; Zhou, Yongde; Cao, Yiyun; Sun, Yan; Chui, Dehua; Guo, Xiangyang

    2017-03-30

    Several animal studies demonstrated that the volatile anesthetic isoflurane could influence the blood-brain barrier (BBB) integrity, which involved the cognitive impairment. Increasing evidence has also shown that the receptor for advanced glycation end-products (RAGE) played a major role in maintaining the integrity of BBB. The present study aimed to determine whether the RAGE-specific antibody protects against BBB disruption and cognitive impairment induced by isoflurane exposure in aged rats. 108 aged rats were randomly divided into four groups: (1) control group (Control); (2) 4h of 2% isoflurane exposure group (ISO); (3) RAGE antibody (20μL, 2.5μg/μL) treated+4h of 2% isoflurane exposure group (anti-RAGE+ISO); (4) RAGE antibody (20μL, 2.5μg/μL) treated group (anti-RAGE). The isoflurane anesthesia resulted in the upregulation of hippocampal RAGE expression, disruption of BBB integrity, neuroinflammation, and beta-amyloid (Aβ) accumulation in aged rats. In addition, significant cognitive deficits in the Morris water maze test was also observed. The antibody pretreatment resulted in significant improvements in BBB integrity. Furthermore, the expression of RAGE and proinflammatory mediators, as well as, Aβ accumulation were attenuated. Moreover, the antibody administration attenuated the isoflurane-induced cognitive impairment in aged rats. These results demonstrate that RAGE signaling is involved in BBB damage after isoflurane exposure. Thus, the RAGE antibody represents a novel therapeutic intervention to prevent isoflurane-induced cognitive impairment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    Science.gov (United States)

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  12. Chronic cannabinoid treatment in adolescent attenuates c-Fos expression in nucleus accumbens of adult estrous rats

    Directory of Open Access Journals (Sweden)

    Samuel I. Brook

    2013-02-01

    Full Text Available Chronic cannabinoid exposure during adolescence may negatively impact brain development and alter adult motivation and behavior. We present evidence that treatment with a cannabinoid agonist during adolescence attenuates estrous-mediated expression of c-Fos within the nucleus accumbens of female rats exposed to a male conspecific. Thirty-two female Long-Evans rats were administered either 0.4 mg/kg of CP-55,940 or vehicle on a daily basis between the ages of 35-45 days. When subjects reached adulthood (days 71-76, they were tested within an exposure paradigm designed to invoke sexual motivation wihtout allowing for consummatory behavior. Female subjects were naturally-cyclins; half were tested when in behavioral estrus (as determined by vaginal cytology and half were tested outside of estrus. c-Fos expression was then quantified in multiple brain regions associated with female sexual motivation, in addition to two control regions. Analyses revealed that untreated females showed more c-Fos-positive neurons when estrous (versus non-estrous within the medial preoptic area of the hypothalamus, the ventromedial hypothalamus, and the nucleus accumbens core and shell. Significant attenuation of this estrous effect was observed within the nucleus accumbens core and shell of drug-treated females. This suggests that adolescent cannabinoid exposure may negatively impact research in our laboratory which indicated that chronic cannabinoid exposure during adolescence persistently attenuates the expression of sexual motivation in female rats and provide a potential neurobiological substrate for those behavioral deficits.

  13. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury.

    Science.gov (United States)

    Servatius, Richard J; Marx, Christine E; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D; Naylor, Jennifer C; Pang, Kevin C H

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  14. Brain and Serum Androsterone is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Richard J Servatius

    2016-08-01

    Full Text Available Exposure to lateral fluid percussion (LFP injury consistent with mild traumatic brain injury (mTBI persistently attenuates acoustic startle responses (ASRs in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM. ASRs were measured post injury days (PIDs 1, 3, 7, 14, 21 and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34, PID 35 (S35, on both days (2S, or the experimental context (CON. Levels of the neurosteroids pregnenolone (PREG, allopregnanolone (ALLO, and androsterone (ANDRO were determined for the prefrontal cortex, hippocampus and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30 and 60 min post-stressor for determination of corticosterone (CORT levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration.

  15. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain.

    Science.gov (United States)

    Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-09-01

    Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor-kB (NF-KB) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Salicylic Acid Attenuates Gentamicin-Induced Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Pavle Randjelovic

    2012-01-01

    Full Text Available Gentamicin (GM is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  17. Salicylic acid attenuates gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  18. Intermedin attenuates LPS-induced inflammation in the rat testis.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available First reported as a vasoactive peptide in the cardiovascular system, intermedin (IMD, also known as adrenomedullin 2 (ADM2, is a hormone with multiple potent roles, including its antioxidant action on the pulmonary, central nervous, cardiovascular and renal systems. Though IMD may play certain roles in trophoblast cell invasion, early embryonic development and cumulus cell-oocyte interaction, the role of IMD in the male reproductive system has yet to be investigated. This paper reports our findings on the gene expression of IMD, its receptor components and its protein localization in the testes. In a rat model, bacterial lippolysaccharide (LPS induced atypical orchitis, and LPS treatment upregulated the expression of IMD and one of its receptor component proteins, i.e. receptor activity modifying protein 2 (RAMP2. IMD decreased both plasma and testicular levels of reactive oxygen species (ROS production, attenuated the increase in the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNFα, interleukin 6 (IL6 and interleukin 1 beta (IL1β, rescued spermatogenesis, and prevented the decrease in plasma testosterone levels caused by LPS. The restorative effect of IMD on steroidogenesis was also observed in hydrogen peroxide-treated rat primary Leydig cells culture. Our results indicate IMD plays an important protective role in spermatogenesis and steroidogenesis, suggesting therapeutic potential for IMD in pathological conditions such as orchitis.

  19. Protective effects of carbenoxolone are associated with attenuation of oxidative stress in ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Lang Zhang; Yu-Min Li; Yu-Hong Jing; Shao-Yu Wang; Yan-Feng Song; Jie Yin

    2013-01-01

    Accumulating evidence has suggested that the gap junction plays an important role in the determination of cerebral ischemia,but the underlying mechanisms remain to be elucidated.In this study,we assessed the effect of a gap-junction blocker,carbenoxolone (CBX),on ischemia/reperfusion-induced brain injury and the possible mechanisms.By using the transient cerebral ischemia model induced by occlusion of the middle cerebral artery for 30 min followed by reperfusion for 24 h,we found that pre-administration of CBX (25 mg/kg,intracerebroventricular injection,30 min before cerebral ischemic surgery) diminished the infarction size in rats.And this was associated with a decrease of reactive oxygen species generation and inhibition of the activation of astrocytes and microglia.In PC12 cells,H202 treatment induced more coupling and apoptosis,while CBX partly inhibited the opening of gap junctions and improved the cell viability.These results suggest that cerebral ischemia enhances the opening of gap junctions.Blocking the gap junction with CBX may attenuate the brain injury after cerebral ischemia/reperfusion by partially contributing to amelioration of the oxidative stress and apoptosis.

  20. Simvastatin attenuates lipopolysaccharide-induced airway mucus hypersecretion in rats

    Institute of Scientific and Technical Information of China (English)

    OU Xue-mei; WANG Bai-ding; WEN Fu-qiang; FENG Yu-lin; HUANG Xiang-yang; XIAO Jun

    2008-01-01

    Background Mucus hypersecretion in the respiratory tract and goblet cell metaplasia in the airway epithelium contribute to the morbidity and mortality associated with airway inflammatory diseases.This study aimed to examine the effect and mechanisms of simvastatin on airway mucus hypersecretion in rats treated with lipopolysaccharide (LPS).Methods Mucus hypersecretion in rat airways was induced by intra-tracheal instillation of LPS.Rats treated with or without LPS were administered intra-peritoneally simvastatin (5 and 20 mg/kg) for 4 days.Expression of Muc5ac,RhoA and mitogen-activated protein kinases (MAPK) p38 in lung were detected by real-time polymerase chain reaction (PCR),immunohistochemistry or Western blotting.Tumor necrosis factor (TNF)-a and IL-8 in bronchoalveolar lavage fluid (BALF)were assayed by an enzyme-linked lectin assay and enzyme linked immunosorbent assay (ELISA).Results Simvastatin attenuated LPS-induced goblet cell hyperplasia in bronchial epithelium and Muc5ac hypersecretion at both the gene and protein levels in lung (P<0.05).Moreover,simvastatin inhibited neutrophil accumulation and the increased concentration of TNF-α and IL-8 in BALF follows LPS stimulation (P<0.05).The higher dose of simvastatin was associated with a more significant reduction in Muc5ac mRNA expression,neutrophil accumulation and inflammatory cytokine release.Simultaneously,the increased expression of RhoA and p38 MAPK were observed in LPS-treated lung (P<0.05).Simvastatin inhibited the expression of RhoA and p38 phosphorylation in lung following LPS stimulation (P<0.05).However,the increased expression of p38 protein in LPS-traated lung was not affected by simvastatin administration.Conclusions Simvastatin attenuates airway mucus hypersecretion and pulmonary inflammatory damage induced by LPS.The inhibitory effect of simvastatin on airway mucus hypersecretion may be through,at least in part,the suppression of neutrophil accumulation and inflammatory cytokine

  1. Flavocoxid attenuates gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Suddek, Ghada M; Salem, Hatem A

    2015-12-01

    Gentamicin is a widely used antibiotic against serious and life-threatening infections; however, its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine whether flavocoxid has a protective effect against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of flavocoxid on gentamicin induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was determined. Twenty-four male Wistar albino rats were randomly divided into three groups, namely control, gentamicin (100 mg/kg, i.p.) and gentamicin plus flavocoxid (20 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood, urine samples and kidneys were collected for further analysis. Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated renal somatic index (RSI), serum creatinine, blood urea nitrogen, serum lactate dehydrogenase, and protein in urine with a concomitant reduction in serum albumin and normalized creatinine clearance value as compared with the controls. Moreover, a significant increase in renal contents of malondialdehyde, myeloperoxidase, and tumor necrosis factor-alpha with a significant decrease in renal reduced glutathione and superoxide dismutase activities was detected upon gentamicin administration together with increasing the sensitivity of isolated urinary bladder rings to ACh. Exposure to gentamicin induced necrosis of renal tubular epithelial cells. Flavocoxid protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by gentamicin treatment. In addition, flavocoxid significantly reduced the responses of isolated bladder rings to ACh. The results from our study indicate that flavocoxid supplement attenuates gentamicin-induced renal injury via the amelioration of

  2. Aquaporin 9 in rat brain after severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2012-03-01

    Full Text Available OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9 in rat brain, after severe traumatic brain injury (TBI. METHODS: Brain water content (BWC, tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC, immunofluorescence (IF, western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest peaks at 6 and 72 hours, and the blood brain barrier (BBB was severely destroyed at six hours after the TBI. The worst brain ischemia occurred at 72 hours after TBI. Widespread AQP9-positive astrocytes and neurons in the hypothalamus were detected by means of IHC and IF after TBI. The abundance of AQP9 and its mRNA increased after TBI and reached two peaks at 6 and 72 hours, respectively, after TBI. CONCLUSIONS: Increased AQP9 might contribute to clearance of excess water and lactate in the early stage of TBI. Widespread AQP9-positive astrocytes might help lactate move into neurons and result in cellular brain edema in the later stage of TBI. AQP9-positive neurons suggest that AQP9 plays a role in energy balance after TBI.

  3. Neural progenitor cells attenuate inflammatory reactivity and neuronal loss in an animal model of inflamed AD brain

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2009-12-01

    Full Text Available Abstract Background Transplantation of neural progenitor cells (NPC constitutes a putative therapeutic maneuver for use in treatment of neurodegenerative diseases. At present, effects of NPC transplantation in Alzheimer's disease (AD brain are largely unknown and a primary objective of this work was to demonstrate possible efficacy of NPC administration in an animal model of AD. The benefits of transplantation could involve a spectrum of effects including replacement of endogenous neurons or by conferring neuroprotection with enhancement of neurotrophic factors or diminishing levels of neurotoxic agents. Since chronic inflammation is a characteristic property of AD brain, we considered that transplantation of NPC could have particular utility in inhibiting ongoing inflammatory reactivity. We have tested intrahippocampal transplantation of NPC for efficacy in attenuating inflammatory responses and for neuroprotection in beta-amyloid (Aβ1-42 peptide-injected rat hippocampus. Methods Spheres of neural progenitor cells were grown from dissociated telencephalon tissue of rat embryos. NPC were infected with lentiviral vector green fluorescent protein (GFP with subsequent cell transplantation into rat hippocampus previously injected (3 d prior with Aβ1-42 peptide or PBS control. Immunohistochemical analysis was carried out (7 d post-NPC transplantation, 10 d post-peptide/PBS injection for GFP, microgliosis (Iba-1 marker, astrogliosis (GFAP marker, neuron viability (MAP-2 marker and levels of the proinflammatory cytokine, TNF-α. Results Successful infection of cultured NPC with lentiviral vector green fluorescent protein (GFP was demonstrated prior to cell transplantation into rat hippocampus. In vivo, immunohistochemical staining showed migration of GFP-positive cells, in a region of dentate gyrus between Aβ1-42/PBS injection site and NPC transplantation site, was increased ×2.8-fold with Aβ1-42 compared to PBS injection. Double immunostaining in

  4. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    Science.gov (United States)

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  5. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    Directory of Open Access Journals (Sweden)

    Ong John M

    2007-03-01

    Full Text Available Abstract Background The blood-brain tumor barrier (BTB impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB permeability in brain tumors, but not in normal brain. Iberiotoxin, a KCa channel antagonist, significantly attenuated NS1619-induced BTB permeability increase. We found KCa channels and bradykinin type 2 receptors (B2R expressed in cultured human metastatic brain tumor cells (CRL-5904, non-small cell lung cancer, metastasized to brain, human brain microvessel endothelial cells (HBMEC and human lung cancer brain metastasis tissues. Potentiometric assays demonstrated the activity of KCa channels in metastatic brain tumor cells and HBMEC. Furthermore, we detected higher expression of KCa channels in the metastatic brain tumor tissue and tumor capillary endothelia as compared to normal brain tissue. Co-culture of metastatic brain tumor cells and brain microvessel endothelial cells showed an upregulation of KCa channels, which may contribute to the overexpression of KCa channels in tumor microvessels and selectivity of BTB opening. Conclusion These findings suggest that KCa channels in metastatic brain tumors may serve as an effective target for biochemical modulation of BTB permeability to enhance selective delivery of chemotherapeutic drugs to metastatic brain tumors.

  6. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain

    Institute of Scientific and Technical Information of China (English)

    Changzheng Dong; Wenqing Zhao; Wenling Li; Peiyuan Lv; Xiufang Dong

    2013-01-01

    Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors.

  7. Effect of pineapple peel extract on total phospholipids and lipid peroxidation in brain tissues of rats

    Institute of Scientific and Technical Information of China (English)

    Erukainure OL; Ajiboye JA; Adejobi RO; Okafor OY; Kosoko SB; Owolabi FO

    2011-01-01

    Objective:To investigate the ability of the methanolic extract of pineapple peel to attenuate alcohol-induced changes in total phospholipids and lipid peroxidation in brain tissues. Methods:Oxidative stress was induced by oral administration of ethanol (20%w/v) at a dosage of 5 mL/kg bw in rats. After 28 days of treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Brain tissues were assayed for total phospholipid (TP) content and malondialdehyde (MDA). Results:Administration of alcohol significantly caused a reduction in TP content. Treatment with pineapple peel extract significantly increased the TP content. Significant high levels of MDA was observed in alcohol-fed rats, treatment with pineapple peel extract significantly reduced the MDA levels. Conclusions:Results obtained from this study indicates that pineapple peel extract protects against alcohol-induced changes in total phospholipids and lipid peroxidation in brain tissues.

  8. Effects of anesthesia on [11C]raclopride binding in the rat brain

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Simonsen, Mette; Møller, Arne

    Background Very often rats are anesthetized prior to micro positron emission tomography (microPET) brain imaging in order to prevent head movements. Anesthesia can be administered by inhalation agents, such as isoflurane, or injection mixtures, such as fentanyl-fluanisone-midazolam. Unfortunately......, anesthesia affects a variety of physiological variables, including in the brain. Aim The aim of this study was to compare the effects of inhalation and injection anesthesia on the binding potential of the dopaminergic D2/3 tracer [11C]raclopride used for PET brain imaging in human and animal studies....... Materials & Methods Nine male Lew/Mol rats were assigned to either inhalation (isoflurane; N=4) or injection (fentanyl-fluanisone-midazolam; N=5) anesthesia. Catheters were surgically placed in femoral arteries and veins for blood sampling and tracer injection. After a short attenuation scan, the rats were...

  9. Hyperbaric oxygen preconditioning attenuates postoperative cognitive impairment in aged rats.

    Science.gov (United States)

    Sun, Li; Xie, Keliang; Zhang, Changsheng; Song, Rui; Zhang, Hong

    2014-06-18

    Cognitive decline after surgery in the elderly population is a major clinical problem with high morbidity. Hyperbaric oxygen (HBO) preconditioning can induce significant neuroprotection against acute neurological injury. We hypothesized that HBO preconditioning would prevent the development of postoperative cognitive impairment. Elderly male rats (20 months old) underwent stabilized tibial fracture operation under general anesthesia after HBO preconditioning (once a day for 5 days). Separate cohorts of animals were tested for cognitive function with fear conditioning and Y-maze tests, or euthanized at different times to assess the blood-brain barrier integrity, systemic and hippocampal proinflammatory cytokines, and caspase-3 activity. Animals exhibited significant cognitive impairment evidenced by a decreased percentage of freezing time and an increased number of learning trials on days 1, 3, and 7 after surgery, which were significantly prevented by HBO preconditioning. Furthermore, HBO preconditioning significantly ameliorated the increase in serum and hippocampal proinflammatory cytokines tumor necrosis factor-α, interleukin-1 β (IL-1β), IL-6, and high-mobility group protein 1 in surgery-challenged animals. Moreover, HBO preconditioning markedly improved blood-brain barrier integrity and caspase-3 activity in the hippocampus of surgery-challenged animals. These findings suggest that HBO preconditioning could significantly mitigate surgery-induced cognitive impairment, which is strongly associated with the reduction of systemic and hippocampal proinflammatory cytokines and caspase-3 activity.

  10. [Rat brain cells containing ezrin (cytovillin)].

    Science.gov (United States)

    Korzhevskiĭ, D E; Kirik, O V; Giliarov, A V

    2011-01-01

    Ezrin (cytovillin or p81 protein) is an actin-binding protein, a member of ERM (ezrin, radixin and moesin) family, which species contribute to stabilization of the plasma membrane-formed structures. The aim of the present study was to demonstrate the ezrin-containing cells in the rat brain and to describe their topography and morphological features. The most pronounced immunohistochemical reaction to ezrin was found in the epithelium of the choroid plexus, cells of the subcommissural organ and ventricular ependyma. Moreover, ezrin staining was also detected in the unidentifiable cells in the subventricular zone, rostral migration pathway and astrocytes in various brain areas. Preferential ezrin localization in the brain cells contributing to formation of barrier structures suggests its involvement in transport processes in the CNS.

  11. Hyperbaric oxygen preconditioning attenuates hyperglycemia enhanced hemorrhagic transformation after transient MCAO in rats

    Directory of Open Access Journals (Sweden)

    Soejima Yoshiteru

    2012-04-01

    Full Text Available Abstract Background Hemorrhagic transformation (HT can be a devastating complication of ischemic stroke. Hyperbaric oxygen preconditioning (HBO-PC has been shown to improve blood-brain barrier (BBB permeability in stroke models. The purpose of this study is to examine whether HBO-PC attenuates HT after focal cerebral ischemia, and to investigate whether the mechanism of HBO-PC against HT includes up-regulation of antioxidants in hyperglycemic rats. Methods Male Sprague-Dawley rats (280-320 g were divided into the following groups: sham, middle cerebral artery occlusion (MCAO for 2 h, and MCAO treated with HBO-PC. HBO-PC was conducted giving 100% oxygen at 2.5 atm absolute (ATA, for 1 h at every 24 h interval for 5 days. At 24 h after the last session of HBO-PC, rats received an injection of 50% glucose (6 ml/kg intraperitoneally and were subjected to MCAO 15 min later. At 24 h after MCAO, neurological behavior tests, infarct volume, blood-brain barrier permeability, and hemoglobin content were measured to evaluate the effect of HBO-PC. Western blot analysis of nuclear factor erythroid 2-related factor 2 (Nrf2 and heme oxygenase-1 (HO-1 was evaluated at multiple time-points before and after MCAO. Results HBO-PC improved neurological behavior test, and reduced infarction volume, HT and Evans blue extravasation in the ipsilateral hemisphere at 24 h after MCAO. Western blot analysis failed to demonstrate up-regulation of Nrf2 in HBO-PC group before and after MCAO. Paradoxically, HBO-PC decreased HO-1 expression at 24 h after MCAO, as compared with htMCAO group. Conclusions HBO-PC improved neurological deficits, infarction volume, BBB disruption, and HT after focal cerebral ischemia. However, its mechanism against focal cerebral ischemia and HT may not include activation of Nrf2 and subsequent HO-1 expression.

  12. The behavioural depression of hippocampal kindled rats is attenuated by subcutaneous and intracerebroventricular naltrexone

    NARCIS (Netherlands)

    Cottrell, G.A.; Nyakas, C.; Bohus, B.

    1984-01-01

    1. Two questions were asked: Does naltrexone attenuate the behavioural depression (BD) in other models of limbic epilepsy besides amygdala kindling? Does intracerebroventricular (ICV) administration produce the same effects as subcutaneous injection i.e., attenuation of the BD. 2. Male wistar rats

  13. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats.

    Science.gov (United States)

    Deshmukh, Rahul; Kaundal, Madhu; Bansal, Vikas; Samardeep

    2016-07-01

    Oxidative stress has been implicated in cognitive decline as seen during normal aging and in sporadic Alzheimer's disease (AD). Caffeic acid, a polyphenolic compound, has been reported to possess potent antioxidant and neuroprotective properties. The role of caffeic acid in experimental dementia is not fully understood. Thus the present study was designed to investigate the therapeutic potential of caffeic acid in streptozotocin (STZ)-induced experimental dementia of Alzheimer's type in rats. Streptozotocin (STZ) was administered intracerebroventrically (ICV) on day 1 and 3 (3mg/kg, ICV bilaterally) in Wistar rats. Caffeic acid was administered (10, 20 and 40mg/kg/day p.o.) 1h following STZ infusion upto 21st day. Morris water maze and object recognition task were used to assess learning and memory in rats. Terminally, acetylcholinesterase (AChE) activity and the levels of oxido-nitrosative stress markers were determined in cortical and hippocampal brain regions of rats. STZ produced significant (plearning and memory impairment, oxido-nitrosative stress and cholinergic deficit in rats. Whereas, caffeic acid treatment significantly (p<0.001) and dose dependently attenuated STZ induced behavioral and biochemical abnormalities in rats. The observed cognitive improvement following caffeic acid in STZ treated rats may be due to its antioxidant activity and restoration of cholinergic functions. Our results suggest the therapeutic potential of caffeic acid in cognitive disorders such as AD.

  14. Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    NARCIS (Netherlands)

    van Velthoven, Cindy T. J.; Sheldon, R. Ann; Kavelaars, Annemieke; Derugin, Nikita; Vexler, Zinaida S.; Willemen, Hanneke L. D. M.; Maas, Mirjam; Heijnen, Cobi J.; Ferriero, Donna M.

    2013-01-01

    Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulati

  15. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    Science.gov (United States)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  16. Co-Expression of Regulator of G Protein Signaling 4 (RGS4) and the MU Opioid Receptor in Regions of Rat Brain: Evidence That RGS4 Attenuates MU Opioid Receptor Signaling

    Science.gov (United States)

    2003-01-01

    situ hybridization studies in the lumbar spinal cord show that, during the development of chronic neuropathic pain and hyperalgesia , RGS4 is the only...below with rat RGS4 cDNA and the thermostable DNA polymerase Pfu (Stratagene) for 26 cycles on a Perkin Elmer Thermal Cycler using standard conditions

  17. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  18. Effects of anesthesia on [11C]raclopride binding in the rat brain

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Simonsen, Mette; Møller, Arne

    Background Very often rats are anesthetized prior to micro positron emission tomography (microPET) brain imaging in order to prevent head movements. Anesthesia can be administered by inhalation agents, such as isoflurane, or injection mixtures, such as fentanyl-fluanisone-midazolam. Unfortunately....... Materials & Methods Nine male Lew/Mol rats were assigned to either inhalation (isoflurane; N=4) or injection (fentanyl-fluanisone-midazolam; N=5) anesthesia. Catheters were surgically placed in femoral arteries and veins for blood sampling and tracer injection. After a short attenuation scan, the rats were...... PET scanned for 90 minutes after injection of [11C]raclopride. Results We found that rats anesthetized with isoflurane had double the binding potential in the striatum compared with fentanyl-fluanisone-midazolam anesthetized rats. Conclusion Our results are in agreement with other studies showing...

  19. Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats.

    Science.gov (United States)

    Khan, Mohd Moshahid; Ishrat, Tauheed; Ahmad, Ajmal; Hoda, Md Nasrul; Khan, M Badruzzaman; Khuwaja, Gulrana; Srivastava, Pallavi; Raza, Syed Shadab; Islam, Fakhrul; Ahmad, Saif

    2010-01-05

    Restoration of blood flow to an ischemic brain region is associated with generation of reactive oxygen species (ROS) with consequent reperfusion injury. ROS cause lipid peroxidation, protein oxidation, and DNA damage, all of which are deleterious to cells. So diminishing the production of free radicals and scavenging them may be a successful therapeutic strategy for the protection of brain tissue in cerebral stroke. The present study investigated the neuroprotective effect of sesamin (Sn) to reduce brain injury after middle cerebral artery occlusion (MCAO). The middle cerebral artery (MCA) of adult male Wistar rat was occluded for 2h and reperfused for 22h. Sesamin is the most abundant lignan in sesame seed oil is a potent antioxidant. Sesamin (30 mg/kg) was given orally twice, 30 min before the onset of ischemia and 12h after reperfusion. The initial investigations revealed that sesamin reduced the neurological deficits in terms of behavior and reduced the level of thiobarbituric acid reactive species (TBARS), and protein carbonyl (PC) in the different areas of the brain when compared with the MCAO group. A significantly depleted level of glutathione and its dependent enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) in MCAO group were protected significantly in MCAO group treated with sesamin. The present study suggests that sesamin may be able to attenuate the ischemic cell death and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the rat brain. Thus, sesamin may be a potential compound in stroke therapy.

  20. Sodium alginate oligosaccharides attenuate hypertension in spontaneously hypertensive rats fed a low-salt diet.

    Science.gov (United States)

    Ueno, Mai; Tamura, Yuki; Toda, Natsuko; Yoshinaga, Mariko; Terakado, Shouko; Otsuka, Kie; Numabe, Atsushi; Kawabata, Yukari; Murota, Itsuki; Sato, Nobuyuki; Uehara, Yoshio

    2012-01-01

    We investigated the effects of sodium alginate oligosaccharides (alginate) on the development of spontaneous hypertension in rats. Spontaneous hypertensive rats were treated with alginate for 7 weeks. Systolic blood pressure (SBP) and cardiovascular and kidney damage were assessed. Systolic blood pressure increased in SHRs and this elevation was attenuated with alginate treatment. The heart weight tended to decline. Alginate did not change plasma cholesterol levels or urinary sodium excretions. The slightly higher urinary protein excretion in SHRs was not changed with the treatment; however, morphologic glomerular damage was significantly attenuated. Sodium alginate oligosaccharide attenuates spontaneous hypertension in SHRs, and may help prevent early-stage kidney injury.

  1. Thalidomide attenuates learning and memory deficits induced by intracerebroventricular administration of streptozotocin in rats.

    Science.gov (United States)

    Elçioğlu, Hk; Kabasakal, L; Alan, S; Salva, E; Tufan, F; Karan, Ma

    2013-05-01

    Neuroinflammatory responses caused by amyloid β (Aβ) peptide deposits are involved in the pathogenesis of Alzheimer's disease (AD). Thalidomide has a significant anti-inflammatory effect by inhibiting TNF-α, which plays role in Aβ neurotoxicity. We investigated the effect of thalidomide on AD-like cognitive deficits caused by intracerebroventricular injection of streptozotocin (STZ). Intraperitoneal thalidomide was administered 1 h before the first dose of STZ and continued for 21 days. Learning and memory behavior was evaluated on days 17, 18 and 19, and the rats were sacrificed on day 21 to examine histopathological changes. STZ injection caused a significant decrease in the mean escape latency in passive avoidance and decreased improvement of performance in Morris water maze tests. Histopathological changes were examined using hematoxylin-eosin and Bielschowsky staining. Brain sections of STZ treated rats showed increased neurodegeneration and disturbed linear arrangement of cells in the cortical area compared to controls. Thalidomide treatment attenuated significantly STZ induced cognitive impairment and histopathological changes. Thalidomide appears to provide neuroprotection from the memory deficits and neuronal damage induced by STZ.

  2. [The expression of GFAP after brain concussion in rats].

    Science.gov (United States)

    Zhang, Chun-Bing; Li, Yong-Hong

    2006-04-01

    To study the expression of GFAP and pathologic changes after rats brain concussion, so that to provide evidence on brain concussion for forensic identification. Forty-five SD rats were divided into 3, 6, 12, 24 h and 2, 4, 7, 10 d and normal control groups in terms of different wounding time after brain concussion model established, and the expression of GFAP after rats brain concussion were then observed by using SP immunohistochemical method. In normal control brain, low-level GFAP expressions could be observed. After six hours' brain concussion, GFAP positive cells increased obviously. The trend reached to the peak at 7d, partly declined at 10d, then decreased gradually. Brain concussion induced the expression of GFAP. The detection of GFAP could be useful for diagnosis of brain concussion on forensic pathology, and could be a reference index for timing of injury after brain concussion.

  3. Rosmarinic acid attenuates hepatic ischemia and reperfusion injury in rats.

    Science.gov (United States)

    Ramalho, Leandra Naira Z; Pasta, Ângelo Augusto C; Terra, Vânia Aparecida; Augusto, Marlei Josiele; Sanches, Sheila Cristina; Souza-Neto, Fernando P; Cecchini, Rubens; Gulin, Francine; Ramalho, Fernando Silva

    2014-12-01

    Rosmarinic acid (RosmA) demonstrates antioxidant and anti-inflammatory properties. We investigated the effect of RosmA on liver ischemia/reperfusion injury. Rats were submitted to 60 min of ischemia plus saline or RosmA treatment (150 mg/kg BW intraperitoneally) followed by 6 h of reperfusion. Hepatocellular injury was evaluated according to aminotransferase activity and histological damage. Hepatic neutrophil accumulation was also evaluated. Oxidative/nitrosative stress was estimated by measuring the reduced glutathione, lipid hydroperoxide and nitrotyrosine levels. Endothelial and inducible nitric oxide synthase (eNOS/iNOS) and nitric oxide (NO) were assessed with immunoblotting and chemiluminescence assays. Hepatic tumor necrosis factor-alpha (TNF-α) and interleukin-1beta mRNA were assessed using real-time PCR, and nuclear factor-kappaB (NF-κB) activation was estimated by immunostaining. RosmA treatment reduced hepatocellular damage, neutrophil infiltration and all oxidative/nitrosative stress parameters. RosmA decreased the liver content of eNOS/iNOS and NO, attenuated NF-κB activation, and down-regulated TNF-α and interleukin-1beta gene expression. These data indicate that RosmA exerts anti-inflammatory and antioxidant effects in the ischemic liver, thereby protecting hepatocytes against ischemia/reperfusion injury. The mechanisms underlying these effects may be related to the inhibitory potential of RosmA on the NF-κB signaling pathway and the reduction of iNOS and eNOS expressions and NO levels, in addition to its natural antioxidant capability.

  4. A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress.

    Directory of Open Access Journals (Sweden)

    Carrie M Elks

    Full Text Available To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB have among the highest antioxidant capacities of fruits and vegetables.Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS, peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group.Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development

  5. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    Science.gov (United States)

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  6. Early malnutrition attenuates the impairing action of naloxone on spreading depression in young rats.

    Science.gov (United States)

    Guedes, Rubem Carlos Araújo; Rocha-de-Melo, Ana Paula; de Lima, Kalina Rimena; de Albuquerque, Juliana da Mota Silveira; Francisco, Elian da Silva

    2013-07-01

    Malnutrition early in life can disrupt neurotransmitter systems in the brain, affecting its electrophysiological function. The opioid receptor antagonist naloxone can affect the electroencephalogram (EEG) and behavior in animals and humans, and patients under drug-abuse treatment use it as a therapy. The goal of this work in the rat is to determine whether malnutrition early in life modulates the action of naloxone on the excitability-related phenomenon known as cortical spreading depression (CSD). Malnutrition was induced by feeding the dams during the gestation and lactation with a low-protein diet (8% protein). Their male pups received a single daily subcutaneous injection of naloxone (10 mg/kg/day) from the 7th to the 28th postnatal day, and were subsequently (30-40 days of life) submitted to a 4-hours CSD recording session, with electrodes at two points at a fixed distance apart on the parietal cortical surface. Compared to well-nourished rats receiving a 23% protein diet, malnourished animals displayed lower body weights and higher CSD velocities of propagation, confirming the facilitating effect of malnutrition on CSD. Naloxone treatment reduced in well-nourished rats the CSD propagation velocity, as compared to saline-injected controls. In contrast, the naloxone effect was less intense in the malnourished condition, and the CSD velocity difference between malnourished-naloxone and malnourished-saline groups did not reach statistical significance. Data strongly support the involvement of opioid-based mechanisms in excitability-related neural processes, which probably influence CSD propagation, and indicate that early malnutrition attenuates the impairing action of naloxone on CSD.

  7. The protective effect of Nigella sativa oil in the brain of the biliary obstructed rats

    Directory of Open Access Journals (Sweden)

    Hale Zerrin Toklu

    2013-01-01

    Full Text Available Oxidative stress is one of the important mechanisms of jaundice induced encephalopathy. The aim of this study was to examine the possible protective effect of Nigella sativa (NS seed oil against the oxidative stress of brain tissue induced by experimentalobstructive jaundice in rats.BiliarY obstruction was performed in male Wistar albino rats by bile duct ligation and scission (BDL. Intragastric NS oil (1 mg/kg p.o. or saline was administered for 28 days. At the end of the experiment, in the half of the rats the blood brain barrier (BBB permeability wasevaluated by Evans blue (EB extravasation. Other rats were decapitated and brain tissue samples were obtained for the measurement of malondialdehyde (MDA and glutathione(GSH levels, myeloperoxidase (MPO and Na+,K+-ATPase activities.ChronIC biliary obstruction caused a significant increase in the BBB permeability which was verified by EB extravasation while this effect was attenuated by NS oil treatment. On the other hand, BDL-induced decrease in brain GSH level and Na+,K+-ATPase activity were el-evated back to control level in NS oil-treated BDL group. Increase in tissue MDA level, and MPO activity due to BDL were also attenuated by NS oil treatment.Our results suggest that NS oil treatment protects the brain from oxidative damage following bile duct ligation in rats. This effect possibly involves the inhibition of neutrophil infiltration and lipid peroxidation and the restoration of antioxidant status in the tissue. Accordingly, supplementing cirrhotic patients with adjuvant therapy of NS oil may have some benefit against hepatic encephalopathy

  8. The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Tang, Chao; Xue, Hongli; Bai, Changlin; Fu, Rong; Wu, Anhua

    2010-12-01

    Disruption of blood-brain barrier (BBB) and edema formation play a key role in the development of neurological dysfunction after cerebral ischemia. In this study, the effects of Tanshinone IIA (Tan IIA), one of the active ingredients of Salvia miltiorrhiza root, on the BBB and brain edema after transient middle cerebral artery occlusion in rats were examined. Our study demonstrated that Tan IIA reduced brain infarct area, water content in the ischemic hemisphere. Furthermore, Tan IIA significantly decreased BBB permeability to Evans blue, suppressed the expression of intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), inhibited the degradation of tight junction proteins zonula occludens-1 (ZO-1) and Occludin. These results demonstrated that Tan IIA was effective for attenuating the extent of brain edema formation in response to ischemia injury in rats, partly by Tan IIA's protective effect on the BBB. Our results may have implications in the treatment of brain edema in cerebral ischemia.

  9. Oxymatrine attenuated isoproterenol-induced heart failure in rats via regulation of COX-2/PGI2 pathway.

    Science.gov (United States)

    Zhou, Ru; Xu, Qingbin; Xu, Yehua; Xiong, Aiqin; Wang, Yang; Ma, Ping

    2016-12-01

    Oxymatrine (OMT) is an active constituent of traditional Chinese herb Sophora japonica Ait which has been shown to exert potent anti-inflammatory,anti-oxidant and anti-fibrosis properties. Our previous studies have demonstrated that OMT has protective effects on isoproterenol-induced heart failure in rats through regulation of DDAH/ADMA metabolism pathway.In this study,we further investigated whether OMT could attenuate isoproterenol-induced heart failure through the regulation of COX-2/PGI2 pathway. Heart failure was induced in Sprague-Dawley rats by 5mg/kg isoproterenol subcutaneous injection for 7days. The rats were maintained on normal diet and randomly divided into five groups: control, isoproterenol, isoproterenol with OMT (50, 100mg/kg), and OMT alone groups (n=12 in each group). Serum brain natruretic peptide (BNP, a heart failure biomarker), histopathological variables, expression of Cytosolic phospholipase A2 (cPLA2), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and Prostacyclin synthase (PGIS) were analysed. Administration of OMT significantly reduced the increased BNP in plasm of isoproterenol-induced rats, attenuated cardiac fibrosis,suppressed overexpression of myocardial COX-1 expression, up-regulated COX-2 and PGIS expression, but had no effects on isoproterenol-induced elevated protein cPLA2. And compared with control group, any indexes in sham rats treated with OMT (100mg/kg) alone were unaltered. These results demonstrated that OMT has cardioprotective effects on isoproterenol-induced heart failure in rats by regulating COX-2/PGI2 pathway. Copyright © 2016. Published by Elsevier Masson SAS.

  10. Methylophiopogonanone A Protects against Cerebral Ischemia/Reperfusion Injury and Attenuates Blood-Brain Barrier Disruption In Vitro.

    Directory of Open Access Journals (Sweden)

    Mingbao Lin

    Full Text Available Methylophiopogonanone A (MO-A, an active homoisoflavonoid of the Chinese herb Ophiopogon japonicus which has been shown to have protective effects on cerebral ischemia/reperfusion (I/R injury, has been demonstrated to have anti-inflammatory and anti-oxidative properties. However, little is known about its role in cerebral I/R injury. Therefore, in this study, by using a middle cerebral artery occlusion (MCAO and reperfusion rat model, the effect of MO-A on cerebral I/R injury was examined. The results showed that MO-A treatment reduced infarct volume and brain edema, improved neurological deficit scores, reversed animal body weight decreases, and increased animal survival time in the stroke groups. Western blotting showed that MO-A suppressed MMP-9, but restored the expression of claudin-3 and claudin-5. Furthermore, transmission electron microscopy were monitored to determine the blood-brain barrier (BBB alterations in vitro. The results showed that MO-A markedly attenuated BBB damage in vitro. Additionally, MO-A inhibited ROS production in ECs and MMP-9 release in differentiated THP-1 cells in vitro, and suppressed ICAM-1 and VCAM-1 expression in ECs and leukocyte/EC adhesion. In conclusion, our data indicate that MO-A has therapeutic potential against cerebral I/R injury through its ability to attenuate BBB disruption by regulating the expression of MMP-9 and tight junction proteins.

  11. Treadmill Exercise Preconditioning Attenuates Lung Damage Caused by Systemic Endotoxemia in Type 1 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Ching-Hsia Hung

    2013-01-01

    Full Text Available Endotoxemia induces a series of inflammatory responses that may result in lung injury. However, heat shock protein72 (HSP72 has the potential to protect the lungs from damage. The objective of this study was to determine whether prior exercise conditioning could increase the expression of HSP72 in the lungs and attenuate lung damage in diabetic rats receiving lipopolysaccharide (LPS. Streptozotocin was used to induce diabetes in adult male Wistar rats. Rats were randomly assigned to sedentary or exercise groups. Rats in the exercise condition ran on a treadmill 5 days/week, 30–60 min/day, with an intensity of 1.0 mile/hour over a 3-week period. Rats received an intravenous infusion of LPS after 24 hrs from the last training session. Elevated lavage tumor necrosis factor-alpha (TNF-α level in response to LPS was more marked in diabetic rats. HSP72 expression in lungs was significantly increased after exercise conditioning, but less pronounced in diabetic rats. After administration of LPS, exercised rats displayed higher survival rate as well as decreased lavage TNF-α level and lung edema in comparison to sedentary rats. Our findings suggest that exercise conditioning could attenuate the occurrence of inflammatory responses and lung damage, thereby reducing mortality rate in diabetic rats during endotoxemia.

  12. Biochanin-A attenuates neuropathic pain in diabetic rats

    Directory of Open Access Journals (Sweden)

    Venkateswarlu Chundi

    2016-10-01

    Conclusion: Biochanin-A demonstrated better efficacy in reversing mechanical allodynia than mechanical hyperalgesia. Biochanin-A could be a good drug candidate for further studies to establish the mechanism of attenuation of neuropathic pain.

  13. Pretreatment with curcumin attenuates anxiety while strengthens memory performance after one short stress experience in male rats.

    Science.gov (United States)

    Haider, Saida; Naqvi, Fizza; Batool, Zehra; Tabassum, Saiqa; Sadir, Sadia; Liaquat, Laraib; Naqvi, Faizan; Zuberi, Nudrat Anwer; Shakeel, Hina; Perveen, Tahira

    2015-06-01

    It is observed that memories are more strengthened in a stressful condition. Studies have also demonstrated an association between stressful events and the onset of depression and anxiety. Considering the nootropic, anxiolytic and antidepressant-like properties of curcumin in various experimental approaches, we appraised the beneficial effects of this herb on acute immobilization stress-induced behavioral and neurochemical alterations. Rats in test group were administrated with curcumin (200mg/kg/day), dissolved in neutral oil, for 1 week. Both control and curcumin-treated rats were divided into unstressed and stressed groups. Rats in the stressed group were subjected to immobilization stress for 2h. After stress, the animals were subjected to behavioral tests. Immobilization stress induced an anxiogenic behavior in rats subjected to elevated plus maze test (EPM). Locomotor activity was also significantly increased following the acute immobilization stress. Pre-administration of curcumin prevented the stress-induced behavioral deficits. Highest memory performance was observed in stressed rats that were pre-treated with curcumin in Morris water maze (MWM). Brain malondialdehyde (MDA) levels, catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and acetylcholinesterase (AChE) activities were also estimated. Present study suggests a role of antioxidant enzymes in the attenuation of acute stress induced anxiety by curcumin. The findings therefore suggest that supplementation of curcumin may be beneficial in the treatment of acute stress induced anxiety and enhancement of memory function. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Folic acid supplementation attenuates hyperhomocysteinemia-induced preeclampsia-like symptoms in rats

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Yan Cui; Jing Ge; Meijing Ma

    2012-01-01

    Folic acid participates in the metabolism of homocysteine and lowers plasma homocysteine levels directly or indirectly. To establish a hyperhomocysteinemic pregnant rat model, 2 mL of DL-homocysteine was administered daily by intraperitoneal injection at a dose of 200 mg/kg from day 10 to day 19 of gestation. Folic acid was administered by intragastric administration at a dose of 20 mg/kg during the period of preeclampsia induction. Results showed that systolic blood pressure, proteinuria/creatinine ratio, and plasma homocysteine levels in the hyperhomocysteinemic pregnant rats increased significantly, and that body weight and brain weight of rat pups significantly decreased. Folic acid supplementation markedly reversed the above-mentioned abnormal changes of hyperhomocysteinemic pregnant rats and rat pups. These findings suggest that folic acid can alleviate the symptoms of hyperhomocysteinemia- induced preeclampsia in pregnant rats without influencing brain development of rat pups.

  15. Salvianolic Acids for Injection (SAFI) suppresses inflammatory responses in activated microglia to attenuate brain damage in focal cerebral ischemia.

    Science.gov (United States)

    Zhuang, Pengwei; Wan, Yanjun; Geng, Shihan; He, Ying; Feng, Bo; Ye, Zhengliang; Zhou, Dazheng; Li, Dekun; Wei, Hongjun; Li, Hongyan; Zhang, Yanjun; Ju, Aichun

    2017-02-23

    Inflammatory reactions induced by microglia in the brain play crucial roles in ischemia/reperfusion (I/R) cerebral injuries. Microglia activation has been shown to be closely related to TLR4/NF-κB signal pathways. Salvianolic acids for injection (SAFI) have been used in clinical practice to treat ischemic stroke with reported neuroprotective effects; however, the underlying mechanisms are still uncertain. First, we studied the effect of SAFI on inflammatory responses in LPS-stimulated BV-2 microglia. Then, to discover whether the beneficial in vitro effects of SAFI lead to in vivo therapeutic effects, an MCAO (Middle cerebral artery occlusion) rat model was further employed to elucidate the probable mechanism of SAFI in treating ischemic stroke. Rats in the SAFI group were given SAFI (23 or 46mg/kg) before I/R injury. The results showed that SAFI treatment significantly decreased neuroinflammation and the infarction volume compared with the vehicle group. Activation of microglia cells was reduced, and TLR4/NF-κB signals, which were markedly inhibited by SAFI treatment in ischemic hemisphere, were accompanied by reduced expression and release of cytokines IL-1β and IL-6. This study provides evidence that SAFI effectively protects the brain after cerebral ischemia, which may be caused by attenuating inflammation in microglia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Sargassum polycystum extract attenuates oxidative stress on diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Muhamad Firdaus; Setyawati Soeharto

    2016-01-01

    ABSTRACT Objective:To evaluate hypoglycemic, free radical scavenging and improving antioxidant enzymes activities on diabetic-induced streptozotocin rats bySargassum polycystum (S. polycystum) extract. Methods: The seaweed extract was obtained by maceration, concentration and freeze drying, respectively. Acute toxicity was investigated on 25 rats. Forty eight of rats were used to study anti-stress oxidative of extract and divided into eight groups, where the first and fifth group were normal and diabetic control. The normal and diabetic treated groups were administered orally with extracts ofS. polycystum for 28 days. The blood glucose and body weight of rats were observed each week. The blood was obtained for determination of malondialdehide, superoxide dismutase, catalase and glutathione peroxidase, respectively. Results:Extract ofS. polycystum revealed no mortality and it was grouped as relatively non-toxic substance. The normal rats revealed difference statistically to the diabetic rats. The diabetic rats treated extract showed decreasing of blood glucose level and increasing of body weight. The diabetic rats were treated with 450 mg/kg of extract showed the higher oxidative stress augmentation than other diabetic treatments. It was caused free radical scavenging and induction of antioxidant enzymes activity by brown seaweed extract. Conclusions: The extract ofS. echinocarpum reduce oxidative stress on diabetic-induced streptozotocin rats and demonstrate as candidate of antioxidant diabetic substances.

  17. Intravenous multipotent adult progenitor cell therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury.

    Science.gov (United States)

    Bedi, Supinder S; Hetz, Robert; Thomas, Chelsea; Smith, Philippa; Olsen, Alex B; Williams, Stephen; Xue, Hasen; Aroom, Kevin; Uray, Karen; Hamilton, Jason; Mays, Robert W; Cox, Charles S

    2013-12-01

    We previously demonstrated that the intravenous delivery of multipotent adult progenitor cells (MAPCs) after traumatic brain injury (TBI) in rodents provides neuroprotection by preserving the blood-brain barrier and systemically attenuating inflammation in the acute time frame following cell treatment; however, the long-term behavioral and anti-inflammatory effects of MAPC administration after TBI have yet to be explored. We hypothesized that the intravenous injection of MAPCs after TBI attenuates the inflammatory response (as measured by microglial morphology) and improves performance at motor tasks and spatial learning (Morris water maze [MWM]). MAPCs were administered intravenously 2 and 24 hours after a cortical contusion injury (CCI). We tested four groups at 120 days after TBI: sham (uninjured), injured but not treated (CCI), and injured and treated with one of two concentrations of MAPCs, either 2 million cells per kilogram (CCI-2) or 10 million cells per kilogram (CCI-10). CCI-10 rats showed significant improvement in left hind limb deficit on the balance beam. On the fifth day of MWM trials, CCI-10 animals showed a significant decrease in both latency to platform and distance traveled compared with CCI. Probe trials revealed a significant decrease in proximity measure in CCI-10 compared with CCI, suggesting improved memory retrieval. Neuroinflammation was quantified by enumerating activated microglia in the ipsilateral hippocampus. We observed a significant decrease in the number of activated microglia in the dentate gyrus in CCI-10 compared with CCI. Our results demonstrate that intravenous MAPC treatment after TBI in a rodent model offers long-term improvements in spatial learning as well as attenuation of neuroinflammation.

  18. Ciclosporin does not attenuate intracranial hypertension in rats with acute hyperammonaemia

    DEFF Research Database (Denmark)

    Larsen, Rikke Hebo; Kjær, Mette S; Eefsen, Martin;

    2013-01-01

    To investigate the neuroprotective potential of ciclosporin during acute liver failure. We evaluated the effect of intrathecally administered ciclosporin on intracranial pressure, brain water content and aquaporin-4 expression in a rat model with acute hyperammonaemia....

  19. Selenite cataract and its attenuation by vitamin E in wistar rats.

    Directory of Open Access Journals (Sweden)

    Mathew Joe

    2003-01-01

    Full Text Available Purpose: To study the role of vitamin E in preventing cataract formation in experimental animals. Methods: An experimental model (selenite cataract was selected for this study. Selenite cataract was produced in rats by subcutaneous administration of sodium selenite. Biochemical and histological changes following induction of selenite cataract in weanling wistar rats were studied vis-à-vis the role of vitamin E in attenuating or preventing cataractogenesis. Results: Vitamin E was capable of preventing selenite cataractogenesis. Selenite cataract did not develop in 91.6% (11 of 12 and 76.7% (8 of 12 vitamin E treated rats, when administered on the 12th and 10th post partum day respectively. Conclusion: The study confirmed that selenite induced cataract in wistar rats is attenuated by vitamin E.

  20. Treatment with dexamethasone and vitamin D3 attenuates neuroinflammatory age-related changes in rat hippocampus.

    Science.gov (United States)

    Moore, Michelle; Piazza, Alessia; Nolan, Yvonne; Lynch, Marina A

    2007-10-01

    Among the changes which occur in the brain with age is an increase in hippocampal concentration of proinflammatory cytokines like interleukin-1beta (IL-1beta) and an increase in IL-1beta-induced signaling. Here we demonstrate that the increase in IL-1beta concentration is accompanied by an increase in expression of IL-1 type I receptor (IL-1RI) and an age-related increase in microglial activation, as shown by increased expression of the cell surface marker, major histocompatibility complex II (MHCII) and increased MHCII staining. The evidence indicates that these age-related changes were abrogated in hippocampus of aged rats treated with dexamethasone and vitamin D3. Similarly, the age-related increases in activation of the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), as well as caspase-3 and PARP were all attenuated in hippocampal tissue prepared from rats that received dexamethasone and vitamin D3. The data indicate that dexamethasone and vitamin D3 ameliorated the age-related increase in IFNgamma and suggest that IFNgamma may be the trigger leading to microglial activation, since it increases MHCII mRNA and IL-1beta release from cultured glia. In parallel with its ability to decrease microglial activation in vivo, we report that treatment of cultured glia with dexamethasone and vitamin D3 blocked the lipopolysaccharide increased MHCII mRNA and IL-1beta concentration, while the IL-1beta-induced increases in activation of JNK and caspase 3 in cultured neurons were also reversed by treatment with dexamethasone and vitamin D3. The data suggest that the antiinflammatory effect of dexamethasone and vitamin D3 derives from their ability to downreguate microglial activation.

  1. Environmental enrichment attenuates cognitive deficits, but does not alter neurotrophin gene expression in the hippocampus following lateral fluid percussion brain injury.

    Science.gov (United States)

    Hicks, R R; Zhang, L; Atkinson, A; Stevenon, M; Veneracion, M; Seroogy, K B

    2002-01-01

    Environmental enrichment attenuates neurological deficits associated with experimental brain injury. The molecular events that mediate these environmentally induced improvements in function after injury are largely unknown, but neurotrophins have been hypothesized to be a neural substrate because of their role in cell survival and neural plasticity. Furthermore, exposure to complex environments in normal animals increases neurotrophin gene expression. However, following an ischemic injury, environmental enrichment decreases neurotrophin mRNA levels. Whether these contrasting findings are attributable to differences between injured and uninjured animals or are dependent upon the specific type of brain injury has not been determined. We examined the effects of 14 days of environmental enrichment following a lateral fluid percussion brain injury on behavior and gene expression of brain-derived neurotrophic factor, its high-affinity receptor, TrkB, and neurotrophin-3 in the rat hippocampus. Environmental enrichment attenuated learning deficits in the injured animals, but neither the injury nor housing conditions influenced neurotrophin/receptor mRNA levels. From these data we suggest that following brain trauma, improvements in learning associated with environmental enrichment are not mediated by alterations in brain-derived neurotrophic factor, TrkB or neurotrophin-3 gene expression.

  2. β-Lactamase inhibitor, clavulanic acid, attenuates ethanol intake and increases glial glutamate transporters expression in alcohol preferring rats.

    Science.gov (United States)

    Hakami, Alqassem Y; Sari, Youssef

    2017-09-14

    Studies from our laboratory showed that upregulation of glutamate transporter 1 (GLT-1) and cystine-glutamate exchanger (xCT) expression with ceftriaxone, β-lactam antibiotic, in the brain was associated with attenuation of ethanol consumption. In this study, we tested clavulanic acid, which is another β-lactam compound with negligible antimicrobial activity, on ethanol consumption and expression of GLT-1, xCT and glutamate aspartate transporter (GLAST) in male alcohol-preferring (P) rats. Clavulanic acid has the central β-lactam pharmacophore that is critical for the upregulation of GLT-1 and xCT expression. We found that clavulanic acid, at 5mg/kg (i.p.) dose, significantly attenuated ethanol consumption and ethanol preference in P rats as compared to vehicle-treated group. This effect was associated with a significant increase in water intake in clavulanic acid treated group. Importantly, we found that clavulanic acid increased the expression of GLT-1 and xCT in nucleus accumbens. However, there was no effect of clavulanic acid on GLAST expression in the nucleus accumbens. Clavulanic acid treatment did not upregulate the expression of GLT-1, xCT and GLAST in prefrontal cortex. These findings revealed that clavulanic acid at 20-40 fold lower dose than ceftriaxone can attenuate ethanol consumption, in part through upregulation of GLT-1 and xCT expression in the nucleus accumbens. Thus, we suggest that clavulanic acid might be used as an alternative option to ceftriaxone to attenuate ethanol drinking behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Probiotic Cheese Attenuates Exercise-induced Immune Suppression In Wistar Rats

    OpenAIRE

    Lollo P.C.B.; Cruz A.G.; Morato P.N.; Moura C.S.; Carvalho-Silva L.B.; Oliveira C.A.F.; Faria J.A.F.; Amaya-Farfan J.

    2012-01-01

    Intense physical activity results in a substantial volume of stress and hence a significant probability of immunosuppression in athletes, with milk proteins being, perhaps, the most recommended protein supplements. Consumption of a probiotic cheese can attenuate immune suppression induced by exhausting exercise in rats. A popular Brazilian fresh cheese (Minas Frescal cheese) containing Lactobacillus acidophilus LA14 and Bifidobacterium longum BL05 was fed for 2 wk to adult Wistar rats, which ...

  4. Sleep deprivation attenuates experimental stroke severity in rats

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Constantinescu, Alexandra Oana; Balseanu, Adrian

    2010-01-01

    Indirect epidemiological and experimental evidence suggest that the severity of injury during stroke is influenced by prior sleep history. The aim of our study was to test the effect of acute sleep deprivation on early outcome following experimental stroke. Young male Sprague-Dawley rats (n=20......) were subjected to focal cerebral ischemia by reversible right middle cerebral artery occlusion (MCAO) for 90 min. In 10 rats, MCAO was performed just after 6-h of total sleep deprivation (TSD) by "gentle handling", whereas the other rats served as controls. Neurological function during the first week...

  5. Loss of Parvalbumin in the Hippocampus of MAM Schizophrenia Model Rats Is Attenuated by Peripubertal Diazepam

    OpenAIRE

    Du, Yijuan; Grace, Anthony A.

    2016-01-01

    Background: Loss of parvalbumin interneurons in the hippocampus is a robust finding in schizophrenia brains. Rats exposed during embryonic day 17 to methylazoxymethanol acetate exhibit characteristics consistent with an animal model of schizophrenia, including decreased parvalbumin interneurons in the ventral hippocampus. We reported previously that peripubertal administration of diazepam prevented the emergence of pathophysiology in adult methylazoxymethanol acetate rats. Methods: We used an...

  6. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  7. Pyrrolidine Dithiocarbamate Attenuates Paraquat-Induced Lung Injury in Rats

    Directory of Open Access Journals (Sweden)

    Xiuli Chang

    2009-01-01

    PQ+PDTC-treated groups than that of PQ-treated groups (P<.05. The histopathological changes in the PQ+PDTC-treated groups were milder than those of PQ groups. Our results suggested that PDTC treatment significantly attenuated paraquat-induced pulmonary damage.

  8. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts.

    Science.gov (United States)

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-02-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats.

  9. 26Al uptake and accumulation in the rat brain

    Science.gov (United States)

    Yumoto, S.; Nagai, H.; Imamura, M.; Matsuzaki, H.; Hayashi, K.; Masuda, A.; Kumazawa, H.; Ohashi, H.; Kobayashi, K.

    1997-03-01

    To investigate the cause of Alzheimer's disease (senile dementia), 26Al incorporation in the rat brain was studied by accelerator mass spectrometry (AMS). When 26Al was injected into healthy rats, a considerable amount of 26Al entered the brain (cerebrum) through the blood-brain barrier 5 days after a single injection, and the brain 26Al level remained almost constant from 5 to 270 days. On the other hand, the level of 26Al in the blood decreased remarkably 75 days after injection. Approximately 89% of the 26Al taken in by the brain cell nuclei bound to chromatin. This study supports the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium (Al) in the brain, and brain cell nuclei.

  10. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ... SOD is an important enzyme family in living cells for maintaining ..... one unit of activity with oxidation rate of organic substrate in.

  11. Using (31)P-MRI of hydroxyapatite for bone attenuation correction in PET-MRI: proof of concept in the rodent brain.

    Science.gov (United States)

    Lebon, Vincent; Jan, Sébastien; Fontyn, Yoann; Tiret, Brice; Pottier, Géraldine; Jaumain, Emilie; Valette, Julien

    2017-12-01

    The correction of γ-photon attenuation in PET-MRI remains a critical issue, especially for bone attenuation. This problem is of great importance for brain studies due to the density of the skull. Current techniques for skull attenuation correction (AC) provide indirect estimates of cortical bone density, leading to inaccurate estimates of brain activity. The purpose of this study was to develop an alternate method for bone attenuation correction based on NMR. The proposed approach relies on the detection of hydroxyapatite crystals by zero echo time (ZTE) MRI of (31)P, providing individual and quantitative assessment of bone density. This work presents a proof of concept of this approach. The first step of the method is a calibration experiment to determine the conversion relationship between the (31)P signal and the linear attenuation coefficient μ. Then (31)P-ZTE was performed in vivo in rodent to estimate the μ-map of the skull. (18)F-FDG PET data were acquired in the same animal and reconstructed with three different AC methods: (31)P-based AC, AC neglecting the bone and the gold standard, CT-based AC, used to comparison for the other two methods. The calibration experiment provided a conversion factor of (31)P signal into μ. In vivo (31)P-ZTE made it possible to acquire 3D images of the rat skull. Brain PET images showed underestimation of (18)F activity in peripheral regions close to the skull when AC neglected the bone (as compared with CT-based AC). The use of (31)P-derived μ-map for AC leads to increased peripheral activity, and therefore a global overestimation of brain (18)F activity. In vivo (31)P-ZTE MRI of hydroxyapatite provides μ-map of the skull, which can be used for attenuation correction of (18)F-FDG PET images. This study is limited by several intrinsic biases associated with the size of the rat brain, which are unlikely to affect human data on a clinical PET-MRI system.

  12. DIBROMOACETIC ACID ATTENUATES A DIMETHYLDITHIOCARBAMATE-INDUCED SUPPRESSION OF THE RAT LH SURGE

    Science.gov (United States)

    DIBROMOACETIC ACID ATTENUATES A DITHIOCARBAMATE-INDUCED SUPPRESSION OF THE LH SURGE IN THE RAT. Jerome M. Goldman, Ashley S. Murr, Angela R. Buckelew, W. Keith McElroy and Janet M. Ferrell. Repro. Toxicol. Div., NHEERL, ORD, US EPA, RTP, NCAt elevated concentrations, the ...

  13. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity.

    Science.gov (United States)

    Kunze, Reiner; Urrutia, Andrés; Hoffmann, Angelika; Liu, Hui; Helluy, Xavier; Pham, Mirko; Reischl, Stefan; Korff, Thomas; Marti, Hugo H

    2015-04-01

    Brain edema is a hallmark of various neuropathologies, but the underlying mechanisms are poorly understood. We aim to characterize how tissue hypoxia, together with oxidative stress and inflammation, leads to capillary dysfunction and breakdown of the blood-brain barrier (BBB). In a mouse stroke model we show that systemic treatment with dimethyl fumarate (DMF), an antioxidant drug clinically used for psoriasis and multiple sclerosis, significantly prevented edema formation in vivo. Indeed, DMF stabilized the BBB by preventing disruption of interendothelial tight junctions and gap formation, and decreased matrix metalloproteinase activity in brain tissue. In vitro, DMF directly sustained endothelial tight junctions, inhibited inflammatory cytokine expression, and attenuated leukocyte transmigration. We also demonstrate that these effects are mediated via activation of the redox sensitive transcription factor NF-E2 related factor 2 (Nrf2). DMF activated the Nrf2 pathway as shown by up-regulation of several Nrf2 target genes in the brain in vivo, as well as in cerebral endothelial cells and astrocytes in vitro, where DMF also increased protein abundance of nuclear Nrf2. Finally, Nrf2 knockdown in endothelial cells aggravated subcellular delocalization of tight junction proteins during ischemic conditions, and attenuated the protective effect exerted by DMF. Overall, our data suggest that DMF protects from cerebral edema formation during ischemic stroke by targeting interendothelial junctions in an Nrf2-dependent manner, and provide the basis for a completely new approach to treat brain edema.

  14. Porcine Brain Extract Attenuates Memory Impairments Induced by Focal Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Jinatta Jittiwat

    2009-01-01

    Full Text Available Problem statement: Stroke or cerebral ischemia has been recognized as one important problem worldwide. To date, the effectiveness of protective and therapeutic strategies against stroke is still very limited. Therefore, the development of novel strategy is required. Porcine brain is traditional believed to improve brain functions. Recent studies showed that the extract of porcine brain could protect against brain damage related to the oxidative stress, therefore, we hypothesized that it could protect against brain damage in stroke. Approach: To test the potential of porcine brain extract as the novel protective supplement against stroke, various doses of porcine brain extract at doses of 0.5 and 2.5 mg kg-1 b.w. were orally given to male Wistar rats, weighing 300-350 g, at the period of 14 days before and 21 days after the occlusion of right middle cerebral artery. Then, all rats were determined the neurological score, motor performance, cognitive function and brain infarct volume. Moreover, the possible neuroprotective mechanisms of the extract were also determined via the alteration of Malondialdehyde (MDA or lipid peroxidation product and via the activities of scavenger enzymes including Superoxide Dismutase (SOD, Catalase (CAT and Glutathione Peroxides (GPx. Results: The results showed that the low dose of porcine extract decreased the infarct volume and improved brain functions including neurological score, motor performance and memory deficit. In addition, it also decreased MDA but increased the activities of SOD, CAT and GPx. Conclusion: Our results suggested the potential role of porcine brain extract as neuroprotectant. The possible underlying mechanism appeared to be related to the enhanced activities of SOD, CAT and GPx which in turn resulted in the decrease MDA. Moreover, our findings may shed light on the pharmacologic basis for the clinical application of traditional Chinese medicine to protect against stroke.

  15. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats.

    Science.gov (United States)

    Kumar Sarwa, Khomendra; Rudrapal, Mithun; Mazumder, Bhaskar

    2015-12-01

    In this study, topical ethosomal formulation of capsaicin was prepared and evaluated for bio-efficacy in arthritic rats. Physical and biological characterizations of prepared capsaicin-loaded nano vesicular systems were also carried out. Ethosomal capsaicin showed significant reduction of rat paw edema along with promising antinociceptive action. The topical antiarthritic efficacy of prepared formulation of capsaicin was found more than that of Thermagel, a marketed gel of capsaicin. From toxicological study, no predictable signs of toxicity such as skin irritation (of experimental rats) were observed. Based on this finding, ethosomal capsaicin could be proposed as an effective as well as a safe topical delivery system for the long-term treatment of arthritis and associated inflammo-musculoskeletal disorders. Such exciting result would eventually enlighten the analgesic and anti-inflammatory potential of capsaicin for topical remedy.

  16. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    Science.gov (United States)

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  17. Rutin Attenuates Hepatotoxicity in High-Cholesterol-Diet-Fed Rats

    OpenAIRE

    AlSharari, Shakir D.; Al-Rejaie, Salim S.; Abuohashish, Hatem M.; Ahmed, Mohamed M.; Hafez, Mohamed M

    2016-01-01

    Background and Objective. High-cholesterol diet (HCD) intends to increase the oxidative stress in liver tissues inducing hepatotoxicity. Rutin is a natural flavonoid (vitamin p) which is known to have antioxidative properties. The aim of the present study was to investigate the potential effects of Rutin on hypercholesterolemia-induced hepatotoxicity in rats. Materials and Methods. Male Wistar rats were divided into four groups: G-I control, G-II Rutin, G-III HCD, and G-IV Rutin + HCD. The li...

  18. Increased liking for a solution is not necessary for the attenuation of neophobia in rats.

    Science.gov (United States)

    Neath, Karly N; Limebeer, Cheryl L; Reilly, Steve; Parker, Linda A

    2010-06-01

    Recent evidence suggests that liking and wanting of food rewards can be experimentally dissociated (e.g., Berridge, 1996); this dissociation extends to attenuated neophobia in the present study. Rats tend to eat less of a novel food than a familiar food, a phenomenon called neophobia. The present experiments evaluated whether attenuation of neophobia by prior exposure reflects enhanced liking of the flavor using the Taste Reactivity (TR) test. In Experiment 1, rats given five 10-s TR trials with water or various concentrations of saccharin solution (0.1%, 0.2%, 0.5%) did not show a change in the number of hedonic reactions displayed across trials. However, in a subsequent consumption test from a bottle containing 0.25% saccharin solution, rats with no prior saccharin exposure (group water) consumed less than rats with prior saccharin exposure; that is they displayed neophobia. In Experiment 2, whether rats received five 10-s TR trials with water or 0.5% saccharin solution, they did not display a difference in hedonic reactions to 0.25% saccharin solution in two 5-min TR test trials. These results suggest that the attenuation of neophobia is evidenced as an increase in the tendency to approach a bottle containing the flavored solution (wanting), but not as an enhanced liking of that solution.

  19. Rapid hybrid encoding for high-resolution whole-brain fluid-attenuated imaging.

    Science.gov (United States)

    Lee, Hoonjae; Sohn, Chul-Ho; Park, Jaeseok

    2013-12-01

    Single-slab three-dimensional (3D) turbo spin-echo (TSE) imaging combined with inversion recovery (IR), which employs short, spatially non-selective refocusing pulses and signal prescription based variable refocusing flip angles (VFA) to increase imaging efficiency, was recently introduced to produce fluid-attenuated brain images for lesion detection. Despite the advantages, the imaging efficiency in this approach still remains limited because a substantially long time of inversion is needed to selectively suppress the signal intensity of cerebrospinal fluid (CSF) while fully recovering that of brain tissues. The purpose of this work is to develop a novel, rapid hybrid encoding method for highly efficient whole-brain fluid-attenuated imaging. In each time of repetition, volumetric data are continuously encoded using the hybrid modular acquisition in a sequential fashion even during IR signal transition, wherein reversed fast imaging with steady-state free precession (PSIF) is employed to encode intermediate-to-high spatial frequency signals prior to CSF nulling, while VFA-TSE is used to collect low-to-intermediate spatial frequency signals afterwards. Gradient-induced spin de-phasing between a pair of neighboring radio-frequency (RF) pulses in both PSIF and TSE modules is kept identical to avoid the occurrence of multiple echoes in a single acquisition window. Additionally, a two-step, alternate RF phase-cycling scheme is employed in the low spatial frequency region to eliminate free induction decay induced edge artifacts. Numerical simulations of the Bloch equations were performed to evaluate signal evolution of brain tissues along the echo train while optimizing imaging parameters. In vivo studies demonstrate that the proposed technique produces high-resolution isotropic fluid-attenuated whole-brain images in a clinically acceptable imaging time with substantially high signal-to-noise ratio for white matter while retaining lesion conspicuity.

  20. Influence of Punica granatum L. on region specific responses in rat brain during Alloxan-Induced diabetes

    Institute of Scientific and Technical Information of China (English)

    Sushil Kumar Middha; Talambedu Usha; Tekupalli RaviKiran

    2012-01-01

    Objective: The present study was carried out to investigate the effects of Punica granatum peel methanolic extract (PGPE) on cerebral cortex (CC) and Hippocampus (HC) brain antioxidant defense system and markers of lipid and protein oxidation in alloxan induced diabetic rats.Methods:Oral administration of PGPE (75 and 150 mg of kg body weight) for 45 days resulted in significant reduction in blood glucose levels. Results: Supplementation of diabetic rats with PGPE showed increased activities of SOD and GPx with concomitant decrease in MDA and PC content. Region-specific changes were more evident in the HC when compared to CC. Conclusions: The present study indicated that PGPE can ameliorate brain oxidative stress in alloxan induced diabetic rats by up regulating antioxidant defense mechanism by attenuating lipid and protein oxidation. PGPE thus may be used as a potential therapeutic agent in preventing diabetic complications in the brain.

  1. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  2. Effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart.

    Science.gov (United States)

    Kansal, Sunil Kumar; Jyoti, Uma; Sharma, Samridhi; Kaura, Arun; Deshmukh, Rahul; Goyal, Sandeep

    2015-06-01

    Hyperlipidemia is regarded as independent risk factor in the development of ischemic heart disease, and it can increase the myocardial susceptibility to ischemia-/reperfusion (I/R)-induced injury. Hyperlipidemia attenuates the cardioprotective response of ischemic preconditioning (IPC). The present study investigated the effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat hearts. Hyperlipidemia was induced in rat by feeding high-fat diet (HFD) for 6 weeks then the serum lipid profile was observed. In experiment, the isolated Langendorff rat heart preparation was subjected to 4 cycles of ischemic preconditioning (IPC), then 30 min of ischemia followed by 120 min of reperfusion. Myocardial infarct size was elaborated morphologically by triphenyltetrazolium chloride (TTC) staining and biochemically by lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) release from coronary effluent and left ventricular collagen content. However, the effect of zinc supplement, i.e., zinc pyrithione (10 μM) perfused during reperfusion for 120 min, significantly abrogated the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart whereas administration of chelator of this zinc ionophore, i.e., N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN; 10 μM), perfused during reperfusion 2 min before the perfusion of zinc pyrithione abrogated the cardioprotective effect of zinc supplement during experiment in hyperlipidemic rat heart. Thus, the administration of zinc supplements limits the infarct size, LDH, and CK-MB and enhanced the collagen level which suggests that the attenuated cardioprotective effect of IPC in hyperlipidemic rat is due to zinc loss during reperfusion caused by ischemia/reperfusion.

  3. Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats.

    Science.gov (United States)

    Fiordaliso, Fabio; Bianchi, Roberto; Staszewsky, Lidia; Cuccovillo, Ivan; Doni, Mirko; Laragione, Teresa; Salio, Monica; Savino, Costanza; Melucci, Silvia; Santangelo, Francesco; Scanziani, Eugenio; Masson, Serge; Ghezzi, Pietro; Latini, Roberto

    2004-11-01

    Diabetes and oxidative stress concur to cardiac myocyte death in various experimental settings. We assessed whether N-acetyl-L-cysteine (NAC), an antioxidant and glutathione precursor, has a protective role in a rat model of streptozotocin (STZ)-induced diabetes and in isolated myocytes exposed to high glucose (HG). Diabetic rats were treated with NAC (0.5 g/kg per day) or vehicle for 3 months. At sacrifice left ventricle (LV) myocyte number and size, collagen deposition and reactive oxygen species (ROS) were measured by quantitative histological methods. Diabetes reduced LV myocyte number by 29% and increased myocyte volume by 20% compared to non-diabetic controls. NAC protected from myocyte loss (+25% vs. untreated diabetics, P < 0.05) and reduced reactive hypertrophy (-16% vs. untreated diabetics, P < 0.05). Perivascular fibrosis was high in diabetic rats (+88% vs. control, P < 0.001) but prevented by NAC. ROS production and fraction of ROS-positive cardiomyocyte nuclei were drastically raised in diabetic rats (2.4- and 5.1-fold vs. control, P < 0.001) and normalized by NAC. In separate experiments, isolated adult rat ventricular myocytes were incubated in a medium containing high concentrations of glucose (HG, 25 mM) +/- 0.01 mM NAC; myocyte survival (Trypan blue exclusion and apoptosis by TUNEL) and glutathione content were evaluated. The number of dead and apoptotic myocytes increased five and 6.7-fold in HG and glutathione decreased by 48% (P < 0.05). NAC normalized cell death and apoptosis and prevented glutathione loss. NAC effectively protects from hyperglycemia-induced myocyte cell death and compensatory hypertrophy through direct scavenging of ROS and replenishment of the intracellular glutathione content.

  4. Protection of Effective Component Group from Xiaoshuan Tongluo on Brain Injury after Chronic Hypoperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    TAN Chu-bing; WANG Hong-qing; TIAN Shuo; GAO Mei; XU Wei-ren; CHEN Ruo-yun; DU Guan-hua

    2011-01-01

    Objective To investigate the protective effects of purified effective component group in extract from Xiaoshuan Tongluo(CGXT)formula on chronic brain ischemia in rats.Methods CGXT 75,150,and 300 mg/kg or vehicle were ig administered daily for four weeks to rats with bilateral common carotid arteries ligation(BCCAL).From the day 24 to 28 after BCCAL,Morris water maze was performed to assess the learning and memory impairment of rats.Four weeks after BCCAL,brain gray and white matter damage were assessed.Results In Morris test,the mean escape latency of rats in the CGXT(150 and 300 mg/kg)groups was significantly shorter than that in the vehicle group.CGXT also attenuated the neuronal damage in hippocampus and cortex and reduced the pathological damage in the optic tract and corpus callosum.Conclusion CGXT could improve learning and memory impairment resulted from BCCAL in rats.These results provide the experimental basis for the clinical use of CGXT in stroke treatment and may help in investigation of multimodal therapy strategies in ischemic cerebrovascular diseases including stroke.

  5. Inhomogeneity in optical properties of rat brain: a study for LLLT dosimetry

    Science.gov (United States)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Yoshimura, Tania M.; Suzuki, Luis C.; Magalhães, Ana C.; Yoshimura, Elisabeth M.; Ribeiro, Martha S.

    2013-03-01

    Over the last few years, low-level light therapy (LLLT) has shown an incredible suitability for a wide range of applications for central nervous system (CNS) related diseases. In this therapeutic modality light dosimetry is extremely critical so the study of light propagation through the CNS organs is of great importance. To better understand how light intensity is delivered to the most relevant neural sites we evaluated optical transmission through slices of rat brain point by point. We experimented red (λ = 660 nm) and near infrared (λ = 808 nm) diode laser light analyzing the light penetration and distribution in the whole brain. A fresh Wistar rat (Rattus novergicus) brain was cut in sagittal slices and illuminated with a broad light beam. A high-resolution digital camera was employed to acquire data of transmitted light. Spatial profiles of the light transmitted through the sample were obtained from the images. Peaks and valleys in the profiles show sites where light was less or more attenuated. The peak intensities provide information about total attenuation and the peak widths are correlated to the scattering coefficient at that individual portion of the sample. The outcomes of this study provide remarkable information for LLLT dose-dependent studies involving CNS and highlight the importance of LLLT dosimetry in CNS organs for large range of applications in animal and human diseases.

  6. Waxholm Space atlas of the Sprague Dawley rat brain

    OpenAIRE

    Papp, Eszter A.; Trygve B. Leergaard; Calabrese, Evan; Johnson, G. Allan; Bjaalie, Jan G.

    2014-01-01

    Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 µm isotropic voxels for the MRI volume and 78 µm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in ...

  7. Can Urtica dioica supplementation attenuate mercury intoxication in Wistar rats?

    Directory of Open Access Journals (Sweden)

    Wafa Siouda

    2015-12-01

    Full Text Available Aim: The objective of this study was to investigate the possible protective role of nettle Urtica dioica (UD against Hg-induced toxicity. Materials and Methods: A total of 28 rats were equally divided into four groups: the control, the Hg (0.8 g HgCl2/kg in the diet, the UD (1.5 ml UD/rat by gavage, and the Hg+UD group. HgCl2 was daily dissolved in distilled water and immediately mixed with the standard diet. A solution of daily infused fresh nettle leaves in boiling water (16 g in 25 ml was obtained and then it was administrated by gavage. Biochemical and reproductive markers, in addition to glutathione (GSH level (liver, kidney and testis and the histological profiles (testis and epididymis were evaluated after 1 month exposure. Results: Compared to the control, the levels of glucose, triglycerides, urea, creatinine, alanine aminotransferase (ALT, aspartate aminotransferase (AST, and alkaline phosphatase (ALP were significantly raised in the Hg group. In the latter group, the concentrations of Mg, Fe, and Ca were significantly decreased. Besides, Hg+UD group has only showed raised AST activity and reduced Mg level. Concerning the fertility markers, Hg has provoked a significant decrease in the spermatozoa’s concentration and motility and in plasma testosterone level as well. Furthermore, hepatic, renal and testicular GSH concentrations have declined significantly in the Hg treated rat compared to the control. A remarkable enhancement of the GSH level was observed in all organs of the UD group. The histological examinations of the Hg group have revealed marked testicular degeneration of the most seminiferous tubules, and showed few sperms in the lumen of epididymis ducts. However, the Hg+UD rats have demonstrated an improved histological structure with the presence of important numbers of sperms in the lumen. In addition, a clear stabilization of organized seminiferous tubules and an increased sperms’ numbers were noted in the UD

  8. Actin purification from a gel of rat brain extracts.

    Science.gov (United States)

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  9. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    Science.gov (United States)

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  10. Fenbendazole treatment may influence lipopolysaccharide effects in rat brain.

    Science.gov (United States)

    Hunter, Randy L; Choi, Dong-Young; Kincer, Jeanie F; Cass, Wayne A; Bing, Guoying; Gash, Don M

    2007-10-01

    In evaluating discrepant results between experiments in our laboratory, we collected data that challenge the notion that anthelminthic drugs like FBZ do not alter inflammatory responses. We found that FBZ significantly modulates inflammation in F344 rats intrastriatally injected with LPS. FBZ treatment of LPS-injected rats significantly increased weight loss, microglial activation, and dopamine loss; in addition, FBZ attenuated the LPS-induced loss of astrocytes. Therefore, FBZ treatment altered the effects of LPS injection. Caution should be used in interpreting data collected from rats treated with LPS and FBZ.

  11. Binge-Like Eating Attenuates Nisoxetine Feeding Suppression, Stress Activation, and Brain Norepinephrine Activity

    Science.gov (United States)

    Bello, Nicholas T.; Yeh, Chung-Yang; Verpeut, Jessica L.; Walters, Amy L.

    2014-01-01

    Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus–norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly

  12. Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity.

    Directory of Open Access Journals (Sweden)

    Nicholas T Bello

    Full Text Available Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat, Binge (sweetened fat, Restrict (calorie deprivation, and Naive (no calorie deprivation/no sweetened fat. Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP, a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h. In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min following restraint stress (1 h. Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP4, but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01. In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz. These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly

  13. Berberine Attenuates Intestinal Mucosal Barrier Dysfunction in Type 2 Diabetic Rats

    Science.gov (United States)

    Gong, Jing; Hu, Meilin; Huang, Zhaoyi; Fang, Ke; Wang, Dingkun; Chen, Qingjie; Li, Jingbin; Yang, Desen; Zou, Xin; Xu, Lijun; Wang, Kaifu; Dong, Hui; Lu, Fuer

    2017-01-01

    Background: Intestinal mucosal barrier dysfunction plays an important role in the development of diabetes mellitus (DM). Berberine (BBR), a kind of isoquinoline alkaloid, is widely known to be effective for both DM and diarrhea. Here, we explored whether the anti-diabetic effect of BBR was related to the intestine mucosal barrier. Methods and Results: The rat model of T2DM was established by high glucose and fat diet feeding and intravenous injection of streptozocin. Then, those diabetic rats were treated with BBR at different concentrations for 9 weeks. The results showed, in addition to hyperglycemia and hyperlipidemia, diabetic rats were also characterized by proinflammatory intestinal changes, altered gut-derived hormones, and 2.77-fold increase in intestinal permeability. However, the treatment with BBR significantly reversed the above changes in diabetic rats, presenting as the improvement of the high glucose and triglyceride levels, the relief of the inflammatory changes of intestinal immune system, and the attenuation of the intestinal barrier damage. BBR treatment at a high concentration also decreased the intestinal permeability by 27.5% in diabetic rats. Furthermore, BBR regulated the expressions of the molecules involved in TLR4/MyD88/NF-κB signaling pathways in intestinal tissue of diabetic rats. Conclusion: The hypoglycemic effects of BBR might be related to the improvement in gut-derived hormones and the attenuation of intestinal mucosal mechanic and immune barrier damages. PMID:28217099

  14. Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat.

    Science.gov (United States)

    Sharma, Hari Shanker; Zimmermann-Meinzingen, Sibilla; Johanson, Conrad E

    2010-06-01

    Traumatic brain injuries (TBIs) induce profound breakdown of the blood-brain and blood-cerebrospinal fluid barriers (BCSFB), brain pathology/edema, and sensory-motor disturbances. Because neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and glial cell-derived neurotrophic factor (GDNF), are neuroprotective in models of brain and spinal cord injuries, we hypothesized that a combination of neurotrophic factors would enhance neuroprotective efficacy. In the present investigation, we examined the effects of Cerebrolysin, a mixture of different neurotrophic factors (Ebewe Neuro Pharma, Austria) on the brain pathology and functional outcome in a rat model of TBI. TBI was produced under Equithesin (3 mL/kg, i.p.) anesthesia by making a longitudinal incision into the right parietal cerebral cortex. Untreated injured rats developed profound disruption of the blood-brain barrier (BBB) to proteins, edema/cell injury, and marked sensory-motor dysfunctions on rota-rod and grid-walking tests at 5 h TBI. Intracerebroventricular administration of Cerebrolysin (10 or 30 microL) either 5 min or 1 h after TBI significantly reduced leakage of Evans blue and radioiodine tracers across the BBB and BCSFB, and attenuated brain edema formation/neuronal damage in the cortex as well as underlying subcortical regions. Cerebrolysin-treated animals also had improved sensory-motor functions. However, administration of Cerebrolysin 2 h after TBI did not affect these parameters significantly. These observations in TBI demonstrate that early intervention with Cerebrolysin reduces BBB and BCSFB permeability changes, attenuates brain pathology and brain edema, and mitigates functional deficits. Taken together, our observations suggest that Cerebrolysin has potential therapeutic value in TBI.

  15. Melatonin attenuates doxorubicin-induced testicular toxicity in rats.

    Science.gov (United States)

    Lee, K-M; Lee, I-C; Kim, S-H; Moon, C; Park, S-H; Shin, D-H; Kim, S-H; Park, S-C; Kim, H-C; Kim, J-C

    2012-05-01

    This study investigated the protective effects of melatonin (MLT) against doxorubicin (DXR)-induced testicular toxicity and oxidative stress in rats. DXR was given as a single intraperitoneal dose of 10 mg kg(-1) body weight to male rats at 1 h after MLT treatment on day 6 of the study. MLT at 15 mg kg(-1) body weight was administered daily by gavage for 5 days before DXR treatment followed by an additional dose for 5 days. Sperm analysis, histopathological examination and biochemical methods were used for this investigation. DXR caused a decrease in the weight of seminal vesicles, epididymal sperm count and motility and an increase in the incidence of histopathological changes of the testis. In addition, an increased malondialdehyde (MDA) concentration and decreased glutathione content, glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase activities were observed. On the contrary, MLT treatment significantly ameliorated DXR-induced testicular toxicity in rats. Moreover, MDA concentration and GR, GST and SOD activities were not affected when MLT was administered in conjunction with DXR. These results indicate that MLT had a protective effect against DXR-induced testicular toxicity and that the protective effects of MLT may be due to both the inhibition of lipid peroxidation and increased antioxidant activity.

  16. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    Science.gov (United States)

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016.

  17. Enzymatic transamination of D-kynurenine generates kynurenic acid in rat and human brain.

    Science.gov (United States)

    Pérez-de la Cruz, Veronica; Amori, Laura; Sathyasaikumar, Korrapati V; Wang, Xiao-Dan; Notarangelo, Francesca M; Wu, Hui-Qiu; Schwarcz, Robert

    2012-03-01

    In the mammalian brain, the α7 nicotinic and NMDA receptor antagonist kynurenic acid is synthesized by irreversible enzymatic transamination of the tryptophan metabolite l-kynurenine. d-kynurenine, too, serves as a bioprecursor of kynurenic acid in several organs including the brain, but the conversion is reportedly catalyzed through oxidative deamination by d-amino acid oxidase. Using brain and liver tissue homogenates from rats and humans, and conventional incubation conditions for kynurenine aminotransferases, we show here that kynurenic acid production from d-kynurenine, like the more efficient kynurenic acid synthesis from l-kynurenine, is blocked by the aminotransferase inhibitor amino-oxyacetic acid. In vivo, focal application of 100 μM d-kynurenine by reverse microdialysis led to a steady rise in extracellular kynurenic acid in the rat striatum, causing a 4-fold elevation after 2 h. Attesting to functional significance, this increase was accompanied by a 36% reduction in extracellular dopamine. Both of these effects were duplicated by perfusion of 2 μM l-kynurenine. Co-infusion of amino-oxyacetic acid (2 mM) significantly attenuated the in vivo effects of d-kynurenine and essentially eliminated the effects of l-kynurenine. Thus, enzymatic transamination accounts in part for kynurenic acid synthesis from d-kynurenine in the brain. These results are discussed with regard to implications for brain physiology and pathology.

  18. Heat stress attenuates skeletal muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Nonaka, K; Une, S; Akiyama, J

    2015-09-01

    To investigate whether heat stress attenuates skeletal muscle atrophy of the extensor digitorum longus (EDL) muscle in streptozotocin-induced diabetic rats, 12-week-old male Wistar rats were randomly assigned to four groups (n = 6 per group): control (Con), heat stress (HS), diabetes mellitus (DM), and diabetes mellitus/heat stress (DM + HS). Diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg). Heat stress was induced in the HS and DM + HS groups by immersion of the lower half of the body in hot water at 42 °C for 30 min; it was initiated 7 days after injection of streptozotocin, and was performed once a day, five times a week for 3 weeks. The muscle fiber cross-sectional area of EDL muscles from diabetic and non-diabetic rats was determined; heat stress protein (HSP) 72 and HSP25 expression levels were also analyzed by western blotting. Diabetes-induced muscle fiber atrophy was attenuated upon heat stress treatment in diabetic rats. HSP72 and HSP25 expression was upregulated in the DM + HS group compared with the DM group. Our findings suggest that heat stress attenuates atrophy of the EDL muscle by upregulating HSP72 and HSP25 expression.

  19. Losartan attenuates paraquat-induced pulmonary fibrosis in rats.

    Science.gov (United States)

    Guo, F; Sun, Y B; Su, L; Li, S; Liu, Z F; Li, J; Hu, X T; Li, J

    2015-05-01

    Paraquat (PQ) is one of the most widely used herbicides in the world and can cause pulmonary fibrosis in the cases with intoxication. Losartan, an angiotensin II type 1 receptor antagonist, has beneficial effects on the treatment of fibrosis. The aim of this study was to examine the effect of losartan on pulmonary fibrosis in PQ-intoxicated rats. Adult male Sprague Dawley rats (n = 32, 180-220 g) were randomly assigned to four groups: (i) control group; (ii) PQ group; (iii) PQ + losartan 7d group; and (iv) PQ + losartan 14d group. Losartan treatment (intragastrically (i.g.), 10 mg/kg) was performed for 7 and 14 days after a single i.g. dose of 40 mg/kg PQ. All rats were killed on the 16th day, and hematoxylin-eosin and Masson's trichrome staining were used to examine lung injury and fibrosis. The levels of hydroxyproline and transforming growth factor β1 (TGF-β1), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) messenger RNA (mRNA) expression and relative expression levels of collagen type I and III were also detected. PQ caused a significant increase in hydroxyproline content, mRNA expression of TGF-β1, Mmp9, and TIMP-1, and relative expression levels of collagen type I and III ( p losartan significantly decreased the amount of hydroxyproline and downregulated TGF-β1, Mmp9, and TIMP-1 mRNA and collagen type I and III expressions ( p losartan could markedly reduce such damage and prevent pulmonary fibrosis. The results of this study indicated that losartan could reduce lung damage and prevent pulmonary fibrosis induced by PQ.

  20. Evaluation of MLACF based calculated attenuation brain PET imaging for FDG patient studies

    Science.gov (United States)

    Bal, Harshali; Panin, Vladimir Y.; Platsch, Guenther; Defrise, Michel; Hayden, Charles; Hutton, Chloe; Serrano, Benjamin; Paulmier, Benoit; Casey, Michael E.

    2017-04-01

    Calculating attenuation correction for brain PET imaging rather than using CT presents opportunities for low radiation dose applications such as pediatric imaging and serial scans to monitor disease progression. Our goal is to evaluate the iterative time-of-flight based maximum-likelihood activity and attenuation correction factors estimation (MLACF) method for clinical FDG brain PET imaging. FDG PET/CT brain studies were performed in 57 patients using the Biograph mCT (Siemens) four-ring scanner. The time-of-flight PET sinograms were acquired using the standard clinical protocol consisting of a CT scan followed by 10 min of single-bed PET acquisition. Images were reconstructed using CT-based attenuation correction (CTAC) and used as a gold standard for comparison. Two methods were compared with respect to CTAC: a calculated brain attenuation correction (CBAC) and MLACF based PET reconstruction. Plane-by-plane scaling was performed for MLACF images in order to fix the variable axial scaling observed. The noise structure of the MLACF images was different compared to those obtained using CTAC and the reconstruction required a higher number of iterations to obtain comparable image quality. To analyze the pooled data, each dataset was registered to a standard template and standard regions of interest were extracted. An SUVr analysis of the brain regions of interest showed that CBAC and MLACF were each well correlated with CTAC SUVrs. A plane-by-plane error analysis indicated that there were local differences for both CBAC and MLACF images with respect to CTAC. Mean relative error in the standard regions of interest was less than 5% for both methods and the mean absolute relative errors for both methods were similar (3.4%  ±  3.1% for CBAC and 3.5%  ±  3.1% for MLACF). However, the MLACF method recovered activity adjoining the frontal sinus regions more accurately than CBAC method. The use of plane-by-plane scaling of MLACF images was found to be a

  1. Inhibition of the dopamine system in rat amygdala attenuates the picrotoxin-induced locomoter hyperactivity and hypertension.

    Science.gov (United States)

    Chang, C K; Wang, N L; Lin, M T

    2004-01-01

    The aim of the present study was to investigate whether picrotoxin-induced locomotor hyperactivity and hypertension can be inhibited by dopaminergic inhibition in rat amygdala. Locomotor activity was detected using a modularized infrared light matrix system in freely moving rats. In anaesthetized rats, blood pressure was measured while dopamine release was detected using in vivo voltammetry with carbon fibre electrodes. Systemic administration of picrotoxin (1-4 mg/kg) increased both locomotor activity (including horizontal motion, vertical motion and total distance travelled) and the number of turnings (both clockwise and anticlockwise), but inhibited postural freezing. The locomotor hyperactivity induced by systemic administration of picrotoxin was mimicked by direct injection of a small dose (1-3 micro g in 1.0 micro L) of picrotoxin into the amygdala. In vivo voltammetry data revealed that systemic administration of picrotoxin increased the release of dopamine in the amygdala of rat brain accompanied by hypertension. Local injection of kainic acid into the paramedian reticular nucleus (PRN) of the medulla oblongata decreased both the spontaneous release of dopamine in the amygdala and spontaneous levels of locomotor activity in rats. Furthermore, the picrotoxin-induced locomotor hyperactivity, hypertension and increased amygdaloid dopamine release were all suppressed following chemical stimulation of the PRN with kainic acid. Blockade of dopamine receptors with systemic or intra-amygdaloid injection of haloperidol (a dopamine receptor antagonist) significantly attenuated the picrotoxin-induced locomotor hyperactivity and hypertension. These results demonstrate that picrotoxin-induced hyperactivity and hypertension involve an increase in amygdaloid dopamine transmission that can be modulated by ascending projections from the PRN in the medulla oblongata.

  2. Brain glucose content in fetuses of ethanol-fed rats

    Energy Technology Data Exchange (ETDEWEB)

    Pullen, G.; Singh, S.P.; Snyder, A.K.; Hoffen, B.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4 and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.

  3. Attenuation of colitis injury in rats using Garcinia cambogia extract.

    Science.gov (United States)

    dos Reis, Samara Bonesso; de Oliveira, Caroline Candida; Acedo, Simone Coghetto; Miranda, Daniel Duarte da Conceição; Ribeiro, Marcelo Lima; Pedrazzoli, José; Gambero, Alessandra

    2009-03-01

    Inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis are chronic enteropathies that probably result from a dysregulated mucosal immune response. These pathologies are characterized by oxidative and nitrosative stress, leukocyte infiltration and up-regulation of pro-inflammatory substances. Current IBD treatment presents limitations in both efficacy and safety that stimulated the search for new active compounds. Garcinia cambogia extract has attracted interest due to its pharmacological properties, including gastroprotective effects. In this study, the antiinflammatory activity of a garcinia extract was assessed in TNBS-induced colitis rats. The results obtained revealed that garcinia administration to colitic rats significantly improved the macroscopic damage and caused substantial reductions in increases in MPO activity, COX-2 and iNOS expression. In addition, garcinia extract treatment was able to reduce PGE(2) and IL-1beta colonic levels. These antiinflammatory actions could be related to a reduction in DNA damage in isolated colonocytes, observed with the comet assay. Finally, garcinia extract caused neither mortality nor toxicity signals after oral administration. As such, the antiinflammatory effects provided by the Garcinia cambogia extract result in an improvement of several parameters analysed in experimental colitis and could provide a source for the search for new antiinflammatory compounds useful in IBD treatment.

  4. Propolis attenuates doxorubicin-induced testicular toxicity in rats.

    Science.gov (United States)

    Rizk, Sherine M; Zaki, Hala F; Mina, Mary A M

    2014-05-01

    Doxorubicin (Dox), an effective anticancer agent, can impair testicular function leading to infertility. The present study aimed to explore the protective effect of propolis extract on Dox-induced testicular injury. Rats were divided into four groups (n=10). Group I (normal control), group II received propolis extract (200 mg kg(-1); p.o.), for 3 weeks. Group III received 18 mg kg(-1) total cumulative dose of Dox i.p. Group IV received Dox and propolis extract. Serum and testicular samples were collected 48 h after the last treatment. In addition, the effects of propolis extract and Dox on the growth of solid Ehrlich carcinoma in mice were investigated. Dox reduced sperm count, markers of testicular function, steroidogenesis and gene expression of testicular 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD) and steroidogenic acute regulatory protein (StAR). In addition, it increased testicular oxidative stress, inflammatory and apoptotic markers. Morphometric and histopathologic studies supported the biochemical findings. Treatment with propolis extract prevented Dox-induced changes without reducing its antitumor activity. Besides, administration of propolis extract to normal rats increased serum testosterone level coupled by increased activities and gene expression of 3ß-HSD and 17ß-HSD. Propolis extract may protect the testis from Dox-induced toxicity without reducing its anticancer potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Rutin Attenuates Hepatotoxicity in High-Cholesterol-Diet-Fed Rats.

    Science.gov (United States)

    AlSharari, Shakir D; Al-Rejaie, Salim S; Abuohashish, Hatem M; Ahmed, Mohamed M; Hafez, Mohamed M

    2016-01-01

    Background and Objective. High-cholesterol diet (HCD) intends to increase the oxidative stress in liver tissues inducing hepatotoxicity. Rutin is a natural flavonoid (vitamin p) which is known to have antioxidative properties. The aim of the present study was to investigate the potential effects of Rutin on hypercholesterolemia-induced hepatotoxicity in rats. Materials and Methods. Male Wistar rats were divided into four groups: G-I control, G-II Rutin, G-III HCD, and G-IV Rutin + HCD. The liver functions and lipid profile were used to evaluate the HCD-induced hepatotoxicity. Quantitative real time-PCR was carried out to evaluate the expression levels of genes in TGF-β/Smad signaling pathway. Results. Rutin in combination with HCD showed a significant protective effect against hepatotoxicity. HCD caused significant increase in the mRNA expression of transforming growth factor beta (TGF-β), Mothers Against Decapentaplegic Homolog 2 (Smad-2), Mothers Against Decapentaplegic Homolog 4 (Smad-4), Bcl-2-binding component 3 (Bbc3), caspase-3, P53 and Interleukin-6 (IL-6) and decrease in the expression levels of Cyclin depended kinase inhibitor (P21) and Interleukin-3 (IL-3) in hepatic cells. Conclusion. TGF-β/Smad signaling pathway is involved in HCD-induced hepatotoxicity and Rutin inhibits the hepatotoxicity via suppressing this pathway. Therefore, Rutin might be considered as a protective agent for hepatotoxicity.

  6. Rutin Attenuates Hepatotoxicity in High-Cholesterol-Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Shakir D. AlSharari

    2016-01-01

    Full Text Available Background and Objective. High-cholesterol diet (HCD intends to increase the oxidative stress in liver tissues inducing hepatotoxicity. Rutin is a natural flavonoid (vitamin p which is known to have antioxidative properties. The aim of the present study was to investigate the potential effects of Rutin on hypercholesterolemia-induced hepatotoxicity in rats. Materials and Methods. Male Wistar rats were divided into four groups: G-I control, G-II Rutin, G-III HCD, and G-IV Rutin + HCD. The liver functions and lipid profile were used to evaluate the HCD-induced hepatotoxicity. Quantitative real time-PCR was carried out to evaluate the expression levels of genes in TGF-β/Smad signaling pathway. Results. Rutin in combination with HCD showed a significant protective effect against hepatotoxicity. HCD caused significant increase in the mRNA expression of transforming growth factor beta (TGF-β, Mothers Against Decapentaplegic Homolog 2 (Smad-2, Mothers Against Decapentaplegic Homolog 4 (Smad-4, Bcl-2-binding component 3 (Bbc3, caspase-3, P53 and Interleukin-6 (IL-6 and decrease in the expression levels of Cyclin depended kinase inhibitor (P21 and Interleukin-3 (IL-3 in hepatic cells. Conclusion. TGF-β/Smad signaling pathway is involved in HCD-induced hepatotoxicity and Rutin inhibits the hepatotoxicity via suppressing this pathway. Therefore, Rutin might be considered as a protective agent for hepatotoxicity.

  7. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  8. Non-signalling energy use in the developing rat brain.

    Science.gov (United States)

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N; Attwell, David

    2017-03-01

    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain.

  9. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    Science.gov (United States)

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.

  10. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    Science.gov (United States)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates hypertension and restores the renal excretion pattern, which is associated with reduced renal NOX and components of the renin-angiotensin-aldosterone system. This study emphasizes a link between renal nerves, the development of hypertension, and modulation of NOX function.

  11. Intermedin in the paraventricular nucleus attenuates cardiac sympathetic afferent reflex in chronic heart failure rats.

    Directory of Open Access Journals (Sweden)

    Xian-Bing Gan

    Full Text Available BACKGROUND AND AIM: Intermedin (IMD is a member of calcitonin/calcitonin gene-related peptide (CGRP family together with adrenomedullin (AM and amylin. It has a wide distribution in the central nervous system (CNS especially in hypothalamic paraventricular nucleus (PVN. Cardiac sympathetic afferent reflex (CSAR is enhanced in chronic heart failure (CHF rats. The aim of this study is to determine the effect of IMD in the PVN on CSAR and its related mechanisms in CHF rats. METHODOLOGY/PRINCIPAL FINDINGS: Rats were subjected to left descending coronary artery ligation to induce CHF or sham-operation (Sham. Renal sympathetic nerve activity (RSNA, mean arterial pressure (MAP and heart rate (HR were recorded. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Acute experiments were carried out 8 weeks after coronary ligation or sham surgery under anesthesia. IMD and angiotensin II (Ang II levels in the PVN were up-regulated in CHF rats. Bilateral PVN microinjection of IMD caused greater decreases in CSAR and the baseline RSNA and MAP in CHF rats than those in Sham rats. The decrease of CSAR caused by IMD was prevented by pretreatment with AM receptor antagonist AM22-52, but not CGRP receptor antagonist CGRP8-37. Ang II in the PVN significantly enhanced CSAR and superoxide anions level, which was inhibited by PVN pretreatment with IMD or tempol (a superoxide anions scavenger in Sham and CHF rats. CONCLUSION: IMD in the PVN inhibits CSAR via AM receptor, and attenuates the effects of Ang II on CSAR and superoxide anions level in CHF rats. PVN superoxide anions involve in the effect of IMD on attenuating Ang II-induced CSAR response.

  12. Nicorandil attenuates endothelial VCAM-1 expression via thioredoxin production in diabetic rats induced by streptozotocin.

    Science.gov (United States)

    Liu, Lihua; Liu, Yun; Qi, Benling; Wu, Qinqin; Li, Yuanyuan; Wang, Zhaohui

    2014-06-01

    The anti-angina agent nicorandil has been reported to be beneficial even in patients who have angina with diabetes. However, the mechanism underlying the effect of nicorandil in patients with diabetes remains to be elucidated. In this study, the protective effect of nicorandil on thioredoxin (TRX) protein was investigated, as TRX is a multifunctional endogenous redox regulator that protects cells against various types of cellular and tissue stress. This study was conducted to examine whether nicorandil induces the expression of TRX for the protection against diabetic damage in the vascular tissue of rats. Diabetes was induced in rats by intraperitoneal injection of streptozotocin (STZ) (fasting glucose levels in STZ-induced rats were >14 mmol/l). Diabetic rats were divided into a diabetic control and a nicorandil-treated group. Nicorandil was administered at a dosage of 15 mg/kg/day by gavage feeding. After five weeks of nicorandil administration, blood samples were obtained from the angular vein to measure levels of stress markers, serum superoxide dismutase and malondialdehyde, using the ELISA. The expression of TRX in STZ-induced rat vascular tissue was analyzed by immunohistochemistry, quantitative polymerase chain reaction (qPCR) and western blot analysis. The oral administration of nicorandil induced TRX protein and mRNA expression in the vascular tissue of STZ-induced diabetic rats. In the diabetic control group, the levels of stress were markedly higher than those in the nicorandil-treated group, indicating that nicorandil reduces oxidative stress in serum. In addition to inducing TRX expression, nicorandil attenuated the expression of the vascular cell adhesion molecule-1 (VCAM-1) in diabetic rat vascular endothelial cells. In conclusion, nicorandil attenuates the formation of reactive oxygen species and induces TRX protein expression, consequently resulting in the suppression of VCAM-1 secretion in the vascular endothelial cells of STZ-induced diabetic

  13. Pleurotus tuber-regium Polysaccharides Attenuate Hyperglycemia and Oxidative Stress in Experimental Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Hui-Yu Huang

    2012-01-01

    Full Text Available Pleurotus tuber-regium contains polysaccharides that are responsible for pharmacological actions, and medicinal effects of these polysaccharides have not yet been studied in diabetic rats. We examined the antidiabetic, antihyperlipidemic, and antioxidant properties of P. tuber-regium polysaccharides in experimental diabetic rats. Forty rats were equally assigned as diabetic high-fat (DHF diet and polysaccharides treated DHF groups (DHF+1P, DHF+2P, and DHF+3P, 20 mg/kg bodyweight/8-week. Diabetes was induced by chronic low-dose streptozotocin injections and a high-fat diet to mimic type 2 diabetes. Polysaccharides (1P, 2P, and 3P were extracted from three different strains of P. tuber-regium. Fasting blood glucose and glycosylated hemoglobin (HbA1c levels substantially decreased, while serum insulin levels were restored by polysaccharides treatment compared to DHF. Furthermore, plasma total cholesterol, triglycerides, and low-density lipoprotein levels were significantly (P<0.01 lower in polysaccharide groups. High-density lipoprotein levels were attenuated with polysaccharides against diabetes condition. Polysaccharides inhibited (P<0.01 the lipid peroxidation index (malondialdehyde, and restored superoxide dismutase and glutathione peroxidase activities in the liver of diabetic rats. The antihyperglycemic property of polysaccharides perhaps boosts the antioxidant system that attenuates oxidative stress. We emphasize that P. tuber-regium polysaccharides can be considered as an alternative medicine to treat hyperglycemia and oxidative stress in diabetic rats.

  14. MR fluid-attenuated inversion recovery imaging as routine brain T2-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Arakia, Yutaka; Ashikaga, Ryuichiro; Fujii, Koichi; Nishimura, Yasumasa; Ueda, Jun; Fujita, Norihiko

    1999-11-01

    We tried to investigate if magnetic resonance (MR) fluid-attenuated inversion recovery (FLAIR) imaging can be used as a routine brain screening examination instead of spin-echo T2-weighted imaging. Three hundred and ninety-four patients with clinically suspected brain diseases were randomly selected and examined with both brain MR FLAIR and T2-weighted imaging on the axial plane. These two imaging techniques were evaluated by two neuroradiologists as to which imaging was better for routine brain T2-weighted imaging. In 123 of 394 cases (31%), FLAIR imaging was superior to spin-echo T2-weighted imaging. Especially in cases with inflammatory diseases, traumatic diseases and demyelinating diseases, FLAIR imaging was particularly useful. Small lesions bordering cerebrospinal fluid (CSF) are often detected only by FLAIR imaging. In 259 cases (66%), including 147 normal cases (37%), they were equally evaluated. Only in 12 cases (3%) was conventional T2-weighted imaging superior to FLAIR imaging. Cerebrovascular lesions like cerebral aneurysm and Moyamoya disease could not be detected on FLAIR images because these structures were obscured by a low signal from the CSF. Also, because old infarctions tend to appear as low signal intensity on FLAIR images, the condition was sometimes hard to detect. Finally, FLAIR imaging could be used as routine brain T2-weighted imaging instead of conventional spin-echo T2-weighted imaging if these vascular lesions were watched.

  15. L-Tryptophan's effects on brain chemistry and sleep in cats and rats: a review.

    Science.gov (United States)

    Radulovacki, M

    1982-01-01

    In this review I shall discuss published and unpublished work from my laboratory dealing with L-tryptophan's effects on brain monoamines and sleep in cats and rats. From our work it appears that normal animals may not be suitable subjects for testing sleep-inducing effect of tryptophan since their slow-wave sleep (SWS) latency is relatively short. In polyphasic sleepers like cats, we did not observe tryptophan's hypnotic effect with any dosage used (10, 30 or 135 mg/kg). However, we found small, but statistically significant, sleep-inducing effect of tryptophan (30 mg/kg, IP) in normal rats. We have tried, therefore, to create insomniac cats with long sleep latencies by using methysergide, a serotonin receptor blocker. The results show that in insomniac cats hypnotic effect of tryptophan, a precursor to brain serotonin, was observed. It involved not only reduction of sleep latencies but also an increase in SWS. It seems likely that tryptophan's partial reversal of methysergide's effect in cats occurred via a dual mechanism of serotonergic activation and catecholaminergic deactivation, while its sleep-inducing effect in normal rats may have been due to the attenuation of the activity of brain catecholamines.

  16. Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Yu ZHOU; San-hua FANG; Yi-lu YE; Li-sheng CHU; Wei-ping ZHANG; Meng-ling WANG; Er-qing WEI

    2006-01-01

    Aim: To investigate the effects of caffeic acid on early and delayed injuries after focal cerebral ischemia in rats, and the possible relation to 5-lipoxygenase inhibition. Methods: Transient focal cerebral ischemia was induced by middle cerebral artery occlusion in Sprague-Dawley rats. Caffeic acid (10 and 50 mg/kg) was ip injected for 5 d after ischemia. The brain injuries were observed, and the levels of cysteinyl leukotrienes and leukotriene B4 in the brain tissue were measured. Results: Caffeic acid (50 mg/kg) ameliorated neurological dysfunction and neuron loss, and decreased infarct volume 24 h after ischemia; it attenuated brain atrophy, infarct volume, and particularly astrocyte proliferation 14 d after ischemia. In addition, it reduced the production of leukotrienes (5-lipoxygenase metabolites) in the ischemic hemispheres 3 h and 7 d after ischemia. Conclusion: Caffeic acid has protective effect on both early and delayed injuries after focal cerebral ischemia in rats; and this effect may partly relate to 5-lipoxygenase inhibition.

  17. Ovariectomy does not attenuate aggression by primiparous lactating female rats.

    Science.gov (United States)

    Albert, D J; Jonik, R H; Walsh, M L

    1992-12-01

    Nulliparous female hooded rats were allowed to cohabit with a sexually active male in a large living cage. Aggression toward an unfamiliar female was assessed during the second and third week of pregnancy. Within 12 to 24 h following parturition females were ovariectomized (n = 7) or sham-ovariectomized (n = 6) in a manner that balanced previous aggression scores. Aggression was assessed at 48 h following ovariectomy and at three weekly intervals thereafter. Ovariectomized and sham-ovariectomized females did not differ in the number of attacks, number of bites, duration of on-top, or frequency of piloerection on any test day following parturition. These results indicate that circulating levels of ovarian steroids do not influence the level of aggression by a primiparous lactating female toward an unfamiliar female conspecific.

  18. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  19. Dietary Virgin Olive Oil Reduces Blood Brain Barrier Permeability, Brain Edema, and Brain Injury in Rats Subjected to Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Fatemeh Mohagheghi

    2010-01-01

    Full Text Available Recent studies suggest that dietary virgin olive oil (VOO reduces hypoxia-reoxygenation injury in rat brain slices. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each consisting of 18 Wistar rats, were studied. One group (control received saline, while three treatment groups received oral VOO (0.25, 0.5, and 0.75 mL/kg/day, respectively. After 30 days, blood lipid profiles were determined, before a 60-min period of middle cerebral artery occlusion (MCAO. After 24-h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. VOO reduced the LDL/HDL ratio in doses of 0.25, 0.5, and 0.75 mL/kg/day in comparison to the control group (p < 0.05, and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 0.25 vs. 0.5 vs. 0.75 mL/kg/day, attenuated corrected infarct volumes were 207.82 ± 34.29 vs. 206.41 ± 26.23 vs. 124.21 ± 14.73 vs. 108.46 ± 31.63 mm3; brain water content of the infarcted hemisphere was 82 ±± 0.25 vs. 81.5 ± 0.56 vs. 80.5 ± 0.22 vs. 80.5 ± 0.34%; and blood brain barrier permeability of the infarcted hemisphere was 11.31 ± 2.67 vs. 9.21 ± 2.28 vs. 5.83 ± 1.6 vs. 4.43 ± 0.93 µg/g tissue (p < 0.05 for measures in doses 0.5 and 0.75 mL/kg/day vs. controls. Oral administration of VOO reduces infarct volume, brain edema, blood brain barrier permeability, and improves neurologic deficit scores after transient MCAO in rats.

  20. MR-based attenuation correction in brain PET based on UTE sequences

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, Jorge; Nekolla, Stephan G; Ziegler, Sibylle I [Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München (Germany)

    2014-07-29

    Attenuation correction (AC) in brain PET/MR has recently emerged as one of the challenging tasks in the PET/MR field. It has been shown that to ignore the attenuation produced by bone can lead to errors ranging from 5-30% in regions close to bone structures. Since the information provided by the MR signal is not directly related to tissue attenuation, alternative methods have to be developed. Signal from bone tissue is difficult to measure given its short transverse relaxation time (T2). Ultrashort-echo time (UTE) pulse sequences were developed to measure signal from tissues with short T2. A combination of two consecutive UTE echoes has been used in several works to measure signal from bone tissue. The first echo is able to measure signal from bone tissue in addition to soft tissue, while the second echo contains most of the soft tissue contained in the first echo but not bone. In this work we extract the attenuation information from the difference between the logarithm of two images obtained after applying two consecutive UTE pulse sequences using the mMR scanner (Siemens Healthcare). Subsequently, image processing techniques are applied to reduce the noise and extract air cavities within the head. The resulting image is converted to linear attenuation coefficients, generating what is known as µ-map, to be used during reconstruction. For comparison purposes PET/CT scans of the same patients were acquired prior to the PET/MR scan. Additional µ-maps obtained for comparison were extracted from a Dixon sequence (used in clinical routine) and an additional µ-map calculated by the scanner based on UTE pulse sequences. Preliminary quantitative results measured in the cerebellum, using the value obtained with CT-based AC as reference, show differences of 34% without AC, 13% using the Dixon-based and UTE-based provided by the scanner, and 0.8% with the AC strategy presented here.

  1. Mepivacaine attenuates vasodilation induced by ATP-sensitive potassium channels in rat aorta.

    Science.gov (United States)

    Baik, Jiseok; Ok, Seong-Ho; Kim, Eun-Jin; Kang, Dawon; Hong, Jeong-Min; Shin, Il-Woo; Lee, Heon Keun; Chung, Young-Kyun; Cho, Youngil; Lee, Soo Hee; Kang, Sebin; Sohn, Ju-Tae

    2016-07-05

    The goal of this in vitro study was to investigate the effect of mepivacaine on vasodilation induced by the ATP-sensitive potassium (KATP) channel opener levcromakalim in isolated endothelium-denuded rat aortas. The effects of mepivacaine and the KATP channel inhibitor glibenclamide, alone or in combination, on levcromakalim-induced vasodilation were assessed in the isolated aortas. The effects of mepivacaine or combined treatment with a protein kinase C (PKC) inhibitor, GF109203X, and mepivacaine on this vasodilation were also investigated. Levcromakalim concentration-response curves were generated for isolated aortas precontracted with phenylephrine or a PKC activator, phorbol 12,13-dibutyrate (PDBu). Further, the effects of mepivacaine and glibenclamide on levcromakalim-induced hyperpolarization were assessed in rat aortic vascular smooth muscle cells. Mepivacaine attenuated levcromakalim-induced vasodilation, whereas it had no effect on this vasodilation in isolated aortas pretreated with glibenclamide. Combined treatment with GF109203X and mepivacaine enhanced levcromakalim-induced vasodilation compared with pretreatment with mepivacaine alone. This vasodilation was attenuated in aortas precontracted with PDBu compared with those precontracted with phenylephrine. Mepivacaine and glibenclamide, alone or in combination, attenuated levcromakalim-induced membrane hyperpolarization. Taken together, these results suggest that mepivacaine attenuates vasodilation induced by KATP channels, which appears to be partly mediated by PKC.

  2. Losartan attenuates renal interstitial fibrosis and tubular cell apoptosis in a rat model of obstructive nephropathy.

    Science.gov (United States)

    He, Ping; Li, Detian; Zhang, Beiru

    2014-08-01

    Ureteral obstruction leads to renal injury and progresses to irreversible renal fibrosis, with tubular cell atrophy and apoptosis. There is conflicting evidence concerning whether losartan (an angiotensin II type I receptor antagonist) mitigates renal interstitial fibrosis and renal tubular epithelial cell apoptosis following unilateral ureteral obstruction (UUO) in animal models. The aim of this study was to investigate the effect and mechanism of losartan on renal tubular cell apoptosis and renal fibrosis in a rat model of UUO. The rats were subjected to UUO by ureteral ligation and were treated with dimethyl sulfoxide (control) or losartan. The controls underwent sham surgery. The renal tissues were collected 3, 5, 7 and 14 days after surgery for measurement of various indicators of renal fibrosis. UUO increased the expression levels of α‑smooth muscle actin and collagen I, and the extent of renal tubular fibrosis and apoptosis in a time‑dependent manner. Losartan treatment partially attenuated these responses. Progression of renal interstitial fibrosis was accompanied by phosphorylation of signal transducer and activator of transcription 3 (STAT3) and altered the expression levels of two apoptosis‑related proteins (Bax and Bcl2). Losartan treatment also partially attenuated these responses. The results indicated that losartan attenuated renal fibrosis and renal tubular cell apoptosis in a rat model of UUO. This effect appeared to be mediated by partial blockage of STAT3 phosphorylation.

  3. Selenium Nanoparticles Attenuate Oxidative Stress and Testicular Damage in Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Dkhil, Mohamed A; Zrieq, Rafat; Al-Quraishy, Saleh; Abdel Moneim, Ahmed E

    2016-11-19

    We investigated the protective and antioxidative effects of selenium nanoparticles (SeNPs) in streptozotocin STZ-induced diabetic rats. STZ-diabetic rats were exposed daily to treatments with SeNPs and/or insulin and then the effect of these treatments on the parameters correlated to oxidative damage of the rat testes were assessed. Biochemical analysis revealed that SeNPs are able to ameliorate the reduction in the serum testosterone caused by STZ-induced diabetes. Furthermore, SeNPs could significantly decrease testicular tissue oxidative stress markers, namely lipid peroxidation and nitric oxide. In contrast, treatment of the STZ-diabetic rats with SeNPs increased the glutathione content and antioxidant enzyme activities in testicular tissues. Moreover, microscopic analysis proved that SeNPs are able to prevent histological damage in the testes of STZ-diabetic rats. Molecular analysis revealed that the mRNA level of Bcl-2 (B-cell lymphoma 2) is significantly upregulated. On the contrary, the mRNA level of Bax (Bcl-2 Associated X Protein) was significantly downregulated. Furthermore, treatment of STZ-diabetic rats with SeNPs led to an elevation in the expression of PCNA (Proliferating Cell Nuclear Antigen Gene). Interestingly, the insulin treatment also exhibited a significant improvement in the testicular function in STZ-diabetic rats. Collectively, our results demonstrated the possible effects of SeNPs in attenuating diabetes-induced oxidative damage, in particular in testicular tissue.

  4. Chronic Glibenclamide Treatment Attenuates Walker-256 Tumour Growth in Prediabetic Obese Rats.

    Science.gov (United States)

    da Silva Franco, Claudinéia Conationi; Previate, Carina; de Barros Machado, Kátia Gama; Piovan, Silvano; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Moreira, Veridiana Mota; de Oliveira, Júlio Cezar; Barella, Luiz Felipe; Gomes, Rodrigo Mello; Francisco, Flávio Andrade; Martins, Isabela Peixoto; Pavanello, Audrei; Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Malta, Ananda; de Souza, Aline Amenencia; Alves, Vander Silva; da Silva Silveira, Sandra; Marçal Natali, Maria Raquel; Fernando Besson, Jean Carlos; de Morais, Hely; de Souza, Helenir Medri; de Sant Anna, Juliane Rocha; Alves de Castro Prado, Marialba Avezum; de Freitas Mathias, Paulo Cezar

    2017-01-01

    The sulphonylurea glibenclamide (Gli) is widely used in the treatment of type 2 diabetes. In addition to its antidiabetic effects, low incidences of certain types of cancer have been observed in Gli-treated diabetic patients. However, the mechanisms underlying this observation remain unclear. The aim of the present work was to evaluate whether obese adult rats that were chronically treated with an antidiabetic drug, glibenclamide, exhibit resistance to rodent breast carcinoma growth. Neonatal rats were treated with monosodium L-glutamate (MSG) to induce prediabetes. Control and MSG groups were treated with Gli (2 mg/kg body weight/day) from weaning to 100 days old. After Gli treatment, the control and MSG rats were grafted with Walker-256 tumour cells. After 14 days, grafted rats were euthanized, and tumour weight as well as glucose homeostasis were evaluated. Treatment with Gli normalized tissue insulin sensitivity and glucose tolerance, suppressed fasting hyperinsulinaemia, reduced fat tissue accretion in MSG rats, and attenuated tumour growth by 27% in control and MSG rats. Gli treatment also resulted in a large reduction in the number of PCNA-positive tumour cells. Although treatment did improve the metabolism of pre-diabetic MSG-rats, tumour growth inhibition may be a more direct effect of glibenclamide. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Selenium Nanoparticles Attenuate Oxidative Stress and Testicular Damage in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohamed A. Dkhil

    2016-11-01

    Full Text Available We investigated the protective and antioxidative effects of selenium nanoparticles (SeNPs in streptozotocin STZ-induced diabetic rats. STZ-diabetic rats were exposed daily to treatments with SeNPs and/or insulin and then the effect of these treatments on the parameters correlated to oxidative damage of the rat testes were assessed. Biochemical analysis revealed that SeNPs are able to ameliorate the reduction in the serum testosterone caused by STZ-induced diabetes. Furthermore, SeNPs could significantly decrease testicular tissue oxidative stress markers, namely lipid peroxidation and nitric oxide. In contrast, treatment of the STZ-diabetic rats with SeNPs increased the glutathione content and antioxidant enzyme activities in testicular tissues. Moreover, microscopic analysis proved that SeNPs are able to prevent histological damage in the testes of STZ-diabetic rats. Molecular analysis revealed that the mRNA level of Bcl-2 (B-cell lymphoma 2 is significantly upregulated. On the contrary, the mRNA level of Bax (Bcl-2 Associated X Protein was significantly downregulated. Furthermore, treatment of STZ-diabetic rats with SeNPs led to an elevation in the expression of PCNA (Proliferating Cell Nuclear Antigen Gene. Interestingly, the insulin treatment also exhibited a significant improvement in the testicular function in STZ-diabetic rats. Collectively, our results demonstrated the possible effects of SeNPs in attenuating diabetes-induced oxidative damage, in particular in testicular tissue.

  6. Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet.

    Science.gov (United States)

    Nair, V Yuneesha; Balakrishanan, N; Antony Santiago, J Victor

    2015-01-01

    Non alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and ongoing research efforts are focused on understanding the underlying pathophysiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. This study investigated the Petroselinum crispum extract in hepatic steatosis in rats fed with fructose enriched diet. Rats were divided into the 4 groups: Group 1 rats received standard pellet diet with corn starch for the entire experimental period of 8 weeks. Group 2 rats received standard pellet diet and 2 gm/kg body weight crude Parsley leaf ethanol extract for the entire experimental period of 8 weeks. Group 3 rats received modified fructose diet. Group 4 rats received modified fructose diet and 2gm/kg crude Parsley leaf ethanol extract. Hepatic function and structure was evaluated in these rats. Modified fructose diet produced dyslipidemia, hepatic steatosis and infiltration of inflammatory cells in the liver and higher plasma hepatic markers. Petroselinum crispum extract reversed metabolic changes such as abnormal crispum extract attenuated chronic changes in modified fructose diet induced NAFLD (Tab. 2, Fig. 3, Ref. 43).

  7. Chronic Glibenclamide Treatment Attenuates Walker-256 Tumour Growth in Prediabetic Obese Rats

    Directory of Open Access Journals (Sweden)

    Claudinéia Conationi da Silva Franco

    2017-05-01

    Full Text Available Background/Aims: The sulphonylurea glibenclamide (Gli is widely used in the treatment of type 2 diabetes. In addition to its antidiabetic effects, low incidences of certain types of cancer have been observed in Gli-treated diabetic patients. However, the mechanisms underlying this observation remain unclear. The aim of the present work was to evaluate whether obese adult rats that were chronically treated with an antidiabetic drug, glibenclamide, exhibit resistance to rodent breast carcinoma growth. Methods: Neonatal rats were treated with monosodium L-glutamate (MSG to induce prediabetes. Control and MSG groups were treated with Gli (2 mg/kg body weight/day from weaning to 100 days old. After Gli treatment, the control and MSG rats were grafted with Walker-256 tumour cells. After 14 days, grafted rats were euthanized, and tumour weight as well as glucose homeostasis were evaluated. Results: Treatment with Gli normalized tissue insulin sensitivity and glucose tolerance, suppressed fasting hyperinsulinaemia, reduced fat tissue accretion in MSG rats, and attenuated tumour growth by 27% in control and MSG rats. Conclusions: Gli treatment also resulted in a large reduction in the number of PCNA-positive tumour cells. Although treatment did improve the metabolism of pre-diabetic MSG-rats, tumour growth inhibition may be a more direct effect of glibenclamide.

  8. Quetiapine attenuates cognitive impairment and decreases seizure susceptibility possibly through promoting myelin development in a rat model of malformations of cortical development.

    Science.gov (United States)

    Ma, Lei; Yang, Feng; Zhao, Rui; Li, Li; Kang, Xiaogang; Xiao, Lan; Jiang, Wen

    2015-10-05

    Developmental delay, cognitive impairment, and refractory epilepsy are the most frequent consequences found in patients suffering from malformations of cortical development (MCD). However, therapeutic options for these psychiatric and neurological comorbidities are currently limited. The development of white matter undergoes dramatic changes during postnatal brain maturation, thus myelination deficits resulting from MCD contribute to its comorbid diseases. Consequently, drugs specifically targeting white matter are a promising therapeutic option for the treatment of MCD. We have used an in utero irradiation rat model of MCD to investigate the effects of postnatal quetiapine treatment on brain myelination as well as neuropsychological and cognitive performances and seizure susceptibility. Fatally irradiated rats were treated with quetiapine (10mg/kg, i.p.) or saline once daily from postnatal day 0 (P0) to P30. We found that postnatal administration of quetiapine attenuated object recognition memory impairment and improved long-term spatial memory in the irradiated rats. Quetiapine treatment also reduced the susceptibility and severity of pentylenetetrazol-induced seizures. Importantly, quetiapine treatment resulted in an inhibition of irradiation-induced myelin breakdown in the cerebral cortex and corpus callosum. These findings suggest that quetiapine may have beneficial, postnatal effects in the irradiated rats, strongly suggesting that improving MCD-derived white matter pathology is a possible underlying mechanism. Collectively, these results indicate that brain myelination represents an encouraging pharmacological target to improve the prognosis of patients with MCD. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of Hemin on Brain Alterations and Neuroglobin Expression in Water Immersion Restraint Stressed Rats

    Directory of Open Access Journals (Sweden)

    Merhan Ragy

    2016-01-01

    Full Text Available In the brain, the heme oxygenase (HO system has been reported to be very active and its modulation seems to play a crucial role in the pathophysiology of neurodegenerative disorders. Hemin as HO-1 inducer has been shown to attenuate neuronal injury so the goal of this study was to assess the effect of hemin therapy on the acute stress and how it would modulate neurological outcome. Thirty male albino rats were divided into three groups: control group and stressed group with six-hour water immersion restraint stress (WIRS and stressed group, treated with hemin, in which each rat received a single intraperitoneal injection of hemin at a dose level of 50 mg/kg body weight at 12 hours before exposure to WIRS. Stress hormones, oxidative stress markers, malondialdehyde (MDA, and total antioxidant capacity (TAC were measured and expressions of neuroglobin and S100B mRNA in brain tissue were assayed. Our results revealed that hemin significantly affects brain alterations induced by acute stress and this may be through increased expression of neuroglobin and through antioxidant effect. Hemin decreased blood-brain barrier damage as it significantly decreased the expression of S100B. These results suggest that hemin may be an effective therapy for being neuroprotective against acute stress.

  10. Effects of Exercise Following Lateral Fluid Percussion Brain Injury in Rats.

    Science.gov (United States)

    Hicks, Ramona R.; Boggs, Arden; Leider, Denise; Kraemer, Philip; Brown, Russell; Scheff, Stephen W.; Seroogy, Kim B.

    1998-01-01

    Previous studies have suggested that brain-derived neurotrophic factor (BDNF) is involved in memory and learning, and may be neuroprotective following various brain insults. Exercise has been found to increase BDNF mRNA levels in various brain regions, including specific subpopulations of hippocampal neurons. In the present study, we were interested in whether following traumatic brain injury, exercise could increase BDNF mRNA expression, attenuate neuropathology, and improve cognitive and neuromoter performance. We subjected adult male Sprague-Dawley rats to a fluid percussion brain injury, followed by either 18 days of treadmill exercise or handling. Spatial memory was evaluated in a Morris Water Maze (MWM) and motor function was evaluated with a battery of neuromotor tests. Neuropathology was evaluated by measuring the cortical lesion volume and the extent of neuronal loss in the hipocampus. Expression of BDNF mRNA in the hippocampus was assessed with in situ hybridization and densitometry. Hybridization signal for BDNF mRNA was significantly increased bilaterally in the exercise group in hippocampal regions CA1 and CA3 (p<0.05), but not in the granule cell layer of the dentate gyrus. No significant differences were observed between the groups in neuropathology, spatial memory, or motor performance. This study suggests that after traumatic brain injury, exercise elevates BDNF mRNA in specific regions of the hippocampus.

  11. MR-guided joint reconstruction of activity and attenuation in brain PET-MR.

    Science.gov (United States)

    Mehranian, Abolfazl; Zaidi, Habib; Reader, Andrew J

    2017-09-13

    structural boundaries and at the same time improving the quantitative accuracy of the PET images. Our clinical reconstruction results showed that the MLEM-MRAC, P-MLEM-MRAC, MLAA, P-MLAA(+) and P-MLAA(++) algorithms result in, on average, quantification errors of -13.5 ± 3.1%, -13.4 ± 3.1%, -2.0 ± 6.5%, -3.0 ± 3.5% and -4.2 ± 3.6%, respectively, in different regions of the brain. In conclusion, whilst the P-MLAA(+) algorithm showed the best overall quantification performance, the proposed P-MLAA(++) algorithm provided simultaneous partial volume and attenuation corrections with only a minor compromise of PET quantification. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hajizadeh

    2014-03-01

    Full Text Available Background: It has been proposed that oxidative stress may contribute to the development of testicular abnormalities in diabetes. Morus alba leaf extract (MAE has hypoglycemic and antioxidant properties. We, therefore, explored the impact of the administration of MAE on steroidogenesis in diabetic rats. Methods: To address this hypothesis, we measured the serum level of glucose, insulin, and free testosterone (Ts as well as oxidative stress parameters (including glutathione peroxidase, glutathione reductase, total antioxidant capacity, and malondialdehyde in the testis of control, untreated and MAE-treated (1 g/day/kg diabetic rats. In order to determine the likely mechanism of MAE action on Ts levels, we analyzed the quantitative mRNA expression level of the two key steroidogenic proteins, namely steroid acute regulatory protein (StAR and P450 cholesterol side-chain cleavage enzyme (P450scc, by real-time PCR. Results: The MAE-treated diabetic rats had significantly decreased glucose levels and on the other hand increased insulin and free Ts levels than the untreated diabetic rats. In addition, the administration of MAE to the diabetic rats restored the oxidative stress parameters toward control. Induction of diabetes decreased testicular StAR mRNA expression by 66% and MAE treatment enhanced mRNA expression to the same level of the control group. However, the expression of P540scc was not significantly decreased in the diabetic group as compared to the control group. Conclusion: Our findings indicated that MAE significantly increased Ts production in the diabetic rats, probably through the induction of StAR mRNA expression levels. Administration of MAE to experimental models of diabetes can effectively attenuate oxidative stress-mediated testosterone depletion. Please cite this article as: Hajizadeh MR, Eftekhar E, Zal F, Jaffarian A, Mostafavi-Pour Z. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in

  13. N-acetylcysteine attenuates ischemia/reperfusion-induced cardiocyte apoptosis in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Li Ma; Shanglong Yao; Kezhong Li

    2006-01-01

    Objective: To study the effects of N-acetylcysteine (NAC) on iscbemia/ reperfusion (I/R)-induced myocyte apoptosis in diabetic rats. Methods:The I/R heart model was made by ligation of the left anterior descending coronary artery (LAD) close to its origin. The LAD was occluded for 30 min followed by removal of ligation to allow subsequent reperfusion for 3 h. 72 rats were randomly divided into two groups: non-diabetic group (C, n = 36) and diabetic group (D, n = 36).The animals in C group were randomly reassigned into sham-ope rated group (CS, n = 12) , I/R group (C I/R, n = 12) and treated with NAC group (CN, n = 12). The rats in D group were also reassigned to sham-operated group (DS, n = 12) , I/R group (DI/R, n = 12) and treated with NAC group (DN, n = 12). Malondialdehyde (MDA) and creatine kinase isoenzyme-MB (CK-MB) were measured. Infarct size(IS/AAR%), the apoptosis index(AI) by TUNEL staining, the number of the cells positive for Caspase-3 and positive expression index (PEI) were calculated. Results:After I/R, the IS/AAR%, CK-MB, MDA, AI and Caspase-3 PEI were higher in diabetic group than those in non-diabetic group. Treatment with NAC decreased the above parameters in both non-diabetic and diabetic rats, but the parameters in diabetic rats were higher than those in non-diabetic rats. Conclusion:Diabetic rat hearts are more susceptible to I/R-induced myocardial necrosis and myocyte apoptosis. NAC can decrease the infarct size and attenuate cardiomyocyte apoptosis in both non-diabetic and diabetic rats, but the therapeutic effects are less effective in diabetic rats than those in non-diabetic rats.

  14. Isoflurane anesthesia initiated at the onset of reperfusion attenuates oxidative and hypoxic-ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    Sergey A Sosunov

    Full Text Available This study demonstrates that in mice subjected to hypoxia-ischemia (HI brain injury isoflurane anesthesia initiated upon reperfusion limits a release of mitochondrial oxidative radicals by inhibiting a recovery of complex-I dependent mitochondrial respiration. This significantly attenuates an oxidative stress and reduces the extent of HI brain injury. Neonatal mice were subjected to HI, and at the initiation of reperfusion were exposed to isoflurane with or without mechanical ventilation. At the end of HI and isoflurane exposure cerebral mitochondrial respiration, H2O2 emission rates were measured followed by an assessment of cerebral oxidative damage and infarct volumes. At 8 weeks after HI navigational memory and brain atrophy were assessed. In vitro, direct effect of isoflurane on mitochondrial H2O2 emission was compared to that of complex-I inhibitor, rotenone. Compared to controls, 15 minutes of isoflurane anesthesia inhibited recovery of the compex I-dependent mitochondrial respiration and decreased H2O2 production in mitochondria supported with succinate. This was associated with reduced oxidative brain injury, superior navigational memory and decreased cerebral atrophy compared to the vehicle-treated HI-mice. Extended isoflurane anesthesia was associated with sluggish recovery of cerebral blood flow (CBF and the neuroprotection was lost. However, when isoflurane anesthesia was supported with mechanical ventilation the CBF recovery improved, the event associated with further reduction of infarct volume compared to HI-mice exposed to isoflurane without respiratory support. Thus, in neonatal mice brief isoflurane anesthesia initiated at the onset of reperfusion limits mitochondrial release of oxidative radicals and attenuates an oxidative stress. This novel mechanism contributes to neuroprotective action of isoflurane. The use of mechanical ventilation during isoflurane anesthesia counterbalances negative effect of isoflurane anesthesia on

  15. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, John, E-mail: jmweaver@salud.unm.edu [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Yang, Yirong [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Purvis, Rebecca [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Weatherwax, Theodore [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Rosen, Gerald M. [Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201 (United States); Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201 (United States); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Liu, Ke Jian [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  16. Neuroglobin expression in rats after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Xin Lin; Min Li; Aijia Shang; Yazhuo Hu; Xiao Yang; Ling Ye; Suyan Bian; Zhongfeng Wang; Dingbiao Zhou

    2012-01-01

    In this study, we used a rat model of severe closed traumatic brain injury to explore the relationship between neuroglobin, brain injury and neuronal apoptosis. Real-time PCR showed that neuroglobin mRNA expression rapidly increased in the rat cerebral cortex, and peaked at 30 minutes and 48 hours following traumatic brain injury. Immunohistochemical staining demonstrated that neuroglobin expression increased and remained high 2 hours to 5 days following injury. The rate of increase in the apoptosis-related Bax/Bcl-2 ratio greatly decreased between 30 minutes and 1 hour as well as between 48 and 72 hours post injury. Expression of neuroglobin and the anti-apoptotic factor Bcl-2 greatly increased, while that of the proapoptotic factor decreased, in the cerebral cortex post severe closed traumatic brain injury. It suggests that neuroglobin might protect neurons from apoptosis after traumatic injury by regulating Bax/Bcl-2 pathway.

  17. Pulmonary Macrophages Attenuate Hypoxic Pulmonary Vasoconstriction via β3AR/iNOS Pathway in Rats Exposed to Chronic Intermittent Hypoxia.

    Directory of Open Access Journals (Sweden)

    Hisashi Nagai

    Full Text Available Chronic intermittent hypoxia (IH induces activation of the sympathoadrenal system, which plays a pivotal role in attenuating hypoxic pulmonary vasoconstriction (HPV via central β1-adrenergic receptors (AR (brain and peripheral β2AR (pulmonary arteries. Prolonged hypercatecholemia has been shown to upregulate β3AR. However, the relationship between IH and β3AR in the modification of HPV is unknown. It has been observed that chronic stimulation of β3AR upregulates inducible nitric oxide synthase (iNOS in cardiomyocytes and that IH exposure causes expression of iNOS in RAW264.7 macrophages. iNOS has been shown to have the ability to dilate pulmonary vessels. Hence, we hypothesized that chronic IH activates β3AR/iNOS signaling in pulmonary macrophages, leading to the promotion of NO secretion and attenuated HPV. Sprague-Dawley rats were exposed to IH (3-min periods of 4-21% O2 for 8 h/d for 6 weeks. The urinary catecholamine concentrations of IH rats were high compared with those of controls, indicating activation of the sympathoadrenal system following chronic IH. Interestingly, chronic IH induced the migration of circulating monocytes into the lungs and the predominant increase in the number of pro-inflammatory pulmonary macrophages. In these macrophages, both β3AR and iNOS were upregulated and stimulation of the β3AR/iNOS pathway in vitro caused them to promote NO secretion. Furthermore, in vivo synchrotron radiation microangiography showed that HPV was significantly attenuated in IH rats and the attenuated HPV was fully restored by blockade of β3AR/iNOS pathway or depletion of pulmonary macrophages. These results suggest that circulating monocyte-derived pulmonary macrophages attenuate HPV via activation of β3AR/iNOS signaling in chronic IH.

  18. Telmisartan attenuates cognitive impairment caused by chronic stress in rats.

    Science.gov (United States)

    Wincewicz, Dominik; Braszko, Jan J

    2014-06-01

    The potential effect of chronic treatment with telmisartan, an angiotensin type 1 receptor blocker (ARB) and partial agonist of peroxisome proliferator--activated receptor γ (PPARγ), on stress-related disorders is a matter of considerable interest. The existing data suggest that angiotensin II (Ang II) plays a major role in exaggerated sympathetic and hormonal response to stress. Enhanced formation of Ang II and increased AT1 receptor activity is associated with devastating impact of stress on central nervous system, which may trigger many psychiatric disorders such as depression, schizophrenia or post-traumatic stress disorder. Some of the anti-stress effects of ARBs have already been proven but these on the stress-induced cognitive impairment were examined only for candesartan. In this study, we tested a hypothesis that blockade of stress response by another ARB telmisartan alleviates the negative effect of prolonged restraint stress on cognitive functions of male Wistar rats. The preventive action of long-lasting treatment with telmisartan (1mg/kg body weight) against impairment caused by chronic stress (2h daily for 21 days) on recall was evaluated in a passive avoidance (PA) situation and object recognition test (ORT). Locomotor activity and anxiety behavior were tested respectively, in an open field and an elevated plus-maze. The results of this study indicate that telmisartan diminishes deleterious effects of chronic restraint stress on memory in a statistically significant manner (ptelmisartan may constitute a new therapeutic option in a stress-related cognitive impairment. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Exogenous nerve growth factor supplementation elevates myocardial immunoreactivity and attenuates cardiac remodeling in pressure-overload rats

    Institute of Scientific and Technical Information of China (English)

    Bing He; and Yuming Li; Fan Ye; Xin Zhou; He Li; Xiaoqing Xun; Xiaoqing Ma; Xudong Liu; Zhihong Wang; Pengxiao Xu

    2012-01-01

    It is postulated that supplementation of exogenous nerve growth factor (NGF) might mediate improvement of the cardiac sympathetic nerve function in heart failure (HF).Local intramuscular injection of NGF near the cardiac sympathetic ganglia could influence the innervation pattern,norepinephrine transporter (NET) gene expression,and improve the cardiac remodeling in experimental HF animals.In this study,we injected NGF into the scalenus medius muscles of Sprague-Dawley rats with abdominal aortic constriction (AC).The nerve innervated pattern,left ventricular morphology,and function following injection in rats with AC were investigated respectively by immunohistochemistry and echocardiography.Levels of mRNA expression of NET,growth associated protein 43 (GAP 43),NGF and its receptors TrkA and p75NTR,and brain natriuretic peptide (BNP) were measured by realtime polymerase chain reaction.The results showed that myocardial NGF mRNA levels were comparable in rats with AC.Short-term supplementation of exogenous NGF raised the myocardial NGF immunoreactivity,but did not cause hyperinnervation and NET mRNA upregulation in the AC rats.Furthermore,myocardial TrkA mRNA was found to be remarkably decreased and p75NTR mRNA was increased.Myocardial TrkA downregulation may play a beneficial effect for avoiding the hyperinnervation,and it is reasonable to postulate that p75NTR can function as an NGF receptor in the absence of TrkA.Interestingly,local NGF administration into the neck muscles near the ganglia could attenuate cardiac remodeling and downregulate BNP mRNA.These results suggest that exogenous NGF can reach the target tissue along the axons anterogradely,and improve the cardiac remodeling.

  20. Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage.

    Science.gov (United States)

    Li, Minshu; Li, Zhiguo; Ren, Honglei; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Sheth, Kevin N; Shi, Fu-Dong

    2017-07-01

    Microglia are the first responders to intracerebral hemorrhage, but their precise role in intracerebral hemorrhage remains to be defined. Microglia are the only type of brain cells expressing the colony-stimulating factor 1 receptor, a key regulator for myeloid lineage cells. Here, we determined the effects of a colony-stimulating factor 1 receptor inhibitor (PLX3397) on microglia and the outcome in the context of experimental mouse intracerebral hemorrhage. We show that PLX3397 effectively depleted microglia, and the depletion of microglia was sustained after intracerebral hemorrhage. Importantly, colony-stimulating factor 1 receptor inhibition attenuated neurodeficits and brain edema in two experimental models of intracerebral hemorrhage induced by injection of collagenase or autologous blood. The benefit of colony-stimulating factor 1 receptor inhibition was associated with reduced leukocyte infiltration in the brain and improved blood-brain barrier integrity after intracerebral hemorrhage, and each observation was independent of lesion size or hematoma volume. These results demonstrate that suppression of colony-stimulating factor 1 receptor signaling ablates microglia and confers protection after intracerebral hemorrhage.

  1. Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats.

    Science.gov (United States)

    Zhang, Tingting; Su, Jingyuan; Guo, Bingyu; Wang, Kaiwen; Li, Xiaoming; Liang, Guobiao

    2015-09-01

    Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. Inflammation has been considered as the major contributor to brain damage after SAH. SAH induces a systemic increase in pro-inflammatory cytokines and chemokines. Disruption of blood-brain barrier (BBB) facilitates the influx of inflammatory cells. It has been reported that the activation of toll-like receptor 4 (TLR4)/NF-κB signaling pathway plays a vital role in the central nervous system diseases. Apigenin, a common plant flavonoid, possesses anti-inflammation effect. In this study, we focused on the effects of apigenin on EBI following SAH and its anti-inflammation mechanism. Our results showed that apigenin (20mg/kg) administration significantly attenuated EBI (including brain edema, BBB disruption, neurological deficient, severity of SAH, and cell apoptosis) after SAH in rats by suppressing the expression of TLR4, NF-κB and their downstream pro-inflammatory cytokines in the cortex and by up-regulating the expression of tight junction proteins of BBB. Double immunofluorescence staining demonstrated that TLR4 was activated following SAH in neurons, microglia cells, and endothelial cells but not in astrocytes. Apigenin could suppress the activation of TLR4 induced by SAH and inhibit apoptosis of cells in the cortex. These results suggested that apigenin could attenuate EBI after SAH in rats by suppressing TLR4-mediated inflammation and protecting against BBB disruption. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Distribution of nimodipine in brain following intranasal administration in rats

    Institute of Scientific and Technical Information of China (English)

    Qi-zhi ZHANG; Xin-guo JIANG; Chun-hua WU

    2004-01-01

    AIM: To determine whether nasally applied nimodipine (NM) could improve its systemic bioavailability and be transported directly from the nasal cavity to the brain. METHODS: NM was administered nasally, intravenously (iv), and orally to male Sprague-Dawley rats. At different times post dose, blood, cerebrospinal fluid (CSF), and brain tissue samples were collected, and the concentrations of NM in the samples were analyzed by HPLC. RESULTS:Oral systemic bioavailability of NM in rats was 1.17 %, nasal dosing improved bioavailibility to 67.4 %. Following intranasal administration, NM concentrations in olfactory bulb (OB) within 30 min post dose were found significant higher than in the other brain tissues. However, similar NM levels in different brain regions were observed after iv injection. AUC in CSF and OB from the nasal route was 1.26 and 1.39 fold compared with the iv route, respectively.The brain-to-plasma AUC ratios were significantly higher after nasal administration than after iv administration (P<0.01). CONCLUSION: Nasally administered NM could markedly improve the bioavailability and a fraction of the NM dose could be transported into brain via the olfactory pathway in rats.

  3. Safranal, a saffron constituent, attenuates retinal degeneration in P23H rats.

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Esquiva, Gema; Martín-Nieto, José; Pinilla, Isabel; Cuenca, Nicolás

    2012-01-01

    Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa.

  4. Safranal, a saffron constituent, attenuates retinal degeneration in P23H rats.

    Directory of Open Access Journals (Sweden)

    Laura Fernández-Sánchez

    Full Text Available Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa.

  5. Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection.

    Science.gov (United States)

    Wang, Yuwen; Shi, Sa; Dong, Shiyun; Wu, Jichao; Song, Mowei; Zhong, Xin; Liu, Yanhong

    2015-01-01

    Hydrogen sulfide (H2S) plays an important role during rat myocardial injury. However, little is known about the role of H2S in hyperhomocysteinemia (HHcy)-induced cardiac dysfunction as well as the underlying mechanisms. In this study, we investigated whether sodium hydrosulfide (NaHS, a H2S donor) influences methionine-induced HHcy rat myocardial injury in intact rat hearts and primary neonatal rat cardiomyocytes. HHcy rats were induced by methionine (2.0 g/kg) and the daily administration of 80 μmol/L NaHS in the HHcy + NaHS treatment group. At the end of 4, 8, and 12 weeks, the ultrastructural alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, and the production of reactive oxygen species (ROS) were measured. The expressions of cystathionine-γ-lyase (CSE), Bax and Bcl-2, caspase-3, phospho-endothelial nitric oxide synthase and the mitochondrial NOX4 and cytochrome c were analyzed by Western blotting. The results showed the cardiac dysfunction, the ultrastructural changes, and the apoptotic rate increase in the HHcy rat hearts. In the primary neonatal rat cardiomyocytes of HHcy group, ROS production was increased markedly, whereas the expression of CSE was decreased. However, treatment with NaHS significantly improved the HHcy rat hearts function, the ultrastructural changes, and decreased the levels of ROS in the primary neonatal rat cardiomyocytes administrated with HHcy group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and Bax and inhibited the release of cytochrome c from mitochondria. In conclusion, H2S is involved in the attenuation of HHcy myocardial injury through the protection of cardiac mitochondria.

  6. The effects of sex on brain iron status in rats

    Institute of Scientific and Technical Information of China (English)

    HAO Qian; CHANG Yanzhong

    2015-01-01

    Objective:Iron plays essential roles in the human body. Studies have shown that iron is dis-tributed differently in male and female Rats in liver, spleen, bone marrow, kidney, heart. However, the effects of sex on iron distribution in central nervous system are not well established. Methods:To explore the effects of the above mentioned, in this study, female and male Sprague Dawley rats were used at 4 months of age. The synthesis of ferritin light chain (FTL), transferrin receptor1 (TfR1), ferroportin 1 (FPN1), divalent metal transporter 1 ( DMT1) in the cortex, hippocampus, striatum, cerebellum, and olfactory bulb was determined by Western blot a-nalysis. Results:The results showed that the levels of FTL protein in the cortex, hippocampus, striatum, cerebel-lum, and olfactory bulb were higher in female rats than in male rats, but the levels of TfR1 protein were lower in female rats than in male rats. There was no significant change in FPN1 and DMT1 expression in brain. Conclu-sions:These data suggest that sex have effects on brain iron status. Iron is distributed differently in central nervous system in male and female rats. However, the precise mechanisms need further study.

  7. Severe Obesity Shifts Metabolic Thresholds but Does Not Attenuate Aerobic Training Adaptations in Zucker Rats

    Science.gov (United States)

    Rosa, Thiago S.; Simões, Herbert G.; Rogero, Marcelo M.; Moraes, Milton R.; Denadai, Benedito S.; Arida, Ricardo M.; Andrade, Marília S.; Silva, Bruno M.

    2016-01-01

    Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10) were submitted to constant treadmill bouts, to determine the maximal lactate steady state, and an incremental treadmill test, to determine the lactate threshold, glycemic threshold and maximal velocity at pre and post 8 weeks of treadmill training. Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons. The maximal lactate steady state velocity occurred at higher percentage of the maximal velocity in Zucker rats at pre-training than the percentage commonly reported and used for training prescription for other rat strains (i.e., 60%) (obese = 78 ± 9% and lean = 68 ± 5%, P 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean). In conclusion, lactate threshold, glycemic threshold and maximal lactate steady state occurred at similar exercise intensity in Zucker rats at pre- and post-training. Severe obesity shifted metabolic thresholds to higher exercise intensity at pre-training, but did not attenuate submaximal and maximal aerobic training adaptations. PMID:27148063

  8. Gelam honey attenuates carrageenan-induced rat paw inflammation via NF-κB pathway.

    Directory of Open Access Journals (Sweden)

    Saba Zuhair Hussein

    Full Text Available The activation of nuclear factor kappa B (NF-κB plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o. and NSAID Indomethacin (10 mg/kg, p.o., in two time points (1 and 7 days. Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50 and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α.

  9. Intermedin in paraventricular nucleus attenuates sympathetic activity and blood pressure via nitric oxide in hypertensive rats.

    Science.gov (United States)

    Zhou, Ye-Bo; Sun, Hai-Jian; Chen, Dan; Liu, Tong-Yan; Han, Ying; Wang, Jue-Jin; Tang, Chao-Shu; Kang, Yu-Ming; Zhu, Guo-Qing

    2014-02-01

    Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide family, which shares the receptor system consisting of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs). This study investigated the effects of IMD in paraventricular nucleus (PVN) on renal sympathetic nerve activity and mean arterial pressure and its downstream mechanism in hypertension. Rats were subjected to 2-kidney 1-clip (2K1C) surgery to induce renovascular hypertension or sham operation. Acute experiments were performed 4 weeks later under anesthesia. IMD mRNA and protein were downregulated in 2K1C rats. Bilateral PVN microinjection of IMD caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in 2K1C rats than in sham-operated rats, which were prevented by pretreatment with adrenomedullin receptor antagonist AM22-52 or nonselective nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester, and attenuated by selective neuronal NO synthase inhibitor N(ω)-propyl-l-arginine hydrochloride or endothelial NO synthase inhibitor N(5)-(1-iminoethyl)-l-ornithine dihydrochloride. AM22-52 increased renal sympathetic nerve activity and mean arterial pressure in 2K1C rats but not in sham-operated rats, whereas calcitonin/calcitonin gene-related peptide receptor antagonist calcitonin/calcitonin gene-related peptide 8-37 had no significant effect. CRLR and RAMP3 mRNA, as well as CRLR, RAMP2, and RAMP3 protein expressions, in the PVN were increased in 2K1C rats. Microinjection of IMD into the PVN increased the NO metabolites (NOx) level in the PVN in 2K1C rats, which was prevented by AM22-52. Chronic PVN infusion of IMD reduced, but AM22-52 increased, blood pressure in conscious 2K1C rats. These results indicate that IMD in the PVN inhibits sympathetic activity and attenuates hypertension in 2K1C rats, which are mediated by adrenomedullin receptors (CRLR/RAMP2 or CRLR/RAMP3) and its downstream NO.

  10. Evaluation of attenuated Salmonella choleraesuis-mediated inhibin recombinant DNA vaccine in rats.

    Science.gov (United States)

    Hui, F M; Meng, C L; Guo, N N; Yang, L G; Shi, F X; Mao, D G

    2014-08-07

    DNA vaccination has been studied intensively as a potential vaccine technology. We evaluated the effect of an attenuated Salmonella choleraesuis-mediated inhibin DNA vaccine in rats. First, 15 rats were treated with different doses of an inhibin vaccine to evaluate vaccine safety. Next, 30 rats were divided into 3 groups and injected intramuscularly with the inhibin vaccine two (T1) or three times (T2) or with control bacteria (Con) at 4-week intervals. The inhibin antibody levels increased [positive/negative well (P/N) value: T1 vs Con = 2.39 ± 0.01 vs 1.08 ± 0.1; T2 vs Con = 2.36 ± 0.1 vs 1.08 ± 0.1, P < 0.05] at week 2 and were maintained at a high level in T1 and T2 until week 8, although a small decrease in T2 was observed at week 10. Rats in the T1 group showed more corpora lutea compared with the Con group (10.50 ± 0.87 vs 7.4 ± 0.51, P < 0.05). Estradiol (0.439 ± 0.052 vs 0.719 ± 0.063 ng/mL, P < 0.05) and progesterone (1.315 ± 0.2 vs 0.737 ± 0.11 ng/mL, P < 0.05) levels differed significantly at metestrus after week 10 between rats in the T1 and Con groups. However, there were no significant differences in body, ovary, uterus weights, or pathological signs in the ovaries after immunization, indicating that this vaccine is safe. In conclusion, the attenuated S. choleraesuis-mediated inhibin vaccine may be an alternative to naked inhibin plasmids for stimulating ovarian follicular development to increase the ovulation rate in rats.

  11. Ultrafine carbon black attenuates the antihypertensive effect of captopril in spontaneously hypertensive rats.

    Science.gov (United States)

    Zhang, Xinru; Chen, Yiyong; Wei, Hongying; Qin, Yu; Hao, Yu; Zhu, Yidan; Deng, Furong; Guo, Xinbiao

    2014-12-01

    Particulate matter (PM) has been associated with increased blood pressure (BP) by affecting renin-angiotensin system (RAS) on a systemic level in spontaneously hypertensive rats (SHR). RAS in SHR is also an important target for the angiotensin converting enzyme (ACE) inhibitors such as captopril. We aimed to determine if ultrafine carbon black (UCB) could affect antihypertensive effect of captopril in SHR. The rats were randomly divided into six groups. Group 1 did not receive intratracheal instillation; group 2 received saline instillation plus captopril administration; groups 3, 4 and 5 received 0.15 mg/kg, 0.45 mg/kg and 1.35 mg/kg UCB per instillation plus captopril administration, respectively; group 6 received 1.35 mg/kg UCB instillation only. Rats in the above groups were intratracheally instilled with saline or UCB once every two days for three times and captopril was administered to group 2-5 after the final UCB treatment, once a day for one week. The BP was measured 24 h after each intratracheal instillation. During captopril administration and 24 h after last captopril administration, we measured BP every two days for four times. Our results showed that UCB at the dose of 1.35 mg/kg induced pulmonary and systemic inflammation in SHR. Captopril reduced BP in rats exposed to 0, 0.15 and 0.45 mg/kg UCB seven and eleven days after the first UCB instillation, and had no effect on BP in rats exposed to 1.35 mg/kg UCB. Captopril also reduced angiotensin II (AngII) in rats exposed to saline. The reduction, however, was attenuated with increasing doses of UCB. We conclude that UCB attenuated the antihypertensive effect of captopril in SHR, and the effect was accompanied by a systemic increase in the concentration of AngII.

  12. Telmisartan attenuates peritoneal fibrosis via peroxisome proliferator-activated receptor-γ activation in rats.

    Science.gov (United States)

    Su, Xuesong; Yu, Rui; Yang, Xu; Zhou, Guangyu; Wang, Yanqiu; Li, Li; Li, Detian

    2015-06-01

    Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal diseases, but long-term continuous PD causes peritoneal fibrosis (PF). This study aims to evaluate the anti-fibrotic effect of telmisartan on a rat model of PF and to investigate the underlying mechanisms. Five-sixths kidney nephrectomy and PD were used to establish the PF rat model. Glucose (2.5%) was used to establish an in vitro model in rat peritoneal mesothelial cells (PMC). Haematoxylin-eosin staining was used to examine the structural alterations. Masson's trichrome staining was used to observe the tissue fibrosis in peritoneal membrane of rats. Real-time polymerase chain reaction was used to measure messenger RNA expressions of profibrotic factors. Western blotting was used to determine protein expressions of profibrotic factors, peroxisome proliferator-activated receptor-γ, and mitogen-activated protein kinases (MAPK). Results demonstrated that administration of telmisartan dose-dependently attenuated the thickening of the peritoneal membrane and the fibrosis induced by long-term PD fluid exposure in rats. In addition, telmisartan treatment inhibited the upregulation of profibrotic factors induced by PD in the peritoneum of rats and by high-concentration glucose in PMC. Telmisartan was also effective in inhibiting PD and high-concentration, glucose-induced phosphorylation of MAPK in the peritoneum and PMC. Furthermore, peroxisome proliferator-activated receptor-γ (PPARγ) inhibitor GW9662 blocked these protective effects of telmisartan in PMC. The results suggest that telmisartan is effective in attenuating PD-induced PF, and this effect may be associated with the inhibition of profibrotic factor expression and MAPK phosphorylation via PPARγ activation. © 2015 Wiley Publishing Asia Pty Ltd.

  13. Protein malnutrition attenuates bone anabolic response to PTH in female rats.

    Science.gov (United States)

    Ammann, P; Zacchetti, G; Gasser, J A; Lavet, C; Rizzoli, R

    2015-02-01

    PTH is indicated for the treatment of severe osteoporosis. Elderly osteoporotic patients frequently suffer from protein malnutrition, which may contribute to bone loss. It is unknown whether this malnutrition may affect the response to PTH. Therefore, the aim of the present study was to assess whether an isocaloric low-protein (LP) diet may influence the bone anabolic response to intermittent PTH in 6-month-old female rats. Six-month-old female rats were either pair fed an isocaloric LP diet (2.5% casein) or a normal-protein (NP) diet (15% casein) for 2 weeks. The rats continued on their respective diet while being treated with 5- or 40-μg/kg recombinant human PTH amino-terminal fragment 1-34 (PTH-[1-34]) daily, or with vehicle for 4 weeks. At the end of this period, areal bone mineral density, bone mineral content, microstructure, and bone strength in axial compression of proximal tibia or 3-point bending for midshaft tibia tests were measured. Blood was collected for the determination of IGF-I and osteocalcin. After 4 weeks of PTH-(1-34), the dose-dependent increase of proximal tibia bone mineral density, trabecular microstructure variables, and bone strength was attenuated in rats fed a LP diet as compared with rats on a NP intake. At the level of midshaft tibia cortical bone, PTH-(1-34) exerted an anabolic effect only in the NP but not in the LP diet group. Protein malnutrition was associated with lower IGF-I levels. Protein malnutrition attenuates the bone anabolic effects of PTH-(1-34) in rats. These results suggest that a sufficient protein intake should be recommended for osteoporotic patients undergoing PTH therapy.

  14. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  15. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    Science.gov (United States)

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  16. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Zhichun Feng; Jing Liu; Rong Ju

    2013-01-01

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2′-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2′- deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  17. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Diane eWhitmer

    2012-06-01

    Full Text Available Parkinson’s disease (PD is marked by excessive synchronous activity in the beta (8-35 Hz band throughout the cortico-basal ganglia network. The optimal location of high frequency deep brain stimulation (HF DBS within the subthalamic nucleus (STN region and the location of maximal beta hypersynchrony are currently matters of debate. Additionally, the effect of STN HF DBS on neural synchrony in functionally connected regions of motor cortex is unknown and of great interest. Scalp EEG studies demonstrated that stimulation of the STN can activate motor cortex antidromically, but the spatial specificity of this effect has not been examined. The present study examined the effect of STN HF DBS on neural synchrony within the cortico-basal ganglia network in patients with PD. We measured local field potentials dorsal to and within the STN of PD patients, and additionally in the motor cortex in a subset of these patients. We used diffusion tensor imaging (DTI to guide the placement of subdural cortical surface electrodes over the DTI-identified origin of the hyperdirect pathway between motor cortex and the STN. The results demonstrated that local beta power was attenuated during HF DBS both dorsal to and within the STN. The degree of attenuation was monotonic with increased DBS voltages in both locations, but this voltage-dependent effect was greater in the central STN than dorsal to the STN (p < 0.05. Cortical signals over the estimated origin of the hyperdirect pathway also demonstrated attenuation of beta hypersynchrony during DBS dorsal to or within STN, whereas signals from non-specific regions of motor cortex were not attenuated. The spatially specific suppression of beta synchrony in the motor cortex support the hypothesis that DBS may treat Parkinsonism by reducing excessive synchrony in the functionally connected sensorimotor network.

  18. Oxidative damage to rat brain in iron and copper overloads.

    Science.gov (United States)

    Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Semprine, Jimena; Fuda, Julián; Torti, Horacio; Boveris, Alberto; Repetto, Marisa G

    2014-08-01

    This study reports on the acute brain toxicity of Fe and Cu in male Sprague-Dawley rats (200 g) that received 0 to 60 mg kg(-1) (ip) FeCl2 or CuSO4. Brain metal contents and time-responses were determined for rat survival, in situ brain chemiluminescence and phospholipid and protein oxidation products. Metal doses hyperbolically defined brain metal content. Rat survival was 91% and 60% after Fe and Cu overloads. Brain metal content increased from 35 to 114 μg of Fe per g and from 3.6 to 34 μg of Cu per g. Brain chemiluminescence (10 cps cm(-2)) increased 3 and 2 times after Fe and Cu overloads, with half maximal responses (C50) of 38 μg of Fe per g of brain and 15 μg of Cu per g of brain, and with half time responses (t1/2) of 12 h for Fe and 20 h for Cu. Phospholipid peroxidation increased by 56% and 31% with C50 of 40 μg of Fe per g and 20 μg of Cu per g and with t1/2 of 9 h and 14 h. Protein oxidation increased by 45% for Fe with a C50 of 40 μg of Fe per g and 18% for Cu with a C50 of 10 μg of Cu per g and a t1/2 of 12 h for both metals. Fe and Cu brain toxicities are likely mediated by Haber-Weiss type HO˙ formation with subsequent oxidative damage.

  19. 17β-Estradiol administration attenuates seawater aspiration-induced acute lung injury in rats.

    Science.gov (United States)

    Fan, Qixin; Zhao, Pengtao; Li, Jiahuan; Xie, Xiaoyan; Xu, Min; Zhang, Yong; Mu, Deguang; Li, Wangping; Sun, Ruilin; Liu, Wei; Nan, Yandong; Zhang, Bo; Jin, Faguang; Li, Zhichao

    2011-12-01

    There is very little evidence on the value of administering estrogen in cases of seawater drowning which can induce acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Therefore, this study aimed to investigate whether 17β-estradiol (E2) treatment can attenuate seawater aspiration-induced ALI in rats. In the experiment, ALI was induced by endotracheal instillation of seawater (4mL/kg) and the rats were then given intraperitoneal injection of E2 (5mg/kg) 20min after seawater instillation. Finally, the changes of arterial blood gases which contained hydrogen ion concentration (pH), arterial oxygen tension (PaO(2)) and arterial carbon dioxide tension (PaCO(2)) were measured and the measurement of extravascular lung water (EVLW) was observed. The pulmonary histological changes were evaluated by hematoxylin-eosin stain. The expression of aquaporins (AQPs) 1, AQP5, and estrogen receptor-β (ERβ) was measured by western blotting and immunohistochemical methods. The results showed that compared with normal saline water, seawater aspiration induced more serious ALI in rats which was markedly alleviated by E2 treatment. Meanwhile, the ERβ in lung tissues was activated after E2 administration. The seawater aspiration group also presented with severe pulmonary edema which was paralleled with over expressed AQP1 and AQP5. However, the up-regulation of AQP1 and AQP5 was suppressed by the administration of E2, resulting in an attenuation of lung edema. In conclusion, E2 treatment could effectively attenuate seawater aspiration-induced acute lung injury in rats by the down-regulation of AQP1 and AQP5.

  20. Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats.

    Science.gov (United States)

    Barman, Susmita; Srinivasan, Krishnapura

    2017-03-01

    Oxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.

  1. Krill oil attenuates left ventricular dilatation after myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Fosshaug Linn E

    2011-12-01

    Full Text Available Abstract Background In the western world, heart failure (HF is one of the most important causes of cardiovascular mortality. Supplement with n-3 polyunsaturated fatty acids (PUFA has been shown to improve cardiac function in HF and to decrease mortality after myocardial infarction (MI. The molecular structure and composition of n-3 PUFA varies between different marine sources and this may be of importance for their biological effects. Krill oil, unlike fish oil supplements, contains the major part of the n-3 PUFA in the form of phospholipids. This study investigated effects of krill oil on cardiac remodeling after experimental MI. Rats were randomised to pre-treatment with krill oil or control feed 14 days before induction of MI. Seven days post-MI, the rats were examined with echocardiography and rats in the control group were further randomised to continued control feed or krill oil feed for 7 weeks before re-examination with echocardiography and euthanization. Results The echocardiographic evaluation showed significant attenuation of LV dilatation in the group pretreated with krill oil compared to controls. Attenuated heart weight, lung weight, and levels of mRNA encoding classical markers of LV stress, matrix remodeling and inflammation reflected these findings. The total composition of fatty acids were examined in the left ventricular (LV tissue and all rats treated with krill oil showed a significantly higher proportion of n-3 PUFA in the LV tissue, although no difference was seen between the two krill oil groups. Conclusions Supplement with krill oil leads to a proportional increase of n-3 PUFA in myocardial tissue and supplement given before induction of MI attenuates LV remodeling.

  2. Demonstration of endogenous imipramine like material in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-02-18

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  3. Inhibition of miRNA-210 reverses nicotine-induced brain hypoxic-ischemic injury in neonatal rats

    Science.gov (United States)

    Wang, Lei; Ke, Jun; Li, Yong; Ma, Qinyi; Dasgupta, Chiranjib; Huang, Xiaohui; Zhang, Lubo; Xiao, DaLiao

    2017-01-01

    Maternal tobacco use in pregnancy increases the risk of neurodevelopmental disorders and neurobehavioral deficits in postnatal life. The present study tested the hypothesis that perinatal nicotine exposure exacerbated brain vulnerability to hypoxic-ischemic (HI) injury in neonatal rats through up-regulation of miR-210 expression in the developing brain. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. Experiments of HI brain injury were performed in 10-day-old pups. Perinatal nicotine treatment significantly decreased neonatal body and brain weights, but increased the brain to body weight ratio. Perinatal nicotine exposure caused a significant increase in HI brain infarct size in the neonates. In addition, nicotine enhanced miR-210 expression and significantly attenuated brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase isoform B (TrkB) protein abundance in the brain. Of importance, intracerebroventricular administration of a miR-210 inhibitor (miR-210-LNA) significantly decreased HI-induced brain infarct size and reversed the nicotine-increased vulnerability to brain HI injury in the neonate. Furthermore, miR-210-LNA treatment also reversed nicotine-mediated down-regulation of BDNF and TrkB protein expression in the neonatal brains. These findings provide novel evidence that the increased miR-210 plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the brain. It represents a potential novel therapeutic approach for treatment of brain hypoxic-ischemic encephalopathy in the neonate-induced by fetal stress. PMID:28123348

  4. Gap junction blockers attenuate beta oscillations and improve forelimb function in hemiparkinsonian rats.

    Science.gov (United States)

    Phookan, Sujoy; Sutton, Alexander C; Walling, Ian; Smith, Autumn; O'Connor, Katherine A; Campbell, Joannalee C; Calos, Megan; Yu, Wilson; Pilitsis, Julie G; Brotchie, Jonathan M; Shin, Damian S

    2015-03-01

    Parkinson's disease (PD) is a neurodegenerative disease characterized by akinesia, bradykinesia, resting tremors and postural instability. Although various models have been developed to explain basal ganglia (BG) pathophysiology in PD, the recent reports that dominant beta (β) oscillations (12-30Hz) in BG nuclei of PD patients and parkinsonian animals coincide with motor dysfunction has led to an emerging idea that these oscillations may be a characteristic of PD. Due to the recent realization of these oscillations, the cellular and network mechanism(s) that underlie this process remain ill-defined. Here, we postulate that gap junctions (GJs) can contribute to β oscillations in the BG of hemiparkinsonian rats and inhibiting their activity will disrupt neuronal synchrony, diminish these oscillations and improve motor function. To test this, we injected the GJ blockers carbenoxolone (CBX) or octanol in the right globus pallidus externa (GPe) of anesthetized hemiparkinsonian rats and noted whether subsequent changes in β oscillatory activity occurred using in vivo electrophysiology. We found that systemic treatment of 200mg/kg CBX attenuated normalized GPe β oscillatory activity from 6.10±1.29 arbitrary units (A.U.) (pre-CBX) to 2.48±0.87 A.U. (post-CBX) with maximal attenuation occurring 90.0±20.5min after injection. The systemic treatment of octanol (350mg/kg) also decreased β oscillatory activity in a similar manner to CBX treatment with β oscillatory activity decreasing from 3.58±0.89 (pre-octanol) to 2.57±1.08 after octanol injection. Next, 1μl CBX (200mg/kg) was directly injected into the GPe of anesthetized hemiparkinsonian rats; 59.2±19.0min after injection, β oscillations in this BG nucleus decreased from 3.62±1.17 A.U. to 1.67±0.62 A.U. Interestingly, we were able to elicit β oscillations in the GPe of naive non-parkinsonian rats by increasing GJ activity with 1μl trimethylamine (TMA, 500nM). Finally, we systemically injected CBX (200mg

  5. The effect of chemotherapy on rat brain PET: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Kim, Il Han; Yu, A Ram; Park, Ji Ae; Woo, Sang Keun; Kim, Jong Guk; Cheon, Gi Jeong; Kim, Byeong Il; Choi, Chang Woon; Lim, Sang Moo; Kim, Hee Joung; Kim, Kyeong Min [Korea Institute Radiological and Medical Science, Seoul (Korea, Republic of)

    2010-10-15

    Chemotherapy was widely used for the therapy of cancer patients. When chemotherapy was performed, transient cognitive memory problem was occurred. This cognitive problem in brain was called as chemobrain. In this study, we have developed rat model for chemobrain. Cerebral glucose metabolism after chemotherapy was assessed using animal PET and voxel based statistical analysis method

  6. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  7. Toxic Chemical from Plastics Attenuates Phenylbiguanide-induced Cardio-respiratory Reflexes in Anaesthetized Rats.

    Science.gov (United States)

    Pant, Jayanti; Pant, Mahendra K; Chouhan, Shikha; Singh, Surya P; Deshpande, Shripad B

    2015-01-01

    Bisphenol A (BPA) attenuated phenylbiguanide (PBG)-induced cardio-respiratory reflexes involving decreased vagal afferent activity. BPA leaches out from plastics thus it is expected that chronic exposure to plastic boiled (PBW) water will also produce similar changes. Therefore, the present study was undertaken to evaluate the effects of chronic ingestion of PBW on PBG evoked reflexes and were compared with BPA. Adult female rats were ingested BPA containing pellets (2 µg/kg body weight)/PBW/tap water (ad libitum) for 30 days. On day 30, the animals were anaesthetized and BP, ECG and respiratory excursions were recorded. Further, PBG was injected intravenously to evoke cardio-respiratory reflexes and at the end lungs were excised for histopathological examination. BPA concentration in PBW was 6.6 µg/ml estimated by HPLC. In rats receiving tap water, PBG produced bradycardia, hypotension and tachypnoea. In PBW/BPA treated groups, PBG-induced reflexes were attenuated significantly along with emphysematous and consolidative changes in lungs. The present results indicate that PBW attenuates the protective cardio-respiratory reflexes and also produces histopathological changes in lungs.

  8. Light attenuation in rat skin following low level laser therapy on burn healing process

    Science.gov (United States)

    Teixeira Silva, Daniela Fátima; Simões Ribeiro, Martha

    2010-04-01

    Low-level laser therapy (LLLT) is commonly used to accelerate wound healing. Besides, the technique of imaging the light distribution inside biological tissues permits us to understand several effects about light-tissue interaction. The purpose of this study was to determine the relative attenuation coefficient of the light intensity in healthy and burned skin rats during cutaneous repair following LLLT or not. Two burns about 6mm in diameter were cryogenerated using liquid N2 on the back of 15 rats. Lesion L was irradiated by a He-Ne laser (λ= 632.8nm) and fluence 1.0J/cm2; Lesion C was control and received sham irradiation. A healthy skin area (H) was also analyzed. The lesions were irradiated at days 3, 7, 10 and 14 post-burning. The animals were euthanized at days 3, 10 and 31 and skin samples were carefully removed and placed between two microscope slides, spaced by z= 1mm. A laser beam irradiated the sandwiched tissue from epidermis to dermis. A CCD camera was placed orthogonal to the beam path and it photographed the distribution of the scattered light. The light decay occurred according to the Beer's Law. Significance was accepted at p exponential. Burned skin samples presented decay significantly faster than healthy skin samples. Besides, attenuation coefficient changed during burning healing comparing treated and control lesions. These findings suggest that the relative attenuation coefficient is a suitable parameter to optimize LLLT during wound healing.

  9. Brain tumors induced in rats by human adenovirus type 12

    Directory of Open Access Journals (Sweden)

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  10. Protective effect of crocin on acrolein-induced tau phosphorylation in the rat brain.

    Science.gov (United States)

    Rashedinia, Marzieh; Lari, Parisa; Abnous, Khalil; Hosseinzadeh, Hossein

    2015-01-01

    Acrolein, as a by-product of lipid peroxidation, is implicated in brain aging and in the pathogenesis of oxidative stressmediated neurodegenerative disorders such as Alzheimer's disease (AD). Widespread human exposure to the toxic environmental pollutant that is acrolein renders it necessary to evaluate the effects of exogenous acrolein on the brain. This study investigated the toxic effects of oral administration of 3 mg/kg/day acrolein on the rat cerebral cortex. Moreover, the neuroprotective effects of crocin, the main constituent of saffron, against acrolein toxicity were evaluated. We showed that acrolein decreased concentration of glutathione (GSH) and increased levels of malondialdehyde (MDA), Amyloid-beta (Abeta) and phospho-tau in the brain. Simultaneously, acrolein activated Mitogen-Activated Protein Kinases (MAPKs) signalling pathways. Co-administration of crocin significantly attenuated MDA, Abeta and p-tau levels by modulating MAPKs signalling pathways. Our data demonstrated that environmental exposure to acrolein triggers some molecular events which contribute to brain aging and neurodisorders. Additionally, crocin as an antioxidant is a promising candidate for treatment of neurodegenerative disorders, such as brain aging and AD.

  11. The induction of species-specific immunity against Schistosoma japonicum by exposure of rats to ultra-violet attenuated cercariae.

    Science.gov (United States)

    Moloney, N A; Webbe, G; Hinchcliffe, P

    1987-02-01

    Single percutaneous immunizations of Fischer rats with 1000 ultra-violet attenuated Schistosoma japonicum cercariae induced 52-88% resistance to challenge 4 weeks later. Increasing this to 3 immunizations induced 90% resistance to challenge, and this level of protection remained undiminished for up to 40 weeks after vaccination. Rats vaccinated with gamma-irradiated S. mansoni cercariae were resistant to challenge with S. mansoni but not S. japonicum. Similarly rats vaccinated with u.v.-attenuated S. japonicum cercariae were not resistant to heterologous challenge. Thus irradiated vaccines are species-specific in both permissive and non-permissive hosts.

  12. Induction of species-specific immunity against Schistosoma japonicum by exposure of rats to ultra-violet attenuated cercariae

    Energy Technology Data Exchange (ETDEWEB)

    Moloney, N.A.; Webbe, G.; Hinchcliffe, P.

    1987-02-01

    Single percutaneous immunizations of Fischer rats with 1000 ultra-violet attenuated Schistosoma japonicum cercariae induced 52-88% resistance to challenge 4 weeks later. Increasing this to 3 immunizations induced 90% resistance to challenge, and this level of protection remained undiminished for up to 40 weeks after vaccination. Rats vaccinated with gamma-irradiated S. mansoni cercariae were resistant to challenge with S. mansoni but not S. japonicum. Similarly rats vaccinated with u.v.-attenuated S. japonicum cercariae were not resistant to heterologous challenge. Thus irradiated vaccines are species-specific in both permissive and non-permissive hosts.

  13. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    Science.gov (United States)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  14. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants,. Inflammatory markers .... were then moved back to their respective dams and immediately ..... various pro-inflammatory cytokines is stimulated.

  15. Inducible gene manipulations in brain serotonergic neurons of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Tillmann Weber

    Full Text Available The serotonergic (5-HT system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP, in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.

  16. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats.

    Science.gov (United States)

    Azman, Khairunnuur Fairuz; Zakaria, Rahimah; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system.

  17. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats

    Directory of Open Access Journals (Sweden)

    Khairunnuur Fairuz Azman

    2016-01-01

    Full Text Available Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A, 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system.

  18. N-acetylcysteine attenuates oxidative stress and liver pathology in rats with non-alcoholic steatohepatitis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To evaluate attenuating properties of N-acetylcysteine (NAC) on oxidative stress and liver pathology in rats with non-alcoholic steatohepatitis (NASH).METHODS: Male Sprague-Dawley rats were randomly divided into three groups. Group 1 (control, n = 8) was free accessed to regular dry rat chow (RC) for 6 wk.Group 2 (NASH, n = 8) was fed with 100% fat diet for 6 wk. Group 3 (NASH+ NAC20, n = 9) was fed with 100% fat diet plus 20 mg/kg per day of NAC orally for 6 wk. All rats were sacrificed to collect blood and liver samples at the end of the study.RESULTS: The levels of total glutathione (GSH)and hepatic malondialdehyde (MDA) were increased significantly in the NASH group as compared with the control group (GSH; 2066.7 ± 93.2 vs 1337.5 ± 31.5 μmol/L and MDA; 209.9± 43.9 vs 3.8 ±1.7 μmol/g protein, respectively, P < 0.05). Liver histopathology from group 2 showed moderate to severe macrovesicular steatosis, hepatocyte ballooning, and necroinflammation.NAC treatment improved the level of GSH (1394.8 ± 81.2 μmol/L, P < 0.05), it did not affect MDA (150.1 ± 27.0 μmol/g protein), but led to a decrease in fat deposition and necroinflammation.CONCLUSION: NAC treatment could attenuate oxidative stress and improve liver histology in rats with NASH.

  19. Astaxanthin rescues neuron loss and attenuates oxidative stress induced by amygdala kindling in adult rat hippocampus.

    Science.gov (United States)

    Lu, Yan; Xie, Tao; He, Xue-Xin; Mao, Zhuo-Feng; Jia, Li-Jing; Wang, Wei-Ping; Zhen, Jun-Li; Liu, Liang-Min

    2015-06-15

    Oxidative stress plays an important role in the neuronal damage induced by epilepsy. The present study assessed the possible neuroprotective effects of astaxanthin (ATX) on neuronal damage, in hippocampal CA3 neurons following amygdala kindling. Male Sprague-Dawley rats were chronically kindled in the amygdala and ATX or equal volume of vehicle was given by intraperitoneally. Twenty-four hours after the last stimulation, the rats were sacrificed by decapitation. Histopathological changes and the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and reduced glutathione (GSH) were measured, cytosolic cytochrome c (CytC) and caspase-3 activities in the hippocampus were also recorded. We found extensive neuronal damage in the CA3 region in the kindling group, which was preceded by increases of ROS level and MDA concentration and was followed by caspase-3 activation and an increase in cytosolic CytC. Treatment with ATX markedly attenuated the neuronal damage. In addition, ATX significantly decreased ROS and MDA concentrations and increased GSH levels. Moreover, ATX suppressed the translation of CytC release and caspase-3 activation in hippocampus. Together, these results suggest that ATX protects against neuronal loss due to epilepsy in the rat hippocampus by attenuating oxidative damage, lipid peroxidation and inhibiting the mitochondrion-related apoptotic pathway.

  20. Adjuvant potential of selegiline in attenuating organ dysfunction in septic rats with peritonitis.

    Directory of Open Access Journals (Sweden)

    Cheng-Ming Tsao

    Full Text Available Selegiline, an anti-Parkinson drug, has antioxidant and anti-apoptotic effects. To explore the effect of selegiline on sepsis, we used a clinically relevant animal model of polymicrobial sepsis. Cecal ligation and puncture (CLP or sham operation was performed in male rats under anesthesia. Three hours after surgery, animals were randomized to receive intravenously selegiline (3 mg/kg or an equivalent volume of saline. The administration of CLP rats with selegiline (i increased arterial blood pressure and vascular responsiveness to norepinephrine, (ii reduced plasma liver and kidney dysfunction, (iii attenuated metabolic acidosis, (iv decreased neutrophil infiltration in liver and lung, and (v improved survival rate (from 44% to 65%, compared to those in the CLP alone rats. The CLP-induced increases of plasma interleukin-6, organ superoxide levels, and liver inducible nitric oxide synthase and caspase-3 expressions were ameliorated by selegiline treatment. In addition, the histological changes in liver and lung were significantly attenuated in the selegiline -treated CLP group compared to those in the CLP group. The improvement of organ dysfunction and survival through reducing inflammation, oxidative stress and apoptosis in peritonitis-induced sepsis by selegiline has potential as an adjuvant agent for critical ill.

  1. Haloperidol-induced extra pyramidal symptoms attenuated by imipramine in rats.

    Science.gov (United States)

    Samad, Noreen; Haleem, Darakhshan Jabeen

    2014-09-01

    Effects of administration of imipramine (IMI) are determined on haloperidol-induced extrapyramidal symptoms (EPS). Haloperidol is administered orally at a dose of 0.2 mg/rat/day in rats for a period of 5 weeks, by this treatment rats developed vacuous chewing movements (VCMs) after 2 weeks, which increased in a time dependent manner as the treatment continued for 5 weeks. Motor coordination (assess on rota rod activity) impaired maximally after 3 weeks and tolerance was developed in the haloperidol induced motor impairment after 5 weeks of treatment. Motor activity in an open field or activity box was not altered. The administration of IMI (intraperitoneally, for 5 weeks) did not affect motor activity or motor coordination. Co-administration of IMI at a dose of 5 mg/ml/kg/day attenuated the induction of haloperidol elicited VCMs (Quantitative orofacial dyskinesia) as well impairment of motor coordination. Results are discussed in the context of the mechanism involved by which imipramine attenuated haloperidol-induced EPS.

  2. Bromophenacyl bromide, a phospholipase A2 inhibitor attenuates chemically induced gastroduodenal ulcers in rats

    Institute of Scientific and Technical Information of China (English)

    Mohammad Tariq; Ibrahim Elfaki; Haseeb Ahmad Khan; Mohammad Arshaduddin; Samia Sobki; Meshal Al Moutaery

    2006-01-01

    AIM: To study the effect of bromophenacyl bromide (BPB), a phospholipase A2 inhibitor on gastric secretion and to protect chemically induced gastric and duodenal ulcers in rats.METHODS: Acid secretion studies were undertaken in pylorus-ligated rats with BPB treatment (0, 5, 15 and 45 mg/kg). Gastric and duodenal lesions in the rats were induced by ethanol and cysteamine respectively. The levels of gastric wall mucus, nonprotein sulfhydryls (NPSH) and myeloperoxidase (MPO) were also measured in the glandular stomach of rats following ethanol induced gastric lesions.RESULTS: BPB produced a dose-dependent inhibition of gastric acid secretion and acidity in rats. Pretreatment with BPB significantly attenuated the formation of ethanol induced gastric lesion. BPB also protected intestinal mucosa against cysteamine-induced duodenal ulcers.The antiulcer activity of BPB was associated with significant inhibition of ethanol-induced depletion of gastric wall mucus, NP-SH and MPO. These findings pointed towards the mediation of sulfhydryls in BPB induced gastrointestinal cytoprotection.CONCLUSION: BPB possesses significant antiulcer and cytoprotective activity against experimentally induced gastroduodenal lesions.

  3. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Xue-ying Chang

    2017-01-01

    Full Text Available Background. This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d, 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS/p38 mitogen activated protein kinase (p38MAPK pathway was determined to explore the potential mechanism. Results. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA and creatinine levels, malonaldehyde (MDA content, and superoxide dismutase (SOD activity in serum and the increases of calcium and alkaline phosphatase (ALP activity in the aorta (P<0.05 and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  4. Resveratrol attenuates oxidative stress and histological alterations induced by liver ischemia/reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the effects of resveratrol on liver ischemia/reperfusion (I/R) injury in rats. METHODS: A total of 40 male Sprague-Dawley rats weighing 240-290 g were randomized into four groups often: (1) controls: data from unmanipulated animals; (2) sham group: rats subjected to the surgical procedure, except for liver I/R, and given saline; (3) I/R group: rats underwent liver ischemia for 45 min followed by reperfu-sion for 45 min; (4) I-R/Resveratrol group: rats pretreat-ed with resveratrol (10 μmol/L, iv). Liver tissues were obtained to determine antioxidant enzyme levels and for biochemical and histological evaluation. RESULTS: Plasma aminotransferase activities were higher in the I/R group than in the I-R/Resveratrol group. Malondialdehyde levels and the hepatic injury score decreased, while superoxide dismutase, catalase, and glutathione peroxidase levels increased in group 4 compared to group 3. In group 4, histopathological changes were significantly attenuated in resveratrol-treated livers.CONCLUSION: These results suggest that resveratrol has protective effects against hepatic I/R injury, and is a potential therapeutic drug for ischemia reperfusion-related liver injury.

  5. Administration of sesamol improved blood-brain barrier function in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    VanGilder, R L; Kelly, K A; Chua, M D; Ptachcinski, R L; Huber, Jason D

    2009-07-01

    Uncontrolled or poorly controlled blood glucose during diabetes is an important factor in worsened vascular function. While evidence suggests that hyperglycemia-induced oxidative stress plays a prominent role in development of microangiopathy of the retina, kidney, and nerves, the role oxidative stress plays on blood-brain barrier (BBB) function and structure has lagged behind. In this study, a natural antioxidant, sesamol, was administered to streptozotocin (STZ)-induced diabetic rats to examine the role that oxidative stress plays on BBB structure and function. Experiments were conducted at 56 days after STZ injection. Male Sprague-Dawley rats randomly were divided into four treatment groups CON--control; STZ--STZ-induced diabetes; CON + S--control + sesamol; STZ + S--STZ-induced diabetes + sesamol. Functional and structural changes to the BBB were measured by in situ brain perfusion and western blot analysis of changes in tight junction protein expression. Oxidative stress markers were visualized by fluorescent confocal microscopy and assayed by spectrophotometric analysis. Results demonstrated that the increased BBB permeability observed in STZ-induced diabetic rats was attenuated in STZ + S rats to levels observed in CON. Sesamol treatment reduced the negative impact of STZ-induced diabetes on tight junction protein expression in isolated cerebral microvessels. Oxidative stress markers were elevated in STZ as compared to CON. STZ + S displayed an improved antioxidant capacity which led to a reduced expression of superoxide and peroxynitrite and reduced lipid peroxidation. In conclusion, this study showed that sesamol treatment enhanced antioxidant capacity of the diabetic brain and led to decreased perturbation of hyperglycemia-induced changes in BBB structure and function.

  6. Changes in intracellular calcium in brain cells of aged rats

    Institute of Scientific and Technical Information of China (English)

    Yu Li; Yunpeng Cao

    2008-01-01

    BACKGROUND: Studies have shown that voltage-dependent calcium influx, and enhancement of certain calcium-dependent processes in neurons, is related to aging. OBJECTIVE: To observe changes in intracellular calcium ([Ca2+]i) in neurons of aged rats, and to compare with young rats. DESIGN, TIME AND SETTING: A randomized control experiment of neurophysiology was performed at the Central Laboratory of School of Pharmaceutical Science, China Medical University from June to August 2004. MATERIALS: Ten male, healthy, Wistar rats, 19 months old, were selected for the aged group. Ten male, 3-month-old, Wistar rats were selected for the young control group. Fura-2/AM was provided by the Institute of Pharmaceutical Research of Chinese Academy of Medical Sciences, and the F-2000 fluorospectrophotometer was a product of Hitachi, Japan. METHODS: Fluorescence Fura-2 spectrophotometer was used to measure [Ca2+]i in acutely dissociated brain cells of aged and young rats. The concentration of extracellular potassium was controlled by adding different volumes of chloridated potassium solution of high concentration. MAIN OUTCOME MEASURES: [Ca2+]i in neurons of young and aged rats in the presence of 1 mmol/L extracellular calcium concentration and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium. Absolute increase of [Ca2+]i in neurons of young and aged rats when extraceUular potassium was 5,10,20, 40 mmol/L. RESULTS: In the presence of 1 mmol/L extracellular Ca2+ and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium, [Ca2+]i in the neurons of aged rats was significantly less than that in young rats (P 0.05). CONCLUSION: The overload of [Ca2+]i in neurons of aged rats is greater than that of young rats under the same circumstances.

  7. The accumulation of brain water-free sodium is associated with ischemic damage independent of the blood pressure in female rats.

    Science.gov (United States)

    Sumiyoshi, Manabu; Kitazato, Keiko T; Yagi, Kenji; Miyamoto, Takeshi; Kurashiki, Yoshitaka; Matsushita, Nobuhisa; Kinouchi, Tomoya; Kuwayama, Kazuyuki; Satomi, Junichiro; Nagahiro, Shinji

    2015-08-01

    Estrogen deficiency worsens ischemic stroke outcomes. In ovariectomized (OVX(+)) rats fed a high-salt diet (HSD), an increase in the body Na(+)/water ratio, which characterizes water-free Na(+) accumulation, was associated with detrimental vascular effects independent of the blood pressure (BP). We hypothesized that an increase in brain water-free Na(+) accumulation is associated with ischemic brain damage in OVX(+)/HSD rats. To test our hypothesis we divided female Wistar rats into 4 groups, OVX(+) and OVX(-) rats fed HSD or a normal diet (ND), and subjected them to transient cerebral ischemia. The brain Na(+)/water ratio was increased even in OVX(+)/ND rats and augmented in OVX(+)/HSD rats. The increase in the brain Na(+)/water ratio was positively correlated with expansion of the cortical infarct volume without affecting the BP. Interestingly, OVX(+) was associated with the decreased expression of ATP1α3, a subtype of the Na(+) efflux pump. HSD increased the expression of brain Na(+) influx-related molecules and the mineralocorticoid receptor (MR). The pretreatment of OVX(+)/HSD rats with the MR antagonist eplerenone reduced brain water-free Na(+) accumulation, up-regulated ATP1α3, down-regulated MR, and reduced the cortical infarct volume. Our findings show that the increase in the brain Na(+)/water ratio elicited by estrogen deficiency or HSD is associated with ischemic brain damage BP-independently, suggesting the importance of regulating the accumulation of brain water-free Na(+). The up-regulation of ATP1α3 and the down-regulation of MR may provide a promising therapeutic strategy to attenuate ischemic brain damage in postmenopausal women.

  8. Comparison between MRI-based attenuation correction methods for brain PET in dementia patients

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, Jorge; Lukas, Mathias; Pyka, Thomas; Nekolla, Stephan G.; Ziegler, Sibylle I. [Technische Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Munich (Germany); Rota Kops, Elena; Shah, N. Jon [Forschungszentrum Juelich GmbH, Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Juelich (Germany); Ribeiro, Andre [Forschungszentrum Juelich GmbH, Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Juelich (Germany); Institute of Biophysics and Biomedical Engineering, Lisbon (Portugal); Yakushev, Igor [Technische Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Munich (Germany); Institute TUM Neuroimaging Center (TUM-NIC), Munich (Germany)

    2016-11-15

    The combination of Positron Emission Tomography (PET) with magnetic resonance imaging (MRI) in hybrid PET/MRI scanners offers a number of advantages in investigating brain structure and function. A critical step of PET data reconstruction is attenuation correction (AC). Accounting for bone in attenuation maps (μ-map) was shown to be important in brain PET studies. While there are a number of MRI-based AC methods, no systematic comparison between them has been performed so far. The aim of this work was to study the different performance obtained by some of the recent methods presented in the literature. To perform such a comparison, we focused on [{sup 18}F]-Fluorodeoxyglucose-PET/MRI neurodegenerative dementing disorders, which are known to exhibit reduced levels of glucose metabolism in certain brain regions. Four novel methods were used to calculate μ-maps from MRI data of 15 patients with Alzheimer's dementia (AD). The methods cover two atlas-based methods, a segmentation method, and a hybrid template/segmentation method. Additionally, the Dixon-based and a UTE-based method, offered by a vendor, were included in the comparison. Performance was assessed at three levels: tissue identification accuracy in the μ-map, quantitative accuracy of reconstructed PET data in specific brain regions, and precision in diagnostic images at identifying hypometabolic areas. Quantitative regional errors of -20-10 % were obtained using the vendor's AC methods, whereas the novel methods produced errors in a margin of ±5 %. The obtained precision at identifying areas with abnormally low levels of glucose uptake, potentially regions affected by AD, were 62.9 and 79.5 % for the two vendor AC methods, the former ignoring bone and the latter including bone information. The precision increased to 87.5-93.3 % in average for the four new methods, exhibiting similar performances. We confirm that the AC methods based on the Dixon and UTE sequences provided by the vendor are

  9. Comparison between MRI-based attenuation correction methods for brain PET in dementia patients.

    Science.gov (United States)

    Cabello, Jorge; Lukas, Mathias; Rota Kops, Elena; Ribeiro, André; Shah, N Jon; Yakushev, Igor; Pyka, Thomas; Nekolla, Stephan G; Ziegler, Sibylle I

    2016-11-01

    The combination of Positron Emission Tomography (PET) with magnetic resonance imaging (MRI) in hybrid PET/MRI scanners offers a number of advantages in investigating brain structure and function. A critical step of PET data reconstruction is attenuation correction (AC). Accounting for bone in attenuation maps (μ-map) was shown to be important in brain PET studies. While there are a number of MRI-based AC methods, no systematic comparison between them has been performed so far. The aim of this work was to study the different performance obtained by some of the recent methods presented in the literature. To perform such a comparison, we focused on [(18)F]-Fluorodeoxyglucose-PET/MRI neurodegenerative dementing disorders, which are known to exhibit reduced levels of glucose metabolism in certain brain regions. Four novel methods were used to calculate μ-maps from MRI data of 15 patients with Alzheimer's dementia (AD). The methods cover two atlas-based methods, a segmentation method, and a hybrid template/segmentation method. Additionally, the Dixon-based and a UTE-based method, offered by a vendor, were included in the comparison. Performance was assessed at three levels: tissue identification accuracy in the μ-map, quantitative accuracy of reconstructed PET data in specific brain regions, and precision in diagnostic images at identifying hypometabolic areas. Quantitative regional errors of -20--10 % were obtained using the vendor's AC methods, whereas the novel methods produced errors in a margin of ±5 %. The obtained precision at identifying areas with abnormally low levels of glucose uptake, potentially regions affected by AD, were 62.9 and 79.5 % for the two vendor AC methods, the former ignoring bone and the latter including bone information. The precision increased to 87.5-93.3 % in average for the four new methods, exhibiting similar performances. We confirm that the AC methods based on the Dixon and UTE sequences provided by the vendor are inferior to

  10. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Telang, F.; Fowler, J.S.; Pradhan, K.; Jayne, M.; Logan, J.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2010-07-01

    Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and {sup 18}FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue

  11. Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.

    Directory of Open Access Journals (Sweden)

    Nora D Volkow

    Full Text Available Dopamine (phasic release is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function was measured with PET and (18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg. The Cocaine-cues video increased craving to the same extent with placebo (68% and with methylphenidate (64%. In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005 in left limbic regions (insula, orbitofrontal, accumbens and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005, amygdala, striatum and middle insula (p<0.05. This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes, which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic

  12. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation.

    Science.gov (United States)

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2015-03-01

    Overactivity of the renin-angiotensin system, oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that angiotensin-converting enzyme 2 (ACE2) overexpression in the brain attenuates the development of deoxycorticosterone acetate-salt hypertension, a neurogenic hypertension model with enhanced brain renin-angiotensin system and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen-activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. Deoxycorticosterone acetate-salt hypertension significantly increased expression of Nox-2 (+61±5%), Nox-4 (+50±13%), and nitrotyrosine (+89±32%) and reduced activity of the antioxidant enzymes, catalase (-29±4%) and superoxide dismutase (-31±7%), indicating increased oxidative stress in the brain of nontransgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. Deoxycorticosterone acetate-salt-induced reduction of neuronal nitric oxide synthase expression (-26±7%) and phosphorylated endothelial nitric oxide synthase/total endothelial nitric oxide synthase (-30±3%), and enhanced phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 in the paraventricular nucleus, were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the paraventricular nucleus. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuroinflammation, ultimately attenuating Deoxycorticosterone acetate-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuroinflammation, improves antioxidant and nitric oxide signaling, and

  13. Euflammation attenuates peripheral inflammation-induced neuroinflammation and mitigates immune-to-brain signaling.

    Science.gov (United States)

    Liu, Xiaoyu; Nemeth, Daniel P; Tarr, Andrew J; Belevych, Natalya; Syed, Zunera W; Wang, Yufen; Ismail, Ahmad S; Reed, Nathaniel S; Sheridan, John F; Yajnik, Akul R; Disabato, Damon J; Zhu, Ling; Quan, Ning

    2016-05-01

    Peripheral inflammation can trigger a number of neuroinflammatory events in the CNS, such as activation of microglia and increases of proinflammatory cytokines. We have previously identified an interesting phenomenon, termed "euflammation", which can be induced by repeated subthreshold infectious challenges. Euflammation causes innate immune alterations without overt neuroimmune activation. In the current study, we examined the protective effect of euflammation against peripheral inflammation-induced neuroinflammation and the underlying mechanisms. When Escherichia coli or lipopolysaccharide (LPS) was injected inside or outside the euflammation induction locus (EIL), sickness behavior, global microglial activation, proinflammatory cytokine production in the brain, expression of endothelial cyclooxygenase II and induction of c-fos expression in the paraventricular nucleus of the hypothalamus were all attenuated in the euflammatory mice compared with those in the control unprimed mice. Euflammation also modulated innate immunity outside the EIL by upregulating receptors for pathogen-associated molecular patterns in spleen cells. In addition, euflammation attenuated CNS activation in response to an intra-airpouch (outside the EIL) injection of LPS without suppressing the cytokine expression in the airpouch. Collectively, our study demonstrates that signaling of peripheral inflammation to the CNS is modulated dynamically by peripheral inflammatory kinetics. Specifically, euflammation can offer effective protection against both bacterial infection and endotoxin induced neuroinflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Education attenuates the negative impact of traumatic brain injury on cognitive status.

    Science.gov (United States)

    Sumowski, James F; Chiaravalloti, Nancy; Krch, Denise; Paxton, Jessica; Deluca, John

    2013-12-01

    To investigate whether the cognitive reserve hypothesis helps to explain differential cognitive impairment among survivors of traumatic brain injury (TBI), whereby survivors with greater intellectual enrichment (estimated with education) are less vulnerable to cognitive impairment. Cross-sectional study. Medical rehabilitation research center. Survivors of moderate or severe TBI (n=44) and healthy controls (n=36). Not applicable. Intellectual enrichment was estimated with educational attainment. Group was defined as TBI or healthy control. Current cognitive status (processing speed, working memory, episodic memory) was evaluated with neuropsychological tasks. TBI survivors exhibited worse cognitive status than healthy persons (Peducation was positively correlated with cognitive status in TBI survivors (r=.54, Peducation (R(2) change=.036, P=.004), whereas higher education attenuated the negative impact of TBI on cognitive status. TBI survivors with lower education performed much worse than matched healthy persons, but this TBI-related performance discrepancy was attenuated at higher levels of education. Higher intellectual enrichment (estimated with education) reduces the negative effect of TBI on cognitive outcomes, thereby supporting the cognitive reserve hypothesis in persons with TBI. Future work is necessary to investigate whether intellectual enrichment can build cognitive reserve as a rehabilitative intervention in survivors of TBI. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  16. Curcumin Alters Neural Plasticity and Viability of Intact Hippocampal Circuits and Attenuates Behavioral Despair and COX-2 Expression in Chronically Stressed Rats

    Science.gov (United States)

    Choi, Ga-Young; Kim, Hyun-Bum; Hwang, Eun-Sang; Lee, Seok; Kim, Min-Ji; Choi, Ji-Young; Lee, Sung-Ok

    2017-01-01

    Curcumin is a major diarylheptanoid component of Curcuma longa with traditional usage for anxiety and depression. It has been known for the anti-inflammatory, antistress, and neurotropic effects. Here we examined curcumin effect in neural plasticity and cell viability. 60-channel multielectrode array was applied on organotypic hippocampal slice cultures (OHSCs) to monitor the effect of 10 μM curcumin in long-term depression (LTD) through low-frequency stimulation (LFS) to the Schaffer collaterals and commissural pathways. Cell viability was assayed by propidium iodide uptake test in OHSCs. In addition, the influence of oral curcumin administration on rat behavior was assessed with the forced swim test (FST). Finally, protein expression levels of brain-derived neurotrophic factor (BDNF) and cyclooxygenase-2 (COX-2) were measured by Western blot in chronically stressed rats. Our results demonstrated that 10 μM curcumin attenuated LTD and reduced cell death. It also recovered the behavior immobility of FST, rescued the attenuated BDNF expression, and inhibited the enhancement of COX-2 expression in stressed animals. These findings indicate that curcumin can enhance postsynaptic electrical reactivity and cell viability in intact neural circuits with antidepressant-like effects, possibly through the upregulation of BDNF and reduction of inflammatory factors in the brain. PMID:28167853

  17. Intrathecal cdk5 inhibitor, roscovitine,attenuates morphine antinociceptive tolerance in rats

    Institute of Scientific and Technical Information of China (English)

    Cheng-haung WANG; Tsung-hsing LEE; Yi-jung TSAI; Jong-kang LIU; Yann-jang CHEN; Lin-cheng YANG; Cheng-yuan LU

    2004-01-01

    AIM: To investigate the effect of cyclin-dependent kinase 5 (Cdk5) inhibitor roscovitine on the morphine antinociceptive tolerance development in rats. METHODS: Tail-flick test as pain threshold measurement and intrathecal injection techniques were used. RESULTS: Intrathecal roscovitine infusion alone produced an antinociceptive effect. Tolerance was induced by continuous intrathecal infusion of morphine 5 μg/h for 5 d. Coadministration of intrathecal roscovitine 1 μg/h for 5 d enhanced the morphine antinociceptive effect in tolerant rats.It also caused a shift in the morphine antinociceptive doseCresponse curve to the left when co-administered with morphine during tolerance induction, and caused a 67 % reduction in the increase in the ED50 of morphine (dose producing 50 % of the maximum response). CONCLUSION: Cdk5 modulation is involved in the antinociceptive tolerance of morphine. Intrathecal roscovitine administration could attenuate this tolerance development.

  18. Expression of neuropeptide Y in rat brain ischemia

    Directory of Open Access Journals (Sweden)

    Babović Siniša S.

    2013-01-01

    Full Text Available Introduction. The immunohistochemical method was used to follow the expression of neuropeptide Y in the course of pre ischemia of the rat brain. The aim of the study was to define all the areas of expression of this protein, show their localization, their map of distribution and histological types. Material and Methods. All the sections of telencephalon, diencephalon and midbrain were studied in resistant, and transitory ischemia, which enabled us to observe the reaction of neurons to an ischemic attack or to repeated attacks. The mapping was done for all three proteins by introducing our results into the maps of rat brain atlas, George Paxinos, Charles Watson. Photographing and protein expression was done using Analysis program. Results. The results of this research show that there is a differens in reaction between the resistant and transitory ischemia groups of rats, especially in the caudoputamen, gyrus dentatus, corpus amygdaloideum, particularly in the medial nucleus. The mapping shows the reaction in caudoputamen, gyrusdentatus, corpus amygdaloideum - especially in the central nucleus, then in the sensitive and secondary auditory cortex, mostly in the laminae V/VI, but less in neuron groups CA1, CA2, CA3 of hippocampus. Discussion. The phylogenetically older parts of the brain-rhinencephalon, also showed reaction, which lead us to conclude that both newer and older brain structures reacted immunohistochemically. Histological data have shown that small neurons are most commonly found while the second most common ones are big pyramidal cells of multipolar and bipolar type, with a different body shape. Conclusion. Our findings have confirmed the results obtained in some rare studies dealing with this issue, and offered a precise and detailed map of cells expressing neuropeptide Y in the rat brain following ischemic attack.

  19. Nerve growth factor receptor molecules in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Taniuchi, M.; Schweitzer, J.B.; Johnson, E.M. Jr.

    1986-03-01

    The authors have developed a method to immunoprecipitate rat nerve growth factor (NGF) receptor proteins and have applied the method to detect NGF receptor molecules in the rat brain. Crosslinking /sup 125/I-labeled NGF to either PC12 cells or cultured rat sympathetic neurons yielded two radiolabeled molecules (90 kDa and 220 kDa) that were immunoprecipitated by monoclonal antibody 192-IgG. Further, 192-IgG precipitated two radiolabeled proteins, with the expected sizes (80 kDa and 210 kDa) of noncrosslinked NGF receptor components, from among numerous surface-iodinated PC12 cell proteins. These results demonstrate the specific immunoprecipitation of NGF receptor molecules by 192-IgG. They applied the /sup 125/I-NGF crosslinking and 192-IgG-mediated immunoprecipitation procedures to plasma membrane preparations of rat brain: NGF receptor molecules of the same molecular masses as the peripheral receptor components were consistently detected in all regions and in preparations from whole brains. Removal of the peripheral sympathetic innervation of the brain did not eliminate these NGF receptor proteins, indicating that the receptor is endogenous to central nervous system tissues. They also observed retrograde transport of /sup 125/I-labeled 192-IgG from the parietal cortex to the nucleus basalis and from the hippocampus to the nucleus of the diagonal band of Broca and the medial septal nucleus. These findings demonstrate the presence in brain of NGF receptor molecules indistinguishable from those of the peripheral nervous system.

  20. Preserved modular network organization in the sedated rat brain.

    Directory of Open Access Journals (Sweden)

    Dany V D'Souza

    Full Text Available Translation of resting-state functional connectivity (FC magnetic resonance imaging (rs-fMRI applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40 under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility. Fully-connected large-scale complex networks of positively and negatively weighted connections were constructed based on Pearson partial correlation analysis between the time courses of 36 brain regions encompassing almost the entire brain. Applying recently proposed complex network analysis measures, we show that the rat FCN exhibits a modular architecture, comprising six modules with a high between subject reproducibility. In addition, we identified network hubs with strong connections to diverse brain regions. Overall our results obtained under a straight medetomidine protocol show for the first time that the community structure of the rat brain is preserved under pharmacologically induced sedation with a network modularity contrasting from the one reported for deep anesthesia but closely resembles the organization described for the rat in conscious state.

  1. Effect of glycolysis inhibition on mitochondrial function in rat brain.

    Science.gov (United States)

    Cano-Ramírez, D; Torres-Vargas, C E; Guerrero-Castillo, S; Uribe-Carvajal, S; Hernández-Pando, R; Pedraza-Chaverri, J; Orozco-Ibarra, M

    2012-05-01

    Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.

  2. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. (Tufs Univ., Boston, MA (USA))

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  3. Acute Ethanol Gavage Attenuates Hemorrhage/Resuscitation-Induced Hepatic Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    B. Relja

    2012-01-01

    Full Text Available Acute ethanol intoxication increases the production of reactive oxygen species (ROS. Hemorrhagic shock with subsequent resuscitation (H/R also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.. Then, rats were hemorrhaged to a mean arterial blood pressure of 30±2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.. Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE and nitrosative (3-nitrotyrosine, 3-NT stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.

  4. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    C. Gimenes

    2015-01-01

    Full Text Available We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed, exercised control (C-Ex, sedentary diabetes (DM-Sed, and exercised diabetes (DM-Ex. Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73±0.49; C-Ex: 5.67±0.53; DM-Sed: 6.41±0.54; DM-Ex: 5.81±0.50 mm; P<0.05 DM-Sed vs C-Sed and DM-Ex. Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats.

  5. Inflammation During Gestation Induced Spatial Memory and Learning Deficits: Attenuated by Physical Exercise in Juvenile Rats

    Science.gov (United States)

    Thangarajan, Rajesh; Rai, Kiranmai. S.; Gopalakrishnan, Sivakumar; Perumal, Vivek

    2015-01-01

    Background Gestational infections induced inflammation (GIII) is a cause of various postnatal neurological deficits in developing countries. Such intra uterine insults could result in persistent learning-memory disabilities. There are no studies elucidating the efficacy of adolescence exercise on spatial learning- memory abilities of young adult rats pre-exposed to inflammatory insult during fetal life. Aims and Objectives The present study addresses the efficacy of physical (running) exercise during adolescent period in attenuating spatial memory deficits induced by exposure to GIII in rats. Materials and Methods Pregnant Wistar dams were randomly divided into control and lipopolysaccharide (LPS) groups, injected intra peritoneally (i.p) with saline (0.5ml) or lipopolysaccharide (LPS) (0.5mg/kg) on alternate days from gestation day 14 (GD 14) till delivery. After parturition, pups were divided into 3 groups (n=6/group) a) Sham control and LPS group divided into 2 subgroups- b) LPS and c) LPS exercise group. Running exercise was given only to LPS exercise group during postnatal days (PNDs) 30 to 60 (15min/day). Spatial learning and memory performance was assessed by Morris water maze test (MWM), on postnatal day 61 to 67 in all groups. Results Young rats pre-exposed to GIII and subjected to running exercise through juvenile period displayed significant decrease in latency to reach escape platform and spent significant duration in target quadrant in MWM test, compared to age matched LPS group. Results of the current study demonstrated that exercise through juvenile/adolescent period effectively mitigates gestational inflammation-induced cognitive deficits in young adult rats. Conclusion Inflammation during gestation impairs offspring’s spatial memory and learning abilities. Whereas, early postnatal physical exercise attenuates, to higher extent, cognitive impairment resulted from exposure to LPS induced inflammation during intrauterine growth period. PMID:26266117

  6. Intermittent access to a nutritionally complete high-fat diet attenuates alcohol drinking in rats.

    Science.gov (United States)

    Sirohi, Sunil; Van Cleef, Arriel; Davis, Jon F

    2017-02-01

    Binge eating disorder and alcohol use disorder (AUD) frequently co-occur in the presence of other psychiatric conditions. Data suggest that binge eating engages similar behavioral and neurochemical processes common to AUD, which might contribute to the etiology or maintenance of alcoholism. However, it is unclear how binge feeding behavior and alcohol intake interact to promote initiation or maintenance of AUD. We investigated the impact of binge-like feeding on alcohol intake and anxiety-like behavior in male Long Evans rats. Rats received chow (controls) or extended intermittent access (24h twice a week; Int-HFD) to a nutritionally complete high-fat diet for six weeks. Standard rodent chow was available ad-libitum to all groups and food intake was measured. Following HFD exposure, 20.0% ethanol, 2.0% sucrose intake and endocrine peptide levels were evaluated. Anxiety-like behavior was measured using a light-dark (LD) box apparatus. Rats in the Int-HFD group displayed a binge-like pattern of feeding (alternations between caloric overconsumption and voluntary caloric restriction). Surprisingly, alcohol intake was significantly attenuated in the Int-HFD group whereas sugar consumption was unaffected. Plasma acyl-ghrelin levels were significantly elevated in the Int-HFD group, whereas glucagon-like peptide-1 levels did not change. Moreover, rats in the Int-HFD group spent more time in the light side of the LD box compared to controls, indicating that binge-like feeding induced anxiolytic effects. Collectively, these data suggest that intermittent access to HFD attenuates alcohol intake through reducing anxiety-like behavior, a process potentially controlled by elevated plasma ghrelin levels.

  7. Infliximab attenuates activated charcoal and polyethylene glycol aspiration-induced lung injury in rats.

    Science.gov (United States)

    Güzel, Aygül; Günaydin, Mithat; Güzel, Ahmet; Alaçam, Hasan; Murat, Naci; Gacar, Ayhan; Güvenç, Tolga

    2012-04-01

    Aspiration is a serious complication of gastrointestinal (GI) decontamination procedure. Studies have shown that tumor necrosis factor-α (TNF-α) blockers have beneficial effects on lung injury. Therefore, the authors investigated the attenuation by infliximab (INF) on activated charcoal (AC)- and polyethylene glycol (PEG)-induced lung injury in rat model. Forty-two male Sprague-Dawley rats were allotted into 1 of 6 groups: saline (NS), activated charcoal (AC), polyethylene glycol (PEG), NS+INF treated, AC+INF treated, and PEG+INF treated. All materials were aspirated into the lungs at a volume of 1 mL/kg. Before aspiration, the rats were injected subcutaneously with INF. Seven days later, both lungs and serum specimens in all groups were evaluated histopathologically, immunohistochemically, and biochemically. Following aspiration of AC and PEG, evident histopathological changes were assigned in the lung tissue that were associated with increased expression of inducible nitric oxide synthase (iNOS), increased serum levels of oxidative stress markers (malondialdehyde [MDA], surfactant protein-D [SP-D], TNF-α), and decreased antioxidant enzyme (glutathione peroxidase [GSH-Px]) activities. INF treatment significantly decreased the elevated serum MDA and TNF-α levels and increased serum GSH-Px levels. Furthermore, the current results show that there is a significant reduction in the activity of iNOS in lung tissue and increased serum SP-D levels of AC and PEG aspiration-induced lung injury with INF treatment. These findings suggest that INF attenuates lung inflammation and prevents GI decontamination agent-induced lung injury in rats.

  8. Noninvasive method to assess the electrical brain activity from rats

    Directory of Open Access Journals (Sweden)

    Rosana Ferrari

    2013-10-01

    Full Text Available This research presents a noninvasive method for the acquisition of brain electrical signal in rat. Was used an electroencephalography (EEG system developed for bovine and adapted to rats. The bipolar electrode system (needle electrodes was glued on the surface of the head of the animal without surgical procedures and the other electrode was glued to the tail, as ground. The EEG activity was sampled at 120Hz for an hour. The accuracy and precision of the EEG measurement was performed using Fourier analysis and signal energy. For this, the digital signal was divided into sections successive of 3 seconds and was decomposed into four frequency bands: delta (0.3 to 4Hz, theta (4-8Hz, alpha (8-12Hz and beta (12-30Hz and energy (µV² of the series of time filtered were calculated. The method allowed the acquisition of non-invasive electrical brain signals in conscious rats and their frequency patterns were in agreement with previous studies that used surgical procedures to acquire EEG in rats. This system showed accuracy and precision and will allow further studies on behavior and to investigate the action of drugs on the central nervous system in rats without surgical procedures.

  9. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation

    Science.gov (United States)

    Li, Jiebin; Li, Chunsheng; Yuan, Wei; Wu, Junyuan; Li, Jie; Li, Zhenhua; Zhao, Yongzhen

    2017-01-01

    Mild hypothermia improves survival and neurological recovery after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). However, the mechanism underlying this phenomenon is not fully elucidated. The aim of this study was to determine whether mild hypothermia alleviates early blood–brain barrier (BBB) disruption. We investigated the effects of mild hypothermia on neurologic outcome, survival rate, brain water content, BBB permeability and changes in tight junctions (TJs) and adherens junctions (AJs) after CA and CPR. Pigs were subjected to 8 min of untreated ventricular fibrillation followed by CPR. Mild hypothermia (33°C) was intravascularly induced and maintained at this temperature for 12 h, followed by active rewarming. Mild hypothermia significantly reduced cortical water content, decreased BBB permeability and attenuated TJ ultrastructural and basement membrane breakdown in brain cortical microvessels. Mild hypothermia also attenuated the CPR-induced decreases in TJ (occludin, claudin-5, ZO-1) and AJ (VE-cadherin) protein and mRNA expression. Furthermore, mild hypothermia decreased the CA- and CPR-induced increases in matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression and increased angiogenin-1 (Ang-1) expression. Our findings suggest that mild hypothermia attenuates the CA- and resuscitation-induced early brain oedema and BBB disruption, and this improvement might be at least partially associated with attenuation of the breakdown of TJ and AJ, suppression of MMP-9 and VEGF expression, and upregulation of Ang-1 expression. PMID:28355299

  10. Intrathecal siRNA against GPNMB attenuates nociception in a rat model of neuropathic pain.

    Science.gov (United States)

    Hou, Lili; Zhang, Yanfeng; Yang, Yong; Xiang, Kai; Tan, Qindong; Guo, Qulian

    2015-02-01

    Neuropathic pain is characterized by hyperalgesia, allodynia, and spontaneous pain. Recent studies have shown that glycoprotein nonmetastatic melanoma B (GPNMB) plays a pivotal role in neuronal survival and neuroprotection. However, the role of GPNMB in neuropathic pain remains unknown. The aim of the present study was to assess the role of GPNMB in neuropathic pain. In cultured spinal cord neurons, we used two small interfering RNAs (siRNAs) targeting the complementary DNA (cDNA) sequence of rat GPNMB that had potent inhibitory effects on GPNMB, and siRNA1-GPNMB was selected for further in vivo study as it had the higher inhibitory effect. After sciatic nerve injury in rats, the endogenous level of GPNMB was increased in a time-dependent manner in the spinal cord. Furthermore, the intrathecal injection of siRNA1-GPNMB inhibited the expression of GPNMB and pro-inflammatory factors (TNF-α, IL-1β, and IL-6) and alleviated mechanical allodynia and thermal hyperalgesia in the chronic constriction injury (CCI) model of rats. Taken together, our findings suggest that siRNA against GPNMB can alleviate the chronic neuropathic pain caused by CCI, and this effect may be mediated by attenuated expression of TNF-α, IL-1β, and IL-6 in the spinal cord of CCI rats. Therefore, inhibition of GPNMB may provide a novel strategy for the treatment of neuropathic pain.

  11. Supplementation of parenteral nutrition with fish oil attenuates acute lung injury in a rat model

    Science.gov (United States)

    Kohama, Keisuke; Nakao, Atsunori; Terashima, Mariko; Aoyama-Ishikawa, Michiko; Shimizu, Takayuki; Harada, Daisuke; Nakayama, Mitsuo; Yamashita, Hayato; Fujiwara, Mayu; Kotani, Joji

    2014-01-01

    Fish oil rich in n-3 polyunsaturated fatty acids has diverse immunomodulatory properties and attenuates acute lung injury when administered in enternal nutrition. However, enteral nutrition is not always feasible. Therefore, we investigated the ability of parenteral nutrition supplemented with fish oil to ameliorate acute lung injury. Rats were infused with parenteral nutrition solutions (without lipids, with soybean oil, or with soybean oil and fish oil) for three days. Lipopolysaccharide (15 mg/kg) was then administered intratracheally to induce acute lung injury, characterized by impaired lung function, polymorphonuclear leukocyte recruitment, parenchymal tissue damage, and upregulation of mRNAs for inflammatory mediators. Administration of parenteral nutrition supplemented with fish oil prior to lung insult improved gas exchange and inhibited neutrophil recruitment and upregulation of mRNAs for inflammatory mediators. Parenteral nutrition supplemented with fish oil also prolonged survival. To investigate the underlying mechanisms, leukotriene B4 and leukotriene B5 secretion was measured in neutrophils from the peritoneal cavity. The neutrophils from rats treated with fish oil-rich parenteral nutrition released significantly more leukotriene B5, an anti-inflammatory eicosanoid, than neutrophils isolated from rats given standard parenteral nutrition. Parenteral nutrition with fish oil significantly reduced lipopolysaccharide-induced lung injury in rats in part by promoting the synthesis of anti-inflammatory eicosanoids. PMID:24688221

  12. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  13. Daily sesame oil supplement attenuates joint pain by inhibiting muscular oxidative stress in osteoarthritis rat model.

    Science.gov (United States)

    Hsu, Dur-Zong; Chu, Pei-Yi; Jou, I-Ming

    2016-03-01

    Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the population. The aim of this study was to evaluate the efficacy of sesame oil in controlling OA pain in rats. Rat joint pain was induced by medial meniscal transection in Sprague-Dawley rats and assessed by using hindlimb weight distribution method. Muscular oxidative stress was assessed by determining lipid peroxidation, reactive oxygen species and circulating antioxidants. Sesame oil significantly decreased joint pain compared with positive control group in a dose-dependent manner. Sesame oil decreased lipid peroxidation in muscle but not in serum. Further, sesame oil significantly decreased muscular superoxide anion and peroxynitrite generations but increased muscular glutathione and glutathione peroxidase levels. Further, sesame oil significantly increased nuclear factor erythroid-2-related factor (Nrf2) expression compared with positive control group. We concluded that daily sesame oil supplement may attenuate early joint pain by inhibiting Nrf2-associated muscular oxidative stress in OA rat model. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Intravenous transplantation of mesenchymal stem cells attenuates oleic acid induced acute lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    XU Yu-lin; LIU Ying-long; WANG Qiang; LI Gang; L(U) Xiao-dong; KONG Bo

    2012-01-01

    Background Acute lung injury (ALI) and end-stage acute respiratory distress syndrome (ARDS) were among the most common causes of death in intensive care units.The activation of an inflammatory response and the damage of pulmonary epithelium and endotheliumwerethe hallmark of ALI/ARDS.Recent studies had demonstrated the importance of mesenchymal stem cells (MSCs) in maintaining the normal pulmonary endothelial and epithelial function as well as participating in modulating the inflammatory response and they are involved in epithelial and endothelial repair after injury.Here,our study demonstrates MSCs therapeutic potential in a rat model of ALI/ARDS.Methods Bone marrow derived MSCs were obtained from Sprague-Dawley (SD) rats and their differential potential was verified.ALl was induced in rats byoleic acid (OA),and MSCs were transplanted intravenously.The lung injury and the concentration of cytokines in plasma and lung tissue extracts were assessed at 8 hours,24 hours and 48 hours after OA-injection.Results The histological appearance and water content in rat lung tissue were significantly improved at different time points in rats treated with MSCs.The concentration of tumor necrosis factor-α and intercellular adhesion molecular-1 in rats plasma and lung tissue extracts were significantly inhibited after intravenous transplantation of MSCs,whereas interleukin-10 was significantly higher after MSCs transplantation at 8 hours,24 hours and 48 hours after OA-challenge.Conclusions Intravenous transplantation of MSCs could maintain the integrity of the pulmonary alveolar-capillary barrier and modulate the inflammatory response to attenuate the experimental ALI/ARDS.Transplantation of MSCs could be a novel cell-based therapeutic strategy for prevention and treatment of ALI/ARDS.

  15. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats.

    Directory of Open Access Journals (Sweden)

    Yunye Ning

    Full Text Available BACKGROUND: Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD and asthma. Cigarette smoking (CS is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. METHODS: Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. RESULTS: Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. CONCLUSION: Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.

  16. Prostaglandin E2 metabolism in rat brain: Role of the blood-brain interfaces

    Directory of Open Access Journals (Sweden)

    Strazielle Nathalie

    2008-03-01

    Full Text Available Abstract Background Prostaglandin E2 (PGE2 is involved in the regulation of synaptic activity and plasticity, and in brain maturation. It is also an important mediator of the central response to inflammatory challenges. The aim of this study was to evaluate the ability of the tissues forming the blood-brain interfaces to act as signal termination sites for PGE2 by metabolic inactivation. Methods The specific activity of 15-hydroxyprostaglandin dehydrogenase was measured in homogenates of microvessels, choroid plexuses and cerebral cortex isolated from postnatal and adult rat brain, and compared to the activity measured in peripheral organs which are established signal termination sites for prostaglandins. PGE2 metabolites produced ex vivo by choroid plexuses were identified and quantified by HPLC coupled to radiochemical detection. Results The data confirmed the absence of metabolic activity in brain parenchyma, and showed that no detectable activity was associated with brain microvessels forming the blood-brain barrier. By contrast, 15-hydroxyprostaglandin dehydrogenase activity was measured in both fourth and lateral ventricle choroid plexuses from 2-day-old rats, albeit at a lower level than in lung or kidney. The activity was barely detectable in adult choroidal tissue. Metabolic profiles indicated that isolated choroid plexus has the ability to metabolize PGE2, mainly into 13,14-dihydro-15-keto-PGE2. In short-term incubations, this metabolite distributed in the tissue rather than in the external medium, suggesting its release in the choroidal stroma. Conclusion The rat choroidal tissue has a significant ability to metabolize PGE2 during early postnatal life. This metabolic activity may participate in signal termination of centrally released PGE2 in the brain, or function as an enzymatic barrier acting to maintain PGE2 homeostasis in CSF during the critical early postnatal period of brain development.

  17. Local NMDA receptor blockade attenuates chronic tinnitus and associated brain activity in an animal model.

    Directory of Open Access Journals (Sweden)

    Thomas J Brozoski

    Full Text Available Chronic tinnitus has no broadly effective treatment. Identification of specific markers for tinnitus should facilitate the development of effective therapeutics. Recently it was shown that glutamatergic blockade in the cerebellar paraflocculus, using an antagonist cocktail was successful in reducing chronic tinnitus. The present experiment examined the effect of selective N-methyl d-aspartate (NMDA receptor blockade on tinnitus and associated spontaneous brain activity in a rat model. The NMDA antagonist, D(--2-amino-5-phosphonopentanoic acid (D-AP5 (0.5 mM, was continuously infused for 2 weeks directly to the ipsilateral paraflocculus of rats with tinnitus induced months prior by unilateral noise exposure. Treated rats were compared to untreated normal controls without tinnitus, and to untreated positive controls with tinnitus. D-AP5 significantly decreased tinnitus within three days of beginning treatment, and continued to significantly reduce tinnitus throughout the course of treatment and for 23 days thereafter, at which time testing was halted. At the conclusion of psychophysical testing, neural activity was assessed using manganese enhanced magnetic resonance imaging (MEMRI. In agreement with previous research, untreated animals with chronic tinnitus showed significantly elevated bilateral activity in their paraflocculus and brainstem cochlear nuclei, but not in mid or forebrain structures. In contrast, D-AP5-treated-tinnitus animals showed significantly less bilateral parafloccular and dorsal cochlear nucleus activity, as well as significantly less contralateral ventral cochlear nucleus activity. It was concluded that NMDA-mediated glutamatergic transmission in the paraflocculus appears to be a necessary component of chronic noise-induced tinnitus in a rat model. Additionally, it was confirmed that in this model, elevated spontaneous activity in the cerebellar paraflocculus and auditory brainstem is associated with tinnitus.

  18. Differential Expression of Sirtuins in the Ageing Rat Brain

    Directory of Open Access Journals (Sweden)

    Gilles J. Guillemin

    2015-05-01

    Full Text Available Although there are seven mammalian sirtuins (SIRT1-7, little is known about their expression in the ageing brain. To characterise the change(s in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of ‘physiologically’ aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy ageing.

  19. Up-regulation of GBP2 is Associated with Neuronal Apoptosis in Rat Brain Cortex Following Traumatic Brain Injury.

    Science.gov (United States)

    Miao, Qi; Ge, Meihong; Huang, Lili

    2017-02-27

    Guanylate binding protein 2 (GBP2) is one member of GBP family. Recently, GBP2 has been proposed to be a novel target of anti-cancer drugs. However, the role of GBP2 in the traumatic brain injury (TBI) is very limited. In this study, we sought to define GBP2's role in brain injury. GBP2 protein levels were significantly increased in the brain 3 days after injury, suggesting a functional role for GBP2 in TBI. Neuronal cells overexpressing GBP2 exhibited up-regulation of co-location of GBP2 and NeuN following TBI, suggesting that GBP2 potentiates the neuron apoptosis. To confirm the role of GBP2 in neuron apoptosis process, we employed a highly potent inhibitor of GBP2 (GBP2 RNAi). In H2O2-stimulated PC12 cells, in vitro blockade of GBP2 activity using GBP2 RNAi markedly attenuated the neuron apoptosis number. GBP2 RNAi also inhibited the expression levels of active caspase3 and p-Stat1. Furthermore, we found the expression of p-Stat1 in line with GBP2 and GBP2 interacted with p-Stat1 following TBI. The Jak2 inhibitor, AG490 inhibited this interaction and decreased the active caspase3 expression as well as promoted the functional recovery. Taken together, these data suggest that GBP2 RNAi has a protective effect in a rat TBI. This study demonstrates that GBP2 is an important positive regulator of TBI and is a promising therapeutic target for brain injury.

  20. PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Aasheim, Lars Birger [Norwegian University of Science and Technology (NTNU), Department of Circulation and Medical Imaging, Trondheim (Norway); St. Olavs University Hospital, Clinic of Radiology and Nuclear Medicine, Trondheim (Norway); Karlberg, Anna [St. Olavs University Hospital, Clinic of Radiology and Nuclear Medicine, Trondheim (Norway); Goa, Paal Erik [St. Olavs University Hospital, Clinic of Radiology and Nuclear Medicine, Trondheim (Norway); NTNU, Department of Physics, Trondheim (Norway); Haaberg, Asta [NTNU, Department of Neuroscience, Trondheim (Norway); St. Olavs University Hospital, Department of Medical Imaging, Trondheim (Norway); Soerhaug, Sveinung [St. Olavs University Hospital, Department of Thoracic Medicine, Trondheim (Norway); Fagerli, Unn-Merete [St. Olavs University Hospital, Department of Oncology, Trondheim (Norway); NTNU, Department of Cancer Research and Molecular Medicine, Trondheim (Norway); Eikenes, Live [Norwegian University of Science and Technology (NTNU), Department of Circulation and Medical Imaging, Trondheim (Norway)

    2015-08-15

    One of the greatest challenges in PET/MR imaging is that of accurate MR-based attenuation correction (AC) of the acquired PET data, which must be solved if the PET/MR modality is to reach its full potential. The aim of this study was to investigate the performance of Siemens' most recent version (VB20P) of MR-based AC of head PET data, by comparing it to CT-based AC. Methods:{sup 18}F-FDG PET data from seven lymphoma and twelve lung cancer patients examined with a Biograph mMR PET/MR system were reconstructed with both CT-based and MR-based AC, avoiding sources of error arising when comparing PET data from different systems. The resulting images were compared quantitatively by measuring changes in mean SUV in ten different brain regions in both hemispheres, as well as the brainstem. In addition, the attenuation maps (μ maps) were compared regarding volume and localization of cranial bone. The UTE μ maps clearly overestimate the amount of bone in the neck, while slightly underestimating the amount of bone in the cranium, and the localization of bone in the cranial region also differ from the CT μ maps. In air/tissue interfaces in the sinuses and ears, the MRAC method struggles to correctly classify the different tissues. The misclassification of tissue is most likely caused by a combination of artefacts and the insufficiency of the UTE method to accurately separate bone. Quantitatively, this results in a combination of overestimation (0.5-3.6 %) and underestimation (2.7-5.2 %) of PET activity throughout the brain, depending on the proximity to the inaccurate regions. Our results indicate that the performance of the UTE method as implemented in VB20P is close to the theoretical maximum of such an MRAC method in the brain, while it does not perform satisfactorily in the neck or face/nasal area. Further improvement of the UTE MRAC or other available methods for more accurate segmentation of bone should be incorporated. (orig.)

  1. Effects of β-Aescin on the expression of nuclear factor-κB and tumor necrosis factor-α after traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    XIAO Guo-min; WEI Jing

    2005-01-01

    To investigate the inhibiting effect of β-Aescin on nuclear factor-κB (NF-κB) activation and the expression of tumor necrosis factor-α (TNF-α) protein after traumatic brain injury (TBI) in the rat brain, 62 SD rats were subjected to lateral cortical impact injury caused by a free-falling object and divided randomly into four groups: (1) sham operated (Group A); (2) injured (Group B); (3) β-Aescin treatment (Group C); (4) pyrrolidine dithocarbamate (PDTC) treatment (Group D). β-Aescin was administered in Group C and PDTC treated in Group D immediately after injury. A series of brain samples were obtained directly 6h, 24 h and 3 d respectively after trauma in four groups. NF-κB activation was examined by Electrophoretic Mobility Shift Assay (EMSA); the levels of TNF-α protein were measured by radio-immunoassay (RIA); the water content of rat brain was measured and pathomorphological observation was carried out. NF-κB activation, the levels of TNF-α protein and the water content of rat brain were significantly increased (P<0.01) following TBI in rats. Compared with Group B, NF-κB activation (P<0.01), the levels of TNF-α protein (P<0.01) and the water content of brain (P<0.05) began to decrease obviously after injury in Groups C and D.β-Aescin could dramatically inhibit NF-κB activation and the expression of TNF-α protein in the rat brain, alleviate rat brain edema, and that could partially be the molecular mechanism by which β-Aescin attenuates traumatic brain edema.

  2. INTERVAL TRAINING IS INSUFFICIENT TO ATTENUATE METABOLIC DISTURBANCES IN DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Ricelli Endrigo Ruppel da Rocha

    Full Text Available ABSTRACT Introduction: Type 1 diabetes is a metabolic disease associated to blood disturbances and disorder of the innate immune system functionality. Objective: This study investigated the effect of two weeks interval training on blood biochemistry and immunological parameters in rats with type 1 diabetes. Methods: Male Wistar rats were divided into three groups: sedentary (SE, n = 10, diabetic sedentary (DI, n = 10, diabetic interval training (DIT, n = 10. IV injection of streptozotocin (45 mg/kg induced diabetes. Interval training consisted of swimming exercise for 30 seconds with 30 seconds of rest for 30 minutes three times a week during two weeks, with an overload of 15% of the total body mass. The evaluations performed were fasting blood glucose, triglycerides, very low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and total cholesterol concentrations, phagocytic capacity, cationic vesicles content, superoxide anion, and production of hydrogen peroxide of blood neutrophils and peritoneal macrophages. Results: The results showed that two weeks interval training did not attenuate the hyperglycemic state at rest and did not decrease blood lipids in the DIT group. Diabetes increased the functionality of blood neutrophils and peritoneal macrophages in the DI group. Interval training increased the content of cationic vesicles and the phagocytic capacity of blood neutrophils and peritoneal macrophages in the DIT group. Conclusion: It was found that two weeks of interval training increased the functionality parameters of innate immune cells, although this has been insufficient to attenuate the biochemical disorders caused by diabetes.

  3. Postnatal development of aminopeptidase (arylamidase) activity in rat brain.

    Science.gov (United States)

    de Gandarias, J M; Ramírez, M; Zulaica, J; Iribar, C; Casis, L

    1989-01-01

    Changes in the activities of Leu- and Arg-arylamidase in rat frontal and parietal cortices and the subcortical area (including thalamus, hypothalamus, and striatum) were examined in the 2nd, 4th, 8th, 12th, and 24th weeks of life. Average levels found in the subcortical region were greater than those in the cortical areas. The most marked changes in enzymatic activity in the course of brain development were found in the subcortical structure. Leu-arylamidase activity increased from the 2nd week up to the 8th week, returning to the 2nd week level at the 12th and 24th weeks. The maximum levels of Arg-arylamidase activity were found at the 4th and 8th weeks. These data suggest that proteolytic activity is involved in the postnatal development of rat brain.

  4. Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin.

    Science.gov (United States)

    Ma, Junxiong; Yu, Hailong; Liu, Jun; Chen, Yu; Wang, Qi; Xiang, Liangbi

    2015-10-05

    Painful diabetic neuropathy is a common complication of diabetes mellitus, which often makes the patients suffer from severe hyperalgesia and allodynia. Thus far, the treatment of painful diabetic neuropathy remains unsatisfactory. Metformin, which is the first-line drug for type-2 diabetes, has been proved to attenuate hyperexcitability in sensory neurons linked to chemotherapy-induced neuropathic pain, highlighting its potential in alleviating pain related with painful diabetic neuropathy. The present study was designed to investigate the potential beneficial effect of metformin on hyperalgesia and allodynia in diabetic rats. The mechanical sensitivity, heat nociception, and cold allodynia were examined. The levels of malondialdehyde, superoxide dismutase, and advanced glycation end-products in the blood were measured. The expression of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and AMPK target genes were examined in the sciatic nerves of the animals. It was found that metformin was capable of attenuating diabetes-induced mechanical hyperalgesia, heat hyperalgesia and cold allodynia. In addition, metformin was capable of decreasing malondialdehyde and glycation end-products levels in blood, as well as increasing superoxide dismutas activity, indicating the inhibitory effect of metformin against diabetes-induced oxidative stress. Further studies showed that metformin could activate AMPK and increase the AMPK target genes in sciatic nerves in diabetic rats. In conclusion, metformin is able to attenuate diabetes-induced hyperalgesia and allodynia, which might be associated its anti-oxidative effect through AMPK pathway. Metformin might be used as an effective drug, especially with fewer side effects, for abnormal sensation in painful diabetic neuropathy.

  5. Chronic bilateral renal denervation attenuates renal injury in a transgenic rat model of diabetic nephropathy.

    Science.gov (United States)

    Yao, Yimin; Fomison-Nurse, Ingrid C; Harrison, Joanne C; Walker, Robert J; Davis, Gerard; Sammut, Ivan A

    2014-08-01

    Bilateral renal denervation (BRD) has been shown to reduce hypertension and improve renal function in both human and experimental studies. We hypothesized that chronic intervention with BRD may also attenuate renal injury and fibrosis in diabetic nephropathy. This hypothesis was examined in a female streptozotocin-induced diabetic (mRen-2)27 rat (TGR) shown to capture the cardinal features of human diabetic nephropathy. Following diabetic induction, BRD/sham surgeries were conducted repeatedly (at the week 3, 6, and 9 following induction) in both diabetic and normoglycemic animals. Renal denervation resulted in a progressive decrease in systolic blood pressure from first denervation to termination (at 12 wk post-diabetic induction) in both normoglycemic and diabetic rats. Renal norepinephrine content was significantly raised following diabetic induction and ablated in denervated normoglycemic and diabetic groups. A significant increase in glomerular basement membrane thickening and mesangial expansion was seen in the diabetic kidneys; this morphological appearance was markedly reduced by BRD. Immunohistochemistry and protein densitometric analysis of diabetic innervated kidneys confirmed the presence of significantly increased levels of collagens I and IV, α-smooth muscle actin, the ANG II type 1 receptor, and transforming growth factor-β. Renal denervation significantly reduced protein expression of these fibrotic markers. Furthermore, BRD attenuated albuminuria and prevented the loss of glomerular podocin expression in these diabetic animals. In conclusion, BRD decreases systolic blood pressure and reduces the development of renal fibrosis, glomerulosclerosis, and albuminuria in this model of diabetic nephropathy. The evidence presented strongly suggests that renal denervation may serve as a therapeutic intervention to attenuate the progression of renal injury in diabetic nephropathy.

  6. The effect of hypothermia on the expression of TIMP-3 after traumatic brain injury in rats.

    Science.gov (United States)

    Jia, Feng; Mao, Qing; Liang, Yu-Min; Jiang, Ji-Yao

    2014-02-15

    Here we investigate the effect of hypothermia on the expression of apoptosis-regulating protein TIMP-3 after fluid percussion traumatic brain injury (TBI) in rats. We began with 210 adult male Sprague-Dawley rats and randomly assigned them to three groups: TBI with hypothermia treatment (32°C), TBI with normothermia (37°C), and sham-injured controls. TBI was induced by a fluid percussion TBI device. Mild hypothermia (32°C) was achieved by partial immersion in a water bath (0°C) under general anesthesia for 4 h. The rats were killed at 4, 6, 12, 24, 48, and 72 h and 1 week after TBI. The mRNA and protein level of TIMP-3 in both the injured and uninjured hemispheres of the brains from each group were measured using RT-PCR and Western blotting. In the normothermic group, TIMP-3 levels in both the injured and uninjured hemispheres were significantly increased after TBI compared with those of sham-injured animals (p traumatic hypothermia significantly attenuated this increase. According to the RT-PCR and Western blot analyses, the maximum mRNA levels of TIMP-3 were reduced to 60.60 ± 2.30%, 55.83 ± 1.80%, 66.03 ± 2.10%, and 64.51 ± 1.50%, respectively, of the corresponding values in the normothermic group in the injured and uninjured hemispheres (cortex and hippocampus) of the hypothermia group (p brain injury significantly upregulates TIMP-3 expression, and that this increase may be suppressed by hypothermia treatment.

  7. Bilobalide inhibits the expression of aquaporin 1, 4 and glial fibrillary acidic protein in rat brain tissue after permanent focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Haiming Qin; Fulin Song; Hongguang Han; Hong Qu; Xingwen Zhai; Bin Qin; Song You

    2011-01-01

    The present results demonstrated that in an adult rat model of permanent middle cerebral artery occlusion (pMCAO), pretreatment with bilobalide reduced brain water content and infarct area, down-regulated aquaporin 1, 4 mRNA expression in brain edema tissue, then inhibited their synthesis in the striatum, in particular at the early stage of ischemia (at 8 hours after pMCAO), inhibited glial fibrillary acidic protein expression, and lightened reactive gliosis. These data sug-gest that bilobalide attenuates brain edema formation due to reduced expression of aquaporins.

  8. Effects of NOS inhibitor on dentate gyrus neurogenesis after diffuse brain injury in the adult rats

    Institute of Scientific and Technical Information of China (English)

    SunLi-Sha; XuJiang-ping

    2004-01-01

    Objective To investigate the effects of selective nitric oxide synthase (NOS) inhibitors on dentate gyrus neurogenesis after diffuse brain injury (DBI) in the adult rat brain. Methods Adult male SD rats were subjected to diffuse brain injury (DBI) model. By using systemic bromodeoxyuridine (BrdU) to label dividing cells, we compared the proliferation rate of

  9. Multiple opiate receptors in the brain of spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Bhargava, H.N.

    1986-03-01

    The characteristics of ..mu.., delta and kappa -opiate receptors in the brain of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats were determined using the receptor binding assays. The ligands used were /sup 3/H-naltrexone (..mu..), /sup 3/H-ethylketocyclazocine (EKC, kappa) and /sup 3/H-Tyr-D-Ser-Gly-Phe-Leu-Thr (DSTLE, delta). Since EKC binds to ..mu.. and delta receptors in addition to kappa, the binding was done in the presence of 100 nM each of DAGO and DADLE to suppress ..mu.. and delta sites, respectively. All three ligands bound to brain membranes of WKY rats at a single high affinity site with the following B/sub max/ (fmol/mg protein) and K/sub d/ (nM) values: /sup 3/H-naltrexone (130.5; 0.43) /sup 3/H-EKC (19.8, 1.7) and /sup 3/H-DSTLE (139, 2.5). The binding of /sup 3/H-naltrexone and /sup 3/H-DSTLE in the brain of WKY and SH did not differ. A consistent increase (22%) in B/sub max/ of /sup 3/H-EKC was found in SHR compared to WKY rats. However, the K/sub d/ values did not differ. The increase in B/sub max/ was due to increases in hypothalamus and cortex. It is concluded that SH rats have higher density of kappa-opiate receptors, particularly in hypothalamus and cortex, compared to WKY rats, and that kappa-opiate receptors may be involved in the pathophysiology of hypertension.

  10. Mdivi-1 Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats, Possibly via Inhibition of Drp1-Activated Mitochondrial Fission and Oxidative Stress.

    Science.gov (United States)

    Wu, Pei; Li, Yuchen; Zhu, Shiyi; Wang, Chunlei; Dai, Jiaxing; Zhang, Guang; Zheng, Bingjie; Xu, Shancai; Wang, Ligang; Zhang, Tongyu; Zhou, PeiQuan; Zhang, John H; Shi, Huaizhang

    2017-02-16

    Mdivi-1 is a selective inhibitor of mitochondrial fission protein, Drp1, and can penetrate the blood-brain barrier. Previous studies have shown that Mdivi-1 improves neurological outcomes after ischemia, seizures and trauma but it remains unclear whether Mdivi-1 can attenuate early brain injury after subarachnoid hemorrhage (SAH). We thus investigated the therapeutic effect of Mdivi-1 on early brain injury following SAH. Rats were randomly divided into four groups: sham; SAH; SAH + vehicle; and SAH + Mdivi-1. The SAH model was induced by standard intravascular perforation and all of the rats were subsequently sacrificed 24 h after SAH. Mdivi-1 (1.2 mg/kg) was administered to rats 30 min after SAH. We found that Mdivi-1 markedly improved neurologic deficits, alleviated brain edema and BBB permeability, and attenuated apoptotic cell death. Mdivi-1 also significantly reduced the expression of cleaved caspase-3, Drp1 and p-Drp1((Ser616)), attenuated the release of Cytochrome C from mitochondria, inhibited excessive mitochondrial fission, and restored the ultra-structure of mitochondria. Furthermore, Mdivi-1 reduced levels of MDA, 3-NT, and 8-OHdG, and improved SOD activity. Taken together, our data suggest that Mdivi-1 exerts neuroprotective effects against cell death induced by SAH and the underlying mechanism may be inhibition of Drp1-activated mitochondrial fission and oxidative stress.

  11. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    Institute of Scientific and Technical Information of China (English)

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun

    2005-01-01

    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  12. Marrow stromal cells administrated intracisternally to rats after traumatic brain injury migrate into the brain and improve neurological function

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹

    2004-01-01

    @@ Marrow stromal cells(MSCs) have been reported to transplant into injured brain via intravenous or intraarterial or direct intracerebral administration.1-3 In the present study, we observed that MSCs migrated into the brain, survived and diffeneriated into neural cells after they were injected into the cisterna magna of rats, and that the behavior of the rats after traumatic brain injury (TBI) was improved.

  13. Brain oxidative stress induced by obstructive jaundice in rats.

    Science.gov (United States)

    Chroni, Elisabeth; Patsoukis, Nikolaos; Karageorgos, Nikolaos; Konstantinou, Dimitris; Georgiou, Christos

    2006-02-01

    The effect of experimental obstructive jaundice on the oxidative status of brain tissues in rats was examined. Twenty-four male Wistar rats were divided into 4 groups: Group I was the control, group II was the sham operated, and groups III and IV were bile duct ligated and killed on the 5th and the 10th day, respectively. Oxidative stress was assessed by measuring the thiol redox state (protein and nonprotein components) and lipid peroxidation level variations in samples from the cerebral cortex, midbrain, and cerebellar tissue in all animals. Results indicated the presence of oxidative stress in the jaundiced animals that was more pronounced on the 10th day as indicated by a decrease in reduced glutathione and protein thiol and an increase in protein disulphide and lipid peroxidation. A dramatic elevation of the level of total nonprotein mixed disulphide level was found specifically in the midbrain in the 10th day group. This suggests an accumulation of nonprotein disulfides other than oxidized glutathione, which remained unchanged, in this particular brain area. This study showed a correlation between experimental obstructive jaundice and the oxidative stress in the rats' brain, implying that a similar pathogenetic mechanism may play a key role in cholestatic liver disease, resulting in hepatic encephalopathy in humans.

  14. Gelation and fodrin purification from rat brain extracts.

    Science.gov (United States)

    Levilliers, N; Péron-Renner, M; Coffe, G; Pudles, J

    1986-06-03

    Extracts from rat brain tissue have been shown to give rise to a gel which exhibits the following features. It is mainly enriched in actin and in a high-molecular-weight protein with polypeptide chains of 235 and 240 kDa, which we identified as fodrin. Tubulin is also a major component of the gel but it appears to be trapped non-specifically during the gelation process. Gelation is pH-, ionic strength- and Ca2+-concentration-dependent, and is optimal under the conditions which promote the interaction between polymerized actin and fodrin. In a similar way to that described for the purification of rat brain actin (Levilliers, N., Péron-Renner, M., Coffe, G. and Pudles, J. (1984) Biochimie 66, 531-537), we used the gelation system as a selective means of recovering fodrin from the mixture of a low-ionic-strength extract from whole rat brain and a high-ionic-strength extract of the particulate fraction. From this gel, fodrin was purified with a good yield by a simple procedure involving gel dissociation in 0.5 M KCl and depolymerization in 0.7 M KI, Bio-Gel A-15m chromatography, followed by ammonium sulfate precipitation.

  15. Functional brain networks underlying latent inhibition of conditioned disgust in rats.

    Science.gov (United States)

    Gasalla, Patricia; Begega, Azucena; Soto, Alberto; Dwyer, Dominic Michael; López, Matías

    2016-12-15

    The present experiment examined the neuronal networks involved in the latent inhibition of conditioned disgust by measuring brain oxidative metabolism. Rats were given nonreinforced intraoral (IO) exposure to saccharin (exposed groups) or water (non-exposed groups) followed by a conditioning trial in which the animals received an infusion of saccharin paired (or unpaired) with LiCl. On testing, taste reactivity responses displayed by the rats during the infusion of the saccharin were examined. Behavioral data showed that preexposure to saccharin attenuated the development of LiCl-induced conditioned disgust reactions, indicating that the effects of taste aversion on hedonic taste reactivity had been reduced. With respect to cumulative oxidative metabolic activity across the whole study period, the parabrachial nucleus was the only single region examined which showed differential activity between groups which received saccharin-LiCl pairings with and without prior non-reinforced saccharin exposure, suggesting a key role in the effects of latent inhibition of taste aversion learning. In addition, many functional connections between brain regions were revealed through correlational analysis of metabolic activity, in particular an accumbens-amygdala interaction that may be involved in both positive and negative hedonic responses.

  16. Carbofuran Modulating Functions of Acetylcholinesterase from Rat Brain In Vitro

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Gupta

    2016-01-01

    Full Text Available Carbofuran, a potential environmental xenobiotic, has the ability to cross blood brain barrier and to adversely influence brain functions. In the present study, the impact of carbofuran on the biophysical and biochemical properties of rat brain AChE has been evaluated in vitro. This enzyme was membrane-bound which could be solubilised using Triton-X100 (0.2%, v/v, a nonionic detergent, in the extraction buffer (50 mM phosphate, pH 7.4. The enzyme was highly stable up to one month when stored at -20°C and exhibited optimum activity at pH 7.4 and 37°C. AChE displayed a direct relationship between activity and varying substrate concentrations (acetylthiocholine iodide (ATI by following Michaelis-Menten curve. The Km and Vmax values as computed from the Lineweaver-Burk double reciprocal plot of the data were found to be 0.07 mM and 0.066 µmole/mL/min, respectively. The enzyme exhibited IC50 value for carbofuran equal to 6.0 nM. The steady-state kinetic studies to determine mode of action of carbofuran on rat brain AChE displayed it to be noncompetitive in nature with Ki value equal to 5 nm. These experiments suggested that rat brain AChE was very sensitive to carbofuran and this enzyme might serve as a significant biomarker of carbofuran induced neurotoxicity.

  17. Long-Term Low Intensity Physical Exercise Attenuates Heart Failure Development in Aging Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Luana U. Pagan

    2015-04-01

    Full Text Available Background: Physical exercise is a strategy to control hypertension and attenuate pressure overload-induced cardiac remodeling. The influence of exercise on cardiac remodeling during uncontrolled hypertension is not established. We evaluated the effects of a long-term low intensity aerobic exercise protocol on heart failure (HF development and cardiac remodeling in aging spontaneously hypertensive rats (SHR. Methods: Sixteen month old SHR (n=50 and normotensive Wistar-Kyoto (WKY, n=35 rats were divided into sedentary (SED and exercised (EX groups. Rats exercised in treadmill at 12 m/min, 30 min/day, 5 days/week, for four months. The frequency of HF features was evaluated at euthanasia. Statistical analyses: ANOVA and Tukey or Mann-Whitney, and Goodman test. Results: Despite slightly higher systolic blood pressure, SHR-EX had better functional capacity and lower HF frequency than SHR-SED. Echocardiography and tissue Doppler imaging showed no differences between SHR groups. In SHR-EX, however, left ventricular (LV systolic diameter, larger in SHR-SED than WKY-SED, and endocardial fractional shortening, lower in SHR-SED than WKY-SED, had values between those in WKY-EX and SHR-SED not differing from either group. Myocardial function, assessed in LV papillary muscles, showed improvement in SHR-EX over SHR-SED and WKY-EX. LV myocardial collagen fraction and type I and III collagen gene expression were increased in SHR groups. Myocardial hydroxyproline concentration was lower in SHR-EX than SHR-SED. Lysyl oxidase gene expression was higher in SHR-SED than WKY-SED. Conclusion: Exercise improves functional capacity and reduces decompensated HF in aging SHR independent of elevated arterial pressure. Improvement in functional status is combined with attenuation of LV and myocardial dysfunction and fibrosis.

  18. Neonatal handling (resilience) attenuates water-avoidance stress induced enhancement of chronic mechanical hyperalgesia in the rat.

    Science.gov (United States)

    Alvarez, Pedro; Levine, Jon D; Green, Paul G

    2015-03-30

    Chronic stress is well known to exacerbate pain. We tested the hypothesis that neonatal handling, which induces resilience to the negative impact of stress by increasing the quality and quantity of maternal care, attenuates the mechanical hyperalgesia produced by water-avoidance stress in the adult rat. Neonatal male rats underwent the handling protocol on postnatal days 2-9, weaned at 21 days and tested for muscle mechanical nociceptive threshold at postnatal days 50-75. Decrease in mechanical nociceptive threshold in skeletal muscle in adult rats, produced by exposure to water-avoidance stress, was significantly attenuated by neonatal handling. Neonatal handling also attenuated the mechanical hyperalgesia produced by intramuscular administration of the pronociceptive inflammatory mediator, prostaglandin E2 in rats exposed as adults to water-avoidance stress. Neonatal handling, which induces a smaller corticosterone response in adult rats exposed to a stressor as well as changes in central nervous system neurotransmitter systems, attenuates mechanical hyperalgesia produced by water-avoidance stress and enhanced prostaglandin hyperalgesia in adult animals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Effect of hyperbaric oxygen on cytochrome C, Bcl-2 and bax expression after experimental traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan; JIAO Qing-fang; YOU Chao; CHE Yan-jun; SU Fang-zhong

    2006-01-01

    Objective: To explore the effects of hyperbaric oxygen (HBO) treatment on the neuronal apoptosis at an earlier stage and the expressions of Cytochrome C (Cyt C), Bcl-2 (B-cell lymphoma-2 family) and Bax (Bcl-2associated X protein) in rat brain tissues after traumatic brain injury (TBI).Methods: Forty adult rats were divided into two groups, i.e., Group A ( the rats with untreated TBI) and Group B ( rats with HBO treatment after TBI). Sections of brain tissues of these two groups were then detected at 3,6,12,24,72 hours after TBI by immunohistochemistry and electronmicroscope, respectively.Results: HBO treatment could up-regulate the expression of Bcl-2 within 72 hours, reduce the release of Cyt C from mitochondria, attenuate the formation of dimeric Bax and alleviate the mitochondrial edema within 24 hours after TBI.Conclusions: HBO treatment can alleviate neuronal apoptosis after TBI by reducing the release of Cyt C and the dimers of Bax and up-regulating the expression of Bcl-2.

  20. Oxymatrine reduces neuroinflammation in rat brain A signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Jiahui Mao; Yae Hu; Ailing Zhou; Bing Zheng; Yi Liu; Yueming Du; Jia Li; Jinyang Lu; Pengcheng Zhou

    2012-01-01

    Cerebral neuroinflammation models were established by injecting 10 μg lipopolysaccharide into the hippocampus of male Sprague-Dawley rats.The rats were treated with an intraperitoneal injection of 120,90,or 60 mg/kg oxymatrine daily for three days prior to the lipopolysaccharide injection.Twenty-four hours after model induction,the hippocampus was analyzed by real-time quantitative PCR,and the cerebral cortex was analyzed by enzyme-linked immunosorbent assay and western blot assay.The results of the enzyme-linked immunosorbent assay and the real-time quantitative PCR showed that the secretion and mRNA expression of the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α were significantly decreased in the hippocampus and cerebral cortex of model rats treated with oxymatrine.Western blot assay and real-time quantitative PCR analysis indicated that toll-like receptor 4 mRNA and protein expression were significantly decreased in the groups receiving different doses of oxymatrine.Additionally,120 and 90 mg/kg oxymatrine were shown to reduce protein levels of nuclear factor-kB p65 in the nucleus and of phosphorylated IkBα in the cytoplasm of brain cells,as detected by western blot assay.Experimental findings indicate that oxymatrine may inhibit neuroinflammation in rat brain via downregulating the expression of molecules in the toll-like receptor 4/nuclear factor-kB signaling pathway.

  1. The Central Analgesic Mechanism of YM-58483 in Attenuating Neuropathic Pain in Rats.

    Science.gov (United States)

    Qi, Zeyou; Wang, Yaping; Zhou, Haocheng; Liang, Na; Yang, Lin; Liu, Lei; Zhang, Wei

    2016-10-01

    Calcium channel antagonists are commonly used to treat neuropathic pain. Their analgesic effects rely on inhibiting long-term potentiation, and neurotransmitters release in the spinal cord. Store-operated Ca(2+)channels (SOCCs) are highly Ca(2+)-selective cation channels broadly expressed in non-excitable cells and some excitable cells. Recent studies have shown that the potent inhibitor of SOCCs, YM-58483, has analgesic effects on neuropathic pain, but its mechanism is unclear. This experiment performed on spinal nerve ligation (SNL)-induced neuropathic pain model in rats tries to explore the mechanism, whereby YM-58483 attenuates neuropathic pain. The left L5 was ligated to produce the SNL neuropathic pain model in male Sprague-Dawley rats. The withdrawal threshold of rats was measured by the up-down method and Hargreaves' method before and after intrathecal administration of YM-58483 and vehicle. The SOCCs in the spinal dorsal horn were located by immunofluorescence. The expression of phosphorylated ERK and phosphorylated CREB, CD11b, and GFAP proteins in spinal level was tested by Western blot, while the release of proinflammatory cytokines (IL-1β, TNF-α, PGE2) was measured by enzyme-linked immunosorbent assay (ELISA). Intrathecal YM-58483 at the concentration of 300 μM (1.5 nmol) and 1000 μM (10 nmol) produced a significant central analgesic effect on the SNL rats, compared with control + vehicle (n = 7, P pain, compared with normal + saline (P  0.05). YM-58483 also inhibited the release of spinal cord IL-1β, TNF-α, and PGE2, compared with control + vehicle (n = 5, #P central ERK/CREB signaling in the neurons and decreasing central IL-1β, TNF-α, and PGE2 release to reduce neuronal excitability in the spinal dorsal horn of the SNL rats.

  2. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury.

    Science.gov (United States)

    Das, Mahasweta; Wang, Chunyan; Bedi, Raminder; Mohapatra, Shyam S; Mohapatra, Subhra

    2014-10-01

    Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CP-mag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM-tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 h after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. From the clinical editor: In this study, chitosan and PEI-coated magnetic micelles (CPMM) were demonstrated as potentially useful vehicles in traumatic brain injury in a rodent model. Magnetofection increased the concentration of CPMMs in the brain and, after intranasal delivery, CPMM did not evoke any inflammatory response and were excreted from the body.

  3. Acute tryptophan depletion attenuates brain-heart coupling following external feedback

    Directory of Open Access Journals (Sweden)

    Erik M Mueller

    2012-04-01

    Full Text Available External and internal performance feedback triggers neural and visceral modulations such as reactions in the medial prefrontal cortex and insulae or changes of heart period (HP. The functional coupling of neural and cardiac responses following feedback (cortico-cardiac connectivity is not well understood. While linear time-lagged within-subjects correlations of single-trial EEG and HP (cardio-electroencephalographic covariance-tracing, CECT indicate a robust negative coupling of EEG magnitude 300 ms after presentation of an external feedback stimulus with subsequent alterations of heart period (the so-called N300H phenomenon, the neurotransmitter systems underlying feedback-evoked cortico-cardiac connectivity are largely unknown. Because it has been shown that acute tryptophan depletion (ATD, attenuating brain serotonin (5-HT, decreases cardiac but not neural correlates of feedback processing, we hypothesized that 5-HT may be involved in feedback-evoked cortico-cardiac connectivity. In a placebo-controlled double-blind crossover design, twelve healthy participants received a tryptophan-free amino-acid drink at one session and a balanced amino-acid control-drink on another and twice performed a time-estimation task with feedback presented after each trial. N300H magnitude and plasma tryptophan levels were assessed. Results indicated a robust N300H after the control drink, which was significantly attenuated following ATD. Moreover, plasma tryptophan levels during the control session were correlated with N300H amplitude such that individuals with lower tryptophan levels showed reduced N300H. Together, these findings indicate that 5-HT is important for feedback-induced covariation of cortical and cardiac activity. Because individual differences in anxiety have previously been linked to 5-HT, cortico-cardiac coupling and feedback processing, the present findings may be particularly relevant for futures studies linking 5-HT to anxiety.

  4. Hydrogen Sulfide Ameliorates Early Brain Injury Following Subarachnoid Hemorrhage in Rats.

    Science.gov (United States)

    Cui, Yonghua; Duan, Xiaochun; Li, Haiying; Dang, Baoqi; Yin, Jia; Wang, Yang; Gao, Anju; Yu, Zhengquan; Chen, Gang

    2016-08-01

    Increasing studies have demonstrated the neuroprotective effect of hydrogen sulfide (H2S) in central nervous system (CNS) diseases. However, the potential application value of H2S in the therapy of subarachnoid hemorrhage (SAH) is still not well known. This study was to investigate the potential effect of H2S on early brain injury (EBI) induced by SAH and explore the underlying mechanisms. The role of sodium hydrosulfide (NaHS), a donor of H2S, in SAH-induced EBI, was investigated in both in vivo and in vitro. A prechiasmatic cistern single injection model was used to produce experimental SAH in vivo. In vitro, cultured primary rat cortical neurons and human umbilical vein endothelial cells (HUVECs) were exposed to OxyHb at concentration of 10 μM to mimic SAH. Endogenous production of H2S in the brain was significantly inhibited by SAH. The protein levels of the predominant H2S-generating enzymes in the brain, including cystathionineb-synthase (CBS) and 3-mercaptopyruvate sulfur transferase (3MST), were also correspondingly reduced by SAH, while treatment with NaHS restored H2S production and the expressions of CBS and 3MST. More importantly, NaHS treatment could significantly attenuate EBI (including brain edema, blood-brain barrier disruption, brain cell apoptosis, inflammatory response, and cerebral vasospasm) after SAH. In vitro, H2S protects neurons and endothelial function by functioning as an antioxidant and antiapoptotic mediator. Our results suggest that NaSH as an exogenous H2S donor could significantly reduce EBI induced by SAH.

  5. Effects of protein malnutrition on oxidative status in rat brain.

    Science.gov (United States)

    Feoli, Ana M; Siqueira, Ionara R; Almeida, Lúcia; Tramontina, Ana C; Vanzella, Cláudia; Sbaraini, Sabrina; Schweigert, Ingrid D; Netto, Carlos A; Perry, Marcos L S; Gonçalves, Carlos A

    2006-02-01

    This study evaluated the effects of protein malnutrition on oxidative status in rat brain areas. We investigated various parameters of oxidative status, free radical content (dichlorofluorescein formation), indexes of damage to lipid (thiobarbituric acid-reactive substances assay), and protein damage (tryptophan and tyrosine content) in addition to total antioxidant reactivity levels and antioxidant enzyme activities of superoxide dismutase, glutathione peroxidase, and catalase in different cerebral regions (cortex, hippocampus, and cerebellum) from rats subjected to prenatal and postnatal protein malnutrition (control 25% casein and protein malnutrition 7% casein). Protein malnutrition altered various parameters of oxidative stress, especially damage to macromolecules. Free radical content was unchanged by protein malnutrition. There was an increase in levels of thiobarbituric acid-reactive substances, the index of lipid peroxidation, in the cerebellum and cerebral cortex (P brain structures (P malnutrition increased oxidative damage to lipids and proteins from the studied brain areas. These results may be an indication of an important mechanism for changes in brain development that are caused by protein malnutrition.

  6. Relationship between Morphofunctional Changes in Open Traumatic Brain Injury and the Severity of Brain Damage in Rats.

    Science.gov (United States)

    Shakova, F M; Barskov, I V; Gulyaev, M V; Prokhorenko, S V; Romanova, G A; Grechko, A V

    2016-07-01

    A correlation between the severity of morphofunctional disturbances and the volume of brain tissue injury determined by MRT was demonstrated on the model of open traumatic brain injury in rats. A relationship between the studied parameters (limb placing and beam walking tests and histological changes) and impact force (the height of load fell onto exposed brain surface) was revealed.

  7. Distinct transcriptional changes in donor kidneys upon brain death induction in rats : Insights in the processes of brain death

    NARCIS (Netherlands)

    Schuurs, TA; Gerbens, F; van der Hoeven, JAB; Ottens, PJ; Kooi, KA; Leuvenink, HGD; Hofstra, RMW; Ploeg, RJ

    2004-01-01

    Brain death affects hormone regulation, inflammatory reactivity and hemodynamic stability. In transplant models, donor organs retrieved from brain dead (BD) rats suffer from increased rates of primary nonfunction and lower graft survival. To unravel the mechanisms behind brain death we have performe

  8. Influence of histidine on zinc transport into rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Atsushi; Suzuki, Mai; Okada, Shoji; Oku, Naoto [Shizuoka Univ. (Japan). School of Pharmaceutical Sciences

    2000-06-01

    The brain of rats injected intravenously with {sup 65}Zn-His or {sup 65}ZnCl{sub 2} was subjected to autoradiography to study the role of histidine on zinc transport into the brain. One hour after injection, the radioactivity from {sup 65}Zn-His was largely concentrated in the choroid plexus in the ventricles. Six days after injection, the radioactivity from {sup 65}Zn-His was relatively concentrated in the hippocampal CA3 and dentate gyrus and the amygdala. The relative distribution of {sup 65}Zn-His in the brain was similar to that of {sup 65}ZnCl{sub 2} group at both 1 h and 6 days, suggesting that histidine may participate in zinc uptake in the brain. On the other hand, the clearance of the {sup 65}Zn-His group from the blood was higher than that of the {sup 65}ZnCl{sub 2} group. Brain uptake of the former was lower than that of the latter both 1 h and 6 days after injection. These results suggest that zinc uptake in the brain is influenced by histidine levels in the bloodstream. (author)

  9. Photoacoustic imaging for transvascular drug delivery to the rat brain

    Science.gov (United States)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  10. Active vaccination attenuates the psychostimulant effects of α-PVP and MDPV in rats.

    Science.gov (United States)

    Nguyen, Jacques D; Bremer, Paul T; Ducime, Alex; Creehan, Kevin M; Kisby, Brent R; Taffe, Michael A; Janda, Kim D

    2017-04-01

    Recreational use of substituted cathinones continues to be an emerging public health problem in the United States; cathinone derivatives α-pyrrolidinopentiophenone (α-PVP) and 3,4-methylenedioxypyrovalerone (MDPV), which have been linked to human fatalities and show high potential for abuse liability in animal models, are of particular concern. The objective of this study was to develop an immunotherapeutic strategy for attenuating the effects of α-PVP and MDPV in rats, using drug-conjugate vaccines created to generate antibodies with neutralizing capacity. Immunoconjugates (α-PVP-KLH and MDPV-KLH) or the control carrier protein, keyhole limpet hemocyanin (KLH), were administered to groups (N = 12) of male Sprague-Dawley rats on Weeks 0, 2 and 4. Groups were administered α-PVP or MDPV (0.0, 0.25, 0.5, 1.0, 5.0 mg/kg, i.p.) in acute drug challenges and tested for changes in wheel activity. Increased wheel activity produced by α-PVP or MDPV in the controls was attenuated in the α-PVP-KLH and MDPV-KLH vaccinated groups, respectively. Rectal temperature decreases produced by MDPV in the controls were reduced in duration in the MDPV-KLH vaccine group. A separate group (N = 19) was trained to intravenously self-administer α-PVP (0.05, 0.1 mg/kg/inf) and vaccinated with KLH or α-PVP-KLH, post-acquisition. Self-administration in α-PVP-KLH rats was initially higher than in the KLH rats but then significantly decreased following a final vaccine booster, unlike the stable intake of KLH rats. The data demonstrate that active vaccination provides functional protection against the effects of α-PVP and MDPV, in vivo, and recommend additional development of vaccines as potential therapeutics for mitigating the effects of designer cathinone derivatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    Science.gov (United States)

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  12. Medial accumbens lesions attenuate testosterone-dependent aggression in male rats.

    Science.gov (United States)

    Albert, D J; Petrovic, D M; Walsh, M L; Jonik, R H

    1989-10-01

    Male hooded rats were castrated and implanted with testosterone-filled Silastic tubes appropriate for maintaining a normal average serum testosterone concentration. They were then given lesions of the medial accumbens nucleus or sham lesions. Twenty-four hours postoperatively each male was housed with a female. Beginning 7 days following pairing and continuing once each week for 4 weeks, each lesioned or sham-lesioned male was observed for aggression toward an unfamiliar male intruder. On the day following each test of aggression toward an unfamiliar male, each lesioned and sham-lesioned male was assessed for defensiveness toward an experimenter. Rats with medial accumbens lesions displayed significantly less aggression toward an unfamiliar male intruder during each of the weekly tests than did sham-lesioned animals. The attenuation was most pronounced in animals with lesions damaging the posterior part of the medial accumbens nucleus (also designated as anterior portion of the bed nucleus of the stria terminalis) in the region of the crossover of the anterior commissure. Although medial accumbens lesions are known to make individually housed rats hyperdefensive toward an experimenter, lesion-induced hyperdefensiveness was not observed in the pair-housed animals in the present experiment. It is argued that the medial accumbens/bed nucleus of the stria terminalis area is an important region in the anterior forebrain for the modulation of hormone-dependent aggression.

  13. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-04-01

    Full Text Available This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC containing protein (46.1% of dry algae, insoluble fibre (19.6% of dry algae, minerals (3.7% of dry algae and omega-3 fatty acids (2.8% of dry algae as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68% and fats (saturated and trans fats from beef tallow, total 24%. High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome.

  14. Bergenin attenuates renal injury by reversing mitochondrial dysfunction in ethylene glycol induced hyperoxaluric rat model.

    Science.gov (United States)

    Aggarwal, Deepika; Gautam, Diksha; Sharma, Minu; Singla, S K

    2016-11-15

    Bergenin, isolated from Bergenia ligulata is a potent antioxidant and antilithiatic agent. Present work was designed to establish the biochemical role of bergenin on mitochondrial dysfunction in the ethylene glycol induced hyperoxaluric rat model. Bergenin was administrated at a dose of 10mg/kg body wt i.p. from 14th day of establishing the 28 days hyperoxaluria rat model. α-Tocopherol was given as positive control at a dose of 100mg/kg body wt i.p. Mitochondrial dysfunction was studied by evaluating the activities of respiratory chain complexes, mitochondrial membrane potential and reactive oxygen species. Histopathological analysis of the kidney tissue was done after Pizzolato staining. Also, expression of monocyte chemoattractant protein -1(MCP-1) and kidney injury marker protein (KIM-1) were studied and the levels of IL-1β were evaluated in kidney tissue homogenate. Mitochondrial dysfunction during stone crystallization was evident by decreased activities of electron transport chain complexes I, II and IV and augmented mitochondrial oxidative stress in hyperoxaluric rats. Bergenin treatment significantly (Pproduction and expression of KIM-1 and MCP-1 in the renal tissue. The findings of the present study provide evidence that bergenin exerted protective effects in hyperoxaluria through mitochondrial protection that involves attenuation of oxidative stress. Hence, it presented itself as an effective remedy in combating urolithiasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Garlic and Onion Attenuates Vascular Inflammation and Oxidative Stress in Fructose-Fed Rats

    Science.gov (United States)

    Vazquez-Prieto, Marcela Alejandra; Rodriguez Lanzi, Cecilia; Lembo, Carina; Galmarini, Claudio Rómulo; Miatello, Roberto Miguel

    2011-01-01

    This study evaluates the antioxidant and the anti-inflammatory properties of garlic (G) and onion (O) in fructose-fed rats (FFR). Thirty-day-old male Wistar rats were assigned to control (C), F (10% fructose in drinking water), F+T (tempol 1 mM as control antioxidant), F+G, and F+O. Aqueous G and O extracts were administered orally in doses of 150 and 400 mg/kg/d respectively, and along with tempol, were given during the last 8 weeks of a 14-week period. At the end of the study, FFR had developed insulin resistance, aortic NADPH oxidase activity, increased SBP, plasma TBARS and vascular cell adhesion molecule-1 (VCAM-1) expression in mesenteric arteries, and a decrease in heart endothelial nitric oxide synthase (eNOS). Garlic and onion administration to F rats reduced oxidative stress, increased eNOS activity, and also attenuated VCAM-1 expression. These results provide new evidence showing the anti-inflammatory and antioxidant effect of these vegetables. PMID:21876795

  16. Glycyrrhizin attenuates rat ischemic spinal cord injury by suppressing inflammatory cytokines and HMGB1

    Institute of Scientific and Technical Information of China (English)

    GuGONG; Li-bang YUAN; Ling HU; Wei WL; Liang YIN; Jing-li HOU; Ying-hai LIU; Le-shun ZHOU

    2012-01-01

    To investigate the neuroprotective effect of glycyrrhizin (Gly) against the ischemic injury of rat spinal cord and the possible role of the nuclear protein high-mobility group box 1 (HMGB1) in the process.Methods:Male Sprague-Dawley rats were subjected to 45 min aortic occlusion to induce transient lumbar spinal cord ischemia.The motor functions of the animals were assessed according to the modified Tarlov scale.The animals were sacrificed 72 h after reperfusion and the lumbar spinal cord segment (L2-L4) was taken out for histopathological examination and Western blotting analysis.Serum inflammatory cytokine and HMGB1 levels were analyzed using ELISA.Results:Gly (6 mg/kg) administered intravenously 30 min before inducing the transient lumbar spinal cord ischemia significantly improved the hind-limb motor function scores,and reduced the number of apoptotic neurons,which was accompanied by reduced levels of tumor necrosis factor-α (TNF-α),interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the plasma and injured spinal cord.Moreover,the serum HMGB1 level correlated well with the serum TNF-α,IL-1β and IL-6 levels during the time period of reperfusion.Conclusion:The results suggest that Gly can attenuate the transient spinal cord ischemic injury in rats via reducing inflammatory cytokines and inhibiting the release of HMGB1.

  17. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response.

    Science.gov (United States)

    Chen, Xueyu; Walther, Frans J; Sengers, Rozemarijn M A; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio; Wagenaar, Gerry T M

    2015-08-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD.

  18. A green algae mixture of Scenedesmus and Schroederiella attenuates obesity-linked metabolic syndrome in rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-04-14

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome.

  19. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model.

    Science.gov (United States)

    Heijnen, B H M; Straatsburg, I H; Padilla, N D; Van Mierlo, G J; Hack, C E; Van Gulik, T M

    2006-01-01

    Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 100, 200 or 400 IU/kg bodyweight, 5 min before 60 min ischaemia (pre-I) or 5 min before 24 h reperfusion (end-I). One hundred IU/kg bodyweight significantly reduced the increase of plasma levels of activated C4 as compared to albumin-treated control rats and attenuated the increase of alanine aminotransferase (ALT). These effects were not better with higher doses of C1-inh. Administration of C1-inh pre-I resulted in lower ALT levels and higher bile secretion after 24 h of reperfusion than administration at end-I. Immunohistochemical assessment indicated that activated C3, the membrane attack complex C5b9 and C-reactive protein (CRP) colocalized in hepatocytes within midzonal areas, suggesting CRP is a mediator of I/R-induced, classical complement activation in rats. Pre-ischaemic administration of C1-inh is an effective pharmacological intervention to protect against liver I/R injury.

  20. Garlic and Onion Attenuates Vascular Inflammation and Oxidative Stress in Fructose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Marcela Alejandra Vazquez-Prieto

    2011-01-01

    Full Text Available This study evaluates the antioxidant and the anti-inflammatory properties of garlic (G and onion (O in fructose-fed rats (FFR. Thirty-day-old male Wistar rats were assigned to control (C, F (10% fructose in drinking water, F+T (tempol 1 mM as control antioxidant, F+G, and F+O. Aqueous G and O extracts were administered orally in doses of 150 and 400 mg/kg/d respectively, and along with tempol, were given during the last 8 weeks of a 14-week period. At the end of the study, FFR had developed insulin resistance, aortic NADPH oxidase activity, increased SBP, plasma TBARS and vascular cell adhesion molecule-1 (VCAM-1 expression in mesenteric arteries, and a decrease in heart endothelial nitric oxide synthase (eNOS. Garlic and onion administration to F rats reduced oxidative stress, increased eNOS activity, and also attenuated VCAM-1 expression. These results provide new evidence showing the anti-inflammatory and antioxidant effect of these vegetables.

  1. Red Palm Oil Attenuates Lead Acetate Induced Testicular Damage in Adult Male Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    A. I. Jegede

    2015-01-01

    Full Text Available To study the protective effect of Red Palm Oil (RPO on testicular damage induced by administration of lead acetate on male Sprague-Dawley rats, 28 rats divided into four groups of 7 animals each were used. They were administered orally with RPO (1 mL and 2 mL and lead acetate (i.p. 6 mg/kg body weight/day, respectively. Treatment was conducted for 8 weeks, and 24 hrs after the last treatment the rats were sacrificed using cervical dislocation. Sperms collected from epididymis were used for seminal fluid analyses; while the testes sample was used for ROS and oxidative enzyme activities assessment. Statistical analysis was carried out using GraphPad Prism 5.02 statistical analysis package. Administration of lead acetate increased generation of reactive oxygen species (ROS significantly (p<0.05 as evidenced by the elevated value of H2O2 and LPO and decreased GSH level. Also there was reduced epididymal sperm count, poor grade of sperm motility, and lower percentage of normal sperm morphology significantly. Coadministration with RPO, however, has a protective effect against lead toxicity by decreasing H2O2 production, increased GSH level, and increased sperm qualities especially. This shows that RPO has a potential to attenuate the toxic effect of lead on testicular cells preventing possible resultant male infertility.

  2. Performance Enhancement of the RatCAP Awake Rate Brain PET System

    Energy Technology Data Exchange (ETDEWEB)

    Vaska, P.; Vaska, P.; Woody, C.; Schlyer, D.; Radeka, V.; O' Connor, P.; Park, S.-J.; Pratte, J.-F.; Junnarkar, M.; Purschke, S.; Southekal, S.; Stoll, S.; Schiffer, W.; Neill, J.; Wharton, D.; Myers, N.; Wiley, S.; Kandasamy, A.; Fried, J.; Krishnamoorthy, S. Kriplani, A.; Maramraju, S.; Lecomte, R.; Fontaine, R.

    2011-03-01

    The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required for neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.

  3. Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain

    Science.gov (United States)

    Endesfelder, Stefanie; Makki, Hanan; von Haefen, Clarissa; Spies, Claudia D.; Bührer, Christoph; Sifringer, Marco

    2017-01-01

    Dexmedetomidine (DEX) is a highly selective agonist of α2-receptors with sedative, anxiolytic, and analgesic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on hippocampal neurogenesis, specifically the proliferation capacity and maturation of neurons and neuronal plasticity following the induction of hyperoxia in neonatal rats. Six-day old sex-matched Wistar rats were exposed to 80% oxygen or room air for 24 h and treated with 1, 5 or 10 μg/kg of dexmedetomidine or normal saline. A single pretreatment with DEX attenuated the hyperoxia-induced injury in terms of neurogenesis and plasticity. In detail, both the proliferation capacity (PCNA+ cells) as well as the expression of neuronal markers (Nestin+, PSA-NCAM+, NeuN+ cells) and transcription factors (SOX2, Tbr1/2, Prox1) were significantly reduced under hyperoxia compared to control. Furthermore, regulators of neuronal plasticity (Nrp1, Nrg1, Syp, and Sema3a/f) were also drastically decreased. A single administration of dexmedetomidine prior to oxygen exposure resulted in a significant up-regulation of expression-profiles compared to hyperoxia. Our results suggest that dexmedetomidine may have neuroprotective effects in an acute hyperoxic model of the neonatal rat. PMID:28158247

  4. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices

    Institute of Scientific and Technical Information of China (English)

    Qing-shengXUE; Bu-weiYU; Ze-jianWANG; Hong-zhuanCHEN

    2004-01-01

    AIM: To compare the effects of ketamine, midazolam, thiopental, and propofol on brain ischemia by the model of oxygen-glucose deprivation (OGD) in rat cerebral cortical slices. METHODS: Cerebral cortical slices were incu-bated in 2 % 2,3,5-triphenyltetrazolium chloride (TTC) solution after OGD, the damages and effects of ketamine,midazolam, thiopental, and propofol were quantitativlye evaluated by ELISA reader of absorbance (A) at 490 nm,which indicated the red formazan extracted from slices, lactic dehydrogenase (LDH) releases in the incubated supernate were also measured. RESULTS: Progressive prolongation of OGD resulted in decreases of TTC staining.The percentage of tissue injury had a positive correlation with LDH releases, r=0.9609, P<0.01. Two hours of reincubation aggravated the decrease of TTC staining compared with those slices stained immediately after OGD(P<0.01). These four anesthetics had no effects on the TTC staining of slices. Ketamine completely inhibited thedecrease of A value induced by 10 min of OGD injury. High concentrations of midazolam (10 μmol/L) and thiopental (400μmol/L) partly attenuated this decrease. Propofol at high concentration (100 μmol/L) enhanced the decrease of A value induced by 10 min of OGD injury (P<0.01). CONCLUSION; Ketamine, high concentration of midazolam and thiopental have neuroprotective effects against OGD injury in rat cerebral cortical slices, while high concentration of propofol augments OGD injury in rat cerebral cortical slices.

  5. Risperidone Attenuates Modified Stress-Re-stress Paradigm-Induced Mitochondrial Dysfunction and Apoptosis in Rats Exhibiting Post-traumatic Stress Disorder-Like Symptoms.

    Science.gov (United States)

    Garabadu, Debapriya; Ahmad, Ausaf; Krishnamurthy, Sairam

    2015-06-01

    Mitochondria play a significant role in the pathophysiology of post-traumatic stress disorder (PTSD). Risperidone and paroxetine were evaluated for their effect on mitochondrial dysfunction and mitochondria-dependent apoptosis in discrete brain regions in modified stress re-stress (SRS) animal model of PTSD. Male rats were subjected to stress protocol of 2 h restraint and 20 min forced swim followed by halothane anesthesia on day 2 (D-2). Thereafter, rats were exposed to re-stress (forced swim) on D-8 and at 6-day intervals on D-14, D-20, D-26, and D-32. The rats were treated with risperidone (0.01, 0.1, and 1.0 mg/kg p.o.) and paroxetine (10.0 mg/kg p.o.) from D-8 to D-32. Risperidone at median dose and paroxetine ameliorated modified SRS-induced depressive-like symptom (increase in immobility period) in forced swim, anxiety-like behavior (decrease in percentage of open arm entries and time spent) in elevated plus maze and cognitive deficits (loss in spatial recognition memory) in Y-maze tests on D-32. Risperidone, but not paroxetine, attenuated modified SRS-induced decreases in plasma corticosterone levels. Risperidone ameliorated increase in the activity of mitochondrial respiratory complex (I, II, IV, and V), decreases in the levels of mitochondrial membrane potential, cytochrome-C and caspase-9 in the hippocampus, hypothalamus, pre-frontal cortex, and amygdala. However, both drugs attenuated modified SRS-induced increase in the number of apoptotic cells and caspase-3 levels in all the brain regions indicating anti-apoptotic activity of these drugs. Hence, these results suggest that anti-apoptotic activity could be a common mechanism for anti-PTSD-like effect irrespective of the pathways of apoptosis in the modified SRS model.

  6. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury.

    Science.gov (United States)

    Roux, Aurelie; Muller, Ludovic; Jackson, Shelley N; Post, Jeremy; Baldwin, Katherine; Hoffer, Barry; Balaban, Carey D; Barbacci, Damon; Schultz, J Albert; Gouty, Shawn; Cox, Brian M; Woods, Amina S

    2016-10-15

    Mild traumatic brain injury (TBI) is a common public health issue that may contribute to chronic degenerative disorders. Membrane lipids play a key role in tissue responses to injury, both as cell signals and as components of membrane structure and cell signaling. This study demonstrates the ability of high resolution mass spectrometry imaging (MSI) to assess sequences of responses of lipid species in a rat controlled cortical impact model for concussion. A matrix of implanted silver nanoparticles was implanted superficially in brain sections for matrix-assisted laser desorption (MALDI) imaging of 50μm diameter microdomains across unfixed cryostat sections of rat brain. Ion-mobility time-of-flight MS was used to analyze and map changes over time in brain lipid composition in a rats after Controlled Cortical Impact (CCI) TBI. Brain MS images showed changes in sphingolipids near the CCI site, including increased ceramides and decreased sphingomyelins, accompanied by changes in glycerophospholipids and cholesterol derivatives. The kinetics differed for each lipid class; for example ceramides increased as early as 1 day after the injury whereas other lipids changes occurred between 3 and 7 days post injury. Silver nanoparticles MALDI matrix is a sensitive new tool for revealing previously undetectable cellular injury response and remodeling in neural, glial and vascular structure of the brain. Lipid biochemical and structural changes after TBI could help highlighting molecules that can be used to determine the severity of such injuries as well as to evaluate the efficacy of potential treatments. Copyright © 2016. Published by Elsevier B.V.

  7. Valproic acid attenuates the multiple-organ dysfunction in a rat model of septic shock

    Institute of Scientific and Technical Information of China (English)

    SHANG You; JIANG Yuan-xu; Ding Ze-jun; Shen Ai-ling; XU San-peng; YUAN Shi-ying; YAO Shang-long

    2010-01-01

    Background Valproic acid (VPA) improves early survival and organ function in a highly lethal poly-trauma and hemorrhagic shock model or other severe insults. We assessed whether VPA could improve organ function in a rat model of septic shock and illustrated the possible mechanisms.Methods Forty Sprague-Dawley rats were randomly assigned to four groups (n=10): control group, VPA group, LPS group, and LPS+VPA group. Lipopolysaccharide (LPS) (10 mg/kg) was injected intravenously to replicate the experimental model of septic shock. Rats were treated with VPA (300 mg/kg, i.v.) or saline. Six hours after LPS injection,blood was sampled for gas analysis, measurement of serum alanine aminotransferase, aspartate aminotransferase,urine nitrogen, creatinine and tumor necrosis factor-alpha. Lung, liver and kidney were collected for histopathological assessment. In addition, myeloperoxidase activity and tumor necrosis factor-α in pulmonary tissue were measured.Acetylation of histone H3 in lung was also evaluated by Western blotting.Results LPS resulted in a significant decrease in PaO2, which was increased by VPA administration followed LPS injection. In addition, LPS also induced an increase in the serum levels of alanine aminotransferase, aspartate aminotransferase, urine nitrogen, creatinine, and tumor necrosis factor-alpha. However, these increases were attenuated in the LPS+VPA group. The lungs, liver and kidneys from the LPS group were significantly damaged compared with the control group. However, the damage was attenuated in the LPS+VPA group. Myeloperoxidase activity and tumor necrosis factor-alpha levels in pulmonary tissue increased significantly in the LPS group compared with the control group. These increases were significantly inhibited in the LPS+VPA group. Acetylation of histone H3 in lung tissue in the LPS group was inhibited compared with the control. However, the level of acetylation of histone H3 in the LPS+VPA group was markedly elevated in contrast to the

  8. Neonatal nociception elevated baseline blood pressure and attenuated cardiovascular responsiveness to noxious stress in adult rats.

    Science.gov (United States)

    Chu, Ya-Chun; Yang, Cheryl C H; Lin, Ho-Tien; Chen, Pin-Tarng; Chang, Kuang-Yi; Yang, Shun-Chin; Kuo, Terry B J

    2012-10-01

    Neonatal nociception has significant long-term effects on sensory perception in adult animals. Although neonatal adverse experience affect future responsiveness to stressors is documented, little is known about the involvement of early nociceptive experiences in the susceptibility to subsequent nociceptive stress exposure during adulthood. The aim of this study is to explore the developmental change in cardiovascular regulating activity in adult rats that had been subjected to neonatal nociceptive insults. To address this question, we treated neonatal rats with an intraplantar injection of saline (control) or carrageenan at postnatal day 1. The carrageenan-treated rats exhibited generalized hypoalgesia at basal state, and localized hyperalgesia after re-nociceptive challenge induced by intraplantar injections of complete Freund's adjuvant (CFA) as adults. Then we recorded baseline cardiovascular variables and 24-h responsiveness to an injection of CFA in the free-moving adult rats with telemetric technique. The carrageenan-treated rats showed significantly higher basal blood pressures (110.3±3.16 vs. control 97.0±4.28 mmHg). In control animals, baroreceptor reflex sensitivity (BRS) decreased, sympathetic vasomotor activity increased, and parasympathetic activity was inhibited after CFA injection. Blood pressure elevation was evident (107.0±2.75 vs. pre-injection 97.0±4.28 mmHg). Comparatively, the carrageenan-treated rats showed a higher BRS (BrrLF 1.03±0.09 vs. control 0.70±0.06 ms/mmHg) and higher parasympathetic activity [0.93±0.17 vs. control 0.32±0.02 ln(ms²)] after CFA injection. The change in blood pressure is negligible (111.9±4.05 vs. pre-injection 110.3±3.16 mmHg). Our research has shown that neonatal nociception alters future pain sensation, raises basal blood pressure level, and attenuates cardiovascular responsiveness to nociceptive stress in adult rats.

  9. Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure.

    Science.gov (United States)

    Pinto, Tomás O C Teixeira; Lataro, Renata M; Castania, Jaci A; Durand, Marina T; Silva, Carlos A A; Patel, Kaushik P; Fazan, Rubens; Salgado, Helio C

    2016-04-01

    Chronic heart failure (CHF) is characterized by autonomic dysfunction combined with baroreflex attenuation. The hypotensive and bradycardic responses produced by electrical stimulation of the aortic depressor nerve (ADN) were examined in conscious CHF and control male Wistar rats (12-13 wk old). Furthermore, the role of parasympathetic and sympathetic nervous system in mediating the cardiovascular responses to baroreflex activation was evaluated by selective β1-adrenergic and muscarinic receptor antagonists. CHF was induced by myocardial infarction. After 6 wk, the subjects were implanted with electrodes for ADN stimulation. Twenty-four hours later, electrical stimulation of the ADN was applied for 20 s using five different frequencies (5, 15, 30, 60, and 90 Hz), while the arterial pressure was recorded by a catheter implanted into the femoral artery. Electrical stimulation of the ADN elicited progressive and similar hypotensive and bradycardic responses in control (n = 12) and CHF (n = 11) rats, while the hypotensive response was not affected by methylatropine. Nevertheless, the reflex bradycardia was attenuated by methylatropine in control, but not in CHF rats. Atenolol did not affect the hypotensive or bradycardic response in either group. The ADN function was examined under anesthesia through electroneurographic recordings. The arterial pressure-ADN activity relationship was attenuated in CHF rats. In conclusion, despite the attenuation of baroreceptor function in CHF rats, the electrical stimulation of the ADN elicited a stimulus-dependent hypotension and bradycardia of similar magnitude as observed in control rats. Therefore, electrical activation of the aortic baroreflex overcomes both the attenuation of parasympathetic function and the sympathetic overdrive.

  10. Involvement of the JNK/FOXO3a/Bim Pathway in Neuronal Apoptosis after Hypoxic-Ischemic Brain Damage in Neonatal Rats.

    Directory of Open Access Journals (Sweden)

    Deyuan Li

    Full Text Available c-Jun N-terminal kinase (JNK plays a key role in the regulation of neuronal apoptosis. Previous studies have revealed that forkhead transcription factor (FOXO3a is a critical effector of JNK-mediated tumor suppression. However, it is not clear whether the JNK/FOXO3a pathway is involved in neuronal apoptosis in the developing rat brain after hypoxia-ischemia (HI. In this study, we generated an HI model using postnatal day 7 rats. Fluorescence immunolabeling and Western blot assays were used to detect the distribution and expression of total and phosphorylated JNK and FOXO3a and the pro-apoptotic proteins Bim and CC3. We found that JNK phosphorylation was accompanied by FOXO3a dephosphorylation, which induced FOXO3a translocation into the nucleus, resulting in the upregulation of levels of Bim and CC3 proteins. Furthermore, we found that JNK inhibition by AS601245, a specific JNK inhibitor, significantly increased FOXO3a phosphorylation, which attenuated FOXO3a translocation into the nucleus after HI. Moreover, JNK inhibition downregulated levels of Bim and CC3 proteins, attenuated neuronal apoptosis and reduced brain infarct volume in the developing rat brain. Our findings suggest that the JNK/FOXO3a/Bim pathway is involved in neuronal apoptosis in the developing rat brain after HI. Agents targeting JNK may offer promise for rescuing neurons from HI-induced damage.

  11. Sodium Hydrosulfide Attenuates Beta-Amyloid-Induced Cognitive Deficits and Neuroinflammation via Modulation of MAPK/NF-κB Pathway in Rats.

    Science.gov (United States)

    Liu, Huiyu; Deng, Yuanyuan; Gao, Jianmei; Liu, Yuangui; Li, Wenxian; Shi, Jingshan; Gong, Qihai

    2015-01-01

    Beta-amyloid (Aβ), a neurotoxic peptide, accumulates in the brain of Alzheimer's disease (AD) subjects to initiate neuroinflammation eventually leading to memory impairment. Here, we demonstrated that Aβ-injected rats exhibited cognitive impairment and neuroinflammation with a remarkable reduction of hydrogen sulfide (H2S) levels in the hippocampus compared with that in shamoperated rats. Interestingly, the expression of cystathionine-β-synthase (CBS) and 3- mercaptopyruvate-sulfurtransferase (3MST), the major enzymes responsible for endogenous H2S generation, were also significantly decreased. However, intraperitoneal (i.p.) injection of sodium hydrosulfide (NaHS, a H2S donor) dramatically attenuated cognitive impairment and neuroinflammation induced by hippocampal injection of 10 μg of Aβ1-42 in rats. Subsequently, NaHS significantly suppressed the expression of tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) in rat hippocampus following Aβ administration. Furthermore, NaHS exerted a beneficial effect on inhibition of IκB-α degradation and subsequent activation of transcription factor nuclear factor κB (NF-κB), as well as inhibition of extracellular signal-regulated kinase (ERK1/2) activity and p38 MAPK activity but not c-Jun N-terminal kinase (JNK) activity induced by Aβ. These results demonstrate that NaHS might be a potential agent for treatment of neuroinflammation-related AD.

  12. Tangshen Formula Attenuates Colonic Structure Remodeling in Type 2 Diabetic Rats

    Science.gov (United States)

    Chen, Pengmin; Zhao, Jingbo; Yang, Xin; Zhao, Tingting; Yan, Meihua; Pan, Lin; Li, Xin; Zhang, Yun

    2017-01-01

    Aim. This study investigated the effect and mechanism of the Chinese herbal medicine Tangshen Formula (TSF) on GI structure remodeling in the rat model of diabetes. Methods. Type 2 diabetic rats were used. Wet weight per unit length, layer thicknesses, levels of collagens I and III, nuclear factor kappa B (NF-κB), interferon-γ (IFN-γ), interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1), and Smad2/3 expression in the rat colon were measured. Results. Compared with the control group animals, wet weight and layer thicknesses of the colon increased, and expressions of collagens I and III, NF-κB, IFN-γ, IL-6, TGF-β1, and Smad2/3 increased significantly in the diabetic animals. TSF inhibited increase in colonic wet weight and layer thicknesses, downregulated expressions of collagens I and III in the mucosal layer, and downregulated expressions of NF-κB, IFN-γ, IL-6, TGF-β1, and Smad2/3 in the colon wall. Furthermore, level of expression of NF-κB was associated with those of TGF-β1 and Smad2/3. Expression of TGF-β1 was associated with the most histomorphometric parameters including colonic weight, mucosal and muscle thicknesses, and levels of collagens I and III in mucosal layer. Conclusion. TSF appears to attenuate colonic structure remodeling in type 2 diabetic rats through inhibiting the overactivated pathway of NF-κB, thus reducing expressions of TGF-β1.

  13. Salubrinal attenuates right ventricular hypertrophy and dysfunction in hypoxic pulmonary hypertension of rats.

    Science.gov (United States)

    He, Yun-Yun; Liu, Chun-Lei; Li, Xin; Li, Rui-Jun; Wang, Li-Li; He, Kun-Lun

    2016-12-01

    The phosphorylation of eukaryotic translation initiation factor 2 alpha (p-eIF2α) is essential for cell survival during hypoxia. The aim of this study was to investigate whether salubrinal, an inhibitor of p-eIF2α dephosphorylation could attenuate pulmonary arterial hypertension (PAH) and right ventricular (RV) hypertrophy in rats exposed to hypobaric hypoxia. PAH of rats was induced by hypobaric hypoxia. Salubrinal supplemented was randomized in either a prevention or a reversal protocol. At the end of the follow-up point, we measured echocardiography, hemodynamics, hematoxylin-eosin and Masson's trichrome stainings. RNA-seq analysis is explored to identify changes in gene expression associated with hypobaric hypoxia with or without salubrinal. Compared with vehicle-treatment rats exposed to hypobaric hypoxia, salubrinal prevented and partly reversed the increase of the mean pulmonary artery pressure and RV hypertrophy. What's more, salubrinal reduced the percentage wall thickness (WT%) of pulmonary artery and RV collagen volume fraction (CVF) in both prevention and reversal protocols. We also found that salubrinal was capable of reducing endoplasmic reticulum stress and oxidative stress. The result of RNA-seq analysis revealed that chronic hypoxia stimulated the differential expression of a series of genes involved in cell cycle regulation and ventricular hypertrophy and so on. Some of these genes could be ameliorated by salubrinal. These results indicate that salubrinal could prevent and reverse well-established RV remodeling, and restore the genes and pathways altered in the right ventricles of rats exposed to hypobaric hypoxia. Copyright © 2016. Published by Elsevier Inc.

  14. A blueberry enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress

    Science.gov (United States)

    Objective: To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Background: Oxidative stress (OS) appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-indu...

  15. Paeoniflorin Attenuated Oxidative Stress in Rat COPD Model Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Jinpei Lin

    2016-01-01

    Full Text Available Paeoniflorin (PF, a monoterpene glucoside, might have an effect on the oxidative stress. However, the mechanism is still unknown. In this study, we made the COPD model in Sprague-Dawley (SD rats by exposing them to the smoke of 20 cigarettes for 1 hour/day and 6 days/week, for 12 weeks, 24 weeks, or 36 weeks. Our findings suggested that smoke inhalation can trigger the oxidative stress from the very beginning. A 24-week treatment of PF especially in the dosage of 40 mg/kg·d can attenuate oxygen stress by partially quenching reactive oxygen species (ROS and upregulating antioxidant enzymes via an Nrf2-dependent mechanism.

  16. Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats.

    Science.gov (United States)

    Yildirim, Zeki; Sogut, Sadik; Odaci, Ersan; Iraz, Mustafa; Ozyurt, Huseyin; Kotuk, Mahir; Akyol, Omer

    2003-02-01

    The effect of oral erdosteine on tissue malondialdehyde (MDA) and nitric oxide (NO) levels, and catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities are investigated in the cisplatin model of acute renal failure in rats. A single dose of cisplatin caused kidney damage manifested by kidney histology as well as increases in plasma creatinine and blood urea nitrogen (BUN) levels. Treatment with free radical scavenger erdosteine attenuated increases in plasma creatinine and BUN, and tissue MDA and NO levels, and provided a histologically-proven protection against cisplatin-induced acute renal failure. Erdosteine also reduced depletion in the tissue CAT, GSH-Px, and SOD activities. These results show that erdosteine may be a promising drug for protection against cisplatin-induced nephrotoxicity. However, further studies with different doses of erdosteine are warranted for clarifying the issue.

  17. In utero exposure to microwave radiation and rat brain development.

    Science.gov (United States)

    Merritt, J H; Hardy, K A; Chamness, A F

    1984-01-01

    Timed-pregnancy rats were exposed in a circular waveguide system starting on day 2 of gestation. The system operated at 2,450 MHz (pulsed waves; 8 microseconds PW; 830 pps). Specific absorption rate (SAR) was maintained at 0.4 W/kg by increasing the input power as the animals grew in size. On day 18 of gestation the dams were removed from the waveguide cages and euthanized; the fetuses were removed and weighed. Fetal brains were excised and weighed, and brain RNA, DNA and protein were determined. Values for measured parameters of the radiated fetuses did not differ significantly from those of sham-exposed fetuses. A regression of brain weight on body weight showed no micrencephalous fetuses in the radiation group when using as a criterion a regression line based on two standard errors of the estimate of the sham-exposed group. In addition, metrics derived from brain DNA (ie, cell number and cell size) showed no significant differences when radiation was compared to sham exposure. We conclude that 2,450-MHz microwave radiation, at an SAR of 0.4 W/kg, did not produce significant alterations in brain organogenesis.

  18. Hypothermia induced by adenosine 5'-monophosphate attenuates early stage injury in an acute gouty arthritis rat model.

    Science.gov (United States)

    Miao, Zhimin; Guo, Weiting; Lu, Shulai; Lv, Wenshan; Li, Changgui; Wang, Yangang; Zhao, Shihua; Yan, Shengli; Tao, Zhenyin; Wang, Yunlong

    2013-08-01

    To investigate whether the hypothermia induced by Adenosine 5'-Monophosphate (5'-AMP) could attenuate early stage injury in a rat acute gouty arthritis model. Ankle joint injection with monosodium urate monohydrate crystals (MSU crystals) in hypothermia rat model which was induced by 5'-AMP and then observe whether hypothermia induced by 5'-AMP could be effectively inhibit the inflammation on acute gouty arthritis in rats. AMP-induced hypothermia has protective effects on our acute gouty arthritis, which was demonstrated by the following criteria: (1) a significant reduction in the ankle swelling (p gouty arthritis model.

  19. Pyrrolidine dithiocarbamate (PDTC) inhibits the overexpression of MCP-1 and attenuates microglial activation in the hippocampus of a pilocarpine-induced status epilepticus rat model.

    Science.gov (United States)

    Lv, Rilang; Xu, Xiaoyun; Luo, Zheng; Shen, Nan; Wang, Feng; Zhao, Yongbo

    2014-01-01

    The aim of this study was to investigate the effects of pyrrolidine dithiocarbamate (PDTC) on MCP-1 expression and microglial activation in the hippocampus of a rat model of pilocarpine (PILO)-induced status epilepticus (SE). Moreover, seizure susceptibility, frequency and severity as well as brain damage were analyzed and changes in behavior were recorded. Chemokine MCP-1 expression and microglial activation were detected by immunohistochemistry (IHC). Fluoro-Jade C (FJC) and NeuN staining were used for the evaluation of tissue damage. Our results showed that although SE resulted in the upregulation of MCP-1 and microglial activation in the rat hippocampus 24 h after seizure onset, pretreatment with PDTC significantly inhibited the MCP-1 overexpression and attenuated the microglial activation. These effects were accompanied by neurodegenerative amelioration. To the best of our knowledge, these findings indicated for the first time that the activation of the nuclear factor-κB (NF-κB) pathway may contribute to MCP-1 upregulation and microglial activation in the context of epilepsy. PDTC was also shown to exert anticonvulsant activity and to have a neuroprotective effect on the hippocampal CA1 and CA3 regions, potentially through attenuating microglial activation.

  20. Gene Expression Profiling during Pregnancy in Rat Brain Tissue.

    Science.gov (United States)

    Mann, Phyllis E

    2014-03-04

    The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases "expectant brain" and "maternal brain". Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  1. Characteristics of muscarinic acetylcholine receptors in rat brain.

    Directory of Open Access Journals (Sweden)

    Nukina,Itaru

    1983-06-01

    Full Text Available Characteristics of muscarinic acetylcholine (ACh receptors were studied in the rat central nervous system (CNS using 3H-quinuclidinyl benzilate (QNB, an antagonist of muscarinic ACh receptors. Scatchard analysis indicated that the rat CNS had a single 3H-QNB binding site with an apparent dissociation constant (Kd of 5.0 X 10(-10 M. Li+, Zn++ and Cu++ had strong effects on 3H-QNB binding which indicates that these metal ions might play important roles at muscarinic ACh receptor sites in the brain. Since antidepressants and antischizophrenic drugs displaced the binding of 3H-QNB, the anticholinergic effects of these drugs need to be taken into account when they are applied clinically. The muscarinic ACh receptor was successfully solubilized with lysophosphatidylcholine. By gel chromatography, with a Sepharose 6B column, the solubilized muscarinic ACh receptor molecule eluted at the fraction corresponding to a Stokes' radius of 6.1 nm. With the use of sucrose-density-gradient centrifugation, the molecular weight of the solubilized muscarinic ACh receptor was determined to be about 90,000 daltons. The regional distribution of 3H-QNB binding in rat brain was examined, and the highest level of 3H-QNB binding was found to be in the striatum followed by cerebral cortex and hippocampus, indicating that muscarinic ACh mechanisms affect CNS function mainly through these areas.

  2. Measurement of tritiated norepinephrine metabolism in intact rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, M.; Kowalik, S.; Barkai, A.I. (New York State Psychiatric Inst., New York (USA))

    1983-06-01

    A procedure for the study of NE metabolism in the intact rat brain is described. The method involves ventriculocisternal perfusion of the adult male rat with artificial CSF containing (/sup 3/H)NE. Radioactivity in the perfusate associated with NE and its metabolites 3,4-dihydroxymandelic acid (DOMA), 3,4-dihydroxphenylethyleneglycol (DHPG), 3-methoxy-4-hydroxymandelic acid (VMA), 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), and normetanephrine (NMN) is separated using high-performance liquid chromatography (HPLC). After 80 min the radioactivity in the perfusate reaches an apparent steady-state. Analysis of the steady-state samples shows higher activity in the fractions corresponding to DHPG and MHPG than in those corresponding to DOMA and VMA, confirming glycol formation as the major pathway of NE metabolism in the rat brain. Pretreatment with an MAO inhibitor (tranylcypromine) results in a marked decrease in the deaminated metabolites DHPG and MHPG and a concurrent increase in NMN. The results indicate this to be a sensitive procedure for the in vivo determination of changes in NE metabolism.

  3. Effects of Ecballium elaterium on brain in a rat model of sepsis-associated encephalopathy.

    Science.gov (United States)

    Arslan, Demet; Ekinci, Aysun; Arici, Akgul; Bozdemir, Eda; Akil, Esref; Ozdemir, Hasan Huseyin

    2017-12-01

    Despite recent advances in antibiotic therapy, sepsis remains a major clinical challenge in intensive care units. Here we examined the anti-inflammatory and antioxidant effects of Ecballium elaterium (EE) on brain, and explored its therapeutic potential in an animal model of sepsis-associated encephalopathy (SAE) [induced by cecal ligation and puncture (CLP)]. Thirty rats were divided into three groups of 10 each: control, sepsis, and treatment. Rats were subjected to CLP except for the control group, which underwent laparatomy only. The treatment group received 2.5 mg/kg EE while the sepsis group was administered by saline. Twenty-four hours after laparotomy, animals were sacrificied and the brains were removed. Brain homogenates were prepared to assess interleukin 1beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), total antioxidant capacity (TAC), and total oxidant status (TOS). Brain tissue sections were stained by hematoxylin and eosin (H&E) to semi-quantitatively examine the histopathologic changes such as neuron degeneration, pericellular/perivascular edema and inflammatory cell infiltration in the cerebral cortex. We found a statistically significant reduction in brain tissue homogenate levels of TNF-α 59.5 ± 8.4/50.2 ± 6.2 (p = 0.007) and TOS 99.3 ± 16.9/82.3 ± 7.8 (p = 0.01) in rats treated with EE; although interleukin 6 levels were increased in the treatment group compared to the sepsis group, this was not statistically significant. Neuronal damage (p = 0.00), pericellular/perivascular edema and inflammatory cell infiltration (p = 0.001) were also significantly lower in the treatment group compared to those in the sepsis group. These data suggest that Ecballium elaterium contains some components that exert protective effects against SAE in part by attenuating accumulation of proinflammatory cytokines, which may be important contributors to its anti-inflammatory effects during sepsis.

  4. Dimethyl Sulfoxide Attenuates Acute Lung Injury Induced by Hemorrhagic Shock/Resuscitation in Rats.

    Science.gov (United States)

    Tsung, Yu-Chi; Chung, Chih-Yang; Wan, Hung-Chieh; Chang, Ya-Ying; Shih, Ping-Cheng; Hsu, Han-Shui; Kao, Ming-Chang; Huang, Chun-Jen

    2017-04-01

    Inflammation following hemorrhagic shock/resuscitation (HS/RES) induces acute lung injury (ALI). Dimethyl sulfoxide (DMSO) possesses anti-inflammatory and antioxidative capacities. We sought to clarify whether DMSO could attenuate ALI induced by HS/RES. Male Sprague-Dawley rats were allocated to receive either a sham operation, sham plus DMSO, HS/RES, or HS/RES plus DMSO, and these were denoted as the Sham, Sham + DMSO, HS/RES, or HS/RES + DMSO group, respectively (n = 12 in each group). HS/RES was achieved by drawing blood to lower mean arterial pressure (40-45 mmHg for 60 min) followed by reinfusion with shed blood/saline mixtures. All rats received an intravenous injection of normal saline or DMSO immediately before resuscitation or at matching points relative to the sham groups. Arterial blood gas and histological assays (including histopathology, neutrophil infiltration, and lung water content) confirmed that HS/RES induced ALI. Significant increases in pulmonary expression of tumor necrosis factor-α (TNF-α), malondialdehyde, nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) confirmed that HS/RES induced pulmonary inflammation and oxidative stress. DMSO significantly attenuated the pulmonary inflammation and ALI induced by HS/RES. The mechanisms for this may involve reducing inflammation and oxidative stress through inhibition of pulmonary NF-κB, TNF-α, iNOS, and COX-2 expression.

  5. Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats.

    Directory of Open Access Journals (Sweden)

    Gang Tan

    Full Text Available BACKGROUND: Hydrogen sulfide (H(2S displays vasodilative, anti-oxidative, anti-inflammatory and cytoprotective activities. Impaired production of H(2S contributes to the increased intrahepatic resistance in cirrhotic livers. The study aimed to investigate the roles of H(2S in carbon tetrachloride (CCl(4-induced hepatotoxicity, cirrhosis and portal hypertension. METHODS AND FINDINGS: Sodium hydrosulfide (NaHS, a donor of H(2S, and DL-propargylglycine (PAG, an irreversible inhibitor of cystathionine γ-lyase (CSE, were applied to the rats to investigate the effects of H(2S on CCl(4-induced acute hepatotoxicity, cirrhosis and portal hypertension by measuring serum levels of H(2S, hepatic H(2S producing activity and CSE expression, liver function, activity of cytochrome P450 (CYP 2E1, oxidative and inflammatory parameters, liver fibrosis and portal pressure. CCl(4 significantly reduced serum levels of H(2S, hepatic H(2S production and CSE expression. NaHS attenuated CCl(4-induced acute hepatotoxicity by supplementing exogenous H(2S, which displayed anti-oxidative activities and inhibited the CYP2E1 activity. NaHS protected liver function, attenuated liver fibrosis, inhibited inflammation, and reduced the portal pressure, evidenced by the alterations of serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, hyaluronic acid (HA, albumin, tumor necrosis factor (TNF-α, interleukin (IL-1β, IL-6 and soluble intercellular adhesion molecule (ICAM-1, liver histology, hepatic hydroxyproline content and α-smooth muscle actin (SMA expression. PAG showed opposing effects to NaHS on most of the above parameters. CONCLUSIONS: Exogenous H(2S attenuates CCl(4-induced hepatotoxicity, liver cirrhosis and portal hypertension by its multiple functions including anti-oxidation, anti-inflammation, cytoprotection and anti-fibrosis, indicating that targeting H(2S may present a promising approach, particularly for its prophylactic effects, against liver

  6. Mepivacaine-induced contraction is attenuated by endothelial nitric oxide release in isolated rat aorta.

    Science.gov (United States)

    Sung, Hui-Jin; Choi, Mun-Jeoung; Ok, Seong-Ho; Lee, Soo Hee; Hwang, Il Jeong; Kim, Hee Sook; Chang, Ki Churl; Shin, Il-Woo; Lee, Heon-Keun; Park, Kyeong-Eon; Chung, Young-Kyun; Sohn, Ju-Tae

    2012-07-01

    Mepivacaine is an aminoamide-linked local anesthetic with an intermediate duration that intrinsically produces vasoconstriction both in vivo and in vitro. The aims of this in-vitro study were to examine the direct effect of mepivacaine in isolated rat aortic rings and to determine the associated cellular mechanism with a particular focus on endothelium-derived vasodilators, which modulate vascular tone. In the aortic rings with or without endothelium, cumulative mepivacaine concentration-response curves were generated in the presence or absence of the following antagonists: N(ω)-nitro-L-arginine methyl ester [L-NAME], indomethacin, fluconazole, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one [ODQ], verapamil, and calcium-free Krebs solution. Mepivacaine produced vasoconstriction at low concentrations (1 × 10(-3) and 3 × 10(-3) mol/L) followed by vasodilation at a high concentration (1 × 10(-2) mol/L). The mepivacaine-induced contraction was higher in endothelium-denuded aortae than in endothelium-intact aortae. Pretreatment with L-NAME, ODQ, and methylene blue enhanced mepivacaine-induced contraction in the endothelium-intact rings, whereas fluconazole had no effect. Indomethacin slightly attenuated mepivacaine-induced contraction, whereas verapamil and calcium-free Krebs solution more strongly attenuated this contraction. The vasoconstriction induced by mepivacaine is attenuated mainly by the endothelial nitric oxide - cyclic guanosine monophosphate pathway. In addition, mepivacaine-induced contraction involves cyclooxygenase pathway activation and extracellular calcium influx via voltage-operated calcium channels.

  7. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye, E-mail: dryetian@hotmail.com

    2014-01-10

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  8. Ischemic post-conditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats.

    Science.gov (United States)

    Xie, Rong; Wang, Peng; Ji, Xunming; Zhao, Heng

    2013-12-01

    While pre-conditioning is induced before stroke onset, ischemic post-conditioning (IPostC) is performed after reperfusion, which typically refers to a series of mechanical interruption of blood reperfusion after stroke. IPostC is known to reduce infarction in wild-type animals. We investigated if IPostC protects against brain injury induced by focal ischemia in Tcell-deficient nude rats and to examine its effects on Akt and the mammalian target of rapamycin (mTOR) pathway. Although IPostC reduced infarct size at 2 days post-stroke in wild-type rats, it did not attenuate infarction in nude rats. Despite the unaltered infarct size in nude rats, IPostC increased levels of phosphorylated Akt (p-Akt) and Akt isoforms (Akt1, Akt2, Akt3), and p-mTOR, p-S6K and p-4EBP1 in the mTOR pathway, as well as growth associated Protein 43 (GAP43), both in the peri-infarct area and core, 24 h after stroke. IPostC improved neurological function in nude rats 1-30 days after stroke and reduced the extent of brain damage 30 days after stroke. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC. We determined that IPostC did not inhibit acute infarction in nude rats but did provide long-term protection by enhancing Akt and mTOR activity during the acute post-stroke phase. Post-conditioning did not attenuate infarction in nude rats measured 2 days post-stroke, but improved neurological function in nude rats and reduced brain damage 30 days after stroke. It resulted in increased-activities of Akt and mTOR, S6K and p-4EBP1. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC.

  9. Remote ischemic preconditioning provides neuroprotection: impact on ketamine-induced neuroapoptosis in the developing rat brain.

    Science.gov (United States)

    Ma, W; Cao, Y-Y; Qu, S; Ma, S-S; Wang, J-Z; Deng, L-Q; Yuan, W-J; Meng, J-H

    2016-12-01

    Previous studies have demonstrated that the commonly used anesthetic ketamine can acutely increase apoptosis and have long-lasting detrimental effects on cognitive function as the animal matures. Remote ischemic preconditioning (RIPC) has been confirmed to have a cerebral protective role in animal models of brain damage. The aim of this study was to investigate whether RIPC can protect the developing brain from anesthetic-induced neurotoxicity. To investigate the protective properties of RIPC, 60 new-born Sprague-Dawley (SD) rats were randomly allocated into four groups: ketamine (20 mg/kg was diluted in saline, six times at an interval of 2 hours); RIPC (left hind row ischemia 5 min, reperfusion 5 min, a total of four cycles); ketamine + RIPC: RIPC was induced at postnatal day 5 and rats underwent the same treatment with the ketamine group after 48 hours; and saline (group vehicle). Neuronal apoptosis in the frontal cortex and hippocampal CA1 region was measured 24 h after treatment using immunohistochemistry of cleaved caspase-3. Learning and memory abilities were tested at the age of 60 days by Morris water maze test. The percentage of cleaved caspase-3 immunohistochemical staining positive cells in the ketamine + RIPC group showed a more marked decline in neuronal apoptosis of the CA1 region than that in the ketamine group (p 0.05). The mice exposed to RIPC alone showed no difference from the saline-treated mice. Moreover, RIPC significantly reversed the learning and memory deficits observed at 60 days of age. Our data indicate that RIPC treatment provides protection against ketamine-induced neuroapoptosis in the frontal cerebral cortex but not in the hippocampal CA1 region in developing rats and attenuates long-term behavioural deficits as the animals mature, suggesting a new possible strategy for neuroprotection.

  10. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Lei-Fang Cao

    2016-01-01

    Full Text Available In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA into the bilateral striatum (CPu. PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP-4 aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE precursor droxidopa (L-DOPS or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE and 5-hydroxytryptamine (5-HT reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain.

  11. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats.

    Science.gov (United States)

    Coban, Funda Karabag; Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Hazman, Omer

    2015-10-01

    Organophosphorus compounds cause oxidative stress and lead to alterations in antioxidant status in organisms. In this study, the effects of subchronic exposure to malathion and the protective effects of boron (B) were evaluated in 48 Wistar rats, which were divided equally into six groups. For 28 d, the control group received a normal diet and tap water, the corn oil group received a normal diet and 0.5 mL of corn oil by gastric gavage and the malathion group received a normal diet and malathion (100 mg/kg/d) by gastric gavage. During the same period, each of the three other groups received a different dosage of B (5, 10 and 20 mg/kg/d, respectively) and malathion (100 mg/kg/d) by gastric gavage. Malathion administration during the period increased malondialdehyde, nitric oxide and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, as well as markers of liver function, yet decreased acetylcholinesterase, reduced glutathione, superoxide dismutase, and catalase activities in blood, liver, kidney and brain tissues. Administration of B in a dose-dependent manner also reversed malathion-induced oxidative stress, lipid peroxidation (LPO) and antioxidant enzyme activity. Moreover, B exhibited protective action against malathion-induced histopathological changes in liver, kidney and brain tissues. These results demonstrate that, if used in a dose-dependent manner, B decreases malathion-induced oxidative stress, enhances the antioxidant defense mechanism and regenerates tissues in rats.

  12. Genistein Attenuates Nonalcoholic Steatohepatitis and Increases Hepatic PPARγ in a Rat Model

    Directory of Open Access Journals (Sweden)

    Warinda Susutlertpanya

    2015-01-01

    Full Text Available Nonalcoholic steatohepatitis (NASH has become a global chronic liver disease, but no effective medicine has been proven to cure it. This study investigated the protective effects of genistein, a phytoestrogen, on NASH and examined whether it has any effect on hepatic PPARγ. Male Sprague-Dawley rats were divided into four groups: control group fed ad libitum with standard rat diet, NASH group fed ad libitum with high-fat diet to induce NASH and NASH + Gen8 group and NASH + Gen16 group fed with high-fat diet plus intragastric administration of 8 or 16 mg/kg genistein once daily. After 6 weeks, liver samples were collected to determine MDA, TNF-α, PPARγ, and histopathology. The findings were that levels of hepatic MDA and TNF-α increased in NASH group, but 16 mg/kg genistein reduced these levels significantly. Downregulation of hepatic PPARγ was observed in NASH group, but genistein significantly upregulated the expression of PPARγ in both NASH + Gen groups. The histological appearance of liver in NASH group presented pathological features of steatohepatitis which were diminished in both NASH + Gen groups. The results suggest that genistein attenuates the liver histopathology of NASH with upregulation of hepatic PPARγ, reduction of oxidative stress, and inhibition of inflammatory cytokine.

  13. Hormone-dependent aggression in female rats: testosterone implants attenuate the decline in aggression following ovariectomy.

    Science.gov (United States)

    Albert, D J; Jonik, R H; Walsh, M L

    1990-04-01

    Female rats were individually housed with a sterile male for a 4- to 5-week period. Each female was then tested for aggression toward an unfamiliar female intruder at weekly intervals. Those females that displayed a high level of aggression on each of three weekly tests were ovariectomized and given subcutaneous implants of testosterone-filled tubes, ovariectomized and given subcutaneous implants of empty tubes, or sham-ovariectomized and implanted with empty tubes. These implants should produce a serum testosterone concentration of about 0.6 ng/ml, compared to 0.17 ng/ml in intact females. Beginning 1 week postoperatively, the aggression of each female was tested weekly for 4 weeks. Ovariectomized females with testosterone implants displayed a level of aggression significantly higher than that of ovariectomized females with empty implants on 3 of 4 weekly tests. The level of aggression by females with testosterone implants was not significantly different from that of sham-ovariectomized females on the first postoperative test. Additional observations showed that testosterone implants did not produce an increase in aggression in females whose preoperative level of aggression was low. Further, Silastic implants containing estrogen (1 to 2 mm long) sufficient to maintain a serum estrogen level of 20 to 30 pg/ml also attenuated the decline of aggression following ovariectomy. These results suggest that testosterone and estrogen may both contribute to the biological substrate of hormone-dependent aggression in female rats.

  14. Olmesartan attenuates tacrolimus-induced biochemical and ultrastructural changes in rat kidney tissue.

    Science.gov (United States)

    Al-Harbi, Naif O; Imam, Faisal; Al-Harbi, Mohammed M; Iqbal, Muzaffar; Nadeem, Ahmed; Sayed-Ahmed, Mohammed M; Alabidy, Ali D; Almukhallafi, Ali F

    2014-01-01

    Tacrolimus, a calcineurin inhibitor, is clinically used as an immunosuppressive agent in organ transplantation, but its use is limited due to its marked nephrotoxicity. The present study investigated the effect of olmesartan (angiotensin receptor blocker) on tacrolimus-induced nephrotoxicity in rats. A total of 24 rats were divided into four groups, which included control, tacrolimus, tacrolimus + olmesartan, and olmesartan groups. Tacrolimus-induced nephrotoxicity was assessed biochemically and histopathologically. Tacrolimus significantly increased BUN and creatinine level. Treatment with olmesartan reversed tacrolimus-induced changes in the biochemical markers (BUN and creatinine) of nephrotoxicity. Tacrolimus significantly decreased GSH level and catalase activity while increasing MDA level. Olmesartan also attenuated the effects of tacrolimus on MDA, GSH, and catalase. In tacrolimus group histological examination showed marked changes in renal tubule, mitochondria, and podocyte processes. Histopathological and ultrastructural studies showed that treatment with olmesartan prevented tacrolimus-induced renal damage. These results suggest that olmesartan has protective effects on tacrolimus-induced nephrotoxicity, implying that RAS might be playing role in tacrolimus-induced nephrotoxicity.

  15. CXCR4 Blockade Attenuates Hyperoxia Induced Lung Injury in Neonatal Rats

    Science.gov (United States)

    Drummond, Shelley; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Suguihara, Cleide; Young, Karen C.

    2015-01-01

    Background Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. Whether antagonism of CXCR4 will alleviate lung inflammation in neonatal hyperoxia-induced lung injury is unknown. Objective To determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods Newborn rats exposed to normoxia (RA) or hyperoxia (FiO2=0.9) from postnatal day 2 (P2)-P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis, and inflammation were evaluated at P16. Results As compared to RA, hyperoxic-PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in bronchoalveolar lavage fluid macrophage and neutrophil count and reduced lung myeloperoxidase activity. Conclusion CXCR4 antagonism decreases lung inflammation and improves alveolar as well as vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD. PMID:25825119

  16. Phenolic Rich Extract from Clinacanthus nutans Attenuates Hyperlipidemia-Associated Oxidative Stress in Rats.

    Science.gov (United States)

    Sarega, Nadarajan; Imam, Mustapha Umar; Ooi, Der-Jiun; Chan, Kim Wei; Md Esa, Norhaizan; Zawawi, Norhasnida; Ismail, Maznah

    2016-01-01

    Clinacanthus nutans is used as traditional medicine in Asia but there are limited scientific studies to support its use. In this study, the stem and leaf of C. nutans were extracted using solvents of differing polarities, and their antioxidant capacities were determined using multiple antioxidant assays. The water and aqueous methanolic leaf extracts were further fractionated and their antioxidant capacities and phenolic compositions were tested. Furthermore, the efficacies of the water and aqueous methanolic leaf extracts were tested against hyperlipidemia-induced oxidative stress in rats. Serum and hepatic antioxidant and oxidative stress markers were tested after feeding the rats with high fat diet together with the extracts or simvastatin for 7 weeks. The results indicated that both leaf extracts attenuated oxidative stress through increasing serum antioxidant enzymes activity and upregulating the expression of hepatic antioxidant genes. Multiple phenolic compounds were detected in the extracts and fractions of C. nutans, although protocatechuic acid was one of the most abundant and may have contributed significantly towards the bioactivities of the extracts. However, synergistic effects of different phenolics may have contributed to the overall bioactivities. C. nutans can be a good source of functional ingredients for the management of oxidative stress-related diseases.

  17. Phenolic Rich Extract from Clinacanthus nutans Attenuates Hyperlipidemia-Associated Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    Nadarajan Sarega

    2016-01-01

    Full Text Available Clinacanthus nutans is used as traditional medicine in Asia but there are limited scientific studies to support its use. In this study, the stem and leaf of C. nutans were extracted using solvents of differing polarities, and their antioxidant capacities were determined using multiple antioxidant assays. The water and aqueous methanolic leaf extracts were further fractionated and their antioxidant capacities and phenolic compositions were tested. Furthermore, the efficacies of the water and aqueous methanolic leaf extracts were tested against hyperlipidemia-induced oxidative stress in rats. Serum and hepatic antioxidant and oxidative stress markers were tested after feeding the rats with high fat diet together with the extracts or simvastatin for 7 weeks. The results indicated that both leaf extracts attenuated oxidative stress through increasing serum antioxidant enzymes activity and upregulating the expression of hepatic antioxidant genes. Multiple phenolic compounds were detected in the extracts and fractions of C. nutans, although protocatechuic acid was one of the most abundant and may have contributed significantly towards the bioactivities of the extracts. However, synergistic effects of different phenolics may have contributed to the overall bioactivities. C. nutans can be a good source of functional ingredients for the management of oxidative stress-related diseases.

  18. Carvacrol attenuates N-nitrosodiethylamine induced liver injury in experimental Wistar rats

    Directory of Open Access Journals (Sweden)

    Balan Rajan

    2015-06-01

    Full Text Available Carvacrol is a main constituent in the essential oils of countless aromatic plants including Origanum Vulgare and Thymus vulgari, which has been assessed for substantial pharmacological properties. In recent years, notable research has been embarked on to establish the biological actions of Carvacrol for its promising use in clinical applications. The present study is an attempt to reveal the protective role of Carvacrol against N-Nitrosodiethylamine (DEN induced hepatic injury in male Wistar albino rats. DEN is an egregious toxin, present in numerous environmental factors, which enhances chemical driven liver damage by inducing oxidative stress and cellular injury. Administration of DEN (200 mg/kg bodyweight, I.P to rats results in elevated marker enzymes (in both serum and tissue. Carvacrol (15 mg/kg body weight suppressed the elevation of marker enzymes (in both serum and tissue and augmented the antioxidants levels. The hoisted activities of Phase I enzymes and inferior activities of Phase II enzymes were observed in DEN-administered animals, whereas Carvacrol treated animals showed improved near normal activity. Histological observations also support the protective role of Carvacrol against DEN induced liver damage. Final outcome from our findings intimate that Carvacrol might be beneficial in attenuating toxin induced liver damage.

  19. Saturated hydrogen saline attenuates endotoxin-induced acute liver dysfunction in rats.

    Science.gov (United States)

    Xu, X-F; Zhang, J

    2013-01-01

    To determine the effect of saturated hydrogen saline on lipopolysaccharide (LPS)-induced acute liver dysfunction, rats were divided into control, LPS, and LPS plus saturated hydrogen saline (LPS+H(2)) groups. Treatment with saturated hydrogen saline prolonged the median survival time and reduced liver dysfunction. Moreover, saturated hydrogen saline significantly reduced pathological alterations in liver tissues, the number of ballooned hepatocytes, serum tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 levels, and myeloperoxidase (MPO) and malondialdehyde (MDA) levels in liver tissues (Phydrogen saline treatment. Saturated hydrogen saline also decreased phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated Jun kinase (p-JNK), nuclear factor-kappa B (NF-kappaB), and second mitochondria-derived activator of caspase (Smac) levels, and increased p38 activation (Phydrogen saline may attenuate LPS-induced acute liver dysfunction in rats, possibly by reducing inflammation and cell apoptosis. Mitogen-activated protein kinase (MAPK), NF-kappaB, and Smac may contribute to saturated hydrogen saline-mediated liver protection.

  20. A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2009-10-01

    The effects of cocoa feeding against N-nitrosodiethylamine (DEN)-induced liver injury were studied in rats. Animals were divided into five groups. Groups 1 and 2 were fed with standard and cocoa-diet, respectively. Groups 3 and 4 were injected with DEN at 2 and 4 weeks, and fed with standard and cocoa-diet, respectively. Group 5 was treated with DEN, received the standard diet for 4 weeks and then it was replaced by the cocoa-diet. DEN-induced hepatic damage caused a significant increase in damage markers, as well as a decrease in the hepatic glutathione, diminished levels of p-ERK and enhanced protein carbonyl content, caspase-3 activity and values of p-AKT and p-JNK. The cocoa-rich diet prevented the reduction of hepatic glutathione concentration and catalase and GPx activities in DEN-injected rats, as well as diminished protein carbonyl content, caspase-3 activity, p-AKT and p-JNK levels, and increased GST activity. However, cocoa administration did not abrogate the DEN-induced body weight loss and the increased levels of hepatic-specific enzymes and LDH. These results suggested that cocoa-rich diet attenuates the DEN-induced liver injury.

  1. Supplementary catechins attenuate cooking-oil-fumes-induced oxidative stress in rat lung.

    Science.gov (United States)

    Yang, Chao-Huei; Lin, Chun-Yao; Yang, Joan-Hwa; Liou, Shaw-Yih; Li, Ping-Chia; Chien, Chiang-Ting

    2009-06-30

    Cooking-oil-fumes containing toxic components may induce reactive oxygen species (ROS) to oxidize macromolecules and lead to acute lung injury. Our previous study showed that a decaffineated green tea extract containing (+)-catechin, (-)-epicatechin, (+)-gallocatechin, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate can inhibit oxidation, inflammation, and apoptosis. We determined whether the catechins supplement may reduce cooking-oil-fumes-induced acute lung injury in rat. In the urethane-anesthetized Wistar rat subjected to 30-120 min of cooking-oil-fumes exposure, blood ROS significantly increased in the recovery stage. After 30-min cooking-oil-fumes exposure, the enhanced blood ROS level further increased in a time-dependent manner during the recovery stage (321 +/- 69 counts/10 s after 1 h, 540 +/- 89 counts/10 s after 2 h, and 873 +/- 112 counts/10 s after 4 h). Four hours after 30-min cooking-oil-fumes exposure, lung lavage neutrophils and ROS as well as lung tissue dityrosine and 4-hydroxy-2-nonenal increased significantly. Two weeks of catechins supplememnt significantly reduced the enhanced lavage ROS, lung dityrosine and 4-hydroxy-2-nonenal level. Cooking-oil-fumes-induced oxidative stress decreased lung Bcl-2/Bax ratio and HSP70 expression, but catechins treatment preserved the downregulation of Bcl-2/Bax ratio and HSP70 expression. We conclude that catechins supplement attenuates cooking-oil-fumes-induced acute lung injury via the preservation of oil-smoke induced downregulation of antioxidant, antiapoptosis, and chaperone protein expression.

  2. Olmesartan Attenuates Tacrolimus-Induced Biochemical and Ultrastructural Changes in Rat Kidney Tissue

    Directory of Open Access Journals (Sweden)

    Naif O. Al-Harbi

    2014-01-01

    Full Text Available Tacrolimus, a calcineurin inhibitor, is clinically used as an immunosuppressive agent in organ transplantation, but its use is limited due to its marked nephrotoxicity. The present study investigated the effect of olmesartan (angiotensin receptor blocker on tacrolimus-induced nephrotoxicity in rats. A total of 24 rats were divided into four groups, which included control, tacrolimus, tacrolimus + olmesartan, and olmesartan groups. Tacrolimus-induced nephrotoxicity was assessed biochemically and histopathologically. Tacrolimus significantly increased BUN and creatinine level. Treatment with olmesartan reversed tacrolimus-induced changes in the biochemical markers (BUN and creatinine of nephrotoxicity. Tacrolimus significantly decreased GSH level and catalase activity while increasing MDA level. Olmesartan also attenuated the effects of tacrolimus on MDA, GSH, and catalase. In tacrolimus group histological examination showed marked changes in renal tubule, mitochondria, and podocyte processes. Histopathological and ultrastructural studies showed that treatment with olmesartan prevented tacrolimus-induced renal damage. These results suggest that olmesartan has protective effects on tacrolimus-induced nephrotoxicity, implying that RAS might be playing role in tacrolimus-induced nephrotoxicity.

  3. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats.

    Science.gov (United States)

    Krishna, Gokul; Muralidhara

    2015-01-01

    Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against

  4. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  5. Properties of Opiate-Receptor Binding in Rat Brain

    Science.gov (United States)

    Pert, Candace B.; Snyder, Solomon H.

    1973-01-01

    [3H]Naloxone, a potent opiate antagonist, binds stereospecifically to opiate-receptor sites in rat-brain tissue. The binding is time, temperature, and pH dependent and saturable with respect to [3H]naloxone and tissue concentration. The [3H]naloxone-receptor complex formation is bimolecular with a dissociation constant of 20 nM. 15 Opiate agonists and antagonists compete for the same receptors, whose density is 30 pmol/g. Potencies of opiates and their antagonists in displacing [3H]naloxone binding parallel their pharmacological potencies. PMID:4525427

  6. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    BACKGROUND/AIMS: Body weight gain is a common side effect of treatment with antipsychotics, but the mechanisms underlying this weight gain are unknown. Several factors may be involved in antipsychotic-induced body weight gain including the cannabinoid receptor 1 (CB(1)), the serotonin receptor 2C...... positively correlated with visceral fat mass. Risperidone treatment increased CB(1) receptor binding in the arcuate nucleus (40%), hippocampus (25-30%) and amygdala (35%) without concurrent alterations in the CB(1) receptor mRNA. Risperidone treatment increased adiponectin mRNA. CONCLUSION: The present study...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  7. Vinpocetine attenuates neointimal hyperplasia in diabetic rat carotid arteries after balloon injury.

    Directory of Open Access Journals (Sweden)

    Ke Wang

    Full Text Available BACKGROUND: Diabetes exacerbates abnormal vascular smooth muscle cell (VSMC accumulation in response to arterial wall injury. Vinpocetine has been shown to improve vascular remolding; however, little is known about the direct effects of vinpocetine on vascular complications mediated by diabetes. The objective of this study was to determine the effects of vinpocetine on hyperglycemia-facilitated neointimal hyperplasia and explore its possible mechanism. MATERIALS AND METHODS: Nondiabetic and diabetic rats were subjected to balloon injury of the carotid artery followed by 3-week treatment with either vinpocetine (10 mg/kg/day or saline. Morphological analysis and proliferating cell nuclear antigen (PCNA immunostaining were performed on day 21. Rat VSMCs proliferation was determined with 5-ethynyl-20-deoxyuridine cell proliferation assays. Chemokinesis was monitored with scratch assays, and production of reactive oxygen species (ROS was assessed using a 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA flow cytometric assay. Apoptosis was detected by annexin V-FITC/PI flow cytometric assay. Cell signaling was assessed by immunblotting. RESULTS: Vinpocetine prevented intimal hyperplasia in carotid arteries in both normal (I/M ratio: 93.83 ± 26.45% versus 143.2 ± 38.18%, P<0.05 and diabetic animals (I/M ratio: 120.5 ± 42.55% versus 233.46 ± 33.98%, P<0.05 when compared to saline. The in vitro study demonstrated that vinpocetine significantly inhibited VSMCs proliferation and chemokinesis as well as ROS generation and apoptotic resistance, which was induced by high glucose (HG treatment. Vinpocetine significantly abolished HG-induced phosphorylation of Akt and JNK1/2 without affecting their total levels. For downstream targets, HG-induced phosphorylation of IκBα was significantly inhibited by vinpocetine. Vinpocetine also attenuated HG-enhanced expression of PCNA, cyclin D1 and Bcl-2. CONCLUSIONS: Vinpocetine attenuated neointimal formation in

  8. Conantokin-G attenuates detrimental effects of NMDAR hyperactivity in an ischemic rat model of stroke.

    Science.gov (United States)

    Balsara, Rashna; Dang, Alexander; Donahue, Deborah L; Snow, Tiffany; Castellino, Francis J

    2015-01-01

    The neuroprotective activity of conantokin-G (con-G), a naturally occurring antagonist of N-methyl-D-aspartate receptors (NMDAR), was neurologically and histologically compared in the core and peri-infarct regions after ischemia/reperfusion brain injury in male Sprague-Dawley rats. The contralateral regions served as robust internal controls. Intrathecal injection of con-G, post-middle carotid artery occlusion (MCAO), caused a dramatic decrease in brain infarct size and swelling at 4 hr, compared to 26 hr, and significant recovery of neurological deficits was observed at 26 hr. Administration of con-G facilitated neuronal recovery in the peri-infarct regions as observed by decreased neurodegeneration and diminished calcium microdeposits at 4 hr and 26 hr. Intact Microtubule Associated Protein (MAP2) staining and neuronal cytoarchitecture was observed in the peri-infarct regions of con-G treated rats at both timepoints. Con-G restored localization of GluN1 and GluN2B subunits in the neuronal soma, but not that of GluN2A, which was perinuclear in the peri-infarct regions at 4 hr and 26 hr. This suggests that molecular targeting of the GluN2B subunit has potential for reducing detrimental consequences of ischemia. Overall, the data demonstrated that stroke-induced NMDAR excitoxicity is ameliorated by con-G-mediated repair of neurological and neuroarchitectural deficits, as well as by reconstituting neuronal localization of GluN1 and GluN2B subunits in the peri-infarct region of the stroked brain.

  9. Conantokin-G attenuates detrimental effects of NMDAR hyperactivity in an ischemic rat model of stroke.

    Directory of Open Access Journals (Sweden)

    Rashna Balsara

    Full Text Available The neuroprotective activity of conantokin-G (con-G, a naturally occurring antagonist of N-methyl-D-aspartate receptors (NMDAR, was neurologically and histologically compared in the core and peri-infarct regions after ischemia/reperfusion brain injury in male Sprague-Dawley rats. The contralateral regions served as robust internal controls. Intrathecal injection of con-G, post-middle carotid artery occlusion (MCAO, caused a dramatic decrease in brain infarct size and swelling at 4 hr, compared to 26 hr, and significant recovery of neurological deficits was observed at 26 hr. Administration of con-G facilitated neuronal recovery in the peri-infarct regions as observed by decreased neurodegeneration and diminished calcium microdeposits at 4 hr and 26 hr. Intact Microtubule Associated Protein (MAP2 staining and neuronal cytoarchitecture was observed in the peri-infarct regions of con-G treated rats at both timepoints. Con-G restored localization of GluN1 and GluN2B subunits in the neuronal soma, but not that of GluN2A, which was perinuclear in the peri-infarct regions at 4 hr and 26 hr. This suggests that molecular targeting of the GluN2B subunit has potential for reducing detrimental consequences of ischemia. Overall, the data demonstrated that stroke-induced NMDAR excitoxicity is ameliorated by con-G-mediated repair of neurological and neuroarchitectural deficits, as well as by reconstituting neuronal localization of GluN1 and GluN2B subunits in the peri-infarct region of the stroked brain.

  10. Taurine attenuates Streptococcus uberis-induced mastitis in rats by increasing T regulatory cells.

    Science.gov (United States)

    Miao, Jinfeng; Zhang, Jinqiu; Zheng, Liuhai; Yu, Xiaoming; Zhu, Wei; Zou, Sixiang

    2012-06-01

    Taurine (Tau) is reported to have a key role in the regulation of the innate immune response and thus reduce tissue damage induced by bacterial infection. In this study, the effects of Tau on a rat model of mastitis induced by Streptococcus uberis (S. uberis) and the changes of T regulatory cells (Tregs) were assessed. Starting on gestation day 14 and continuing until parturition, 100 mg/kg of taurine (group TS) or an equal volume of physiological saline (group CS) was administered daily, per os. Seventy-two hours after parturition, rats were infused with approximately 100 cfu of S. uberis into each of two mammary glands. The results showed that the resultant inflammation, evidenced by swelling, secretory epithelial cell degeneration, increased adipose tissue and neutrophil (PMN) infiltration were evident in mammary tissue following injection with S. uberis. Pre-treatment with Tau attenuated these morphologic changes, the expression of interleukin (IL)-2, interferon (INF)-γ mRNA, myeloperoxidase (MPO) activity and N-acetyl-β-D-glucosaminidase (NAGase) in mammary tissue. The percentages of Foxp3+CD25+CD4+/lymphocytes (Tregs) were dramatically increased after the S. uberis challenge. Significant differences (P<0.05) were observed at 24, and 72 h post S. uberis-injection (PI) in CS. Pre-treatment further increased the percentage of Tregs and a significant difference between CS and TS (P<0.05) was apparent at 24 h PI. Our data indicate that in rats, Tau can be used to regulate the immune response following infection by S. uberis and consequently prevent mammary tissue damage by increasing Tregs.

  11. Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats.

    Science.gov (United States)

    Zeeni, N; Bassil, M; Fromentin, G; Chaumontet, C; Darcel, N; Tome, D; Daher, C F

    2015-02-01

    Exposure to an enriched environment (EE) or the intake of a highly palatable diet may reduce the response to chronic stress in rodents. To further explore the relationships between EE, dietary intake and stress, male Sprague-Dawley rats were fed one of two diets for 5 weeks: high carbohydrate (HC) or "cafeteria" (CAF) (Standard HC plus a choice of highly palatable cafeteria foods: chocolate, biscuits, and peanut butter). In addition, they were either housed in empty cages or cages with EE. After the first two weeks, half of the animals from each group were stressed daily using a chronic variable stress (CVS) paradigm, while the other half were kept undisturbed. Rats were sacrificed at the end of the 5-week period. The effects of stress, enrichment and dietary intake on animal adiposity, serum lipids, and stress hormones were analyzed. Results showed an increase in intra-abdominal fat associated with the CAF diet and an increase in body weight gain associated with both the CAF diet and EE. Furthermore, the increase in ACTH associated with CVS was attenuated in the presence of EE and the CAF diet independently while the stress-induced increase in corticosterone was reduced by the combination of EE and CAF feeding. The present study provides evidence that the availability of a positive environment combined to a highly palatable diet increases resilience to the effects of CVS in rats. These results highlight the important place of palatable food and supportive environments in reducing central stress responses. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Shea Nut Oil Triterpene Concentrate Attenuates Knee Osteoarthritis Development in Rats: Evidence from Knee Joint Histology

    Science.gov (United States)

    Lin, Sheng-Hsiung; Lai, Chun-Fu; Lin, Yu-Chieh; Kong, Zwe-Ling; Wong, Chih-Shung

    2016-01-01

    Background Shea nut oil triterpene concentrate is considered to have anti-inflammatory and antioxidant properties. Traditionally, it has been used to treat arthritic conditions in humans. This study aimed to investigate the effect of attenuating osteoarthritis (OA)-induced pain and joint destruction in rats by administering shea nut oil triterpene concentrate (SheaFlex75, which is more than 50% triterpenes). Methods An anterior cruciate ligament transaction (ACLT) with medial meniscectomy (MMx) was used to induce OA in male Wistar rats. Different doses of SheaFlex75 (111.6 mg/kg, 223.2 mg/kg, and 446.4 mg/kg) were then intragastrically administered daily for 12 weeks after surgery. Body weight and the width of the knee joint were measured weekly. Additionally, incapacitance tests were performed at weeks 2, 4, 6, 8, 10 and 12 to measure the weight bearing of the hind limbs, and the morphology and histopathology of the medial femoral condyles were examined and were evaluated using the Osteoarthritis Research Society International (OARSI) scoring system. Results This study showed that SheaFlex75 reduced the swelling of the knee joint with OA and rectified its weight bearing after ACLT plus MMx surgery in rats. Treatment with SheaFlex75 also decreased ACLT plus MMx surgery-induced knee joint matrix loss and cartilage degeneration. Conclusion SheaFlex75 relieves the symptoms of OA and protects cartilage from degeneration. SheaFlex75 thus has the potential to be an ideal nutraceutical supplement for joint protection, particularly for injured knee joints. PMID:27583436

  13. Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR

    Science.gov (United States)

    Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A.; Costes, Nicolas; Hammers, Alexander

    2017-04-01

    In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [18F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [18F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BPND). On static [18F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [18F]MPPF, most regional errors on BPND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This

  14. Induction by mercury compounds of brain metallothionein in rats: Hg{sup 0} exposure induces long-lived brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira; Nakano, Atsuhiro [Biochemistry Section, National Institute for Minamata Disease, Kumamoto (Japan); Hirayama, Kimiko [Kumamoto University, College of Medical Science (Japan)

    1998-03-01

    Metallothionein (MT) is one of the stress proteins which can easily be induced by various kind of heavy metals. However, MT in the brain is difficult to induce because of blood-brain barrier impermeability to most heavy metals. In this paper, we have attempted to induce brain MT in rats by exposure to methylmercury (MeHg) or metallic mercury vapor, both of which are known to penetrate the blood-brain barrier and cause neurological damage. Rats treated with MeHg (40 {mu}mol/kg per day x 5 days, p.o.) showed brain Hg levels as high as 18 {mu}g/g with slight neurological signs 10 days after final administration, but brain MT levels remained unchanged. However, rats exposed to Hg vapor for 7 days showed 7-8 {mu}g Hg/g brain tissue 24 h after cessation of exposure. At that time brain MT levels were about twice the control levels. Although brain Hg levels fell gradually with a half-life of 26 days, MT levels induced by Hg exposure remained unchanged for >2 weeks. Gel fractionation revealed that most Hg was in the brain cytosol fraction and thus bound to MT. Hybridization analysis showed that, despite a significant increase in MT-I and -II mRNA in brain, MT-III mRNA was less affected. Although significant Hg accumulation and MT induction were observed also in kidney and liver of Hg vapor-exposed rats, these decreased more quickly than in brain. The long-lived MT in brain might at least partly be accounted for by longer half-life of Hg accumulated there. The present results showed that exposure to Hg vapor might be a suitable procedure to provide an in vivo model with enhanced brain MT. (orig.) With 4 figs., 1 tab., 27 refs.

  15. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats

    Directory of Open Access Journals (Sweden)

    Chang Yi

    2009-01-01

    Full Text Available Abstract Puerarin, a major isoflavonoid derived from the Chinese medical herb Radix puerariae (kudzu root, has been reported to be useful in the treatment of various cardiovascular diseases. In the present study, we examined the detailed mechanisms underlying the inhibitory effects of puerarin on inflammatory and apoptotic responses induced by middle cerebral artery occlusion (MCAO in rats. Treatment of puerarin (25 and 50 mg/kg; intraperitoneally 10 min before MCAO dose-dependently attenuated focal cerebral ischemia in rats. Administration of puerarin at 50 mg/kg, showed marked reduction in infarct size compared with that of control rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor-1α (HIF-1α, inducible nitric oxide synthase (iNOS, and active caspase-3 protein expressions as well as the mRNA expression of tumor necrosis factor-α (TNF-α in ischemic regions. These expressions were markedly inhibited by the treatment of puerarin (50 mg/kg. In addition, puerarin (10~50 μM concentration-dependently inhibited respiratory bursts in human neutrophils stimulated by formyl-Met-Leu-Phe. On the other hand, puerarin (20~500 μM did not significantly inhibit the thiobarbituric acid-reactive substance reaction in rat brain homogenates. An electron spin resonance (ESR method was conducted on the scavenging activity of puerarin on the free radicals formed. Puerarin (200 and 500 μM did not reduce the ESR signal intensity of hydroxyl radical formation. In conclusion, we demonstrate that puerarin is a potent neuroprotective agent on MCAO-induced focal cerebral ischemia in vivo. This effect may be mediated, at least in part, by the inhibition of both HIF-1α and TNF-α activation, followed by the inhibition of inflammatory responses (i.e., iNOS expression, apoptosis formation (active caspase-3, and neutrophil activation, resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. Thus

  16. The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats

    Directory of Open Access Journals (Sweden)

    Fernandez Rayne

    2010-08-01

    Full Text Available Abstract Background Activation of glucagon-like peptide-1 (GLP-1 receptors improves insulin sensitivity and induces vasodilatation and diuresis. AC3174 is a peptide analogue with pharmacologic properties similar to the GLP-1 receptor agonist, exenatide. Hypothetically, chronic AC3174 treatment could attenuate salt-induced hypertension, cardiac morbidity, insulin resistance, and renal dysfunction in Dahl salt-sensitive (DSS rats. Methods DSS rats were fed low salt (LS, 0.3% NaCl or high salt (HS, 8% NaCl diets. HS rats were treated with vehicle, AC3174 (1.7 pmol/kg/min, or GLP-1 (25 pmol/kg/min for 4 weeks via subcutaneous infusion. Other HS rats received captopril (150 mg/kg/day or AC3174 plus captopril. Results HS rat survival was improved by all treatments except GLP-1. Systolic blood pressure (SBP was lower in LS rats and in GLP-1, AC3174, captopril, or AC3174 plus captopril HS rats than in vehicle HS rats (p Conclusions Thus, AC3174 had antihypertensive, cardioprotective, insulin-sensitizing, and renoprotective effects in the DSS hypertensive rat model. Furthermore, AC3174 improved animal survival, an effect not observed with GLP-1.

  17. Inhibitory Effect on Cerebral Inflammatory Response following Traumatic Brain Injury in Rats: A Potential Neuroprotective Mechanism of N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2008-01-01

    Full Text Available Although N-acetylcysteine (NAC has been shown to be neuroprotective for traumatic brain injury (TBI, the mechanisms for this beneficial effect are still poorly understood. Cerebral inflammation plays an important role in the pathogenesis of secondary brain injury after TBI. However, it has not been investigated whether NAC modulates TBI-induced cerebral inflammatory response. In this work, we investigated the effect of NAC administration on cortical expressions of nuclear factor kappa B (NF-κB and inflammatory proteins such as interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and intercellular adhesion molecule-1 (ICAM-1 after TBI. As a result, we found that NF-κB, proinflammatory cytokines, and ICAM-1 were increased in all injured animals. In animals given NAC post-TBI, NF-κB, IL-1β, TNF-α, and ICAM-1 were decreased in comparison to vehicle-treated animals. Measures of IL-6 showed no change after NAC treatment. NAC administration reduced brain edema, BBB permeability, and apoptotic index in the injured brain. The results suggest that post-TBI NAC administration may attenuate inflammatory response in the injured rat brain, and this may be one mechanism by which NAC ameliorates secondary brain damage following TBI.

  18. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.

    Science.gov (United States)

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-04-15

    In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on

  19. The sesame lignan sesamin attenuates vascular dysfunction in streptozotocin diabetic rats: involvement of nitric oxide and oxidative stress.

    Science.gov (United States)

    Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Jalali Nadoushan, Mohammad-Reza; Vaez Mahdavi, Mohammad-Reza; Kalalian-Moghaddam, Hamid; Roghani-Dehkordi, Farshad; Dariani, Sharareh; Raoufi, Safoura

    2013-01-05

    The effect of chronic administration of sesamin was studied on aortic reactivity of streptozotocin diabetic rats. Male diabetic rats received sesamin for 7 weeks after diabetes induction. Contractile responses to KCl and phenylephrine and relaxation response to acetylcholine were obtained from aortic rings. Maximum contractile response of endothelium-intact rings to phenylephrine was significantly lower in sesamin-treated diabetic rats relative to untreated diabetics and endothelium removal abolished this difference. Meanwhile, endothelium-dependent relaxation to acetylcholine was significantly higher in sesamin-treated diabetic rats as compared to diabetic ones and pretreatment of rings with nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester significantly attenuated the observed response. Two-month diabetes also resulted in an elevation of malondialdehyde and decreased superoxide dismutase activity and sesamin treatment significantly improved these changes. Therefore, chronic treatment of diabetic rats with sesamin could prevent some abnormal changes in vascular reactivity in diabetic rats through nitric oxide and via attenuation of oxidative stress and tissue integrity of endothelium is necessary for its beneficial effect.

  20. Long-lasting attenuation of amygdala-kindled seizures after convection-enhanced delivery of botulinum neurotoxins a and B into the amygdala in rats.

    Science.gov (United States)

    Gasior, Maciej; Tang, Rebecca; Rogawski, Michael A

    2013-09-01

    Botulinum neurotoxins (BoNTs) are well recognized to cause potent, selective, and long-lasting neuroparalytic actions by blocking cholinergic neurotransmission to muscles and glands. There is evidence that BoNT isoforms can also inhibit neurotransmission in the brain. In this study, we examined whether locally delivered BoNT/A and BoNT/B can attenuate kindling measures in amygdala-kindled rats. Male rats were implanted with a combination infusion cannula-stimulating electrode assembly into the right basolateral amygdala. Fully kindled animals received a single infusion of vehicle or BoNT/A or BoNT/B at doses of 1, 3.2, or 10 ng over a 20-minute period by convection-enhanced delivery. Electrographic (EEG) and behavioral kindling measures were determined at selected times during the 3- to 64-day period after the infusion. BoNT/B produced a dose-dependent elevation in after-discharge threshold and duration and a reduction in the seizure stage and duration of behavioral seizures that lasted for up to 50 days after infusion. BoNT/A had similar effects on EEG measures; behavioral seizure measures were also reduced, but the effect did not reach statistical significance. The effects of both toxins on EEG and behavioral measures progressively resolved during the latter half of the observation period. Animals gained weight normally, maintained normal body temperature, and did not show altered behavior. This study demonstrates for the first time that locally delivered BoNTs can produce prolonged inhibition of brain excitability, indicating that they could be useful for the treatment of brain disorders, including epilepsy, that would benefit from long-lasting suppression of neurotransmission within a circumscribed brain region.

  1. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    Science.gov (United States)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  2. Distribution of the mRNA for protein phosphatase T in rat brain

    NARCIS (Netherlands)

    Becker, W; Buttini, M; Limonta, S; Boddeke, H; Joost, HG

    1996-01-01

    We have recently cloned a novel protein serine/threonine phosphatase (PPT) from rat mRNA which is predominantly expressed in the brain (Becker et al., J. Biol. Chem., 269 (1994) 22586-22592). In the present study, the regional distribution of PPT mRNA in the brain of adult rats was characterized by

  3. Distribution of the mRNA for protein phosphatase T in rat brain

    NARCIS (Netherlands)

    Becker, W; Buttini, M; Limonta, S; Boddeke, H; Joost, HG

    1996-01-01

    We have recently cloned a novel protein serine/threonine phosphatase (PPT) from rat mRNA which is predominantly expressed in the brain (Becker et al., J. Biol. Chem., 269 (1994) 22586-22592). In the present study, the regional distribution of PPT mRNA in the brain of adult rats was characterized by

  4. Role of stanniocalcin1 in brain injury of coal-burning-borne fluorosis rats

    Institute of Scientific and Technical Information of China (English)

    陈旭义

    2013-01-01

    Objective To observe the change of stanniocalcin 1(STC1) and calcium content in brain of coal-burning-borne fluorosis rats,and to explore the role of STC1 in brain injury of coal-burning-borne fluorosis.Methods Twenty four male SD rats were randomly divided into control,low,medium,

  5. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling.

    Science.gov (United States)

    Dong, Yushu; Fan, Chongxi; Hu, Wei; Jiang, Shuai; Ma, Zhiqiang; Yan, Xiaolong; Deng, Chao; Di, Shouyin; Xin, Zhenlong; Wu, Guiling; Yang, Yang; Reiter, Russel J; Liang, Guobiao

    2016-04-01

    Subarachnoid hemorrhage (SAH) is a devastating condition with high morbidity and mortality rates due to the lack of effective therapy. Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation associated with the upregulation of apoptotic signaling pathway has been implicated in various inflammatory diseases including hemorrhagic insults. Melatonin is reported to possess substantial anti-inflammatory properties, which is beneficial for early brain injury (EBI) after SAH. However, the molecular mechanisms have not been clearly identified. This study was designed to investigate the protective effects of melatonin against EBI induced by SAH and to elucidate the potential mechanisms. The adult mice were subjected to SAH. Melatonin or vehicle was injected intraperitoneally 2 hr after SAH. Melatonin was neuroprotective, as shown by increased survival rate, as well as elevated neurological score, greater survival of neurons, preserved brain glutathione levels, and reduced brain edema, malondialdehyde concentrations, apoptotic ratio, and blood-brain barrier (BBB) disruption. Melatonin also attenuated the expressions of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-1β (IL-1β), and interleukin-6 (IL-6); these changes were also associated with an increase in the anti-apoptotic factor (Bcl2) and reduction in the pro-apoptotic factor (Bim). In summary, our results demonstrate that melatonin treatment attenuates the EBI following SAH by inhibiting NLRP3 inflammasome-associated apoptosis.

  6. Neuroprotective Effects of Baicalein on Acrolein-induced Neurotoxicity in the Nigrostriatal Dopaminergic System of Rat Brain.

    Science.gov (United States)

    Zhao, Wei-Zhong; Wang, Hsiang-Tsui; Huang, Hui-Ju; Lo, Yu-Li; Lin, Anya Maan-Yuh

    2017-09-02

    Elevated levels of acrolein, an α,β-unsaturated aldehyde are detected in the brain of patients with Parkinson's disease (PD). In the present study, the neuroprotective effect of baicalein (a phenolic flavonoid in the dried root of Scutellaria baicalensis Georgi) on acrolein-induced neurodegeneration of nigrostriatal dopaminergic system was investigated using local infusion of acrolein in the substantia nigra (SN) of rat brain. Systemic administration of baicalein (30 mg/kg, i.p.) significantly attenuated acrolein-induced elevations in 4-hydroxy-2-noneal (a product of lipid peroxidation), N-(3-formyl-3,4-dehydropiperidino)lysine (a biomarker of acrolein-conjugated proteins), and heme-oxygenase-1 levels (a redox-regulated protein) in the infused SN, indicating that baicalein inhibited acrolein-induced oxidative stress and protein conjugation. Furthermore, baicalein reduced acrolein-induced elevations in glial fibrillary acidic protein (a biomarker of activated astrocytes), ED-1 (a biomarker of activated microglia), and mature cathepsin B levels (a cysteine lysosomal protease), suggesting that baicalein attenuated acrolein-induced neuroinflammation. Moreover, baicalein attenuated acrolein-induced caspase 1 activation (a pro-inflammatory caspase) and interleukin-1β levels, indicating that baicalein prevented acrolein-induced inflammasome activation. In addition, baicalein significantly attenuated acrolein-induced caspase 3 activation (a biomarker of apoptosis) as well as acrolein-induced elevation in receptor interacting protein kinase (RIPK) 3 levels (an initiator of necroptosis), indicating that baicalein attenuated apoptosis and necroptosis. At the same time, baicalein mitigated acrolein-induced reduction in dopamine levels in the striatum ipsilateral to acrolein-infused SN. In conclusion, our data suggest that baicalein is neuroprotective via inhibiting oxidative stress, protein conjugation, and inflammation. Furthermore, baicalein prevents acrolein

  7. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    Science.gov (United States)

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-10-01

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  8. Puerarin Ameliorates D-Galactose Induced Enhanced Hippocampal Neurogenesis and Tau Hyperphosphorylation in Rat Brain.

    Science.gov (United States)

    Hong, Xiao-Ping; Chen, Tao; Yin, Ni-Na; Han, Yong-Ming; Yuan, Fang; Duan, Yan-Jun; Shen, Feng; Zhang, Yan-Hong; Chen, Ze-Bin

    2016-01-01

    Enhanced neurogenesis has been reported in the hippocampus of patients with Alzheimer's disease (AD), the most common neurodegenerative disorder characterized with amyloid-β (Aβ) aggregation, tau hyperphosphorylation, and progressive neuronal loss. Previously we reported that tau phosphorylation played an essential role in adult hippocampal neurogenesis, and activation of glycogen synthase kinase (GSK-3), a crucial tau kinase, could induce increased hippocampal neurogenesis. In the present study, we found that treatment of D-galactose rats with Puerarin could significantly improve behavioral performance and ameliorate the enhanced neurogenesis and microtubule-associated protein tau hyperphosphorylation in the hippocampus of D-galactose rat brains. FGF-2/GSK-3 signaling pathway might be involved in the effects of Puerarin on hippocampal neurogenesis and tau hyperphosphorylation. Our finding provides primary in vivo evidence that Puerarin can attenuate AD-like enhanced hippocampal neurogenesis and tau hyperphosphorylation. Our finding also suggests Puerarin can be served as a treatment for age-related neurodegenerative disorders, such as AD.

  9. Nrf2/HO-1 mediates the neuroprotective effect of mangiferin on early brain injury after subarachnoid hemorrhage by attenuating mitochondria-related apoptosis and neuroinflammation.

    Science.gov (United States)

    Wang, Zefeng; Guo, Songxue; Wang, Junxing; Shen, Yuanyuan; Zhang, Jianmin; Wu, Qun

    2017-09-19

    Early brain injury (EBI) is involved in the process of cerebral tissue damage caused by subarachnoid hemorrhage (SAH), and multiple mechanisms, such as apoptosis and inflammation, participate in its development. Mangiferin (MF), a natural C-glucoside xanthone, has been reported to exert beneficial effects against several types of organ injury by influencing various biological progresses. The current study aimed to investigate the potential of MF to protect against EBI following SAH via histological and biological assessments. A rat perforation model of SAH was established, and MF was subsequently administered via intraperitoneal injection at a low and a high dose. High-dose MF significantly lowered the mortality of SAH animals and ameliorated their neurological deficits and brain edema. MF also dose-relatedly attenuated SAH-induced oxidative stress and decreased cortical cell apoptosis by influencing mitochondria-apoptotic proteins. In addition, MF downregulated the activation of the NLRP3 inflammasome and NF-κB as well as the production of inflammatory cytokines, and the expression of Nrf2 and HO-1 was upregulated by MF. The abovementioned findings indicate that MF is neuroprotective against EBI after SAH and Nrf2/HO-1 cascade may play a key role in mediating its effect through regulation of the mitochondrial apoptosis pathway and activation of the NLRP3 inflammasome and NF-κB.

  10. Intracerebroventricular injection of leukotriene B4 attenuates antigen-induced asthmatic response via BLT1 receptor stimulating HPA-axis in sensitized rats

    Directory of Open Access Journals (Sweden)

    Jiang Jun-Xia

    2010-04-01

    Full Text Available Abstract Background Basic and clinical studies suggest that hypothalamic-pituitary-adrenal (HPA axis is the neuroendocrine-immnue pathway that functionally regulates the chronic inflammatory disease including asthma. Our previous studies showed corresponding changes of cytokines and leukotriene B4 (LTB4 between brain and lung tissues in antigen-challenged asthmatic rats. Here, we investigated how the increased LTB4 level in brain interacts with HPA axis in regulating antigen-induced asthmatic response in sensitized rats. Methods Ovalbumin-sensitized rats were challenged by inhalation of antigen. Rats received vehicle, LTB4 or U75302 (a selective LTB4 BLT1 receptor inhibitor was given via intracerebroventricular injection (i.c.v 30 min before challenge. Lung resistance (RL and dynamic lung compliance (Cdyn were measured before and after antigen challenge. Inflammatory response in lung tissue was assessed 24 h after challenge. Expression of CRH mRNA and protein in hypothalamus were evaluated by RT-PCR and Western Blot, and plasma levels of adrenocorticotropic hormone (ACTH and corticosterone (CORT were measured using the ELISA kits. Results Antigen challenge decreased pulmonary function and induced airway inflammation, evoked HPA axis response in sensitized rats. Administration of LTB4 via i.c.v markedly attenuated airway contraction and inflammation. Meanwhile, LTB4 via i.c.v markedly increased CORT and ACTH level in plasma before antigen challenge, and followed by further increases in CORT and ACTH levels in plasma after antigen challenge in sensitized rats. Expression of CRH mRNA and protein in hypothalamus were also significantly increased by LTB4 via i.c.v in sensitized rats after antigen challenge. These effect were completely blocked by pre-treatment with BLT1 receptor antagonist U75302 (10 ng, but not by BLT2 antagonist LY255283. Conclusions LTB4 administered via i.c.v down-regulates the airway contraction response and inflammation through

  11. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  12. Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain

    Directory of Open Access Journals (Sweden)

    Karimzadeh Fariba

    2012-06-01

    Full Text Available Abstract Background Essential oil of Pimpinella anisum L. Apiaceae (anise oil has been widely used in traditional Persian medicine to treat a variety of diseases, including some neurological disorders. This study was aimed to test the possible anti-seizure and anti-hypoxia effects of anise oil. Methods The effects of different concentrations of anise oil were tested on seizure attacks induced by pentylenetetrazol (PTZ injection and neuronal hypoxia induced by oxygen withdrawal as well as on production of dark neurons and induction of long-term potentiation (LTP in in vivo and in vitro experimental models of rat brain. Results Anise oil significantly prolonged the latency of seizure attacks and reduced the amplitude and duration of epileptiform burst discharges induced by injection of intraperitoneal PTZ. In addition, anise oil significantly inhibited production of dark neurons in different regions of the brain in epileptic rats. Anise oil also significantly enhanced the duration of the appearance of anoxic terminal negativity induced by oxygen withdrawal and inhibited induction of LTP in hippocampal slices. Conclusions Our data indicate the anticonvulsant and neuroprotective effects of anise oil, likely via inhibition of synaptic plasticity. Further evaluation of anise oil to use in the treatment of neurological disorders is suggested.

  13. DHA Depletion in Rat Brain Is Associated With Impairment on Spatial Learning and Memory

    Institute of Scientific and Technical Information of China (English)

    YING XIAO; LING WANG; RUO-JUN XU; ZHEN-YU CHEN

    2006-01-01

    Objective To examine the effect of docosahexaenoic acid (DHA) deficiency in brain on spatial learning and memory in rats. Methods Sprague Dawley rats were fed with an n-3 fatty acid deficient diet for two generations to induce DHA depletion in brain. DHA in seven brain regions was analyzed using the gas-liquid chromatography. Morris water maze (MWM) was employed as an assessing index of spatial learning and memory in the n-3 fatty acid deficient adult rats of second generation. Results Feeding an n-3 deficient diet for two generations depleted DHA differently by 39%-63% in the seven brain regions including cerebellum, medulla, hypothalamus, striatum, hippocampus, cortex and midbrain. The MWM test showed that the n-3 deficient rats took a longer time and swam a longer distance to find the escape platform than the n-3 Adq group. Conclusion The spatial learning and memory in adult rats are partially impaired by brain DHA depletion.

  14. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    Science.gov (United States)

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.

  15. NO-tryptophan: a new small molecule located in the rat brain

    Directory of Open Access Journals (Sweden)

    A. Mangas

    2016-09-01

    Full Text Available A highly specific monoclonal antibody directed against nitric oxide-tryptophan (NO-W with good affinity (10-9 M and specificity was developed. In the rat brain, using an indirect immunoperoxidase technique, cell bodies containing NO-W were exclusively found in the intermediate and dorsal parts of the lateral septal nucleus. No immunoreactive fibres were found in the rat brain. This work reports the first visualization and the morphological characteristics of cell bodies containing NO-W in the mammalian brain. The restricted distribution of NO-W in the rat brain suggests that this molecule could be involved in specific physiological mechanisms. 

  16. NO-tryptophan: a new small molecule located in the rat brain.

    Science.gov (United States)

    Mangas, A; Yajeya, J; González, N; Duleu, S; Geffard, M; Coveñas, R

    2016-09-22

    A highly specific monoclonal antibody directed against nitric oxide-tryptophan (NO-W) with good affinity (10-9 M) and specificity was developed. In the rat brain, using an indirect immunoperoxidase technique, cell bodies containing NO-W were exclusively found in the intermediate and dorsal parts of the lateral septal nucleus. No immunoreactive fibres were found in the rat brain. This work reports the first visualization and the morphological characteristics of cell bodies containing NO-W in the mammalian brain. The restricted distribution of NO-W in the rat brain suggests that this molecule could be involved in specific physiological mechanisms.

  17. Minocycline inhibits 5-lipoxygenase activation and brain inflammation after focal cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Li-sheng CHU; San-hua FANG; Yu ZHOU; Guo-hang YU; Meng-ling WANG; Wei-ping ZHANG; Er-qing WEI

    2007-01-01

    Aim: To determine whether the anti-inflanunatory effect of minocycline on postis-chemic brain injury is mediated by the inhibition of 5-lipoxygenase (5-LOX) expression and enzymatic activation in rats.Methods: Focal cerebral ischemia was induced for 30 min with middle cerebral artery occlusion, followed by reperfusion. The ischemic injuries, endogenous IgG exudation, the accumulation of neutrophils and macrophage/microglia, and 5-LOX mRNA expression were determined 72 h after reperfusion. 5-LOX metabolites (leukotriene B4 and cysteinyl leukotrienes) were measured 3 h after reperfusion.Results: Minocycline (22.5 and 45 mg/kg, ip, for 3 d) attenuated ischemic injuries, IgG exudation, and the accumulation of neutrophils and macrophage/microglia 72 h after reperfusion. It also inhibited 5-LOX expression 72 h after reperfusion and the production of leukotrienes 3 h after reperfusion.Conclusion: Minocycline inhibited postis-chemic brain inflammation, which might be partly mediated by the inhibition of 5-LOX expression and enzymatic activation.

  18. Brain Angiotensin II Type 1 Receptor Blockade Improves Dairy Blood Pressure Variability via Sympathoinhibition in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Takuya Kishi

    2015-01-01

    Full Text Available Abnormal blood pressure (BP elevation in early morning is known to cause cardiovascular events. Previous studies have suggested that one of the reasons in abnormal dairy BP variability is sympathoexcitation. We have demonstrated that brain angiotensin II type 1 receptor (AT1R causes sympathoexcitation. The aim of the present study was to investigate whether central AT1R blockade attenuates the excess BP elevation in rest-to-active phase in hypertensive rats or not. Stroke-prone spontaneously hypertensive rats (SHRSP were treated with intracerebroventricular infusion (ICV of AT1R receptor blocker (ARB, oral administration of hydralazine (HYD, or ICV of vehicle (VEH. Telemetric averaged mean BP (MBP was measured at early morning (EM, after morning (AM, and night (NT. At EM, MBP was significantly lower in ARB to a greater extent than in HYD compared to VEH, though MBP at AM was the same in ARB and HYD. At NT, MBP was also significantly lower in ARB than in HYD. These results in MBP were compatible to those in sympathoexcitation and suggest that central AT1R blockade attenuates excess BP elevation in early active phase and continuous BP elevation during rest phase independent of depressor response in hypertensive rats.

  19. Methylene Blue Attenuates Traumatic Brain Injury-Associated Neuroinflammation and Acute Depressive-Like Behavior in Mice

    Science.gov (United States)

    Fenn, Ashley M.; Skendelas, John P.; Moussa, Daniel N.; Muccigrosso, Megan M.; Popovich, Phillip G.; Lifshitz, Jonathan

    2015-01-01

    Abstract Traumatic brain injury (TBI) is associated with cerebral edema, blood brain barrier breakdown, and neuroinflammation that contribute to the degree of injury severity and functional recovery. Unfortunately, there are no effective proactive treatments for limiting immediate or long-term consequences of TBI. Therefore, the objective of this study was to determine the efficacy of methylene blue (MB), an antioxidant agent, in reducing inflammation and behavioral complications associated with a diffuse brain injury. Here we show that immediate MB infusion (intravenous; 15–30 minutes after TBI) reduced cerebral edema, attenuated microglial activation and reduced neuroinflammation, and improved behavioral recovery after midline fluid percussion injury in mice. Specifically, TBI-associated edema and inflammatory gene expression in the hippocampus were significantly reduced by MB at 1 d post injury. Moreover, MB intervention attenuated TBI-induced inflammatory gene expression (interleukin [IL]-1β, tumor necrosis factor α) in enriched microglia/macrophages 1 d post injury. Cell culture experiments with lipopolysaccharide-activated BV2 microglia confirmed that MB treatment directly reduced IL-1β and increased IL-10 messenger ribonucleic acid in microglia. Last, functional recovery and depressive-like behavior were assessed up to one week after TBI. MB intervention did not prevent TBI-induced reductions in body weight or motor coordination 1–7 d post injury. Nonetheless, MB attenuated the development of acute depressive-like behavior at 7 d post injury. Taken together, immediate intervention with MB was effective in reducing neuroinflammation and improving behavioral recovery after diffuse brain injury. Thus, MB intervention may reduce life-threatening complications of TBI, including edema and neuroinflammation, and protect against the development of neuropsychiatric complications. PMID:25070744

  20. Summary of high field diffusion MRI and microscopy data demonstrate microstructural aberration in chronic mild stress rat brain

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove

    2016-01-01

    Abstract This data article describes a large, high resolution diffusion MRI data set from fixed rat brain acquired at high field strength. The rat brain samples consist of21adult rat brain hemispheres from animals exposed to chronic mild stress (anhedonic and resilient) and controls. Histology from...

  1. Chitosan oligosaccharides attenuates oxidative-stress related retinal degeneration in rats.

    Directory of Open Access Journals (Sweden)

    I-Mo Fang

    Full Text Available This study investigated the therapeutic potential and mechanisms of chitosan oligosaccharides (COS for oxidative stress-induced retinal diseases. Retinal oxidative damage was induced in Sprague-Dawley rats by intravitreal injection of paraquat (PQ. Low-dose (5 mg/kg or high-dose (10 mg/kg COS or PBS was intragastrically given for 14 days after PQ injection. Electroretinograms were performed to determine the functionality of the retinas. The surviving neurons in the retinal ganglion cell layer and retinal apoptosis were determined by counting Neu N-positive cells in whole-mounted retinas and TUNEL staining, respectively. The generation of reactive oxygen species (ROS was determined by lucigenin- and luminol-enhanced chemiluminescence. Retinal oxidative damages were assessed by staining with nitrotyrosine, acrolein, and 8-hydroxy-2'-deoxyguanosine (8-OHdG. Immunohistochemical studies were used to demonstrate the expression of nuclear factor-kappa B (NF-κB p65 in retinas. An in vitro study using RGC-5 cells was performed to verify the results. We demonstrated COS significantly enhanced the recovery of retinal function, preserved inner retinal thickness, and decreased retinal neurons loss in a dose-dependent manner. COS administration demonstrated anti-oxidative effects by reducing luminol- and lucigenin-dependent chemiluminenscense levels and activating superoxide dismutase and catalase, leading to decreased retinal apoptosis. COS markedly reduced retinal NF-κB p65. An in vitro study demonstrated COS increased IκB expression, attenuated the increase of p65 and thus decreased NF-κB/DNA binding activity in PQ-stimulated RGC-5 cells. In conclusion, COS attenuates oxidative stress-induced retinal damages, probably by decreasing free radicals, maintaining the activities of anti-oxidative enzymes, and inhibiting the activation of NF-κB.

  2. Electrical vagus nerve stimulation attenuates systemic inflammation and improves survival in a rat heatstroke model.

    Science.gov (United States)

    Yamakawa, Kazuma; Matsumoto, Naoya; Imamura, Yukio; Muroya, Takashi; Yamada, Tomoki; Nakagawa, Junichiro; Shimazaki, Junya; Ogura, Hiroshi; Kuwagata, Yasuyuki; Shimazu, Takeshi

    2013-01-01

    This study was performed to gain insights into novel therapeutic approaches for the treatment of heatstroke. The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical vagus nerve stimulation (VNS) reportedly suppresses pro-inflammatory cytokine release in several models of inflammatory disease. Here, we evaluated whether electrical VNS attenuates severe heatstroke, which induces a systemic inflammatory response. Anesthetized rats were subjected to heat stress (41.5°C for 30 minutes) with/without electrical VNS. In the VNS-treated group, the cervical vagus nerve was stimulated with constant voltage (10 V, 2 ms, 5 Hz) for 20 minutes immediately after completion of heat stress. Sham-operated animals underwent the same procedure without stimulation under a normothermic condition. Seven-day mortality improved significantly in the VNS-treated group versus control group. Electrical VNS significantly suppressed induction of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in the serum 6 hours after heat stress. Simultaneously, the increase of soluble thrombomodulin and E-selectin following heat stress was also suppressed by VNS treatment, suggesting its protective effect on endothelium. Immunohistochemical analysis using tissue preparations obtained 6 hours after heat stress revealed that VNS treatment attenuated infiltration of inflammatory (CD11b-positive) cells in lung and spleen. Interestingly, most cells with increased CD11b positivity in response to heat stress did not express α7 nicotinic acetylcholine receptor in the spleen. These data indicate that electrical VNS modulated cholinergic anti-inflammatory pathway abnormalities induced by heat stress, and this protective effect was associated with improved mortality. These findings may provide a novel therapeutic strategy to combat severe heatstroke in the critical care

  3. Pulmonary function changes in rats with taurocholate-induced pancreatitis are attenuated by pretreatment with melatonin.

    Science.gov (United States)

    Chou, Ting-Ywan; Reiter, Russel J; Chen, Kuan-Hao; Leu, Fur-Jiang; Wang, David; Yeh, Diana Y

    2014-03-01

    Melatonin is a free radical scavenger and broad-spectrum antioxidant with immunomodulatory effects. We studied the effects of melatonin on changes in lung function, oxidative/nitrosative stress, and inflammatory cell sequestration in an acute pancreatitis (AP)-associated lung inflammation model. Acute pancreatitis was induced by injection of 5% sodium taurocholate into the pancreatic duct of rats. Animals were randomized into control, AP, and a melatonin pretreatment (10 mg/kg)/AP group. Functional residual capacity (FRC), lung compliance (Cchord), expiratory flow rate at 50% (FEF50), airway resistance index (RI), and peak expiratory flow rate (PEF) were evaluated. White blood cell count (WBC) and hydrogen peroxide, lung lavage fluid WBC, methylguanidine, protein, lactic dehydrogenase (LDH), nitric oxide (NO), and leukotriene B4 (LTB4) levels were determined. Lung wet-to-dry weight ratio, peroxynitrite, and inducible nitric oxide synthase (NOS) mRNA and protein were measured. AP induction resulted in reductions in FRC, Cchord, FEF50, and PEF, and increase in RI and lung wet-to-dry weight ratio. Blood and lung lavage fluid WBC, lavage fluid LDH, protein, and blood hydrogen peroxide also increased. Levels of hydroxyl radicals, nitric oxide, and LTB4 in lung lavage fluid, inducible NOS mRNA, protein expression, and peroxynitrite in lung tissue also were significantly elevated. Pretreatment with melatonin attenuated obstructive and restrictive ventilatory insufficiency induced by AP. Blood and lavage WBC, lavage LDH and protein, lung edema, oxidative/nitrosative stress, and lipoxygenase pathway derivatives were also significantly attenuated by melatonin. We conclude that melatonin decreases AP-induced obstructive and restrictive lung function changes via its antioxidant and anti-inflammatory properties. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus.

    Science.gov (United States)

    Sharma, D R; Wani, W Y; Sunkaria, A; Kandimalla, R J; Sharma, R K; Verma, D; Bal, A; Gill, K D

    2016-06-02

    Aluminum is a light weight and toxic metal present ubiquitously on earth, which has gained considerable attention due to its neurotoxic effects. It also has been linked ecologically and epidemiologically to several neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Guamanian-Parkinsonian complex and Amyotrophic lateral sclerosis (ALS). The mechanism of aluminum neurotoxicity is poorly understood, but it is well documented that aluminum generates reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt-c) from mitochondria to cytosol resulting in apoptotic cell death. Quercetin (a natural flavonoid) protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in aluminum-induced neurodegeneration, and then quercetin should ameliorate neuronal apoptosis. Administration of quercetin (10 mg/kg body wt/day) reduced aluminum (10 mg/kg body wt/day)-induced oxidative stress (decreased ROS production, increased mitochondrial superoxide dismutase (MnSOD) activity). In addition, quercetin also prevents aluminum-induced translocation of cyt-c, and up-regulates Bcl-2, down-regulates Bax, p53, caspase-3 activation and reduces DNA fragmentation. Quercetin also obstructs aluminum-induced neurodegenerative changes in aluminum-treated rats as seen by Hematoxylin and Eosin (H&E) staining. Further electron microscopic studies revealed that quercetin attenuates aluminum-induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that treatment with quercetin may represent a therapeutic strategy to attenuate the neuronal death against aluminum-induced neurodegeneration.

  5. Attenuation of MK-801-induced behavioral perseveration by typical and atypical antipsychotic pretreatment in rats.

    Science.gov (United States)

    Tuplin, Erin W; Stocco, Marlaina R; Holahan, Matthew R

    2015-08-01

    The noncompetitive NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5-10-imine maleate (MK-801) has been shown to increase the probability of operant responding during extinction and reduce infralimbic prefrontal cortical activation, possibly modeling the cognitive dysfunction symptomology, and underlying cause, in patients with schizophrenia. The present study sought to determine if typical and/or atypical antipsychotics would attenuate the MK-801-induced behavioral perseveration and whether this would be associated with concomitant changes in phosphorylated ERK1/2 (pERK1/2) labeling in the infralimbic cortex (IL). Male, Long Evans rats were pretreated with the typical antipsychotic, Flupenthixol (0, 0.125, 0.25 or 0.5 mg/kg) or the atypical antipsychotic, aripiprazole (0, 0.3, 1.0, 3.0 mg/kg), then given 0.1 mg/kg MK-801 followed by a 60-min appetitive operant extinction session. Flupenthixol produced a dose-dependent decrease in MK-801-induced bar pressing behavior and locomotor activity and a dose-dependent increase in IL pERK1/2 labeling. Aripiprazole produced a U-shaped dose-response curve on MK-801-induced bar pressing behavior, a dose-dependent decrease in locomotor activity but no changes in IL pERK1/2 labeling. The attenuation of the MK-801-induced behavioral (bar pressing, locomotion) profile by Flupenthixol indicates a clear dopaminergic contribution to this behavior. The behavioral effect of aripiprazole may be due to its a) binding to presynaptic dopamine receptors at the midrange dose decreasing dopamine output and b) binding to postsynaptic dopamine receptors at the higher dose increasing dopamine tone. While both classes of antipsychotics can normalize perseverative behavioral symptoms, the underlying prefrontal cortical dysregulation seems to persist.

  6. Anticancer and antioxidant properties of terpinolene in rat brain cells.

    Science.gov (United States)

    Aydin, Elanur; Türkez, Hasan; Taşdemir, Sener

    2013-09-01

    Terpinolene (TPO) is a natural monoterpene present in essential oils of many aromatic plant species. Although various biological activities of TPO have been demonstrated, its neurotoxicity has never been explored. In this in vitro study we investigated TPO's antiproliferative and/or cytotoxic properties using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) test, genotoxic damage potential using the single-cell gel electrophoresis (SCGE), and oxidative effects through total antioxidant capacity (TAC) and total oxidative stress (TOS) in cultured primary rat neurons and N2a neuroblastoma cells. Dose-dependent effects of TPO (at 10 mg L(-1), 25 mg L(-1), 50 mg L(-1), 100 mg L(-1), 200 mg L(-1), and 400 mg L(-1)) were tested in both cell types. Significant (P<0.05) decrease in cell proliferation were observed in cultured primary rat neurons starting with the dose of 100 mg L(-1) and in N2a neuroblastoma cells starting with 50 mg L(-1). TPO was not genotoxic in either cell type. In addition, TPO treatment at 10 mg L(-1), 25 mg L(-1), and 50 mg L(-1) increased TAC in primary rat neurons, but not in N2a cells. However, at concentrations above 50 mg L(-1) it increased TOS in both cell types. Our findings clearly demonstrate that TPO is a potent antiproliferative agent for brain tumour cells and may have potential as an anticancer agent, which needs to be further studied.

  7. Spirulina vesicolor Improves Insulin Sensitivity and Attenuates Hyperglycemia-Mediated Oxidative Stress in Fructose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Walaa Hozayen

    2016-03-01

    Full Text Available Aim: The current study aimed to investigate the anti-hyperglycemic, anti-hyperlipidemic and insulin sensitizing effects of the cyanobacterium Spirulina vesicolor extract in fructose-fed rats. Materials and Methods: Rats were fed 30% fructose solution in drinking water for 4 weeks. Animals exhibited hyperglycemia and hyperinsulinemia were selected for further investigations. Diabetic and control rats were orally supplemented with 50 mg/kg body weight S. vesicolor extract for 4 weeks. Results: At the end of 8 weeks, fructose-fed rats showed significant increase in serum glucose, insulin, cholesterol, triglycerides, cardiovascular risk indices and insulin resistance. Treatment of the fructose-fed rats with S. vesicolor extract improved this metabolic profile. Fructose feeding produced a significant increase in serum tumor necrosis factor alpha (TNF- and #945; and a decrease in adiponectin levels. In addition, fructose-fed rats exhibited a significant increase in liver, kidney and heart lipid peroxidation levels, and declined antioxidant defenses. Supplementation of the fructose-fed rats with S. vesicolor extract reversed these alterations. Conclusion: S. vesicolor attenuates hyperglycemia-mediated oxidative stress and inflammation, and is thus effective in improving insulin sensitivity in fructose-fed rats. [J Intercult Ethnopharmacol 2016; 5(1.000: 57-64

  8. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    Directory of Open Access Journals (Sweden)

    Phyllis E. Mann

    2014-03-01

    Full Text Available The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1 whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  9. Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats

    Science.gov (United States)

    Das, Arabinda; Guyton, M. Kelly; Smith, Amena; Wallace, Gerald; McDowell, Misty L.; Matzelle, Denise D.; Ray, Swapan K.; Banik, Naren L.

    2012-01-01

    Optic neuritis (ON), which is an acute inflammatory autoimmune demyelinating disease of the central nervous system (CNS), often occurs in multiple sclerosis (MS). ON is an early diagnostic sign in most MS patients caused by damage to the optic nerve leading to visual dysfunction. Various features of both MS and ON can be studied following induction of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in Lewis rats. Inflammation and cell death in the optic nerve, with subsequent damage to the retinal ganglion cells in the retina, are thought to correlate with visual dysfunction. Thus, characterizing the pathophysiological changes that lead to visual dysfunction in EAE animals may help develop novel targets for therapeutic intervention. We treated EAE animals with and without the calpain inhibitor calpeptin (CP). Our studies demonstrated that the Ca2+-activated neutral protease calpain was upregulated in the optic nerve following induction of EAE at the onset of clinical signs (OCS) of the disease and these changes were attenuated following treatment with CP. These reductions correlated with decreases in inflammation (cytokines, iNOS, COX-2, NF-κB), and microgliosis (i.e. activated microglia). We observed that calpain inhibition reduced astrogliosis (reactive astroglia) and expression of aquaporin 4 (AQP4). The balance of Th1/Th2 cytokine production and also expression of the Th1-related CCR5 and CXCR3 chemokine receptors influence many pathological processes and play both causative and protective roles in neuron damage. Our data indicated that CP suppressed cytokine imbalances. Also, Bax:Bcl-2 ratio, production of tBid, PARP-1, expression and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated after treatment with CP. Our results demonstrated that CP decreased demyelination [loss of myelin basic protein (MBP)] and axonal damage [increase in dephosphorylated neurofilament protein (de-NFP), and also

  10. Inhibition of adenosine deaminase attenuates endotoxin-induced release of cytokines in vivo in rats.

    Science.gov (United States)

    Tofovic, S P; Zacharia, L; Carcillo, J A; Jackson, E K

    2001-09-01

    The purpose of this study was to investigate in vivo the effects of modulating the adenosine system on endotoxin-induced release of cytokines and changes in heart performance and neurohumoral status in early, profound endotoxemia in rats. Time/pressure variables of heart performance and blood pressure were recorded continuously, and plasma levels of tumor necrosis factor alpha (TNFalpha), interleukin 1-beta (IL-1beta), plasma renin activity (PRA), and catecholamines were determined before and 90 min after administration of endotoxin (30 mg/kg of lipopolysaccharide, i.v.). Erythro-9[2-hydroxyl-3-nonyl] adenine (EHNA; an adenosine deaminase inhibitor) had no effects on measured time-pressure variables of heart performance under baseline conditions and during endotoxemia, yet significantly attenuated endotoxin-induced release of cytokines and PRA. Pretreatment with the non-selective adenosine receptor antagonist DPSPX not only prevented the effects of EHNA but also increased the basal release of cytokines and augmented PRA. At baseline, caffeine (a non-selective adenosine receptor antagonist) increased HR, +dP/dtmax, heart rate x ventricular pressure product (HR x VPSP) and +dP/dtmax normalized by pressure (+dP/dtmax/VPSP), and these changes persisted during endotoxemia. Caffeine attenuated endotoxin-induced release of cytokines and augmented endotoxin-induced increases in plasma catecholamines and PRA. Pretreatment with propranolol abolished the effects of caffeine on heart performance and neurohumoral activation during the early phase of endotoxemia. 6N-cyclopentyladenosine (CPA; selective A1 adenosine receptor agonist) induced bradicardia and negative inotropic effects, reduced work load (i.e., decreased HR, VPSP, +dP/dtmax, +dP/dtmax/VPSP and HR x VPSP) and inhibited endotoxin-induced tachycardia and renin release. CGS 21680 (selective A2A adenosine receptor agonist) decreased blood pressure under basal condition but did not potentiate decreases in blood pressure

  11. Inhibition of lipid peroxidation in rat brain by nifedipine and clorazepate after electrically induced seizures.

    Science.gov (United States)

    Kułak, W; Sobaniec, W; Sobaniec-Lotowska, M

    1993-01-01

    The effect of nifedipine and clorazepate on the concentration of lipid peroxides (LP) in rat brain, and the characteristics of electrically induced seizures were assessed. A significant increase in the concentration of brain LP after electroshock was found. Both nifedipine (1.00 mg/kg per os) and clorazepate (20 mg/kg intraperitoneally) decreased the levels of LP in the rat brain after electroshock. Nifedipine combined with clorazepate brought an inhibition of LP formation and an additive anticonvulsant activity.

  12. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway.

    Science.gov (United States)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye

    2014-01-10

    Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague-Dawley rats received a single dose of 20Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF-pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF-pCREB signaling in non-irradiation group. These results suggest that forced running exercise offers a potentially effective treatment for radiation-induced cognitive deficits.

  13. Selective glial vulnerability following transient global ischemia in rat brain.

    Science.gov (United States)

    Petito, C K; Olarte, J P; Roberts, B; Nowak, T S; Pulsinelli, W A

    1998-03-01

    Global cerebral ischemia selectively damages neurons, but its contribution to glial cell death is uncertain. Accordingly, adult male rats were sacrificed by perfusion fixation at 1, 2, 3, 5, and 14 days following 10 minutes of global ischemia. This insult produces CA1 hippocampal neuronal death at post-ischemic (PI) day 3, but minor or no damage to neurons in other regions. In situ end labeling (ISEL) and immunohistochemistry identified fragmented DNA of dead or dying glia and distinguished glial subtypes. Rare ISEL-positive oligodendroglia, astrocytes, and microglia were present in control brain. Apoptotic bodies and ISEL-positive glia significantly increased at PI day 1 in cortex and thalamus (p < 0.05), but were similar to controls in other regions and at other PI intervals. Most were oligodendroglia, although ISEL-positive microglia and astrocytes were also observed. These results show that oligodendroglia die rapidly after brief global ischemia and are more sensitive than neurons in certain brain regions. Their selective vulnerability to ischemia may be responsible for the delayed white matter damage following anoxia or CO poisoning or that associated with white matter arteriopathies. Glial apoptosis could contribute to the DNA ladders of apoptotic oligonucleosomes that have been found in post-ischemic brain.

  14. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Periyasamy, S.; Hoss, W. (Univ. of Toledo, OH (USA))

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies w