WorldWideScience

Sample records for rat afferent arterioles

  1. Effect of tyrosine kinase blockade on norepinephrine-induced cytosolic calcium response in rat afferent arterioles

    DEFF Research Database (Denmark)

    Salomonsson, Max; Arendshorst, William J

    2004-01-01

    We used genistein (Gen) and tyrphostin 23 (Tyr-23) to evaluate the importance of tyrosine phosphorylation in norepinephrine (NE)-induced changes in intracellular free calcium concentration ([Ca(2+)](i)) in rat afferent arterioles. [Ca(2+)](i) was measured in microdissected arterioles using...... ratiometric photometry of fura 2 fluorescence. The control [Ca(2+)](i) response to NE (1 microM) consisted of a rapid initial peak followed by a plateau phase sustained above baseline. Pretreatment with the tyrosine kinase inhibitor Tyr-23 (50 microM, 10 min) caused a slow 40% increase in baseline [Ca(2+)](i...... of nifedipine and Tyr-23 were not additive. Nifedipine had no inhibitory effect after Tyr-23 pretreatment, indicating Tyr-23 inhibition of Ca(2+) entry. Another tyrosine kinase inhibitor, Gen (5 and 50 microM), did not affect baseline [Ca(2+)](i). High-dose Gen inhibited the peak and plateau response to NE...

  2. Giant renin secretory granules in beige mouse renal afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Rasch, Ruth; Nyengaard, Jens Randel

    1997-01-01

    The mutant beige mouse (C57BL/6 bg) has a disease characterised by abnormally enlarged cytoplasmic granules in a variety of cells. With the purpose of establishing a suitable cellular model for studying renin secretion, the present study was undertaken to compare renin granule morphology in beige...... (average granular volume 0.681 microm3), whereas 1-2 large granules were present per cell in beige mice. The volume of afferent arteriole that contained secretory granules was lower in the beige mice. We conclude that the beige mouse synthesizes, stores and releases active renin. Renin secretory granules...... in beige mice are grossly enlarged with 1-2 granules per juxtaglomerular cell. Compared with control mice, a similar amount of total renin granule volume per afferent arteriole is contained in a smaller part of beige mouse afferent arteriole. Granular cells from beige mice could therefore be a valuable...

  3. Estimation of the number of angiotensin II AT1 receptors in rat kidney afferent and efferent arterioles

    DEFF Research Database (Denmark)

    Razga, Zsolt; Nyengaard, Jens Randel

    2007-01-01

    of angiotensin II AT1 receptors along the length of the arterioles and per arteriole, we combined immunoelectron microscopy with stereology. RESULTS: The number of AT1 receptor molecules was significantly lower in the renin-positive smooth muscle cells (SMCs) than in the renin-negative SMCs of the afferent...

  4. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow.

    Science.gov (United States)

    Jensen, Elisa P; Poulsen, Steen S; Kissow, Hannelouise; Holstein-Rathlou, Niels-Henrik; Deacon, Carolyn F; Jensen, Boye L; Holst, Jens J; Sorensen, Charlotte M

    2015-04-15

    Glucagon-like peptide (GLP)-1 has a range of extrapancreatic effects, including renal effects. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of the present study was to localize renal GLP-1 receptors and describe GLP-1-mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and that activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using (125)I-labeled GLP-1, (125)I-labeled exendin-4 (GLP-1 analog), and (125)I-labeled exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1-mediated effects on blood pressure, renal blood flow (RBF), heart rate, renin secretion, urinary flow rate, and Na(+) and K(+) excretion were investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of (125)I-labeled GLP-1, (125)I-labeled exendin-4, and (125)I-labeled exendin 9-39 was observed in the renal vasculature, including afferent arterioles. Infusion of GLP-1 increased blood pressure, RBF, and urinary flow rate significantly in rats. Heart rate and plasma renin concentrations were unchanged. Exendin 9-39 inhibited the increase in RBF. In isolated murine kidneys, GLP-1 and exendin-4 significantly reduced the autoregulatory response of afferent arterioles in response to stepwise increases in pressure. We conclude that GLP-1 receptors are located in the renal vasculature, including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases RBF in normotensive rats. Copyright © 2015 the American Physiological Society.

  5. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow

    DEFF Research Database (Denmark)

    Jensen, Elisa Pouline; Poulsen, Steen Seier; Kissow, Hannelouise

    2015-01-01

    was to localize renal GLP-1 receptors and describe GLP-1 mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using 125I-GLP-1......, 125I-exendin-4 (GLP-1 analog) and 125I-exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1 mediated effects on blood pressure (BP), renal blood flow (RBF), heart rate (HR), renin secretion, urinary flow rate and Na+ and K+ excretion were...... conclude that GLP-1 receptors are located in the renal vasculature including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases renal blood flow in normotensive rats....

  6. Na+-independent, nifedipine-resistant rat afferent arteriolar Ca2+ responses to noradrenaline

    DEFF Research Database (Denmark)

    Salomonsson, Max; Braunstein, Thomas Hartig; von Holstein-Rathlou, Niels-Henrik

    2010-01-01

    Abstract Aim: In rat afferent arterioles we investigated the role of Na(+) entry in noradrenaline (NA)-induced depolarization and voltage-dependent Ca(2+) entry together with the importance of the transient receptor potential channel (TRPC) subfamily for non-voltage-dependent Ca(2+) entry. Methods...

  7. Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Castrop, Hayo; Briggs, Josie

    2003-01-01

    -induced vasoconstriction was stable for up to 30 min and was most pronounced in the most distal part of the afferent arterioles. Adenosine did not cause vasoconstriction in arterioles from A1AR-/- mice. Pretreatment with pertussis toxin (PTX) (400 ng/ml) for 2 h blocked the vasoconstricting action of adenosine or N(6...

  8. Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles.

    Science.gov (United States)

    Casellas, D; Moore, L C

    1990-03-01

    Videometric measurements of changes in vessel lumen diameters were made to investigate autoregulatory and tubuloglomerular feedback (TGF) responses of early efferent arterioles (EA), mid-to-late afferent arterioles (MAA), and terminal, juxtaglomerular afferent arterioles (JAA) in rat juxtamedullary nephrons in vitro. High-contrast shadow-cast images of blood-perfused arterioles at the glomerular vascular pole were obtained with incident illumination and long-working-distance objectives fitted to a compound microscope. In response to an increase in blood perfusion pressure from 60 to 140 mmHg, strong autoregulatory vasoconstriction was observed in the MAA and JAA, with respective reductions in mean luminal diameter of 23 +/- 4 and 40 +/- 4% (mean +/- SE); EA diameter was unchanged. In response to TGF excitation by direct microinjection of Ringer solution into the cortical thick ascending limb segment near the macula densa, JAA luminal diameter decreased by 34 +/- 5%. The TGF responses were completely inhibited by the addition of 0.1 mM furosemide to the tubular injectate. Calcium channel blockade achieved by adding 1 microM nimodipine to the superfusate had no effect on early EA diameter but produced a blood pressure-dependent JAA and MAA vasodilation and complete inhibition of autoregulatory responses. These results provide direct evidence that the distal afferent arteriole in juxtamedullary nephrons is a major effector site for both renal autoregulation and tubuloglomerular feedback.

  9. Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice

    DEFF Research Database (Denmark)

    Oppermann, Mona; Hansen, Pernille B; Castrop, Hayo

    2007-01-01

    Loop diuretics like furosemide have been shown to cause renal vasodilatation in dogs and humans, an effect thought to result from both a direct vascular dilator effect and from inhibition of tubuloglomerular feedback. In isolated perfused afferent arterioles preconstricted with angiotensin II or ...

  10. Heterogeneous Downregulation of Angiotensin II AT1-A and AT1-B Receptors in Arterioles in STZ-Induced Diabetic Rat Kidneys

    Directory of Open Access Journals (Sweden)

    Zsolt Razga

    2014-01-01

    Full Text Available Introduction. The renin granulation of kidney arterioles is enhanced in diabetes despite the fact that the level of angiotensin II in the diabetic kidney is elevated. Therefore, the number of angiotensin II AT1-A and AT1-B receptors in afferent and efferent arteriole’s renin-positive and renin-negative smooth muscle cells (SMC was estimated. Method. Immunohistochemistry at the electron microscopic level was combined with 3D stereological sampling techniques. Results. In diabetes the enhanced downregulation of AT1-B receptors in the renin-positive than in the renin-negative SMCs in both arterioles was resulted: the significant difference in the number of AT1 (AT1-A + AT1-B receptors between the two types of SMCs in the normal rats was further increased in diabetes and in contrast with the significant difference observed between the afferent and efferent arterioles in the normal animals, there was no such difference in diabetes. Conclusions. The enhanced downregulation of the AT1-B receptors in the renin-negative SMCs in the efferent arterioles demonstrates that the regulation of the glomerular filtration rate by the pre- and postglomerular arterioles is changed in diabetes. The enhanced downregulation of the AT1-B receptors in the renin-positive SMCs in the arterioles may result in an enhanced level of renin granulation in the arterioles.

  11. Distinct action of aranidipine and its active metabolite on renal arterioles, with special reference to renal protection.

    Science.gov (United States)

    Nakamura, A; Hayashi, K; Fujiwara, K; Ozawa, Y; Honda, M; Saruta, T

    2000-06-01

    Aranidipine, a newly developed calcium antagonist, possesses unique pharmacologic characteristics in that its metabolite (M-1) still has antihypertensive action. We examined the effects of both agents on renal microcirculation using the isolated perfused hydronephrotic rat kidney. During norepinephrine-induced constriction, the addition of aranidipine dilated both afferent and efferent arterioles in a dose-dependent manner; at 10(-6) M, 83 +/- 6% and 90 +/- 6% reversal, respectively. In contrast, its active metabolite exerted dilator action predominantly on the afferent arteriole (79 +/- 4% vs. 44 +/- 17% at 10(-6) M for afferent and efferent arterioles, respectively). We further examined the long-term (8 weeks) effect of these agents on the development of renal injury in salt-loaded subtotally nephrectomized spontaneously hypertensive rats. Both aranidipine and M-1 reduced blood pressure by a similar magnitude. The decreases in proteinuria were observed in the aranidipine-treated group at weeks 6, 8, and 10, whereas in the M-1 group, significant reduction was attained only at week 6. Histopathologic examination revealed that both treatments improved glomerular and arteriolar sclerosis. Glomerular sclerosis, however, was less pronounced in the aranidipine-treated group than in the M-1 group. In conclusion, aranidipine has dilator action on both arterioles, whereas M-1 caused predominant dilation of afferent arterioles. Such metabolic changes may constitute a determinant of efferent arteriolar action of the calcium antagonist.

  12. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    to norepinephrine, angiotensin II (ANG II), and potassium were measured after chloride depletion and compared with controls. Chloride depletion did not change arteriolar diameters, but the response to norepinephrine was markedly reduced when chloride was substituted with gluconate (n = 6) or isethionate (n = 6......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses...

  13. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    or without ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] and DIDS were not additive. In the absence of chloride, basal renin release was suppressed and the stimulatory effect of DIDS was abolished. The DIDS-induced enhancement of renin release was not dependent on bicarbonate....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...

  14. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2007-01-01

    of calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas...... was abolished by IAA-94. Furthermore, the vasoconstriction caused by adenosine was significantly inhibited by 5 microM nifedipine (control 8.3 +/- 0.2 microM, ado 3.6 +/- 0.6 microM, ado + nifedipine 6.8 +/- 0.2 microM) suggesting involvement of voltage-dependent calcium channels. CONCLUSION: We conclude...

  15. Enhanced vasomotion of cerebral arterioles in spontaneously hypertensive rats

    Science.gov (United States)

    Lefer, D. J.; Lynch, C. D.; Lapinski, K. C.; Hutchins, P. M.

    1990-01-01

    Intrinsic rhythmic changes in the diameter of pial cerebral arterioles (30-70 microns) in anesthetized normotensive and hypertensive rats were assessed in vivo to determine if any significant differences exist between the two strains. All diameter measurements were analyzed using a traditional graphic analysis technique and a new frequency spectrum analysis technique known as the Prony Spectral Line Estimator. Graphic analysis of the data revealed that spontaneously hypertensive rats (SHR) possess a significantly greater fundamental frequency (5.57 +/- 0.28 cycles/min) of vasomotion compared to the control Wistar-Kyoto normotensive rats (WKY) (1.95 +/- 0.37 cycles/min). Furthermore, the SHR cerebral arterioles exhibited a significantly greater amplitude of vasomotion (10.07 +/- 0.70 microns) when compared to the WKY cerebral arterioles of the same diameter (8.10 +/- 0.70 microns). Diameter measurements processed with the Prony technique revealed that the fundamental frequency of vasomotion in SHR cerebral arterioles (6.14 +/- 0.39 cycles/min) was also significantly greater than that of the WKY cerebral arterioles (2.99 +/- 0.42 cycles/min). The mean amplitudes of vasomotion in the SHR and WKY strains obtained by the Prony analysis were found not to be statistically significant in contrast to the graphic analysis of the vasomotion amplitude of the arterioles. In addition, the Prony system was able to consistently uncover a very low frequency of vasomotion in both strains of rats that was typically less than 1 cycle/min and was not significantly different between the two strains. The amplitude of this slow frequency was also not significantly different between the two strains. The amplitude of the slow frequency of vasomotion (less than 1 cycle/min) was not different from the amplitude of the higher frequency (2-6 cycles/min) vasomotion by Prony or graphic analysis. These data suggest that a fundamental intrinsic defect exists in the spontaneously hypertensive rat

  16. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles

    DEFF Research Database (Denmark)

    Poulsen, Christian B; Al-Mashhadi, Rozh H; Cribbs, Leanne L

    2011-01-01

    Voltage-gated calcium channels are important for the regulation of renal blood flow and the glomerular filtration rate. Excitation-contraction coupling in afferent arterioles is known to require activation of these channels and we studied their role in the regulation of cortical efferent arteriolar...... tone. We used microdissected perfused mouse efferent arterioles and found a transient vasoconstriction in response to depolarization with potassium; an effect abolished by removal of extracellular calcium. The T-type voltage-gated calcium channel antagonists mibefradil and nickel blocked this potassium...... by immunocytochemistry to be located in mouse efferent arterioles, human pre- and postglomerular vasculature, and Ca(v)3.2 in rat glomerular arterioles. Inhibition of endothelial nitric oxide synthase by L-NAME or its deletion by gene knockout changed the potassium-elicited transient constriction to a sustained response...

  17. Expression of connexin 37, 40 and 43 in rat mesenteric arterioles and resistance arteries

    DEFF Research Database (Denmark)

    Gustafsson, Finn; Mikkelsen, Hanne B; Arensbak, Birgitte

    2003-01-01

    Connexins are the protein constituents of gap junctions which mediate intercellular communication in most tissues. In arterioles gap junctions appear to be important for conduction of vasomotor responses along the vessel. Studies of the expression pattern of connexin isoforms in the microcirculat......Connexins are the protein constituents of gap junctions which mediate intercellular communication in most tissues. In arterioles gap junctions appear to be important for conduction of vasomotor responses along the vessel. Studies of the expression pattern of connexin isoforms...... in the microcirculation are sparse. We investigated the expression of the three major vascular connexins in mesenteric arterioles (diameter micro m) from male Sprague-Dawley rats, since conducted vasomotor responses have been described in these vessels. The findings were compared with those obtained from upstream...... small resistance arteries. Indirect immunofluorescence techniques were used on whole mounts of mesenteric arterioles and on frozen sections of resistance arteries (diameter approximately 300 micro m). Mesenteric arterioles expressed Cx40 and Cx43 in the endothelial layer, and Cx37 was found in most...

  18. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    Science.gov (United States)

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  19. Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2000-01-01

    In the present study, we tested whether the alpha(1A) subunit, which encodes a neuronal isoform of voltage-dependent Ca(2+) channels (VDCCs) (P-/Q-type), was present and functional in vascular smooth muscle and renal resistance vessels. By reverse transcription-polymerase chain reaction...... preglomerular resistance vessels and aorta, as well as mesangial cells, and that P-type VDCCs contribute to Ca(2+) influx in aortic and renal VSMCs and are involved in depolarization-mediated contraction in renal afferent arterioles....

  20. Age-related changes of neurochemically different subpopulations of cardiac spinal afferent neurons in rats.

    Science.gov (United States)

    Guić, Maja Marinović; Runtić, Branka; Košta, Vana; Aljinović, Jure; Grković, Ivica

    2013-08-01

    This study investigated the effect of aging on cardiac spinal afferent neurons in the rat. A patch loaded with retrograde tracer Fast Blue (FB) was applied to all chambers of the rat heart. Morphological and neurochemical characteristics of labeled cardiac spinal afferent neurons were assessed in young (2 months) and old (2 years) rats using markers for likely unmyelinated (isolectin B4; IB4) and myelinated (neurofilament 200; N52) neurons. The number of cardiac spinal afferent neurons decreased in senescence to 15% of that found in young rats (1604 vs. 248). The size of neuronal soma as well as proportion of IB4+ neurons increased significantly, whereas the proportion of N52+ neurons decreased significantly in senescence. Unlike somatic spinal afferents, neurochemically different populations of cardiac spinal afferent neurons experience morphological and neurochemical changes related to aging. A major decrease in total number of cardiac spinal afferent neurons occurs in senescence. The proportion of N52+ neurons decreased in senescence, but it seems that nociceptive innervation is preserved due to increased proportion and size of IB4+ unmyelinated neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Is there a role for T-type Ca2+ channels in regulation of vasomotor tone in mesenteric arterioles?

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Holstein-Rathlou, Niels-Henrik

    2009-01-01

    The largest peripheral blood pressure drop occurs in terminal arterioles (microm lumen diameter). L-type voltage-dependent Ca2+ channels (VDCCs) are considered the primary pathway for Ca2+ influx during physiologic activation of vascular smooth muscle cells (VSMC). Recent evidence suggests...... was predominantly expressed in endothelial cells. Voltage-dependent Ca2+ entry was inhibited by the new specific T-type blockers R(-)-efonidipine and NNC 55-0396. The effect of NNC 55-0396 persisted in depolarized arterioles, suggesting an unusually high activation threshold of mesenteric T-type channels. T...... that T-type VDCCs are expressed in renal afferent and efferent arterioles, mesenteric arterioles, and skeletal muscle arterioles. T-type channels are small-conductance, low voltage-activated, fast-inactivating channels. Thus, their role in supplying Ca2+ for contraction of VSMC has been disputed. However...

  2. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine.

    Science.gov (United States)

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.

  3. Role of Connexin40 in the autoregulatory response of the afferent arteriole

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Giese, Isaiah; Braunstein, Thomas Hartig

    2012-01-01

    Connexins in renal arterioles affect autoregulation of arteriolar tonus and renal blood flow and are believed to be involved in the transmission of the tubuloglomerular feedback (TGF) response across the cells of the juxtaglomerular apparatus. Connexin40 (Cx40) also plays a significant role in th...

  4. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine

    Directory of Open Access Journals (Sweden)

    Zhao J

    2017-12-01

    Full Text Available Jingbo Zhao,1 Jian Yang,1 Donghua Liao,1 Hans Gregersen2 1Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; 2Giome Center, Department of Surgery, Chinese University of Hong Kong and Prince of Wales Hospital, Shatin, Hong Kong Background: Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective: We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design: Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR, and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results: Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05. The stress relaxed less in the diabetic intestinal segment (P<0.05. Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion: Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. Keywords: afferents, spike rate, stress–strain, creep

  5. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles

    Science.gov (United States)

    Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D.; Gutterman, David D.; Falck, J. R.; Campbell, William B.

    2011-01-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H2O2 causes vasoconstriction. To determine the physiological contribution of H2O2, catalase is used to inactivate H2O2. However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10–50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1–10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (Vmax = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase−1·min−1, respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H2O2 and EETs. PMID:21753077

  6. Direct physical contact between intercalated cells in the distal convoluted tubule and the afferent arteriole in mouse kidneys.

    Directory of Open Access Journals (Sweden)

    Hao Ren

    Full Text Available Recent physiological studies in the kidney proposed the existence of a secondary feedback mechanism termed 'crosstalk' localized after the macula densa. This newly discovered crosstalk contact between the nephron tubule and its own afferent arteriole may potentially revolutionize our understanding of renal vascular resistance and electrolyte regulation. However, the nature of such a crosstalk mechanism is still debated due to a lack of direct and comprehensive morphological evidence. Its exact location along the nephron, its prevalence among the different types of nephrons, and the type of cells involved are yet unknown. To address these issues, computer assisted 3-dimensional nephron tracing was applied in combination with direct immunohistochemistry on plastic sections and electron microscopy. 'Random' contacts in the cortex were identified by the tracing and excluded. We investigated a total of 168 nephrons from all cortical regions. The results demonstrated that the crosstalk contact existed, and that it was only present in certain nephrons (90% of the short-looped and 75% of the long-looped nephrons. The crosstalk contacts always occurred at a specific position--the last 10% of the distal convoluted tubule. Importantly, we demonstrated, for the first time, that the cells found in the tubule wall at the contact site were always type nonA-nonB intercalated cells. In conclusion, the present work confirmed the existence of a post macula densa physical crosstalk contact.

  7. Direct physical contact between intercalated cells in the distal convoluted tubule and the afferent arteriole in mouse kidneys.

    Science.gov (United States)

    Ren, Hao; Liu, Ning-Yu; Andreasen, Arne; Thomsen, Jesper S; Cao, Liu; Christensen, Erik I; Zhai, Xiao-Yue

    2013-01-01

    Recent physiological studies in the kidney proposed the existence of a secondary feedback mechanism termed 'crosstalk' localized after the macula densa. This newly discovered crosstalk contact between the nephron tubule and its own afferent arteriole may potentially revolutionize our understanding of renal vascular resistance and electrolyte regulation. However, the nature of such a crosstalk mechanism is still debated due to a lack of direct and comprehensive morphological evidence. Its exact location along the nephron, its prevalence among the different types of nephrons, and the type of cells involved are yet unknown. To address these issues, computer assisted 3-dimensional nephron tracing was applied in combination with direct immunohistochemistry on plastic sections and electron microscopy. 'Random' contacts in the cortex were identified by the tracing and excluded. We investigated a total of 168 nephrons from all cortical regions. The results demonstrated that the crosstalk contact existed, and that it was only present in certain nephrons (90% of the short-looped and 75% of the long-looped nephrons). The crosstalk contacts always occurred at a specific position--the last 10% of the distal convoluted tubule. Importantly, we demonstrated, for the first time, that the cells found in the tubule wall at the contact site were always type nonA-nonB intercalated cells. In conclusion, the present work confirmed the existence of a post macula densa physical crosstalk contact.

  8. Conducted vasoconstriction in rat mesenteric arterioles: role for dihydropyridine-insensitive Ca(2+) channels

    DEFF Research Database (Denmark)

    Gustafsson, F; Andreasen, D; Salomonsson, Max

    2001-01-01

    The aim of this study was to evaluate the role of voltage-operated Ca(2+) channels in the initiation and conduction of vasoconstrictor responses to local micropipette electrical stimulation of rat mesenteric arterioles (28 +/- 1 microm, n = 79) in vivo. Local and conducted (600 microm upstream from...... the pipette) vasoconstriction was not blocked by TTX (1 micromol/l, n = 5), nifedipine, or nimodipine (10 micromol/l, n = 9). Increasing the K(+) concentration of the superfusate to 75 mmol/l did not evoke vasoconstriction, but this depolarizing stimulus reversibly abolished vasoconstrictor responses...

  9. Characterization of spinal afferent neurons projecting to different chambers of the rat heart.

    Science.gov (United States)

    Guić, Maja Marinović; Kosta, Vana; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-01-29

    The pattern of distribution of spinal afferent neurons (among dorsal root ganglia-DRGs) that project to anatomically and functionally different chambers of the rat heart, as well as their morphological and neurochemical characteristics were investigated. Retrograde tracing using a patch loaded with Fast blue (FB) was applied to all four chambers of the rat heart and labeled cardiac spinal afferents were characterized by using three neurochemical markers. The majority of cardiac projecting neurons were found from T1 to T4 DRGs, whereas the peak was at T2 DRG. There was no difference in the total number of FB-labeled neurons located in ipsilateral and contralateral DRGs regardless of the chambers marked with the patch. However, significantly more FB-labeled neurons projected to the ventricles compared to the atria (859 vs. 715). The proportion of isolectin B(4) binding in FB-labeled neurons was equal among all neurons projecting to different heart chambers (2.4%). Neurofilament 200 positivity was found in greater proportions in DRG neurons projecting to the left side of the heart, whereas calretinin-immunoreactivity was mostly represented in neurons projecting to the left atrium. Spinal afferent neurons projecting to different chambers of the rat heart exhibit a variety of neurochemical phenotypes depending on binding capacity for isolectin B(4) and immunoreactivity for neurofilament 200 and calretinin, and thus represent important baseline data for future studies. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  11. Ablation of capsaicin sensitive afferent nerves impairs defence but not rapid repair of rat gastric mucosa.

    Science.gov (United States)

    Pabst, M A; Schöninkle, E; Holzer, P

    1993-07-01

    Capsaicin sensitive afferent neurones have previously been reported to play a part in gastric mucosal protection. The aim of this study was to investigate whether these nociceptive neurones strengthen mucosal defence against injury or promote rapid repair of the damaged mucosa, or both. This hypothesis was examined in anaesthetised rats whose stomachs were perfused with ethanol (25 or 50% in saline, wt/wt) for 30 minutes. The gastric mucosa was inspected 0 and 180 minutes after ethanol had been given at the macroscopic, light, and scanning electron microscopic level. Rapid repair of the ethanol injured gastric mucosa (reduction of deep injury, partial re-epithelialisation of the denuded surface) took place in rats anaesthetised with phenobarbital, but not in those anaesthetised with urethane. Afferent nerve ablation as a result of treating rats with a neurotoxic dose of capsaicin before the experiment significantly aggravated ethanol induced damage as shown by an increase in the area and depth of mucosal erosions. Rapid repair of the injured mucosa, however, as seen in rats anesthetised with phenobarbital 180 minutes after ethanol was given, was similar in capsaicin and vehicle pretreated animals. Ablation of capsaicin sensitive afferent neurones was verified by a depletion of calcitonin gene related peptide from the gastric corpus wall. These findings indicate that nociceptive neurones control mechanisms of defence against acute injury but are not required for rapid repair of injured mucosa.

  12. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    -Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...... antagonist diltiazem (10(-6) mol/L) abolished K+-induced contractions. Bicarbonate did not modify the sensitivity to chloride. Norepinephrine (10(-6) mol/L) induced full contraction in depolarized vessels even in the absence of chloride. Iodide and nitrate were substituted for chloride with no inhibitory...

  13. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    Science.gov (United States)

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  14. Afferent projections to the deep mesencephalic nucleus in the rat

    International Nuclear Information System (INIS)

    Veazey, R.B.; Severin, C.M.

    1982-01-01

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist

  15. Blood-pressure-independent wall thickening of intramyocardial arterioles in experimental uraemia: evidence for a permissive action of PTH.

    Science.gov (United States)

    Amann, K; Törnig, J; Flechtenmacher, C; Nabokov, A; Mall, G; Ritz, E

    1995-11-01

    Abnormalities in cardiovascular structures, e.g. LV hypertrophy and thickening of vessels (arteries, arterioles, veins) are hallmarks of renal failure. They are in part independent of elevated blood pressure. Parathyroid hormone (PTH) has been shown to affect cardiac function and has also been identified as a permissive factor in the genesis of cardiac fibrosis. The present study in rats with experimental renal failure was designed to examine whether PTH was permissive for wall thickening of intramyocardial arterioles as well. Male SD rats were sham operated or subtotally nephrectomized and maintained for 2 weeks. Subgroups of subtotally nephrectomized (SNX) rats were parathyroidectomized (PTX). Saline or rat 1, 34 PTH was administered by osmotic minipump. Eucalcaemia was maintained in PTX animals by a high-calcium diet (3%). Serum calcium was not statistically different between the groups. After perfusion fixation, intramyocardial arterioles were assessed using stereological techniques (wall thickness; wall/lumen ratio; minimal lumen diameter; length density). In random samples of the left ventricle, wall thickness of arterioles was 2.2 +/- 0.25 microns in sham-op controls and 2.76 +/- 0.41 in SNX (n = at least 8 animals per group). SNX-PTX animals+solvent did not differ significantly from sham-op controls (2.08 +/- 0.42 microns), while SNX-PTX animals+PTH had values not significantly different from SNX (2.59 +/- 0.54 microns). Differences in wall thickness were not paralleled by differences in systolic blood pressure (sham-op 110 +/- 13.3 mmHg; SNX 138 +/- 8.4 mmHg, SNX-PTX+solvent 142 +/- 5.2 mmHg; SNX-PTX+PTH 148 +/- 5.7 mmHg). PTH treated animals showed signs of marked vascular smooth-muscle cell and endothelial-cell activation. The data suggest that wall thickening of intramyocardial arterioles in short-term experimental uraemia is dependent upon the presence of PTH (permissive effect).

  16. GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Chemical stimulation of white adipose tissue (WAT induces adipose afferent reflex (AAR, and thereby causes a general sympathetic activation. Paraventricular nucleus (PVN is important in control of sympathetic outflow. This study was designed to investigate the role of γ-aminobutyric acid (GABA in PVN in regulating the AAR.Experiments were carried out in anesthetized rats. Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were continuously recorded. AAR was evaluated by the RSNA and MAP responses to electrical stimulation of the right epididymal WAT (eWAT afferent nerve. Electrical stimulation of eWAT afferent nerve increase RSNA. Bilateral microinjection of the GABAA receptor agonist isoguvacine or the GABAB receptor agonist baclofen attenuated the AAR. The effect of isoguvacine on the AAR was greater than that of baclofen. The GABAA receptor antagonist gabazine enhanced the AAR, while the GABAB receptor antagonist CGP-35348 had no significant effect on the AAR. Bilateral PVN microinjection of vigabatrin, a selective GABA-transaminase inhibitor, to increase endogenous GABA levels in the PVN abolished the AAR. The inhibitory effect of vigabatrin on the AAR was attenuated by the pretreatment with gabazine or CGP-35348. Pretreatment with combined gabazine and CGP-35348 abolished the effects of vigabatrin.Activation of GABAA or GABAB receptors in the PVN inhibits the AAR. Blockade of GABAA receptors in the PVN enhances the AAR. Endogenous GABA in the PVN plays an important role in regulating the AAR.

  17. Physiological properties of afferents to the rat cerebellum during normal development and after postnatal x irradiation

    International Nuclear Information System (INIS)

    Puro, D.G.

    1975-01-01

    The consequences of an altered cerebellar cortical development on afferent transmission and terminal organization were analyzed in adult rats which had received x irradiation to the cerebellum postnatally. Rats, anesthetized with 0.5 percent halothane, were studied in various ages from day 3 to adult. The ascending mossy and climbing fiber systems were activated by electrical stimulation of the limbs with needle electrodes. Stimulation of the motor cortex activated the descending climbing fiber pathways. Extracellular responses from cerebellar Purkinje cells were observed on an oscilloscope as poststimulus time histograms were constructed ''on-line''. Conclusions and assertions include: (1) Synaptogenesis between incoming afferent fibers and target neurons takes place early in cerebellar cortical development. (2) Mossy fiber transmission is mature before the bulk of cerebellar synaptogenesis occurs. (3) The ascending and descending components of the climbing fiber system mature, with respect to latency, in synchrony. (4) The terminal synaptic organization has little effect on the development of transmission characteristics in these afferent systems. (5) One possible mechanism by which an adult neural structure can have an abnormal synaptic organization is to maintain immature synaptic relationships due to the neonatal loss of interneurons

  18. Inhibitory effect of rhynchophylline on contraction of cerebral arterioles to endothelin 1: role of rho kinase.

    Science.gov (United States)

    Hao, Hui-Feng; Liu, Li-Mei; Liu, Yu-Ying; Liu, Juan; Yan, Li; Pan, Chun-Shui; Wang, Ming-Xia; Wang, Chuan-She; Fan, Jing-Yu; Gao, Yuan-Sheng; Han, Jing-Yan

    2014-08-08

    Rhynchophylline (Rhy) is a major ingredient of Uncaria rhynchophylla (UR) used to reduce blood pressure and ameliorate brain ailments. This study was to examine the role of Rho kinase (ROCK) in the inhibition of Rhy on contraction of cerebral arterioles caused by endothelin 1 (ET-1). Cerebral arterioles of male Wistar rats were constricted with ET-1 for 10 min followed by perfusion of Rhy for 20 min. Changes in the diameters of the arterioles were recorded. The effects of Rhy on contraction of middle cerebral arteries (MCAs) were determined by a Multi-Myograph. Western blotting and immunofluorescent staining were used to examine the effects of Rhy on RhoA translocation and myosin phosphatase target subunit 1 (MYPT1) phosphorylation. In vivo, Rhy (30-300 µM) relaxed cerebral arterioles constricted with ET-1 dose-dependently. In vitro, Rhy at lower concentrations (1-100 µM) caused relaxation of rat MCAs constricted with KCl and Bay-K8644 (an agonist of L-type voltage-dependent calcium channels (L-VDCCs)). Rhy at higher concentrations (>100 µM) caused relaxation of rat MCAs constricted with ET-1, which was inhibited by Y27632, a ROCK׳s inhibitor. Western blotting of rat aortas showed that Rhy inhibited RhoA translocation and MYPT1 phosphorylation. Immunofluorescent staining of MCAs confirmed that phosphorylation of MYPT1 caused by ET-1 was inhibited by Rhy. These results demonstrate that Rhy is a potent inhibitor of contraction of cerebral arteries caused by ET-1 in vivo and in vitro. The effect of Rhy was in part mediated by inhibiting RhoA-ROCK signaling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Meningeal norepinephrine produces headache behaviors in rats via actions both on dural afferents and fibroblasts.

    Science.gov (United States)

    Wei, Xiaomei; Yan, Jin; Tillu, Dipti; Asiedu, Marina; Weinstein, Nicole; Melemedjian, Ohannes; Price, Theodore; Dussor, Gregory

    2015-10-01

    Stress is commonly reported to contribute to migraine although mechanisms by which this may occur are not fully known. The purpose of these studies was to examine whether norepinephrine (NE), the primary sympathetic efferent transmitter, acts on processes in the meninges that may contribute to the pain of migraine. NE was applied to rat dura using a behavioral model of headache. Primary cultures of rat trigeminal ganglia retrogradely labeled from the dura mater and of rat dural fibroblasts were prepared. Patch-clamp electrophysiology, Western blot, and ELISA were performed to examine the effects of NE. Conditioned media from NE-treated fibroblast cultures was applied to the dura using the behavioral headache model. Dural injection both of NE and media from NE-stimulated fibroblasts caused cutaneous facial and hindpaw allodynia in awake rats. NE application to cultured dural afferents increased action potential firing in response to current injections. Application of NE to dural fibroblasts increased phosphorylation of ERK and caused the release of interleukin-6 (IL-6). These data demonstrate that NE can contribute to pro-nociceptive signaling from the meninges via actions on dural afferents and dural fibroblasts. Together, these actions of NE may contribute to the headache phase of migraine. © International Headache Society 2015.

  20. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    Science.gov (United States)

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Platelet-activating factor dilates efferent arterioles through glomerulus-derived nitric oxide.

    Science.gov (United States)

    Arima, S; Ren, Y; Juncos, L A; Ito, S

    1996-01-01

    Despite evidence that platelet-activating factor (PAF) is produced by the glomerulus, its direct action on the glomerular microcirculation is poorly understood. It was recently reported that at picomolar concentrations, PAF dilates isolated microperfused afferent arterioles (Af-Art) via nitric oxide (NO). The present study tested the hypothesis that PAF acts on the glomerulus to release NO, which in turn controls the resistance of the efferent arteriole (Ef-Art). Rabbit Ef-Art were perfused from the distal end (retrograde perfusion [RP]) to eliminate the influence of the glomerulus, or through the glomerulus from the end of the Af-Art (orthograde perfusion [OP]) to maintain the influence of the glomerulus. Ef-Art were preconstricted by approximately 40% with norepinephrine and increasing doses of PAF were added to both the arteriolar perfusate and bath. Only with OP did PAF at picomolar concentrations cause significant dilation: at 400 pmol, the diameter increased by 64 +/- 11% from the preconstricted level (N = 6, P Art. At nanomolar concentrations, PAF constricted Ef-Art similarly in both RP and OP: at 40 nM, the diameter decreased by 24 +/- 4% (N = 6, P OP (10 +/- 2%, N = 6; P Art; and (2) at nanomolar concentrations, PAF constricts the Ef-Art partly through release of cyclooxygenase metabolites. Thus, PAF may play a role in glomerular hemodynamics under various physiological and pathological conditions.

  2. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  3. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats.

    Science.gov (United States)

    Cao, Bing; Zhang, Xu; Yan, Ni; Chen, Shengliang; Li, Ying

    2012-06-09

    Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes.In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK), which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change the nociceptive response (visceral pain

  4. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  5. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  6. The Effect of Ovariectomy and Estrogen on Penetrating Brain Arterioles and Blood-Brain Barrier Permeability

    NARCIS (Netherlands)

    Cipolla, Marilyn J.; Godfrey, Julie A.; Wiegman, Marchien J.

    2009-01-01

    Objective: We investigated the effect of estrogen replacement on the structure and function of penetrating brain arterioles (PA) and blood-brain barrier (BBB) permeability. Materials and Methods: Female ovariectomized Sprague-Dawley rats were replaced with estradiol (E-2) and estriol (E-3) (OVX + E;

  7. Effects of intra-articular hyaluronic acid injection on immunohistochemical characterization of joint afferents in a rat model of knee osteoarthritis.

    Science.gov (United States)

    Ikeuchi, M; Izumi, M; Aso, K; Sugimura, N; Kato, T; Tani, T

    2015-03-01

    Intra-articular hyaluronic acid (HA) injection, known as viscosupplementation, is a widely used therapy for pain relief in knee osteoarthritis (OA). Long-term clinical efficacy of HA has been reported in spite of a relatively short residence time. Herein, we evaluated our hypothesis that intra-articular HA injection could reduce the OA-associated changes in joint afferents. OA was induced by intra-articular injection of mono-iodoacetate in rats. Animals in the OA + HA group were given three weekly intra-articular HA injections. Pain-related behaviours, including weight-bearing asymmetry and mechanical hyperalgesia of the paw, knee joint histology and immunohistochemistry of joint afferents identified by retrograde labelling, were compared between groups (naïve, OA and OA + HA). OA rats showed pain-related behaviours and up-regulation of pain-related neurochemical markers [calcitonin gene-related peptide (CGRP), tyrosine receptor kinase A (TrkA) and acid-sensing ion channel 3 (ASIC3)] in joint afferents. HA injections reduced not only the severity of OA and pain behaviours but also OA-associated neurochemical changes in joint afferents. The differences between OA and OA + HA were statistically significant in CGRP (61 ± 10% vs. 51 ± 10%; p = 0.0406) but not significant in TrkA (62 ± 10% vs. 54 ± 9%; p = 0.0878) and ASIC3 (38 ± 9% vs. 32 ± 8%; p = 0.3681). Intra-articular HA injections reduced the severity of OA, decreased mechanical hyperalgesia of the paw, but not weight-bearing asymmetry, and attenuated OA-associated up-regulation of CGRP, but not TrkA and ASIC3, in joint afferents. The modulatory effects of HA on joint afferents is one of the underlying mechanisms of the gap between HA residence time and duration of clinical efficacy. © 2014 European Pain Federation - EFIC®

  8. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2001-01-01

    The distribution of voltage-dependent calcium channels in kidney pre- and postglomerular resistance vessels was determined at the molecular and functional levels. Reverse transcription-polymerase chain reaction analysis of microdissected rat preglomerular vessels and cultured smooth muscle cells...... on vascular diameter in the afferent arteriole. We conclude that voltage-dependent L- and T-type calcium channels are expressed and of functional significance in renal cortical preglomerular vessels, in juxtamedullary efferent arterioles, and in outer medullary vasa recta, but not in cortical efferent...

  9. Voluntary wheel running selectively augments insulin-stimulated vasodilation in arterioles from white skeletal muscle of insulin-resistant rats.

    Science.gov (United States)

    Mikus, Catherine R; Roseguini, Bruno T; Uptergrove, Grace M; Morris, E Matthew; Rector, Randy Scott; Libla, Jessica L; Oberlin, Douglas J; Borengasser, Sarah J; Taylor, Angelina M; Ibdah, Jamal A; Laughlin, Maurice Harold; Thyfault, John P

    2012-11-01

    Exercise (RUN) prevents declines in insulin-mediated vasodilation, an important component of insulin-mediated glucose disposal, in rats prone to obesity and insulin resistance. Determine whether RUN (1) improves insulin-stimulated vasodilation after insulin resistance has been established, and (2) differentially affects arterioles from red and white muscle. Insulin signaling and vasoreactivity to insulin (1-1000 μIU/mL) were assessed in 2A from the Gw and Gr of SED OLETF rats at 12 and 20 weeks of age (SED12, SED20) and those undergoing RUN (RUN20) or caloric restriction (CR20; to match body weight of RUN) from 12 to 20 weeks. Glucose and insulin responses to i.p. glucose were reduced in RUN20, elevated in SED20 (p RUN20 (p RUN selectively improved insulin-mediated vasodilation in Gw 2As, in part through attenuated ET-1 sensitivity/production, an adaptation that was independent of changes in adiposity and may contribute to enhanced insulin-stimulated glucose disposal. © 2012 John Wiley & Sons Ltd.

  10. Stenosis differentially affects subendocardial and subepicardial arterioles in vivo.

    Science.gov (United States)

    Merkus, D; Vergroesen, I; Hiramatsu, O; Tachibana, H; Nakamoto, H; Toyota, E; Goto, M; Ogasawara, Y; Spaan, J A; Kajiya, F

    2001-04-01

    The presence of a coronary stenosis results primarily in subendocardial ischemia. Apart from the decrease in coronary perfusion pressure, a stenosis also decreases coronary flow pulsations. Applying a coronary perfusion system, we compared the autoregulatory response of subendocardial (n = 10) and subepicardial (n = 12) arterioles (production with N(G)-monomethyl-L-arginine abrogated the effect of the stenosis on flow. We conclude that the decrease in pressure caused by a stenosis in vivo results in a larger decrease in diameter of the subendocardial arterioles than in the subepicardial arterioles, and furthermore stenosis selectively decreases the dilatory response of subendocardial arterioles. These two findings expand our understanding of subendocardial vulnerability to ischemia.

  11. Atypical arteriole anastomoses for fingertip replantations under digital block.

    Science.gov (United States)

    Koshima, Isao

    2008-01-01

    Reconstructive microsurgery is now in a new stage of supermicrosurgery. With this technique, very tiny (0.3mm) vascular anastomoses are possible. In this paper, we describe two cases of successful fingertip replantations employing arteriole (terminal branch of digital artery) anastomoses, the arteriole graft being obtained from the same fingertip defect, reverse arteriole flow to subdermal venule, and delayed venular drainage for venous congestion. These atypical tiny vascular anastomoses were successfully carried out under digital block.

  12. Histological identification of phrenic afferent projections to the spinal cord.

    Science.gov (United States)

    Nair, Jayakrishnan; Bezdudnaya, Tatiana; Zholudeva, Lyandysha V; Detloff, Megan R; Reier, Paul J; Lane, Michael A; Fuller, David D

    2017-02-01

    Limited data are available regarding the spinal projections of afferent fibers in the phrenic nerve. We describe a method that robustly labels phrenic afferent spinal projections in adult rats. The proximal end of the cut phrenic nerve was secured in a microtube filled with a transganglionic tracer (cholera toxin β-subunit, CT-β, or Cascade Blue) and tissues harvested 96-h later. Robust CT-β labeling occurred in C3-C5 dorsal root ganglia cell bodies and phrenic afferent projections were identified in the mid-cervical dorsal horn (laminae I-III), intermediate grey matter (laminae IV, VII) and near the central canal (laminae X). Afferent fiber labeling was reduced or absent when CT-β was delivered to the intrapleural space or directly to the hemidiaphragm. Soaking the phrenic nerve with Cascade Blue also produced robust labeling of mid-cervical dorsal root ganglia cells bodies, and primary afferent fibers were observed in spinal grey matter and dorsal white matter. Our results show that the 'nerve soak' method effectively labels both phrenic motoneurons and phrenic afferent projections, and show that primary afferents project throughout the ipsilateral mid-cervical gray matter. Copyright © 2016. Published by Elsevier B.V.

  13. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat.

    Science.gov (United States)

    Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O

    1999-03-01

    1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.

  14. Numerical Simulation of Thrombotic Occlusion in Tortuous Arterioles

    Science.gov (United States)

    Feng, Zhi-Gang; Cortina, Miguel; Chesnutt, Jennifer KW; Han, Hai-Chao

    2017-01-01

    Tortuous microvessels alter blood flow and stimulate thrombosis but the physical mechanisms are poorly understood. Both tortuous microvessels and abnormally large platelets are seen in diabetic patients. Thus, the objective of this study was to determine the physical effects of arteriole tortuosity and platelet size on the microscale processes of thrombotic occlusion in microvessels. A new lattice-Boltzmann method-based discrete element model was developed to simulate the fluid flow field with fluid-platelet coupling, platelet interactions, thrombus formation, and thrombotic occlusion in tortuous arterioles. Our results show that vessel tortuosity creates high shear stress zones that activate platelets and stimulate thrombus formation. The growth rate depends on the level of tortuosity and the pressure and flow boundary conditions. Once thrombi began to form, platelet collisions with thrombi and subsequent activations were more important than tortuosity level. Thrombus growth narrowed the channel and reduced the flow rate. Larger platelet size leads to quicker decrease of flow rate due to larger thrombi that occluded the arteriole. This study elucidated the important roles that tortuosity and platelet size play in thrombus formation and occlusion in arterioles. PMID:29327739

  15. Arginase promotes skeletal muscle arteriolar endothelial dysfunction in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Fruzsina K. Johnson

    2013-05-01

    Full Text Available Endothelial dysfunction is a characteristic feature in diabetes that contributes to the development of vascular disease. Recently, arginase has been implicated in triggering endothelial dysfunction in diabetic patients and animals by competing with endothelial nitric oxide synthase for substrate L-arginine. While most studies have focused on the coronary circulation and large conduit blood vessels, the role of arginase in mediating diabetic endothelial dysfunction in other vascular beds has not been fully investigated. In the present study, we determined whether arginase contributes to endothelial dysfunction in skeletal muscle arterioles of diabetic rats. Diabetes was induced in male Sprague Dawley rats by streptozotocin injection. Four weeks after streptozotocin administration, blood glucose, glycated hemoglobin, and vascular arginase activity were significantly increased. In addition, a significant increase in arginase I and II mRNA expression was detected in gracilis muscle arterioles of diabetic rats compared to age-matched, vehicle control animals. To examine endothelial function, first-order gracilis muscle arterioles were isolated, cannulated in a pressure myograph system, exposed to graded levels of luminal flow, and internal vessel diameter measured. Increases in luminal flow (0-50µL/min caused progressive vasodilation in arterioles isolated from control, normoglycemic animals. However, flow-induced vasodilation was absent in arterioles obtained from streptozotocin-treated rats. Acute in-vitro pretreatment of blood vessels with the arginase inhibitors Nω-hydroxy-nor-L-arginine or S-(2-boronoethyl-L-cysteine restored flow-induced responses in arterioles from diabetic rats and abolished differences between diabetic and control animals. Similarly, acute in-vitro pretreatment with L-arginine returned flow-mediated vasodilation in vessels from diabetic animals to that of control rats. In contrast, D-arginine failed to restore flow

  16. Fluoxetine induces vasodilatation of cerebral arterioles by co-modulating NO/muscarinic signalling

    Science.gov (United States)

    Ofek, Keren; Schoknecht, Karl; Melamed-Book, Naomi; Heinemann, Uwe; Friedman, Alon; Soreq, Hermona

    2012-01-01

    Ischaemic stroke patients treated with Selective Serotonin Reuptake Inhibitors (SSRI) show improved motor, cognitive and executive functions, but the underlying mechanism(s) are incompletely understood. Here, we report that cerebral arterioles in the rat brain superfused with therapeutically effective doses of the SSRI fluoxetine showed consistent, dose-dependent vasodilatation (by 1.2 to 1.6-fold), suppressible by muscarinic and nitric oxide synthase (NOS) antagonists [atropine, NG-nitro-l-arginine methyl ester (l-NAME)] but resistant to nicotinic and serotoninergic antagonists (mecamylamine, methylsergide). Fluoxetine administered 10–30 min. following experimental vascular photo-thrombosis increased arterial diameter (1.3–1.6), inducing partial, but lasting reperfusion of the ischaemic brain. In brain endothelial b.End.3 cells, fluoxetine induced rapid muscarinic receptor-dependent increases in intracellular [Ca2+] and promoted albumin- and eNOS-dependent nitric oxide (NO) production and HSP90 interaction. In vitro, fluoxetine suppressed recombinant human acetylcholinesterase (rhAChE) activity only in the presence of albumin. That fluoxetine induces vasodilatation of cerebral arterioles suggests co-promotion of endothelial muscarinic and nitric oxide signalling, facilitated by albumin-dependent inhibition of serum AChE. PMID:22697296

  17. Sphingosine-1-Phosphate Evokes Unique Segment-Specific Vasoconstriction of the Renal Microvasculature

    Science.gov (United States)

    Singletary, Sean T.; Cook, Anthony K.; Hobbs, Janet L.; Pollock, Jennifer S.; Inscho, Edward W.

    2014-01-01

    Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, has been implicated in regulating vascular tone and participating in chronic and acute kidney injury. However, little is known about the role of S1P in the renal microcirculation. Here, we directly assessed the vasoresponsiveness of preglomerular and postglomerular microvascular segments to exogenous S1P using the in vitro blood-perfused juxtamedullary nephron preparation. Superfusion of S1P (0.001–10 μM) evoked concentration-dependent vasoconstriction in preglomerular microvessels, predominantly afferent arterioles. After administration of 10 μM S1P, the diameter of afferent arterioles decreased to 35%±5% of the control diameter, whereas the diameters of interlobular and arcuate arteries declined to 50%±12% and 68%±6% of the control diameter, respectively. Notably, efferent arterioles did not respond to S1P. The S1P receptor agonists FTY720 and FTY720-phosphate and the specific S1P1 receptor agonist SEW2871 each evoked modest afferent arteriolar vasoconstriction. Conversely, S1P2 receptor inhibition with JTE-013 significantly attenuated S1P-mediated afferent arteriolar vasoconstriction. Moreover, blockade of L-type voltage-dependent calcium channels with diltiazem or nifedipine attenuated S1P-mediated vasoconstriction. Intravenous injection of S1P in anesthetized rats reduced renal blood flow dose dependently. Western blotting and immunofluorescence revealed S1P1 and S1P2 receptor expression in isolated preglomerular microvessels and microvascular smooth muscle cells. These data demonstrate that S1P evokes segmentally distinct preglomerular vasoconstriction via activation of S1P1 and/or S1P2 receptors, partially via L-type voltage-dependent calcium channels. Accordingly, S1P may have a novel function in regulating afferent arteriolar resistance under physiologic conditions. PMID:24578134

  18. TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.

    Directory of Open Access Journals (Sweden)

    James H Peters

    Full Text Available TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS. TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 µs that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5 direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons.

  19. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    Science.gov (United States)

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  20. Intraperitoneal injections of low doses of C75 elicit a behaviorally specific and vagal afferent-independent inhibition of eating in rats

    Science.gov (United States)

    Mansouri, Abdelhak; Aja, Susan; Moran, Timothy H.; Ronnett, Gabriele; Kuhajda, Francis P.; Arnold, Myrtha; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika

    2008-01-01

    Central and intraperitoneal C75, an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyl-transferase-1, inhibits eating in mice and rats. Mechanisms involved in feeding inhibition after central C75 have been identified, but little is yet known about how systemic C75 might inhibit eating. One issue is whether intraperitoneal C75 reduces food intake in rats by influencing normal physiological controls of food intake or acts nonselectively, for example by eliciting illness or aversion. Another issue relates to whether intraperitoneal C75 acts centrally or, similar to some other peripheral metabolic controls of eating, activates abdominal vagal afferents to inhibit eating. To further address these questions, we investigated the effects of intraperitoneal C75 on spontaneous meal patterns and the formation of conditioned taste aversion (CTA). We also tested whether the eating inhibitory effect of intraperitoneal C75 is vagally mediated by testing rats after either total subdiaphragmatic vagotomy (TVX) or selective subdiaphragmatic vagal deafferentations (SDA). Intraperitoneal injection of 3.2 and 7.5 mg/kg of C75 significantly reduced food intake 3, 12, and 24 h after injection by reducing the number of meals without affecting meal size, whereas 15 mg/kg of C75 reduced both meal number and meal size. The two smaller doses of C75 failed to induce a CTA, but 15 mg/kg C75 did. The eating inhibitory effect of C75 was not diminished in either TVX or SDA rats. We conclude that intraperitoneal injections of low doses of C75 inhibit eating in a behaviorally specific manner and that this effect does not require abdominal vagal afferents. PMID:18667714

  1. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  2. Glomerular prostaglandins modulate vascular reactivity of the downstream efferent arterioles.

    Science.gov (United States)

    Arima, S; Ren, Y; Juncos, L A; Carretero, O A; Ito, S

    1994-03-01

    The balance of vascular resistance in afferent (Af-) and efferent arterioles (Ef-Arts) is a crucial factor that determines glomerular hemodynamics. We have recently reported that when Ef-Arts were perfused from the distal end of the Af-Art through the glomerulus (orthograde perfusion; OP), both angiotensin II (Ang II) and norepinephrine (NE) induced much weaker constriction than they did when Ef-Arts were perfused from the distal end (retrograde perfusion; RP). This difference was not affected by inhibiting synthesis of nitric oxide. In the present study, we tested the hypothesis that glomerular prostaglandins (PGs) may modulate vascular reactivity of the downstream Ef-Art. In addition, we examined the possible modulatory role of PGs in the Af-Art responses to Ang II or NE. Both Ang II and NE caused dose-dependent constriction of Ef-Arts with either OP or RP; however, the constriction was stronger in RP. At 10(-8) M, Ang II decreased Ef-Art diameter by 35 +/- 3.5% in OP (N = 9) compared to 73 +/- 3.9% in RP (N = 5), while 10(-6) M NE decreased the diameter by 25 +/- 3.6% in OP (N = 9) compared to 62 +/- 7.2% in RP (N = 5). Pretreatment with 5 x 10(-5) M indomethacin (Indo) did not alter basal diameter with either method of perfusion.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Central projections and entries of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Della Torre, G; Lucchi, M L; Brunetti, O; Pettorossi, V E; Clavenzani, P; Bortolami, R

    1996-03-25

    The entry pathway and central distribution of A delta and C muscle afferents within the central nervous system (CNS) were investigated by combining electron microscopy and electrophysiological analysis after intramuscular injection of capsaicin. The drug was injected into the rat lateral gastrocnemius (LG) and extraocular (EO) muscles. The compound action potentials of LG nerve and the evoked field potentials recorded in semilunar ganglion showed an immediate and permanent reduction in A delta and C components. The morphological data revealed degenerating unmyelinated axons and terminals in the inner sublamina II and in the border of laminae I-II of the dorsal horn at L4-L5 and C1-C2 (subnucleus caudalis trigemini) spinal cord segments. Most degenerating terminals were the central bouton (C) of type I and II synaptic glomeruli. Furthermore, degenerating peripheral axonal endings (V2) presynaptic to normal C were found. Since V2 were previously found degenerated after cutting the oculomotor nerve (ON) or L4 ventral root, we conclude that some A delta and C afferents from LG and EO muscles entering the CNS by ON or ventral roots make axoaxonic synapses on other primary afferents to promote an afferent control of sensory input.

  4. Embryohistiogenesis of Vascular Tufts of Glomeruli: a Possible Hypothesis.

    Science.gov (United States)

    Dabiri, Shahriar; Moeini-Aghtaei, Mohammad Mehdi; Dabiri, Bahram

    2017-10-01

    Embryogenesis of the kidney glomeruli, especially its vascular component, has not been well documented. Glomeruli capillary tuft is surrounded and enveloped by visceral epithelial cells, which is a unique portal system that connects afferent with efferent arteriole without interaction with venular circulation. We hypothesized that the portal system embryologically has developed by extension of the intima of afferent arteriole into the stroma of glomerulus. We also hypothesized that juxtaglomeruli apparatus was developed from remnants of smooth muscle cells of the media of afferent arteriole at the anastomosing site with the Bowman capsule entrance. We studied 5 human fetal kidneys by hematoxylin-eosin, periodic acid-Schiff, and immunoperoxidase staining techniques. Hematoxylin-eosin staining of fetal kidney showed presence of erythrocytes in early vesicle form of glomeruli that was confirmed by immunohistochemical staining with CD31, smooth muscle actin, and CD34 markers. These stains showed extension of extraglomerular arterioles to the glomeruli. Periodic acid-Schiff staining showed also the continuity of the basement membrane in extraglomeruli and internal glomerular vascular tufts. This study shows that there is a relationship between the metanephric blast cells and major vessel critical for angiogenesis. When afferent arteriole come in contact with the immature glomeruli, its intima migrates into the glomerular tuft to form intraglomerular capillary system, while its smooth muscle remains at the entrance orifice and develops juxtaglomerular apparatus cells.

  5. Nonendothelial source of nitric oxide in arterioles but not in venules: alternative source revealed in vivo by diaminofluorescein microfluorography.

    Science.gov (United States)

    Kashiwagi, Satoshi; Kajimura, Mayumi; Yoshimura, Yasunori; Suematsu, Makoto

    2002-12-13

    This study aimed to examine topographic distribution of microvascular NO generation in vivo. To this end, nitrosonium ion (NO+)-sensitive diaminofluorescein diacetate was superfused continuously on the rat mesentery and the fluorescence was visualized in the microvessels through laser confocal microfluorography. Two major sites exhibited a time-dependent elevation of the fluorescence: microvascular endothelia and mast cells. As judged by the fluorescence sensitivity to local application of different inhibitors of NO synthase (NOS), NO availability in arteriolar endothelium and mast cells appeared to be maintained mainly by NOS1, whereas that in venular endothelium greatly depends on NOS3. In venules, the magnitude of inhibitory responses elicited by the inhibitors was positively correlated with the density of leukocyte adhesion. NOS inhibitors significantly reduced, but did not eliminate, the NO+-associated fluorescence in arterioles, capillaries, and venules, suggesting alternative sources of NO in circulation for these microvessels. Immunohistochemistry for NOS isozymes revealed that NOS1 occurred not only in nerve fibers innervated to arterioles but also abundantly in mast cells. Laser flow cytometry of peritoneal cells in vitro revealed abundant expression of NOS1 in mast cells. Interestingly, NOS3 occurred in endothelia of capillaries and venules but not in those of distal arterioles with comparable diameters. These results suggest that the arterioles receive NO from nonendothelial origins involving NOS1 present in nerve terminals and mast cells, whereas venules depend on the endothelial NOS as a major source. Furthermore, nonenzymatic sources of NO from circulating reservoirs constitute a notable fraction throughout different classes of microvessels. The full text of this article is available at http://www.circresaha.org.

  6. Rhythmic components in renal autoregulation: Nonlinear modulation phenomena

    International Nuclear Information System (INIS)

    Pavlov, A.N.; Sosnovtseva, O.V.; Pavlova, O.N.; Mosekilde, E.; Holstein-Rathlou, N.-H.

    2009-01-01

    Autoregulation of nephron blood flow involves two oscillatory processes: the tubular-flow sensitive tubuloglomerular feedback (TGF) mechanism and the blood-pressure sensitive myogenic mechanism. Both act to regulate the diameter of the afferent arteriole, which carries blood to the nephron. In this paper, we apply wavelet analysis to time series of the proximal tubular pressure obtained from normotensive and hypertensive rats to study how the TGF-mediated oscillations modulate both the frequency and the amplitude of the myogenic oscillations. The tubular pressure oscillations are nearly periodic for normotensive rats, but irregular (or chaotic) for rats with hypertension. Modulation phenomena are clearly observed in both types of rats, but the effect is stronger in those with hypertension.

  7. Characteristics of the mechanosensitive bladder afferent activities in relation with microcontractions in male rats with bladder outlet obstruction.

    Science.gov (United States)

    Aizawa, Naoki; Ichihara, Koji; Fukuhara, Hiroshi; Fujimura, Tetsuya; Andersson, Karl-Erik; Homma, Yukio; Igawa, Yasuhiko

    2017-08-09

    We investigated the characteristics of bladder mechanosensitive single-unit afferent activities (SAAs) in rats with a bladder outlet obstruction (BOO) and their relationship with bladder microcontractions. Male Wistar rats were divided into Sham and BOO groups. Four or 10 days after the surgery, rats were anesthetized with urethane. The SAAs of Aδ- or C-fibers from the L6 dorsal roots were recorded during bladder filling. The BOO group showed a higher number of microcontractions and lower SAAs of Aδ-fibers compared with those of the Sham group. These findings were significant at day 10 post-operatively. In contrast, SAAs of C-fibers were not significantly different between the groups at either day 4 or 10. In the BOO group at day 10, the SAAs of both Aδ- and C-fibers at the "ascending" phase of microcontractions were significantly higher than those at the other phases (descending or stationary), and a similar tendency was also observed at day 4. Taken together, during bladder filling, the bladder mechanosensitive SAAs of Aδ-fibers were attenuated, but SAAs of both Aδ- and C-fibers were intermittently enhanced by propagation of microcontractions.

  8. Effect of red blood cells on platelet activation and thrombus formation in tortuous arterioles

    Directory of Open Access Journals (Sweden)

    Jennifer K. W. Chesnutt

    2013-12-01

    Full Text Available Thrombosis is a major contributor to cardiovascular disease, which can lead to myocardial infarction and stroke. Thrombosis may form in tortuous microvessels, which are often seen throughout the human body, but the microscale mechanisms and processes are not well understood. In straight vessels, the presence of red blood cells (RBCs is known to push platelets toward walls, which may affect platelet aggregation and thrombus formation. However in tortuous vessels, the effects of RBC interactions with platelets in thrombosis are largely unknown. Accordingly, the objective of this work was to determine the physical effects of RBCs, platelet size, and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A discrete element computational model was used to simulate the transport, collision, adhesion, aggregation, and shear-induced platelet activation of hundreds of individual platelets and RBCs in thrombus formation in tortuous arterioles. Results showed that high shear stress near the inner sides of curved arteriole walls activated platelets to initiate thrombosis. RBCs initially promoted platelet activation, but then collisions of RBCs with mural thrombi reduced the amount of mural thrombus and the size of emboli. In the absence of RBCs, mural thrombus mass was smaller in a highly tortuous arteriole compared to a less tortuous arteriole. In the presence of RBCs however, mural thrombus mass was larger in the highly tortuous arteriole compared to the less tortuous arteriole. As well, smaller platelet size yielded less mural thrombus mass and smaller emboli, either with or without RBCs. This study shed light on microscopic interactions of RBCs and platelets in tortuous microvessels, which have implications in various pathologies associated with thrombosis and bleeding.

  9. Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles

    Directory of Open Access Journals (Sweden)

    Siu-Lung eChan

    2013-06-01

    Full Text Available Angiotensin II is an important determinant of inward remodeling in cerebral arterioles. Many of the vascular effects of angiotensin II are mediated by reactive oxygen species generated from homologues of NADPH oxidase with Nox2 predominating in small arteries and arterioles. Therefore, we tested the hypothesis that superoxide generated by Nox2 plays a role in angiotensin II-induced cerebral arteriolar remodeling. We examined Nox2-deficient and wild-type mice in which a pressor or a non-pressor dose of angiotensin II (1000 or 200 ng/kg/day or saline was infused for 4 weeks via osmotic minipumps. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area (by histology and superoxide level (by hydroethidine staining of cerebral arterioles were determined ex vivo. The pressor, but not the non-pressor, dose of angiotensin II significantly increased systolic arterial pressure in both wild-type and Nox2-deficient mice. Both doses of angiotensin II increased superoxide levels and significantly reduced external diameter in maximally dilated cerebral arterioles in wild-type mice. Increased superoxide and inward remodeling were prevented in Nox2-deficient mice. Moreover, only the pressor dose of AngII increased cross-sectional area of arteriolar wall in wild-type mice and was prevented in Nox2-deficient mice. In conclusion, superoxide derived from Nox2-containing NADPH oxidase plays an important role in angiotensin II-mediated inward remodeling in cerebral arterioles. This effect appears to be independent of pressure and different from that of hypertrophy.

  10. Ruptured Retinal Arterial Macroaneurysm Secondary to Toxoplasmic Kyrieleis Arteriolitis: A Case Report

    Directory of Open Access Journals (Sweden)

    Natalie Huang

    2017-07-01

    Full Text Available Purpose: The aim of this report was to describe multimodal ocular imaging findings in a patient who presented with a ruptured retinal arterial macroaneurysm (RAM associated with toxoplasmic Kyrieleis arteriolitis. Methods: We report the case of a 64-year-old man with a history of systemic hypertension and dense amblyopia of the left eye who presented with decreased vision and new floaters in the left eye. Color fundus photography, spectral-domain optical coherence tomography, fluorescein angiography, and indocyanine green angiography were used as diagnostic imaging tools. Results: No signs of hypertensive retinopathy were noted in the right eye. Multiple chorioretinal scars characteristic of previous toxoplasmosis were revealed in the left eye, with one covering most of the macula. Periarterial plaques or Kyrieleis arteriolitis were observed in retinal arteries surrounding the toxoplasmic retinal scars. Multiple RAMs were observed in these vessels, one of which was acutely ruptured. A perivenular plaque associated with a chronic branch retinal vein occlusion (BRVO was noted along the same arcade at the arteriovenous crossing. Conclusion: RAM formation and BRVO can present as possible long-term complications of toxoplasmic Kyrieleis arteriolitis. This is the first reported case demonstrating an association between toxoplasmic Kyrieleis arteriolitis and RAM formation.

  11. Superoxide Anions and NO in the Paraventricular Nucleus Modulate the Cardiac Sympathetic Afferent Reflex in Obese Rats

    Directory of Open Access Journals (Sweden)

    Qing-Bo Lu

    2017-12-01

    Full Text Available This study was conducted to explore the hypothesis that the endogenous superoxide anions (O2− and nitric oxide (NO system of the paraventricular nucleus (PVN regulates the cardiac sympathetic afferent reflex (CSAR contributing to sympathoexcitation in obese rats induced by a high-fat diet (42% kcal as fat for 12 weeks. CSAR was evaluated by monitoring the changes of renal sympathetic nerve activity (RSNA and the mean arterial pressure (MAP responses to the epicardial application of capsaicin (CAP in anaesthetized rats. In obese rats with hypertension (OH group or without hypertension (OB group, the levels of PVN O2−, angiotensinII (Ang II, Ang II type 1 receptor (AT1R, and nicotinamide adenine dinucleotide phosphate (NADPH oxidase were elevated, whereas neural NO synthase (nNOS and NO were significantly reduced. Moreover, CSAR was markedly enhanced, which promoted the elevation of plasma norepinephrine levels. The enhanced CSAR was attenuated by PVN application of the superoxide scavenger polyethylene glycol-superoxide dismutase (PEG-SOD and the NO donor sodium nitroprusside (SNP, and was strengthened by the superoxide dismutase inhibitor diethyldithiocarbamic acid (DETC and the nNOS inhibitor N(ω-propyl-l-arginine hydrochloride (PLA; conversely, there was a smaller CSAR response to PLA or SNP in rats that received a low-fat (12% kcal diet. Furthermore, PVN pretreatment with the AT1R antagonist losartan or with PEG-SOD, but not SNP, abolished Ang II-induced CSAR enhancement. These findings suggest that obesity alters the PVN O2− and NO system that modulates CSAR and promotes sympathoexcitation.

  12. Mechanisms of renin release from juxtaglomerular cells

    DEFF Research Database (Denmark)

    Skøtt, O; Salomonsson, Max; Sellerup Persson, Anja

    1991-01-01

    In microdissected, nonperfused afferent arterioles changes in intravascular pressure did not affect renin secretion. On the contrary, renin release from isolated afferent arterioles perfused in a free-flow system has been reported to be sensitive to simultaneous changes in luminal pressure and fl....... Hence local blood flow may be involved in the baroreceptor control of renin release. If flow is sensed, the sensor is likely to be located near the endothelial cell layer, where ion channels have been shown to be influenced by variations in shear stress....

  13. Anatomy and physiology of phrenic afferent neurons.

    Science.gov (United States)

    Nair, Jayakrishnan; Streeter, Kristi A; Turner, Sara M F; Sunshine, Michael D; Bolser, Donald C; Fox, Emily J; Davenport, Paul W; Fuller, David D

    2017-12-01

    Large-diameter myelinated phrenic afferents discharge in phase with diaphragm contraction, and smaller diameter fibers discharge across the respiratory cycle. In this article, we review the phrenic afferent literature and highlight areas in need of further study. We conclude that 1 ) activation of both myelinated and nonmyelinated phrenic sensory afferents can influence respiratory motor output on a breath-by-breath basis; 2 ) the relative impact of phrenic afferents substantially increases with diaphragm work and fatigue; 3 ) activation of phrenic afferents has a powerful impact on sympathetic motor outflow, and 4 ) phrenic afferents contribute to diaphragm somatosensation and the conscious perception of breathing. Much remains to be learned regarding the spinal and supraspinal distribution and synaptic contacts of myelinated and nonmyelinated phrenic afferents. Similarly, very little is known regarding the potential role of phrenic afferent neurons in triggering or modulating expression of respiratory neuroplasticity. Copyright © 2017 the American Physiological Society.

  14. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.

    Science.gov (United States)

    Peters, James H; Gallaher, Zachary R; Ryu, Vitaly; Czaja, Krzysztof

    2013-10-15

    Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery. Copyright © 2013 Wiley Periodicals, Inc.

  15. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses

    Science.gov (United States)

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.

    2014-01-01

    SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027

  16. Modulation of long-latency afferent inhibition by the amplitude of sensory afferent volley.

    Science.gov (United States)

    Turco, Claudia V; El-Sayes, Jenin; Fassett, Hunter J; Chen, Robert; Nelson, Aimee J

    2017-07-01

    Long-latency afferent inhibition (LAI) is the inhibition of the transcranial magnetic stimulation (TMS) motor-evoked potentials (MEP) by the sensory afferent volley following electrical stimulation of a peripheral nerve. It is unknown how the activation of sensory afferent fibers relates to the magnitude of LAI. This study investigated the relationship between LAI and the sensory nerve action potentials (SNAP) from the median nerve (MN) and the digital nerves (DN) of the second digit. LAI was obtained by delivering nerve stimulation 200 ms before a TMS pulse delivered over the motor cortex. Experiment 1 assessed the magnitude of LAI following stimulation of the contralateral MN or DN using nerve stimulus intensities relative to the maximum SNAP (SNAP max ) of that nerve and two TMS intensities (0.5- and 1-mV MEP). Results indicate that MN LAI is maximal at ~50% SNAP max , when presumably all sensory afferents are recruited for TMS of 0.5-mV MEP. For DN, LAI appears at ~50% SNAP max and does not increase with further recruitment of sensory afferents. Experiment 2 investigated the magnitude of LAI following ipsilateral nerve stimulation at intensities relative to SNAP max Results show minimal LAI evoked by ipsilateral MN and no LAI following ipsilateral DN stimulation. Implications for future studies investigating LAI include adjusting nerve stimulation to 50% SNAP max to obtain maximal LAI. Additionally, MN LAI can be used as a marker for neurological disease or injury by using a nerve stimulation intensity that can evoke a depth of LAI capable of increasing or decreasing. NEW & NOTEWORTHY This is the first investigation of the relationship between long-latency afferent inhibition (LAI) and the sensory afferent volley. Differences exist between median and digital nerve LAI. For the median nerve, LAI increases until all sensory fibers are presumably recruited. In contrast, digital nerve LAI does not increase with the recruitment of additional sensory fibers but

  17. Arginase promotes endothelial dysfunction and hypertension in obese rats.

    Science.gov (United States)

    Johnson, Fruzsina K; Peyton, Kelly J; Liu, Xiao-Ming; Azam, Mohammed A; Shebib, Ahmad R; Johnson, Robert A; Durante, William

    2015-02-01

    This study investigated whether arginase contributes to endothelial dysfunction and hypertension in obese rats. Endothelial function and arginase expression were examined in skeletal muscle arterioles from lean and obese Zucker rats (ZRs). Arginase activity, arginine bioavailability, and blood pressure were measured in lean and obese animals. Arginase activity and expression was increased while global arginine bioavailability decreased in obese ZRs. Acetylcholine or luminal flow caused dilation of isolated skeletal muscle arterioles, but this was reduced or absent in vessels from obese ZRs. Treatment of arterioles with a nitric oxide synthase inhibitor blocked dilation in lean arterioles and eliminated differences among lean and obese vessels. In contrast, arginase inhibitors or l-arginine enhanced vasodilation in obese ZRs and abolished differences between lean and obese animals, while d-arginine had no effect. Finally, mean arterial blood pressure was significantly increased in obese ZRs. However, administration of l-arginine or arginase inhibitors lowered blood pressure in obese but not lean animals, and this was associated with an improvement in systemic arginine bioavailability. Arginase promotes endothelial dysfunction and hypertension in obesity by reducing arginine bioavailability. Therapeutic approaches targeting arginase represent a promising approach in treating obesity-related vascular disease. © 2014 The Obesity Society.

  18. Sphingosine-1-phosphate and renal vasoconstriction

    DEFF Research Database (Denmark)

    Jensen, Boye L

    2018-01-01

    ) and in conjunction with increased S1P release in pathophysiological situations like sepsis and ischemia-reperfusion incidents, this effect could be relevant in acute kidney injury with parallel decreases in renal blood flow and GFR. This article is protected by copyright. All rights reserved.......In the present issue of Acta Physiologica, Guan et al. in their article "Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles" (1) address the signaling events associated with sphingosine-1-phosphate (S1P)-mediated renal afferent vasoconstriction and show in......, technically demanding, blood-perfused juxtamedullary nephron preparation that S1P signaling relies predominantly on transmembrane calcium influx from the extracellular fluid through L-type calcium channels with contribution from oxidative stress metabolites(1) . So not only is new information on S1P signaling...

  19. Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Feldberg, R; Colding-Jørgensen, M; Holstein-Rathlou, N H

    1995-01-01

    . The contribution of TGF to smooth muscle activity is assumed to be a linear function of the glomerular capillary pressure. The results show that the myogenic response plays an important role in renal blood flow autoregulation. Without a myogenic response, mechanisms such as TGF that are localized in the distal......The present study investigates the interaction between the tubuloglomerular feedback (TGF) response and the myogenic mechanism by use of a mathematical model. The two control mechanisms are implemented in a spatially distributed model of the rat renal juxtamedullary afferent arteriole. The model...

  20. Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity

    Science.gov (United States)

    Farb, Melissa G.; Tiwari, Stephanie; Karki, Shakun; Ngo, Doan TM; Carmine, Brian; Hess, Donald T.; Zuriaga, Maria A.; Walsh, Kenneth; Fetterman, Jessica L.; Hamburg, Naomi M.; Vita, Joseph A.; Apovian, Caroline M.; Gokce, Noyan

    2013-01-01

    Objective The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. Design and Methods In 20 obese subjects (age 37±12 yrs, BMI 47±8 kg/m2) we collected subcutaneous and visceral fat during bariatric surgery and characterized adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. Results Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (p<0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway were upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by 2-fold (p=0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with Nω-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. Conclusions Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity. PMID:23640904

  1. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    Science.gov (United States)

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  2. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    Science.gov (United States)

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-06

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. Copyright © 2014 the authors 0270-6474/14/3410765-05$15.00/0.

  3. Radial oxygen gradients over rat cortex arterioles

    OpenAIRE

    Galler, Michael

    2011-01-01

    Purpose: We present the results of the visualisation of radial oxygen gradients in rats’ cortices and their use in neurocritical management. Methods: PO2 maps of the cortex of 10 wistar rats were obtained with a camera (SensiMOD, PCO, Kehlheim, Germany). Those pictures were analyzed and edited by a custom-made software. We chose a vessel for examination. A matrix, designed to evaluate the cortical O2 partial pressure, was placed vertically to the artery and afterwards multiple regio...

  4. Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut afferents

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Jelsing, Jacob; van de Wall, Esther H E M

    2009-01-01

    The selective CB1 receptor antagonist rimonabant is a novel weight control agent. Although CB1 receptors and binding sites are present in both the rodent central and peripheral nervous systems, including the afferent vagus nerve, the role of gut afferents in mediating anorexia following CB1R...... blockade is still debated. In the present study we examined rimonabant-induced anorexia in male C57BL/6J mice with subdiaphragmatic vagotomy (VGX) as well as in male Sprague-Dawley rats subjected to either subdiaphragmatic vagal deafferentation (SDA) alone or in combination with a complete celiac...... system, are required for rimonabant to inhibit food intake leading to the hypothesis that centrally located CB1 receptors are the prime mediators of rimonabant-induced anorexia....

  5. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    Science.gov (United States)

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  6. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-11-01

    Full Text Available Background/Aims: Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA and blood pressure (BP responses during static exercise in heart failure (HF. In this study, we examined engagement of bradykinin (BK in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. Methods: Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. Results: BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. Conclusion: BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.

  7. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  8. Organization of diencephalic and brainstem afferent projections to the lateral septum in the rat

    NARCIS (Netherlands)

    Luiten, Paul G.M.; Kuipers, Folkert; Schuitmaker, Hans

    1982-01-01

    Ascending diencephalic and brainstem afferents to the lateral septal column were studied by retrograde transport of horseradish peroxidase following microiontophoretic injections in the various subdivisions of the lateral septal area. Predominantly ispilateral cells, of which several coincide with

  9. Detection thresholds of macaque otolith afferents.

    Science.gov (United States)

    Yu, Xiong-Jie; Dickman, J David; Angelaki, Dora E

    2012-06-13

    The vestibular system is our sixth sense and is important for spatial perception functions, yet the sensory detection and discrimination properties of vestibular neurons remain relatively unexplored. Here we have used signal detection theory to measure detection thresholds of otolith afferents using 1 Hz linear accelerations delivered along three cardinal axes. Direction detection thresholds were measured by comparing mean firing rates centered on response peak and trough (full-cycle thresholds) or by comparing peak/trough firing rates with spontaneous activity (half-cycle thresholds). Thresholds were similar for utricular and saccular afferents, as well as for lateral, fore/aft, and vertical motion directions. When computed along the preferred direction, full-cycle direction detection thresholds were 7.54 and 3.01 cm/s(2) for regular and irregular firing otolith afferents, respectively. Half-cycle thresholds were approximately double, with excitatory thresholds being half as large as inhibitory thresholds. The variability in threshold among afferents was directly related to neuronal gain and did not depend on spike count variance. The exact threshold values depended on both the time window used for spike count analysis and the filtering method used to calculate mean firing rate, although differences between regular and irregular afferent thresholds were independent of analysis parameters. The fact that minimum thresholds measured in macaque otolith afferents are of the same order of magnitude as human behavioral thresholds suggests that the vestibular periphery might determine the limit on our ability to detect or discriminate small differences in head movement, with little noise added during downstream processing.

  10. Inherent rhythm of smooth muscle cells in rat mesenteric arterioles: An eigensystem formulation

    Science.gov (United States)

    Ho, I. Lin; Moshkforoush, Arash; Hong, Kwangseok; Meininger, Gerald A.; Hill, Michael A.; Tsoukias, Nikolaos M.; Kuo, Watson

    2016-04-01

    On the basis of experimental data and mathematical equations in the literature, we remodel the ionic dynamics of smooth muscle cells (SMCs) as an eigensystem formulation, which is valid for investigating finite variations of variables from the equilibrium such as in common experimental operations. This algorithm provides an alternate viewpoint from frequency-domain analysis and enables one to probe functionalities of SMCs' rhythm by means of a resonance-related mechanism. Numerical results show three types of calcium oscillations of SMCs in mesenteric arterioles: spontaneous calcium oscillation, agonist-dependent calcium oscillation, and agonist-dependent calcium spike. For simple single and double SMCs, we demonstrate properties of synchronization among complex signals related to calcium oscillations, and show different correlation relations between calcium and voltage signals for various synchronization and resonance conditions. For practical cell clusters, our analyses indicate that the rhythm of SMCs could (1) benefit enhancements of signal communications among remote cells, (2) respond to a significant calcium peaking against transient stimulations for triggering globally oscillating modes, and (3) characterize the globally oscillating modes via frog-leap (non-molecular-diffusion) calcium waves across inhomogeneous SMCs.

  11. Afferent connectivity of the zebrafish habenulae

    Directory of Open Access Journals (Sweden)

    Katherine Jane Turner

    2016-04-01

    Full Text Available The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates.Here we describe the main afferents to the habenulae in larval and adult zebrafish.We observe afferents from the subpallium, nucleus rostrolateralis,posterior tuberculum, posterior hypothalamic lobe, median raphe, olfactory bulb to the right habenula and from the parapineal to the lefthabenula.In addition,we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus(vENT,confirming and extending observations of Amo et al.(2014.Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hpf.No afferents to the habenula were observed from the dorsal entopeduncular nucleus(dENT.Consequently,we confirm that the vENT(and not the dENT should be considered as the entopeduncular nucleus proper in zebrafish.Furthermore,comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus,being homologous to the entopeduncular nucleus of mammals(internal segment of the globus pallidus of primates by both embryonic origin and projections,as previously suggested by Amo et al.(2014.Key words: habenula,connections,afferents,entopeduncular nucleus,posterior tuberculum,basal ganglia,zebrafish

  12. Afferent Connectivity of the Zebrafish Habenulae

    Science.gov (United States)

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  13. Afferent innervation of the utricular macula in pigeons

    Science.gov (United States)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  14. [Acute pancreatitis and afferent loop syndrome. Case report].

    Science.gov (United States)

    Barajas-Fregoso, Elpidio Manuel; Romero-Hernández, Teodoro; Macías-Amezcua, Michel Dassaejv

    2013-01-01

    The afferent syndrome loop is a mechanic obstruction of the afferent limb before a Billroth II or Roux-Y reconstruction, secondary in most of case to distal or subtotal gastrectomy. Clinical case: Male 76 years old, with antecedent of cholecystectomy, gastric adenocarcinoma six years ago, with subtotal gastrectomy and Roux-Y reconstruction. Beginning a several abdominal pain, nausea and vomiting, abdominal distension, without peritoneal irritation sings. Amylase 1246 U/L, lipase 3381 U/L. Computed Tomography with thickness wall and dilatation of afferent loop, pancreas with diffuse enlargement diagnostic of acute pancreatitis secondary an afferent loop syndrome. The afferent loop syndrome is presented in 0.3%-1% in all cases with Billroth II reconstruction, with a mortality of up to 57%, the obstruction lead accumulation of bile, pancreatic and intestinal secretions, increasing the pressure and resulting in afferent limb, bile conduct and Wirsung conduct dilatation, triggering an inflammatory response that culminates in pancreatic inflammation. The severity of the presentation is related to the degree and duration of the blockage.

  15. Experimental and theoretical studies of oxygen gradients in rat pial microvessels

    OpenAIRE

    Sharan, Maithili; Vovenko, Eugene P; Vadapalli, Arjun; Popel, Aleksander S; Pittman, Roland N

    2008-01-01

    Using modified oxygen needle microelectrodes and intravital videomicroscopy, measurements were made of tissue oxygen tension (PO2) profiles near cortical arterioles and transmural PO2 gradients in the pial arterioles of the rat. Under control conditions, the transmural PO2 gradient averaged 1.17 ± 0.06 mm Hg/μm (mean ± s.e., n = 40). Local arteriolar dilation resulted in a marked decrease in the transmural PO2 gradient to 0.68 ± 0.04 mm Hg/μm (P < 0.001, n = 38). The major finding of this stu...

  16. Exocytosis and endocytosis in juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, U G; Jensen, B L; Hansen, Pernille B. Lærkegaard

    2000-01-01

    fusion events between secretory granules and cell membrane and measurement of intermittent secretion of renin from single afferent arterioles, with a renin content of each secretion episode that corresponds to the renin content of one secretory granule. More recently it has been demonstrated...... that the afferent arterioles lose a large number of renin granules after acute stimulation without changing the average granular volume. Current electrophysiological techniques have now permitted direct measurements of cell membrane capacitance in juxtaglomerular (JG) cells as a measure of net addition (exocytosis...... and endocytosis are regulated processes in the JG-cells and both may be important for the long-term control of renin secretion at the single cell level....

  17. Spontaneous high frequency diameter oscillations of larger retinal arterioles are reduced in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Bek, Toke; Jeppesen, Peter; Kanters, Jørgen K.

    2013-01-01

    Diabetic retinopathy is characterized by morphological changes in the retina secondary to disturbances in retinal blood flow. Vasomotion is a mechanism for regulating blood flow by spontaneous oscillations in the diameter of retinal resistance arterioles, and has been shown to be disturbed outside...... the eye in diabetic patients. Therefore, the purpose of the present study was to characterize spontaneous oscillations in the diameter of retinal arterioles in normal persons and in persons with different severity of diabetic retinopathy....

  18. Effect of neonatal capsaicin treatment on neural activity in the medullary dorsal horn of neonatal rats evoked by electrical stimulation to the trigeminal afferents: an optical, electrophysiological, and quantitative study.

    Science.gov (United States)

    Takuma, S

    2001-07-06

    To elucidate which glutamate receptors, NMDA or non-NMDA, have the main role in synaptic transmission via unmyelinated afferents in the trigeminal subnucleus caudalis (the medullary dorsal horn), and to examine the early functional effects of neonatal capsaicin treatment to the subnucleus caudalis, optical recording, field potential recording, and quantitative study using electron micrographs were employed. A medulla oblongata isolated from a rat 5--7 days old was sectioned horizontally 400-microm thick or parasagittally and stained with a voltage-sensitive dye, RH482 or RH795. Single-pulse stimulation with high intensity to the trigeminal afferents evoked optical responses mainly in the subnucleus caudalis. The optical signals were composed of two phases, a fast component followed by a long-lasting component. The spatiotemporal properties of the optical signals were well correlated to those of the field potentials recorded simultaneously. The fast component was eliminated by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 10 microM), while the long-lasting component was not. The latter increased in amplitude under a condition of low Mg(2+) but was significantly reduced by DL-2-amino-5-phosphonovaleric acid (AP5; 30 microM). Neonatal capsaicin treatment also reduced the long-lasting component markedly. In addition, the decreases in the ratio of unmyelinated axons to myelinated axons and in the ratio of unmyelinated axons to Schwann cell subunits of trigeminal nerve roots both showed significant differences (P<0.05, Student's t-test) between the control group and the neonatal capsaicin treatment group. This line of evidence indirectly suggests that synaptic transmission via unmyelinated afferents in the subnucleus caudalis is mediated substantially by NMDA glutamate receptors and documented that neonatal capsaicin treatment induced a functional alteration of the neural transmission in the subnucleus caudalis as well as a morphological alteration of primary afferents

  19. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    Science.gov (United States)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  20. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production

    DEFF Research Database (Denmark)

    Tinning, Anne Robdrup; Jensen, Boye L; Schweda, Frank

    2014-01-01

    Processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin-1 (AQP-1) contributes directly to recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and (+/+) mice were fed a low NaCl diet (LS...... to baseline with no difference between genotypes. Plasma nitrite/nitrate concentration was unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared to (+/+) after LS-ACEI. It is concluded that aquaporin-1 is not necessary...... for acutely stimulated renin secretion in vivo and from isolated perfused kidney, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice....

  1. Convergence of cranial visceral afferents within the solitary tract nucleus.

    Science.gov (United States)

    McDougall, Stuart J; Peters, James H; Andresen, Michael C

    2009-10-14

    Primary afferent axons within the solitary tract (ST) relay homeostatic information via glutamatergic synapses directly to second-order neurons within the nucleus of the solitary tract (NTS). These primary afferents arise from multiple organ systems and relay multiple sensory modalities. How this compact network organizes the flow of primary afferent information will shape central homeostatic control. To assess afferent convergence and divergence, we recorded ST-evoked synaptic responses in pairs of medial NTS neurons in horizontal brainstem slices. ST shocks activated EPSCs along monosynaptic or polysynaptic pathways. Gradations in shock intensity discriminated multiple inputs and stimulus recruitment profiles indicated that each EPSC was unitary. In 24 pairs, 75% were second-order neurons with 64% receiving one direct ST input with the remainder receiving additional convergent ST afferent inputs (22% two; 14% three monosynaptic ST-EPSCs). Some (34%) second-order neurons received polysynaptic EPSCs. Neurons receiving only higher-order inputs were uncommon (13%). Most ST-EPSCs were completely independent, but 4 EPSCs of a total of 81 had equal thresholds, highly correlated latencies, and synchronized synaptic failures consistent with divergence from a single source ST axon or from a common interneuron producing a pair of polysynaptic EPSCs. We conclude that ST afferent inputs are remarkably independent with little evidence of substantial shared information. Individual cells receive highly focused information from the viscera. Thus, afferent excitation of second-order NTS neurons is generally dominated by single visceral afferents and therefore focused on a single afferent modality and/or organ region.

  2. Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine

    Directory of Open Access Journals (Sweden)

    Holzer Peter

    2009-06-01

    Full Text Available Abstract Background Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge. Methods Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg or cimetidine (10 mg/kg, and 30 min later their stomachs were exposed to exogenous HCl (0.25 M. During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry. Results Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects. Conclusion These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect

  3. Neurons in the preBötzinger complex and VRG are located in proximity to arterioles in newborn mice

    DEFF Research Database (Denmark)

    Falk, Sarah; Rekling, Jens C

    2008-01-01

    The constant cyclic respiratory activity in the brainstem requires an un-interrupted blood flow providing glucose and O(2) to neurons generating respiratory rhythm. Here we used a combination of classical vascular visualization techniques, and calcium imaging, to compare the microvascular structure...... of arterioles is found. We conclude that the striking co-localization of medullary arterioles and the PBC/VRG could imply that respiratory neurons may derive part of their glucose and oxygen consumption directly from arterioles, and that humoral factors affecting ventilation may reach respiratory neurons...... and localization of active respiratory neurons in the brainstem of newborn mice at the level of the preBötzinger complex (PBC) and ventral respiratory group. The brainstem is supplied with perforating arteries, which enter primarily in the midline and in a circumscribed region mid-laterally in the medulla...

  4. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle.

    Directory of Open Access Journals (Sweden)

    Guillaume Caron

    Full Text Available The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1 untreated animals acting as control and 2 treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i no recovery (B0, ii 50% recovery (B50 and iii full recovery (B100. Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl and lactic acid injections and Electrically-Induced Fatigue (EIF, and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.

  5. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle.

    Science.gov (United States)

    Caron, Guillaume; Marqueste, Tanguy; Decherchi, Patrick

    2015-01-01

    The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.

  6. Afferent loop syndrome: Role of sonography and CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Ho; Lim, Jae Hoon; Ko, Young Tae [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1992-03-15

    Afferent loop syndrome(ALS) is caused by obstruction of the afferent loop after subtotal gastrectomy with Billroth II gastrojejunostomy. Prompt diagnosis of ALS is important as perforation of the loop occurs. The aim of study is to ascertain the sonography and CT to diagnose ALS. We describe the radiologic findings in ten patients with ALS. The cause of ALS, established at surgery, included cancer recurrence (n=4), internal hernia (n=4), marginal ulcer (n=1), and development of cancer at the anastomosis site (n=1). Abdominal X-ray and sonography were performed in all cases, upper GI series in five cases and computed tomography in two cases. The dilated afferent loop was detected in only two cases out often patients in retrospective review of abdominal X-ray. ALS with recurrence of cancer was diagnosed in three cases by upper GI series. Of the cases that had sonography, the afferent loop was seen in the upper abdomen crossing transversely over the midline in all ten patients. The cause of ALS were predicated on the basis of the sonograms in three of the five patients. In two cases of computed tomography, the dilated afferent loop and recurrent cancer at the remnant stomach were seen.Our experience suggests that the diagnosis of afferent syndrome can be made on the basis of the typical anatomic location and shape of the dilated bowel loop in both sonography and computed tomography.

  7. Cardiac sympathetic afferent reflex response to intermedin microinjection into paraventricular nucleus is mediated by nitric oxide and γ-amino butyric acid in hypertensive rats.

    Science.gov (United States)

    Zhou, Hong; Sun, Hai-jian; Chang, Jin-rui; Ding, Lei; Gao, Qing; Tang, Chao-shu; Zhu, Guo-qing; Zhou, Ye-bo

    2014-10-01

    Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) and involves in the regulation of cardiovascular function in both peripheral tissues and central nervous system (CNS). Paraventricular nucleus (PVN) of hypothalamus is an important site in the control of cardiac sympathetic afferent reflex (CSAR) which participates in sympathetic over-excitation of hypertension. The aim of this study is to investigate whether IMD in the PVN is involved in the inhibition of CSAR and its related mechanism in hypertension. Rats were subjected to two-kidney one-clip (2K1C) surgery to induce renovascular hypertension or sham-operation (Sham). Acute experiments were carried out four weeks later under anesthesia. The CSAR was evaluated with the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to the epicardial application of capsaicin. The RSNA and MAP were recorded in sinoaortic-denervated, cervical-vagotomized and anesthetized rats. Bilateral PVN microinjection of IMD (25 pmol) caused greater decrease in the CSAR in 2K1C rats than in Sham rats, which was prevented by pretreatment with adrenomedullin (AM) receptor antagonist AM22-52, non-selective nitric oxide (NO) synthase (NOS) inhibitor L-NAME or γ-amino butyric acid (GABA)B receptor blocker CGP-35348. PVN pretreatment with CGRP receptor antagonist CGRP8-37 or GABA(A) receptor blocker gabazine had no significant effect on the CSAR response to IMD. AM22-52, L-NAME and CGP-35348 in the PVN could increase CSAR in Sham and 2K1C rats. These data indicate that IMD in the PVN inhibits CSAR via AM receptor, and both NO and GABA in the PVN involve in the effect of IMD on CSAR in Sham and renovascular hypertensive rats. © 2014 by the Society for Experimental Biology and Medicine.

  8. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension.

    Science.gov (United States)

    Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M

    2017-12-01

    The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.

  9. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  10. Coupling-induced complexity in nephron models of renal blood flow regulation

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund; Sosnovtseva, Olga; Mosekilde, Erik

    2010-01-01

    Marsh DJ. Coupling-induced complexity in nephron models of renal blood flow regulation. Am J Physiol Regul Integr Comp Physiol 298: R997-R1006, 2010. First published February 10, 2010; doi: 10.1152/ajpregu.00714.2009.-Tubular pressure and nephron blood flow time series display two interacting...... oscillations in rats with normal blood pressure. Tubulo-glomerular feedback (TGF) senses NaCl concentration in tubular fluid at the macula densa, adjusts vascular resistance of the nephron's afferent arteriole, and generates the slower, larger-amplitude oscillations (0.02-0.04 Hz). The faster smaller...... of glomerular pressure caused by fluctuations of blood pressure. The oscillations become irregular in animals with chronic high blood pressure. TGF feedback gain is increased in hypertensive rats, leading to a stronger interaction between the two mechanisms. With a mathematical model that simulates tubular...

  11. The Role of Phosphoramidon on the Biological Activity of Big Endothelin-1 in the Rat Mesenteric Microcirculation in Vivo

    International Nuclear Information System (INIS)

    Abdelhalim, Mohamed A K

    2008-01-01

    The goal of the present study was to clarify the role of metalloprotease inhibitor phosphoramidon on the effects induced by big endothelin-1 (big ET-1) in the rat mesenteric microcirculation in vivo, through investigating the systemic blood pressure, diameter and blood flow velocity of arterioles and venules of the rat mesentery. For this purpose, the rat mesentery was arranged for in situ intravital microscopic observation under transillumination and separate cumulative injections of big ET-1 and phosphoramidon were infused into the right jugular vein, respectively. In these experiments twenty-five rats (Charles River, 130 - 140 g) were used. The experiments were divided into two groups. In the first group of experiments, cumulative injections of big ET-1 (1000-8000 pmole/kg) were infused through a catheter inserted into the right jugular vein. Each dose of big ET-1 was infused 25 min prior to the infusion of the following dose. Infusion of big ET-1 (1000-8000 pmole/kg) elicited a long-lasting pressor effect. The infusion of low doses of big ET-1 (1000-2000 pmole/kg) elicited a significant (p < 0.05) dose-dependent increase in the microvascular blood flow velocity both in arterioles (20 - 30 ?m) and venules (30 - 50 ?m), and diameters of arterioles and venules exhibited a slight not significant vasodilator effect. The infusion of high doses of big ET-1 (4000-8000 pmole/kg) elicited significant dose-dependant decrease in the blood flow velocity of arterioles and venules, and diameters returned to the control runs. This may be attributed to the gradual conversion of big ET-1 to ET-1, and ET-1 is a potent vasoconstrictor. In the second group of experiments, cumulative injections of phosphoramidon (30 mg/kg /10 min) were administered 10 min prior to the infusion of big ET-1. These findings suggested that phosphoramidon significantly suppressed long-lasting pressor effect, dose-dependent increase, dose-dependent decrease and slow vasodilator effect produced by big ET-1

  12. Plasticity of Select Primary Afferent Projections to the Dorsal Horn after a Lumbosacral Ventral Root Avulsion Injury and Root Replantation in Rats

    Directory of Open Access Journals (Sweden)

    Allison J. Bigbee

    2017-07-01

    Full Text Available Injuries to the conus medullaris and cauda equina portions of the spinal cord result in neurological impairments, including paralysis, autonomic dysfunction, and pain. In experimental studies, earlier investigations have shown that a lumbosacral ventral root avulsion (VRA injury results in allodynia, which may be ameliorated by surgical replantation of the avulsed ventral roots. Here, we investigated the long-term effects of an L6 + S1 VRA injury on the plasticity of three populations of afferent projections to the dorsal horn in rats. At 8 weeks after a unilateral L6 + S1 VRA injury, quantitative morphological studies of the adjacent L5 dorsal horn showed reduced immunoreactivity (IR for the vesicular glutamate transporter, VGLUT1 and isolectin B4 (IB4 binding, whereas IR for calcitonin gene-related peptide (CGRP was unchanged. The IR for VGLUT1 and CGRP as well as IB4 binding was at control levels in the L5 dorsal horn at 8 weeks following an acute surgical replantation of the avulsed L6 + S1 ventral roots. Quantitative morphological studies of the L5 dorsal root ganglia (DRGs showed unchanged neuronal numbers for both the VRA and replanted series compared to shams. The portions of L5 DRG neurons expressing IR for VGLUT1 and CGRP, and IB4 binding were also the same between the VRA, replanted, and sham-operated groups. We conclude that the L5 dorsal horn shows selective plasticity for VGLUT1 and IB4 primary afferent projections after an L6 + S1 VRA injury and surgical repair.

  13. Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CpG of the rat spinal cord in vitro.

    Directory of Open Access Journals (Sweden)

    Francesco Dose

    Full Text Available Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM-1 μM generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in

  14. Tuning of spinal networks to frequency components of spike trains in individual afferents.

    Science.gov (United States)

    Koerber, H R; Seymour, A W; Mendell, L M

    1991-10-01

    Cord dorsum potentials (CDPs) evoked by primary afferent fiber stimulation reflect the response of postsynaptic dorsal horn neurons. The properties of these CDPs have been shown to vary in accordance with the type of primary afferent fiber stimulated. The purpose of the present study was to determine the relationships between frequency modulation of the afferent input trains, the amplitude modulation of the evoked CDPs, and the type of primary afferent stimulated. The somata of individual primary afferent fibers were impaled in the L7 dorsal root ganglion of alpha-chloralose-anesthetized cats. Action potentials (APs) were evoked in single identified afferents via the intracellular microelectrode while simultaneously recording the response of dorsal horn neurons as CDPs, or activity of individual target interneurons recorded extracellularly or intracellularly. APs were evoked in afferents using temporal patterns identical to the responses of selected afferents to natural stimulation of their receptive fields. Two such physiologically realistic trains, one recorded from a hair follicle and the other from a slowly adapting type 1 receptor, were chosen as standard test trains. Modulation of CDP amplitude in response to this frequency-modulated afferent activity varied according to the type of peripheral mechanoreceptor innervated. Dorsal horn networks driven by A beta afferents innervating hair follicles, rapidly adapting pad (Krause end bulb), and field receptors seemed "tuned" to amplify the onset of activity in single afferents. Networks driven by afferents innervating down hair follicles and pacinian corpuscles required more high-frequency activity to elicit their peak response. Dorsal horn networks driven by afferents innervating slowly adapting receptors including high-threshold mechanoreceptors exhibited some sensitivity to the instantaneous frequency, but in general they reproduced the activity in the afferent fiber much more faithfully. Responses of

  15. The blood pressure-induced diameter response of retinal arterioles decreases with increasing diabetic maculopathy

    DEFF Research Database (Denmark)

    Frederiksen, Christian Alcaraz; Jeppesen, Peter; Knudsen, Søren Tang

    2006-01-01

    A consisted of normal individuals and groups B-D consisted of type 2 diabetic patients matched for diabetes duration, age, and gender, and characterized by: Group B no retinopathy, Group C mild retinopathy, Group D maculopathy not requiring laser treatment. The diameter changes of a large retinal arteriole......+/-4.5 microm), and Group C (253+/-4.4 microm), but was significantly (p=0.006) increased in Group D (279+/-5.3 microm). CONCLUSIONS: The diameter response was reduced in type 2 diabetic patients with retinopathy, whereas retinal thickness was increased in patients with diabetic maculopathy. This suggests......BACKGROUND: The aim of the study was to compare the diameter response of retinal arterioles and retinal thickness in patients with different stages of diabetic maculopathy during an increase in the arterial blood pressure. METHODS: Four groups each consisting of 19 individuals were studied. Group...

  16. NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease-Implications for Prevention.

    Science.gov (United States)

    McCarty, Mark F

    2015-04-15

    Cerebral small vessel disease (SVD), a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS) activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways-exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea), and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine-which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine-mediate this benefit. Ameliorating the risk factors for SVD-including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine-also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.

  17. Chronic implantation of cuff electrodes on the pelvic nerve in rats is well tolerated and does not compromise afferent or efferent fibre functionality

    Science.gov (United States)

    Crook, J. J.; Brouillard, C. B. J.; Irazoqui, P. P.; Lovick, T. A.

    2018-04-01

    Objective. Neuromodulation of autonomic nerve activity to regulate physiological processes is an emerging field. Vagal stimulation has received most attention whereas the potential of modulate visceral function by targeting autonomic nerves within the abdominal cavity remains under-exploited. Surgery to locate intra-abdominal targets is inherently more stressful than for peripheral nerves. Electrode leads risk becoming entrapped by intestines and loss of functionality in the nerve-target organ connection could result from electrode migration or twisting. Since nociceptor afferents are intermingled with similar-sized visceral autonomic fibres, stimulation may induce pain. In anaesthetised rats high frequency stimulation of the pelvic nerve can suppress urinary voiding but it is not known how conscious animals would react to this procedure. Our objective therefore was to determine how rats tolerated chronic implantation of cuff electrodes on the pelvic nerve, whether nerve stimulation would be aversive and whether nerve-bladder functionality would be compromised. Approach. We carried out a preliminary de-risking study to investigate how conscious rats tolerated chronic implantation of electrodes on the pelvic nerve, their responsiveness to intermittent high frequency stimulation and whether functionality of the nerve-bladder connection became compromised. Main results. Implantation of cuff electrodes was well-tolerated. The normal diurnal pattern of urinary voiding was not disrupted. Pelvic nerve stimulation (up to 4 mA, 3 kHz) for 30 min periods evoked mild alerting at stimulus onset but no signs of pain. Stimulation evoked a modest (nerve temperature but the functional integrity of the nerve-bladder connection, reflected by contraction of the detrusor muscle in response to 10 Hz nerve stimulation, was not compromised. Significance. Chronic implantation of cuff electrodes on the pelvic nerve was found to be a well-tolerated procedure in rats and high frequency

  18. Alterations of the tunica vasculosa lentis in the rat model of retinopathy of prematurity.

    Science.gov (United States)

    Favazza, Tara L; Tanimoto, Naoyuki; Munro, Robert J; Beck, Susanne C; Garcia Garrido, Marina; Seide, Christina; Sothilingam, Vithiyanjali; Hansen, Ronald M; Fulton, Anne B; Seeliger, Mathias W; Akula, James D

    2013-08-01

    To study the relationship between retinal and tunica vasculosa lentis (TVL) disease in retinopathy of prematurity (ROP). Although the clinical hallmark of ROP is abnormal retinal blood vessels, the vessels of the anterior segment, including the TVL, are also altered. ROP was induced in Long-Evans pigmented and Sprague Dawley albino rats; room-air-reared (RAR) rats served as controls. Then, fluorescein angiographic images of the TVL and retinal vessels were serially obtained with a scanning laser ophthalmoscope near the height of retinal vascular disease, ~20 days of age, and again at 30 and 64 days of age. Additionally, electroretinograms (ERGs) were obtained prior to the first imaging session. The TVL images were analyzed for percent coverage of the posterior lens. The tortuosity of the retinal arterioles was determined using Retinal Image multiScale Analysis (Gelman et al. in Invest Ophthalmol Vis Sci 46:4734-4738, 2005). In the youngest ROP rats, the TVL was dense, while in RAR rats, it was relatively sparse. By 30 days, the TVL in RAR rats had almost fully regressed, while in ROP rats, it was still pronounced. By the final test age, the TVL had completely regressed in both ROP and RAR rats. In parallel, the tortuous retinal arterioles in ROP rats resolved with increasing age. ERG components indicating postreceptoral dysfunction, the b-wave, and oscillatory potentials were attenuated in ROP rats. These findings underscore the retinal vascular abnormalities and, for the first time, show abnormal anterior segment vasculature in the rat model of ROP. There is delayed regression of the TVL in the rat model of ROP. This demonstrates that ROP is a disease of the whole eye.

  19. Novel cellular bouton structure activated by ATP in the vascular wall of porcine retinal arterioles.

    Science.gov (United States)

    Misfeldt, Mikkel Wölck; Aalkjaer, Christian; Simonsen, Ulf; Bek, Toke

    2010-12-01

    The retinal blood flow is regulated by the tone of resistance arterioles, which is influenced by purinergic compounds such as adenosine and adenosine 5'-triphosphate (ATP) released from the retinal tissue. However, it is unknown what cellular elements in the perivascular retina are responsible for the effect of purines on the tone of retinal arterioles. Porcine retinal arterioles were loaded with the calcium-sensitive fluorophore Oregon green. The vessels were mounted in a confocal myograph for simultaneous recordings of tone and calcium activity in cells of the vascular wall during stimulation with ATP and adenosine, with and without modifiers of these compounds. Additionally, immunohistochemistry was used to localize elements with calcium activity in the vascular wall. Hyperfluorescence indicating calcium activity was recorded in a population of abundant round boutons interspersed in a network of vimentin-positive processes located immediately external to the smooth muscle cell layer but internal to the perivascular glial cells. These structures showed calcium activity when the vessel was relaxed with ATP but not when it was relaxed with adenosine. Ryanodine reduced calcium activity in the boutons, whereas the ATP antagonist adenosine-5'-O-(α, β- methylene diphosphate) reduced calcium activity in both the boutons and vascular tone. The vasodilating effect of purines in porcine retinal tissue involves ATP-dependent calcium activity in a layer of cellular boutons located external to the vascular smooth muscle cells and internal to the perivascular glial cells.

  20. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Yong Seek; Park, Cheung-Seog [Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Jin, Young-Ho, E-mail: jinyh@khu.ac.kr [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  1. NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease—Implications for Prevention

    Directory of Open Access Journals (Sweden)

    Mark F. McCarty

    2015-04-01

    Full Text Available Cerebral small vessel disease (SVD, a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways—exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea, and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine—which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine—mediate this benefit. Ameliorating the risk factors for SVD—including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine—also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.

  2. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells.

    Science.gov (United States)

    Zhang, Lichun; Engler, Sina; Koepcke, Lena; Steenken, Friederike; Köppl, Christine

    2018-07-01

    The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...

  4. Ultrastructure of the central subnucleus of the nucleus tractus solitarii and the esophageal afferent terminals in the rat.

    Science.gov (United States)

    Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto

    2003-03-01

    The central subnucleus of the nucleus tractus solitarii (ceNTS) receives afferent projections from the esophageal wall and projects to the nucleus ambiguus, thus serving as a relay nucleus for peristalsis of the esophagus. Here we examine the synaptic organization of the ceNTS, and its esophageal afferents by using transganglionic anterograde transport of cholera toxin-conjugated horseradish peroxidase (CT-HRP). When CT-HRP was injected into the subdiaphragmatic esophagus, many anterogradely labeled terminals were found only in the ceNTS. The ceNTS was composed of round or oval-shaped, small neurons (14.7x8.7 micro m) containing sparse organelles and an irregularly shaped nucleus. The average number of axosomatic terminals was only 1.3 per section cut through the nucleolus. Most of them (92%) contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), and a few (8%) contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). All anterogradely labeled terminals contacted dendrites but not the neuronal somata. The labeled terminals were large (2.55+/-0.07 micro m) and exclusively Gray's type I. More than half of them (60%) contacted small dendrites (less than 1 micro m in diameter), and contained dense-cored vesicles. More than 40% of the labeled terminals contacted two to four dendrites, thus forming a synaptic glomerulus. Sometimes a labeled terminal that contacted an unlabeled terminal by an adherent junction was found within the glomerulus. The large terminals and these complex synaptic relations appeared to characterize the esophageal afferent projections in the ceNTS.

  5. Normal blood supply of the canine patella

    International Nuclear Information System (INIS)

    Howard, P.E.; Wilson, J.W.; Robbins, T.A.; Ribble, G.A.

    1986-01-01

    The normal blood supply of the canine patella was evaluated, using microangiography and correlated histology. Arterioles entered the cortex of the patella at multiple sites along the medial, lateral, and dorsal aspects. The body of the patella was vascularized uniformly, with many arterioles that branched and anastomosed extensively throughout the patella. The patella was not dependent on a single nutrient artery for its afferent supply, but had an extensive interior vascular network. These factors should ensure rapid revascularization and healing of patellar fractures, provided appropriate fracture fixation is achieved

  6. Retrograde and transganglionic transport of horseradish peroxidase-conjugated cholera toxin B subunit, wheatgerm agglutinin and isolectin B4 from Griffonia simplicifolia I in primary afferent neurons innervating the rat urinary bladder.

    Science.gov (United States)

    Wang, H F; Shortland, P; Park, M J; Grant, G

    1998-11-01

    In the present study, we investigated and compared the ability of the cholera toxin B subunit, wheat germ agglutinin and isolectin B4 from Griffonia simplicifolia I conjugated to horseradish peroxidase, to retrogradely and transganglionically label visceral primary afferents after unilateral injections into the rat urinary bladder wall. Horseradish peroxidase histochemical or lectin-immunofluorescence histochemical labelling of bladder afferents was seen in the L6-S1 spinal cord segments and in the T13-L2 and L6-S1 dorsal root ganglia. In the lumbosacral spinal cord, the most intense and extensive labelling of bladder afferents was seen when cholera toxin B subunit-horseradish peroxidase was injected. Cholera toxin B subunit-horseradish peroxidase-labelled fibres were found in Lissauer's tract, its lateral and medial collateral projections, and laminae I and IV-VI of the spinal gray matter. Labelled fibres were numerous in the lateral collateral projection and extended into the spinal parasympathetic nucleus. Labelling from both the lateral and medial projections extended into the dorsal grey commissural region. Wheat germ agglutinin-horseradish peroxidase labelling produced a similar pattern but was not as dense and extensive as that of cholera toxin B subunit-horseradish peroxidase. The isolectin B4 from Griffonia simplicifolia I-horseradish peroxidase-labelled fibres, on the other hand, were fewer and only observed in the lateral collateral projection and occasionally in lamina I. Cell profile counts showed that a larger number of dorsal root ganglion cells were labelled with cholera toxin B subunit-horseradish peroxidase than with wheat germ agglutinin- or isolectin B4-horseradish peroxidase. In the L6-S1 dorsal root ganglia, the majority (81%) of the cholera toxin B subunit-, and almost all of the wheat germ agglutinin- and isolectin B4-immunoreactive cells were RT97-negative (an anti-neurofilament antibody that labels dorsal root ganglion neurons with

  7. A food-predictive cue attributed with incentive salience engages subcortical afferents and efferents of the paraventricular nucleus of the thalamus.

    Science.gov (United States)

    Haight, Joshua L; Fuller, Zachary L; Fraser, Kurt M; Flagel, Shelly B

    2017-01-06

    The paraventricular nucleus of the thalamus (PVT) has been implicated in behavioral responses to reward-associated cues. However, the precise role of the PVT in these behaviors has been difficult to ascertain since Pavlovian-conditioned cues can act as both predictive and incentive stimuli. The "sign-tracker/goal-tracker" rat model has allowed us to further elucidate the role of the PVT in cue-motivated behaviors, identifying this structure as a critical component of the neural circuitry underlying individual variation in the propensity to attribute incentive salience to reward cues. The current study assessed differences in the engagement of specific PVT afferents and efferents in response to presentation of a food-cue that had been attributed with only predictive value or with both predictive and incentive value. The retrograde tracer fluorogold (FG) was injected into the PVT or the nucleus accumbens (NAc) of rats, and cue-induced c-Fos in FG-labeled cells was quantified. Presentation of a predictive stimulus that had been attributed with incentive value elicited c-Fos in PVT afferents from the lateral hypothalamus, medial amygdala (MeA), and the prelimbic cortex (PrL), as well as posterior PVT efferents to the NAc. PVT afferents from the PrL also showed elevated c-Fos levels following presentation of a predictive stimulus alone. Thus, presentation of an incentive stimulus results in engagement of subcortical brain regions; supporting a role for the hypothalamic-thalamic-striatal axis, as well as the MeA, in mediating responses to incentive stimuli; whereas activity in the PrL to PVT pathway appears to play a role in processing the predictive qualities of reward-paired stimuli. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    Science.gov (United States)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  9. Inhibitory effects of silodosin on the bladder mechanosensitive afferent activities and their relation with bladder myogenic contractions in male rats with bladder outlet obstruction.

    Science.gov (United States)

    Aizawa, Naoki; Watanabe, Daiji; Fukuhara, Hiroshi; Fujimura, Tetsuya; Kume, Haruki; Homma, Yukio; Igawa, Yasuhiko

    2018-03-06

    We investigated the effects of silodosin, an α1A-adrenoceptor (AR) antagonist, on bladder function, especially on non-voiding contractions (NVCs), in a male rat model of bladder outlet obstruction (BOO) by evaluating cystometry (CMG) findings and bladder mechanosensitive single-unit afferent activities (SAAs), related with microcontractions, which may be similar with NVCs and to be of myogenic origin, in the rat model. BOO was created by partial ligation of the posterior urethra. At 4 days after surgery for BOO, an osmotic pump filled with silodosin (0.12 mg/kg/day) or its vehicle was subcutaneously implanted. At 10 days after surgery, CMG and SAAs measurements were taken under conscious and urethane-anesthetized conditions, respectively. The SAAs of Aδ- and C-fibers, which were identified by electrical stimulation of the pelvic nerve and by bladder distention, and intravesical pressure were recorded during constant bladder-filling with saline. Microcontractions were divided into three phases: "ascending," "descending," and "stationary." The silodosin-treated group showed a smaller number of NVCs in CMG measurements and lower SAAs of both Aδ- and C-fibers than the vehicle-treated group during bladder-filling. Moreover, in the vehicle-treated groups, the SAAs of both fibers for the ascending phase of microcontractions were significantly higher than those for the other two phases. On the contrary, no significant change was found between any of these three phases in the silodosin-treated group. The present results suggest that silodosin inhibits the SAAs of mechanosensitive Aδ- and C-fibers at least partly due to suppressing myogenic bladder contractions in male BOO rats. © 2018 Wiley Periodicals, Inc.

  10. Expression of connexin 37, 40, and 43 mRNA and protein in renal preglomerular arterioles

    DEFF Research Database (Denmark)

    Arensbak, B; Mikkelsen, Hanne Birte; Gustafsson, F

    2001-01-01

    arterioles in frozen sections was evaluated. SMC were isolated from kidneys using an iron oxide sieve method and explant technique. Total RNA from these cultures was tested by RT-PCR analysis for the expression of the three connexins mRNA. Using immunofluorescence we examined whether the expression pattern...

  11. Regulation of renin secretion by renal juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, Ulla G; Madsen, Kirsten; Stubbe, Jane

    2013-01-01

    A major rate-limiting step in the renin-angiotensin-aldosterone system is the release of active renin from endocrine cells (juxtaglomerular (JG) cells) in the media layer of the afferent glomerular arterioles. The number and distribution of JG cells vary with age and the physiological level...

  12. Diverse Kir expression contributes to distinct bimodal distribution of resting potentials and vasotone responses of arterioles.

    Directory of Open Access Journals (Sweden)

    Yuqin Yang

    Full Text Available The resting membrane potential (RP of vascular smooth muscle cells (VSMCs is a major determinant of cytosolic calcium concentration and vascular tone. The heterogeneity of RPs and its underlying mechanism among different vascular beds remain poorly understood. We compared the RPs and vasomotion properties between the guinea pig spiral modiolar artery (SMA, brain arterioles (BA and mesenteric arteries (MA. We found: 1 RPs showed a robust bimodal distribution peaked at -76 and -40 mV evenly in the SMA, unevenly at -77 and -51 mV in the BA and ~-71 and -52 mV in the MA. Ba(2+ 0.1 mM eliminated their high RP peaks ~-75 mV. 2 Cells with low RP (~-45 mV hyperpolarized in response to 10 mM extracellular K(+, while cells with a high RP depolarized, and cells with intermediate RP (~-58 mV displayed an initial hyperpolarization followed by prolonged depolarization. Moderate high K(+ typically induced dilation, constriction and a dilation followed by constriction in the SMA, MA and BA, respectively. 3 Boltzmann-fit analysis of the Ba(2+-sensitive inward rectifier K(+ (Kir whole-cell current showed that the maximum Kir conductance density significantly differed among the vessels, and the half-activation voltage was significantly more negative in the MA. 4 Corresponding to the whole-cell data, computational modeling simulated the three RP distribution patterns and the dynamics of RP changes obtained experimentally, including the regenerative swift shifts between the two RP levels after reaching a threshold. 5 Molecular works revealed strong Kir2.1 and Kir2.2 transcripts and Kir2.1 immunolabeling in all 3 vessels, while Kir2.3 and Kir2.4 transcript levels varied. We conclude that a dense expression of functional Kir2.X channels underlies the more negative RPs in endothelial cells and a subset of VSMC in these arterioles, and the heterogeneous Kir function is primarily responsible for the distinct bimodal RPs among these arterioles. The fast Kir

  13. Afferent Pathway-Mediated Effect of α1 Adrenergic Antagonist, Tamsulosin, on the Neurogenic Bladder After Spinal Cord Injury.

    Science.gov (United States)

    Han, Jin-Hee; Kim, Sung-Eun; Ko, Il-Gyu; Kim, Jayoung; Kim, Khae Hawn

    2017-09-01

    The functions of the lower urinary tract (LUT), such as voiding and storing urine, are dependent on complex central neural networks located in the brain, spinal cord, and peripheral ganglia. Thus, the functions of the LUT are susceptible to various neurologic disorders including spinal cord injury (SCI). SCI at the cervical or thoracic levels disrupts voluntary control of voiding and the normal reflex pathways coordinating bladder and sphincter functions. In this context, it is noteworthy that α1-adrenoceptor blockers have been reported to relieve voiding symptoms and storage symptoms in elderly men with benign prostatic hyperplasia (BPH). Tamsulosin, an α1-adrenoceptor blocker, is also considered the most effective regimen for patients with LUT symptoms such as BPH and overactive bladder (OAB). In the present study, the effects of tamsulosin on the expression of c-Fos, nerve growth factor (NGF), and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the afferent micturition areas, including the pontine micturition center (PMC), the ventrolateral periaqueductal gray matter (vlPAG), and the spinal cord (L5), of rats with an SCI were investigated. SCI was found to remarkably upregulate the expression of c-Fos, NGF, and NADPH-d in the afferent pathway of micturition, the dorsal horn of L5, the vlPAG, and the PMC, resulting in the symptoms of OAB. In contrast, tamsulosin treatment significantly suppressed these neural activities and the production of nitric oxide in the afferent pathways of micturition, and consequently, attenuated the symptoms of OAB. Based on these results, tamsulosin, an α1-adrenoceptor antagonist, could be used to attenuate bladder dysfunction following SCI. However, further studies are needed to elucidate the exact mechanism and effects of tamsulosin on the afferent pathways of micturition.

  14. Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles?

    Science.gov (United States)

    Caron, Guillaume; Decherchi, Patrick; Marqueste, Tanguy

    2015-09-01

    This study was designed to investigate the metabosensitive afferent response evoked by electrically induced fatigue (EIF), lactic acid (LA) and potassium chloride (KCl) in three muscle types. We recorded the activity of groups III-IV afferents originating from soleus, gastrocnemius and tibialis anterior muscles. Our data showed a same pattern of response in the three muscles after chemical injections, i.e., a bell curve with maximal discharge rate at 1 mM for LA injections and a linear relationship between KCl concentrations and the afferent discharge rate. Furthermore, a stronger response was recorded after EIF in the gastrocnemius muscle compared to the two other muscles. The change in afferent discharge after 1 mM LA injection was higher for the gastrocnemius muscle compared to the response obtained with the corresponding concentration applied in the two other muscles, whereas changes to KCl injections did not dramatically differ between the three muscles. We conclude that anatomical (mass, phenotype, vascularization, receptor and afferent density…) and functional (flexor vs. extensor) differences between muscles could explain the amplitude of these responses.

  15. The role of the renal afferent and efferent nerve fibres in heart failure

    Directory of Open Access Journals (Sweden)

    Lindsea C Booth

    2015-10-01

    Full Text Available Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibres. In heart failure (HF there is an increase in renal sympathetic nerve activity, which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibres, afferent renal nerve fibres, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF.

  16. The role of the renal afferent and efferent nerve fibers in heart failure

    Science.gov (United States)

    Booth, Lindsea C.; May, Clive N.; Yao, Song T.

    2015-01-01

    Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF. PMID:26483699

  17. Gastric electrical stimulation decreases gastric distension-induced central nociception response through direct action on primary afferents.

    Directory of Open Access Journals (Sweden)

    Wassila Ouelaa

    Full Text Available BACKGROUND & AIMS: Gastric electrical stimulation (GES is an effective therapy to treat patients with chronic dyspepsia refractory to medical management. However, its mechanisms of action remain poorly understood. METHODS: Gastric pain was induced by performing gastric distension (GD in anesthetized rats. Pain response was monitored by measuring the pseudo-affective reflex (e.g., blood pressure variation, while neuronal activation was determined using c-fos immunochemistry in the central nervous system. Involvement of primary afferents was assessed by measuring phosphorylation of ERK1/2 in dorsal root ganglia. RESULTS: GES decreased blood pressure variation induced by GD, and prevented GD-induced neuronal activation in the dorsal horn of the spinal cord (T9-T10, the nucleus of the solitary tract and in CRF neurons of the hypothalamic paraventricular nucleus. This effect remained unaltered within the spinal cord when sectioning the medulla at the T5 level. Furthermore, GES prevented GD-induced phosphorylation of ERK1/2 in dorsal root ganglia. CONCLUSIONS: GES decreases GD-induced pain and/or discomfort likely through a direct modulation of gastric spinal afferents reducing central processing of visceral nociception.

  18. Tachyphylaxis of juxtaglomerular epithelioid cells to angiotensin II. Differences between the electrical membrane response and renin secretion

    DEFF Research Database (Denmark)

    Bührle, C P; Hackenthal, E; Nobiling, R

    1987-01-01

    A study has been made of desensitization of the depolarizing response to angiotensin II of juxtaglomerular epithelioid and vascular smooth muscle cells in the mouse kidney afferent arteriole, of media cells from the mesenteric artery as well as of cultured smooth muscle and mesangial cells. In all...... cell types, desensitization to this effect of angiotensin II was observed. There was no cross-desensitization between angiotensin II and other depolarizing agonists. Hence, it is concluded that this desensitization is specific, i.e. of the tachyphylaxis type. Substances interfering with receptor...... recycling, such as chloroquine and monensin, did not block the recovery of the cells from desensitization after removal of the octapeptide. Desensitization to the action of angiotensin II was also observed with respect to its vasoconstrictor effect in the isolated perfused rat kidney. In contrast...

  19. MR features of a case of afferent loop syndrome presenting as obstructive jaundice

    International Nuclear Information System (INIS)

    Chevallier, P.; Souci, J.; Oddo, F.; Diaine, B.; Padovani, B.; Gueyffier, C.

    2001-01-01

    The afferent loop syndrome corresponds to an acute or chronic obstruction of the afferent loop following a partial gastrectomy with Billroth II gastro-jejunal anastomosis. We describe the case of a 77-year-old man with history of partial gastrectomy for peptic ulcer disease performed 31 years ago and currently admitted for jaundice and poor general status. MR imaging showed dilatation of biliary and pancreatic ducts and showed a soft tissue mass between the afferent loop and the residual stomach. Endoscopy showed complete obstruction of the afferent loop by a biopsy-proven adenocarcinoma. The patient died of sepsis shortly after endoscopy of septicemia. (authors)

  20. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons.

    Science.gov (United States)

    Xu, Bo; Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2015-05-01

    Renal denervation for the treatment of hypertension has proven to be successful; however, the underlying mechanism/s are not entirely clear. To determine if preautonomic neurons in the paraventricular nucleus (PVN) respond to afferent renal nerve (ARN) stimulation, extracellular single-unit recording was used to investigate the contribution of the rostral ventrolateral medulla (RVLM)-projecting PVN (PVN-RVLM) neurons to the response elicited during stimulation of ARN. In 109 spontaneously active neurons recorded in the PVN of anesthetized rats, 25 units were antidromically activated from the RVLM. Among these PVN-RVLM neurons, 84% (21/25) were activated by ARN stimulation. The baseline discharge rate was significantly higher in these neurons than those PVN-RVLM neurons not activated by ARN stimulation (16%, 4/25). The responsiveness of these neurons to baroreflex activation induced by phenylephrine and activation of cardiac sympathetic afferent reflex (CSAR) was also examined. Almost all of the PVN neurons that responded to ARN stimulation were sensitive to baroreflex (95%) and CSAR (100%). The discharge characteristics for nonevoked neurons (not activated by RVLM antidromic stimulation) showed that 23% of these PVN neurons responded to ARN stimulation. All the PVN neurons that responded to ARN stimulation were activated by N-methyl-D-aspartate, and these responses were attenuated by the glutamate receptor blocker AP5. These experiments demonstrated that sensory information originating in the kidney is integrated at the level of preautonomic neurons within the PVN, providing a novel mechanistic insight for use of renal denervation in the modulation of sympathetic outflow in disease states such as hypertension and heart failure. Copyright © 2015 the American Physiological Society.

  1. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky, Y P

    1991-01-01

    Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent

  2. Fine structural survey of the intermediate subnucleus of the nucleus tractus solitarii and its glossopharyngeal afferent terminals.

    Science.gov (United States)

    Hayakawa, Tetsu; Maeda, Seishi; Tanaka, Koichi; Seki, Makoto

    2005-10-01

    The intermediate subnucleus of the nucleus tractus solitarii (imNTS) receives somatosensory inputs from the soft palate and pharynx, and projects onto the nucleus ambiguus, thus serving as a relay nucleus for swallowing. The ultrastructure and synaptology of the rat imNTS, and its glossopharyngeal afferent terminals, have been examined with cholera toxin-conjugated horseradish peroxidase (CT-HRP) as an anterograde tracer. The imNTS contained oval or ellipsoid-shaped, small to medium-sized neurons (18.2 x 11.4 microm) with little cytoplasm, few cell organelles and an irregularly shaped nucleus. The cytoplasm often contained one or two nucleolus-like stigmoid bodies. The average number of axosomatic terminals was 1.8 per profile. About 83% of them contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), while about 17% contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). The neuropil contained small or large axodendritic terminals, and about 92% of them were Gray's type I. When CT-HRP was injected into the nodose ganglion, many labeled terminals were found in the imNTS. All anterogradely labeled terminals contacted dendrites but not somata. The labeled terminals were usually large (2.69+/-0.09 mum) and exclusively of Gray's type I. They often contacted more than two dendrites, were covered with glial processes, and formed synaptic glomeruli. A small unlabeled terminal occasionally made an asymmetric synaptic contact with a large labeled terminal. The large glossopharyngeal afferent terminals and the neurons containing stigmoid bodies characterized the imNTS neurons that received pharyngeal afferents.

  3. Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-A in normotensive and hypertensive rats.

    Science.gov (United States)

    Caires, A; Fernandes, G S; Leme, A M; Castino, B; Pessoa, E A; Fernandes, S M; Fonseca, C D; Vattimo, M F; Schor, N; Borges, F T

    2017-12-11

    Cyclosporin-A (CsA) is an immunosuppressant associated with acute kidney injury and chronic kidney disease. Nephrotoxicity associated with CsA involves the increase in afferent and efferent arteriole resistance, decreased renal blood flow (RBF) and glomerular filtration. The aim of this study was to evaluate the effect of Endothelin-1 (ET-1) receptor blockade with bosentan (BOS) and macitentan (MAC) antagonists on altered renal function induced by CsA in normotensive and hypertensive animals. Wistar and genetically hypertensive rats (SHR) were separated into control group, CsA group that received intraperitoneal injections of CsA (40 mg/kg) for 15 days, CsA+BOS and CsA+MAC that received CsA and BOS (5 mg/kg) or MAC (25 mg/kg) by gavage for 15 days. Plasma creatinine and urea, mean arterial pressure (MAP), RBF and renal vascular resistance (RVR), and immunohistochemistry for ET-1 in the kidney cortex were measured. CsA decreased renal function, as shown by increased creatinine and urea. There was a decrease in RBF and an increase in MAP and RVR in normotensive and hypertensive animals. These effects were partially reversed by ET-1 antagonists, especially in SHR where increased ET-1 production was observed in the kidney. Most MAC effects were similar to BOS, but BOS seemed to be better at reversing cyclosporine-induced changes in renal function in hypertensive animals. The results of this work suggested the direct participation of ET-1 in renal hemodynamics changes induced by cyclosporin in normotensive and hypertensive rats. The antagonists of ET-1 MAC and BOS reversed part of these effects.

  4. Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-A in normotensive and hypertensive rats

    Directory of Open Access Journals (Sweden)

    A. Caires

    2017-12-01

    Full Text Available Cyclosporin-A (CsA is an immunosuppressant associated with acute kidney injury and chronic kidney disease. Nephrotoxicity associated with CsA involves the increase in afferent and efferent arteriole resistance, decreased renal blood flow (RBF and glomerular filtration. The aim of this study was to evaluate the effect of Endothelin-1 (ET-1 receptor blockade with bosentan (BOS and macitentan (MAC antagonists on altered renal function induced by CsA in normotensive and hypertensive animals. Wistar and genetically hypertensive rats (SHR were separated into control group, CsA group that received intraperitoneal injections of CsA (40 mg/kg for 15 days, CsA+BOS and CsA+MAC that received CsA and BOS (5 mg/kg or MAC (25 mg/kg by gavage for 15 days. Plasma creatinine and urea, mean arterial pressure (MAP, RBF and renal vascular resistance (RVR, and immunohistochemistry for ET-1 in the kidney cortex were measured. CsA decreased renal function, as shown by increased creatinine and urea. There was a decrease in RBF and an increase in MAP and RVR in normotensive and hypertensive animals. These effects were partially reversed by ET-1 antagonists, especially in SHR where increased ET-1 production was observed in the kidney. Most MAC effects were similar to BOS, but BOS seemed to be better at reversing cyclosporine-induced changes in renal function in hypertensive animals. The results of this work suggested the direct participation of ET-1 in renal hemodynamics changes induced by cyclosporin in normotensive and hypertensive rats. The antagonists of ET-1 MAC and BOS reversed part of these effects.

  5. Effects of the Oxygen-Carrying Solution OxyVita C on the Cerebral Microcirculation and Systemic Blood Pressures in Healthy Rats

    Directory of Open Access Journals (Sweden)

    Rania Abutarboush

    2014-11-01

    Full Text Available The use of hemoglobin-based oxygen carriers (HBOC as oxygen delivering therapies during hypoxic states has been hindered by vasoconstrictive side effects caused by depletion of nitric oxide (NO. OxyVita C is a promising oxygen-carrying solution that consists of a zero-linked hemoglobin polymer with a high molecular weight (~17 MDa. The large molecular weight is believed to prevent extravasation and limit NO scavenging and vasoconstriction. The aim of this study was to assess vasoactive effects of OxyVita C on systemic blood pressures and cerebral pial arteriole diameters. Anesthetized healthy rats received four intravenous (IV infusions of an increasing dose of OxyVita C (2, 25, 50, 100 mg/kg and hemodynamic parameters and pial arteriolar diameters were measured pre- and post-infusion. Normal saline was used as a volume-matched control. Systemic blood pressures increased (P ≤ 0.05 with increasing doses of OxyVita C, but not with saline. There was no vasoconstriction in small (<50 µm and medium-sized (50–100 µm pial arterioles in the OxyVita C group. In contrast, small and medium-sized pial arterioles vasoconstricted in the control group. Compared to saline, OxyVita C showed no cerebral vasoconstriction after any of the four doses evaluated in this rat model despite increases in blood pressure.

  6. Afferent nerves regulating the cough reflex: Mechanisms and Mediators of Cough in Disease

    Science.gov (United States)

    Canning, Brendan J.

    2010-01-01

    Bronchopulmonary C-fibers and acid-sensitive, capsaicin-insensitive mechanoreceptors innervating the larynx, trachea and large bronchi regulate the cough reflex. These vagal afferent nerves may interact centrally with sensory input arising from afferent nerves innervating the intrapulmonary airways or even extrapulmonary afferents such as those innervating the nasal mucosa and esophagus to produce chronic cough or enhanced cough responsiveness. The mechanisms of cough initiation in health and in disease are briefly described. PMID:20172253

  7. Renin release

    DEFF Research Database (Denmark)

    Schweda, Frank; Friis, Ulla; Wagner, Charlotte

    2007-01-01

    in the walls of renal afferent arterioles at the entrance of the glomerular capillary network. It has been known for a long time that renin synthesis and secretion are stimulated by the sympathetic nerves and the prostaglandins and are inhibited in negative feedback loops by angiotensin II, high blood pressure...

  8. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis

    Directory of Open Access Journals (Sweden)

    Izumi Masashi

    2012-08-01

    Full Text Available Abstract Background Recent data have suggested a relationship between acute arthritic pain and acid sensing ion channel 3 (ASIC3 on primary afferent fibers innervating joints. The purpose of this study was to clarify the role of ASIC3 in a rat model of osteoarthritis (OA which is considered a degenerative rather than an inflammatory disease. Methods We induced OA via intra-articular mono-iodoacetate (MIA injection, and evaluated pain-related behaviors including weight bearing measured with an incapacitance tester and paw withdrawal threshold in a von Frey hair test, histology of affected knee joint, and immunohistochemistry of knee joint afferents. We also assessed the effect of ASIC3 selective peptide blocker (APETx2 on pain behavior, disease progression, and ASIC3 expression in knee joint afferents. Results OA rats showed not only weight-bearing pain but also mechanical hyperalgesia outside the knee joint (secondary hyperalgesia. ASIC3 expression in knee joint afferents was significantly upregulated approximately twofold at Day 14. Continuous intra-articular injections of APETx2 inhibited weight distribution asymmetry and secondary hyperalgesia by attenuating ASIC3 upregulation in knee joint afferents. Histology of ipsilateral knee joint showed APETx2 worked chondroprotectively if administered in the early, but not late phase. Conclusions Local ASIC3 immunoreactive nerve is strongly associated with weight-bearing pain and secondary hyperalgesia in MIA-induced OA model. APETx2 inhibited ASIC3 upregulation in knee joint afferents regardless of the time-point of administration. Furthermore, early administration of APETx2 prevented cartilage damage. APETx2 is a novel, promising drug for OA by relieving pain and inhibiting disease progression.

  9. Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Rowe, Michael H; Neiman, Alexander B

    2012-01-24

    We have used sinusoidal and band-limited Gaussian noise stimuli along with information measures to characterize the linear and non-linear responses of morpho-physiologically identified posterior canal (PC) afferents and to examine the relationship between mutual information rate and other physiological parameters. Our major findings are: 1) spike generation in most PC afferents is effectively a stochastic renewal process, and spontaneous discharges are fully characterized by their first order statistics; 2) a regular discharge, as measured by normalized coefficient of variation (cv*), reduces intrinsic noise in afferent discharges at frequencies below the mean firing rate; 3) coherence and mutual information rates, calculated from responses to band-limited Gaussian noise, are jointly determined by gain and intrinsic noise (discharge regularity), the two major determinants of signal to noise ratio in the afferent response; 4) measures of optimal non-linear encoding were only moderately greater than optimal linear encoding, indicating that linear stimulus encoding is limited primarily by internal noise rather than by non-linearities; and 5) a leaky integrate and fire model reproduces these results and supports the suggestion that the combination of high discharge regularity and high discharge rates serves to extend the linear encoding range of afferents to higher frequencies. These results provide a framework for future assessments of afferent encoding of signals generated during natural head movements and for comparison with coding strategies used by other sensory systems. This article is part of a Special Issue entitled: Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Anorexia‐cachexia syndrome in hepatoma tumour‐bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC‐1/GDF15

    Science.gov (United States)

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N.; Langhans, Wolfgang; Lutz, Thomas A.; Blomqvist, Anders

    2016-01-01

    Abstract Background The cancer‐anorexia‐cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour‐derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour‐derived macrophage inhibitory cytokine‐1 (MIC‐1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC‐1 in mice. Methods Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC‐1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. Results In tumour‐bearing sham‐operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer‐induced anorexia or body weight loss. Tumour‐bearing rats had substantially increased MIC‐1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. Conclusions These findings demonstrate the importance of the AP in the mediation of cancer‐dependent anorexia and body weight loss and support a pathological role of MIC‐1 as a tumour‐derived factor mediating CACS, possibly via an AP

  11. Relationship Between Serum Uric Acid Levels and Intrarenal Hemodynamic Parameters

    Directory of Open Access Journals (Sweden)

    Hideki Uedono

    2015-06-01

    Full Text Available Background/Aims: Hyperuricemia has been reported to affect renal hemodynamics in rat models. We evaluate the relationship between serum uric acid and intrarenal hemodynamic parameters in humans, utilizing the plasma clearance of para-aminohippurate (CPAH and inulin (Cin. Methods: Renal and glomerular hemodynamics were assessed by simultaneous measurement of CPAH and Cin in 58 subjects. Of these, 19 subjects were planned to provide a kidney for transplantation; 26 had diabetes without proteinuria; and 13 had mild proteinuria. Renal and glomerular hemodynamics were calculated using Gomez`s formulae. Results: Cin was more than 60 ml/min/1.73m2 in all subjects. Serum uric acid levels correlated significantly with vascular resistance at the afferent arteriole (Ra (r = 0.354, p = 0.006 but not with that of the efferent arteriole (Re. Serum uric acid levels (β = 0.581, p = a after adjustment for several confounders (R2 = 0.518, p = Conclusions: These findings suggest, for the first time in humans, that higher serum uric acid levels are associated significantly with Ra in subjects with Cin > 60 ml/min/1.73m2. The increase in Ra in subjects with higher uric acid levels may be related to dysfunction of glomerular perfusion.

  12. Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity

    OpenAIRE

    Feng, Bin; La, Jun-ho; Schwartz, Erica S.; Tanaka, Takahiro; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Afferent input contributes significantly to the pain and colorectal hypersensitivity that characterize irritable bowel syndrome. In the present study, we investigated the contributions of mechanically sensitive and mechanically insensitive afferents (MIAs; or silent afferents) to colorectal hypersensitivity. The visceromotor response to colorectal distension (CRD; 15–60 mmHg) was recorded in mice before and for weeks after intracolonic treatment with zymosan or saline. After CRD tests, the di...

  13. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

    Science.gov (United States)

    Egerod, Kristoffer L; Petersen, Natalia; Timshel, Pascal N; Rekling, Jens C; Wang, Yibing; Liu, Qinghua; Schwartz, Thue W; Gautron, Laurent

    2018-06-01

    G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Na v 1.8-expressing afferents. GPCRs for gut hormones that were the most enriched in Na v 1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Na v 1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Na v 1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    Science.gov (United States)

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral

  15. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    Science.gov (United States)

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  16. Automated detection and measurement of isolated retinal arterioles by a combination of edge enhancement and cost analysis.

    Directory of Open Access Journals (Sweden)

    José A Fernández

    Full Text Available Pressure myography studies have played a crucial role in our understanding of vascular physiology and pathophysiology. Such studies depend upon the reliable measurement of changes in the diameter of isolated vessel segments over time. Although several software packages are available to carry out such measurements on small arteries and veins, no such software exists to study smaller vessels (<50 µm in diameter. We provide here a new, freely available open-source algorithm, MyoTracker, to measure and track changes in the diameter of small isolated retinal arterioles. The program has been developed as an ImageJ plug-in and uses a combination of cost analysis and edge enhancement to detect the vessel walls. In tests performed on a dataset of 102 images, automatic measurements were found to be comparable to those of manual ones. The program was also able to track both fast and slow constrictions and dilations during intraluminal pressure changes and following application of several drugs. Variability in automated measurements during analysis of videos and processing times were also investigated and are reported. MyoTracker is a new software to assist during pressure myography experiments on small isolated retinal arterioles. It provides fast and accurate measurements with low levels of noise and works with both individual images and videos. Although the program was developed to work with small arterioles, it is also capable of tracking the walls of other types of microvessels, including venules and capillaries. It also works well with larger arteries, and therefore may provide an alternative to other packages developed for larger vessels when its features are considered advantageous.

  17. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  18. Afferent loop syndrome - a case report

    International Nuclear Information System (INIS)

    Borges, Ana Karina Nascimento; Pinheiro, Marco Antonio Lopes; Galvao, Cristine Norwig

    2000-01-01

    The afferent loop syndrome occurs in patients with previous gastric surgery for tumor, when there is anastomotic edema, use of inappropriate reconstruction technique for gastro jejunostomy or recurrent gastric cancer. Complaints such jaundice, intermittent abdominal distension associated with pain, and vomiting should be investigated in order to rule out this syndrome. (author)

  19. Effects of combined treatment of tadalafil and tamsulosin on bladder dysfunction via the inhibition of afferent nerve activities in a rat model of bladder outlet obstruction.

    Science.gov (United States)

    Furuta, Akira; Suzuki, Yasuyuki; Igarashi, Taro; Koike, Yusuke; Egawa, Shin; Yoshimura, Naoki

    2018-03-08

    To investigate the effects of combined treatment of tadalafil (a phosphodiesterase-5 inhibitor) and tamsulosin (an α 1 -adrenoceptor antagonist) on bladder dysfunction in a rat model of bladder outlet obstruction (BOO). Cystometry was performed in conscious female BOO rats 6 weeks after partially ligation of the urethra. Either tadalafil (0.03, 0.1 and 0.3 mg/kg) or tamsulosin (0.001, 0.003 and 0.01 mg/kg) was cumulatively applied intravenously at 30-min intervals to examine changes in cystometric parameters and blood pressures. Changes in cystometric parameters and blood pressures were also checked when tadalafil (0.3 mg/kg), tamsulosin (0.003 mg/kg) or both were intravenously applied. In BOO rats, application of either tadalafil (0.3 mg/kg) or tamsulosin (0.003, 0.01 mg/kg) alone significantly increased threshold pressures and intercontraction intervals whereas there were no significant changes in other cystometric parameters. In addition, because a significant reduction in blood pressures was detected after the administration of tamsulosin (0.01 mg/kg), tamsulosin at a lower dose (0.003 mg/kg) was used for the combined treatment. The combination therapy of tadalafil and tamsulosin induced a significantly larger rate of increase in intercontraction intervals (1.7 times) compared with monotherapy of either drug (1.3 times each) although the combined therapy did not affect blood pressures. These results suggest that the combination therapy of tadalafil and tamsulosin can induce the additive inhibitory effects on urinary frequency compared with monotherapy, more likely via inhibition of the afferent limb of micturition reflex rather than the efferent function as evidenced by the increases in threshold pressures and intercontraction intervals without affecting bladder contractile function.

  20. Acute cholangitis due to afferent loop syndrome after a Whipple procedure: a case report.

    Science.gov (United States)

    Spiliotis, John; Karnabatidis, Demetrios; Vaxevanidou, Archodoula; Datsis, Anastasios C; Rogdakis, Athanasios; Zacharis, Georgios; Siamblis, Demetrios

    2009-08-25

    Patients with resection of stomach and especially with Billroth II reconstruction (gastro jejunal anastomosis), are more likely to develop afferent loop syndrome which is a rare complication. When the afferent part is obstructed, biliary and pancreatic secretions accumulate and cause the distention of this part. In the case of a complete obstruction (rare), there is a high risk developing necrosis and perforation. This complication has been reported once in the literature. A 54-year-old Greek male had undergone a pancreato-duodenectomy (Whipple procedure) one year earlier due to a pancreatic adenocarcinoma. Approximately 10 months after the initial operation, the patient started having episodes of cholangitis (fever, jaundice) and abdominal pain. This condition progressively worsened and the suspicion of local recurrence or stenosis of the biliary-jejunal anastomosis was discussed. A few days before his admission the patient developed signs of septic cholangitis. Our case demonstrates a rare complication with serious clinical manifestation of the afferent loop syndrome. This advanced form of afferent loop syndrome led to the development of huge enterobiliary reflux, which had a serious clinical manifestation as cholangitis and systemic sepsis, due to bacterial overgrowth, which usually present in the afferent loop. The diagnosis is difficult and the interventional radiology gives all the details to support the therapeutic decision making. A variety of factors can contribute to its development including adhesions, kinking and angulation of the loop, stenosis of gastro-jejunal anastomosis and internal herniation. In order to decompress the afferent loop dilatation due to adhesions, a lateral-lateral jejunal anastomosis was performed between the afferent loop and a small bowel loop.

  1. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    Science.gov (United States)

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just

  2. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension.

    Science.gov (United States)

    Gadkari, Tushar V; Cortes, Natalie; Madrasi, Kumpal; Tsoukias, Nikolaos M; Joshi, Mahesh S

    2013-11-30

    l-Arginine and its decarboxylated product, agmatine are important mediators of NO production and vascular relaxation. However, the underlying mechanisms of their action are not understood. We have investigated the role of arginine and agmatine in resistance vessel relaxation of Sprague-Dawley (SD) and Dahl salt-sensitive hypertensive rats. Second or 3rd-order mesenteric arterioles were cannulated in an organ chamber, pressurized and equilibrated before perfusing intraluminally with agonists. The vessel diameters were measured after mounting on the stage of a microscope fitted with a video camera. The gene expression in Dahl rat vessel homogenates was ascertained by real-time PCR. l-Arginine initiated relaxations (EC50, 5.8±0.7mM; n=9) were inhibited by arginine decarboxylase (ADC) inhibitor, difluoromethylarginine (DFMA) (EC50, 18.3±1.3mM; n=5) suggesting that arginine-induced vessel relaxation was mediated by agmatine formation. Agmatine relaxed the SD rat vessels at significantly lower concentrations (EC50, 138.7±12.1μM; n=22), which was compromised by l-NAME (l-N(G)-nitroarginine methyl ester, an eNOS inhibitor), RX821002 (α-2 AR antagonist) and pertussis toxin (G-protein inhibitor). The agmatine-mediated vessel relaxation from high salt Dahl rats was abolished as compared to that from normal salt rats (EC50, 143.9±23.4μM; n=5). The α-2A AR, α-2B AR and eNOS mRNA expression was downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats. These findings demonstrate that agmatine facilitated the relaxation via activation of α-2 adrenergic G-protein coupled receptor and NO synthesis, and this pathway is compromised in salt-sensitive hypertension. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Modulation of the masseteric reflex by gastric vagal afferents.

    Science.gov (United States)

    Pettorossi, V E

    1983-04-01

    Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.

  4. Neuronal thresholds and choice-related activity of otolith afferent fibers during heading perception.

    Science.gov (United States)

    Yu, Xiong-jie; Dickman, J David; DeAngelis, Gregory C; Angelaki, Dora E

    2015-05-19

    How activity of sensory neurons leads to perceptual decisions remains a challenge to understand. Correlations between choices and single neuron firing rates have been found early in vestibular processing, in the brainstem and cerebellum. To investigate the origins of choice-related activity, we have recorded from otolith afferent fibers while animals performed a fine heading discrimination task. We find that afferent fibers have similar discrimination thresholds as central cells, and the most sensitive fibers have thresholds that are only twofold or threefold greater than perceptual thresholds. Unlike brainstem and cerebellar nuclei neurons, spike counts from afferent fibers do not exhibit trial-by-trial correlations with perceptual decisions. This finding may reflect the fact that otolith afferent responses are poorly suited for driving heading perception because they fail to discriminate self-motion from changes in orientation relative to gravity. Alternatively, if choice probabilities reflect top-down inference signals, they are not relayed to the vestibular periphery.

  5. Inhibition of micturition reflex by activation of somatic afferents in posterior femoral cutaneous nerve.

    Science.gov (United States)

    Tai, Changfeng; Shen, Bing; Mally, Abhijith D; Zhang, Fan; Zhao, Shouguo; Wang, Jicheng; Roppolo, James R; de Groat, William C

    2012-10-01

    This study determined if activation of somatic afferents in posterior femoral cutaneous nerve (PFCN) could modulate the micturition reflex recorded under isovolumetric conditions in α-chloralose anaesthetized cats. PFCN stimulation inhibited reflex bladder activity and significantly (P acid (AA). The optimal frequency for PFCN stimulation-induced bladder inhibition was between 3 and 10 Hz, and a minimal stimulation intensity of half of the threshold for inducing anal twitching was required. Bilateral pudendal nerve transection eliminated PFCN stimulation-induced anal twitching but did not change the stimulation-induced bladder inhibition, excluding the involvement of pudendal afferent or efferent axons in PFCN afferent inhibition.Mechanical or electrical stimulation on the skin surface in the PFCN dermatome also inhibited bladder activity. Prolonged (2 × 30 min) PFCN stimulation induced a post-stimulation inhibition that persists for at least 2 h. This study revealed a new cutaneous-bladder reflex activated by PFCN afferents. Although the mechanisms and physiological functions of this cutaneous-bladder reflex need to be further studied, our data raise the possibility that stimulation of PFCN afferents might be useful clinically for the treatment of overactive bladder symptoms.

  6. Contraction-evoked vasodilation and functional hyperaemia are compromised in branching skeletal muscle arterioles of young pre-diabetic mice.

    Science.gov (United States)

    Novielli, N M; Jackson, D N

    2014-06-01

    To investigate the effects of pre-diabetes on microvascular network function in contracting skeletal muscle. We hypothesized that pre-diabetes compromises contraction-evoked vasodilation of branching second-order (2A), third-order (3A) and fourth-order (4A) arterioles, where distal arterioles would be affected the greatest. Intravital video microscopy was used to measure arteriolar diameter (in 2A, 3A and 4A) and blood flow (in 2A and 3A) changes to electrical field stimulation of the gluteus maximus muscle in pre-diabetic (The Pound Mouse, PD) and control (c57bl6, CTRL) mice. Baseline diameter and blood flow were similar between groups (2A: ~20 μm, 3A: ~14 μm and 4A: ~8 μm; 2A: ~1 nL s(-1) and 3A: ~0.5 nL s(-1) ). Single tetanic contraction (100 Hz; 200, 400, 800 ms duration) evoked rapid-onset vasodilation (ROV) and blood flow responses that were blunted by ~50% and up to 81%, respectively, in PD vs. CTRL (P contraction (2 and 8 Hz, 30 s) evoked vasodilatory and blood flow responses that were also attenuated by ~50% and up to 71%, respectively, in PD vs. CTRL (P contraction was also up to 2.5-fold greater at 4A vs. 2A in CTRL; however spatial differences in vasodilation across arteriolar branch orders was disrupted in PD. Arteriolar dysregulation in pre-diabetes causes deficits in contraction-evoked dilation and blood flow, where greatest deficits occur at distal arterioles. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles

    Science.gov (United States)

    Shirokov, Roman E.

    2018-01-01

    Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 μM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 μM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 μM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling. PMID:29694371

  8. Group Ia afferents likely contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion: Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...... neurons in humans, with primary contributions from group Ia muscle spindle afferents....

  9. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  10. Anorexia-cachexia syndrome in hepatoma tumour-bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC-1/GDF15.

    Science.gov (United States)

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N; Langhans, Wolfgang; Lutz, Thomas A; Blomqvist, Anders; Riediger, Thomas

    2017-06-01

    The cancer-anorexia-cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour-derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour-derived macrophage inhibitory cytokine-1 (MIC-1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC-1 in mice. Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC-1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. In tumour-bearing sham-operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer-induced anorexia or body weight loss. Tumour-bearing rats had substantially increased MIC-1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. These findings demonstrate the importance of the AP in the mediation of cancer-dependent anorexia and body weight loss and support a pathological role of MIC-1 as a tumour-derived factor mediating CACS, possibly via an AP-dependent action. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle

  11. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...

  12. KATP channels are not essential for pressure-dependent control of renin secretion

    DEFF Research Database (Denmark)

    Jensen, B L; Gambaryan, S; Scholz, H

    1998-01-01

    (IPRK). Cromakalim (0.1-10 muM) stimulated basal renin secretion up to threefold and caused vasorelaxation in the IPRK. Both effects of cromakalim were attenuated by glibenclamide. Cromakalim stimulated renin secretion from isolated juxtaglomerular (JG) cells and from microdissected afferent arterioles......This study aimed to investigate the functional role of ATP-sensitive K+ (KATP) channels in the control of renin secretion by renal perfusion pressure. We studied the effect of openers and blockers of KATP-channels on basal- and low-pressure-induced renin secretion from isolated perfused rat kidneys......, all of which suggests that KATP channel openers stimulate renin secretion at the level of JG cells. A decrease in the perfusion pressure from 13.3 to 9.33 kPa (100 mmHg to 70 mmHg) increased renin secretion twofold, and cromakalim further increased renin secretion. At 5.33 kPa (40 mmHg) renin...

  13. Ictal but not interictal epileptic discharges activate astrocyte endfeet and elicit cerebral arteriole responses.

    Directory of Open Access Journals (Sweden)

    Marta eGomez-Gonzalo

    2011-06-01

    Full Text Available Activation of astrocytes by neuronal signals plays a central role in the control of neuronal activity-dependent blood flow changes in the normal brain. The cellular pathways that mediate neurovascular coupling in the epileptic brain remain, however, poorly defined. In a cortical slice model of epilepsy, we found that the ictal, seizure-like discharge, and only to a minor extent the interictal discharge, evokes both a Ca2+ increase in astrocyte endfeet and a vasomotor response. We also observed that rapid ictal discharge-induced arteriole responses were regularly preceded by Ca2+ elevations in endfeet and were abolished by pharmacological inhibition of Ca2+ signals in these astrocyte processes. Under these latter conditions, arterioles exhibited after the ictal discharge only slowly developing vasodilations. The poor efficacy of interictal discharges, compared with ictal discharges, to activate endfeet was confirmed also in the intact in vitro isolated guinea pig brain. Although the possibility of a direct contribution of neurons, in particular in the late response of cerebral blood vessels to epileptic discharges, should be taken into account, our study supports the view that astrocytes are central for neurovascular coupling also in the epileptic brain. The massive endfeet Ca2+ elevations evoked by ictal discharges and the poor response to interictal events represent new information potentially relevant to interpret data from diagnostic brain imaging techniques, such as functional magnetic resonance, utilized in the clinic to localize neural activity and to optimize neurosurgery of untreatable epilepsies.

  14. Vascular anatomy of the pig kidney glomerulus: a qualitative study of corrosion casts.

    Science.gov (United States)

    Moore, B J; Holmes, K R; Xu, L X

    1992-09-01

    Pig kidney glomerular vascular anatomy was studied by scanning electron microscopy of vascular corrosion casts. A generalized vascular architecture is presented to describe the pig kidney glomerulus based upon the observation of 3,800 vascular cast glomeruli. The relative simplicity of the pig glomerular vascular architecture has allowed the characterization of different vascular segments more completely than has been possible in other mammals. Based upon relationships to the afferent arteriole, a nomenclature and definition of primary, secondary, tertiary and anastomotic vessels is proposed for the distributing vessels comprising the glomerular tuft. The existence and formation of a large central hemispheric vessel deep within the confines of a glomerular hemisphere is micrographically documented. Micrographic evidence is presented supporting the formation of the single efferent arteriole by the merging of two central hemispheric vessels within the confines of the glomerular tuft. Failure of the merging of these two vessels may result in multiple efferent arterioles.

  15. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  16. Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions.

    Science.gov (United States)

    Song, Zhiyang; Viisanen, Hanna; Meyerson, Björn A; Pertovaara, Antti; Linderoth, Bengt

    2014-04-01

    The aim was to compare the effects of high-frequency spinal cord stimulation (HF-SCS) at subparesthetic intensity with conventional SCS in rat models of different types of pain. In addition, microrecordings of afferent activity in the dorsal columns during both types of SCS were performed to elucidate their mode of action. Miniature SCS electrodes were implanted in all rats. One group was submitted to the spared nerve injury procedure (SNI) and another to inflammatory pain after carrageenan injection into a hind paw. All animals were tested for hypersensitivity to normally innocuous tactile and thermal stimuli. One group of normal healthy rats was submitted to acute nociceptive (pinch, heat) pain. Microrecording of afferent activity in the gracile nucleus (GN) was performed in a group of nerve-lesioned rats responding to conventional SCS. HF-SCS at 500, 1,000, or 10,000 Hz at subparesthetic amplitudes produced similar reductions in hypersensitivity due to nerve lesion as did conventional SCS at 50 Hz. HF-SCS showed no effect on thermal pain. A trial to rescue non-responders to conventional SCS using HF-SCS was not successful. There were no effects either of conventional or of HF-SCS on acute or inflammatory pain. Conventional SCS produced massive activation in the GN but no activation during HF-SCS, though normal peripherally evoked afferent activity remained. Conventional SCS proved equally effective to HF-SCS in various pain models. As no activity is conveyed rostrally in subparesthetic HF-SCS, we hypothesize that its mechanisms of action are primarily segmental. © 2014 International Neuromodulation Society.

  17. Afferent activity to necklace glomeruli is dependent on external stimuli

    Directory of Open Access Journals (Sweden)

    Munger Steven D

    2009-03-01

    Full Text Available Abstract Background The main olfactory epithelium (MOE is a complex organ containing several functionally distinct subpopulations of sensory neurons. One such subpopulation is distinguished by its expression of the guanylyl cyclase GC-D. The axons of GC-D-expressing (GC-D+ neurons innervate 9–15 "necklace" glomeruli encircling the caudal main olfactory bulb (MOB. Chemosensory stimuli for GC-D+ neurons include two natriuretic peptides, uroguanylin and guanylin, and CO2. However, the biologically-relevant source of these chemostimuli is unclear: uroguanylin is both excreted in urine, a rich source of olfactory stimuli for rodents, and expressed in human nasal epithelium; CO2 is present in both inspired and expired air. Findings To determine whether the principal source of chemostimuli for GC-D+ neurons is external or internal to the nose, we assessed the consequences of removing external chemostimuli for afferent activity to the necklace glomeruli. To do so, we performed unilateral naris occlusions in Gucy2d-Mapt-lacZ +/- mice [which express a β-galactosidase (β-gal reporter specifically in GC-D+ neurons] followed by immunohistochemistry for β-gal and a glomerular marker of afferent activity, tyrosine hydroxylase (TH. We observed a dramatic decrease in TH immunostaining, consistent with reduced or absent afferent activity, in both necklace and non-necklace glomeruli ipsilateral to the occluded naris. Conclusion Like other MOB glomeruli, necklace glomeruli exhibit a large decrease in afferent activity upon removal of external stimuli. Thus, we conclude that activity in GC-D+ neurons, which specifically innervate necklace glomeruli, is not dependent on internal stimuli. Instead, GC-D+ neurons, like other OSNs in the MOE, primarily sense the external world.

  18. On the nature of the afferent fibers of oculomotor nerve.

    Science.gov (United States)

    Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L

    1989-03-01

    The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.

  19. Heat pulse excitability of vestibular hair cells and afferent neurons.

    Science.gov (United States)

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in protein biophysics and manipulate cellular excitability. Copyright © 2016 the American Physiological Society.

  20. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries

    DEFF Research Database (Denmark)

    VanBavel, Ed; Sorop, Oana; Andreasen, Ditte

    2002-01-01

    T-type calcium channels may be involved in the maintenance of myogenic tone. We tested their role in isolated rat cremaster arterioles obtained after CO(2) anesthesia and decapitation. Total RNA was analyzed by RT-PCR and Southern blotting for calcium channel expression. We observed expression...... of voltage-operated calcium (Ca(V)) channels Ca(V)3.1 (T-type), Ca(V)3.2 (T-type), and Ca(V)1.2 (L-type) in cremaster arterioles (n = 3 rats). Amplification products were observed only in the presence of reverse transcriptase and cDNA. Concentration-response curves of the relatively specific L-type blocker......); K(+) -5.4 +/- 0.3 (n = 4); all log(IC(50)) P maintenance of myogenic tone in rat cremaster muscle arterioles....

  1. Glucagon-like peptide-1 reduces pancreatic β-cell mass through hypothalamic neural pathways in high-fat diet-induced obese rats.

    Science.gov (United States)

    Ando, Hisae; Gotoh, Koro; Fujiwara, Kansuke; Anai, Manabu; Chiba, Seiichi; Masaki, Takayuki; Kakuma, Tetsuya; Shibata, Hirotaka

    2017-07-17

    We examined whether glucagon-like peptide-1 (GLP-1) affects β-cell mass and proliferation through neural pathways, from hepatic afferent nerves to pancreatic efferent nerves via the central nervous system, in high-fat diet (HFD)-induced obese rats. The effects of chronic administration of GLP-1 (7-36) and liraglutide, a GLP-1 receptor agonist, on pancreatic morphological alterations, c-fos expression and brain-derived neurotrophic factor (BDNF) content in the hypothalamus, and glucose metabolism were investigated in HFD-induced obese rats that underwent hepatic afferent vagotomy (VgX) and/or pancreatic efferent sympathectomy (SpX). Chronic GLP-1 (7-36) administration to HFD-induced obese rats elevated c-fos expression and BDNF content in the hypothalamus, followed by a reduction in pancreatic β-cell hyperplasia and insulin content, thus resulting in improved glucose tolerance. These responses were abolished by VgX and SpX. Moreover, administration of liraglutide similarly activated the hypothalamic neural pathways, thus resulting in a more profound amelioration of glucose tolerance than native GLP-1 (7-36). These data suggest that GLP-1 normalizes the obesity-induced compensatory increase in β-cell mass and glucose intolerance through a neuronal relay system consisting of hepatic afferent nerves, the hypothalamus, and pancreatic efferent nerves.

  2. The visceromotor and somatic afferent nerves of the penis.

    Science.gov (United States)

    Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeanine; Ba, Nathalie; Allodji, Rodrigue Sètchéou; Benoit, Gérard; Bedretdinova, Dina; Bessede, Thomas

    2015-05-01

    Innervation of the penis supports erectile and sensory functions. This article aims to study the efferent autonomic (visceromotor) and afferent somatic (sensory) nervous systems of the penis and to investigate how these systems relate to vascular pathways. Penises obtained from five adult cadavers were studied via computer-assisted anatomic dissection (CAAD). The number of autonomic and somatic nerve fibers was compared using the Kruskal-Wallis test. Proximally, penile innervation was mainly somatic in the extra-albugineal sector and mainly autonomic in the intracavernosal sector. Distally, both sectors were almost exclusively supplied by somatic nerve fibers, except the intrapenile vascular anastomoses that accompanied both somatic and autonomic (nitrergic) fibers. From this point, the neural immunolabeling within perivascular nerve fibers was mixed (somatic labeling and autonomic labeling). Accessory afferent, extra-albugineal pathways supplied the outer layers of the penis. There is a major change in the functional type of innervation between the proximal and distal parts of the intracavernosal sector of the penis. In addition to the pelvis and the hilum of the penis, the intrapenile neurovascular routes are the third level where the efferent autonomic (visceromotor) and the afferent somatic (sensory) penile nerve fibers are close. Intrapenile neurovascular pathways define a proximal penile segment, which guarantees erectile rigidity, and a sensory distal segment. © 2015 International Society for Sexual Medicine.

  3. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  4. Cellular mechanisms for presynaptic inhibition of sensory afferents

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; delgado-lezama, rodolfo; Christensen, Rasmus Kordt

    It is well established that presynaptic inhibition of primary afferents involves the activation of GABAA receptors located on presynaptic terminals. However, the source of GABA remains unknown. In an integrated preparation of the spinal cord of the adult turtle, we evoked dorsal root potentials...

  5. Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells.

    Science.gov (United States)

    Lecca, Salvatore; Melis, Miriam; Luchicchi, Antonio; Ennas, Maria Grazia; Castelli, Maria Paola; Muntoni, Anna Lisa; Pistis, Marco

    2011-02-01

    Recent findings have underlined the rostromedial tegmental nucleus (RMTg), a structure located caudally to the ventral tegmental area, as an important site involved in the mechanisms of aversion. RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding midbrain dopamine (DA) neurons. One of the key features of drug addiction is the perseverance of drug seeking in spite of negative and unpleasant consequences, likely mediated by response suppression within neural pathways mediating aversion. To investigate whether the RMTg has a function in the mechanisms of addicting drugs, we studied acute effects of morphine, cocaine, the cannabinoid agonist WIN55212-2 (WIN), and nicotine on putative RMTg neurons. We utilized single unit extracellular recordings in anesthetized rats and whole-cell patch-clamp recordings in brain slices to identify and characterize putative RMTg neurons and their responses to drugs of abuse. Morphine and WIN inhibited both firing rate in vivo and excitatory postsynaptic currents (EPSCs) evoked by stimulation of rostral afferents in vitro, whereas cocaine inhibited discharge activity without affecting EPSC amplitude. Conversely, nicotine robustly excited putative RMTg neurons and enhanced EPSCs, an effect mediated by α7-containing nicotinic acetylcholine receptors. Our results suggest that activity of RMTg neurons is profoundly influenced by drugs of abuse and, as important inhibitory afferents to midbrain DA neurons, they might take place in the complex interplay between the neural circuits mediating aversion and reward.

  6. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus

    Directory of Open Access Journals (Sweden)

    Michael C. Andresen

    2013-01-01

    Full Text Available The brainstem nucleus of the solitary tract (NTS holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current (EPSC often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g. hypothalamus neuron sources. Presynaptic receptors for angiotensin (AT1, vasopressin (V1a, oxytocin (OT, opioid (MOR, ghrelin (GHSR1 and cholecystokinin (CCK differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 (TRPV1 and the cannabinoid receptor (CB1 that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.

  7. Role of spared pathways in locomotor recovery after body-weight-supported treadmill training in contused rats.

    Science.gov (United States)

    Singh, Anita; Balasubramanian, Sriram; Murray, Marion; Lemay, Michel; Houle, John

    2011-12-01

    Body-weight-supported treadmill training (BWSTT)-related locomotor recovery has been shown in spinalized animals. Only a few animal studies have demonstrated locomotor recovery after BWSTT in an incomplete spinal cord injury (SCI) model, such as contusion injury. The contribution of spared descending pathways after BWSTT to behavioral recovery is unclear. Our goal was to evaluate locomotor recovery in contused rats after BWSTT, and to study the role of spared pathways in spinal plasticity after BWSTT. Forty-eight rats received a contusion, a transection, or a contusion followed at 9 weeks by a second transection injury. Half of the animals in the three injury groups were given BWSTT for up to 8 weeks. Kinematics and the Basso-Beattie-Bresnahan (BBB) test assessed behavioral improvements. Changes in Hoffmann-reflex (H-reflex) rate depression property, soleus muscle mass, and sprouting of primary afferent fibers were also evaluated. BWSTT-contused animals showed accelerated locomotor recovery, improved H-reflex properties, reduced muscle atrophy, and decreased sprouting of small caliber afferent fibers. BBB scores were not improved by BWSTT. Untrained contused rats that received a transection exhibited a decrease in kinematic parameters immediately after the transection; in contrast, trained contused rats did not show an immediate decrease in kinematic parameters after transection. This suggests that BWSTT with spared descending pathways leads to neuroplasticity at the lumbar spinal level that is capable of maintaining locomotor activity. Discontinuing training after the transection in the trained contused rats abolished the improved kinematics within 2 weeks and led to a reversal of the improved H-reflex response, increased muscle atrophy, and an increase in primary afferent fiber sprouting. Thus continued training may be required for maintenance of the recovery. Transected animals had no effect of BWSTT, indicating that in the absence of spared pathways this

  8. Population coding of forelimb joint kinematics by peripheral afferents in monkeys.

    Directory of Open Access Journals (Sweden)

    Tatsuya Umeda

    Full Text Available Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates.

  9. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Science.gov (United States)

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  10. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    Science.gov (United States)

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  11. Extracellular adenosine 5'-triphosphate concentrations changes in rat spinal cord associated with the activation of urinary bladder afferents. A microdialysis study.

    Science.gov (United States)

    Rocha, Jeová Nina

    2016-01-01

    To determine adenosine 5'-triphosphate levels in the interstice of spinal cord L6-S1 segment, under basal conditions or during mechanical and chemical activation of urinary bladder afferents. A microdialysis probe was transversally implanted in the dorsal half of spinal cord L6-S1 segment in female rats. Microdialysate was collected at 15 minutes intervals during 135 minutes, in anesthetized animals. Adenosine 5'-triphosphate concentrations were determined with a bioluminescent assay. In one group of animals (n=7) microdialysate samples were obtained with an empty bladder during a 10-minutes bladder distension to 20 or 40cmH2O with either saline, saline with acetic acid or saline with capsaicin. In another group of animals (n=6) bladder distention was performed and the microdialysis solution contained the ectonucleotidase inhibitor ARL 67156. Basal extracellular adenosine triphosphate levels were 110.9±35.34fmol/15 minutes, (mean±SEM, n=13), and bladder distention was associated with a significant increase in adenosine 5'-triphosphate levels which was not observed after bladder distention with saline solution containing capsaicin (10µM). Microdialysis with solution containing ARL 67156 (1mM) was associated with significantly higher extracellular adenosine 5'-triphosphate levels and no further increase in adenosine 5'-triphosphate was observed during bladder distension. Adenosine 5'-triphosphate was present in the interstice of L6-S1 spinal cord segments, was degraded by ectonucleotidase, and its concentration increased following the activation of bladder mechanosensitive but not of the chemosensitive afferents fibers. Adenosine 5'-triphosphate may originate either from the central endings of bladder mechanosensitive primary afferent neurons, or most likely from intrinsic spinal neurons, or glial cells and its release appears to be modulated by capsaicin activated bladder primary afferent or by adenosine 5'-triphosphate itself. Determinar as concentra

  12. Heat pulse excitability of vestibular hair cells and afferent neurons

    Science.gov (United States)

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  13. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    Science.gov (United States)

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  14. Cyclic estrogenic fluctuation influences synaptic transmission of the medial vestibular nuclei in female rats.

    Science.gov (United States)

    Pettorossi, Vito E; Frondaroli, Adele; Grassi, Silvarosa

    2011-04-01

    The estrous cycle in female rats influences the basal synaptic responsiveness and plasticity of the medial vestibular nucleus (MVN) neurons through different levels of circulating 17β-estradiol (cE(2)). The aim of this study was to verify, in the female rat, whether cyclic fluctuations of cE(2) influence long-term synaptic effects induced by high frequency afferent stimulation (HFS) in the MVN, since we found that HFS in the male rat induces fast long-term potentiation (fLTP), which depends on the neural synthesis of E(2) (nE(2)) from testosterone (T). We analyzed the field potential (FP) evoked in the MVN by vestibular afferent stimulation, under basal conditions, and after HFS, in brainstem slices of female rats during high levels (proestrus, PE) and low levels (diestrus, DE) of cE(2). Selective blocking agents of converting T enzymes were used. Unlike in the male rat, HFS induced three effects: fLTP through T conversion into E(2), and slow LTP (sLTP) and long-term depression (LTD), through T conversion into DHT. The occurrence of these effects depended on the estrous cycle phase: the frequency of fLTP was higher in DE, and those of sLTP and LTD were higher in PE. Conversely, the basal FP was also higher in PE than in DE.

  15. Development of fusimotor innervation correlates with group Ia afferents but is independent of neurotrophin-3

    NARCIS (Netherlands)

    Ringstedt, T; Copray, S; Walro, J; Kucera, J

    1998-01-01

    Fusimotor neurons, group Ia afferents and muscle spindles are absent in mutant mice lacking the gene for neurotrophin-3 (NT3). To partition the effect of Ia afferent or spindle absence from that of NT3 deprivation on fusimotor neuron development, we examined the fusimotor system in a mutant mouse

  16. Endothelin-1 is a Risk Factor for Pathogenesis of Hypertension

    International Nuclear Information System (INIS)

    Abdelhalim, Mohamed Anwar K.

    2007-01-01

    The purpose of this present study was to investigate the effects of endothelin-1 (ET-1) on the systemic blood pressure, microvascular blood flow velocity and diameter of arterioles and venules of the rat mesentery in vivo. For this purpose, the mesentery was arranged for in situ intravital microscopic observation under transillumination, and cumulative injections of ET-1(30-2000 p mole/kg) were infused intravenously through a catheter inserted into the right jugular vein. Infusion of low doses of ET-1(30-125 pmole/kg) induced a slight increase in the systemic blood pressure, a dose-dependent increase in blood flow velocity of arterioles (20-30 micron m) and venules (30-50 micron m). Diameters of arterioles and venules exhibited no significant change as compared with the control data. On the contrary, the infusion of high doses of ET-1 (250-2000 pmole/kg) induced a long-lasting pressor effect, a dose-dependent decrease in the blood flow velocity of arterioles and venules. Microvascular diameter exhibited a vasoconstrictive effect more prominent in arterioles than in venules. These findings suggest that vasoconstriction produced by ET-1 in rat mesenteric microcirculation may be the causal factor for its potent pressor effect in rats. Moreover, ET-1 may be involved in the regulation of the blood flow velocity distribution of rat mesenteric microcirculation. Finally, ET-1 may be considered as one of the more important risk factors which contribute to the pathogenesis of hypertension. (author)

  17. Excessive peptidergic sensory innervation of cutaneous arteriole-venule shunts (AVS) in the palmar glabrous skin of fibromyalgia patients: implications for widespread deep tissue pain and fatigue.

    Science.gov (United States)

    Albrecht, Phillip J; Hou, Quanzhi; Argoff, Charles E; Storey, James R; Wymer, James P; Rice, Frank L

    2013-06-01

    To determine if peripheral neuropathology exists among the innervation of cutaneous arterioles and arteriole-venule shunts (AVS) in fibromyalgia (FM) patients. Cutaneous arterioles and AVS receive a convergence of vasoconstrictive sympathetic innervation, and vasodilatory small-fiber sensory innervation. Given our previous findings of peripheral pathologies in chronic pain conditions, we hypothesized that this vascular location may be a potential site of pathology and/or serotonergic and norepinephrine reuptake inhibitors (SNRI) drug action. Twenty-four female FM patients and nine female healthy control subjects were enrolled for study, with 14 additional female control subjects included from previous studies. AVS were identified in hypothenar skin biopsies from 18/24 FM patient and 14/23 control subjects. Multimolecular immunocytochemistry to assess different types of cutaneous innervation in 3 mm skin biopsies from glabrous hypothenar and trapezius regions. AVS had significantly increased innervation among FM patients. The excessive innervation consisted of a greater proportion of vasodilatory sensory fibers, compared with vasoconstrictive sympathetic fibers. In contrast, sensory and sympathetic innervation to arterioles remained normal. Importantly, the sensory fibers express α2C receptors, indicating that the sympathetic innervation exerts an inhibitory modulation of sensory activity. The excessive sensory innervation to the glabrous skin AVS is a likely source of severe pain and tenderness in the hands of FM patients. Importantly, glabrous AVS regulate blood flow to the skin in humans for thermoregulation and to other tissues such as skeletal muscle during periods of increased metabolic demand. Therefore, blood flow dysregulation as a result of excessive innervation to AVS would likely contribute to the widespread deep pain and fatigue of FM. SNRI compounds may provide partial therapeutic benefit by enhancing the impact of sympathetically mediated inhibitory

  18. Changes of the vasculature and innervation in the anterior segment of the RCS rat eye.

    Science.gov (United States)

    May, Christian Albrecht

    2011-12-01

    Investigating the anterior eye segment vasculature and innervation of dystrophic RCS rats, two major unique findings were observed: in the iris, young adult animals with retinal dystrophy showed an increase in substance P nerve fibres and a dilation of arterioles and capillaries. This finding continued during ageing. In the pars plana region, the surface covered by venules decreased continuously with age. In older animals, this decrease was parallelled by a local decrease of sympathetic TH-positive nerve fibres supplying these venules. For both conditions, no comparable data exists so far in the literature. They might point to a unique situation in the anterior eye segment of the dystrophic RCS rat. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Structure of the afferent terminals in terminal ganglion of a cricket and persistent homology.

    Directory of Open Access Journals (Sweden)

    Jacob Brown

    Full Text Available We use topological data analysis to investigate the three dimensional spatial structure of the locus of afferent neuron terminals in crickets Acheta domesticus. Each afferent neuron innervates a filiform hair positioned on a cercus: a protruding appendage at the rear of the animal. The hairs transduce air motion to the neuron signal that is used by a cricket to respond to the environment. We stratify the hairs (and the corresponding afferent terminals into classes depending on hair length, along with position. Our analysis uncovers significant structure in the relative position of these terminal classes and suggests the functional relevance of this structure. Our method is very robust to the presence of significant experimental and developmental noise. It can be used to analyze a wide range of other point cloud data sets.

  20. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    Directory of Open Access Journals (Sweden)

    Axel J. Fenwick

    2014-01-01

    Full Text Available Cranial visceral afferents contained within the solitary tract (ST contact second-order neurons in the nucleus of the solitary tract (NTS and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33˚ - 37˚C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  1. Dissociating movement from movement timing in the rat primary motor cortex.

    Science.gov (United States)

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  2. Differential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum

    OpenAIRE

    Feng, Bin; Brumovsky, Pablo R.; Gebhart, Gerald F.

    2010-01-01

    Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encoding. We utilized an in vitro mouse colorectum-PN preparation to investigate pressure-encoding charac...

  3. Toxicity of dietary Heliotropium circinatum to rats.

    Science.gov (United States)

    Eröksüz, H; Eröksüz, Y; Ozer, H; Ceribasi, A O; Tosun, F; Tamer, U; Kizilay, C Akyüz

    2003-08-01

    Pyrrolizidine alkaloid intoxication was produced in adult, male rats by feeding different levels (0, 1, 3, 5 or 10%) of Heliotropium circinatum for 20 w. Combined GC-MS revealed 0.15% total alkaloid content in the plant material of which 12% and 88% were basic and N-oxide forms, respectively. The specific alkaloids identified were europine (67.33%), heliotrine (16.34%), lasiocarpine (8.12%), heleurine (4.18%), echinatine (1.56%), 7-angeylheliotrine (1.19%), and an unknown alkaloid (1.28%). Neither mortality nor significant clinical changes occurred in test groups. Mild to moderate, dose-related hepatic megalocytosis was the most prominent histopathological finding. In addition to chronic hepatotoxicity, notable medial thickening occurred in the pulmonary arterioles and arteries of the high-dosed groups. This study indicated that H. circinatum plant has limited toxic potential in rats with mild to moderate histological changes and no mortality at the dosing levels, total doses, or time of exposure employed.

  4. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    David L García-Ramírez

    Full Text Available Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD. PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT, dopamine (DA and noradrenaline (NA on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs or intracellular excitatory postsynaptic currents (EPSCs. The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75% but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic

  5. Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6

    Directory of Open Access Journals (Sweden)

    Yan Jin

    2012-01-01

    Full Text Available Abstract Background Migraine headache is one of the most common neurological disorders, but the pathophysiology contributing to migraine is poorly understood. Intracranial interleukin-6 (IL-6 levels have been shown to be elevated during migraine attacks, suggesting that this cytokine may facilitate pain signaling from the meninges and contribute to the development of headache. Methods Cutaneous allodynia was measured in rats following stimulation of the dura with IL-6 alone or in combination with the MEK inhibitor, U0126. The number of action potentials and latency to the first action potential peak in response to a ramp current stimulus as well as current threshold were measured in retrogradely-labeled dural afferents using patch-clamp electrophysiology. These recordings were performed in the presence of IL-6 alone or in combination with U0126. Association between ERK1 and Nav1.7 following IL-6 treatment was also measured by co-immunoprecipitation. Results Here we report that in awake animals, direct application of IL-6 to the dura produced dose-dependent facial and hindpaw allodynia. The MEK inhibitor U0126 blocked IL-6-induced allodynia indicating that IL-6 produced this behavioral effect through the MAP kinase pathway. In trigeminal neurons retrogradely labeled from the dura, IL-6 application decreased the current threshold for action potential firing. In response to a ramp current stimulus, cells treated with IL-6 showed an increase in the numbers of action potentials and a decrease in latency to the first spike, an effect consistent with phosphorylation of the sodium channel Nav1.7. Pretreatment with U0126 reversed hyperexcitability following IL-6 treatment. Moreover, co-immunoprecipitation experiments demonstrated an increased association between ERK1 and Nav1.7 following IL-6 treatment. Conclusions Our results indicate that IL-6 enhances the excitability of dural afferents likely via ERK-mediated modulation of Nav1.7 and these responses

  6. Influence of oculomotor nerve afferents on central endings of primary trigeminal fibers.

    Science.gov (United States)

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E; Draicchio, F

    1987-12-01

    Painful fibers running in the third nerve and originating from the ophthalmic trigeminal area send their central projections at level of substantia gelatinosa of nucleus caudalis trigemini. The central endings of these fibers form axoaxonic synapses with trigeminal fibers entering the brain stem through the trigeminal root. The effect of electrical stimulation of the third nerve central stump on the central endings of trigeminal afferent fibers consists in an increased excitability, possibly resulting in a presynaptic inhibition. This inhibitory influence is due to both direct and indirect connections of the third nerve afferent fibers with the trigeminal ones.

  7. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9

    Directory of Open Access Journals (Sweden)

    Shuangquan Yan

    2016-01-01

    Full Text Available Baicalin has a protective effect on hypoxia-induced pulmonary hypertension in rats, but the mechanism of this effect remains unclear. Thus, investigating the potential mechanism of this effect was the aim of the present study. Model rats that display hypoxic pulmonary hypertension and cor pulmonale under control conditions were successfully generated. We measured a series of indicators to observe the levels of pulmonary arterial hypertension, pulmonary arteriole remodeling, and right ventricular remodeling. We assessed the activation of p38 mitogen-activated protein kinase (MAPK in the pulmonary arteriole walls and pulmonary tissue homogenates using immunohistochemistry and western blot analyses, respectively. The matrix metalloproteinase- (MMP- 9 protein and mRNA levels in the pulmonary arteriole walls were measured using immunohistochemistry and in situ hybridization. Our results demonstrated that baicalin not only reduced p38 MAPK activation in both the pulmonary arteriole walls and tissue homogenates but also downregulated the protein and mRNA expression levels of MMP-9 in the pulmonary arteriole walls. This downregulation was accompanied by the attenuation of pulmonary hypertension, arteriole remodeling, and right ventricular remodeling. These results suggest that baicalin may attenuate pulmonary hypertension and cor pulmonale, which are induced by chronic hypoxia, by downregulating the p38 MAPK/MMP-9 pathway.

  8. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    Science.gov (United States)

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  9. The Renal Nerves in Chronic Heart Failure: Afferent and Efferent Mechanisms

    Directory of Open Access Journals (Sweden)

    Alicia Marie Schiller

    2015-08-01

    Full Text Available The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF. Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent

  10. Videodensitometry in rats with pulmonary damage due to microembolism

    Energy Technology Data Exchange (ETDEWEB)

    Wegenius, G.; Wegener, T.; Ruhn, G.; Saldeen, T.; Erikson, U.

    Serial pulmonary angiography with videodensitometry was performed in 18 rats with pulmonary damage caused by administration of a fibrinolysis inhibitor, tranexamic acid (200 mg/kg body weight injected intraperitoneally) and bovine thrombin (500 NIH/kg body weight injected into the right femoral vein). The mean transit time (MTT) was calculated from videodensitometry, the observed area of interest consisting of approximately one-third of the right lung, including both central and peripheral parts. The impact of the pulmonary damage was analysed by morphologic methods and correlated to MTT. Although a pressure rise presumably occurred in the pulmonary circulation, no change in MTT was found after induction of pulmonary damage, indicating opening of actual and potential anastomoses between pulmonary arterioles and venules to serve as by-pass portions and as a safety-valve mechanism for the capillary bed and the right heart, respectively. Another explanation to unchanged MTT may be opening of resting capillary beds. Two rats with very severe pulmonary damage showed prolonged MTT. These rats may have suffered from cardiac failure.

  11. Videodensitometry in rats with pulmonary damage due to microembolism

    International Nuclear Information System (INIS)

    Wegenius, G.; Wegener, T.; Ruhn, G.; Saldeen, T.; Erikson, U.

    1985-01-01

    Serial pulmonary angiography with videodensitometry was performed in 18 rats with pulmonary damage caused by administration of a fibrinolysis inhibitor, tranexamic acid (200 mg/kg body weight injected intraperitoneally) and bovine thrombin (500 NIH/kg body weight injected into the right femoral vein). The mean transit time (MTT) was calculated from videodensitometry, the observed area of interest consisting of approximately one-third of the right lung, including both central and peripheral parts. The impact of the pulmonary damage was analysed by morphologic methods and correlated to MTT. Although a pressure rise presumably occurred in the pulmonary circulation, no change in MTT was found after induction of pulmonary damage, indicating opening of actual and potential anastomoses between pulmonary arterioles and venules to serve as by-pass portions and as a safety-valve mechanism for the capillary bed and the right heart, respectively. Another explanation to unchanged MTT may be opening of resting capillary beds. Two rats with very severe pulmonary damage showed prolonged MTT. These rats may have suffered from cardiac failure. (orig.)

  12. Fine structure of primary afferent axon terminals projecting from rapidly adapting mechanoreceptors of the toe and foot pads of the cat.

    Science.gov (United States)

    Maxwell, D J; Bannatyne, B A; Fyffe, R E; Brown, A G

    1984-04-01

    Two Pacinian corpuscle afferents and two rapidly adapting afferents from Krause corpuscles were intra-axonally labelled with horseradish peroxidase in the lumbosacral enlargement of the cat's spinal cord. Tissue was prepared for combined light and electron microscopical analysis. Boutons from both classes of afferent had similar ultrastructural appearances. They both formed from one to three synaptic junctions with dendritic shafts and spines and received axo-axonic synapses. In addition, both categories of bouton were seen to be presynaptic to structures interpreted as vesicle-containing dendrites. It is concluded that both types of afferent fibre are subject to presynaptic control and that they synapse with dorsal horn neurones which are possibly interneurones involved in primary afferent depolarization and post-synaptic dorsal column neurones.

  13. Ischemia-induced glomerular parietal epithelial cells hyperplasia: Commonly misdiagnosed cellular crescent in renal biopsy.

    Science.gov (United States)

    Zeng, Yeting; Wang, Xinrui; Xie, Feilai; Zheng, Zhiyong

    2017-08-01

    Ischemic pseudo-cellular crescent (IPCC) that is induced by ischemia and composed of hyperplastic glomerular parietal epithelial cells resembles cellular crescent. In this study, we aimed to assess the clinical and pathological features of IPCC in renal biopsy to avoid over-diagnosis and to determine the diagnostic basis. 4 IPCC cases diagnosed over a 4-year period (2012-2015) were evaluated for the study. Meanwhile, 5 cases of ANCA-associated glomerulonephritis and 5 cases of lupus nephritis (LN) were selected as control. Appropriate clinical data, morphology, and immunohistochemical features of all cases were retrieved. Results showed that the basement membrane of glomerulus with IPCC appeared as a concentric twisted ball, and glomerular cells of the lesion were reduced even entirely absent, and the adjacent afferent arterioles showed sclerosis or luminal stenosis. Furthermore, immune globulin deposition, vasculitis, and fibrinous exudate have not been observed in IPCC. While the cellular crescents showed diverse characteristics in both morphology and immunostaining in the control group. Therefore, these results indicated that IPCC is a sort of ischemic reactive hyperplasia and associated with sclerosis, stenosis, or obstruction of adjacent afferent arterioles, which is clearly different from cellular crescents result from glomerulonephritis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Afferent Loop Syndrome after Roux-en-Y Total Gastrectomy Caused by Volvulus of the Roux-Limb

    Directory of Open Access Journals (Sweden)

    Hideki Katagiri

    2016-01-01

    Full Text Available Afferent loop syndrome is a rare complication of gastric surgery. An obstruction of the afferent limb can present in various ways. A 73-year-old man presented with one day of persistent abdominal pain, gradually radiating to the back. He had a history of total gastrectomy with a Roux-en-Y reconstruction. Abdominal computed tomography scan revealed dilation of the duodenum and small intestine in the left upper quadrant. Exploratory laparotomy showed volvulus of the biliopancreatic limb that caused afferent loop syndrome. In this patient, the 50 cm long limb was the cause of volvulus. It is important to fashion a Roux-limb of appropriate length to prevent this complication.

  15. The modulation of visceral functions by somatic afferent activity.

    Science.gov (United States)

    Sato, A; Schmidt, R F

    1987-01-01

    We began by briefly reviewing the historical background of neurophysiological studies of the somato-autonomic reflexes and then discussed recent studies on somatic-visceral reflexes in combination with autonomic efferent nerve activity and effector organ responses. Most of the studies that have advanced our knowledge in this area have been carried out on anesthetized animals, thus eliminating emotional factors. We would like to emphasize again that the functions of many, or perhaps all visceral organs can be modulated by somato-sympathetic or somato-parasympathetic reflex activity induced by a appropriate somatic afferent stimulation in anesthetized animals. As mentioned previously, some autonomic nervous outflow, e.g. the adrenal sympathetic nerve activity, is involved in the control of hormonal secretion. John F. Fulton wrote in his famous textbook "Physiology of the Nervous System" (1949) that the posterior pituitary neurosecretion system (i.e. for oxytocin and vasopressin) could be considered a part of the parasympathetic nervous system. In the study of body homeostasis and environmental adaptation it would seem very important to further analyze the contribution of somatic afferent input to the autonomic nervous and hormonal regulation of visceral organ activity. Also, some immunological functions have been found to be influenced by autonomic nerves or hormones (e.g. adrenal cortical hormone and catecholamines). Finally, we must take into account, as we have briefly discussed, that visceral functions can be modulated by somatic afferent input via various degrees of integration of autonomic nerves, hormones, and immunological processes. We trust that such research will be expanded to higher species of mammals, and that ultimately this knowledge of somato-visceral reflexes obtained in the physiological laboratory will become clinically useful in influencing visceral functions.

  16. Evaluation of Purinergic Mechanism for the Treatment of Voiding Dysfunction: A Study in Conscious Spinal Cord-injured Rats

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Lu

    2007-10-01

    Conclusion: These results indicate that purinergic mechanisms, presumably involving P2X3 or P2X2/3 receptors on bladder C-fiber afferent nerves, play an important role in the detrusor hyperreflexia that occurs after spinal cord injury in rats.

  17. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    Science.gov (United States)

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  18. Measurement of the relative afferent pupillary defect in retinal detachment.

    Science.gov (United States)

    Bovino, J A; Burton, T C

    1980-07-01

    A swinging flashlight test and calibrated neutral density filters were used to quantitate the depth of relative afferent pupillary defects in ten patients with retinal detachment. Postoperatively, the pupillary responses returned to normal in seven of nine patients with anatomically successful surgery.

  19. Vagal afferents are essential for maximal resection-induced intestinal adaptive growth in orally fed rats

    DEFF Research Database (Denmark)

    Nelson, David W; Liu, Xiaowen; Holst, Jens Juul

    2006-01-01

    in mucosal mass, protein, DNA, and histology. Both systemic and perivagal capsaicin significantly attenuated by 48-100% resection-induced increases in ileal mucosal mass, protein, and DNA in rats fed orally. Villus height was significantly reduced in resected rats given capsaicin compared with vehicle...

  20. Divergent outcomes of fructose consumption on exercise capacity of rats: friend or foe.

    Science.gov (United States)

    Sun, Angela; Huang, An; Kertowidjojo, Elizabeth; Song, Su; Hintze, Thomas H; Sun, Dong

    2017-02-01

    To test the hypothesis that high fructose (HF) consumption divergently affects exercise capability as a function of feeding duration, rats were fed a normal (as control) diet or a normal caloric diet with HF for 3, 6, 10, and 30 days, respectively, and then were run on a treadmill. Results show that running distance and work were significantly increased, which was associated with greater exercise oxygen consumption in rats fed HF for 3 (HF-3D) and 6 days, but were decreased in rats fed HF for 30 days (HF-30D) compared with rats in their respective control groups. Shear stress-induced vasodilation (SSID) in isolated plantaris muscle arterioles was significantly greater in the HF-3D group than the control group. The difference in SSID between the two groups was abolished by N ω -nitro-l-arginine methyl ester (L-NAME), suggesting a nitric oxide (NO)-mediated response. Expression of phosphorylated/activated endothelial NO synthase (eNOS) and release of nitrite/NO were significantly increased in vessels of animals in the HF-3D group than controls. In contrast, arterioles isolated from the hypertensive rats in the HF-30D group displayed significantly attenuated NO-mediated SSID accompanied with greater production of superoxide compared with vessels of control animals. Additionally, the NO-dependent modulation of myocardial oxygen consumption (MV̇o 2 ) was also impaired in the HF-30D group, and was prevented by blocking superoxide production with apocynin, an inhibitor that also normalized the reduced SSID in the HF-30D group. In conclusion, short-term (3-6 days) HF feeding enhances exercise potential via an increase in endothelial sensitivity to shear stress, which stimulates eNOS to release NO, leading to better tissue perfusion and utilization of oxygen. However, long-term (30 days) HF feeding initiates endothelial dysfunction by superoxide-dependent mechanisms to compromise exercise performance. NEW & NOTEWORTHY The evidence that short-term fructose intake

  1. [Myofibroblasts and afferent signalling in the urinary bladder. A concept].

    Science.gov (United States)

    Neuhaus, J; Scholler, U; Freick, K; Schwalenberg, T; Heinrich, M; Horn, L C; Stolzenburg, J U

    2008-09-01

    Afferent signal transduction in the urinary bladder is still not clearly understood. An increasing body of evidence supports the view of complex interactions between urothelium, suburothelial myofibroblasts, and sensory nerves. Bladder tissue from tumour patients was used in this study. Methods included confocal immunofluorescence, polymerase chain reaction, calcium imaging, and fluorescence recovery after photobleaching (FRAP).Myofibroblasts express muscarinic and purinergic receptors. They show constitutive spontaneous activity in calcium imaging, which completely depends on extracellular calcium. Stimulation with carbachol and ATP-evoked intracellular calcium transients also depend on extracellular calcium. The intensive coupling between the cells is significantly diminished by incubation with TGF-beta 1. Myofibroblasts form an important cellular element within the afferent signalling of the urinary bladder. They possess all features required to take part in the complex interactions with urothelial cells and sensory nerves. Modulation of their function by cytokines may provide a pathomechanism for bladder dysfunction.

  2. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  3. Kv1 channels and neural processing in vestibular calyx afferents

    Directory of Open Access Journals (Sweden)

    Frances L Meredith

    2015-06-01

    Full Text Available Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space.

  4. Kv1 channels and neural processing in vestibular calyx afferents.

    Science.gov (United States)

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

  5. Immunomodulation of afferent neurons in guinea-pig isolated airway.

    Science.gov (United States)

    Riccio, M M; Myers, A C; Undem, B J

    1996-03-01

    1. The trachea, larynx and main bronchi with the right vagus nerve and nodose ganglion were isolated from guinea-pigs passively immunized 24 h previously with serum containing anti-ovalbumin antibody. 2. The airways were placed in one compartment of a Perspex chamber for recording of isometric tension while the nodose ganglion and attached vagus nerve were pulled into another compartment. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in the ganglion. Mechanosensitivity of the nerve endings was quantified using calibrated von Frey filaments immediately before and after exposure to antigen (10 micrograms ml-1 ovalbumin). 3. Ten endings responded to the force exerted by the lowest filament (0.078 mN) and were not further investigated. In airways from thirteen immunized guinea-pigs, the mechanical sensitivity of A delta afferent fibres (conduction velocity = 4.3 +/- 0.6 m s-1) was enhanced 4.1 +/- 0.9-fold following airway exposure to antigen (P action potential generation except in one instance when the receptive field was located over the smooth muscle. This ending also responded to methacholine suggesting that spatial changes in the receptive field, induced by muscle contraction, were responsible for the activation. 5. The mediators responsible for these effects are unknown, although histamine, prostaglandins, leukotrienes and tachykinins do not appear to be essential. The increase in mechanical responsiveness was not associated with the smooth muscle contraction since leukotriene C4, histamine and tachykinins, which all caused a similar contraction to antigen, did not affect mechanical thresholds. Moreover, the antigen-induced increases in excitability persisted beyond the duration of the smooth muscle contraction. 6. These results demonstrate that antigen-antibody-mediated inflammatory processes may enhance the excitability of vagal afferent

  6. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  7. Afferent projections to the pontine micturition center in the cat

    NARCIS (Netherlands)

    Kuipers, R; Mouton, LJ; Holstege, G; Kuiper, Rutger

    2006-01-01

    The pontine micturition center (PMC) or Barrington's nucleus controls micturition by way of its descending projections to the sacral spinal cord. However, little is known about the afferents to the PMC that control its function and may be responsible for dysfunction in patients with

  8. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C.; De Palma, F.; De Vito, L.; Stefanelli, A. [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell`Uomo

    1997-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  9. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C; De Palma, F; De Vito, L; Stefanelli, A [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell` Uomo

    1998-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  10. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis

    DEFF Research Database (Denmark)

    Roos, Ewa M.; Herzog, Walter; Block, Joel A

    2011-01-01

    Lower-extremity muscle strength and afferent sensory dysfunction, such as reduced proprioceptive acuity, are potentially modifiable putative risk factors for knee osteoarthritis (OA). Findings from current studies suggest that muscle weakness is a predictor of knee OA onset, while there is confli...... with previous knee injuries) are easily identified, and may benefit from exercise interventions to prevent or delay OA onset....... there is conflicting evidence regarding the role of muscle weakness in OA progression. In contrast, the literature suggests a role for afferent sensory dysfunction in OA progression but not necessarily in OA onset. The few pilot exercise studies performed in patients who are at risk of incident OA indicate...... a possibility for achieving preventive structure or load modifications. In contrast, large randomized controlled trials of patients with established OA have failed to demonstrate beneficial effects of strengthening exercises. Subgroups of individuals who are at increased risk of knee OA (such as those...

  11. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses.

    Science.gov (United States)

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T; Wangsawihardja, Felix; Ricci, Anthony J; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    Science.gov (United States)

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  13. Characterization of Diabetic Neuropathy in the Zucker Diabetic Sprague-Dawley Rat: A New Animal Model for Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Eric P. Davidson

    2014-01-01

    Full Text Available Recently a new rat model for type 2 diabetes the Zucker diabetic Sprague-Dawley (ZDSD/Pco was created. In this study we sought to characterize the development of diabetic neuropathy in ZDSD rats using age-matched Sprague-Dawley rats as a control. Rats were examined at 34 weeks of age 12 weeks after the onset of hyperglycemia in ZDSD rats. At this time ZDSD rats were severely insulin resistant with slowing of both motor and sensory nerve conduction velocities. ZDSD rats also had fatty livers, elevated serum free fatty acids, triglycerides, and cholesterol, and elevated sciatic nerve nitrotyrosine levels. The corneas of ZDSD rats exhibited a decrease in subbasal epithelial corneal nerves and sensitivity. ZDSD rats were hypoalgesic but intraepidermal nerve fibers in the skin of the hindpaw were normal compared to Sprague-Dawley rats. However, the number of Langerhans cells was decreased. Vascular reactivity of epineurial arterioles, blood vessels that provide circulation to the sciatic nerve, to acetylcholine and calcitonin gene-related peptide was impaired in ZDSD rats. These data indicate that ZDSD rats develop many of the neural complications associated with type 2 diabetes and are a good animal model for preclinical investigations of drug development for diabetic neuropathy.

  14. Anatomy and physiology of the afferent visual system.

    Science.gov (United States)

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. The relaxing effect of perivascular tissue on porcine retinal arterioles in vitro is mimicked by N-methyl-D-aspartate and is blocked by prostaglandin synthesis inhibition

    DEFF Research Database (Denmark)

    Jensen, Kim Holmgaard; Aalkjær, Christian; Lambert, John D. C.

    2008-01-01

    . However, previous in vitro studies of the influence of perivascular retinal tissue on retinal tone regulation have been hampered by the release of an endogenous relaxing factor that renders the arteriole insensitive to vasoconstrictors. The purpose of the present study was to test whether N-methyl-D-aspartate...... (NMDA) and gamma-amino butyric acid (GABA) receptors, and a cyclooxygenase (COX) product influence this effect of perivascular retinal tissue in vitro. METHODS: Porcine retinal arterioles were mounted in a wire myograph for isometric force measurements. The contractile effect of the prostaglandin...... analogue U46619 was studied on vessels with preserved perivascular retinal tissue and after this tissue had been removed. The influence of the perivascular tissue was studied after addition of NMDA (a specific agonist for a subtype of the glutamate receptor), DL-amino-5-phosphonovaleric acid (DL...

  16. Upper respiratory tract nociceptor stimulation and stress response following acute and repeated Cyfluthrin inhalation in normal and pregnant rats: Physiological rat-specific adaptions can easily be misunderstood as adversities.

    Science.gov (United States)

    Pauluhn, Juergen

    2018-01-05

    This paper reviews the results from past regulatory and mechanistic inhalation studies in rats with the type II pyrethroid Cyfluthrin. Apart from many chemical irritants, Cyfluthrin was shown to be a neuroexcitatory agent without any inherent tissue-destructive or irritant property. Thus, any Cyfluthrin-induced neuroexcitatory afferent sensory stimulus from peripheral nociceptors in the upper respiratory tract is likely to be perceived as a transient stimulus triggering annoyance and/or avoidance by both rats and humans. However, while thermolabile rats respond to such stresses reflexively, homeothermic humans appear to respond psychologically. With this focus in mind, past inhalation studies in rats and human volunteers were reevaluated and assessed to identify common denominators to such neuroexcitatory stimuli upon inhalation exposure. This analysis supports the conclusion that the adaptive physiological response occurring in rats secondary to such chemosensory stimuli requires inhalation exposures above the chemosensory threshold. Rats, a species known to undergo adaptively a hibernation-like physiological state upon environmental stresses, experienced reflexively-induced bradypnea, bradycardia, hypothermia, and changes in acid-base status during inhalation exposure. After cessation of the sensory stimulus, rapid recovery occurred. Physiological data of male and female rats from a 4-week repeated inhalation study (exposure 6-h/day, 5-times/week) were used to select concentration for a 10-day developmental inhalation toxicity study in pregnant rats. Maternal hypothermia and hypoventilation were identified as likely cause of fetal and placental growth retardations because of a maternal adaptation-driven reduced feto-placental transfer of oxygen. In summary, maternal reflex-hypothermia, reduced cardiac output and placental perfusion, and disruption of the gestation-related hyperventilation are believed to be the maternally mediated causes for developmental

  17. Rho-kinase inhibitor and nicotinamide adenine dinucleotide phosphate oxidase inhibitor prevent impairment of endothelium-dependent cerebral vasodilation by acute cigarette smoking in rats.

    Science.gov (United States)

    Iida, Hiroki; Iida, Mami; Takenaka, Motoyasu; Fukuoka, Naokazu; Dohi, Shuji

    2008-06-01

    We previously reported that acute cigarette smoking can cause a dysfunction of endothelium-dependent vasodilation in cerebral vessels, and that blocking the angiotensin II (Ang II) type 1 (AT1) receptor with valsartan prevented this impairment. Our aim was to investigate the effects of a Rho-kinase inhibitor (fasudil) and a Nicotinamide Adenine Dinucleotide PHosphate (NADPH) oxidase inhibitor (apocynin) on smoking-induced endothelial dysfunction in cerebral arterioles. In Sprague-Dawley rats, we used a closed cranial window preparation to measure changes in pial vessel diameters following topical acetylcholine (ACh) before smoking. After one-minute smoking, we again examined the arteriolar responses to ACh. Finally, after intravenous fasudil or apocynin pre-treatment we re-examined the vasodilator responses to topical ACh (before and after cigarette smoking). Under control conditions, cerebral arterioles were dose-dependently dilated by topical ACh (10(-6) M and 10(-5) M). One hour after a one-minute smoking (1 mg-nicotine cigarette), 10(-5) M ACh constricted cerebral arterioles. However, one hour after a one-minute smoking, 10(-5) M ACh dilated cerebral pial arteries both in the fasudil pre-treatment and the apocynin pre-treatment groups, responses that were significantly different from those obtained without fasudil or apocynin pre-treatment. Thus, inhibition of Rho-kinase and NADPH oxidase activities may prevent the above smoking-induced impairment of endothelium-dependent vasodilation.

  18. Percutaneous Transhepatic Duodenal Drainage as an Alternative Approach in Afferent Loop Obstruction with Secondary Obstructive Jaundice in Recurrent Gastric Cancer

    International Nuclear Information System (INIS)

    Yao, N.-S.; Wu, C.-W.; Tiu, Chui-Mei; Liu, Jacqueline M.; Whang-Peng, Jacqueline; Chen, L.-T.

    1998-01-01

    Two cases are reported of chronic, partial afferent loop obstruction with resultant obstructive jaundice in recurrent gastric cancer. The diagnosis was made by characteristic clinical presentations, abdominal computed tomography, and cholescintigraphy. Percutaneous transhepatic duodenal drainage (PTDD) provided effective palliation for both afferent loop obstruction and biliary stasis. We conclude that cholescintigraphy is of value in making the diagnosis of partial afferent loop obstruction and in differentiating the cause of obstructive jaundice in such patients, and PTDD provides palliation for those patients in whom surgical intervention is not feasible

  19. Afferent Endocrine Control of Eating

    DEFF Research Database (Denmark)

    Langhans, Wolfgang; Holst, Jens Juul

    2016-01-01

    The afferent endocrine factors that control eating can be separated into different categories. One obvious categorization is by the time course of their effects, with long-term factors that signal adiposity and short-term factors that operate within the time frame of single meals. The second...... obvious categorization is by the origin of the endocrine signalling molecules. The level of knowledge concerning the physiological mechanisms and relevance of the hormones that are implicated in the control of eating is clearly different. With the accumulating knowledge about the hormones' actions......, various criteria have been developed for when the effect of a hormone can be considered 'physiologic'. This chapter treats the hormones separately and categorizes them by origin. It discusses ALL hormones that are implicated in eating control such as Gastrointestinal (GI) hormone and glucagon-like peptide...

  20. Light and electron microscopy of contacts between primary afferent fibres and neurones with axons ascending the dorsal columns of the feline spinal cord.

    Science.gov (United States)

    Maxwell, D J; Koerber, H R; Bannatyne, B A

    1985-10-01

    In addition to primary afferent fibres, the dorsal columns of the cat spinal cord contain ascending second-order axons which project to the dorsal column nuclei. The aim of the present study was to obtain morphological evidence that certain primary afferent axons form monosynaptic contacts with cells of origin of this postsynaptic dorsal column pathway. In ten adult cats, neurones with axons ascending the dorsal columns were retrogradely labelled with horseradish peroxidase using a pellet implantation method in the thoracic dorsal columns. In the lumbosacral regions of the same animals, primary afferent fibres were labelled intra-axonally with ionophoretic application of horseradish peroxidase. Tissue containing labelled axons was prepared for light and combined light and electron microscopy. Ultrastructural examination demonstrated that slowly adapting (Type I), hair follicle, Pacinian corpuscle and group Ia muscle spindle afferents formed monosynaptic contacts with labelled cells and light microscopical analysis suggested that they also received monosynaptic input from rapidly adapting (Krause) afferents. This evidence suggests that sensory information from large-diameter cutaneous and muscle spindle afferent fibres is conveyed disynaptically via the postsynaptic dorsal column pathway to the dorsal column nuclei. Some of the input to this pathway is probably modified in the spinal cord as the majority of primary afferent boutons forming monosynaptic contacts were postsynaptic to other axon terminals. The postsynaptic dorsal column system appears to constitute a major somatosensory pathway in the cat.

  1. Modeling systemic autoimmune rheumatic disease in rats under the adverse weather conditions

    Directory of Open Access Journals (Sweden)

    Yegudina Ye.D.

    2017-04-01

    Full Text Available Changes in the lungs, heart and kidneys are found in all animals with experimental systemic autoimmune rheumatic disease and respectively in 47%, 47% and 40% of cases of intact rats in a hostile environment with xenobiotics air pollution (ammonia + benzene + formalin, herewith in every third or fourth individual lesions of visceral vessels developed. The negative environmental situation increases the frequency of morphological signs of the disease, such as proliferation of endothelial vessels of the heart by 68% and renal arterioles by 52%, in addition, there are direct correlations of angiopathy degree in individual organs; this depends on the nature of pathological process modeling and demonstrates air pollution as a risk factor of disease in humans. The impact of pulmonary vessels sclerosis on the development of bronhosclerosis, perivascular infiltration of the heart muscle on the lymphocyte-macrophage infiltration of the stroma of the myocardium and sclerosis of renal arterioles on the degree of nephroslerosis of stroma is directly associated, with the model of systemic autoimmune rheumatic diseases whereas air pollution by xenobiotics determines dependences of the degree of cellular infiltration of alveolar septa from perivascular pulmonary infiltration, the development of cardiomyocytes hypertrophy from proliferation of the heart endothelial vessels, increase of kidney mesangial matrix from the proliferation of endothelial glomerular capillaries.

  2. Exploring the mechanism of microarteriogenesis in porous silk fibroin film.

    Science.gov (United States)

    Bai, Lun; Wang, Guangqian; Tan, Xiaoyan; Xu, Jianmei

    2012-01-01

    Purpose. Based on the experiment of the microarteriogenesis that is associated with angiogenesis during tissue repair process in porous silk fibroin films (PSFFs), we investigate the characteristics of micro-arteriogenesis and explore its mechanism. Methods. After the porous silk fibroin materials are implanted into the back hypodermal tissue of SD rats, the arteriole development and the morphogenesis of smooth muscle cell are histologically monitored and the micro-arteriogenesis is quantitatively analyzed. Results. 10 days after implantation, the arteriole density reaches the highest level in the junction of silk fibroin materials with tissues. Three weeks later, the arteriolar density in the materials reaches the maximum, and the arterioles in the junction of materials with tissues appear to be in a mature and upgrading state. Modeling of Microarteriogenesis. The arterioles in materials are generated after capillary angiogenesis. It is inferred that arteriolar development does not start until the network of the capillaries is formed. At first, the arterioles grow in the conjunct area of precapillaries with arterioles. Then with the extension of the arterioles, the upgrade of arterioles in connecting area is observed at a later stage. Based on the observation, the conditions and the mechanism of microarterializations as well as the upgrade of arterioles are analyzed.

  3. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.

    Science.gov (United States)

    Beaumont, Eric; Campbell, Regenia P; Andresen, Michael C; Scofield, Stephanie; Singh, Krishna; Libbus, Imad; KenKnight, Bruce H; Snyder, Logan; Cantrell, Nathan

    2017-08-01

    Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insensitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts. NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents

  4. Inhibitory effect of BIBN4096BS on cephalic vasodilatation induced by CGRP or transcranial electrical stimulation in the rat

    DEFF Research Database (Denmark)

    Petersen, Kenneth A; Birk, Steffen; Doods, Henri

    2004-01-01

    therapeutic principle. We used an improved closed cranial window model to measure changes of the middle meningeal artery (MMA) and cortical pial artery/arteriole diameter (PA) and changes in local cortical cerebral blood flow (LCBF(Flux)) in anaesthetised artificially ventilated rats. The ability of BIBN4096......BS (i.v.) to prevent the vasodilatatory actions of rat-alphaCGRP, betaCGRP and endogenously released CGRP following transcranial electrical stimulation (TES) was investigated. BIBN4096BS was per se without vasoactive effect on any of the measured variables and significantly inhibited the hypotension......CGRP. Transcranial electrical stimulation induced a 119.1 +/- 6.9% increase in MMA diameter. BIBN4096BS (333 microg kg(-1)) attenuated this increase (19.8 +/- 2.1%) (P

  5. Interactions between visceral afferent signaling and stimulus processing

    Directory of Open Access Journals (Sweden)

    Hugo D Critchley

    2015-08-01

    Full Text Available Visceral afferent signals to the brain influence thoughts, feelings and behaviour. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body, to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically-mediated physiological arousal to emotional, social and motivational behaviours, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task-independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain’s representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed.

  6. Primary afferent terminal sprouting after a cervical dorsal rootlet section in the macaque monkey.

    Science.gov (United States)

    Darian-Smith, Corinna

    2004-03-01

    We examined the role of primary afferent neurons in the somatosensory cortical "reactivation" that occurs after a localized cervical dorsal root lesion (Darian-Smith and Brown [2000] Nat. Neurosci. 3:476-481). After section of the dorsal rootlets that enervate the macaque's thumb and index finger (segments C6-C8), the cortical representation of these digits was initially silenced but then re-emerged for these same digits over 2-4 postlesion months. Cortical reactivation was accompanied by the emergence of physiologically detectable input from these same digits within dorsal rootlets bordering the lesion site. We investigated whether central axonal sprouting of primary afferents spared by the rhizotomy could mediate this cortical reactivation. The cortical representation of the hand was mapped electrophysiologically 15-25 weeks after the dorsal rootlet section to define this reactivation. Cholera toxin subunit B conjugated to horseradish peroxidase was then injected into the thumb and index finger pads bilaterally to label the central terminals of any neurons that innervated these digits. Primary afferent terminal proliferation was assessed in the spinal dorsal horn and cuneate nucleus at 7 days and 15-25 postlesion weeks. Labeled terminal bouton distributions were reconstructed and the "lesion" and control sides compared within each monkey. Distributions were significantly larger on the side of the lesion in the dorsal horn and cuneate nucleus at 15-25 weeks after the dorsal rootlet section, than those mapped only 7 days postlesion. Our results provide direct evidence for localized sprouting of spared (uninjured) primary afferent terminals in the dorsal horn and cuneate nucleus after a restricted dorsal root injury. Copyright 2004 Wiley-Liss, Inc.

  7. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke

    DEFF Research Database (Denmark)

    Mazzaro, Nazarena; Nielsen, Jørgen Feldbæk; Grey, Michael James

    2007-01-01

    We investigated the contribution of afferent feedback to the soleus (SOL) muscle activity during the stance phase of walking in patients with spastic stroke. A total of 24 patients with hemiparetic spastic stroke and age-matched healthy volunteers participated in the study. A robotic actuator...... by the Ashworth score. These results indicate that although the stretch reflex response is facilitated during spastic gait, the contribution of afferent feedback to the ongoing locomotor SOL activity is depressed in patients with spastic stroke....

  8. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    Science.gov (United States)

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  9. Effect of dietary oils on peripheral neuropathy-related endpoints in dietary obese rats

    Directory of Open Access Journals (Sweden)

    Coppey L

    2018-04-01

    Full Text Available Lawrence Coppey,1 Eric Davidson,1 Hanna Shevalye,1 Michael E Torres,1 Mark A Yorek1–4 1Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; 2Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, USA; 3Department of Veterans Affairs, Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA; 4Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA Purpose: This study aimed to determine the effect of dietary oils (olive, safflower, evening primrose, flaxseed, or menhaden enriched in different mono unsaturated fatty acids or polyunsaturated fatty acids on peripheral neuropathies in diet-induced obese Sprague-Dawley rats.Materials and methods: Rats at 12 weeks of age were fed a high-fat diet (45% kcal for 16 weeks. Afterward, the rats were fed diets with 50% of the kilocalories of fat derived from lard replaced by the different dietary oils. In addition, a control group fed a standard diet (4% kcal fat and a high fat fed group (45% kcal were maintained. The treatment period was 32 weeks. The endpoints evaluated included motor and sensory nerve conduction velocity, thermal sensitivity, innervation of sensory nerves in the cornea and skin, and vascular relaxation by epineurial arterioles.Results: Menhaden oil provided the greatest benefit for improving peripheral nerve damage caused by dietary obesity. Similar results were obtained when we examined acetylcholine-mediated vascular relaxation of epineurial arterioles of the sciatic nerve. Enriching the diets with fatty acids derived from the other oils provided minimal to partial improvements.Conclusion: These studies suggest that omega-3 polyunsaturated fatty acids derived from fish oil could be an effective treatment for neural and vascular complications associated with obesity. Keywords: peripheral neuropathy, fish oil, omega-3 polyunsaturated fatty acids, omega-6 polyunsaturated fatty

  10. Differential effect of T-type voltage-gated calcium channel disruption on renal plasma flow and glomerular filtration rate in vivo

    DEFF Research Database (Denmark)

    Thuesen, Anne D; Andersen, Henrik; Cardel, Majken

    2014-01-01

    Voltage-gated calcium channels (Cav) play an essential role in regulation of renal blood flow and GFR. Because T-type Cavs are differentially expressed in pre- and postglomerular vessels it was hypothesized that they impact renal blood flow and GFR differentially. The question was addressed by use...... of two T-type Cav knock-out mice strains. Continuous recordings of blood pressure and heart rate, and para-aminohippurate clearance (renal plasma flow) and inulin clearance (GFR) were performed in conscious, chronically catheterized, wild type and Cav 3.1-/- and Cav 3.2-/- mice. Contractility of afferent...... and efferent arterioles was determined in isolated perfused blood vessels. Efferent arterioles from Cav 3.2-/- mice constricted significantly more in response to a depolarization compared to Wt mice. GFR was increased in Cav 3.2-/- mice with no significant changes in renal plasma flow, heart rate and blood...

  11. Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics.

    Directory of Open Access Journals (Sweden)

    Michelle Welsh

    2010-10-01

    Full Text Available Regulation of blood flow through the testicular microvasculature by vasomotion is thought to be important for normal testis function as it regulates interstitial fluid (IF dynamics which is an important intra-testicular transport medium. Androgens control vasomotion, but how they exert these effects remains unclear. One possibility is by signalling via androgen receptors (AR expressed in testicular arteriole smooth muscle cells. To investigate this and determine the overall importance of this mechanism in testis function, we generated a blood vessel smooth muscle cell-specific AR knockout mouse (SMARKO. Gross reproductive development was normal in SMARKO mice but testis weight was reduced in adulthood compared to control littermates; this reduction was not due to any changes in germ cell volume or to deficits in testosterone, LH or FSH concentrations and did not cause infertility. However, seminiferous tubule lumen volume was reduced in adult SMARKO males while interstitial volume was increased, perhaps indicating altered fluid dynamics; this was associated with compensated Leydig cell failure. Vasomotion was impaired in adult SMARKO males, though overall testis blood flow was normal and there was an increase in the overall blood vessel volume per testis in adult SMARKOs. In conclusion, these results indicate that ablating arteriole smooth muscle AR does not grossly alter spermatogenesis or affect male fertility but does subtly impair Leydig cell function and testicular fluid exchange, possibly by locally regulating microvascular blood flow within the testis.

  12. Afferent Neural Feedback Overrides the Modulating Effects of Arousal, Hypercapnia and Hypoxemia on Neonatal Cardio-respiratory Control.

    Science.gov (United States)

    Lumb, Kathleen J; Schneider, Jennifer M; Ibrahim, Thowfique; Rigaux, Anita; Hasan, Shabih U

    2018-04-20

    Evidence at whole animal, organ-system, and cellular and molecular levels suggests that afferent volume feedback is critical for establishment of adequate ventilation at birth. Due to the irreversible nature of vagal ablation studies to date, it was difficult to quantify the roles of afferent volume input, arousal and changes in blood gas tensions on neonatal respiratory control. During reversible perineural vagal block, profound apneas, and hypoxemia and hypercarbia were observed necessitating termination of perineural blockade. Respiratory depression and apneas were independent of the sleep states. We demonstrate that profound apneas and life-threatening respiratory failure in vagally denervated animals do not result from lack of arousal or hypoxemia. Change in sleep state and concomitant respiratory depression result from lack of afferent volume feedback, which appears to be critical for the maintenance of normal breathing patterns and adequate gas exchange during the early postnatal period. Afferent volume feedback plays a vital role in neonatal respiratory control. Mechanisms for the profound respiratory depression and life-threatening apneas observed in vagally denervated neonatal animals remain unclear. We investigated the roles of sleep states, hypoxic-hypercapnia and afferent volume feedback on respiratory depression using reversible perineural vagal block during early postnatal period. Seven lambs were instrumented during the first 48h of life to record/analyze sleep states, diaphragmatic electromyograph, arterial blood gas tensions, systemic arterial blood pressure and rectal temperature. Perineural cuffs were placed around the vagi to attain reversible blockade. Post-operatively, during the awake state, both vagi were blocked using 2% xylocaine for up to 30 minutes. Compared with baseline values, pHa, PaO 2 and SaO 2 decreased and PaCO 2 increased during perineural blockade (P Respiratory depression and apneas were independent of sleep states. This

  13. Role of TRPV1 and ASIC3 channels in experimental occlusal interference-induced hyperalgesia in rat masseter muscle.

    Science.gov (United States)

    Xu, X X; Cao, Y; Ding, T T; Fu, K Y; Li, Y; Xie, Q F

    2016-04-01

    Masticatory muscle pain may occur following immediate occlusal alteration by dental treatment. The underlying mechanisms are poorly understood. Transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channel-3 (ASIC3) mediate muscle hyperalgesia under various pathologic conditions. We have developed a rat model of experimental occlusal interference (EOI) that consistently induces mechanical hyperalgesia in jaw muscles. Whether TRPV1 and ASIC3 mediate this EOI-induced hyperalgesia is unknown. Rat model of EOI-induced masseter hyperalgesia was established. Real-time polymerase chain reaction, Western blot and retrograde labelling combined with immunofluorescence were performed to evaluate the modulation of TRPV1 and ASIC3 expression in trigeminal ganglia (TGs) and masseter afferents of rats after EOI. The effects of intramuscular administration of TRPV1 and ASIC3 antagonists on the EOI-induced hyperalgesia in masseter muscle were examined. After EOI, gene expressions and protein levels of TRPV1 and ASIC3 in bilateral TGs were up-regulated. The percentage of ASIC3- (but not TRPV1-) positive neurons in masseter afferents increased after EOI. More small-sized and small to medium-sized masseter afferents expressed TRPV1 and ASIC3 separately following EOI. These changes peaked at day 7 and then returned to original status within 10 days after EOI. Intramuscular administration of the TRPV1 antagonist AMG-9810 partially reversed this mechanical hyperalgesia in masseter muscle. No improvement was exhibited after administration of the ASIC3 antagonist APETx2. Co-injection of AMG-9810 and APETx2 enhanced the effect of AMG-9810 administration alone. Peripheral TRPV1 and ASIC3 contribute to the development of the EOI-induced mechanical hyperalgesia in masseter muscle. © 2015 European Pain Federation - EFIC®

  14. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Otero-García, Marcos; Martínez-García, Fernando; Lanuza, Enrique

    2016-03-01

    The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.

  16. Thyroid hormone is required for the pruning of afferent type II spiral ganglion neurons in the mouse cochlea

    Science.gov (United States)

    Sundaresan, Srividya; Balasubbu, Suganthalakshmi; Mustapha, Mirna

    2015-01-01

    Afferent connections to the sensory inner and outer hair cells in the cochlea refine and functionally mature during the thyroid hormone (TH)- critical period of inner ear development that occurs perinatally in rodents. In this study, we investigated the effects of hypothyroidism on afferent type II innervation to outer hair cells (OHCs) using the Snell dwarf mouse (Pit1dw). Using a transgenic approach to specifically label type II spiral ganglion neurons, we found that a lack of TH causes persistence of excess type II SGN connections to the OHCs, as well as continued expression of the hair cell functional marker, otoferlin, in the OHCs beyond the maturation period. We also observed a concurrent delay in efferent attachment to the OHCs. Supplementing with TH during the early postnatal period from postnatal day (P) 3 to P4 reversed the defect in type II SGN pruning but did not alter otoferlin expression. Our results show that hypothyroidism causes a defect in the large-scale pruning of afferent type II spiral ganglion neurons in the cochlea, and a delay in efferent attachment and the maturation of otoferlin expression. Our data suggest that the state of maturation of hair cells, as determined by otoferlin expression, may not regulate the pruning of their afferent innervation. PMID:26592716

  17. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    Science.gov (United States)

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC−/− mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a−/− muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2−/− mice showed diminished potentiation by zinc, and currents from ASIC3−/− mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.—Gautam, M., Benson, C. J. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. PMID:23109675

  18. Chicken (Gallus domesticus) inner ear afferents

    Science.gov (United States)

    Hara, H.; Chen, X.; Hartsfield, J. F.; Hara, J.; Martin, D.; Fermin, C. D.

    1998-01-01

    Neurons from the vestibular (VG) and the statoacoustic (SAG) ganglion of the chick (Gallus domesticus) were evaluated histologically and morphometrically. Embryos at stages 34 (E8 days), 39 (E13 days) and 44 (E18 days) were sacrificed and temporal bones microdissected. Specimens were embedded in JB-4 methacrylate plastic, and stained with a mixture of 0.2% toluidine blue (TB) and 0.1% basic Fuschin in 25% ethanol or with a mixture of 2% TB and 1% paraphenylenediamine (PDA) for axon and myelin measurement study. Images of the VIIIth nerve were produced by a V150 (R) color imaging system and the contour of 200-300 neuronal bodies (perikarya) was traced directly on a video screen with a mouse in real time. The cross-sectional area of VG perikarya was 67.29 micrometers2 at stage 34 (E8), 128.46 micrometers2 at stage 39 (E13) and 275.85 micrometers2 at stage 44 (E18). The cross-sectional area of SAG perikarya was 62.44 micrometers2 at stage 34 (E8), 102.05 micrometers2 at stage 39 (E13) and 165.02 micrometers2 at stage 44 (E18). A significant cross-sectional area increase of the VG perikarya between stage 39 (E13) and stage 44 (E18) was determined. We randomly measured the cross-sectional area of myelin and axoplasm of hatchling afferent nerves, and found a correspondence between axoplasmic and myelin cross-sectional area in the utricular, saccular and semicircular canal nerve branches of the nerve. The results suggest that the period between stage 34 (E8) and 39 (E13) is a critical period for afferent neuronal development. Physiological and behavioral vestibular properties of developing and maturing hatchlings may change accordingly. The results compliment previous work by other investigators and provide valuable anatomical measures useful to correlate physiological data obtained from stimulation of the whole nerve or its parts.

  19. Impact of Short-Term Treatment with Telmisartan on Cerebral Arterial Remodeling in SHR

    OpenAIRE

    Foulquier , Sébastien; Lartaud , Isabelle; Dupuis , François

    2014-01-01

    International audience; Background and Purpose: Chronic hypertension decreases internal diameter of cerebral arteries and arterioles. We recently showed that short-term treatment with the angiotensin II receptor blocker telmisartan restored baseline internal diameter of small cerebral arterioles in spontaneously hypertensive rats (SHR), via reversal of structural remodeling and inhibition of the angiotensin II vasoconstrictor response. As larger arteries also participate in the regulation of ...

  20. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli.

    Science.gov (United States)

    Kim, Elmer K; Wellnitz, Scott A; Bourdon, Sarah M; Lumpkin, Ellen A; Gerling, Gregory J

    2012-07-23

    The next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object. This systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance. Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent recordings. Finally, the SAI afferent's characteristic response

  1. Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2017-09-01

    The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic 'aggression area', suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli. © 2017 Wiley Periodicals, Inc.

  2. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats.

    Science.gov (United States)

    Sabaawy, H E; Zhang, F; Nguyen, X; ElHosseiny, A; Nasjletti, A; Schwartzman, M; Dennery, P; Kappas, A; Abraham, N G

    2001-08-01

    Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats.

  3. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Nielsen, Jens Bo

    2008-01-01

    immobilized the left foot and ankle joint for 2 weeks in 12 able-bodied subjects. Disynaptic reciprocal inhibition of soleus (SOL) motoneurones and presynaptic control of SOL group Ia afferents was measured before and after the immobilization as well as following 2 weeks of recovery. Following immobilization...... maximal voluntary plantar- and dorsiflexion torque (MVC) was significantly reduced and the maximal SOL H-reflex amplitude increased with no changes in Mmax. Decreased presynaptic inhibition of the Ia afferents likely contributed to the increase of the H-reflex size, since we observed a significant...... decrease in the long-latency depression of the SOL H-reflex evoked by peroneal nerve stimulation (D2 inhibition) and an increase in the size of the monosynaptic Ia facilitation of the SOL H-reflex evoked by femoral nerve stimulation. These two measures provide independent evidence of changes in presynaptic...

  4. [Trigeminal purinergic P2X4 receptor involved in experimental occlusal interference-induced hyperalgesia in rat masseter muscle].

    Science.gov (United States)

    Xu, Xiaoxiang; Cao, Ye; Ding, Tingting; Fu, Kaiyuan; Xie, Qiufei

    2016-03-01

    To explore the expression of purinergic p2X4 receptor (P2X4R) in trigeminal ganglion of rats after occlusal interference. Investigation of peripheral receptor mechanism of occlusal interference-induced masticatory muscle pain will aid the development of drug intervention against this condition. Experimental occlusal interference was established by application of 0.4 mm metal crown to the upper right first molar of male Sprague-Dawley rats. Real-time PCR assay was used to investigate P2X4R mRNA level in trigeminal ganglion in rats with occlusal interference for 3, 7, 10 and 14 days and in control rats without occlusal interference (n=5 in each). Retrograde labelling combining immunofluorescence was performed to evaluate the percentage of P2X4R-positive cells in masseter afferent neurons (n=5 in each group). Graded concentrations of P2XR antagonist TNP-ATP (0.1, 10, 125, 250, 500 μmol/L) or saline (n=5 in each group) was administrated in right masseter and the mechanical sensitivity of bilateral masseters was measured before occlusal interference application, before the injection, and 30 min as well as 60 min after the injection. Compared with control rats (P2X4R mRNA: right side: 1.00±0.26, left side: 0.94± 0.21; percentage of P2X4R-positive masseter afferents: right side: [64.3±6.3]%, left side: [67.7±5.8]%), the level of P2X4R mRNA in bilateral trigeminal ganglia (right side: 5.98±3.56; left side: 5.06±2.88) of rats with occlusal interference for 7 days up-regulated (Pocclusal interference-induced masseter hyperalgesia.

  5. Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

    Directory of Open Access Journals (Sweden)

    Katafuchi Toshihiko

    2005-03-01

    Full Text Available Abstract Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG preparations using intracellular recordings. We also measured excitatory synaptic responses evoked by transcutaneous stimuli in substantia gelatinosa (SG neurons of the spinal dorsal horn, which receive inputs predominantly from C and Aδ fibers, using in vivo patch-clamp recordings. In behavioral studies, escape or vocalization behavior of rats was observed with both 250 and 5 Hz stimuli at intensity of ~0.8 mA (T5/ T250, whereas with 2000 Hz stimulation, much higher intensity (2.14 mA, T2000 was required. In DRG neurons, APs were generated at T5/T250 by 2000 Hz stimulation in Aβ, by 250 Hz stimulation both in Aβ and Aδ, and by 5 Hz stimulation in all three classes of DRG neurons. However, the AP frequencies elicited in Aβ and Aδ by 5 Hz stimulation were much less than those reported previously in physiological condition. With in vivo experiments large amplitude of EPSCs in SG neurons were elicited by 250 and 5 Hz stimuli at T5/ T250. These results suggest that 2000 Hz stimulation excites selectively Aβ fibers and 5 Hz stimulation activates noxious transmission mediated mainly through C fibers. Although 250 Hz stimulation activates both Aδ and Aβ fibers, tactile sensation would not be perceived when painful sensation is produced at the same time. Therefore, 250 Hz was effective stimulus frequency for activation of Aδ fibers initiating noxious sensation. Thus, the transcutaneous sine-wave stimulation can be applied to evaluate functional changes of sensory transmission by comparing thresholds with the three

  6. Bifurcation analysis of nephron pressure and flow regulation

    DEFF Research Database (Denmark)

    Barfred, Mikael; Mosekilde, Erik; Holstein-Rathlou, N.-H.

    1996-01-01

    One- and two-dimensional continuation techniques are applied to study the bifurcation structure of a model of renal flow and pressure control. Integrating the main physiological mechanisms by which the individual nephron regulates the incoming blood flow, the model describes the interaction between...... the tubuloglomerular feedback and the response of the afferent arteriole. It is shown how a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback gain becomes sufficiently strong, and how a further increase of this parameter produces a folded structure of overlapping period...

  7. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats.

    Science.gov (United States)

    Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M

    2012-04-01

    Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture.We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury.

  8. Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles

    DEFF Research Database (Denmark)

    Uhrenholt, Torben Rene; Schjerning, J; Vanhoutte, Paul M. G.

    2007-01-01

    Vasoconstriction and increase in the intracellular calcium concentration ([Ca(2+)](i)) of vascular smooth muscle cells may cause an increase of endothelial cell [Ca(2+)](i), which, in turn, augments nitric oxide (NO) production and inhibits smooth muscle cell contraction. This hypothesis was test...

  9. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  10. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction.

    Science.gov (United States)

    Sultemeier, David R; Hoffman, Larry F

    2017-01-01

    Although the effects of aminoglycoside antibiotics on hair cells have been investigated for decades, their influences on the dendrites of primary afferent neurons have not been widely studied. This is undoubtedly due to the difficulty in disassociating pathology to dendritic processes from that resulting from loss of the presynaptic hair cell. This was overcome in the present investigation through development of a preparation using Chinchilla laniger that enabled direct perilymphatic infusion. Through this strategy we unmasked gentamicin's potential effects on afferent calyces. The pathophysiology of the vestibular neuroepithelia after post-administration durations of 0.5 through 6 months was assessed using single-neuron electrophysiology, immunohistochemistry, and confocal microscopy. Hair cell densities within cristae central zones (0.5-, 1-, 2-, and 6-months) and utricle peri- and extrastriola (6-months) regions were determined, and damage to calretinin-immunoreactive calyces was quantified. Gentamicin-induced hair cell loss exhibited a profile that reflected elimination of a most-sensitive group by 0.5-months post-administration (18.2%), followed by loss of a second group (20.6%) over the subsequent 5.5 months. The total hair cell loss with this gentamicin dose (approximately 38.8%) was less than the estimated fraction of type I hair cells in the chinchilla's crista central zone (approximately 60%), indicating that viable type I hair cells remained. Extensive lesions to afferent calyces were observed at 0.5-months, though stimulus-evoked modulation was intact at this post-administration time. Widespread compromise to calyx morphology and severe attenuation of stimulus-evoked afferent discharge modulation was found at 1 month post-administration, a condition that persisted in preparations examined through the 6-month post-administration interval. Spontaneous discharge was robust at all post-administration intervals. All calretinin-positive calyces had retracted

  11. Afferent thermosensory function in relapsing-remitting multiple sclerosis following exercise-induced increases in body temperature.

    Science.gov (United States)

    Filingeri, Davide; Chaseling, Georgia; Hoang, Phu; Barnett, Michael; Davis, Scott L; Jay, Ollie

    2017-08-01

    What is the central question of this study? Between 60 and 80% of multiple sclerosis (MS) patients experience transient worsening of symptoms with increased body temperature (heat sensitivity). As sensory abnormalities are common in MS, we asked whether afferent thermosensory function is altered in MS following exercise-induced increases in body temperature. What is the main finding and its importance? Increases in body temperature of as little as ∼0.4°C were sufficient to decrease cold, but not warm, skin thermosensitivity (∼10%) in MS, across a wider temperature range than in age-matched healthy individuals. These findings provide new evidence on the impact of heat sensitivity on afferent function in MS, which could be useful for clinical evaluation of this neurological disease. In multiple sclerosis (MS), increases in body temperature result in transient worsening of clinical symptoms (heat sensitivity or Uhthoff's phenomenon). Although the impact of heat sensitivity on efferent physiological function has been investigated, the effects of heat stress on afferent sensory function in MS are unknown. Hence, we quantified afferent thermosensory function in MS following exercise-induced increases in body temperature with a new quantitative sensory test. Eight relapsing-remitting MS patients (three men and five women; 51.4 ± 9.1 years of age; Expanded Disability Status Scale score 2.8 ± 1.1) and eight age-matched control (CTR) subjects (five men and three women; 47.4 ± 9.1 years of age) rated the perceived magnitude of two cold (26 and 22°C) and two warm stimuli (34 and 38°C) applied to the dorsum of the hand before and after 30 min cycling in the heat (30°C air; 30% relative humidity). Exercise produced similar increases in mean body temperature in MS [+0.39°C (95% CI: +0.21, +0.53) P = 0.001] and CTR subjects [+0.41°C (95% CI: +0.25, +0.58) P = 0.001]. These changes were sufficient to decrease thermosensitivity significantly to all cold [26

  12. Differential roles of galanin on mechanical and cooling responses at the primary afferent nociceptor

    Directory of Open Access Journals (Sweden)

    Hulse Richard P

    2012-06-01

    Full Text Available Abstract Background Galanin is expressed in a small percentage of intact small diameter sensory neurons of the dorsal root ganglia and in the afferent terminals of the superficial lamina of the dorsal horn of the spinal cord. The neuropeptide modulates nociception demonstrating dose-dependent pro- and anti-nociceptive actions in the naïve animal. Galanin also plays an important role in chronic pain, with the anti-nociceptive actions enhanced in rodent neuropathic pain models. In this study we compared the role played by galanin and its receptors in mechanical and cold allodynia by identifying individual rat C-fibre nociceptors and characterising their responses to mechanical or acetone stimulation. Results Mechanically evoked responses in C-fibre nociceptors from naive rats were sensitised after close intra-arterial infusion of galanin or Gal2-11 (a galanin receptor-2/3 agonist confirming previous data that galanin modulates nociception via activation of GalR2. In contrast, the same dose and route of administration of galanin, but not Gal2-11, inhibited acetone and menthol cooling evoked responses, demonstrating that this inhibitory mechanism is not mediated by activation of GalR2. We then used the partial saphenous nerve ligation injury model of neuropathic pain (PSNI and the complete Freund’s adjuvant model of inflammation in the rat and demonstrated that close intra-arterial infusion of galanin, but not Gal2-11, reduced cooling evoked nociceptor activity and cooling allodynia in both paradigms, whilst galanin and Gal2-11 both decreased mechanical activation thresholds. A previously described transgenic mouse line which inducibly over-expresses galanin (Gal-OE after nerve injury was then used to investigate whether manipulating the levels of endogenous galanin also modulates cooling evoked nociceptive behaviours after PSNI. Acetone withdrawal behaviours in naive mice showed no differences between Gal-OE and wildtype (WT mice. 7-days after

  13. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    OpenAIRE

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.; Gebhart, G. F.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined chann...

  14. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Ladouceur, Michel; Andersen, Jacob B.

    2001-01-01

    1. The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. 2. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h(-1) with the left ankle...... = 0.007), whereas the short latency component was unchanged (P = 0.653). 7. An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. 8. Our results support...

  15. Cerebral Microvascular and Systemic Effects Following Intravenous Administration of the Perfluorocarbon Emulsion Perftoran.

    Science.gov (United States)

    Abutarboush, Rania; Saha, Biswajit K; Mullah, Saad H; Arnaud, Francoise G; Haque, Ashraful; Aligbe, Chioma; Pappas, Georgina; Auker, Charles R; McCarron, Richard M; Moon-Massat, Paula F; Scultetus, Anke H

    2016-11-18

    Oxygen-carrying perfluorocarbon (PFC) fluids have the potential to increase tissue oxygenation during hypoxic states and to reduce ischemic cell death. Regulatory approval of oxygen therapeutics was halted due to concerns over vasoconstrictive side effects. The goal of this study was to assess the potential vasoactive properties of Perftoran by measuring brain pial arteriolar diameters in a healthy rat model. Perftoran, crystalloid (saline) or colloid (Hextend) solutions were administered as four sequential 30 min intravenous (IV) infusions, thus allowing an evaluation of cumulative dose-dependent effects. There were no overall changes in diameters of small-sized (<50 μm) pial arterioles within the Perftoran group, while both saline and Hextend groups exhibited vasoconstriction. Medium-sized arterioles (50-100 μm) showed minor (~8-9%) vasoconstriction within saline and Hextend groups and only ~5% vasoconstriction within the Perftoran group. For small- and medium-sized pial arterioles, the mean percent change in vessel diameters was not different among the groups. Although there was a tendency for arterial blood pressures to increase with Perftoran, pressures were not different from the other two groups. These data show that Perftoran, when administered to healthy anesthetized rats, does not cause additional vasoconstriction in cerebral pial arterioles or increase systemic blood pressure compared with saline or Hextend.

  16. Chewing-induced hypertension in afferent baroreflex failure: a sympathetic response?

    Science.gov (United States)

    Fuente Mora, Cristina; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio

    2015-11-01

    What is the central question of this study? Our goal was to understand the autonomic responses to eating in patients with congenital afferent baroreflex failure, by documenting changes in blood pressure and heart rate with chewing, swallowing and stomach distension. What is the main finding and its importance? Patients born with lesions in the afferent baroreceptor pathways have an exaggerated pressor response to food intake. This appears to be a sympathetically mediated response, triggered by chewing, that occurs independently of swallowing or distension of the stomach. The chewing-induced pressor response may be useful as a counter-manoeuvre to prevent orthostatic hypotension in these patients. Familial dysautonomia (FD) is a rare genetic disease with extremely labile blood pressure resulting from baroreflex deafferentation. Patients have marked surges in sympathetic activity, frequently surrounding meals. We conducted an observational study to document the autonomic responses to eating in patients with FD and to determine whether sympathetic activation was caused by chewing, swallowing or stomach distension. Blood pressure and R-R intervals were measured continuously while chewing gum (n = 15), eating (n = 20) and distending the stomach by percutaneous endoscopic gastrostomy tube feeding (n = 9). Responses were compared with those of normal control subjects (n = 10) and of patients with efferent autonomic failure (n = 10) who have chronically impaired sympathetic outflow. In patients with FD, eating was associated with a marked but transient pressor response (P Chewing gum evoked a similar increase in blood pressure that was higher in patients with FD than in control subjects (P = 0.0001), but was absent in patients with autonomic failure. In patients with FD, distending the stomach by percutaneous endoscopic gastrostomy tube feeding failed to elicit a pressor response. The results provide indirect evidence that chewing triggers sympathetic

  17. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Science.gov (United States)

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. Copyright © 2014 the American Physiological Society.

  18. Lectin Ulex europaeus agglutinin I specifically labels a subset of primary afferent fibers which project selectively to the superficial dorsal horn of the spinal cord.

    Science.gov (United States)

    Mori, K

    1986-02-19

    To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectin Ulex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containing L-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.

  19. Peripheral axotomy of the rat mandibular trigeminal nerve leads to an increase in VIP and decrease of other primary afferent neuropeptides in the spinal trigeminal nucleus.

    Science.gov (United States)

    Atkinson, M E; Shehab, S A

    1986-12-01

    In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.

  20. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves

    Science.gov (United States)

    Longhurst, John C.; Tjen-A-Looi, Stephanie C.; Fu, Liang-Wu

    2016-01-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P < 0.05). The majority of these elPBN neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P < 0.05) after blockade of glutamate receptors with iontophoresis of kynurenic acid (Kyn, 25 mM). In separate cats, microinjection of Kyn (1.25 nmol/50 nl) into the elPBN reduced rVLM activity evoked by both bradykinin and electrical stimulation (n = 5, P < 0.05). Excitation of the elPBN with microinjection of dl-homocysteic acid (2 nmol/50 nl) significantly increased basal and CSAN-evoked rVLM activity. However, the enhanced rVLM activity induced by dl-homocysteic acid injected into the elPBN was reversed following iontophoresis of Kyn into the rVLM (n = 7, P < 0.05). These data suggest that cardiac sympathetic afferent stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  1. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration.

    Science.gov (United States)

    Shibata, E; Kaneko, F

    2013-04-29

    The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. MR features of a case of afferent loop syndrome presenting as obstructive jaundice; IRM d'un syndrome de l'anse afferente revele par un ictere obstructif

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, P.; Souci, J.; Oddo, F.; Diaine, B.; Padovani, B. [Centre Hospitalier Regional et Universitaire de Nice, Hopital Archet 2., Service d' Imagerie Medicale, 06 - Nice (France); Gueyffier, C. [Centre Hospitalier Regional de Cannes, Service d' Hepato-Gastro-enterologie, 06 - Cannes (France)

    2001-02-01

    The afferent loop syndrome corresponds to an acute or chronic obstruction of the afferent loop following a partial gastrectomy with Billroth II gastro-jejunal anastomosis. We describe the case of a 77-year-old man with history of partial gastrectomy for peptic ulcer disease performed 31 years ago and currently admitted for jaundice and poor general status. MR imaging showed dilatation of biliary and pancreatic ducts and showed a soft tissue mass between the afferent loop and the residual stomach. Endoscopy showed complete obstruction of the afferent loop by a biopsy-proven adenocarcinoma. The patient died of sepsis shortly after endoscopy of septicemia. (authors)

  3. Afferent and Efferent Connections of the Optic Tectum in the Carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Luiten, P.G.M.

    1981-01-01

    The afferent and efferent connections of the tectum opticum in the carp (Cyprinus carpio L.) were studied with the HRP method. Following iontophoretic peroxidase injections in several parts of the rectum anterograde transport of the enzyme revealed tectal projections to the lateral geniculate

  4. Cross-Modal Calibration of Vestibular Afference for Human Balance.

    Directory of Open Access Journals (Sweden)

    Martin E Héroux

    Full Text Available To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8 stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.

  5. An exploration of the control of micturition using a novel in situ arterially perfused rat preparation

    Directory of Open Access Journals (Sweden)

    Prajni eSadananda

    2011-05-01

    Full Text Available Our goal was to develop and refine a decerebrate arterially perfused rat preparation (DAPR that allows the complete bladder filling and voiding cycle to be investigated without some of the restrictions inherent with in vivo experimentation (e.g. ease and speed of set up (30mins, control over the extracellular milieu and free of anaesthetic agents. Both spontaneous (naturalistic bladder filling from ureters and evoked (in response to intravesical infusion voids were routinely and reproducibly observed which had similar pressure characteristics. The DAPR allows the simultaneous measurement of bladder intra-luminal pressure, external urinary sphincter electromyogram (EUS–EMG, pelvic afferent nerve activity, pudendal motor activity and permits excellent visualisation of the entire lower urinary tract, during typical rat filling and voiding responses. The voiding responses were modulated or eliminated by interventions at a number of levels including at the afferent terminal fields (intravesical capsaicin sensitisation-desensitisation, autonomic (ganglion blockade with hexamethonium and somatic motor (vecuronium block of the EUS outflow and required intact brainstem/hindbrain-spinal coordination (as demonstrated by sequential hindbrain transections. Both innocuous (eg perineal stimulation and noxious (tail/paw pinch somatic stimuli elicited an increase in EUS-EMG indicating intact sensory feedback loops. Spontaneous non-micturition contractions were observed between fluid infusions at a frequency and amplitude of 1.4±0.9 per minute and 1.4±0.3mmHg, respectively, and their amplitude increased when autonomic control was compromised. In conclusion, the DAPR is a tractable and useful model for the study of neural bladder control showing intact afferent signaling, spinal and hindbrain co-ordination and efferent control over the lower urinary tract end organs and can be extended to study bladder pathologies and trial novel treatments.

  6. Trigeminocardiac reflex by mandibular extension on rat pial microcirculation: role of nitric oxide.

    Directory of Open Access Journals (Sweden)

    Dominga Lapi

    Full Text Available In the present study we have extended our previous findings about the effects of 10 minutes of passive mandibular extension in anesthetized Wistar rats. By prolonging the observation time to 3 hours, we showed that 10 minutes mandibular extension caused a significant reduction of the mean arterial blood pressure and heart rate respect to baseline values, which persisted up to 160 minutes after mandibular extension. These effects were accompanied by a characteristic biphasic response of pial arterioles: during mandibular extension, pial arterioles constricted and after mandibular extension dilated for the whole observation period. Interestingly, the administration of the opioid receptor antagonist naloxone abolished the vasoconstriction observed during mandibular extension, while the administration of Nω-Nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, abolished the vasodilation observed after mandibular extension. Either drug did not affect the reduction of mean arterial blood pressure and heart rate induced by mandibular extension. By qRT-PCR, we also showed that neuronal nitric oxide synthase gene expression was significantly increased compared with baseline conditions during and after mandibular extension and endothelial nitric oxide synthase gene expression markedly increased at 2 hours after mandibular extension. Finally, western blotting detected a significant increase in neuronal and endothelial nitric oxide synthase protein expression. In conclusion mandibular extension caused complex effects on pial microcirculation involving opioid receptor activation and nitric oxide release by both neurons and endothelial vascular cells at different times.

  7. Long Term Osmotic Mini Pump Treatment with Alpha-MSH Improves Myocardial Function in Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Miklos Szokol

    2017-10-01

    Full Text Available The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH, in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT. Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF, fractional shortening (FS, isovolumetric relaxation time (IVRT, mitral annular plane systolic excursion (MAPSE, and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.

  8. Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents.

    Science.gov (United States)

    Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J; Morgan, David E; Bledsoe, Amber D; Jessop, Jacob E; Amann, Markus; Richardson, Russell S

    2017-12-01

    The purpose of this study was to investigate the role of the group III/IV muscle afferents in the bioenergetics of exercising skeletal muscle beyond constraining the magnitude of metabolic perturbation. Eight healthy men performed intermittent isometric knee-extensor exercise to task failure at ~58% maximal voluntary contraction under control conditions (CTRL) and with lumbar intrathecal fentanyl to attenuate group III/IV leg muscle afferents (FENT). Intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4), adenosine triphosphate (ATP), and pH were determined using phosphorous magnetic resonance spectroscopy (P-MRS). The magnitude of metabolic perturbation was significantly greater in FENT compared with CTRL for [Pi] (37.8 ± 16.8 vs 28.6 ± 8.6 mM), [H2PO4] (24.3 ± 12.2 vs 17.9 ± 7.1 mM), and [ATP] (75.8% ± 17.5% vs 81.9% ± 15.8% of baseline), whereas there was no significant difference in [PCr] (4.5 ± 2.4 vs 4.4 ± 2.3 mM) or pH (6.51 ± 0.10 vs 6.54 ± 0.14). The rate of perturbation in [PCr], [Pi], [H2PO4], and pH was significantly faster in FENT compared with CTRL. Oxidative ATP synthesis was not significantly different between conditions. However, anaerobic ATP synthesis, through augmented creatine kinase and glycolysis reactions, was significantly greater in FENT than in CTRL, resulting in a significantly greater ATP cost of contraction (0.049 ± 0.016 vs 0.038 ± 0.010 mM·min·N). Group III/IV muscle afferents not only constrain the magnitude of perturbation in intramuscular Pi, H2PO4, and ATP during small muscle mass exercise but also seem to play a role in maintaining efficient skeletal muscle contractile function in men.

  9. Stability of Kinesthetic Perception in Efferent-Afferent Spaces: The Concept of Iso-perceptual Manifold.

    Science.gov (United States)

    Latash, Mark L

    2018-02-21

    The main goal of this paper is to introduce the concept of iso-perceptual manifold for perception of body configuration and related variables (kinesthetic perception) and to discuss its relation to the equilibrium-point hypothesis and the concepts of reference coordinate and uncontrolled manifold. Hierarchical control of action is postulated with abundant transformations between sets of spatial reference coordinates for salient effectors at different levels. Iso-perceptual manifold is defined in the combined space of afferent and efferent variables as the subspace corresponding to a stable percept. Examples of motion along an iso-perceptual manifold (perceptually equivalent motion) are considered during various natural actions. Some combinations of afferent and efferent signals, in particular those implying a violation of body's integrity, give rise to variable percepts by artificial projection onto iso-perceptual manifolds. This framework is used to interpret unusual features of vibration-induced kinesthetic illusions and to predict new illusions not yet reported in the literature. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.

    Science.gov (United States)

    Bikson, Marom; Inoue, Masashi; Akiyama, Hiroki; Deans, Jackie K; Fox, John E; Miyakawa, Hiroyoshi; Jefferys, John G R

    2004-05-15

    The effects of uniform steady state (DC) extracellular electric fields on neuronal excitability were characterized in rat hippocampal slices using field, intracellular and voltage-sensitive dye recordings. Small electric fields (tips of basal and apical dendrites. The polarization was biphasic in the mid-apical dendrites; there was a time-dependent shift in the polarity reversal site. DC fields altered the thresholds of action potentials evoked by orthodromic stimulation, and shifted their initiation site along the apical dendrites. Large electric fields could trigger neuronal firing and epileptiform activity, and induce long-term (>1 s) changes in neuronal excitability. Electric fields perpendicular to the apical-dendritic axis did not induce somatic polarization, but did modulate orthodromic responses, indicating an effect on afferents. These results demonstrate that DC fields can modulate neuronal excitability in a time-dependent manner, with no clear threshold, as a result of interactions between neuronal compartments, the non-linear properties of the cell membrane, and effects on afferents.

  11. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.

    Science.gov (United States)

    Contini, D; Zampini, V; Tavazzani, E; Magistretti, J; Russo, G; Prigioni, I; Masetto, S

    2012-12-27

    Mammalian vestibular organs contain two types of sensory receptors, named Type I and Type II hair cells. While Type II hair cells are contacted by several small afferent nerve terminals, the basolateral surface of Type I hair cells is almost entirely enveloped by a single large afferent nerve terminal, called calyx. Moreover Type I, but not Type II hair cells, express a low-voltage-activated outward K(+) current, I(K,L), which is responsible for their much lower input resistance (Rm) at rest as compared to Type II hair cells. The functional meaning of I(K,L) and associated calyx is still enigmatic. By combining the patch-clamp whole-cell technique with the mouse whole crista preparation, we have recorded the current- and voltage responses of in situ hair cells. Outward K(+) current activation resulted in K(+) accumulation around Type I hair cells, since it induced a rightward shift of the K(+) reversal potential the magnitude of which depended on the amplitude and duration of K(+) current flow. Since this phenomenon was never observed for Type II hair cells, we ascribed it to the presence of a residual calyx limiting K(+) efflux from the synaptic cleft. Intercellular K(+) accumulation added a slow (τ>100ms) depolarizing component to the cell voltage response. In a few cases we were able to record from the calyx and found evidence for intercellular K(+) accumulation as well. The resulting depolarization could trigger a discharge of action potentials in the afferent nerve fiber. Present results support a model where pre- and postsynaptic depolarization produced by intercellular K(+) accumulation cooperates with neurotransmitter exocytosis in sustaining afferent transmission arising from Type I hair cells. While vesicular transmission together with the low Rm of Type I hair cells appears best suited for signaling fast head movements, depolarization produced by intercellular K(+) accumulation could enhance signal transmission during slow head movements. Copyright

  12. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.

    Science.gov (United States)

    Guo, Zhi-Ling; Longhurst, John C; Tjen-A-Looi, Stephanie C; Fu, Liang-Wu

    2016-08-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. Copyright © 2016 the American Physiological Society.

  13. Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease.

    Science.gov (United States)

    Joo, Illsung L; Lai, Aaron Y; Bazzigaluppi, Paolo; Koletar, Margaret M; Dorr, Adrienne; Brown, Mary E; Thomason, Lynsie A M; Sled, John G; McLaurin, JoAnne; Stefanovic, Bojana

    2017-04-12

    Alzheimer's disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans.

  14. Transmission between type II hair cells and bouton afferents in the turtle posterior crista.

    Science.gov (United States)

    Holt, Joseph C; Xue, Jin-Tang; Brichta, Alan M; Goldberg, Jay M

    2006-01-01

    Synaptic activity was recorded with sharp microelectrodes during rest and during 0.3-Hz sinusoidal stimulation from bouton afferents identified by their efferent-mediated inhibitory responses. A glutamate antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased quantal size (qsize) while lowering external Ca(2+) decreased quantal rate (qrate). Miniature excitatory postsynaptic potentials (mEPSPs) had effective durations (qdur) of 3.5-5 ms. Their timing was consistent with Poisson statistics. Mean qsizes ranged in different units from 0.25 to 0.73 mV and mean qrates from 200 to 1,500/s; there was an inverse relation across the afferent population between qrate and qsize. qsize distributions were consistent with the independent release of variable-sized quanta. Channel noise, measured during AMPA-induced depolarizations, was small compared with quantal noise. Excitatory responses were larger than inhibitory responses. Peak qrates, which could approach 3,000/s, led peak excitatory mechanical stimulation by 40 degrees . Quantal parameters varied with stimulation phase with qdur and qsize being maximal during inhibitory stimulation. Voltage modulation (vmod) was in phase with qrate and had a peak depolarization of 1.5-3 mV. On average, 80% of vmod was accounted for by quantal activity; the remaining 20% was a nonquantal component that persisted in the absence of quantal activity. The extracellular accumulation of glutamate and K(+) are potential sources of nonquantal transmission and may provide a basis for the inverse relation between qrate and qsize. Comparison of the phases of synaptic and spike activity suggests that both presynaptic and postsynaptic mechanisms contribute to variations across afferents in the timing of spikes during sinusoidal stimulation.

  15. Peripheral δ-opioid receptors attenuate the exercise pressor reflex.

    Science.gov (United States)

    Leal, Anna K; Yamauchi, Katsuya; Kim, Joyce; Ruiz-Velasco, Victor; Kaufman, Marc P

    2013-10-15

    In rats with ligated femoral arteries, the exercise pressor reflex is exaggerated, an effect that is attenuated by stimulation of peripheral μ-opioid receptors on group IV metabosensitive afferents. In contrast, δ-opioid receptors are expressed mostly on group III mechanosensitive afferents, a finding that prompted us to determine whether stimulation of these opioid receptors could also attenuate the exaggerated exercise pressor reflex in "ligated" rats. We found femoral arterial injection of [D-Pen2,D-Pen5]enkephalin (DPDPE; 1.0 μg), a δ-opioid agonist, significantly attenuated the pressor and cardioaccelerator components of the exercise pressor reflex evoked by hindlimb muscle contraction in both rats with ligated and patent femoral arteries. DPDPE significantly decreased the pressor responses to muscle mechanoreflex activation, evoked by tendon stretch, in ligated rats only. DPDPE (1.0 μg) had no effect in either group on the pressor and cardioaccelerator responses to capsaicin (0.2 μg), which primarily stimulates group IV afferents. DPDPE (1.0 μg) had no effect on the pressor and cardioaccelerator responses to lactic acid (24 mM), which stimulates group III and IV afferents, in rats with patent femoral arteries but significantly decreased the pressor response in ligated rats. Western blots revealed the amount of protein comprising the δ-opioid receptor was greater in dorsal root ganglia innervating hindlimbs with ligated femoral arteries than in dorsal root ganglia innervating hindlimbs with patent femoral arteries. Our findings support the hypothesis that stimulation of δ-opioid receptors on group III afferents attenuated the exercise pressor reflex.

  16. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    International Nuclear Information System (INIS)

    Suzuki, Chihiro; Takahashi, Masafumi; Morimoto, Hajime; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Hoshikawa, Yasushi; Ito, Takayuki; Miyashita, Hiroshi; Kobayashi, Eiji; Shimada, Kazuyuki; Ikeda, Uichi

    2006-01-01

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected by MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH

  17. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    Energy Technology Data Exchange (ETDEWEB)

    AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman, Av. Roca 2200, PC 4000 (Argentina); Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina)

    2007-11-15

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  18. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    International Nuclear Information System (INIS)

    AlbarracIn, A L; Farfan, F D; Felice, C J

    2007-01-01

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle

  19. Afferent loop syndrome - a case report; Sindrome da alca aferente - relato de um caso

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Ana Karina Nascimento; Pinheiro, Marco Antonio Lopes; Galvao, Cristine Norwig [Fundacao Pio XII - Hospital do Cancer de Barretos, SP (Brazil)

    2000-02-01

    The afferent loop syndrome occurs in patients with previous gastric surgery for tumor, when there is anastomotic edema, use of inappropriate reconstruction technique for gastro jejunostomy or recurrent gastric cancer. Complaints such jaundice, intermittent abdominal distension associated with pain, and vomiting should be investigated in order to rule out this syndrome. (author)

  20. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    Directory of Open Access Journals (Sweden)

    Ballesteros KA

    2012-11-01

    Full Text Available Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3. We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3 to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA, or 3-[(R-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP. Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals

  1. Early neurovascular dysfunction in a transgenic rat model of Alzheimer’s disease

    Science.gov (United States)

    Joo, Illsung L.; Lai, Aaron Y.; Bazzigaluppi, Paolo; Koletar, Margaret M.; Dorr, Adrienne; Brown, Mary E.; Thomason, Lynsie A. M.; Sled, John G.; McLaurin, JoAnne; Stefanovic, Bojana

    2017-01-01

    Alzheimer’s disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans. PMID:28401931

  2. The mechano-gated channel inhibitor GsMTx4 reduces the exercise pressor reflex in decerebrate rats.

    Science.gov (United States)

    Copp, Steven W; Kim, Joyce S; Ruiz-Velasco, Victor; Kaufman, Marc P

    2016-02-01

    Mechanical and metabolic stimuli from contracting muscles evoke reflex increases in blood pressure, heart rate and sympathetic nerve activity. Little is known, however, about the nature of the mechano-gated channels on the thin fibre muscle afferents that contribute to evoke this reflex, termed the exercise pressor reflex. We determined the effect of GsMTx4, an inhibitor of mechano-gated Piezo channels, on the exercise pressor reflex evoked by intermittent contraction of the triceps surae muscles in decerebrated, unanaesthetized rats. GsMTx4 reduced the pressor, cardioaccelerator and renal sympathetic nerve responses to intermittent contraction but did not reduce the pressor responses to femoral arterial injection of compounds that stimulate the metabolically-sensitive thin fibre muscle afferents. Expression levels of Piezo2 channels were greater than Piezo1 channels in rat dorsal root ganglia. Our findings suggest that mechanically-sensitive Piezo proteins contribute to the generation of the mechanical component of the exercise pressor reflex in rats. Mechanical and metabolic stimuli within contracting skeletal muscles evoke reflex autonomic and cardiovascular adjustments. In cats and rats, gadolinium has been used to investigate the role played by the mechanical component of this reflex, termed the exercise pressor reflex. Gadolinium, however, has poor selectivity for mechano-gated channels and exerts multiple off-target effects. We tested the hypothesis that GsMTX4, a more selective mechano-gated channel inhibitor than gadolinium and a particularly potent inhibitor of mechano-gated Piezo channels, reduced the exercise pressor reflex in decerebrate rats. Injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced the peak pressor (control: 24 ± 5, GsMTx4: 12 ± 5 mmHg, P acid. Moreover, injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced the peak pressor (control: 24 ± 2, GsMTx4: 14 ± 3 mmHg, P reflex in

  3. Development of rat female genital cortex and control of female puberty by sexual touch.

    Directory of Open Access Journals (Sweden)

    Constanze Lenschow

    2017-09-01

    Full Text Available Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  4. Development of rat female genital cortex and control of female puberty by sexual touch.

    Science.gov (United States)

    Lenschow, Constanze; Sigl-Glöckner, Johanna; Brecht, Michael

    2017-09-01

    Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  5. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  6. Pain from intra-articular NGF or joint injury in the rat requires contributions from peptidergic joint afferents.

    Science.gov (United States)

    Kras, Jeffrey V; Weisshaar, Christine L; Pall, Parul S; Winkelstein, Beth A

    2015-09-14

    Non-physiological stretch of the cervical facet joint's capsular ligament induces persistent behavioral hypersensitivity and spinal neuronal hyperexcitability via an intra-articular NGF-dependent mechanism. Although that ligament is innervated by nociceptors, it is unknown if a subpopulation is exclusively responsible for the behavioral and spinal neuronal responses to intra-articular NGF and/or facet joint injury. This study ablated joint afferents using the neurotoxin saporin targeted to neurons involved in either peptidergic ([Sar(9),Met (O2)(11)]-substance P-saporin (SSP-Sap)) or non-peptidergic (isolectin B4-saporin (IB4-Sap)) signaling to investigate the contributions of those neuronal populations to facet-mediated pain. SSP-Sap, but not IB4-Sap, injected into the bilateral C6/C7 facet joints 14 days prior to an intra- articular NGF injection prevents NGF-induced mechanical and thermal hypersensitivity in the forepaws. Similarly, only SSP- Sap prevents the increase in mechanical forepaw stimulation- induced firing of spinal neurons after intra-articular NGF. In addition, intra-articular SSP-Sap prevents both behavioral hypersensitivity and upregulation of NGF in the dorsal root ganglion after a facet joint distraction that normally induces pain. These findings collectively suggest that disruption of peptidergic signaling within the joint may be a potential treatment for facet pain, as well as other painful joint conditions associated with elevated NGF, such as osteoarthritis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Simulation of Blood Flow and Nanoparticle Transport in a Stenosed Carotid Bifurcation and Pseudo-Arteriole

    Directory of Open Access Journals (Sweden)

    Graham Doig

    2012-03-01

    Full Text Available Numerical simulation of flow through a realistic bifurcated carotid artery geometry with a stenosis has been conducted for comparison to experimental measurements. The behaviour of simplified therapeutic nanoparticles in relatively low concentration was observed using a discrete particle approach. The role of size (diameters from 500 nm to 50 nm in determining particle residence time and the potential for both desirable and undesirable wall interactions was investigated. It was found that mean particle residence time reduced with decreasing particle diameter, and the percentage of particles experiencing one or more wall interactions increased simultaneously. Further simulations were conducted on a scaled-down version of the geometry which approximated the size and flow conditions of an arteriole with capillary branches, and in this instance the mean residence time increased with decreasing particle diameter, owing largely to the greater influence of Brownian motion. 33% of all 50 nm particles were involved in wall interactions, indicating that smaller particles would have a greater ability to target, for instance, cancerous tumours in such regions.

  8. Effects of periodontal afferent inputs on corticomotor excitability in humans

    DEFF Research Database (Denmark)

    Zhang, Y; Boudreau, S; Wang, M

    2010-01-01

    for the first dorsal interosseous (FDI) as an internal control. Burning pain intensity and mechanical sensitivity ratings to a von Frey filament applied to the application site were recorded on an electronic visual analogue scale (VAS). All subjects reported a decreased mechanical sensitivity (anova: P = 0......-injection for the LA (anovas: P > 0.22) or capsaicin (anovas: P > 0.16) sessions. These findings suggest that a transient loss or perturbation in periodontal afferent input to the brain from a single incisor is insufficient to cause changes in corticomotor excitability of the face MI, as measured by TMS in humans....

  9. The role of L-type calcium channels in the vascular effect of Trigonella foenum-graecum L. in diabetic rats

    Directory of Open Access Journals (Sweden)

    Mehrdad Roghani

    2006-03-01

    Full Text Available Some ion channels like voltage-operated calcium channels (VOCC within the plasma membrane of vascular muscle cells from the walls of resistance arteries and arterioles play a central role in the regulation of vascular tone. On the basis of reports about the beneficial attenuating effect of fenugreek (Trigonella foenum-graecum L.; TFG on the contractile reactivity of aortic rings of diabetic rats, this study was carried out to evaluate the possible involvement of L-type voltage-operated calcium channels in the vascular effect of this medicinal plant. For this purpose, male Wistar rats were made diabetic using streptozotocin (STZ, 60 mg/Kg, i.p. The extract-treated control and diabetic rats received aqueous leaf extract of TFG (200 mg/Kg, i.p. every other day for two months. At the end of the study, contractile response of isolated aortic rings to KCl and noreadrenaline (NA was determined in the absence and presence of the calcium channel blocker nifedipine. The results showed that aortic rings from diabetic rats are more responsive to the effect of KCl and NA than those of controls, TFG extract treatment could attenuate the enhanced contractile response of aortic rings of diabetic rats, and nifedipine pretreatment could partially neutralize the beneficial effect of this extract. It is concluded that TFG extract attenuates the enhanced vascular reactivity in chronic diabetic rats and voltage-operated calcium channels are in part responsible for this effect of TFG extract.

  10. Expression of phosphorylated cAMP response element binding protein (p-CREB) in bladder afferent pathways in VIP-/- mice with cyclophosphamide (CYP)-induced cystitis

    DEFF Research Database (Denmark)

    Jensen, Dorthe G; Studeny, Simon; May, Victor

    2008-01-01

    The expression of phosphorylated cAMP response element binding protein (p-CREB) in dorsal root ganglia (DRG) with and without cyclophosphamide (CYP)-induced cystitis (150 mg/kg, i.p; 48 h) was determined in VIP(-/-) and wild-type (WT) mice. p-CREB immunoreactivity (IR) was determined in bladder...... (Fast blue) afferent cells. Nerve growth factor (NGF) bladder content was determined by enzyme-linked immunosorbent assays. Basal expression of p-CREB-IR in DRG of VIP(-/-) mice was (p DRG compared to WT mice. CYP treatment in WT mice increased (p ...-CREB-IR in L1, L2, L5-S1 DRG. CYP treatment in VIP(-/-) mice (p DRG compared to WT with CYP. In WT mice, bladder afferent cells (20-38%) in DRG expressed p-CREB-IR under basal conditions. With CYP, p-CREB-IR increased in bladder afferent cells (60...

  11. Axonal transport and incorporation of radioactivity after injection of N-[3H]acetyl-D-mannosamine into rat mesencephalon

    International Nuclear Information System (INIS)

    Loopuijt, L.D.

    1980-01-01

    A study has been performed to demonstrate the possibility of incorporation of sialic acid into nerve endings of the rubrospinal tract after antegrade axonal transport. Young adult rats received injections of N-[ 3 H]acetyl-D-mannosamine into the red nucleus and axonal transport of the tritiated compounds along the axons of afferent and efferent connections of the red nucleus was studied and the transported material was analysed. Light microscopic autoradiography and biochemical methods were used. (Auth./C.F.)

  12. A CADASIL-Like Case with a Novel Noncysteine Mutation of the NOTCH3 Gene and Granular Deposits in the Renal Arterioles

    Directory of Open Access Journals (Sweden)

    Kuniyuki Nakamura

    2015-01-01

    Full Text Available We herein report the finding of a 62-year-old male, who developed dysarthria and dysphagia, with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy- (CADASIL- like cerebral lesions. He also suffered from slowly progressive renal failure with the findings of granular deposits similar to electron-dense granular osmiophilic material in the renal arterioles. We found a novel heterozygous missense mutation of the NOTCH3 gene, c.4039G>C in exon 24, resulting in a p.Gly1347Arg substitution in its extracellular domain. The noncysteine substitution may underlie the pathogenesis of white matter lesions in the brain and of the chronic renal failure in the present case.

  13. Neovascularization of the corpus luteum of rats during the estrus cycle.

    Science.gov (United States)

    Tsukada, K; Matsushima, T; Yamanaka, N

    1996-06-01

    In order to elucidate the chronological morphological changes of the corpus luteum (CL) of rats, as a physiological angiogenesis model, the CL of rat ovaries was studied light microscopically using periodic acid methenamine silver staining (PAM) and immunostaining for type IV collagen, laminin, thrombomodulin (TM), factor VIII related antigen (factor VIII) and alpha-smooth muscle actin (alpha-SMA). The CL was also studied electron microscopically. Female Wistar-Imamichi rats were used, which have a regular 4-day estrous cycle. The histological changes of the CL were observed in 6-hour intervals from 4 h before the ovulation to 28 h post-ovulation during the estrous cycle. Once the basement membrane (BM) of the follicle disintegrated following ovulation, developing capillaries entered into the CL and formed a vascular lumen with a surrounding BM, which showed positive for PAM staining, type IV collagen and laminin. The developing capillaries in the CL showed a weakly positive reaction for TM and factor VIII, but were negative for alpha-SMA. However, the appearance of immature pericytes around the well-developed capillary was obvious with electron microscopy. The study reported here provides detailed descriptions of angiogenesis during luteinization. It is concluded that the angiogenesis of the CL begins at the time of destruction of the BM of the ovarian follicle, and that the capillary BM appears when the capillary forms its lumen. Moreover, it was demonstrated that the capillary does not develop into an arteriole during luteinization.

  14. Somatostatin receptors in rat hippocampus: localization to intrinsic neurons

    International Nuclear Information System (INIS)

    Palacios, J.M.; Reubi, J.C.; Maurer, R.

    1986-01-01

    The effect of neurotoxic chemical and electrolytical lesions on somatostatin (SS) receptor binding in the septo-hippocampal afferents, pyramidal and granule cells of the rat hippocampus was examined by autoradiography using the stable SS analogue 125 I-204-090 as radioligand. Electrolytical lesions of the septum did not result in modification of SS binding in the hippocampus. In contrast, both granule cell lesion with colchicine and pyramidal or pyramidal and granule cell lesions with increasing kainic acid doses did result in a specific decrease of binding in the dentate gyrus and hippocampus (CA 1 and CA 3 ). These results suggest that SS receptors in the hippocampus are probably associated with elements from intrinsic neurons. (Author)

  15. Selective plasticity of primary afferent innervation to the dorsal horn and autonomic nuclei following lumbosacral ventral root avulsion and reimplantation in long term studies.

    Science.gov (United States)

    Wu, Lisa; Wu, Jun; Chang, Huiyi H; Havton, Leif A

    2012-02-01

    Previous studies involving injuries to the nerves of the cauda equina and the conus medullaris have shown that lumbosacral ventral root avulsion in rat models results in denervation and dysfunction of the lower urinary tract, retrograde and progressive cell death of the axotomized motor and parasympathetic neurons, as well as the emergence of neuropathic pain. Root reimplantation has also been shown to ameliorate several of these responses, but experiments thus far have been limited to studying the effects of lesion and reimplantation local to the lumbosacral region. Here, we have expanded the region of investigation after lumbosacral ventral root avulsion and reimplantation to include the thoracolumbar sympathetic region of the spinal cord. Using a retrograde tracer injected into the major pelvic ganglion, we were able to define the levels of the spinal cord that contain sympathetic preganglionic neurons innervating the lower urinary tract. We have conducted studies on the effects of the lumbosacral ventral root avulsion and reimplantation models on the afferent innervation of the dorsal horn and autonomic nuclei at both thoracolumbar and lumbosacral levels through immunohistochemistry for the markers calcitonin gene-related peptide (CGRP) and vesicular glutamate transporter 1 (VGLUT1). Surprisingly, our experiments reveal a selective and significant decrease of CGRP-positive innervation in the dorsal horn at thoracolumbar levels that is partially restored with root reimplantation. However, no similar changes were detected at the lumbosacral levels despite the injury and repair targeting efferent neurons, and being performed at the lumbosacral levels. Despite the changes evident in the thoracolumbar dorsal horn, we find no changes in afferent innervation of the autonomic nuclei at either sympathetic or parasympathetic segmental levels by CGRP or VGLUT1. We conclude that even remote, efferent root injuries and repair procedures can have an effect on remote and non

  16. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    OpenAIRE

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitu...

  17. A novel method for delivering ramped cooling reveals rat behaviours at innocuous and noxious temperatures: A comparative study of human psychophysics and rat behaviour.

    Science.gov (United States)

    Dunham, James P; Hulse, Richard P; Donaldson, Lucy F

    2015-07-15

    Thermal sensory testing in rodents informs human pain research. There are important differences in the methodology for delivering thermal stimuli to humans and rodents. This is particularly true in cold pain research. These differences confound extrapolation and de-value nociceptive tests in rodents. We investigated cooling-induced behaviours in rats and psychophysical thresholds in humans using ramped cooling stimulation protocols. A Peltier device mounted upon force transducers simultaneously applied a ramped cooling stimulus whilst measuring contact with rat hind paw or human finger pad. Rat withdrawals and human detection, discomfort and pain thresholds were measured. Ramped cooling of a rat hind paw revealed two distinct responses: Brief paw removal followed by paw replacement, usually with more weight borne than prior to the removal (temperature inter-quartile range: 19.1 °C to 2.8 °C). Full withdrawal was evoked at colder temperatures (inter quartile range: -11.3 °C to -11.8 °C). The profile of human cool detection threshold and cold pain threshold were remarkably similar to that of the rat withdrawals behaviours. Previous rat cold evoked behaviours utilise static temperature stimuli. By utilising ramped cold stimuli this novel methodology better reflects thermal testing in patients. Brief paw removal in the rat is driven by non-nociceptive afferents, as is the perception of cooling in humans. This is in contrast to the nociceptor-driven withdrawal from colder temperatures. These findings have important implications for the interpretation of data generated in older cold pain models and consequently our understanding of cold perception and pain. Copyright © 2015. Published by Elsevier B.V.

  18. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain.

    Science.gov (United States)

    Schuelert, N; Zhang, C; Mogg, A J; Broad, L M; Hepburn, D L; Nisenbaum, E S; Johnson, M P; McDougall, J J

    2010-11-01

    The present study examined whether local administration of the cannabinoid-2 (CB(2)) receptor agonist GW405833 could modulate joint nociception in control rat knee joints and in an animal model of osteoarthritis (OA). OA was induced in male Wistar rats by intra-articular injection of sodium monoiodo-acetate with a recovery period of 14 days. Immunohistochemistry was used to evaluate the expression of CB(2) and transient receptor potential vanilloid channel-1 (TRPV1) receptors in the dorsal root ganglion (DRG) and synovial membrane of sham- and sodium mono-iodoacetate (MIA)-treated animals. Electrophysiological recordings were made from knee joint primary afferents in response to rotation of the joint both before and following close intra-arterial injection of different doses of GW405833. The effect of intra-articular GW405833 on joint pain perception was determined by hindlimb incapacitance. An in vitro neuronal release assay was used to see if GW405833 caused release of an inflammatory neuropeptide (calcitonin gene-related peptide - CGRP). CB(2) and TRPV1 receptors were co-localized in DRG neurons and synoviocytes in both sham- and MIA-treated animals. Local application of the GW405833 significantly reduced joint afferent firing rate by up to 31% in control knees. In OA knee joints, however, GW405833 had a pronounced sensitising effect on joint mechanoreceptors. Co-administration of GW405833 with the CB(2) receptor antagonist AM630 or pre-administration of the TRPV1 ion channel antagonist SB366791 attenuated the sensitising effect of GW405833. In the pain studies, intra-articular injection of GW405833 into OA knees augmented hindlimb incapacitance, but had no effect on pain behaviour in saline-injected control joints. GW405833 evoked increased CGRP release via a TRPV1 channel-dependent mechanism. These data indicate that GW405833 reduces the mechanosensitivity of afferent nerve fibres in control joints but causes nociceptive responses in OA joints. The observed

  19. Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear.

    Science.gov (United States)

    Mendus, Diana; Sundaresan, Srividya; Grillet, Nicolas; Wangsawihardja, Felix; Leu, Rose; Müller, Ulrich; Jones, Sherri M; Mustapha, Mirna

    2014-04-01

    Thrombospondins (TSPs) constitute a family of secreted extracellular matrix proteins that have been shown to be involved in the formation of synapses in the central nervous system. In this study, we show that TSP1 and TSP2 are expressed in the cochlea, and offer the first description of their putative roles in afferent synapse development and function in the inner ear. We examined mice with deletions of TSP1, TSP2 and both (TSP1/TSP2) for inner ear development and function. Immunostaining for synaptic markers indicated a significant decrease in the number of formed afferent synapses in the cochleae of TSP2 and TSP1/TSP2 knockout (KO) mice at postnatal day (P)29. In functional studies, TSP2 and TSP1/TSP2 KO mice showed elevated auditory brainstem response (ABR) thresholds as compared with wild-type littermates, starting at P15, with the most severe phenotype being seen for TSP1/TSP2 KO mice. TSP1/TSP2 KO mice also showed reduced wave I amplitudes of ABRs and vestibular evoked potentials, suggesting synaptic dysfunction in both the auditory and vestibular systems. Whereas ABR thresholds in TSP1 KO mice were relatively unaffected at early ages, TSP1/TSP2 KO mice showed the most severe phenotype among all of the genotypes tested, suggesting functional redundancy between the two genes. On the basis of the above results, we propose that TSPs play an important role in afferent synapse development and function of the inner ear. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. NMClab, a model to assess the contributions of muscle visco-elasticity and afferent feedback to joint dynamics

    NARCIS (Netherlands)

    Schouten, Alfred Christiaan; Mugge, Winfred; van der Helm, F.C.T.

    2008-01-01

    The dynamic behavior of a neuromusculoskeletal system results from the complex mechanical interaction between muscle visco-elasticity resulting from (co-)contraction and afferent feedback from muscle spindles and Golgi tendon organs. As a result of the multiple interactions the individual effect of

  1. Bilateral sensory deprivation of trigeminal afferent fibers on corticomotor control of human tongue musculature: A preliminary study

    DEFF Research Database (Denmark)

    Kothari, Mohit; Baad-Hansen, Lene; Svensson, Peter

    2016-01-01

    Background: Transcranial magnetic stimulation (TMS) has demonstrated changes in motor evoked potentials (MEPs) in human limb muscles following modulation of sensory afferent inputs. Objective: The aim of the present study was to determine whether bilateral local anaesthesia (LA) of the lingual ne...

  2. Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex

    Science.gov (United States)

    de Kock, Christiaan P. J.; Bruno, Randy M.; Ramirez, Alejandro; Meyer, Hanno S.; Dercksen, Vincent J.; Helmstaedter, Moritz; Sakmann, Bert

    2012-01-01

    Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses. Somata and dendrites of most cell types intermingle, while thalamocortical connectivity depends strongly upon the cell type and the 3D soma location of the postsynaptic neuron. Correlating dendrite morphology and thalamocortical connectivity to functional responses revealed that the lemniscal afferents can account for some of the cell type- and location-specific subthreshold and spiking responses after passive whisker touch (e.g., in layer 4, but not for other cell types, e.g., in layer 5). Our data provides a quantitative 3D prediction of the cell type–specific lemniscal synaptic wiring diagram and elucidates structure–function relationships of this physiologically relevant pathway at single-cell resolution. PMID:22089425

  3. Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats.

    Science.gov (United States)

    Kurachi, M; Aihara, H

    1984-09-01

    The effects of chlorphenesin carbamate (CPC) and mephenesin on spinal neurons were investigated in spinal rats. CPC (50 mg/kg i.v.) inhibited the mono-(MSR) and poly-synaptic reflex (PSR), the latter being more susceptible than the former to CPC depression. Mephenesin also inhibited MSR and PSR, though the effects were short in duration. CPC had no effect on the dorsal root potential evoked by the stimulation of the dorsal root, while mephenesin reduced the dorsal root-dorsal root reflex. The excitability of motoneuron was reduced by the administration of CPC or mephenesin. The excitability of primary afferent terminal was unchanged by CPC, while it was inhibited by mephenesin. Neither CPC nor mephenesin influenced the field potential evoked by the dorsal root stimulation. Both CPC and mephenesin had no effect on the synaptic recovery. These results suggest that both CPC and mephenesin inhibit the firing of motoneurons by stabilizing the neuronal membrane, while mephenesin additionally suppresses the dorsal root reflex and the excitability of the primary afferent terminal. These inhibitory actions of CPC on spinal activities may contribute, at least partly, to its muscle relaxing action.

  4. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Voigt, Michael; Stevenson, Andrew James Thomas

    2017-01-01

    : 8-35 mAmp) or a passive ankle movement (amplitude and velocity matched to a normal gait cycle) was applied such that the first afferent inflow would coincide with the PN of the MRCP. The change in the output of the primary motor cortex (M1) was quantified by applying single transcranial magnetic...... compared these two interventions (BCIFES and BCIpassive) where the afferent input was timed to arrive at the motor cortex during the PN of the MRCP. Twelve healthy participants attended two experimental sessions. They were asked to perform 30 dorsiflexion movements timed to a cue while continuous...... stimuli to the area of M1 controlling the tibialis anterior (TA) muscle and measuring the motor evoked potential (MEP). Spinal changes were assessed pre and post by eliciting the TA stretch reflex. Both BCIFES and BCIpassive led to significant increases in the excitability of the cortical projections...

  5. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats.

    Directory of Open Access Journals (Sweden)

    Khaled Abdallah

    Full Text Available Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG, into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project. These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.

  6. An experimental microangiographic study on radiation injury: Microangiography in radiation-injured rabbit kidney

    International Nuclear Information System (INIS)

    Han, Man Chung; Chang, Kee Hyun; Yoo, Seong Yul; Yeon, Kyung Mo; Kim, Chu Wan

    1980-01-01

    Microangiography may be defined as a branch of radiology which deals with the production and study of roentgenograms of thin sections of tissue for evaluation of microvasculatures. Its main advantage is that it permits study of a vascular system in continuity so that the pattern and overall architecture can be appreciated. Authors performed the microangiography to study the irradiation changes of kidney in 30 rabbits. Following local irradiation of 2,000 rads to one kidney of each rabbit, both normal and irradiated kidneys of each rabbit were studied. The results are as follows; 1. In the normal kidneys there is good filling of interiobular arteries, afferent arterioies, glomeruli and efferent arterioies. 2. In the early stage 91 month) after irradiation there appears to be no identifiable abnormal findings except slightly poor filling of glomeruli in the irradiated kidneys. 3. 5 months after irradiation the radiation-injured kidneys reveal intense curling and spralling of interlobular arterials and afferent arterioles with poor filling of glomeruli. 4. Microangiography, as expected, proved to be of good value in evaluation of the microvasculature of the kidney.

  7. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles

    Science.gov (United States)

    Laine, Christopher M.; Valero-Cuevas, Francisco J.

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,‘common drive’), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary ‘isometric’ force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease. PMID:29309405

  8. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    Science.gov (United States)

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  9. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Hao, Man-Zhao; Xu, Shao-Qin; Hu, Zi-Xiang; Xu, Fu-Liang; Niu, Chuan-Xin M; Xiao, Qin; Lan, Ning

    2017-07-14

    Recent study suggests that tremor signals are transmitted by way of multi-synaptic corticospinal pathway. Neurophysiological studies have also demonstrated that cutaneous afferents exert potent inhibition to descending motor commands by way of spinal interneurons. We hypothesize in this study that cutaneous afferents could also affect the transmission of tremor signals, thus, inhibit tremor in patients with PD. We tested this hypothesis by activating cutaneous afferents in the dorsal hand skin innervated by superficial radial nerve using transcutaneous electrical nerve stimulation (TENS). Eight patients with PD having tremor dominant symptom were recruited to participate in this study using a consistent experimental protocol for tremor inhibition. Resting tremor and electromyogram (EMG) of muscles in the upper extremity of these subjects with PD were recorded, while surface stimulation was applied to the dorsal skin of the hand. Fifteen seconds of data were recorded for 5 s prior to, during and post stimulation. Power spectrum densities (PSDs) of tremor and EMG signals were computed for each data segment. The peak values of PSDs in three data segments were compared to detect evidence of tremor inhibition. At stimulation intensity from 1.5 to 1.75 times of radiating sensation threshold, apparent suppressions of tremor at wrist, forearm and upper arm and in the EMGs were observed immediately at the onset of stimulation. After termination of stimulation, tremor and rhythmic EMG bursts reemerged gradually. Statistical analysis of peak spectral amplitudes showed a significant difference in joint tremors and EMGs during and prior to stimulation in all 8 subjects with PD. The average percentage of suppression was 61.56% in tremor across all joints of all subjects, and 47.97% in EMG of all muscles. The suppression appeared to occur mainly in distal joints and muscles. There was a slight, but inconsistent effect on tremor frequency in the 8 patients with PD tested. Our

  10. Accelerated Healing with a Mesh Autograft/Allodermal Composite Skin Graft Treated with Silver Nylon Dressings with and without Direct Current in Rats

    Science.gov (United States)

    2000-07-01

    heads ) (hematoxylin and eosin stain). No other arterioles and cap- illaries pass through the sheath. Before entering the papilla, the arteriole divides...Company; 1978:85. 39. Johnson KE. Histology and Embryology . Media, PA: Harwal Publishing Company; 1984:46–47. 40. Wang HJ, Chen TN. Porcine Dermis

  11. Analgesic effect of Minocycline in rat model of inflammation-induced visceral pain

    Science.gov (United States)

    Kannampalli, Pradeep; Pochiraju, Soumya; Bruckert, Mitchell; Shaker, Reza; Banerjee, Banani; Sengupta, Jyoti N.

    2014-01-01

    The present study investigates the analgesic effect of minocycline, a semi-synthetic tetracycline antibiotic, in a rat model of inflammation-induced visceral pain. Inflammation was induced in male rats by intracolonic administration of tri-nitrobenzenesulphonic acid (TNBS). Visceral hyperalgesia was assessed by comparing the viscero-motor response (VMR) to graded colorectal distension (CRD) prior and post 7 days after TNBS treatment. Electrophysiology recordings from CRD-sensitive pelvic nerve afferents (PNA) and lumbo-sacral (LS) spinal neurons were performed in naïve and inflamed rats. Colonic inflammation produced visceral hyperalgesia characterized by increase in the VMRs to CRD accompanied with simultaneous activation of microglia in the spinal cord and satellite glial cells (SGCs) in the dorsal root ganglions (DRGs). Selectively inhibiting the glial activation following inflammation by araC (Arabinofuranosyl Cytidine) prevented the development of visceral hyperalgesia. Intrathecal minocycline significantly attenuated the VMR to CRD in inflamed rats, whereas systemic minocycline produced a delayed effect. In electrophysiology experiments, minocycline significantly attenuated the mechanotransduction of CRD-sensitive PNAs and the responses of CRD-sensitive LS spinal neurons in TNBS-treated rats. While the spinal effect of minocycline was observed within 5 min of administration, systemic injection of the drug produced a delayed effect (60 min) in inflamed rats. Interestingly, minocycline did not exhibit analgesic effect in naïve, non-inflamed rats. The results demonstrate that intrathecal injection of minocycline can effectively attenuate inflammation-induced visceral hyperalgesia. Minocycline might as well act on neuronal targets in the spinal cord of inflamed rats, in addition to the widely reported glial inhibitory action to produce analgesia. PMID:24485889

  12. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat.

    Science.gov (United States)

    Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire

    2014-07-01

    The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.

  13. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report.

    Science.gov (United States)

    De Cicco, Vincenzo

    2012-09-03

    A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with asymmetric hemodynamics of cerebro-afferent

  14. Long-term potentiation and depression after unilateral labyrinthectomy in the medial vestibular nucleus of rats.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Dutia, Mayank; Frondaroli, Adele; Dieni, Cristina; Grassi, Silvarosa

    2003-01-01

    We previously demonstrated in rat brainstem slices that high-frequency stimulation (HFS) of the vestibular afferents induces long-term potentiation (LTP) in the ventral part (Vp) of the medial vestibular nucleus (MVN) and long-term depression (LTD) in the dorsal part (Dp). Both LTP and LTD depend on N-methyl-D-aspartate receptor activation, which increases synaptic efficacy; however, in the Dp, LTP reverses to LTD because of the activation of gamma-aminobutyric acid-ergic neurons. Here we show that the probability of inducing long-term effects in the MVN of rat brainstem slices is altered after unilateral labyrinthectomy (UL). In fact, LTP occurs less frequently in the ventral contra-lesional side compared with sham-operated rats. In the dorsal ipsi-lesional side, LTD is reduced and LTP enhanced, while the opposite occurs in the dorsal contra-lesional side. These changes in synaptic plasticity may be useful for re-balancing the tonic discharge of the MVN of the two sides during vestibular compensation, and for enhancing the dynamic responses of the deafferented MVN neurons in the long term.

  15. Stimulation of 5-HT2A receptors recovers sensory responsiveness in acute spinal neonatal rats.

    Science.gov (United States)

    Swann, Hillary E; Kauer, Sierra D; Allmond, Jacob T; Brumley, Michele R

    2017-02-01

    Quipazine is a 5-HT 2A -receptor agonist that has been used to induce motor activity and promote recovery of function after spinal cord injury in neonatal and adult rodents. Sensory stimulation also activates sensory and motor circuits and promotes recovery after spinal cord injury. In rats, tail pinching is an effective and robust method of sacrocaudal sensory afferent stimulation that induces motor activity, including alternating stepping. In this study, responsiveness to a tail pinch following treatment with quipazine (or saline vehicle control) was examined in spinal cord transected (at midthoracic level) and intact neonatal rats. Rat pups were secured in the supine posture with limbs unrestricted. Quipazine or saline was administered intraperitoneally and after a 10-min period, a tail pinch was administered. A 1-min baseline period prior to tail-pinch administration and a 1-min response period postpinch was observed and hind-limb motor activity, including locomotor-like stepping behavior, was recorded and analyzed. Neonatal rats showed an immediate and robust response to sensory stimulation induced by the tail pinch. Quipazine recovered hind-limb movement and step frequency in spinal rats back to intact levels, suggesting a synergistic, additive effect of 5-HT-receptor and sensory stimulation in spinal rats. Although levels of activity in spinal rats were restored with quipazine, movement quality (high vs. low amplitude) was only partially restored. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans

    DEFF Research Database (Denmark)

    Perez, Monica A.; Lungholt, Bjarke K.S.; Nielsen, Jens Bo

    2005-01-01

    Sensory information continuously converges on the spinal cord during a variety of motor behaviours. Here, we examined presynaptic control of group Ia afferents in relation to acquisition of a novel motor skill. We tested whether repetition of two motor tasks with different degrees of difficulty......, a novel visuo-motor task involving the ankle muscles, and a control task involving simple voluntary ankle movements, would induce changes in the size of the soleus H-reflex. The slope of the H-reflex recruitment curve and the H-max/M-max ratio were depressed after repetition of the visuo-motor skill task...... of the monosynaptic Ia facilitation of the soleus H-reflex evoked by femoral nerve stimulation. The D1 inhibition was increased and the femoral nerve facilitation was decreased following the visuo-motor skill task, suggesting an increase in presynaptic inhibition of Ia afferents. No changes were observed...

  17. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens

    International Nuclear Information System (INIS)

    Robinson, T.G.; Beart, P.M.

    1988-01-01

    High affinity uptake of D-[ 3 H]aspartate, [ 3 H]choline and [ 3 H]GABA was examined in synaptosomal-containing preparations of rat nucleus accumbens septi 7 to 10 days after unilateral or bilateral N-methyl-D-aspartate lesions confined to the parataenial nucleus of the thalamus or the basolateral nucleus of the amygdala. Uptake of both D-[ 3 H]aspartate and [ 3 H]choline was significantly reduced (11% and 14% less than control, respectively) by unilateral lesion of the thalamus, whereas [ 3 H]GABA uptake was unaffected. Bilateral thalamic lesions significantly reduced D-[ 3 H]aspartate uptake (11% less than control) into homogenates of the nucleus accumbens, whilst [ 3 H]GABA uptake was unaltered. D-[ 3 H]aspartate uptake was significantly reduced (26% less than control) following unilateral lesion of the amygdala, whereas both [ 3 H]GABA and [ 3 H]choline uptake were unaffected. Bilateral amygdaloid lesions significantly increased D-[ 3 H]aspartate uptake (39% greater than control), whilst uptake of [ 3 H]GABA was not affected. The results implicate glutamate and/or aspartate as putative neurotransmitters in afferent projections from the basolateral amygdala and the parataenial thalamus to the nucleus accumbens. Thalamic afferents to the nucleus accumbens may also utilize acetylcholine as their transmitter

  18. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber).

    Science.gov (United States)

    Park, Thomas J; Lu, Ying; Jüttner, René; Smith, Ewan St J; Hu, Jing; Brand, Antje; Wetzel, Christiane; Milenkovic, Nevena; Erdmann, Bettina; Heppenstall, Paul A; Laurito, Charles E; Wilson, Steven P; Lewin, Gary R

    2008-01-01

    In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes "normal" mammalian nociception.

  19. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber.

    Directory of Open Access Journals (Sweden)

    Thomas J Park

    2008-01-01

    Full Text Available In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes "normal" mammalian nociception.

  20. Stimulation of renal afferent fibers leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata.

    Science.gov (United States)

    Nishi, Erika E; Martins, Beatriz S; Milanez, Maycon I O; Lopes, Nathalia R; de Melo, Jose F; Pontes, Roberto B; Girardi, Adriana C; Campos, Ruy R; Bergamaschi, Cássia T

    2017-05-01

    Presympathetic neurons in the rostral ventrolateral medulla (RVLM) including the adrenergic cell groups play a major role in the modulation of several reflexes required for the control of sympathetic vasomotor tone and blood pressure (BP). Moreover, sympathetic vasomotor drive to the kidneys influence natriuresis and diuresis by inhibiting the cAMP/PKA pathway and redistributing the Na + /H + exchanger isoform 3 (NHE3) to the body of the microvilli in the proximal tubules. In this study we aimed to evaluate the effects of renal afferents stimulation on (1) the neurochemical phenotype of Fos expressing neurons in the medulla oblongata and (2) the level of abundance and phosphorylation of NHE3 in the renal cortex. We found that electrical stimulation of renal afferents increased heart rate and BP transiently and caused activation of tyrosine hydroxylase (TH)-containing neurons in the RVLM and non-TH neurons in the NTS. Additionally, activation of the inhibitory renorenal reflex over a 30-min period resulted in increased natriuresis and diuresis associated with increased phosphorylation of NHE3 at serine 552, a surrogate for reduced activity of this exchanger, in the contralateral kidney. This effect was not dependent of BP changes considering that no effects on natriuresis or diuresis were found in the ipsilateral-stimulated kidney. Therefore, our data show that renal afferents leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata. When renorenal reflex is induced, NHE3 exchanger activity appears to be decreased, resulting in decreased sodium and water reabsorption in the contralateral kidney. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Cooling reduces the cutaneous afferent firing response to vibratory stimuli in glabrous skin of the human foot sole.

    Science.gov (United States)

    Lowrey, Catherine R; Strzalkowski, Nicholas D J; Bent, Leah R

    2013-02-01

    Skin on the foot sole plays an important role in postural control. Cooling the skin of the foot is often used to induce anesthesia to determine the role of skin in motor and balance control. The effect of cooling on the four classes of mechanoreceptor in the skin is largely unknown, and thus the aim of the present study was to characterize the effects of cooling on individual skin receptors in the foot sole. Such insight will better isolate individual receptor contributions to balance control. Using microneurography, we recorded 39 single nerve afferents innervating mechanoreceptors in the skin of the foot sole in humans. Afferents were identified as fast-adapting (FA) or slowly adapting (SA) type I or II (FA I n = 16, FA II n = 7, SA I n = 6, SA II n = 11). Receptor response to vibration was compared before and after cooling of the receptive field (2-20 min). Overall, firing response was abolished in 30% of all receptors, and this was equally distributed across receptor type (P = 0.69). Longer cooling times were more likely to reduce firing response below 50% of baseline; however, some afferent responses were abolished with shorter cooling times (2-5 min). Skin temperature was not a reliable indicator of the level of receptor activation and often became uncoupled from receptor response levels, suggesting caution in the use of this parameter as an indicator of anesthesia. When cooled, receptors preferentially coded lower frequencies in response to vibration. In response to a sustained indentation, SA receptors responded more like FA receptors, primarily coding "on-off" events.

  2. Afferent input selects NMDA receptor subtype to determine the persistency of hippocampal LTP in freely behaving mice

    Directory of Open Access Journals (Sweden)

    Jesús Javier Ballesteros

    2016-10-01

    Full Text Available The glutamatergic N-methyl-D-aspartate receptor (NMDAR is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2 mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory performance. Furthermore, studies of synaptic plasticity, in genetically modified mice in vitro, suggest that GluN2A and GluN2B may contribute in different ways to the induction and longevity of synaptic plasticity. In contrast to the hippocampal slice preparation, in behaving mice, the afferent frequencies that induce synaptic plasticity are very restricted and specific. In fact, it is the stimulus pattern, and not variations in afferent frequency that determine the longevity of long-term potentiation (LTP. Here, we explored the contribution of GluN2A and GluN2B to LTP of differing magnitudes and persistencies in freely behaving mice. We applied differing high-frequency stimulation (HFS patterns at 100 Hz to the hippocampal CA1 region, to induce NMDAR-dependent LTP in wild-type (WT mice, that endured for 24h (late (L-LTP. In GluN2A-KO mice, E-LTP (HFS, 50 pulses was significantly reduced in magnitude and duration, whereas LTP (HFS, 2 x 50 pulses and L-LTP (HFS, 4 x 50 pulses were unaffected compared to responses in WT animals. By contrast, pharmacological antagonism of GluN2B in WT had no effect on E-LTP but significantly prevented LTP. E- LTP and LTP were significantly impaired by GluN2B antagonism in GluN2A-KO mice. These data indicate that the pattern of afferent stimulation is decisive for the recruitment of distinct GluN2A and GluN2B signaling pathways that in turn determine the persistency of hippocampal LTP. Whereas brief bursts of patterned stimulation preferentially recruit GluN2A and lead to weak and short-lived forms of LTP, prolonged, more intense, afferent activation recruits GluN2B

  3. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.

    Science.gov (United States)

    Nakano, Ayuki; Nakahara, Tsutomu; Mori, Asami; Ushikubo, Hiroko; Sakamoto, Kenji; Ishii, Kunio

    2016-02-01

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of adding Braun jejunojejunostomy to standard Whipple procedure on reduction of afferent loop syndrome - a randomized clinical trial.

    Science.gov (United States)

    Kakaei, Farzad; Beheshtirouy, Samad; Nejatollahi, Seyed Moahammad Reza; Rashidi, Iqbal; Asvadi, Touraj; Habibzadeh, Afshin; Oliaei-Motlagh, Mohammad

    2015-12-01

    Whipple surgery (pancreaticodeudenectomy) has a high complication rate. We aimed to evaluate whether adding Braun jejunojejunostomy (side-to-side anastomosis of afferent and efferent loops distal to the gastrojejunostomy site) to a standard Whipple procedure would reduce postoperative complications. We conducted a randomized clinical trial comparing patients who underwent standard Whipple surgery (standard group) and patients who underwent standard Whipple surgery with Braun jejunojejunostomy (Braun group). Patients were followed for 1 month after the procedure and postoperative complications were recorded. Our study included 30 patients: 15 in the Braun and 15 in the standard group. In the Braun group, 4 (26.7%) patients experienced 6 complications, whereas in the standard group, 7 (46.7%) patients experienced 11 complications (p = 0.14). Complications in the Braun group were gastrointestinal bleeding and wound infection (n = 1 each) and delayed gastric emptying and pulmonary infection (n = 2 each). Complications in the standard group were death, pancreatic anastomosis leak and biliary anastomosis leak (n = 1 each); gastrointestinal bleeding (n = 2); and afferent loop syndrome and delayed gastric emptying (n = 3 each). There was no significant difference between groups in the subtypes of complications. Our results showed that adding Braun jejunojejunostomy to standard Whipple procedure was associated with lower rates of afferent loop syndrome and delayed gastric emptying. However, more studies are needed to define the role of Braun jejunojejunostomy in this regard. IRCT2014020316473N1 (www.irct.ir).

  5. TRPC1 expression and distribution in rat hearts

    Directory of Open Access Journals (Sweden)

    W. Niu

    2009-12-01

    Full Text Available Transient receptor potential canonical (TRPC proteins have been identified as a family of plasma membrane calcium-permeable channels. TRPC proteins can be activated by various stimuli and act as cellular sensors in mammals. Stretch-activated ion channels (SACs have been proposed to underlie cardiac mechano-electric feedback (MEF, although the molecular entity of SAC remains unknown. There is evidence suggesting that transient receptor potential canonical 1 (TRPC1 is a stretch-activated ion channel. As a non-selective cation channel, TRPC1 may cause stretch-induced depolarization and arrhythmia and thus may contribute to the MEF of the heart. In this study, we examined the expression patterns of TRPC1 in detail at both the mRNA and protein levels in rat hearts.We isolated total RNA from the left and right atria, and the left and right ventricles, and detected TRPC1 mRNA in these tissues using reverse-transcriptase polymerase chain reaction (RT-PCR. To study the protein localization and targeting, we performed immunohistochemistry and immunofluorescence labeling with the antibody against TRPC1. TRPC1 was detected in the cardiomyocytes of the ventricle and atrium at both the mRNA and protein levels. The cell membrane and Ttubule showed strong fluorescence labeling in the ventricular myocytes. Purkinje cells, the endothelial cells and smooth muscle cells of the coronary arterioles also displayed TRPC1 labeling. No TRPC1 was detected in fibroblasts. In conclusion, TRPC1 is widely expressed in the rat heart, including in working cells, Purkinje cells and vascular cells, suggesting that it plays an important role in the heart. The specific distribution pattern offered a useful insight into its function in adult rat ventricular cells. Further investigations are needed to clarify the role of TRPC1 in regulating cardiac activity, including cardiac MEF.

  6. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  7. C-tactile afferent stimulating touch carries a positive affective value.

    Science.gov (United States)

    Pawling, Ralph; Cannon, Peter R; McGlone, Francis P; Walker, Susannah C

    2017-01-01

    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major-smile muscle, positive affect & corrugator supercilii-frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli

  8. C-tactile afferent stimulating touch carries a positive affective value.

    Directory of Open Access Journals (Sweden)

    Ralph Pawling

    Full Text Available The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs, which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography and autonomic arousal (heart rate to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major-smile muscle, positive affect & corrugator supercilii-frown muscle, negative affect while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec, on two skin sites (CT innervated forearm & non-CT innervated palm. On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all

  9. Electrophysiological characterization of texture information slip-resistance dependent in the rat vibrissal nerve

    Directory of Open Access Journals (Sweden)

    Albarracín Ana L

    2011-04-01

    Full Text Available Abstract Background Studies in tactile discrimination agree that rats are able to learn a rough-smooth discrimination task by actively touching (whisking objects with their vibrissae. In particular, we focus on recent evidence of how neurons at different levels of the sensory pathway carry information about tactile stimuli. Here, we analyzed the multifiber afferent discharge of one vibrissal nerve during active whisking. Vibrissae movements were induced by electrical stimulation of motor branches of the facial nerve. We used sandpapers of different grain size as roughness discrimination surfaces and we also consider the change of vibrissal slip-resistance as a way to improve tactile information acquisition. The amplitude of afferent activity was analyzed according to its Root Mean Square value (RMS. The comparisons among experimental situation were quantified by using the information theory. Results We found that the change of the vibrissal slip-resistance is a way to improve the roughness discrimination of surfaces. As roughness increased, the RMS values also increased in almost all cases. In addition, we observed a better discrimination performance in the retraction phase (maximum amount of information. Conclusions The evidence of amplitude changes due to roughness surfaces and slip-resistance levels allows to speculate that texture information is slip-resistance dependent at peripheral level.

  10. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans

    Science.gov (United States)

    Cui, Jian; McQuillan, Patrick M.; Blaha, Cheryl; Kunselman, Allen R.

    2012-01-01

    We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects. PMID:22707559

  11. Long-term potentiation in the rat medial vestibular nuclei depends on locally synthesized 17beta-estradiol.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Dieni, Cristina; Scarduzio, Mariangela; Pettorossi, Vito E

    2009-08-26

    In male rat brainstem slices, we investigated the involvement of locally synthesized 17beta-estradiol (E(2)) in the induction in the medial vestibular nucleus (MVN) of long-term potentiation (LTP) by high-frequency stimulation (HFS) of the primary vestibular afferents. We demonstrated that the blockade of aromatase by letrozole or of E(2) receptors (ERalpha and ERbeta) by ICI 182,780 prevented the HFS-induced LTP of the N1 wave of the evoked field potential (FP) without affecting baseline responses. Only prolonged afferent activation could induce low LTP. In contrast, HFS applied under a combined blockade of GABA(A) receptors and aromatase or ERs was still able to induce LTP, but it was significantly lower and slower. These findings demonstrate that E(2) does not have a tonic influence on the activity of the MVN neurons and provide the first evidence of the crucial role played by local synthesis of E(2) in inducing LTP. We suggest that the synthesis of E(2) occurs after aromatase activation during HFS and facilitates the development of vestibular synaptic plasticity by influencing glutamate and GABA transmission.

  12. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity.

    Science.gov (United States)

    Garcia, Emmanuel; Becker, Veronika G C; McCullough, Danielle J; Stabley, John N; Gittemeier, Elizabeth M; Opoku-Acheampong, Alexander B; Sieman, Dietmar W; Behnke, Bradley J

    2016-07-01

    Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes. Copyright © 2016 the American Physiological Society.

  13. Liver afferents contribute to water drinking-induced sympathetic activation in human subjects: a clinical trial.

    Directory of Open Access Journals (Sweden)

    Marcus May

    Full Text Available Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups after 30-40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects.ClinicalTrials.gov NCT01237431.

  14. Liver Afferents Contribute to Water Drinking-Induced Sympathetic Activation in Human Subjects: A Clinical Trial

    Science.gov (United States)

    May, Marcus; Gueler, Faikah; Barg-Hock, Hannelore; Heiringhoff, Karl-Heinz; Engeli, Stefan; Heusser, Karsten; Diedrich, André; Brandt, André; Strassburg, Christian P.; Tank, Jens; Sweep, Fred C. G. J.; Jordan, Jens

    2011-01-01

    Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant) as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant) as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (pwater drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. Trial Registration ClinicalTrials.gov NCT01237431 PMID:22016786

  15. Altered astrocyte glutamate transporter regulation of hypothalamic neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Potapenko, Evgeniy S; Biancardi, Vinicia C; Zhou, Yiqiang; Stern, Javier E

    2012-08-01

    Neurohumoral activation, which includes augmented plasma levels of the neurohormone vasopressin (VP), is a common finding in heart failure (HF) that contributes to morbidity and mortality in this disease. While an increased activation of magnocellular neurosecretory cells (MNCs) and enhanced glutamate function in HF is well documented, the precise underlying mechanisms remain to be elucidated. Here, we combined electrophysiology and protein measurements to determine whether altered glial glutamate transporter function and/or expression occurs in the hypothalamic supraoptic nucleus (SON) during HF. Patch-clamp recordings obtained from MNCs in brain slices show that pharmacological blockade of astrocyte glutamate transporter 1 (GLT1) function [500 μM dihydrokainate (DHK)], resulted in a persistent N-methyl-D-aspartate receptor (NMDAR)-mediated inward current (tonic I(NMDA)) in sham rats, an effect that was significantly smaller in MNCs from HF rats. In addition, we found a diminished GLT1 protein content in plasma membrane (but not cytosolic) fractions of SON punches in HF rats. Conversely, astrocyte GLAST expression was significantly higher in the SON of HF rats, while nonselective blockade of glutamate transport activity (100 μM TBOA) evoked an enhanced tonic I(NMDA) activation in HF rats. Steady-state activation of NMDARs by extracellular glutamate levels was diminished during HF. Taken together, these results support a shift in the relative expression and function of two major glial glutamate transporters (from GLT1 to GLAST predominance) during HF. This shift may act as a compensatory mechanism to preserve an adequate basal glutamate uptake level in the face of an enhanced glutamatergic afferent activity in HF rats.

  16. Pulmonary artery remodeling differs in hypoxia- and monocrotaline-induced pulmonary hypertension

    NARCIS (Netherlands)

    van Suylen, R. J.; Smits, J. F.; Daemen, M. J.

    1998-01-01

    In the present study we analyzed structural characteristics of muscular pulmonary arteries and arterioles in two classic models of pulmonary hypertension, the rat hypoxia and monocrotaline models. We hypothesized that an increase in medial cross-sectional area would result in reduction of the lumen

  17. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue.

    Science.gov (United States)

    Millet, Guillaume Y; Muthalib, Makii; Jubeau, Marc; Laursen, Paul B; Nosaka, Kazunori

    2012-04-01

    To test the hypothesis that hypoxia centrally affects performance independently of afferent feedback and peripheral fatigue, we conducted two experiments under complete vascular occlusion of the exercising muscle under different systemic O(2) environmental conditions. In experiment 1, 12 subjects performed repeated submaximal isometric contractions of the elbow flexor to exhaustion (RCTE) with inspired O(2) fraction fixed at 9% (severe hypoxia, SevHyp), 14% (moderate hypoxia, ModHyp), 21% (normoxia, Norm), or 30% (hyperoxia, Hyper). The number of contractions (performance), muscle (biceps brachii), and prefrontal near-infrared spectroscopy (NIRS) parameters and high-frequency paired-pulse (PS100) evoked responses to electrical muscle stimulation were monitored. In experiment 2, 10 subjects performed another RCTE in SevHyp and Norm conditions in which the number of contractions, biceps brachii electromyography responses to electrical nerve stimulation (M wave), and transcranial magnetic stimulation responses (motor-evoked potentials, MEP, and cortical silent period, CSP) were recorded. Performance during RCTE was significantly reduced by 10-15% in SevHyp (arterial O(2) saturation, SpO(2) = ∼75%) compared with ModHyp (SpO(2) = ∼90%) or Norm/Hyper (SpO(2) > 97%). Performance reduction in SevHyp occurred despite similar 1) metabolic (muscle NIRS parameters) and functional (changes in PS100 and M wave) muscle states and 2) MEP and CSP responses, suggesting comparable corticospinal excitability and spinal and cortical inhibition between SevHyp and Norm. It is concluded that, in SevHyp, performance and central drive can be altered independently of afferent feedback and peripheral fatigue. It is concluded that submaximal performance in SevHyp is partly reduced by a mechanism related directly to brain oxygenation.

  18. "Sausage-string" appearance of arteries and arterioles can be caused by an instability of the blood vessel wall

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Beierholm, Ulrik; Mikkelsen, Rene

    2002-01-01

    Vascular damage induced by acute hypertension is preceded by a peculiar pattern where blood vessels show alternating regions of constrictions and dilations ("sausages on a string"). The pattern occurs in the smaller blood vessels, and it plays a central role in causing the vascular damage. A rela...... phenomenon. Experimental data suggest that the structural changes induced by the instability may cause secondary damage to the wall of small arteries and arterioles in the form of endothelial hyperpermeability followed by local fibrinoid necrosis of the vascular wall.......Vascular damage induced by acute hypertension is preceded by a peculiar pattern where blood vessels show alternating regions of constrictions and dilations ("sausages on a string"). The pattern occurs in the smaller blood vessels, and it plays a central role in causing the vascular damage....... A related vascular pattern has been observed in larger vessels from several organs during angiography. In the larger vessels the occurrence of the pattern does not appear to be related to acute hypertension. A unifying feature between the phenomenon in large and small vessels seems to be an increase...

  19. Effects of diabetes and gender on mechanical properties of the arterial system in rats: aortic impedance analysis.

    Science.gov (United States)

    Chang, Kuo-Chu; Hsu, Kwan-Lih; Tseng, Yung-Zu

    2003-01-01

    We determined the effects of diabetes and gender on the physical properties of the vasculature in streptozotocin (STZ)-treated rats based on the aortic input impedance analysis. Rats given STZ 65 mg/kg i.v. were compared with untreated age-matched controls. Pulsatile aortic pressure and flow signals were measured and were then subjected to Fourier transformation for the analysis of aortic input impedance. Wave transit time was determined using the impulse response function of the filtered aortic input impedance spectra. Male but not female diabetic rats exhibited an increase in cardiac output in the absence of any significant changes in arterial blood pressure, resulting in a decline in total peripheral resistance. However, in each gender group, diabetes contributed to an increase in wave reflection factor, from 0.47 +/- 0.04 to 0.84 +/- 0.03 in males and from 0.46 +/- 0.03 to 0.81 +/- 0.03 in females. Diabetic rats had reduced wave transit time, at 18.82 +/- 0.60 vs 21.34 +/- 0.51 msec in males and at 19.63 +/- 0.37 vs 22.74 +/- 0.57 msec in females. Changes in wave transit time and reflection factor indicate that diabetes can modify the timing and magnitude of the wave reflection in the rat arterial system. Meanwhile, diabetes produced a fall in aortic characteristic impedance from 0.023 +/- 0.002 to 0.009 +/- 0.001 mmHg/min/kg/ml in males and from 0.028 +/- 0.002 to 0.014 +/- 0.001 mmHg/min/kg/ml in females. With unaltered aortic pressure, both the diminished aortic characteristic impedance and wave transit time suggest that the muscle inactivation in diabetes may occur in aortas and large arteries and may cause a detriment to the aortic distensibility in rats with either sex. We conclude that only rats with male gender diabetes produce a detriment to the physical properties of the resistance arterioles. In spite of male or female gender, diabetes decreases the aortic distensibility and impairs the wave reflection phenomenon in the rat arterial system.

  20. Substance P Differentially Modulates Firing Rate of Solitary Complex (SC) Neurons from Control and Chronic Hypoxia-Adapted Adult Rats

    Science.gov (United States)

    Nichols, Nicole L.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2014-01-01

    NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats. PMID:24516602

  1. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus

    Science.gov (United States)

    Affleck, V.S.; Coote, J.H.; Pyner, S.

    2012-01-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine – BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold – FG or cholera toxin B subunit – CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS–PVN pathways. PMID:22698695

  2. Afferent connections of nervus facialis and nervus glossopharyngeus in the pigeon (Columba livia) and their role in feeding behavior.

    Science.gov (United States)

    Dubbeldam, J L

    1984-01-01

    The afferent connections of the facial nerve and glossopharyngeal nerve in the pigeon have been studied with the Fink-Heimer I method after ganglion lesions. The nucleus ventrolateralis anterior of the solitary complex and an indistinct cell group S VII medial to the nucleus interpolaris of the descending trigeminal tract are the terminal fields for facial afferents. The n. ventrolateralis anterior also receives an important projection from the distal glossopharyngeal ganglion. Other projection areas of this ganglion are the n. presulcalis , n. centralis anterior, n. intermedius anterior and the parasolitary nucleus. Both ganglia have only ipsilateral projections. A lesion in the jugular ganglion complex causes degeneration throughout the ipsilateral solitary complex, in the contralateral n. commissuralis and n. centralis posterior and in the n. cuneatus externus. The lack of a substantial contribution to the trigeminal system is ascribed to the absence of mechanoreceptors in the tongue. The implications for the organization of neuronal pathways related to the feeding behavior are discussed.

  3. Quantitative analysis of vasodilatory action of quercetin on intramural coronary resistance arteries of the rat in vitro.

    Directory of Open Access Journals (Sweden)

    Anna Monori-Kiss

    Full Text Available BACKGROUND: Dietary quercetin improves cardiovascular health, relaxes some vascular smooth muscle and has been demonstrated to serve as a substrate for the cyclooxygenase enzyme. AIMS: 1. To test quantitatively a potential direct vasodilatory effect on intramural coronary resistance artery segments, in different concentrations. 2. To scale vasorelaxation at different intraluminal pressure loads on such vessels of different size. 3. To test the potential role of prostanoids in vasodilatation induced by quercetin. METHODS: Coronary arterioles (70-240 µm were prepared from 24 rats and pressurized in PSS, using a pressure microangiometer. RESULTS: The spontaneous tone that developed at 50 mmHg was relaxed by quercetin in the 10(-9 moles/lit concentration (p<0.05, while 10(-5 moles/lit caused full relaxation. Significant relaxation was observed at all pressure levels (10-100 mmHg at 10(-7 moles/lit concentration of quercetin. The cyclooxygenase blocker indomethacin (10(-5 moles/lit induced no relaxation but contraction when physiological concentrations of quercetin were present in the tissue bath (p<0.02 with Anova, this contraction being more prominent in smaller vessels and in the higher pressure range (p<0.05, Pearson correlation. A further 2-8% contraction could be elicited by the NO blocker L-NAME (10(-4 moles/lit. CONCLUSION: These results demonstrate that circulating levels of quercetin (10(-7 moles/lit exhibit a substantial coronary vasodilatory effect. The extent of it is commeasurable with that of several other physiological mechanisms of coronary blood flow control. At least part of this relaxation is the result of an altered balance toward the production of endogenous vasodilatory prostanoids in the coronary arteriole wall.

  4. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    Science.gov (United States)

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  6. Neural input is critical for arcuate hypothalamic neurons to mount intracellular signaling responses to systemic insulin and deoxyglucose challenges in male rats: implications for communication within feeding and metabolic control networks.

    Science.gov (United States)

    Khan, Arshad M; Walker, Ellen M; Dominguez, Nicole; Watts, Alan G

    2014-02-01

    The hypothalamic arcuate nucleus (ARH) controls rat feeding behavior in part through peptidergic neurons projecting to the hypothalamic paraventricular nucleus (PVH). Hindbrain catecholaminergic (CA) neurons innervate both the PVH and ARH, and ablation of CA afferents to PVH neuroendocrine neurons prevents them from mounting cellular responses to systemic metabolic challenges such as insulin or 2-deoxy-d-glucose (2-DG). Here, we asked whether ablating CA afferents also limits their ARH responses to the same challenges or alters ARH connectivity with the PVH. We examined ARH neurons for three features: (1) CA afferents, visualized by dopamine-β-hydroxylase (DBH)- immunoreactivity; (2) activation by systemic metabolic challenge, as measured by increased numbers of neurons immunoreactive (ir) for phosphorylated ERK1/2 (pERK1/2); and (3) density of PVH-targeted axons immunoreactive for the feeding control peptides Agouti-related peptide and α-melanocyte-stimulating hormone (αMSH). Loss of PVH DBH immunoreactivity resulted in concomitant ARH reductions of DBH-ir and pERK1/2-ir neurons in the medial ARH, where AgRP neurons are enriched. In contrast, pERK1/2 immunoreactivity after systemic metabolic challenge was absent in αMSH-ir ARH neurons. Yet surprisingly, axonal αMSH immunoreactivity in the PVH was markedly increased in CA-ablated animals. These results indicate that (1) intrinsic ARH activity is insufficient to recruit pERK1/2-ir ARH neurons during systemic metabolic challenges (rather, hindbrain-originating CA neurons are required); and (2) rats may compensate for a loss of CA innervation to the ARH and PVH by increased expression of αMSH. These findings highlight the existence of a hierarchical dependence for ARH responses to neural and humoral signals that influence feeding behavior and metabolism.

  7. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    Science.gov (United States)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  8. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord

    Science.gov (United States)

    Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J

    2012-01-01

    The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity. PMID:22371473

  9. Organization of sensory input to the nociceptive-specific cutaneous trunk muscle reflex in rat, an effective experimental system for examining nociception and plasticity

    Science.gov (United States)

    Petruska, Jeffrey C.; Barker, Darrell F.; Garraway, Sandra M.; Trainer, Robert; Fransen, James W.; Seidman, Peggy A.; Soto, Roy G.; Mendell, Lorne M.; Johnson, Richard D.

    2013-01-01

    Detailed characterization of neural circuitries furthers our understanding of how nervous systems perform specific functions and enables the use of those systems to test hypotheses. We have characterized the sensory input to the cutaneous trunk muscle (CTM; also cutaneus trunci (rat) or cutaneus maximus (mouse)) reflex (CTMR), which manifests as a puckering of the dorsal thoracolumbar skin and is selectively driven by noxious stimuli. CTM electromyography (EMG) and neurogram recordings in naïve rats revealed that CTMR responses were elicited by natural stimuli and electrical stimulation of all segments from C4 to L6, a much greater extent of segmental drive to the CTMR than previously described. Stimulation of some subcutaneous paraspinal tissue can also elicit this reflex. Using a selective neurotoxin, we also demonstrate differential drive of the CTMR by trkA-expressing and non-expressing small diameter afferents. These observations highlight aspects of the organization of the CTMR system which make it attractive for studies of nociception and anesthesiology and plasticity of primary afferents, motoneurons, and the propriospinal system. We use the CTMR system to qualitatively and quantitatively demonstrate that experimental pharmacological treatments can be compared to controls applied either to the contralateral side or to another segment, with the remaining segments providing controls for systemic or other treatment effects. These data indicate the potential for using the CTMR system as both an invasive and non-invasive quantitative assessment tool providing improved statistical power and reduced animal use. PMID:23983104

  10. Exogenous glutamate induces short and long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Pessia, M; Pettorossi, V E

    2001-08-08

    In rat brain stem slices, high concentrations of exogenous glutamate induce long-term potentiation (LTP) of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation. At low concentrations, glutamate can also induce short-term potentiation (STP), indicating that LTP and STP are separate events depending on the level of glutamatergic synapse activation. LTP and STP are prevented by blocking NMDA receptors and nitric oxide (NO) synthesis. Conversely, blocking platelet-activating factor (PAF) and group I metabotropic glutamate receptors only prevents the full development of LTP. Moreover, in the presence of blocking agents, glutamate causes transient inhibition, suggesting that when potentiation is impeded, exogenous glutamate can activate presynaptic mechanisms that reduce glutamate release.

  11. Overexpression of Aquaporin-1 and Caveolin-1 in the Rat Urinary Bladder Urothelium Following Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Sun-Ouck Kim

    2013-12-01

    Full Text Available Purpose This study was designed to investigate the effect of detrusor overactivity induced by partial bladder outlet obstruction (BOO on the expression of aquaporin 1 (AQP1 and caveolin 1 (CAV1 in the rat urinary bladder, and to determine the role of these molecules in detrusor overactivity. Methods Female Sprague-Dawley rats were divided into control (n=30 and experimental (n=30 groups. The BOO group underwent partial BOO, and the control group underwent a sham operation. After 4 weeks, an urodynamic study was performed to measure the contraction interval and contraction pressure. The expression and cellular localization of AQP1 and CAV1 were determined by western blot and immunofluorescence experiments in the rat urinary bladder. Results In cystometrograms, the contraction interval was significantly lower in the BOO group (2.9±1.5 minutes than in the control group (6.7±1.0 minutes (P<0.05. Conversely, the average contraction pressure was significantly higher in the BOO group (21.2±3.3 mmHg than in the control group (13.0±2.5 mmHg (P<0.05. AQP1 and CAV1 were coexpressed in the capillaries, arterioles, and venules of the suburothelial layer. AQP1 and CAV1 protein expression was significantly increased in the BOO rats compared to the control rats (P<0.05. Conclusions Detrusor overactivity induced by BOO causes a significant increase in the expression of AQP1 and CAV1, which were coexpressed in the suburothelial microvasculature. This finding suggests that AQP1 and CAV1 might be closely related to bladder signal activity and may have a functional role in BOO-associated detrusor overactivity.

  12. Neonatal capsaicin causes compensatory adjustments to energy homeostasis in rats

    NARCIS (Netherlands)

    van de Wall, E. H. E. M.; Wielinga, P. Y.; Strubbe, J. H.; van Dijk, G.

    2006-01-01

    Several mechanisms involved in ingestive behavior and neuroendocrine activity rely on vagal afferent neuronal signaling. Seemingly contradictory to this idea are observations that vagal afferent neuronal ablation by neonatal capsaicin (CAP) treatment has relatively small effects on glucose

  13. Long-term potentiation of synaptic response and intrinsic excitability in neurons of the rat medial vestibular nuclei.

    Science.gov (United States)

    Pettorossi, V E; Dieni, C V; Scarduzio, M; Grassi, S

    2011-07-28

    Using intracellular recordings, we investigated the effects of high frequency stimulation (HFS) of the primary vestibular afferents on the evoked excitatory postsynaptic potential (EPSP) and intrinsic excitability (IE) of type-A and type-B neurons of the medial vestibular nucleus (MVN), in male rat brainstem slices. HFS induces long-term potentiation (LTP) of both EPSP and IE, which may occur in combination or separately. Synaptic LTP is characterized by an increase in the amplitude, slope and decay time constant of EPSP and IE-LTP through enhancements of spontaneous and evoked neuron firing and of input resistance (Rin). Moreover, IE-LTP is associated with a decrease in action potential afterhyperpolarization (AHP) amplitude and an increase in interspike slope steepness (ISS). The more frequent effects of HFS are EPSP-LTP in type-B neurons and IE-LTP in type-A neurons. In addition, the development of EPSP-LTP is fast in type-B neurons but slow in type-A, whereas IE-LTP develops slowly in both types. We have demonstrated that activation of N-methyl-d aspartate receptors (NMDARs) is only required for EPSP-LTP induction, whereas metabotropic glutamate receptors type-1 (mGluR1) are necessary for IE-LTP induction as well as the full development and maintenance of EPSP-LTP. Taken together, these findings demonstrate that brief and intense activation of vestibular afferent input to the MVN neurons may provoke synaptic LTP and/or IE-LTP that, induced in combination or separately, may assure the different selectivity of the MVN neuron response enhancement to the afferent signals. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Characterization and spatial relationships of the hepatic vascular-biliary tracts, and their associated pancreocytes and macrophages, in the model fish guppy (Poecilia reticulata): A study of serial sections by light microscopy.

    Science.gov (United States)

    Sousa, Sisandra; Rocha, Maria J; Rocha, Eduardo

    2018-02-01

    The guppy is a tropical fish that has been used as an experimental model organism in science. It is a species well adapted to the natural environment and that can support adverse environmental conditions, and so, at occasions, its presence can be indicative of environmental disturbances. Moreover, as the liver is very important when studying fish diseases, the knowledge of normal microanatomy is essential to assess histological changes, e.g., related to environmental change or toxic pollutants. The target organ of this histological study is the liver. The main objective is to contribute to the identification of anatomical and structural variations of this organ in different teleost species. We studied the distribution and spatial organization of the different types of blood vessels and biliary ducts and the relationships between them are established. For this, each liver was totally sectioned and the serial sections inspected in detail. The guppy liver presented intra-hepatic pancreatic tissue and so reported its association with the vascular and biliary elements. We observed that the input of afferent vessels (i.e., bringing blood into the liver) occur not only in the hilum but pierce and enter the organ at various points. Within the liver, venous vessels and bile ducts are seen, isolated or associated as venous-arteriolar tracts (VAT), and venous-biliary- arteriolar tracts (VBAT). Sometimes, pancreocytes appear within the liver surrounding isolated veins, forming venous tract with pancreatic acini (VT-P), or dual associations with afferent vessels, forming venous-arteriolar tracts with pancreatic acini (VAT-P). Intrahepatic pancreatic ducts were tiny and rare, putting in question the functional role of the acini. Contrary to other fish species, we did not spot isolated arterioles and associations between these and biliary ducts (BAT).We found aggregates of macrophages, namely associated with afferent and efferent (i.e., draining blood out) venous vessels; the

  15. Substance P differentially modulates firing rate of solitary complex (SC neurons from control and chronic hypoxia-adapted adult rats.

    Directory of Open Access Journals (Sweden)

    Nicole L Nichols

    Full Text Available NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS. Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus neurons from control and chronic hypoxia-adapted (CHx adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.

  16. Ventromedial hypothalamic expression of Bdnf is required to establish normal patterns of afferent GABAergic connectivity and responses to hypoglycemia

    Directory of Open Access Journals (Sweden)

    Anna Kamitakahara

    2016-02-01

    Full Text Available Objective: The ventromedial nucleus of the hypothalamus (VMH controls energy and glucose homeostasis through direct connections to a distributed network of nuclei in the hypothalamus, midbrain, and hindbrain. Structural changes in VMH circuit morphology have the potential to alter VMH function throughout life, however, molecular signals responsible for specifying its neural connections are not fully defined. The VMH contains a high density of neurons that express brain-derived neurotrophic factor (BDNF, a potent neurodevelopmental effector known to regulate neuronal survival, growth, differentiation, and connectivity in a number of neural systems. In the current study, we examined whether BDNF impacts the afferent and efferent connections of the VMH, as well as energy homeostatic function. Methods: To determine if BDNF is required for VMH circuit formation, a transgenic mouse model was used to conditionally delete Bdnf from steroidogenic factor 1 (SF1 expressing neurons of the VMH prior to the onset of establishing neural connections with other regions. Projections of SF1 expressing neurons were visualized with a genetically targeted fluorescent label and immunofluorescence was used to measure the density of afferents to SF1 neurons in the absence of BDNF. Physiological changes in body weight and circulating blood glucose were also evaluated in the mutant mice. Results: Our findings suggest that BDNF is required to establish normal densities of GABAergic afferents onto SF1 neurons located in the ventrolateral part of the VMH. Furthermore, loss of BDNF from VMH SF1 neurons results in impaired physiological responses to insulin-induced hypoglycemia. Conclusion: The results of this study indicate that BDNF is required for formation and/or maintenance of inhibitory inputs to SF1 neurons, with enduring effects on glycemic control. Author Video: Author Video Watch what authors say about their articles Keywords: Ventromedial nucleus of the hypothalamus

  17. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold-sensing

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G.

    2016-01-01

    Except a small population of primary afferent neurons for sensing cold to generate the sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of other primary afferent neurons that are not for cold-sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In the present study we have found that not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (regarded as cold-ineffective neurons) or suppress (regarded as cold-suppressive neurons) their membrane excitability. For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by the increases in action potential (AP) firing numbers and/or reduction of AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. PMID:26709732

  18. Assessment of Nephroprotective Potential of Histochrome during Induced Arterial Hypertension.

    Science.gov (United States)

    Agafonova, I G; Bogdanovich, R N; Kolosova, N G

    2015-12-01

    Magnetic resonance tomography was employed to verify endothelial dysfunction of renal arteries in Wistar and OXYS rats under conditions of induced arterial hypertension. Angiography revealed changes in the size and form of renal arteries of hypertensive animals. In hypertensive rats, histochrome exerted a benevolent therapeutic effect in renal arteries: it decreased BP, diminished thrombus formation in fi ne capillaries and arterioles, demonstrated the anticoagulant properties, partially improved endothelial dysfunction of small renal arteries, and up-regulated the glomerular filtration.

  19. Spinal cord stimulation paresthesia and activity of primary afferents.

    Science.gov (United States)

    North, Richard B; Streelman, Karen; Rowland, Lance; Foreman, P Jay

    2012-10-01

    A patient with failed back surgery syndrome reported paresthesia in his hands and arms during a spinal cord stimulation (SCS) screening trial with a low thoracic electrode. The patient's severe thoracic stenosis necessitated general anesthesia for simultaneous decompressive laminectomy and SCS implantation for chronic use. Use of general anesthesia gave the authors the opportunity to characterize the patient's unusual distribution of paresthesia. During SCS implantation, they recorded SCS-evoked antidromic potentials at physiologically relevant amplitudes in the legs to guide electrode placement and in the arms as controls. Stimulation of the dorsal columns at T-8 evoked potentials in the legs (common peroneal nerves) and at similar thresholds, consistent with the sensation of paresthesia in the arms, in the right ulnar nerve. The authors' electrophysiological observations support observations by neuroanatomical specialists that primary afferents can descend several (in this case, at least 8) vertebral segments in the spinal cord before synapsing or ascending. This report thus confirms a physiological basis for unusual paresthesia distribution associated with thoracic SCS.

  20. Spike rate and spike timing contributions to coding taste quality information in rat periphery

    Directory of Open Access Journals (Sweden)

    Vernon eLawhern

    2011-05-01

    Full Text Available There is emerging evidence that individual sensory neurons in the rodent brain rely on temporal features of the discharge pattern to code differences in taste quality information. In contrast, in-vestigations of individual sensory neurons in the periphery have focused on analysis of spike rate and mostly disregarded spike timing as a taste quality coding mechanism. The purpose of this work was to determine the contribution of spike timing to taste quality coding by rat geniculate ganglion neurons using computational methods that have been applied successfully in other sys-tems. We recorded the discharge patterns of narrowly-tuned and broadly-tuned neurons in the rat geniculate ganglion to representatives of the five basic taste qualities. We used mutual in-formation to determine significant responses and the van Rossum metric to characterize their temporal features. While our findings show that spike timing contributes a significant part of the message, spike rate contributes the largest portion of the message relayed by afferent neurons from rat fungiform taste buds to the brain. Thus, spike rate and spike timing together are more effective than spike rate alone in coding stimulus quality information to a single basic taste in the periphery for both narrowly-tuned specialist and broadly-tuned generalist neurons.

  1. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles

    DEFF Research Database (Denmark)

    Howitt, Lauren; Kuo, Ivana Y; Ellis, Anthie

    2013-01-01

    arteries in vitro and skeletal muscle arterioles in vivo to study the contribution of L-type (1 µmol/L nifedipine) and T-type (1 µmol/L mibefradil, 3 µmol/L NNC 55-0396) calcium channels to vascular tone, following acute or chronic inhibition of nitric oxide. Acute inhibition with l-NAME (10 µmol...... was reversed by acute scavenging of superoxide with tempol (1 mmol/L), or inhibition of NADPH oxidase with apocynin (500 µmol/L) or DPI (5 µmol/L). CONCLUSION: We conclude that nitric oxide deficit produces a significant increase in the contribution of Cav3.1 and Cav3.2 T-type calcium channels to vascular tone......, by regulating the bioavailability of reactive oxygen species produced by NADPH oxidase. Our data provide evidence for a novel causal link between nitric oxide deficit, oxidative stress, and T-type calcium channel function....

  2. Afferent neuronal control of type-I gonadotropin releasing hormone (GnRH neurons in the human

    Directory of Open Access Journals (Sweden)

    Erik eHrabovszky

    2013-09-01

    Full Text Available Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. Under various physiological and pathological conditions, hormonal and metabolic signals either regulate GnRH neurons directly or act on upstream neuronal circuitries to influence the pattern of pulsatile GnRH secretion into the hypophysial portal circulation. Neuronal afferents to GnRH cells convey important metabolic-, stress-, sex steroid-, lactational- and circadian signals to the reproductive axis, among other effects. This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and neurokinin B systems.

  3. The repetition timing of high frequency afferent stimulation drives the bidirectional plasticity at central synapses in the rat medial vestibular nuclei.

    Science.gov (United States)

    Scarduzio, M; Panichi, R; Pettorossi, V E; Grassi, S

    2012-10-25

    In this study we show that high frequency stimulation (HFS, 100Hz) of afferent fibers to the medial vestibular nucleus (MVN) can induce opposite long-term modifications of synaptic responses in the type B neurons depending upon the stimulation pattern. Long burst stimulation (LBS: 2s) and short burst stimulation (SBS: 0.55s) were applied with different burst number (BN) and inter-burst intervals (IBI). It results that both LBS and SBS can induce either N-methyl-d aspartate receptors (NMDARs)-mediated long-term potentiation (LTP) or long-term depression (LTD), depending on temporal organization of repetitive bursts. In particular, the IBI plays a relevant role in guiding the shift from LTP to LTD since by using both LBS and SBS LTP is induced by shorter IBI than LTD. By contrast, the sign of long-term effect does not depend on the mean impulse frequency evaluated within the entire stimulation period. Therefore, the patterns of repetitive vestibular activation with different ratios between periods of increased activity and periods of basal activity may lead to LTP or LTD probably causing different levels of postsynaptic Ca(2+). On the whole, this study demonstrates that glutamatergic vestibular synapse in the MVN can undergo NMDAR-dependent bidirectional plasticity and puts forward a new aspect for understanding the adaptive and compensatory plasticity of the oculomotor responses. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Absence of histamine-induced itch in the African naked mole-rat and "rescue" by Substance P.

    Science.gov (United States)

    Smith, Ewan St John; Blass, Gregory R C; Lewin, Gary R; Park, Thomas J

    2010-05-24

    Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber) and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG) neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP) in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.

  5. Absence of histamine-induced itch in the African naked mole-rat and "rescue" by Substance P

    Directory of Open Access Journals (Sweden)

    Lewin Gary R

    2010-05-01

    Full Text Available Abstract Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.

  6. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    Directory of Open Access Journals (Sweden)

    Rongfeng Hu

    2016-10-01

    Full Text Available The basal forebrain cholinergic system (BFCS robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum (LS, central amygdala (CeA, paraventricular nucleus of hypothalamus (PVH, dorsal raphe (DRN and parabrachial nucleus (PBN. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal-hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function.

  7. Inflammatory mediators potentiate high affinity GABA(A) currents in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Lee, Kwan Yeop; Gold, Michael S

    2012-06-19

    Following acute tissue injury action potentials may be initiated in afferent processes terminating in the dorsal horn of the spinal cord that are propagated back out to the periphery, a process referred to as a dorsal root reflex (DRR). The DRR is dependent on the activation of GABA(A) receptors. The prevailing hypothesis is that DRR is due to a depolarizing shift in the chloride equilibrium potential (E(Cl)) following an injury-induced activation of the Na(+)-K(+)-Cl(-)-cotransporter. Because inflammatory mediators (IM), such as prostaglandin E(2) are also released in the spinal cord following tissue injury, as well as evidence that E(Cl) is already depolarized in primary afferents, an alternative hypothesis is that an IM-induced increase in GABA(A) receptor mediated current (I(GABA)) could underlie the injury-induced increase in DRR. To test this hypothesis, we explored the impact of IM (prostaglandin E(2) (1 μM), bradykinin (10 μM), and histamine (1 μM)) on I(GABA) in dissociated rat dorsal root ganglion (DRG) neurons with standard whole cell patch clamp techniques. IM potentiated I(GABA) in a subpopulation of medium to large diameter capsaicin insensitive DRG neurons. This effect was dependent on the concentration of GABA, manifest only at low concentrations (emergence of injury-induced DRR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. In vivo release of calcitonin gene-related peptide-like material from the cervicotrigeminal area in the rat. Effects of electrical and noxious stimulations of the muzzle.

    Science.gov (United States)

    Pohl, M; Collin, E; Bourgoin, S; Clot, A M; Hamon, M; Cesselin, F; Le Bars, D

    1992-10-01

    The continuous perfusion with an artificial cerebrospinal fluid of the cervicotrigeminal area of the spinal cord in halothane-anaesthetized rats allowed the collection of calcitonin gene-related peptide-like material with the same immunological and chromatographic characteristics as authentic rat alpha-calcitonin gene-related peptide. The spinal release of calcitonin gene-related peptide-like material could be significantly increased by the local application of 60 mM K+ (approximately +100%), high-intensity percutaneous electrical stimulation (approximately +200%) and noxious heat (by immersion in water at 52 degrees C; approximately +150%) applied to the muzzle. By contrast, noxious mechanical (pinches) and chemical (subcutaneous formalin injection) stimulations and deep cooling (by immersion in water at 0 degrees C) of the muzzle did not alter the spinal release of calcitonin gene-related peptide-like material. In addition, low-intensity electrical stimulation, recruiting only the A alpha/beta primary afferent fibres, significantly reduced (approximately -30%) the release of calcitonin gene-related peptide-like material from the cervicotrigeminal area. These data suggest that among the various types of natural noxious stimuli, noxious heat may selectively excite calcitonin gene-related peptide-containing A delta and C primary afferent fibres projecting within the dorsal horn of the spinal cord, and that activation of A alpha/beta fibres reduces spontaneous calcitonin gene-related peptide-like material release possibly through an inhibitory presynaptic control of calcitonin gene-related peptide-containing A delta/C fibres.

  9. The spatiotemporal relationships between chondroitin sulfate proteoglycans and terminations of calcitonin gene related peptide and parvalbumin immunoreactive afferents in the spinal cord of mouse embryos.

    Science.gov (United States)

    Wang, Liqing; Yu, Chao; Wang, Jun; Zhao, Hui; Chan, Sun-On

    2017-08-10

    Chondroitin sulfate (CS) proteoglycans (PGs) are a family of complex molecules in the extracellular matrix and cell surface that regulate axon growth and guidance during development of the central nervous system. In this study, the expression of CSPGs was investigated in the mouse spinal cord at late embryonic and neonatal stages using CS-56 antibody. CS immunoreactivity was observed abundantly in ventral regions of spinal cord of embryonic day (E) 15 embryos. At E16 to E18, CS expression spread dorsally, but never reached the superficial layers of the dorsal horn. This pattern was maintained until postnatal day 4, the latest stage examined. Antibodies against calcitonin gene related peptide (CGRP) and parvalbumin (PV) were employed to label primary afferents from nociceptors and proprioceptors, respectively. CGRP-immunoreactive fibers terminated in the superficial regions of the dorsal horn where CSPGs were weakly expressed, whereas PV-immunoreactive fibers were found in CSPG-rich regions in the ventral horn. Therefore, we conclude that CS expression is spatiotemporally regulated in the spinal cord, which correlates to the termination of sensory afferents. This pattern suggests a role of CSPGs on patterning afferents in the spinal cord, probably through a differential response of axons to these growth inhibitory molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Blockade of acid sensing ion channels attenuates the augmented exercise pressor reflex in rats with chronic femoral artery occlusion.

    Science.gov (United States)

    Tsuchimochi, Hirotsugu; Yamauchi, Katsuya; McCord, Jennifer L; Kaufman, Marc P

    2011-12-15

    We found previously that static contraction of the hindlimb muscles of rats whose femoral artery was ligated evoked a larger reflex pressor response (i.e. exercise pressor reflex) than did static contraction of the contralateral hindlimb muscles which were freely perfused. Ligating a femoral artery in rats results in blood flow patterns to the muscles that are remarkably similar to those displayed by humans with peripheral artery disease. Using decerebrated rats, we tested the hypothesis that the augmented exercise pressor reflex in rats with a ligated femoral artery is attenuated by blockade of the acid sensing ion channel (ASIC) 3. We found that femoral arterial injection of either amiloride (5 and 50 μg kg(-1)) or APETx2 (100 μg kg(-1)) markedly attenuated the reflex in rats with a ligated femoral artery. In contrast, these ASIC antagonists had only modest effects on the reflex in rats with freely perfused hindlimbs. Tests of specificity of the two antagonists revealed that the low dose of amiloride and APETx2 greatly attenuated the pressor response to lactic acid, an ASIC agonist, but did not attenuate the pressor response to capsaicin, a TRPV1 agonist. In contrast, the high dose of amiloride attenuated the pressor responses to lactic acid, but also attenuated the pressor response to capsaicin. We conclude that ASIC3 on thin fibre muscle afferents plays an important role in evoking the exercise pressor reflex in rats with a compromised arterial blood supply to the working muscles.

  11. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Zhen-Zhen eKou

    2014-01-01

    Full Text Available Diabetic polyneuropathy (DPN presents as a wide variety of sensorimotor symptoms and affects approximately 50% of diabetic patients. Changes in the neural circuits may occur in the early stages in diabetes and are implicated in the development of DPN. Therefore, we aimed to detect changes in the expression of isolectin B4 (IB4, the marker for nonpeptidergic unmyelinated fibers and their cell bodies and calcitonin gene-related peptide (CGRP, the marker for peptidergic fibers and their cell bodies in the dorsal root ganglion (DRG and spinal cord of streptozotocin (STZ-induced type 1 diabetic rats showing alterations in sensory and motor function. We also used cholera toxin B subunit (CTB to show the morphological changes of the myelinated fibers and motor neurons. STZ-induced diabetic rats exhibited hyperglycemia, decreased body weight gain, mechanical allodynia and impaired locomotor activity. In the DRG and spinal dorsal horn, IB4-labeled structures decreased, but both CGRP immunostaining and CTB labeling increased from day 14 to day 28 in diabetic rats. In spinal ventral horn, CTB labeling decreased in motor neurons in diabetic rats. Treatment with intrathecal injection of insulin at the early stages of DPN could alleviate mechanical allodynia and impaired locomotor activity in diabetic rats. The results suggest that the alterations of the neural circuits between spinal nerve and spinal cord via the DRG and ventral root might be involved in DPN.

  12. Abdominal and internal intercostal motoneurones are strong synergists for expiration but are not synergists for Group I monosynaptic afferent inputs

    DEFF Research Database (Denmark)

    Ford, Tim W; Meehan, Claire Francesca; Kirkwood, Peter

    2014-01-01

    , 9 being in Group B Dist motoneurones. The complete absence of heteronymous monosynaptic Group I reflex excitation between muscles that are synergistically activated in expiration leads us to conclude that such connections from muscle spindle afferents of the thoracic nerves have little role...... in controlling expiratory movements but, where present, support other motor acts....

  13. Effect of gender on training-induced vascular remodeling in SHR

    Directory of Open Access Journals (Sweden)

    S.L. Amaral

    2011-09-01

    Full Text Available There is accumulating evidence that physical inactivity, associated with the modern sedentary lifestyle, is a major determinant of hypertension. It represents the most important modifiable risk factor for cardiovascular diseases, which are the leading cause of morbidity and mortality for both men and women. In addition to involving sympathetic overactivity that alters hemodynamic parameters, hypertension is accompanied by several abnormalities in the skeletal muscle circulation including vessel rarefaction and increased arteriole wall-to-lumen ratio, which contribute to increased total peripheral resistance. Low-intensity aerobic training is a promising tool for the prevention, treatment and control of high blood pressure, but its efficacy may differ between men and women and between male and female animals. This review focuses on peripheral training-induced adaptations that contribute to a blood pressure-lowering effect, with special attention to differential responses in male and female spontaneously hypertensive rats (SHR. Heart, diaphragm and skeletal muscle arterioles (but not kidney arterioles undergo eutrophic outward remodeling in trained male SHR, which contributed to a reduction of peripheral resistance and to a pressure fall. In contrast, trained female SHR showed no change in arteriole wall-to-lumen ratio and no pressure fall. On the other hand, training-induced adaptive changes in capillaries and venules (increased density were similar in male and female SHR, supporting a similar hyperemic response to exercise.

  14. Effect of gender on training-induced vascular remodeling in SHR.

    Science.gov (United States)

    Amaral, S L; Michelini, L C

    2011-09-01

    There is accumulating evidence that physical inactivity, associated with the modern sedentary lifestyle, is a major determinant of hypertension. It represents the most important modifiable risk factor for cardiovascular diseases, which are the leading cause of morbidity and mortality for both men and women. In addition to involving sympathetic overactivity that alters hemodynamic parameters, hypertension is accompanied by several abnormalities in the skeletal muscle circulation including vessel rarefaction and increased arteriole wall-to-lumen ratio, which contribute to increased total peripheral resistance. Low-intensity aerobic training is a promising tool for the prevention, treatment and control of high blood pressure, but its efficacy may differ between men and women and between male and female animals. This review focuses on peripheral training-induced adaptations that contribute to a blood pressure-lowering effect, with special attention to differential responses in male and female spontaneously hypertensive rats (SHR). Heart, diaphragm and skeletal muscle arterioles (but not kidney arterioles) undergo eutrophic outward remodeling in trained male SHR, which contributed to a reduction of peripheral resistance and to a pressure fall. In contrast, trained female SHR showed no change in arteriole wall-to-lumen ratio and no pressure fall. On the other hand, training-induced adaptive changes in capillaries and venules (increased density) were similar in male and female SHR, supporting a similar hyperemic response to exercise.

  15. Nonlinear interactions in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J.; Sosnovtseva, Olga; Chon, Ki H.

    2005-01-01

    We have developed a model of tubuloglomerular feedback (TGF) and the myogenic mechanism in afferent arterioles to understand how the two mechanisms are coupled. This paper presents the model. The tubular model predicts pressure, flow, and NaCl concentration as functions of time and tubular length...... hydrostatic pressure, and plasma flow rate. The arteriolar model predicts fraction of open K channels, intracellular Ca concentration (Ca-i), potential difference, rate of actin - myosin cross bridge formation, force of contraction, and length of elastic elements, and was solved for two arteriolar segments...... resistance and glomerular capillary pressure. The model couples TGF input to voltage-gated Ca channels. It predicts autoregulation of GFR and renal blood flow, matches experimental measures of tubular pressure and macula densa NaCl concentration, and predicts TGF-induced oscillations and a faster smaller...

  16. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold sensing.

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G

    2017-05-01

    Aside from a small population of primary afferent neurons for sensing cold, which generate sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of primary afferent neurons not responsible for cold sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In this study we have found that the not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, a cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (cold-ineffective neurons) or suppress their membrane excitability (cold-suppressive neurons). For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by increases in action potential (AP) firing numbers and/or the reduction in AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing, but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. This article is part of the special article series "Pain". © 2015 International Society for Neurochemistry.

  17. Cortico-pontine theta carrier frequency phase shift across sleep/wake states following monoaminergic lesion in rat.

    Science.gov (United States)

    Kalauzi, Aleksandar; Spasic, Sladjana; Petrovic, Jelena; Ciric, Jelena; Saponjic, Jelena

    2012-06-01

    This study was aimed to explore the sleep/wake states related cortico-pontine theta carrier frequency phase shift following a systemically induced chemical axotomy of the monoaminergic afferents within a brain of the freely moving rats. Our experiments were performed in 14 adult, male Sprague Dawley rats, chronically implanted for sleep recording. We recorded sleep during baseline condition, following sham injection (saline i.p. 1 ml/kg), and every week for 5 weeks following injection of the systemic neurotoxins (DSP-4 or PCA; 1 ml/kg, i.p.) for chemical axotomy of the locus coeruleus (LC) and dorsal raphe (DR) axon terminals. After sleep/wake states identification, FFT analysis was performed on 5 s epochs. Theta carrier frequency phase shift (∆Φ) was calculated for each epoch by averaging theta Fourier component phase shifts, and the ∆Φ values were plotted for each rat in control condition and 28 days following the monoaminergic lesions, as a time for permanently established DR or LC chemical axotomy. Calculated group averages have shown that ∆Φ increased between pons and cortex significantly in all sleep/wake states (Wake, NREM and REM) following the monoaminergic lesions, with respect to controls. Monoaminergic lesions established the pontine leading role in the brain theta oscillations during all sleep/wake states.

  18. Computed tomographic features of afferent loop syndrome: pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Zissin, R. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Hertz, M. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Paran, H. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Surgery ' A' , Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Osadchy, A. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Sapir Medical Center, Kfar Saba, Sackler Faculty of Medicine, Tel Aviv (Israel); Gayer, G. [Tel-Aviv Univ., Dept. of Diagnostic Imaging, Assaf Harofe Medical Center, Zrifin, Sackler Faculty of Medicine, Tel Aviv (Israel)

    2005-04-15

    This pictorial essay reviews the computed tomography (CT) findings of afferent loop syndrome (ALS) in various pathological conditions to demonstrate the contribution of a common imaging modality-that is, abdominal CT, used nowadays for various abdominal complaints-to the diagnosis of ALS. ALS is caused by obstruction of the duodenum and jejunum proximal to a gastrojejunostomy anastomosis. It is a rare complication after Billroth II subtotal gastrectomy and even more rare after total or subtotal gastrectomy with Roux-en-Y reconstruction. Although currently advanced medical treatment and endoscopic interventions have dramatically decreased the necessity of surgery for peptic ulcer disease, ALS may appear years after previously common operations. Alternatively, the use of surgical resection for early gastric cancer nowadays leads to an increasing rate of malignancy-related ALS. Clinically, ALS may be difficult to diagnose as its presentation may be vague and nonspecific, but it has a characteristic appearance on CT. Clinicians and radiologists should therefore be familiar with this rare complication. Prompt recognition and correct diagnosis of this syndrome and its probable etiology are important as a guide for treatment. This review illustrates the CT features of ALS in various conditions. (author)

  19. Induction of hypertension blunts baroreflex inhibition of vasopressin neurons in the rat.

    Science.gov (United States)

    Han, Su Young; Bouwer, Gregory T; Seymour, Alexander J; Korpal, Aaron K; Schwenke, Daryl O; Brown, Colin H

    2015-11-01

    Vasopressin secretion from the posterior pituitary gland is determined by action potential discharge of hypothalamic magnocellular neurosecretory cells. Vasopressin is a potent vasoconstrictor, but vasopressin levels are paradoxically elevated in some patients with established hypertension. To determine whether vasopressin neurons are excited in hypertension, extracellular single-unit recordings of vasopressin neurons from urethane-anaesthetized Cyp1a1-Ren2 rats with inducible angiotensin-dependent hypertension were made. The basal firing rate of vasopressin neurons was higher in hypertensive Cyp1a1-Ren2 rats than in non-hypertensive Cyp1a1-Ren2 rats. The increase in firing rate was specific to vasopressin neurons because oxytocin neuron firing rate was unaffected by the induction of hypertension. Intravenous injection of the α1-adrenoreceptor agonist, phenylephrine (2.5 μg/kg), transiently increased mean arterial blood pressure to cause a baroreflex-induced inhibition of heart rate and vasopressin neuron firing rate (by 52 ± 9%) in non-hypertensive rats. By contrast, intravenous phenylephrine did not inhibit vasopressin neurons in hypertensive rats, despite a similar increase in mean arterial blood pressure and inhibition of heart rate. Circulating angiotensin II can excite vasopressin neurons via activation of afferent inputs from the subfornical organ. However, the increase in vasopressin neuron firing rate and the loss of inhibition by intravenous phenylephrine were not blocked by intra-subfornical organ infusion of the angiotensin AT1 receptor antagonist, losartan. It can be concluded that increased vasopressin neuron activity at the onset of hypertension is driven, at least in part, by reduced baroreflex inhibition of vasopressin neurons and that this might exacerbate the increase in blood pressure at the onset of hypertension. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Is abdominal wall contraction important for normal voiding in the female rat?

    Directory of Open Access Journals (Sweden)

    Boone Timothy B

    2007-03-01

    Full Text Available Abstract Background Normal voiding behavior in urethane-anesthetized rats includes contraction of the abdominal wall striated muscle, similar to the visceromotor response (VMR to noxious bladder distension. Normal rat voiding requires pulsatile release of urine from a pressurized bladder. The abdominal wall contraction accompanying urine flow may provide a necessary pressure increment for normal efficient pulsatile voiding. This study aimed to evaluate the occurrence and necessity of the voiding-associated abdominal wall activity in urethane-anesthetized female rats Methods A free-voiding model was designed to allow assessment of abdominal wall activity during voiding resulting from physiologic bladder filling, in the absence of bladder or urethral instrumentation. Physiologic diuresis was promoted by rapid intravascular hydration. Intercontraction interval (ICI, voided volumes and EMG activity of the rectus abdominis were quantified. The contribution of abdominal wall contraction to voiding was eliminated in a second group of rats by injecting botulinum-A (BTX, 5 U into each rectus abdominis to induce local paralysis. Uroflow parameters were compared between intact free-voiding and BTX-prepared animals. Results Abdominal wall response is present in free voiding. BTX preparation eliminated the voiding-associated EMG activity. Average per-void volume decreased from 1.8 ml to 1.1 ml (p Conclusion The voiding-associated abdominal wall response is a necessary component of normal voiding in urethane anesthetized female rats. As the proximal urethra may be the origin of the afferent signaling which results in the abdominal wall response, the importance of the bladder pressure increment due to this response may be in maintaining a normal duration intermittent pulsatile high frequency oscillatory (IPHFO/flow phase and thus efficient voiding. We propose the term Voiding-associated Abdominal Response (VAR for the physiologic voiding-associated EMG

  1. Morphological changes in different populations of bladder afferent neurons detected by herpes simplex virus (HSV) vectors with cell-type-specific promoters in mice with spinal cord injury.

    Science.gov (United States)

    Shimizu, Nobutaka; Doyal, Mark F; Goins, William F; Kadekawa, Katsumi; Wada, Naoki; Kanai, Anthony J; de Groat, William C; Hirayama, Akihide; Uemura, Hirotsugu; Glorioso, Joseph C; Yoshimura, Naoki

    2017-11-19

    Functional and morphological changes in C-fiber bladder afferent pathways are reportedly involved in neurogenic detrusor overactivity (NDO) after spinal cord injury (SCI). This study examined the morphological changes in different populations of bladder afferent neurons after SCI using replication-defective herpes simplex virus (HSV) vectors encoding the mCherry reporter driven by neuronal cell-type-specific promoters. Spinal intact (SI) and SCI mice were injected into the bladder wall with HSV mCherry vectors driven by the cytomegalovirus (CMV) promoter, CGRP promoter, TRPV1 promoter or neurofilament 200 (NF200) promoter. Two weeks after vector inoculation into the bladder wall, L1 and L6 dorsal root ganglia (DRG) were removed bilaterally for immunofluorescent staining using anti-mCherry antibody. The number of CMV promoter vector-labeled neurons was not altered after SCI. The number of CGRP and TRPV1 promoter vector-labeled neurons was significantly increased whereas the number of NF200 vector-labeled neurons was decreased in L6 DRG after SCI. The median size of CGRP promoter-labeled C-fiber neurons was increased from 247.0 in SI mice to 271.3μm 2 in SCI mice whereas the median cell size of TRPV1 promoter vector-labeled neurons was decreased from 245.2 in SI mice to 216.5μm 2 in SCI mice. CGRP and TRPV1 mRNA levels of laser-captured bladder afferent neurons labeled with Fast Blue were significantly increased in SCI mice compared to SI mice. Thus, using a novel HSV vector-mediated neuronal labeling technique, we found that SCI induces expansion of the CGRP- and TRPV1-expressing C-fiber cell population, which could contribute to C-fiber afferent hyperexcitability and NDO after SCI. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Science.gov (United States)

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel

  3. Modulation of local field potentials by high-frequency stimulation of afferent axons in the hippocampal CA1 region.

    Science.gov (United States)

    Yu, Ying; Feng, Zhouyan; Cao, Jiayue; Guo, Zheshan; Wang, Zhaoxiang; Hu, Na; Wei, Xuefeng

    2016-03-01

    Modulation of the rhythmic activity of local field potentials (LFP) in neuronal networks could be a mechanism of deep brain stimulation (DBS). However, exact changes of LFP during the periods of high-frequency stimulation (HFS) of DBS are unclear because of the interference of dense stimulation artifacts with high amplitudes. In the present study, we investigated LFP changes induced by HFS of afferent axons in the hippocampal CA1 region of urethane-anesthetized rats by using a proper algorithm of artifact removal. Afterward, the LFP changes in the frequency bands of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] rhythms were studied by power spectrum analysis and coherence analysis for the recorded signals collected in the pyramidal layer and in the stratum radiatum of CA1 region before, during and after 1-min long 100 and 200[Formula: see text]Hz HFS. Results showed that the power of LFP rhythms in higher-frequency band ([Formula: see text] rhythm) increased in the pyramidal layer and the power of LFP rhythms in lower-frequency bands ([Formula: see text], [Formula: see text] and [Formula: see text] rhythms) decreased in the stratum radiatum during HFS. The synchronization of [Formula: see text] rhythm decreased and the synchronization of [Formula: see text] rhythm increased during HFS in the stratum radiatum. These results suggest that axonal HFS could modulate LFP rhythms in the downstream brain areas with a plausible underlying mechanism of partial axonal blockage induced by HFS. The study provides new evidence to support the mechanism of DBS modulating rhythmic activity of neuronal populations.

  4. Evaluation of afferent pain pathways in adrenomyeloneuropathic patients.

    Science.gov (United States)

    Yagüe, Sara; Veciana, Misericordia; Casasnovas, Carlos; Ruiz, Montserrat; Pedro, Jordi; Valls-Solé, Josep; Pujol, Aurora

    2018-03-01

    Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Laser Speckle Imaging of Rat Pial Microvasculature during Hypoperfusion-Reperfusion Damage

    Directory of Open Access Journals (Sweden)

    Teresa Mastantuono

    2017-09-01

    Full Text Available The present study was aimed to in vivo assess the blood flow oscillatory patterns in rat pial microvessels during 30 min bilateral common carotid artery occlusion (BCCAO and 60 min reperfusion by laser speckle imaging (LSI. Pial microcirculation was visualized by fluorescence microscopy. The blood flow oscillations of single microvessels were recorded by LSI; spectral analysis was performed by Wavelet transform. Under baseline conditions, arterioles and venules were characterized by blood flow oscillations in the frequency ranges 0.005–0.0095 Hz, 0.0095–0.021 Hz, 0.021–0.052 Hz, 0.052–0.150 Hz and 0.150–0.500 Hz. Arterioles showed oscillations with the highest spectral density when compared with venules. Moreover, the frequency components in the ranges 0.052–0.150 Hz and 0.150–0.500 were predominant in the arteriolar total power spectrum; while, the frequency component in the range 0.150–0.500 Hz showed the highest spectral density in venules. After 30 min BCCAO, the arteriolar spectral density decreased compared to baseline; moreover, the arteriolar frequency component in the range 0.052–0.150 Hz significantly decreased in percent spectral density, while the frequency component in the range 0.150–0.500 Hz significantly increased in percent spectral density. However, an increase in arteriolar spectral density was detected at 60 min reperfusion compared to BCCAO values; consequently, an increase in percent spectral density of the frequency component in the range 0.052–0.150 Hz was observed, while the percent spectral density of the frequency component in the range 0.150–0.500 Hz significantly decreased. The remaining frequency components did not significantly change during hypoperfusion and reperfusion. The changes in blood flow during hypoperfusion/reperfusion caused tissue damage in the cortex and striatum of all animals. In conclusion, our data demonstrate that the frequency component in the range 0.052–0.150 Hz

  6. Delayed perfusion phenomenon in a rat stroke model at 1.5 T MR: An imaging sign parallel to spontaneous reperfusion and ischemic penumbra?

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Department of Radiology, Zhong Da Hospital, Southeast University, 87 Ding Jia Qiao Road, Nanjing 210009, Jiangsu Province (China); Suzuki, Yasuhiro [Department of Molecular and Cellular Medicine, Faculty of Medicine, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Department of Pharmacology, Hamamatsu University School of Medicine, 1-20-1 Handayama, 431-3192 Hamamatsu (Japan); Nagai, Nobuo [Department of Molecular and Cellular Medicine, Faculty of Medicine, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Sun Xihe [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Department of Radiology, the Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province (China); Coudyzer, Walter [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Yu Jie [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Marchal, Guy [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Ni Yicheng [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium)]. E-mail: Yicheng.Ni@med.kuleuven.ac.be

    2007-01-15

    Introduction: Delayed perfusion (DP) sign at MR imaging was reported in stroke patients. We sought to experimentally elucidate its relation to spontaneous reperfusion and ischemic penumbra. Methods: Stroke was induced by photothrombotic occlusion of middle cerebral artery in eight rats and studied up to 72 h using a 1.5 T MR scanner with T2 weighted imaging (T2WI), diffusion weighted imaging (DWI), and dynamic susceptibility contrast-enhanced perfusion weighted imaging (DSC-PWI). Relative signal intensity (rSI), relative lesion volume (rLV), relative cerebral blood flow (rCBF), PWI{sub rLV}-DWI{sub rLV} mismatch (penumbra) and DP{sub rLV} were quantified and correlated with neurological deficit score (NDS), triphenyl tetrazolium chloride (TTC) staining, microangiography (MA) and histopathology. Results: The rSI and rLV characterized this stroke model on different MRI sequences and time points. DSC-PWI reproduced cortical DP in all rats, where rCBF evolved from 88.9% at 1 h through 64.9% at 6 h to 136.3% at 72 h. The PWI{sub rLV}-DWI{sub rLV} mismatch reached 10 {+-} 5.4% at 1 h, remained positive through 12 h and decreased to -3.3 {+-} 4.5% at 72 h. The incidence and rLV of the DP were well correlated with those of the penumbra (p < 0.01, r {sup 2} = 0.85 and p < 0.0001, r {sup 2} = 0.96, respectively). Shorter DP durations and more collateral arterioles occurred in rats without (n = 4) than with (n = 4) cortex involvement (p < 0.05). Rats without cortex involvement tended to earlier reperfusion and a lower NDS. Microscopy confirmed MRI, MA and TTC findings. Conclusions: In this rat stroke model, we reproduced clinically observed DP on DSC-PWI, confirmed spontaneous reperfusion, and identified the penumbra extending to 12 h post-ischemia, which appeared interrelated.

  7. Loss of calretinin immunoreactive fibers in subcortical visual recipient structures of the RCS dystrophic rat.

    Science.gov (United States)

    Vugler, Anthony A; Coffey, Peter J

    2003-11-01

    The retinae of dystrophic Royal College of Surgeons (RCS) rats exhibit progressive photoreceptor degeneration accompanied by pathology of ganglion cells. To date, little work has examined the consequences of retinal degeneration for central visual structures in dystrophic rats. Here, we use immunohistochemistry for calretinin (CR) to label retinal afferents in the superior colliculus (SC), lateral geniculate nucleus, and olivary pretectal nucleus of RCS rats aged between 2 and 26 months of age. Early indications of fiber loss in the medial dystrophic SC were apparent between 9 and 13 months. Quantitative methods reveal a significant reduction in the level of CR immunoreactivity in visual layers of the medial dystrophic SC at 13 months (P animals aged 19-26 months the loss of CR fibers in SC was dramatic, with well-defined patches of fiber degeneration predominating in medial aspects of the structure. This fiber degeneration in SC was accompanied by increased detection of cells immunoreactive for CR. In several animals, regions of fiber loss were also found to contain strongly parvalbumin-immunoreactive cells. Loss of CR fibers was also observed in the lateral geniculate nucleus and olivary pretectal nucleus. Patterns of fiber loss in the dystrophic SC compliment reports of ganglion cell degeneration in these animals and the response of collicular neurons to degeneration is discussed in terms of plasticity of the dystrophic visual system and properties of calcium binding proteins.

  8. Time Course of the Soleus M Response and H Reflex after Lidocaine Tibial Nerve Block in the Rat

    Directory of Open Access Journals (Sweden)

    Kévin Buffenoir

    2013-01-01

    Full Text Available Aims. In spastic subjects, lidocaine is often used to induce a block predictive of the result provided by subsequent surgery. Lidocaine has been demonstrated to inhibit the Hoffmann (H reflex to a greater extent than the direct motor (M response induced by electrical stimulation, but the timecourse of these responses has not been investigated. Methods. An animal (rat model of the effects of lidocaine on M and H responses was therefore developed to assess this time course. M and H responses were recorded in 18 adult rats before and after application of lidocaine to the sciatic nerve. Results. Two to five minutes after lidocaine injection, M responses were markedly reduced (mean reduction of 44% and H reflexes were completely abolished. Changes were observed more rapidly for the H reflex. The effects of lidocaine then persisted for 100 minutes. The effect of lidocaine was therefore more prolonged on the H reflex than on the M response. Conclusion. This study confirms that lidocaine blocks not only alpha motoneurons but also Ia afferent fibres responsible for the H reflex. The authors describe, for the first time, the detailed time course of the effect of lidocaine on direct or reflex activation of motoneurons in the rat.

  9. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine

    2013-01-01

    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  10. Applicability of cable theory to vascular conducted responses

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Jensen, Lars Jørn; Sørensen, Preben Graae

    2012-01-01

    Conduction processes in the vasculature have traditionally been described using cable theory, i.e., locally induced signals decaying passively along the arteriolar wall. The decay is typically quantified using the steady-state length-constant, ¿, derived from cable theory. However......, the applicability of cable theory to blood vessels depends on assumptions that are not necessarily fulfilled in small arteries and arterioles. We have employed a morphologically and electrophysiologically detailed mathematical model of a rat mesenteric arteriole to investigate if the assumptions hold and whether...... ¿ adequately describes simulated conduction profiles. We find that several important cable theory assumptions are violated when applied to small blood vessels. However, the phenomenological use of a length-constant from a single exponential function is a good measure of conduction length. Hence, ¿ should...

  11. Effect of anemia on cardiac function, microvascular structure, and capillary hematocrit in rat hearts

    Czech Academy of Sciences Publication Activity Database

    Rakusan, K.; Cicutti, N.; Kolář, František

    2001-01-01

    Roč. 280, č. 3 (2001), s. H1407-H1414 ISSN 0363-6135 Institutional research plan: CEZ:AV0Z5011922 Keywords : coronary microcirculation * hemodilution * arterioles Subject RIV: ED - Physiology Impact factor: 3.232, year: 2001

  12. Degenerative effects in rat eyes after experimental ocular hypertension

    Directory of Open Access Journals (Sweden)

    G. Scarsella

    2012-10-01

    Full Text Available This study was used to evaluate the degenerative effects on the retina and eye-cup sections after experimental induction of acute ocular hypertension on animal models. In particular, vascular events were directly focused in this research in order to assess the vascular remodeling after transient ocular hypertension on rat models. After local anaesthesia by administration of eye drops of 0.4% oxibuprocaine, 16 male adult Wistar rats were injected in the anterior chamber of the right eye with 15 µL of methylcellulose (MTC 2% in physiological solution. The morphology and the vessels of the retina and eye-cup sections were examined in animals sacrificed 72 h after induction of ocular hypertension. In retinal fluorescein angiographies (FAGs, by means of fluorescein isothiocyanate-coniugated dextran (FITC, the radial venules showed enlargements and increased branching, while the arterioles appeared focally thickened. The length and size of actually perfused vessels appeared increased in the whole superficial plexus. In eye-cup sections of MTC-injected animals, in deep plexus and connecting layer there was a bigger increase of vessels than in controls. Moreover, the immunolocalization of astrocytic marker glial fibrillary acidic protein (GFAP revealed its increased expression in internal limiting membrane and ganglion cell layer, as well as its presence in Müller cells. Finally, the pro-angiogenic factor vascular endothelial growth factor (VEGF was found to be especially expressed by neurones of ganglion cell layer, both in control and in MTC-injected eyes. The data obtained in this experimental model on the interactions among glia, vessels and neurons should be useful to evaluate if also in glaucomatous patients the activation of vessel-adjacent glial cells might play key roles in following neuronal dysfunction.

  13. Degenerative effects in rat eyes after experimental ocular hypertension.

    Science.gov (United States)

    Scarsella, G; Nebbioso, M; Stefanini, S; Pescosolido, N

    2012-10-08

    This study was used to evaluate the degenerative effects on the retina and eye-cup sections after experimental induction of acute ocular hypertension on animal models. In particular, vascular events were directly focused in this research in order to assess the vascular remodeling after transient ocular hypertension on rat models. After local anaesthesia by administration of eye drops of 0.4% oxibuprocaine, 16 male adult Wistar rats were injected in the anterior chamber of the right eye with 15 µL of methylcellulose (MTC) 2% in physiological solution. The morphology and the vessels of the retina and eye-cup sections were examined in animals sacrificed 72 h after induction of ocular hypertension. In retinal fluorescein angiographies (FAGs), by means of fluorescein isothiocyanate-coniugated dextran (FITC), the radial venules showed enlargements and increased branching, while the arterioles appeared focally thickened. The length and size of actually perfused vessels appeared increased in the whole superficial plexus. In eye-cup sections of MTC-injected animals, in deep plexus and connecting layer there was a bigger increase of vessels than in controls. Moreover, the immunolocalization of astrocytic marker glial fibrillary acidic protein (GFAP) revealed its increased expression in internal limiting membrane and ganglion cell layer, as well as its presence in Müller cells. Finally, the pro-angiogenic factor vascular endothelial growth factor (VEGF) was found to be especially expressed by neurones of ganglion cell layer, both in control and in MTC-injected eyes. The data obtained in this experimental model on the interactions among glia, vessels and neurons should be useful to evaluate if also in glaucomatous patients the activation of vessel-adjacent glial cells might play key roles in following neuronal dysfunction.

  14. What would 5-HT do? Regional diversity of 5-HT1 receptor modulation of primary afferent neurotransmission

    OpenAIRE

    Connor, Mark

    2012-01-01

    5-HT (serotonin) is a significant modulator of sensory input to the CNS, but the only analgesics that selectively target G-protein-coupled 5-HT receptors are highly specific for treatment of headache. Two recent papers in BJP shed light on this puzzling situation by showing that primary afferent neurotransmission to the superficial layers of the spinal and trigeminal dorsal is inhibited by different subtypes of the 5-HT1 receptor – 5-HT1B(and 1D) in the trigeminal dorsal horn and 5-HT1A in th...

  15. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility

    DEFF Research Database (Denmark)

    Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels

    2018-01-01

    afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion...... vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused......Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal...

  16. Fanconi's syndrome, interstitial fibrosis and renal failure by aristolochic acid in Chinese herbs.

    Science.gov (United States)

    Hong, Yin-Tai; Fu, Lin-Shien; Chung, Lin-Huei; Hung, Shien-Chung; Huang, Yi-Ting; Chi, Chin-Shiang

    2006-04-01

    Aristolochic acid-associated nephropathy (AAN) has been identified as a separate entity of progressive tubulo-interstitial nephropathy. Its characteristic pathological findings, including hypocellular interstitial fibrosis, intimal thickening of interlobular and afferent arterioles with glomeruli sparing or mild sclerosis, have been identified. Many cases of AAN in adults have been reported in Taiwan as well as throughout the world, but it has seldom been described in children. We report on a 10-year-old boy who presented with severe anemia, Fanconi's syndrome, and progressive renal failure. Renal biopsy revealed typical findings of AAN. Aristolochic acids I and II were identified from a Chinese herb mixture ingested by the boy. AAN was diagnosed after other etiologies had been excluded. The case demonstrates the hazards of Chinese herbs with regard to children's health in Taiwan and suggests that more attention should be paid to this issue.

  17. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV

    Directory of Open Access Journals (Sweden)

    Stéphanie eMiceli

    2013-06-01

    Full Text Available Homeostatic regulation of serotonin (5-HT concentration is critical for normal topographical organization and development of thalamocortical (TC afferent circuits. Down-regulation of the serotonin transporter (SERT and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1. Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT-/- rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i the thalamocortical projections of the ventroposteromedial thalamic nucleus towards S1, (ii the general barrel-field pattern and (iii the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 (spiny stellate and pyramidal cells. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections towards the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT-/- rats. In layer IV, both excitatory spiny stellate and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV spiny stellate cells gave rise to a prominent projection towards the infragranular layer Vb. Our findings point to a structural and functional reorganization, of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel

  18. Bidirectional modulation of windup by NMDA receptors in the rat spinal trigeminal nucleus.

    Science.gov (United States)

    Woda, Alain; Blanc, Olivier; Voisin, Daniel L; Coste, Jérôme; Molat, Jean-Louis; Luccarini, Philippe

    2004-04-01

    Activation of afferent nociceptive pathways is subject to activity-dependent plasticity, which may manifest as windup, a progressive increase in the response of dorsal horn nociceptive neurons to repeated stimuli. At the cellular level, N-methyl-d-aspartate (NMDA) receptor activation by glutamate released from nociceptive C-afferent terminals is currently thought to generate windup. Most of the wide dynamic range nociceptive neurons that display windup, however, do not receive direct C-fibre input. It is thus unknown where the NMDA mechanisms for windup operate. Here, using the Sprague-Dawley rat trigeminal system as a model, we anatomically identify a subpopulation of interneurons that relay nociceptive information from the superficial dorsal horn where C-fibres terminate, to downstream wide dynamic range nociceptive neurons. Using in vivo electrophysiological recordings, we show that at the end of this pathway, windup was reduced (24 +/- 6%, n = 7) by the NMDA receptor antagonist AP-5 (2.0 fmol) and enhanced (62 +/- 19%, n = 12) by NMDA (1 nmol). In contrast, microinjections of AP-5 (1.0 fmol) within the superficial laminae increased windup (83 +/- 44%, n = 9), whereas NMDA dose dependently decreased windup (n = 19). These results indicate that NMDA receptor function at the segmental level depends on their precise location in nociceptive neural networks. While some NMDA receptors actually amplify pain information, the new evidence for NMDA dependent inhibition of windup we show here indicates that, simultaneously, others act in the opposite direction. Working together, the two mechanisms may provide a fine tuning of gain in pain.

  19. Effects of neonatal. gamma. -ray irradiation on rat hippocampus: Pt. 2; Development of excitatory amino acid binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Dessi, F; Represa, A; Ben-Ari, Y [Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France)

    1991-01-01

    In the rat, neonatal irradiation produces a destruction of denate granule cells and prevents the development of the mossy fibre-CA3 pyramidal cell synapse. The developmental increase of high affinity kainate binding sites in the stratum lucidum was reduced on the irradiated side as compared with the control side. This suggests that a proportion of high affinity kainate binding sites is associated with mossy fibres. In contrast, the development profile of N-methyl-D-aspartate binding sites, which are associated with associational and commissural synapses in CA3, was not affected by irradiation. The role that afferent fibres may play in the development of pyramidal cells is discussed in connection with the modulatory effects of glutamate receptors on the development of neurons. (author).

  20. Primary afferent depolarization and changes in extracellular potassium concentration induced by L-glutamate and L-proline in the isolated spinal cord of the frog.

    Science.gov (United States)

    Vyklický, L; Vyskocil, F; Kolaj, M; Jastreboff, P

    1982-10-08

    To test the hypothesis that L-proline acts as an antagonist on glutamate receptors [17, 18], the interaction between L-glutamate and L-proline was studied in the isolated spinal cord of the frog. Glutamate at concentrations of 10(-6) -5 x 10(-3) mol/l depolarized the primary afferent fibres and increased extracellular potassium concentration, [K+]e, by 0.3-4 mmol/l. Repeated applications lead to inactivation of the response. L-Proline at 5 x 10(-3) -10(-2) mol/l, also depolarized the primary afferents and increased [K+]e by 0.5-2 mmol/l, but there was only a slight decrease of the effects after repeated application. The effects were additive when the amino acids were applied simultaneously. The effect of L-proline was still present when it was applied during inactivation of the glutamate receptors. This suggests that L-glutamate and L-proline act on different receptors.

  1. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling.

    Science.gov (United States)

    Ronveaux, Charlotte C; Tomé, Daniel; Raybould, Helen E

    2015-04-01

    Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments. © 2015 American Society for Nutrition.

  2. Purinergic 2X receptors play a role in evoking the exercise pressor reflex in rats with peripheral artery insufficiency.

    Science.gov (United States)

    Stone, Audrey J; Yamauchi, Katsuya; Kaufman, Marc P

    2014-02-01

    Purinergic 2X (P2X) receptors on the endings of thin fiber afferents have been shown to play a role in evoking the exercise pressor reflex in cats. In this study, we attempted to extend this finding to decerebrated, unanesthetized rats whose femoral arteries were either freely perfused or were ligated 72 h before the start of the experiment. We first established that our dose of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 10 mg/kg), a P2X receptor antagonist, attenuated the pressor response to α,β-methylene ATP (10 μg/kg), a P2X receptor agonist. We then compared the exercise pressor reflex before and after infusing PPADS into the arterial supply of the hindlimb muscles that were statically contracted. In rats with freely perfused femoral arteries, the peak pressor responses to contraction were not significantly attenuated by PPADS (before PPADS: 19 ± 2 mmHg, 13 min after PPADS: 17 ± 2 mmHg, and 25 min after PPADS: 17 ± 3 mmHg). Likewise, the cardioaccelerator and renal sympathetic nerve responses were not significantly attenuated. In contrast, we found that in rats whose femoral arteries were ligated PPADS significantly attenuated the peak pressor responses to contraction (before PPADS: 37 ± 5 mmHg, 13 min after PPADS: 27 ± 6 mmHg, and 25 min after PPADS: 25 ± 5 mmHg; P reflex in rats whose femoral arteries were ligated but play only a minimal role in evoking the reflex in rats whose femoral arteries were freely perfused.

  3. The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia.

    Science.gov (United States)

    Zhao, Lan; Oliver, Eduardo; Maratou, Klio; Atanur, Santosh S; Dubois, Olivier D; Cotroneo, Emanuele; Chen, Chien-Nien; Wang, Lei; Arce, Cristina; Chabosseau, Pauline L; Ponsa-Cobas, Joan; Frid, Maria G; Moyon, Benjamin; Webster, Zoe; Aldashev, Almaz; Ferrer, Jorge; Rutter, Guy A; Stenmark, Kurt R; Aitman, Timothy J; Wilkins, Martin R

    2015-08-20

    The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.

  4. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.

    Science.gov (United States)

    Goense, J B M; Ratnam, R

    2003-10-01

    An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add approximately 1 spike to a baseline of approximately 300 spikes s(-1). The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10-15 ms, achieving near ideal detection performance (80-95%) at false alarm rates of 1-2 Hz, while trial-based testing resulted in only 30-35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.

  5. Analgesic effect of ADX71441, a positive allosteric modulator (PAM) of GABAB receptor in a rat model of bladder pain.

    Science.gov (United States)

    Kannampalli, Pradeep; Poli, Sonia-Maria; Boléa, Christelle; Sengupta, Jyoti N

    2017-11-01

    Therapeutic use of GABA B receptor agonists for conditions like chronic abdominal pain, overactive bladder (OAB) and gastroesophageal reflux disease (GERD) is severely affected by poor blood-brain barrier permeability and potential side effects. ADX71441 is a novel positive allosteric modulator (PAM) of the GABA B receptor that has shown encouraging results in pre-clinical models of anxiety, pain, OAB and alcohol addiction. The present study investigates the analgesic effect of ADX71441 to noxious stimulation of the urinary bladder and colon in rats. In female Sprague-Dawley rats, systemic (i.p), but not intrathecal (i.t), administration of ADX71441 produced a dose-dependent decrease in viscero-motor response (VMR) to graded urinary bladder distension (UBD) and colorectal distension (CRD). Additionally, intra-cerebroventricular (i.c.v.) administration of ADX71441 significantly decreased the VMRs to noxious UBD. In electrophysiology experiments, the drug did not attenuate the responses of UBD-sensitive pelvic nerve afferent (PNA) fibers to UBD. In contrast, ADX71441 significantly decreased the responses of UBD-responsive lumbosacral (LS) spinal neurons in spinal intact rats. However, ADX71441 did not attenuate these LS neurons in cervical (C1-C2) spinal transected rats. During cystometrogram (CMG) recordings, ADX71441 (i.p.) significantly decreased the VMR to slow infusion without affecting the number of voiding contraction. These results indicate that ADX71441 modulate bladder nociception via its effect at the supra-spinal sites without affecting the normal bladder motility and micturition reflex in naïve adult rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Fluorescent Method for Observing Intravascular Bonghan Duct

    OpenAIRE

    Byung-Cheon Lee; Ku Youn Baik; Hyeon-Min Johng; Baekkyoung Sung; Kyung Soon Soh; Dae-In Kang; Kwang-Sup Soh

    2005-01-01

    Observation of intra-vascular threadlike structures in the blood vessels of rats is reported with the images by differential interference contrast microscope, and fluorescence inverted microscope of the acridine-orange stained samples. The confocal microscope image and the hematoxylin-eosin staining revealed the distinctive pattern of nuclei distribution that clearly discerned the threadlike structure from fibrin, capillary, small venule, arteriole, or lymph vessel. Physiological function of ...

  7. Effects of 17β-estradiol and 2-methoxyestradiol on the oxidative stress-hypoxia inducible factor-1 pathway in hypoxic pulmonary hypertensive rats.

    Science.gov (United States)

    Wang, Li; Zheng, Quan; Yuan, Yadong; Li, Yanpeng; Gong, Xiaowei

    2017-05-01

    The present study aimed to investigate the effects of 17β-estradiol (E2) and 2-methoxyestradiol (2ME) on the oxidative stress-hypoxia inducible factor-1 (OS-HIF-1) pathway in hypoxic pulmonary hypertensive rats. Female Sprague-Dawley rats were divided randomly into 4 groups, as follows: i) Control (Group A); ii) ovariectomy (OVX) + hypoxia (Group B); iii) OVX + hypoxia + E2 injection (Group C); and iv) 2ME injection (Group D). The rats were maintained under hypoxic conditions for 8 weeks, and mean pulmonary artery pressure (mPAP) and pulmonary arteriole morphology were measured. The reactive oxygen species, superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (Cu/ZnSOD) levels in serum were also measured. MnSOD and HIF-1α expression levels in lung tissue were determined by western blotting and reverse transcription-quantitative polymerase chain reaction. The mPAP and arterial remodeling index were significantly elevated following chronic hypoxia exposure; however, experimental data revealed a reduced response in E2 and 2ME intervention rats. Compared with Group A, Group B had significantly elevated oxidative stress levels, as illustrated by increased serum ROS levels, decreased serum SOD and MnSOD levels and decreased MnSOD mRNA and protein expression levels in lung tissue. Furthermore, HIF-1α mRNA and protein expression in Group B was significantly elevated compared with Group A. E2 and 2ME intervention significantly attenuated the aforementioned parameter changes, suggesting that E2 and 2ME partially ameliorate hypoxic pulmonary hypertension. The underlying mechanism of this may be associated with the increase in MnSOD activity and expression and reduction in ROS level, which reduces the levels of transcription and translation of HIF-1α.

  8. Bradykinin receptor blockade restores the baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal failure rats.

    Science.gov (United States)

    Abdulla, M H; Duff, M; Swanton, H; Johns, E J

    2016-11-01

    This study investigated the effect of renal bradykinin B1 and B2 receptor blockade on the high- and low-pressure baroreceptor reflex regulation of renal sympathetic nerve activity (RSNA) in rats with cisplatin-induced renal failure. Cisplatin (5 mg/kg) or saline was given intraperitoneally 4 days prior to study. Following chloralose/urethane anaesthesia, rats were prepared for measurement of mean arterial pressure (MAP), heart rate and RSNA and received intrarenal infusions of either Lys-[des-Arg 9 , Leu 8 ]-bradykinin (LBK), a bradykinin B1 receptor blocker, or bradyzide (BZ), a bradykinin B2 receptor blocker. RSNA baroreflex gain curves and renal sympatho-inhibitory responses to volume expansion (VE) were obtained. In the control and renal failure groups, basal MAP (89 ± 3 vs. 80 ± 8 mmHg) and RSNA (2.0 ± 0.3 vs. 1.7 ± 0.6 μV.s) were similar but HR was lower in the latter group (331 ± 8 vs. 396 ± 9 beats/min). The baroreflex gain for RSNA in the renal failure rats was 39% (P renal failure rats. Intrarenal LBK infusion in the renal failure rats normalized the VE induced renal sympatho-inhibition whereas BZ only partially restored the response. These findings suggest that pro-inflammatory bradykinin acting at different receptors within the kidney generates afferent neural signals which impact differentially within the central nervous system on high- and low-pressure regulation of RSNA. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  9. A new model of strabismic amblyopia: Loss of spatial acuity due to increased temporal dispersion of geniculate X-cell afferents on to cortical neurons.

    Science.gov (United States)

    Crewther, D P; Crewther, S G

    2015-09-01

    Although the neural locus of strabismic amblyopia has been shown to lie at the first site of binocular integration, first in cat and then in primate, an adequate mechanism is still lacking. Here we hypothesise that increased temporal dispersion of LGN X-cell afferents driven by the deviating eye onto single cortical neurons may provide a neural mechanism for strabismic amblyopia. This idea was investigated via single cell extracellular recordings of 93 X and 50 Y type LGN neurons from strabismic and normal cats. Both X and Y neurons driven by the non-deviating eye showed shorter latencies than those driven by either the strabismic or normal eyes. Also the mean latency difference between X and Y neurons was much greater for the strabismic cells compared with the other two groups. The incidence of lagged X-cells driven by the deviating eye of the strabismic cats was higher than that of LGN X-cells from normal animals. Remarkably, none of the cells recorded from the laminae driven by the non-deviating eye were of the lagged class. A simple computational model was constructed in which a mixture of lagged and non-lagged afferents converge on to single cortical neurons. Model cut-off spatial frequencies to a moving grating stimulus were sensitive to the temporal dispersion of the geniculate afferents. Thus strabismic amblyopia could be viewed as a lack of developmental tuning of geniculate lags for neurons driven by the amblyopic eye. Monocular control of fixation by the non-deviating eye is associated with reduced incidence of lagged neurons, suggesting that in normal vision, lagged neurons might play a role in maintaining binocular connections for cortical neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Receptors for sensory neuropeptides in human inflammatory diseases: Implications for the effector role of sensory neurons

    International Nuclear Information System (INIS)

    Mantyh, P.W.; Catton, M.D.; Boehmer, C.G.; Welton, M.L.; Passaro, E.P. Jr.; Maggio, J.E.; Vigna, S.R.

    1989-01-01

    Glutamate and several neuropeptides are synthesized and released by subpopulations of primary afferent neurons. These sensory neurons play a role in regulating the inflammatory and immune responses in peripheral tissues. Using quantitative receptor autoradiography we have explored what changes occur in the location and concentration of receptor binding sites for sensory neurotransmitters in the colon in two human inflammatory diseases, ulcerative colitis and Crohn's disease. The sensory neurotransmitter receptors examined included bombesin, calcitonin gene related peptide-alpha, cholecystokinin, galanin, glutamate, somatostatin, neurokinin A (substance K), substance P, and vasoactive intestinal polypeptide. Of the nine receptor binding sites examined only substance P binding sites associated with arterioles, venules and lymph nodules were dramatically up-regulated in the inflamed tissue. These data suggest that substance P is involved in regulating the inflammatory and immune responses in human inflammatory diseases and indicate a specificity of efferent action for each sensory neurotransmitter in peripheral tissues

  11. Transposition and Intermingling of Galphai2 and Galphao afferences into single vomeronasal glomeruli in the Madagascan lesser Tenrec Echinops telfairi.

    Directory of Open Access Journals (Sweden)

    Rodrigo Suárez

    2009-11-01

    Full Text Available The vomeronasal system (VNS mediates pheromonal communication in mammals. From the vomeronasal organ, two populations of sensory neurons, expressing either Galphai2 or Galphao proteins, send projections that end in glomeruli distributed either at the rostral or caudal half of the accessory olfactory bulb (AOB, respectively. Neurons at the AOB contact glomeruli of a single subpopulation. The dichotomic segregation of AOB glomeruli has been described in opossums, rodents and rabbits, while Primates and Laurasiatheres present the Galphai2-pathway only, or none at all (such as apes, some bats and aquatic species. We studied the AOB of the Madagascan lesser tenrec Echinops telfairi (Afrotheria: Afrosoricida and found that Galphai2 and Galphao proteins are expressed in rostral and caudal glomeruli, respectively. However, the segregation of vomeronasal glomeruli at the AOB is not exclusive, as both pathways contained some glomeruli transposed into the adjoining subdomain. Moreover, some glomeruli seem to contain intermingled afferences from both pathways. Both the transposition and heterogeneity of vomeronasal afferences are features, to our knowledge, never reported before. The organization of AOB glomeruli suggests that synaptic integration might occur at the glomerular layer. Whether intrinsic AOB neurons may make synaptic contact with axon terminals of both subpopulations is an interesting possibility that would expand our understanding about the integration of vomeronasal pathways.

  12. Dynamic modulation of corticospinal excitability and short-latency afferent inhibition during onset and maintenance phase of selective finger movement.

    Science.gov (United States)

    Cho, Hyun Joo; Panyakaew, Pattamon; Thirugnanasambandam, Nivethida; Wu, Tianxia; Hallett, Mark

    2016-06-01

    During highly selective finger movement, corticospinal excitability is reduced in surrounding muscles at the onset of movement but this phenomenon has not been demonstrated during maintenance of movement. Sensorimotor integration may play an important role in selective movement. We sought to investigate how corticospinal excitability and short-latency afferent inhibition changes in active and surrounding muscles during onset and maintenance of selective finger movement. Using transcranial magnetic stimulation (TMS) and paired peripheral stimulation, input-output recruitment curve and short-latency afferent inhibition (SAI) were measured in the first dorsal interosseus and abductor digiti minimi muscles during selective index finger flexion. Motor surround inhibition was present only at the onset phase, but not at the maintenance phase of movement. SAI was reduced at onset but not at the maintenance phase of movement in both active and surrounding muscles. Our study showed dynamic changes in corticospinal excitability and sensorimotor modulation for active and surrounding muscles in different movement states. SAI does not appear to contribute to motor surround inhibition at the movement onset phase. Also, there seems to be different inhibitory circuit(s) other than SAI for the movement maintenance phase in order to delineate the motor output selectively when corticospinal excitability is increased in both active and surrounding muscles. This study enhances our knowledge of dynamic changes in corticospinal excitability and sensorimotor interaction in different movement states to understand normal and disordered movements. Published by Elsevier Ireland Ltd.

  13. Regulation of hippocampal synaptic plasticity thresholds and changes in exploratory and learning behavior in dominant negative NPR-B mutant rats

    Directory of Open Access Journals (Sweden)

    Gleb eBarmashenko

    2014-12-01

    Full Text Available The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B and its ligand C-type natriuretic peptide (CNP, one of several cGMP producing signalling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP. We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BdeltaKC lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BdeltaKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1-100 Hz was assessed in transgenic rats the threshold for LTP induction was raised, but LTD induction was facilitated. In parallel, NPR-BdeltaKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signalling has a modulatory role for synaptic information storage and learning.

  14. Dopamine D1/D5, but not D2/D3, receptor dependency of synaptic plasticity at hippocampal mossy fiber synapses that is enabled by patterned afferent stimulation, or spatial learning

    Directory of Open Access Journals (Sweden)

    Hardy Hagena

    2016-09-01

    Full Text Available Although the mossy fiber (MF synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24h synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH-CA1 and perforant path (PP-dentate gyrus (DG synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP and long-term depression (LTD. These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about spatial experience effectively occurs and the neuromodulator dopamine plays a key role in motivation-based learning. Prior research on the regulation by dopamine receptors of long-term synaptic plasticity in CA1 and dentate gyrus synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of these receptors in persistent (>24h forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data

  15. Unusual patch-matrix organization in the retrosplenial cortex of the reeler mouse and Shaking rat Kawasaki.

    Science.gov (United States)

    Ichinohe, Noritaka; Knight, Adrian; Ogawa, Masaharu; Ohshima, Toshio; Mikoshiba, Katsuhiko; Yoshihara, Yoshihiro; Terashima, Toshio; Rockland, Kathleen S

    2008-05-01

    The rat granular retrosplenial cortex (GRS) is a simplified cortex, with distinct stratification and, in the uppermost layers, distinct modularity. Thalamic and cortical inputs are segregated by layers and in layer 1 colocalize, respectively, with apical dendritic bundles originating from neurons in layers 2 or 5. To further investigate this organization, we turned to reelin-deficient reeler mouse and Shaking rat Kawasaki. We found that the disrupted lamination, evident in Nissl stains in these rodents, is in fact a patch-matrix mosaic of segregated afferents and dendrites. Patches consist of thalamocortical connections, visualized by vesicular glutamate transporter 2 (VGluT2) or AChE. The surrounding matrix consists of corticocortical terminations, visualized by VGluT1 or zinc. Dendrites concentrate in the matrix or patches, depending on whether they are OCAM positive (matrix) or negative (patches). In wild-type rodents and, presumably, mutants, OCAM(+) structures originate from layer 5 neurons. By double labeling for dendrites (filled by Lucifer yellow in fixed slice) and OCAM immunofluorescence, we ascertained 2 populations in reeler: dendritic branches either preferred (putative layer 5 neurons) or avoided (putative supragranular neurons) the OCAM(+) matrix. We conclude that input-target relationships are largely preserved in the mutant GRS and that dendrite-dendrite interactions involving OCAM influence the formation of the mosaic configuration.

  16. Neurophysiological changes in the afferent somatosensory system indices in the case of vertebrogenic spine pathology in miners

    Directory of Open Access Journals (Sweden)

    Sharbanu Battakova

    2013-04-01

    Full Text Available Objectives: The aim of the paper was to prove that job conditions impact the state of the afferent part of the somatosensory system in miners. Materials and Methods: Data analysis of the electrophysiological examination of the syndrome in 148 patients, aged from 28 to 55 years, with a mild, moderate and severe degree of the pain syndrome was performed. The control group included 28 people without any pain symptoms. The method used was that of somatosensory stimulated potential (SSP with the potentials amplitude and latency main components taken into consideration. Results: It was proven that the true decrease of the somatosensory stimulated potential SSP N22 (p < 0.05 component amplitudes by 41%; N30 component amplitude tend to decrease by 26%. This proves that the true N22 (p < 0.01 component latency increase by 63.8% corresponds to afferent excitation wave conductibility under the pain syndrome of vertebral pathology through sensitivity pathways mainly in the posterior spinal cord columns and then, through the parts of the brain stem, involving the cerebral cortex, which is confirmed by the fact that the P38 and P46 components amplitudes tend to decrease. In addition to this, the proven N10–N13 (p < 0.05, N13–N20 (p < 0.05, N10–N20 (p < 0.05 intervals increases by 43.5–41.8–38.7%, respectively, correspond to the nervous impulse conductibility through the peripheral nervous system structures and allow to reveal the subclinical slowdown of impulse conductibility, which indicates that the conducting system is changed even under a mild pain syndrome. Conclusions: It was found that the data obtained allow for the better understanding of how the neuropathological pain syndrome under vertebral spine pathology is formed.

  17. Role of capsaicin- and heat-sensitive afferents in stimulation of acupoint-induced pain and analgesia in humans.

    Science.gov (United States)

    Lei, Jing; Ye, Gang; Wu, Jiang-Tao; Pertovaara, Antti; You, Hao-Jun

    2017-09-01

    We investigated role of capsaicin-sensitive afferents within and without the areas of Zusanli (ST36)/Shangjuxu (ST37) acupoints along the stomach (ST) meridian in the perception and modulation of pain assessed by visual analog scale of pain and its distribution rated by subjects, pressure pain threshold (PPT), and heat pain threshold (HPT) in humans. Compared with the treatment of non-acupoint area, capsaicin (100µg/50µl) administered into either ST36 or ST37 acupoint caused the strongest pain intensity and the most extensive pain distribution, followed by rapid onset, bilateral, long-lasting secondary mechanical hyperalgesia and slower onset secondary heat hypoalgesia (1day after the capsaicin treatment). Between treatments of different acupoints, capsaicin administrated into the ST36 acupoint exhibited the stronger pain intensity and more widespread pain distribution compared with the treatment of ST37 acupoint. A period of 30- to 45-min, but not 15-min, 43°C heating-needle stimulation applied to the ST36 acupoint significantly enhanced the HPT, and had no effect on PPT. Upon trapezius muscle pain elicited by the i.m. injection of 5.8% saline, pre-emptive treatment of the contralateral ST36 acupoint with 43°C heating-needle stimulation alleviated the ongoing muscle pain, reduced painful area, and reversed the decrease in HPT. It is suggested that (1) pain elicited from the acupoint and non-acupoint areas differs significantly, which are supposed to be dependent on the different distributions and contributions of capsaicin-sensitive afferents. (2) Non-painful heat stimulation is a valid approach in prevention of ongoing muscle pain with associated post-effects of peripheral and central sensitization. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Influence of visual experience on developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Dieni, Cristina; Frondaroli, Adele; Pettorossi, Vito Enrico

    2004-11-01

    The influence of visual experience deprivation on changes in synaptic plasticity during postnatal development was studied in the ventral part of the rat medial vestibular nuclei (vMVN). We analysed the differences in the occurrence, expressed as a percentage, of long-term depression (LTD) and long-term potentiation (LTP) induced by high frequency stimulation (HFS) of the primary vestibular afferents in rats reared in the light (LR) and those in the dark (DR). In LR rats, HFS only induced LTD in the early stages of development, but the occurrence of LTD progressively decreased to zero before their eyes opened, while that of LTP enhanced from zero to about 50%. Once the rats' eyes had opened, LTD was no longer inducible while LTP occurrence gradually reached the normal adult value (70%). In DR rats, a similar shift from LTD to LTP was observed before their eyes opened, showing only a slightly slower LTD decay and LTP growth, and the LTD annulment was delayed by 1 day. By contrast, the time courses of LTD and LTP development in DR and LR rats showed remarkable differences following eye opening. In fact, LTD occurrence increased to about 50% in a short period of time and remained high until the adult stage. In addition, the occurrence of LTP slowly decreased to less than 20%. The effect of light-deprivation was reversible, since the exposure of DR rats to light, 5 days after eye opening, caused a sudden disappearance of LTD and a partial recover of LTP occurrence. In addition, we observed that a week of light deprivation in LR adult rats did not affect the normal adult LTP occurrence. These results provide evidence that in a critical period of development visual input plays a crucial role in shaping synaptic plasticity of the vMVN, and suggest that the visual guided shift from LTD to LTP during development may be necessary to refine and consolidate vestibular circuitry.

  19. Dendritic and axonic fields of Purkinje cells in developing and X-irradiated rat cerebellum. A comparative study using intracellular staining with horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Crepel, F; Delhaye-Bouchaud, N; Dupont, J L [Paris-5 Univ., 75 (France); Sotelo, C [Hopital Foch, 92 - Suresnes (France). Centre Medico-Chirurgical

    1980-01-01

    Intracellular staining of cerebellar Purkinje cells with horseradish peroxidase was achieved in normal developing rats (8-13 days old), in normal adult rats and in adult rats in which the cerebellum had been degranulated by X-ray treatment. The mono- and multiple innervation of Purkinje cells by climbing fibres was electrophysiologically determined and correlated with their dendritic pattern and axonal field. In immature rats, considerable variations in dendritic arborization were observed between cells at the same age, according to their position in the vermis. In adult X-irradiated animals, a large variety of dendritic shapes was found, confirming previous anatomical data, but no obvious correlation was found between the morphology of the dendrites of Purkinje cells and their synaptic investment by climbing fibres. As regards the axonal field, the adult branching pattern of recurrent axon collaterals was almost established by postnatal day 8, except for some cells which exhibited richer recurrent collaterals. On the other hand, in X-irradiated animals, profuse plexuses were the rule and they originated either from one collateral stem, or from several collaterals, also independently of the number of afferent climbing fibres. The existence of these enlarged recurrent collateral plexuses can be explained by the persistence of an immature stage, and certainly also by the collateral sprouting following the largely impaired innervation of the terminal field during development. These results emphasize the role of the cellular interactions that occur during Purkinje cell growth in the formation of both its axonal and dendritic fields.

  20. Alteration of the digestive motility linked with radiation-induced inflammatory processes in rats; Alterations de la motricite digestive associees aux processus inflammatoires induits par les rayonnements ionisants chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Picard, C

    2000-12-01

    Exposure to ionizing radiation, whether accidental or for medical reasons, may lead to gastro-intestinal injury, characterized by nausea, vomiting, diarrhea and abdominal cramps. The aetiology of radiation-induced diarrhea remains to date unclear. In this study, we have investigated the acute effects of a 10 Gy abdominal irradiation on rat digestive functions. The objective of the first study was to evaluate the role of sensory afferent neurons, capsaicin-sensitive, on morphological changes and the inflammatory response following exposure. Three days after irradiation, we observed an inflammatory response characterized by neutrophils infiltration and mast cells de-granulation. No effect of capsaicin pre-treatment was seen on these parameters. However, neutrophils infiltration was increased as early as one day after irradiation in capsaicin-treated rats. No difference in severity of diarrhea was observed after denervation nor in morphological changes. These data demonstrate that abdominal irradiation results in diarrhea concomitant with an inflammatory response, and that sensory innervation does not play a major protective role. The objective of the rest of the work was in the first instance to characterize radiation-induced alterations of intestinal and colonic motility leading to diarrhea and secondly to evaluate the role of serotonin in such disorders. Perturbations in intestinal (MMC) and colonic (LSB) motor profiles were observed from the first day onwards. Migrating motor complexes (MMC) were completely disrupted at three days at the same time as the onset of diarrhea. In addition to inhibition of LSB, colonic fluid absorptive capacity was decreased and serotonin colonic tissue levels were increased three days after irradiation. Radiation-induced diarrhea was reduced by treatment with an antagonist of 5-HT{sub 3} receptors, granisetron, as were alterations of colonic motility and serotonin tissue levels. However, this treatment did not significantly ameliorate

  1. Muscle spindle thixotropy affects force perception through afferent-induced facilitation of the motor pathways as revealed by the Kohnstamm effect.

    Science.gov (United States)

    Monjo, Florian; Forestier, Nicolas

    2018-04-01

    This study was designed to explore the effects of intrafusal thixotropy, a property affecting muscle spindle sensitivity, on the sense of force. For this purpose, psychophysical measurements of force perception were performed using an isometric force matching paradigm of elbow flexors consisting of matching different force magnitudes (5, 10 and 20% of subjects' maximal voluntary force). We investigated participants' capacity to match these forces after their indicator arm had undergone voluntary isometric conditioning contractions known to alter spindle thixotropy, i.e., contractions performed at long ('hold long') or short muscle lengths ('hold short'). In parallel, their reference arm was conditioned at the intermediate muscle length ('hold-test') at which the matchings were performed. The thixotropy hypothesis predicts that estimation errors should only be observed at low force levels (up to 10% of the maximal voluntary force) with overestimation of the forces produced following 'hold short' conditioning and underestimation following 'hold long' conditioning. We found the complete opposite, especially following 'hold-short' conditioning where subjects underestimated the force they generated with similar relative error magnitudes across force levels. In a second experiment, we tested the hypothesis that estimation errors depended on the degree of afferent-induced facilitation using the Kohnstamm phenomenon as a probe of motor pathway excitability. Because the stronger post-effects were observed following 'hold-short' conditioning, it appears that the conditioning-induced excitation of spindle afferents leads to force misjudgments by introducing a decoupling between the central effort and the cortical motor outputs.

  2. Failure of action potential propagation in sensory neurons: mechanisms and loss of afferent filtering in C-type units after painful nerve injury.

    Science.gov (United States)

    Gemes, Geza; Koopmeiners, Andrew; Rigaud, Marcel; Lirk, Philipp; Sapunar, Damir; Bangaru, Madhavi Latha; Vilceanu, Daniel; Garrison, Sheldon R; Ljubkovic, Marko; Mueller, Samantha J; Stucky, Cheryl L; Hogan, Quinn H

    2013-02-15

    The T-junction of sensory neurons in the dorsal root ganglion (DRG) is a potential impediment to action potential (AP) propagation towards the CNS. Using intracellular recordings from rat DRG neuronal somata during stimulation of the dorsal root, we determined that the maximal rate at which all of 20 APs in a train could successfully transit the T-junction (following frequency) was lowest in C-type units, followed by A-type units with inflected descending limbs of the AP, and highest in A-type units without inflections. In C-type units, following frequency was slower than the rate at which AP trains could be produced in either dorsal root axonal segments or in the soma alone, indicating that the T-junction is a site that acts as a low-pass filter for AP propagation. Following frequency was slower for a train of 20 APs than for two, indicating that a cumulative process leads to propagation failure. Propagation failure was accompanied by diminished somatic membrane input resistance, and was enhanced when Ca(2+)-sensitive K(+) currents were augmented or when Ca(2+)-sensitive Cl(-) currents were blocked. After peripheral nerve injury, following frequencies were increased in axotomized C-type neurons and decreased in axotomized non-inflected A-type neurons. These findings reveal that the T-junction in sensory neurons is a regulator of afferent impulse traffic. Diminished filtering of AP trains at the T-junction of C-type neurons with axotomized peripheral processes could enhance the transmission of activity that is ectopically triggered in a neuroma or the neuronal soma, possibly contributing to pain generation.

  3. Acupuncture at heterotopic acupoints enhances jejunal motility in constipated and diarrheic rats

    Science.gov (United States)

    Qin, Qing-Guang; Gao, Xin-Yan; Liu, Kun; Yu, Xiao-Chun; Li, Liang; Wang, Hai-Ping; Zhu, Bing

    2014-01-01

    AIM: To investigate the effect and mechanism of acupuncture at heterotopic acupoints on jejunal motility, particularly in pathological conditions. METHODS: Jejunal motility was assessed using a manometric balloon placed in the jejunum approximately 18-20 cm downstream from the pylorus and filled with approximately 0.1 mL warm water in anesthetized normal rats or rats with diarrhea or constipation. The heterotopic acupoints including LI11 (Quchi), ST37 (Shangjuxu), BL25 (Dachangshu), and the homotopic acupoint ST25 (Tianshu), and were stimulated for 60 s by rotating acupuncture needles right and left at a frequency of 2 Hz. To determine the type of afferent fibers mediating the regulation of jejunal motility by manual acupuncture, the ipsilateral sciatic A or C fibers of ST37 were inactivated by local application of the A-fiber selective demyelination agent cobra venom or the C fiber blocker capsaicin. Methoctramine, a selective M2 receptor antagonist, was injected intravenously to identify a specific role for M2 receptors in mediating the effect of acupuncture on jejunal motility. RESULTS: Acupuncture at heterotopic acupoints, such as LI11 and ST37, increased jejunal motility not only in normal rats, but also in rats with constipation or diarrhea. In normal rats, manual acupuncture at LI11 or ST37 enhanced jejunal pressure from 7.34 ± 0.19 cmH2O to 7.93 ± 0.20 cmH2O, an increase of 9.05% ± 0.82% (P acupuncture at LI11 or ST37 increased intrajejunal pressure from 8.17 ± 0.31 cmH2O to 9.86 ± 0.36 cmH2O, an increase of 20.69% ± 2.10% (P 0.05), respectively. In contrast, acupuncture ST25, a homotopic acupoint, decreased not only intrajejunal pressure, but also significantly decreased frequency in normal rats and rats with constipation or diarrhea. Following demyelination of Aδ fibers, acupuncture at ST37 again augmented intrajejunal pressure to 121.48% ± 3.06% of baseline. Following capsaicin application for 24 h, acupuncture at ipsilateral ST37 increased

  4. Cardiac function, microvascular structure, and capillary hematocrit in hearts of polycythemic rats

    Czech Academy of Sciences Publication Activity Database

    Rakusan, K.; Cicutti, N.; Kolář, František

    2001-01-01

    Roč. 281, č. 6 (2001), s. 2425-2431 ISSN 0363-6135 R&D Projects: GA MŠk LN00A069 Grant - others:Ontario Heart and Stroke Foundation(CA) B-3705; Medical Research Council of Canada(CA) - Institutional research plan: CEZ:AV0Z5011922 Keywords : coronary microcirculation * arterioles * capillaries Subject RIV: ED - Physiology Impact factor: 3.232, year: 2001

  5. [Effects of feixin decoction on the contents of hypoxia-inducible factor-1alpha and vascular endothelial growth factor in the rat model of hypoxic pulmonary hypertension].

    Science.gov (United States)

    He, Hong-Jun; Dai, Ai-Guo

    2012-05-01

    To explore the effects of Feixin Decoction (FXD) on the hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) in the rat model of hypoxic pulmonary hypertension (HPH), and to study its mechanisms for treating HPH. Forty healthy male SD rats were randomly divided into four groups, i. e., the normal control group, the HPH model group, the FXD group, and the Nifedipine group, 10 rats in each group. The HPH rat model was prepared using normal pressure intermittent hypoxia method. Except the normal control group, rats in the rest groups were fed in a self-made hypoxic plexiglass cabin, with the poor oxygen condition for 8 h daily for 14 successive days. Then the distilled water (at 30 mL/kg) was given by gastrogavage to rats in the normal control group and the HPH model group. FXD (at 28 g/kg) and Nifedipine (at 20 mg/kg) were given by gastrogavage to rats in the FXD group and the Nifedipine group respectively, once daily, for 14 successive days. Besides, hypoxia was continued for 14 days while medicating. The mean pulmonary artery pressure (mPAP) was detected on the second day after the last medication. The morphology of the pulmonary arteriole was detected. The ratio of pulmonary artery wall area and tube area (WA%) was determined. The protein and mRNA expressions of HIF-1alpha and VEGF were detected using immunohistochemistry and in situ hybridization technique. Compared with the normal control group, mPAP, WA%, and the protein and mRNA expressions of HIF-1alpha and VEGF significantly increased in the model group (P < 0.01, P < 0.05). Compared with the HPH model group, mPAP, WA%, and the protein and mRNA expressions of HIF-1alpha and VEGF significantly decreased in the FXD group (P < 0.01, P < 0.05). FXD down-regulated the expression of VEGF through decreasing the expression of HIF-1alpha. One of its mechanisms for treating HPH might be partially due to reversing the remodeling of pulmonary vascular smooth muscle.

  6. Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis.

    Science.gov (United States)

    Philpott, Holly T; OʼBrien, Melissa; McDougall, Jason J

    2017-12-01

    Osteoarthritis (OA) is a multifactorial joint disease, which includes joint degeneration, intermittent inflammation, and peripheral neuropathy. Cannabidiol (CBD) is a noneuphoria producing constituent of cannabis that has the potential to relieve pain. The aim of this study was to determine whether CBD is anti-nociceptive in OA, and whether inhibition of inflammation by CBD could prevent the development of OA pain and joint neuropathy. Osteoarthritis was induced in male Wistar rats (150-175 g) by intra-articular injection of sodium monoiodoacetate (MIA; 3 mg). On day 14 (end-stage OA), joint afferent mechanosensitivity was assessed using in vivo electrophysiology, whereas pain behaviour was measured by von Frey hair algesiometry and dynamic incapacitance. To investigate acute joint inflammation, blood flow and leukocyte trafficking were measured on day 1 after MIA. Joint nerve myelination was calculated by G-ratio analysis. The therapeutic and prophylactic effects of peripheral CBD (100-300 μg) were assessed. In end-stage OA, CBD dose-dependently decreased joint afferent firing rate, and increased withdrawal threshold and weight bearing (P < 0.0001; n = 8). Acute, transient joint inflammation was reduced by local CBD treatment (P < 0.0001; n = 6). Prophylactic administration of CBD prevented the development of MIA-induced joint pain at later time points (P < 0.0001; n = 8), and was also found to be neuroprotective (P < 0.05; n = 6-8). The data presented here indicate that local administration of CBD blocked OA pain. Prophylactic CBD treatment prevented the later development of pain and nerve damage in these OA joints. These findings suggest that CBD may be a safe, useful therapeutic for treating OA joint neuropathic pain.

  7. Persistent changes in ability to express long-term potentiation/depression in the rat hippocampus after juvenile/adult stress.

    Science.gov (United States)

    Maggio, Nicola; Segal, Menahem

    2011-04-15

    The ventral hippocampus (VH) was recently shown to express lower magnitude long-term potentiation (LTP) compared with the dorsal hippocampus (DH). Exposure to acute stress reversed this difference, and VH slices from stressed rats expressed larger LTP than that produced in the DH, which was reduced by stress. Stressful experience in adolescence has been shown to produce long-lasting effects on animal behavior and on ability to express LTP/long-term depression (LTD) of reactivity to afferent stimulation in the adult. We are interested in possible interactions between juvenile and adult stress in their effects of adult plasticity. We studied the effects of a composite juvenile (28-30 days) stress, followed by a reminder stressful experience in the young adult (60 days) rat, on the ability to produce LTP and LTD in CA1 region of slices of the VH and DH. Juvenile or adult stress produced a transient decrease in ability to express LTP in DH and a parallel increase in LTP in VH. Stress in the young adult after juvenile stress produced a striking prolongation of the DH/VH disparity with respect to the ability to express both LTP and LTD into the adulthood of the rat. These results have important implications for the impact of juvenile stress on adult neuronal plasticity and on the understanding the functions of the different sectors of the hippocampus. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Alteration of the digestive motility linked with radiation-induced inflammatory processes in rats

    International Nuclear Information System (INIS)

    Picard, C.

    2000-12-01

    Exposure to ionizing radiation, whether accidental or for medical reasons, may lead to gastro-intestinal injury, characterized by nausea, vomiting, diarrhea and abdominal cramps. The aetiology of radiation-induced diarrhea remains to date unclear. In this study, we have investigated the acute effects of a 10 Gy abdominal irradiation on rat digestive functions. The objective of the first study was to evaluate the role of sensory afferent neurons, capsaicin-sensitive, on morphological changes and the inflammatory response following exposure. Three days after irradiation, we observed an inflammatory response characterized by neutrophils infiltration and mast cells de-granulation. No effect of capsaicin pre-treatment was seen on these parameters. However, neutrophils infiltration was increased as early as one day after irradiation in capsaicin-treated rats. No difference in severity of diarrhea was observed after denervation nor in morphological changes. These data demonstrate that abdominal irradiation results in diarrhea concomitant with an inflammatory response, and that sensory innervation does not play a major protective role. The objective of the rest of the work was in the first instance to characterize radiation-induced alterations of intestinal and colonic motility leading to diarrhea and secondly to evaluate the role of serotonin in such disorders. Perturbations in intestinal (MMC) and colonic (LSB) motor profiles were observed from the first day onwards. Migrating motor complexes (MMC) were completely disrupted at three days at the same time as the onset of diarrhea. In addition to inhibition of LSB, colonic fluid absorptive capacity was decreased and serotonin colonic tissue levels were increased three days after irradiation. Radiation-induced diarrhea was reduced by treatment with an antagonist of 5-HT 3 receptors, granisetron, as were alterations of colonic motility and serotonin tissue levels. However, this treatment did not significantly ameliorate

  9. Plasticity in intact A delta- and C-fibers contributes to cold hypersensitivity in neuropathic rats.

    Science.gov (United States)

    Ji, G; Zhou, S; Kochukov, M Y; Westlund, K N; Carlton, S M

    2007-11-30

    Cold hypersensitivity is a common sensory abnormality accompanying peripheral neuropathies and is difficult to treat. Progress has been made in understanding peripheral mechanisms underlying neuropathic pain but little is known concerning peripheral mechanisms of cold hypersensitivity. The aim of this study was to analyze the contribution of uninjured primary afferents to the cold hypersensitivity that develops in neuropathic rats. Rats with a lumbar 5 (L5) and L6 spinal nerve ligation (SNL, Chung model) but not sham, developed mechanical allodynia, evidenced by decreased paw withdrawal thresholds and increased magnitude of response to von Frey stimulation. Cold hypersensitivity also developed in SNL but not sham rats, evidenced by enhanced nociceptive behaviors induced by placement on a cold plate (6 degrees C) or application of icilin (a transient receptor potential M8 (TRPM8)/transient receptor potential A1 (TRPA1) receptor agonist) to nerve-injured hind paws. Single fiber recordings demonstrated that the mean conduction velocities of intact L4 cutaneous A delta- and C-fibers were not different between naive and SNL rats; however, mechanical thresholds of the A delta- but not the C-fibers were significantly decreased in SNL compared with naive. There was a higher prevalence of C-mechanoheat-cold (CMHC) fibers in SNL compared with naive, but the overall percentage of cold-sensitive C-fibers was not significantly increased compared with naive. This was in contrast to the numerous changes in A delta-fibers: the percentage of L4 cold sensitive A delta-, but not C-fibers, was significantly increased, the percentage of L4 icilin-sensitive A delta-, but not C-fibers, was significantly increased, the icilin-induced activity of L4 A delta-, but not C-fibers, was significantly increased. Icilin-induced activity was blocked by the TRPA1 antagonist Ruthenium Red. The results indicate plasticity in both A delta- and C-uninjured fibers, but A delta fibers appear to provide a

  10. Local anesthetic effect of docosahexaenoic acid on the nociceptive jaw-opening reflex in rats.

    Science.gov (United States)

    Mitome, Kazuki; Takehana, Shiori; Oshima, Katsuo; Shimazu, Yoshihito; Takeda, Mamoru

    2018-02-23

    Although docosahexaenoic acid (DHA) administration suppresses sodium channels in primary afferent sensory neurons, the acute local effect of DHA on the trigeminal nociceptive reflex remains to be elucidated, in vivo. Therefore, the aim of the present study was to investigate whether local administration of DHA attenuates the nociceptive jaw-opening reflex (JOR) in vivo in the rat. The JOR evoked by electrical stimulation of the tongue was recorded by a digastric muscle electromyogram (dEMG) in pentobarbital-anesthetized rats. The amplitude of the dEMG response was significantly increased in proportion to the electrical stimulation intensity (1-5 x threshold). At 3 x threshold, local administration of DHA (0.1, 10 and 25 mM) dose-dependently inhibited the dEMG response, and lasted 40 min. Maximum inhibition of the dEMG signal amplitude was seen within approximately 10 min. The mean magnitude of inhibition of the dEMG signal amplitude by DHA (25 mM) was almost equal to the local anesthetic, 1% lidocaine (37 mM), a sodium channel blocker. These findings suggest that DHA attenuates the nociceptive JOR via possibly blocking sodium channels, and strongly support the idea that DHA is a potential therapeutic agent and complementary alternative medicine for the prevention of acute trigeminal nociception. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  11. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    Science.gov (United States)

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  12. Gastroesophageal Variceal Filling and Drainage Pathways: An Angiographic Description of Afferent and Efferent Venous Anatomic Patterns

    Directory of Open Access Journals (Sweden)

    Ron C Gaba

    2015-01-01

    Full Text Available Varices commonly occur in liver cirrhosis patients and are classified as esophageal (EV, gastroesophageal (GEV, or isolated gastric (IGV varices. These vessels may be supplied and drained by several different afferent and efferent pathways. A working knowledge of variceal anatomy is imperative for Interventional Radiologists performing transjugular intrahepatic portosystemic shunt and embolization/obliteration procedures. This pictorial essay characterizes the angiographic anatomy of varices in terms of type and frequency of venous filling and drainage, showing that different varices have distinct vascular anatomy. EVs typically show left gastric vein filling and “uphill” drainage, and GEVs and IGVs exhibit additional posterior/short gastric vein contribution and “downhill” outflow. An understanding of these variceal filling and drainage pathways can facilitate successful portal decompression and embolization/obliteration procedures.

  13. Oxidative Stress in Hypertension: Role of the Kidney

    Science.gov (United States)

    Araujo, Magali

    2014-01-01

    Abstract Significance: Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. Recent Advances: Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. Critical Issues and Future Directions: Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2−• rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension. Antioxid. Redox Signal. 20, 74–101. PMID:23472618

  14. When and Where Learning is Taking Place: Multisynaptic Changes in Strength During Different Behaviors Related to the Acquisition of an Operant Conditioning Task by Behaving Rats.

    Science.gov (United States)

    Fernández-Lamo, Iván; Delgado-García, José M; Gruart, Agnès

    2018-03-01

    Although it is generally assumed that brain circuits are modified by new experiences, the question of which changes in synaptic efficacy take place in cortical and subcortical circuits across the learning process remains unanswered. Rats were trained in the acquisition of an operant conditioning in a Skinner box provided with light beams to detect animals' approaches to lever and feeder. Behaviors such as pressing the lever, eating, exploring, and grooming were also recorded. Animals were chronically implanted with stimulating and recording electrodes in hippocampal, prefrontal, and subcortical sites relevant to the task. Field synaptic potentials were evoked during the performance of the above-mentioned behaviors and before, during, and after the acquisition process. Afferent pathways to the hippocampus and the intrinsic hippocampal circuit were slightly modified in synaptic strength during the performance of those behaviors. In contrast, afferent and efferent circuits of the medial prefrontal cortex were significantly modified in synaptic strength across training sessions, mostly at the moment of the largest change in the learning curve. Performance of behaviors nondirectly related to the acquisition process (exploring, grooming) also evoked changes in synaptic strength across training. This study helps to understand when and where learning is being engraved in the brain. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes.

    Science.gov (United States)

    Abbott, N Joan; Dolman, Diana E M; Drndarski, Svetlana; Fredriksson, Sarah M

    2012-01-01

    In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2

  16. Cardiovascular actions of L-cysteine and L-cysteine sulfinic acid in the nucleus tractus solitarius of the rat.

    Science.gov (United States)

    Takemoto, Yumi

    2014-07-01

    The sulfur-containing excitatory amino acid (EAA) L-cysteine sulfinic acid (CSA), a neurotransmitter candidate, is endogenously synthesized from L-cysteine (Cys). Exogenous Cys administration into the brain produces cardiovascular effects; these effects likely occur via synaptic stimulation of central nervous system (CNS) neurons that regulate peripheral cardiovascular function. However, the cardiovascular responses produced by CNS Cys administration could result from CSA biosynthesized in synapse. The present study examined the role of CSA in Cys-induced cardiovascular responses within the nucleus tractus solitarius (NTS) of anesthetized rats. The NTS receives input from various visceral afferents that gate autonomic reflexes, including cardiovascular reflexes. Within the NTS, both Cys and CSA microinjections produced decrease responses in arterial blood pressure and heart rate that were similar to those produced by L-glutamate. Co-injection of the ionotropic EAA receptor antagonist kynurenic acid abolished Cys-, but not CSA-, induced cardiovascular responses. This finding suggests that only Cys-induced cardiovascular responses are mediated by kynurenate-sensitive receptors. This study provides the first demonstration that Cys- and CSA-induced cardiovascular responses occur via different mechanisms in the NTS of rats. Further, this study also indicates that Cys-induced cardiovascular responses do not occur via CSA. Thus, within the NTS, endogenous Cys and/or CSA might be involved in cardiovascular regulation.

  17. Trigemino-gustatory interactions: a randomized controlled clinical trial assessing the effects of selective anesthesia of dental afferents on taste thresholds.

    Science.gov (United States)

    Lecor, Papa Abdou; Touré, Babacar; Boucher, Yves

    2018-03-01

    This study aimed at analyzing the effect of the temporary removal of trigeminal dental afferents on electrogustometric thresholds (EGMt). EGMt were measured in 300 healthy subjects randomized in three groups, in nine loci on the right and left side (RS, LS) of the tongue surface before and after anesthesia. Group IAN (n = 56 RS, n = 44 LS) received intraosseous local anesthesia of the inferior alveolar nerve (IAN). Group MdN received mandibular nerve (MdN) block targeting IAN before its entrance into the mandibular foramen (n = 60, RS, and n = 40, LS); group MxN receiving maxillary nerve (MxN) anesthesia (n = 56 RS and n = 44 LS) was the control group. Differences between mean EGMt were analyzed with the Wilcoxon test; correlation between type of anesthesia and EGMt was performed with Spearman's rho, all with a level of significance set at p ≤ 0.05. Significant EGMt (μA) differences before and after anesthesia were found in all loci with MdN and IAN on the ipsilateral side (p Anesthesia of the MdN was positively correlated with the increase in EGMt (p anesthesia of IAN was positively correlated only with the increase in EGMt measured at posterior and dorsal loci of the tongue surface (p anesthesia suggests a participation of dental afferents in taste perception. Extraction of teeth may impair food intake not only due to impaired masticatory ability but also to alteration of neurological trigemino-gustatory interactions. PACTR201602001452260.

  18. Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea.

    Science.gov (United States)

    Thiers, Fabio A; Nadol, Joseph B; Liberman, M Charles

    2008-12-01

    Cochlear outer hair cells (OHCs) serve both as sensory receptors and biological motors. Their sensory function is poorly understood because their afferent innervation, the type-II spiral ganglion cell, has small unmyelinated axons and constitutes only 5% of the cochlear nerve. Reciprocal synapses between OHCs and their type-II terminals, consisting of paired afferent and efferent specialization, have been described in the primate cochlea. Here, we use serial and semi-serial-section transmission electron microscopy to quantify the nature and number of synaptic interactions in the OHC area of adult cats. Reciprocal synapses were found in all OHC rows and all cochlear frequency regions. They were more common among third-row OHCs and in the apical half of the cochlea, where 86% of synapses were reciprocal. The relative frequency of reciprocal synapses was unchanged following surgical transection of the olivocochlear bundle in one cat, confirming that reciprocal synapses were not formed by efferent fibers. In the normal ear, axo-dendritic synapses between olivocochlear terminals and type-II terminals and/or dendrites were as common as synapses between olivocochlear terminals and OHCs, especially in the first row, where, on average, almost 30 such synapses were seen in the region under a single OHC. The results suggest that a complex local neuronal circuitry in the OHC area, formed by the dendrites of type-II neurons and modulated by the olivocochlear system, may be a fundamental property of the mammalian cochlea, rather than a curiosity of the primate ear. This network may mediate local feedback control of, and bidirectional communication among, OHCs throughout the cochlear spiral.

  19. Axo-somatic synapses in the normal and X-irradiated dendate gyrus; factors affecting the density of afferent innervation

    International Nuclear Information System (INIS)

    Lee, K.S.; Gerbrandt, L.; Lynch, G.

    1982-01-01

    The density of synaptic input to the somata of dentate gyrus granule cells was examined utilizing quantitative electron microscopic techniques. In control (non-irradiated) material, greater numbers of axo-somatic synapses were observed in the superficial, earlier-generated cells as compared to the deep, later-generated cells. We further studied the X-irradiated dentate gyrus, in which the majority of granule cells were destroyed during postnatal genesis. The surviving cells displayed a density of innervation on their somata which exceeded that observed in either layer of the control material. These data are discussed in terms of the possible contribution of afferent-target cell interactions to the regulation of the density of synaptic innervation. (Auth.)

  20. Axo-somatic synapses in the normal and X-irradiated dendate gyrus; factors affecting the density of afferent innervation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K S [Max-Planck-Institut fuer Psychiatrie, Muenchen (Germany, F.R.); Gerbrandt, L [Neuroscience Research Program, Boston, MA (USA); Lynch, G [California Univ., Irvine (USA)

    1982-10-07

    The density of synaptic input to the somata of dentate gyrus granule cells was examined utilizing quantitative electron microscopic techniques. In control (non-irradiated) material, greater numbers of axo-somatic synapses were observed in the superficial, earlier-generated cells as compared to the deep, later-generated cells. We further studied the X-irradiated dentate gyrus, in which the majority of granule cells were destroyed during postnatal genesis. The surviving cells displayed a density of innervation on their somata which exceeded that observed in either layer of the control material. These data are discussed in terms of the possible contribution of afferent-target cell interactions to the regulation of the density of synaptic innervation.

  1. Comparison of neurotrophin and repellent sensitivities of early embryonic geniculate and trigeminal axons

    NARCIS (Netherlands)

    Rochlin, M William; O'Connor, R.; Giger, Roman J; Verhaagen, J; Farbman, A I

    2000-01-01

    Geniculate (gustatory) and trigeminal (somatosensory) afferents take different routes to the tongue during rat embryonic development. To learn more about the mechanisms controlling neurite outgrowth and axon guidance, we are studying the roles of diffusible factors. We previously profiled the in

  2. Dendritic and axonic fields of Purkinje cells in developing and X-irradiated rat cerebellum. A comparative study using intracellular staining with horseradish peroxidase

    International Nuclear Information System (INIS)

    Crepel, F.; Delhaye-Bouchaud, N.; Dupont, J.L.; Sotelo, C.

    1980-01-01

    Intracellular staining of cerebellar Purkinje cells with horseradish peroxidase was achieved in normal developing rats (8-13 days old), in normal adult rats and in adult rats in which the cerebellum had been degranulated by X-ray treatment. The mono- and multiple innervation of Purkinje cells by climbing fibres was electrophysiologically determined and correlated with their dendritic pattern and axonal field. In immature rats, considerable variations in dendritic arborization were observed between cells at the same age, according to their position in the vermis. In adult X-irradiated animals, a large variety of dendritic shapes was found, confirming previous anatomical data, but no obvious correlation was found between the morphology of the dendrites of Purkinje cells and their synaptic investment by climbing fibres. As regards the axonal field, the adult branching pattern of recurrent axon collaterals was almost established by postnatal day 8, except for some cells which exhibited richer recurrent collaterals. On the other hand, in X-irradiated animals, profuse plexuses were the rule and they originated either from one collateral stem, or from several collaterals, also independently of the number of afferent climbing fibres. The existence of these enlarged recurrent collateral plexuses can be explained by the persistence of an immature stage, and certainly also by the collateral sprouting following the largely impaired innervation of the terminal field during development. These results emphasize the role of the cellular interactions that occur during Purkinje cell growth in the formation of both its axonal and dendritic fields. (author)

  3. Effects and mechanism of oridonin on pulmonary hypertension induced by chronic hypoxia-hypercapnia in rats.

    Science.gov (United States)

    Wang, Liang-Xing; Sun, Yu; Chen, Chan; Huang, Xiao-Ying; Lin, Quan; Qian, Guo-Qing; Dong, Wei; Chen, Yan-Fan

    2009-06-20

    Pulmonary arterial hypertension (PAH) is characterized by suppressing apoptosis and enhancing cell proliferation in the vascular wall. Inducing pulmonary artery smooth muscle cells (PASMC) apoptosis had been regarded as a therapeutic approach for PAH. Oridonin can cause apoptosis in many cell lines, while little has been done to evaluate its effect on PASMC. Thirty male Sprague-Dawley rats were randomly assigned to three groups: normal control (NC); hypoxia-hypercapnia (HH); Hypoxia-hypercapnia + oridonin (HHO). Rats were exposed to hypoxia-hypercapnia for four weeks. Cultured human PASMC (HPASMC) were assigned to three groups: normoxia (NO); hypoxia (HY); hypoxia + oridonin (HO). The mean pulmonary artery pressure, mass ratio of right ventricle over left ventricle plus septum (RV/(LV + S)), the ratio of thickness of the pulmonary arteriole wall to vascular external diameter (WT%) and the ratio of the vessel wall area to the total area (WA%) were measured. Morphologic changes of pulmonary arteries were observed under light and electron microscopes. The apoptotic characteristics in vitro and in vivo were detected. The mPAP, RV/(LV + S), WT%, and WA% in the HH group were significantly greater than those in the NC (P HHO groups (P HHO groups; and the expression of Bcl-2 in group HH was greater than that in the NC and HHO groups. HPASMC mitochondrial membrane potentials in group HO was lower than in group HY (P < 0.01), and cyt-C in the cytoplasm, AI, and caspase-9 in the HO group were greater than that in the HY group (P < 0.01), but the expression of Bcl-2 in the HO group was less than that in the HY group (P < 0.05). The results suggest that oridonin can lower pulmonary artery pressure effectively, and inhibit pulmonary artery structural remodeling by inducing smooth cell apoptosis via a mitochondria-dependent pathway.

  4. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats.

    Science.gov (United States)

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-12-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH.

  5. Bistable firing properties of soleus motor units in unrestrained rats

    DEFF Research Database (Denmark)

    EKEN, T.; KIEHN, O.

    1989-01-01

    of the motoneuron pool by stimulation of la afferents, or inhibition by stimulation of skin afferents. The shifts were not related to gross limb movements. This phenomenon is referred to as a bistable firing pattern. Bistable firing also occurred spontaneously during quiet standing. Typically the firing frequency...... was unchanged or only phasically influenced. These results demonstrate for the first time a bistable firing pattern during postural activity in the intact animal. The firing pattern closely resembles the bistable behaviour described in spinal motoneurons in reduced preparations, where it is due to the presence...... of a plateau potential. This suggests that the bistable firing is unexplained by plateau potentials also in the intact animal....

  6. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura)

    Science.gov (United States)

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J.; Hansson, Bill S.

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  7. Medullary GABAergic mechanisms contribute to electroacupuncture modulation of cardiovascular depressor responses during gastric distention in rats

    Science.gov (United States)

    Guo, Zhi-Ling; Li, Min; Longhurst, John C.

    2013-01-01

    Electroacupuncture (EA) at P5–P6 acupoints overlying the median nerves typically reduces sympathoexcitatory blood pressure (BP) reflex responses in eucapnic rats. Gastric distention in hypercapnic acidotic rats, by activating both vagal and sympathetic afferents, decreases heart rate (HR) and BP through actions in the rostral ventrolateral medulla (rVLM) and nucleus ambiguus (NAmb), leading to sympathetic withdrawal and parasympathetic activation, respectively. A GABAA mechanism in the rVLM mediates the decreased sympathetic outflow. The present study investigated the hypothesis that EA modulates gastric distention-induced hemodynamic depressor and bradycardia responses through nuclei that process parasympathetic and sympathetic outflow. Anesthetized hypercapnic acidotic rats manifested repeatable decreases in BP and HR with gastric distention every 10 min. Bilateral EA at P5–P6 for 30 min reversed the hypotensive response from −26 ± 3 to −6 ± 1 mmHg and the bradycardia from −35 ± 11 to −10 ± 3 beats/min for a period that lasted more than 70 min. Immunohistochemistry and in situ hybridization to detect c-Fos protein and GAD 67 mRNA expression showed that GABAergic caudal ventral lateral medulla (cVLM) neurons were activated by EA. Glutamatergic antagonism of cVLM neurons with kynurenic acid reversed the actions of EA. Gabazine used to block GABAA receptors microinjected into the rVLM or cVLM reversed EA's action on both the reflex depressor and bradycardia responses. EA modulation of the decreased HR was inhibited by microinjection of gabazine into the NAmb. Thus, EA through GABAA receptor mechanisms in the rVLM, cVLM, and NAmb modulates gastric distention-induced reflex sympathoinhibition and vagal excitation. PMID:23302958

  8. Electrocorticographic activity over sensorimotor cortex and motor function in awake behaving rats.

    Science.gov (United States)

    Boulay, Chadwick B; Chen, Xiang Yang; Wolpaw, Jonathan R

    2015-04-01

    Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5-30 Hz), low γ (γ1; 40-85 Hz), and high γ (γ2; 100-200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs. Copyright © 2015 the American Physiological Society.

  9. A study of renal blood flow regulation using the discrete wavelet transform

    Science.gov (United States)

    Pavlov, Alexey N.; Pavlova, Olga N.; Mosekilde, Erik; Sosnovtseva, Olga V.

    2010-02-01

    In this paper we provide a way to distinguish features of renal blood flow autoregulation mechanisms in normotensive and hypertensive rats based on the discrete wavelet transform. Using the variability of the wavelet coefficients we show distinctions that occur between the normal and pathological states. A reduction of this variability in hypertension is observed on the microscopic level of the blood flow in efferent arteriole of single nephrons. This reduction is probably associated with higher flexibility of healthy cardiovascular system.

  10. Submucosal neurons and enteric glial cells expressing the P2X7 receptor in rat experimental colitis.

    Science.gov (United States)

    da Silva, Marcos Vinícius; Marosti, Aline Rosa; Mendes, Cristina Eusébio; Palombit, Kelly; Castelucci, Patricia

    2017-06-01

    The aim of this study was to evaluate the effect of ulcerative colitis on the submucosal neurons and glial cells of the submucosal ganglia of rats. 2,4,6-Trinitrobenzene sulfonic acid (TNBS; colitis group) was administered in the colon to induce ulcerative colitis, and distal colons were collected after 24h. The colitis rats were compared with those in the sham and control groups. Double labelling of the P2X7 receptor with calbindin (marker for intrinsic primary afferent neurons, IPANs, submucosal plexus), calretinin (marker for secretory and vasodilator neurons of the submucosal plexus), HuC/D and S100β was performed in the submucosal plexus. The density (neurons per area) of submucosal neurons positive for the P2X7 receptor, calbindin, calretinin and HuC/D decreased by 21%, 34%, 8.2% and 28%, respectively, in the treated group. In addition, the density of enteric glial cells in the submucosal plexus decreased by 33%. The profile areas of calbindin-immunoreactive neurons decreased by 25%. Histological analysis revealed increased lamina propria and decreased collagen in the colitis group. This study demonstrated that ulcerative colitis affected secretory and vasodilatory neurons, IPANs and enteric glia of the submucosal plexus expressing the P2X7 receptor. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Ultrasonography as a tool to study afferent feedback from the muscle-tendon complex during human walking

    DEFF Research Database (Denmark)

    Cronin, Neil J.; Klint, Richard af; Grey, Michael James

    2011-01-01

    In humans, one of the most common tasks in everyday life is walking, and sensory afferent feedback from peripheral receptors, particularly the muscle spindles and Golgi tendon organs (GTO), makes an important contribution to the motor control of this task. One factor that can complicate the ability...... with an examination of muscle activation to give a broader insight to neuromuscular interaction during walking. Despite the advances in understanding that these techniques have brought, there is clearly still a need for more direct methods to study both neural and mechanical parameters during human walking in order...... of these receptors to act as length, velocity and force transducers is the complex pattern of interaction between muscle and tendinous tissues, as tendon length is often considerably greater than muscle fibre length in the human lower limb. In essence, changes in muscle-tendon mechanics can influence the firing...

  12. Protective effect of fenspiride on the bronchi in rats with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Kuzubova, N A; Lebedeva, E S; Fedin, A N; Dvorakovskaya, I V; Titova, O N

    2013-06-01

    We studied the effect of a non-steroidal anti-inflammatory drug fenspiride on contractive activity of bronchial smooth muscles on the model of chronic obstructive pulmonary disease of rats induced by 60-day exposure to nitrogen dioxide. The administration of fenspiride during the acute stage of the disease (day 15) abolished the constricting effect of the pollutant on the bronchial smooth muscles. Dilatation effect of fenspiride in a low dose (0.15 mg/kg) was mediated by its interaction with nerve endings of bronchial capsaicin-sensitive nerve C-fibers. The interaction of drug with receptors of C-fibers prevented neurogenic inflammation, which was confirmed by the absence of structural changes in the lungs typical of this pathology. The broncholytic effect of fenspiride in a high dose (15 mg/kg) was mediated by not only afferent pathways, but also its direct relaxing action on smooth muscle cells. The observed anti-inflammatory and bronchodilatation effect of fenspiride in very low doses can be used for prevention of chronic obstructive pulmonary disease in risk-group patients contacting with aggressive environmental factors.

  13. Low-Frequency Components in Rat Pial Arteriolar Rhythmic Diameter Changes.

    Science.gov (United States)

    Lapi, Dominga; Mastantuono, Teresa; Di Maro, Martina; Varanini, Maurizio; Colantuoni, Antonio

    2017-01-01

    This study aimed to analyze the frequency components present in spontaneous rhythmic diameter changes in rat pial arterioles. Pial microcirculation was visualized by fluorescence microscopy. Rhythmic luminal variations were evaluated via computer-assisted methods. Spectral analysis was carried out on 30-min recordings under baseline conditions and after administration of acetylcholine (Ach), papaverine (Pap), Nω-nitro-L-arginine (L-NNA) prior to Ach, indomethacin (INDO), INDO prior to Ach, charybdotoxin and apamin, and charybdotoxin and apamin prior to Ach. Under baseline conditions all arteriolar orders showed 3 frequency components in the ranges of 0.0095-0.02, 0.02-0.06, and 0.06-0.2 Hz, another 2 in the ranges of 0.2-2.0 and 2.5-4.5 Hz, and another ultra-low-frequency component in the range of 0.001-0.0095 Hz. Ach caused a significant increase in the spectral density of the frequency components in the range of 0.001-0.2 Hz. Pap was able to slightly increase spectral density in the ranges of 0.001-0.0095 and 0.0095-0.02 Hz. L-NNA mainly attenuated arteriolar responses to Ach. INDO prior to Ach did not affect the endothelial response to Ach. Charybdotoxin and apamin, suggested as endothelium-derived hyperpolarizing factor inhibitors, reduced spectral density in the range of 0.001-0.0095 Hz before and after Ach administration. In conclusion, regulation of the blood flow distribution is due to several mechanisms, one of which is affected by charibdotoxin and apamin, modulating the vascular tone. © 2017 S. Karger AG, Basel.

  14. Interaction of prostaglandins and angiotensin II in the modulation of renal function in congestive heart failure.

    Science.gov (United States)

    Packer, M

    1988-06-01

    Despite a dramatic fall in renal blood flow, glomerular filtration rate is usually preserved in patients with congestive heart failure until the terminal stages of the disease. This maintenance of renal function appears to be achieved in part by the synthesis of two vasoactive factors within the kidney--angiotensin II and prostaglandins--which are rapidly released whenever renal perfusion is compromised or sympathetic nerve traffic to the kidneys is increased. Although these two hormonal systems exert opposite effects on systemic and renal blood flow and sodium and water excretion, both act to preserve glomerular filtration rate: prostaglandins by a vasodilator action exerted primarily on the afferent arteriole and angiotensin II by a vasoconstrictor effect on the efferent arteriole. Consequently, when the synthesis of these hormones is experimentally blocked, renal function deteriorates, especially in subjects with marked renal hypoperfusion and sodium depletion; these two factors interact to determine the importance of intrarenal hormonal release in the modulation of renal function. Clinically, four specific factors have been identified that predispose patients with heart failure to the development of functional renal insufficiency after treatment with converting-enzyme or cyclo-oxygenase inhibitors: (1) marked renal hypoperfusion, (2) vigorous diuretic therapy, (3) diabetes mellitus, and (4) intensity of hormonal inhibition within the kidney. This last risk factor may provide the basis for differentiating among enzyme-inhibitory drugs and suggests that renal insufficiency in low-output states may be minimized by the development of therapeutic agents that block hormonal synthesis selectively at sites that are critical to the disease process but spare the homeostatic tissue-based enzyme systems that exist within the kidney.

  15. Opposite reactivity of meningeal versus cortical microvessels to the nitric oxide donor glyceryl trinitrate evaluated in vivo with two-photon imaging.

    Directory of Open Access Journals (Sweden)

    Evgeny Pryazhnikov

    Full Text Available Vascular changes underlying headache in migraine patients induced by Glyceryl trinitrate (GTN were previously studied with various imaging techniques. Despite the long history of medical and experimental use of GTN, its effects on the brain vasculature are still poorly understood presumably due to low spatial resolution of the imaging modalities used so far. We took advantage of the micrometer-scale vertical resolution of two-photon microscopy to differentiate between the vasodynamic effects of GTN on meningeal versus cortical vessels imaged simultaneously in anesthetized rats through either thinned skull or glass-sealed cranial window. Intermediate and small calibre vessels were visualized in vivo by imaging intravascular fluorescent dextran, and detection of blood flow direction allowed identification of individual arterioles and venules. We found that i.p.-injected GTN induced a transient constriction of meningeal arterioles, while their cortical counterparts were, in contrast, dilated. These opposing effects of GTN were restricted to arterioles, whereas the effects on venules were insignificant. Interestingly, the NO synthase inhibitor L-NAME did not affect the diameter of meningeal vessels but induced a constriction of cortical vessels. The different cellular environment in cortex versus meninges as well as distinct vessel wall anatomical features probably play crucial role in the observed phenomena. These findings highlight differential region- and vessel-type-specific effects of GTN on cranial vessels, and may implicate new vascular mechanisms of NO-mediated primary headaches.

  16. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Wanyi Yen

    Full Text Available Due to its unique location, the endothelial surface glycocalyx (ESG at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO production in post-capillary venules and arterioles of rat mesentery under reduced (low and normal (high flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS inhibitor, NG-monomethyl-L-arginine (L-NMMA. Rats (SD, 250-300 g were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s and for ~60 min under a high flow (~1000 μm/s. In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.

  17. Sensory dysfunction of bladder mucosa and bladder oversensitivity in a rat model of metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Wei-Chia Lee

    Full Text Available PURPOSE: To study the role of sensory dysfunction of bladder mucosa in bladder oversensitivity of rats with metabolic syndrome. MATERIALS AND METHODS: Female Wistar rats were fed a fructose-rich diet (60% or a normal diet for 3 months. Based on cystometry, the fructose-fed rats (FFRs were divided into a group with normal detrusor function or detrusor overactivity (DO. Acidic adenosine triphosphate (ATP solution (5mM, pH 3.3 was used to elicit reflex micturition. Cystometric parameters were evaluated before and after drug administration. Functional proteins of the bladder mucosa were assessed by western blotting. RESULTS: Compared to the controls, intravesical acidic ATP solution instillation induced a significant increase in provoked phasic contractions in both FFR groups and a significant decrease in the mean functional bladder capacity of group DO. Pretreatment with capsaicin for C-fiber desentization, intravesical liposome for mucosal protection, or intravenous pyridoxal 5-phosphate 6-azophenyl-2',4'-disulfonic acid for antagonized purinergic receptors can interfere with the urodynamic effects of intravesical ATP in FFRs and controls. Over-expression of TRPV1, P2X(3, and iNOS proteins, and down-regulation of eNOS proteins were observed in the bladder mucosa of both fructose-fed groups. CONCLUSIONS: Alterations of sensory receptors and enzymes in the bladder mucosa, including over-expression of TRPV1, P2X(3, and iNOS proteins, can precipitate the emergence of bladder phasic contractions and oversensitivity through the activation of C-afferents during acidic ATP solution stimulation in FFRs. The down-regulation of eNOS protein in the bladder mucosa of FFRs may lead to a failure to suppress bladder oversensitivity and phasic contractions. Sensory dysfunction of bladder mucosa and DO causing by metabolic syndrome are easier to elicit bladder oversensitivity to certain urothelium stimuli.

  18. Neuropharmacologic characterization of strychnine seizure potentiation in the inferior olive lesioned rat

    International Nuclear Information System (INIS)

    Anderson, M.C.

    1988-01-01

    Cerebellar stimulation is associated with anticonvulsant activity in several animal models. There are two afferent inputs to cerebellar Purkinje cells: (1) parallel fibers, which relay mossy fiber input, from brainstem, spinal cord, cerebral cortex and cerebellum, and (2) climbing fibers, arising from the inferior olive. Both climbing and parallel fibers release excitatory amino acid neurotransmitters, which stimulate Purkinje cells and cause GABA release in the deep cerebellar nuclei. Climbing fibers also exert tonic inhibition over Purkinje cell activity by producing an absolute refractory period following stimulation, rendering Purkinje cells unresponsive to parallel fibers. Climbing fiber deafferentation by bilateral inferior olive lesions produced a specific decrease in threshold for strychnine-seizures in the rat. Inferior olive lesions produced no change in threshold to seizures induced by picrotoxin, bicuculline or pentylenetetrazole. Inferior olive lesions also produced abnormal motor behavior including, myoclonus, backward locomotion and hyperextension, which was significantly aggravated by strychnine, brucine, picrotoxin, bicuculline and pentylenetetrazole. Inferior olive lesions produced a significant increase in quisqualate sensitive [ 3 H]AMPA ((Rs)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding to cerebellar membranes. AMPA is a glutamate analog with high affinity for quisqualate sensitive receptors

  19. A handheld support system to facilitate stereological measurements and mapping of branching structures

    DEFF Research Database (Denmark)

    Gardi, J.E.; Wulfsohn, Dvora-Laiô; Nyengaard, J.R.

    2007-01-01

    specifications, software and Graphical User Interface (GUI) development, functionality and application of the handheld system using four examples: (1) sampling monkey lung bronchioles for estimation of diameter and wall thickness (2) sampling rat kidney for estimating number of arteries and arterioles......‘BranchSampler' is a system for computer-assisted manual stereology written for handheld devices running Windows CE. The system has been designed specifically to streamline data collection and optimize sampling of tree-like branching structures, with particular aims of reducing user errors, saving...

  20. MuSC is involved in regulating axonal fasciculation of mouse primary vestibular afferents.

    Science.gov (United States)

    Kawauchi, Daisuke; Kobayashi, Hiroaki; Sekine-Aizawa, Yoko; Fujita, Shinobu C; Murakami, Fujio

    2003-10-01

    Regulation of axonal fasciculation plays an important role in the precise patterning of neural circuits. Selective fasciculation contributes to the sorting of different types of axons and prevents the misrouting of axons. However, axons must defasciculate once they reach the target area. To study the regulation of fasciculation, we focused on the primary vestibulo-cerebellar afferents (PVAs), which show a dramatic change from fasciculated axon bundles to defasciculated individual axons at their target region, the cerebellar primordium. To understand how fasciculation and defasciculation are regulated in this system, we investigated the roles of murine SC1-related protein (MuSC), a molecule belonging to the immunoglobulin superfamily. We show: (i) by comparing 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) labelling and anti-MuSC immunohistochemistry, that downregulation of MuSC in PVAs during development is concomitant with the defasciculation of PVA axons; (ii) in a binding assay with cells expressing MuSC, that MuSC has cell-adhesive activity via a homophilic binding mechanism, and this activity is increased by multimerization; and (iii) that MuSC also displays neurite outgrowth-promoting activity in vestibular ganglion cultures. These findings suggest that MuSC is involved in axonal fasciculation and its downregulation may help to initiate the defasciculation of PVAs.

  1. RatMap--rat genome tools and data.

    Science.gov (United States)

    Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M; Ståhl, Fredrik

    2005-01-01

    The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB-Genetics at Goteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided.

  2. RatMap—rat genome tools and data

    Science.gov (United States)

    Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M.; Ståhl, Fredrik

    2005-01-01

    The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB–Genetics at Göteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided. PMID:15608244

  3. Age- and Sex-Dependent Impact of Repeated Social Stress on Intrinsic and Synaptic Excitability of the Rat Prefrontal Cortex.

    Science.gov (United States)

    Urban, Kimberly R; Valentino, Rita J

    2017-01-01

    Stress is implicated in psychiatric illnesses that are characterized by impairments in cognitive functions that are mediated by the medial prefrontal cortex (mPFC). Because sex and age determine stress vulnerability, the effects of repeated social stress occurring during early adolescence, mid-adolescence, or adulthood on the cellular properties of male and female rat mPFC Layer V neurons in vitro were examined. Repeated resident-intruder stress produced age- and sex-specific effects on mPFC intrinsic and synaptic excitability. Mid-adolescents were particularly vulnerable to effects on intrinsic excitability. The maximum number of action potentials (APs) evoked by increasing current intensity was robustly decreased in stressed male and female mid-adolescent rats compared with age-matched controls. These effects were associated with stress-induced changes in AP half-width, amplitude, threshold, and input resistance. Social stress at all ages generally decreased synaptic excitability by decreasing the amplitude of spontaneous excitatory postsynaptic potentials. The results suggest that whereas social stress throughout life can diminish the influence of afferents driving the mPFC, social stress during mid-adolescence additionally affects intrinsic characteristics of mPFC neurons that determine excitability. The depressant effects of social stress on intrinsic and synaptic mPFC neurons may underlie its ability to affect executive functions and emotional responses, particularly during adolescence. © The Author 2016. Published by Oxford University Press.

  4. The effect of propofol on CA1 pyramidal cell excitability and GABAA-mediated inhibition in the rat hippocampal slice.

    Science.gov (United States)

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1996-05-24

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of propofol on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid, and electrodes were placed in the CA1 region to record extracellular field population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. The major effect of propofol (7-28 microM) was a dose and time dependent increase in the intensity and duration of GABA-mediated inhibition. This propofol effect could be rapidly and completely reversed by exposure to known GABAA antagonists, including picrotoxin, bicuculline and pentylenetetrazol. It was also reversed by the chloride channel antagonist, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). It was not antagonized by central (flumazenil) or peripheral (PK11195) benzodiazepine antagonists. Reversal of endogenous inhibition was also noted with the antagonists picrotoxin and pentylenetetrazol. Input/output curves constructed using stimulus propofol caused only a small enhancement of EPSPs at higher stimulus intensities but had no effect on PS amplitudes. These studies are consistent with propofol having a GABAA-chloride channel mechanism causing its effect on recurrent collateral evoked inhibition in the rat hippocampal slice.

  5. GABA regulates the rat hypothalamic-pituitary-adrenocortical axis via different GABA-A receptor alpha-subtypes

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Bundzikova, Jana; Larsen, Marianne Hald

    2008-01-01

    dependent on the composition of the GABA-A receptor subunits through which they act. We show here that positive modulators of alpha(1)-subtype containing GABA-A receptors with zolpidem (10 mg/kg) increase HPA activity in terms of increase in plasma corticosterone and induction of Fos in the PVN, whereas...... after positive modulation of GABA-A receptors composed of alpha(1)-subunit(s) affects a selective afferent system than the PVN, which is distinct from another afferent system(s) activated by non alpha(1)-containing GABA-A receptors....

  6. Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models.

    Science.gov (United States)

    Takada, M; Nishida, K; Kataoka-Kato, A; Gondo, Y; Ishikawa, H; Suda, K; Kawai, M; Hoshi, R; Watanabe, O; Igarashi, T; Kuwano, Y; Miyazaki, K; Rokutan, K

    2016-07-01

    This study aimed to examine the effects of Lactobacillus casei strain Shirota (LcS) on gut-brain interactions under stressful conditions. Three double-blind, placebo-controlled trials were conducted to examine the effects of LcS on psychological and physiological stress responses in healthy medical students under academic examination stress. Subjects received LcS-fermented milk or placebo daily for 8 weeks prior to taking a national standardized examination. Subjective anxiety scores, salivary cortisol levels, and the presence of physical symptoms during the intervention were pooled and analyzed. In the animal study, rats were given feed with or without LcS for 2 weeks, then submitted to water avoidance stress (WAS). Plasma corticosterone concentration and the expression of cFos and corticotropin releasing factor (CRF) in the paraventricular nucleus (PVN) were measured immediately after WAS. In an electrophysiological study, gastric vagal afferent nerve activity was monitored after intragastric administration of LcS to urethane-anesthetized rats. Academic stress-induced increases in salivary cortisol levels and the incidence rate of physical symptoms were significantly suppressed in the LcS group compared with the placebo group. In rats pretreated with LcS, WAS-induced increases in plasma corticosterone were significantly suppressed, and the number of CRF-expressing cells in the PVN was reduced. Intragastric administration of LcS stimulated gastric vagal afferent activity in a dose-dependent manner. These findings suggest that LcS may prevent hypersecretion of cortisol and physical symptoms under stressful conditions, possibly through vagal afferent signaling to the brain and reduced stress reactivity in the PVN. © 2016 John Wiley & Sons Ltd.

  7. Intramuscular Neurotrophin-3 normalizes low threshold spinal reflexes, reduces spasms and improves mobility after bilateral corticospinal tract injury in rats.

    Science.gov (United States)

    Kathe, Claudia; Hutson, Thomas Haynes; McMahon, Stephen Brendan; Moon, Lawrence David Falcon

    2016-10-19

    Brain and spinal injury reduce mobility and often impair sensorimotor processing in the spinal cord leading to spasticity. Here, we establish that complete transection of corticospinal pathways in the pyramids impairs locomotion and leads to increased spasms and excessive mono- and polysynaptic low threshold spinal reflexes in rats. Treatment of affected forelimb muscles with an adeno-associated viral vector (AAV) encoding human Neurotrophin-3 at a clinically-feasible time-point after injury reduced spasticity. Neurotrophin-3 normalized the short latency Hoffmann reflex to a treated hand muscle as well as low threshold polysynaptic spinal reflexes involving afferents from other treated muscles. Neurotrophin-3 also enhanced locomotor recovery. Furthermore, the balance of inhibitory and excitatory boutons in the spinal cord and the level of an ion co-transporter in motor neuron membranes required for normal reflexes were normalized. Our findings pave the way for Neurotrophin-3 as a therapy that treats the underlying causes of spasticity and not only its symptoms.

  8. Creating a Long-Term Diabetic Rabbit Model

    Directory of Open Access Journals (Sweden)

    Jianpu Wang

    2010-01-01

    Full Text Available This study was to create a long-term rabbit model of diabetes mellitus for medical studies of up to one year or longer and to evaluate the effects of chronic hyperglycemia on damage of major organs. A single dose of alloxan monohydrate (100 mg/kg was given intravenously to 20 young New Zealand White rabbits. Another 12 age-matched normal rabbits were used as controls. Hyperglycemia developed within 48 hours after treatment with alloxan. Insulin was given daily after diabetes developed. All animals gained some body weight, but the gain was much less than the age-matched nondiabetic rabbits. Hyperlipidemia, higher blood urea nitrogen and creatinine were found in the diabetic animals. Histologically, the pancreas showed marked beta cell damage. The kidneys showed significantly thickened afferent glomerular arterioles with narrowed lumens along with glomerular atrophy. Lipid accumulation in the cytoplasm of hepatocytes appeared as vacuoles. Full-thickness skin wound healing was delayed. In summary, with careful management, alloxan-induced diabetic rabbits can be maintained for one year or longer in reasonably good health for diabetic studies.

  9. Regulation of peripheral inflammation by spinal p38 MAP kinase in rats.

    Directory of Open Access Journals (Sweden)

    David L Boyle

    2006-09-01

    Full Text Available Somatic afferent input to the spinal cord from a peripheral inflammatory site can modulate the peripheral response. However, the intracellular signaling mechanisms in the spinal cord that regulate this linkage have not been defined. Previous studies suggest spinal cord p38 mitogen-activated protein (MAP kinase and cytokines participate in nociceptive behavior. We therefore determined whether these pathways also regulate peripheral inflammation in rat adjuvant arthritis, which is a model of rheumatoid arthritis.Selective blockade of spinal cord p38 MAP kinase by administering the p38 inhibitor SB203580 via intrathecal (IT catheters in rats with adjuvant arthritis markedly suppressed paw swelling, inhibited synovial inflammation, and decreased radiographic evidence of joint destruction. The same dose of SB203580 delivered systemically had no effect, indicating that the effect was mediated by local concentrations in the neural compartment. Evaluation of articular gene expression by quantitative real-time PCR showed that spinal p38 inhibition markedly decreased synovial interleukin-1 and -6 and matrix metalloproteinase (MMP3 gene expression. Activation of p38 required tumor necrosis factor alpha (TNFalpha in the nervous system because IT etanercept (a TNF inhibitor given during adjuvant arthritis blocked spinal p38 phosphorylation and reduced clinical signs of adjuvant arthritis.These data suggest that peripheral inflammation is sensed by the central nervous system (CNS, which subsequently activates stress-induced kinases in the spinal cord via a TNFalpha-dependent mechanism. Intracellular p38 MAP kinase signaling processes this information and profoundly modulates somatic inflammatory responses. Characterization of this mechanism could have clinical and basic research implications by supporting development of new treatments for arthritis and clarifying how the CNS regulates peripheral immune responses.

  10. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles.

    Science.gov (United States)

    Stone, Audrey J; Copp, Steven W; Kim, Joyce S; Kaufman, Marc P

    2015-12-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles combined receptor blockade is required to attenuate the exercise pressor reflex. We first compared the reflex before and after injecting either PPADS (10 mg/kg), a P2X receptor antagonist, APETx2 (100 μg/kg), an activating acid-sensing ion channel 3 (ASIC) channel antagonist, or L161982 (2 μg/kg), an EP4 receptor antagonist, into the arterial supply of the hindlimb of decerebrated rats. We then examined the effects of combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the exercise pressor reflex using the same doses, intra-arterial route, and time course of antagonist injections as those used for individual blockade. We found that neither PPADS (n = 5), APETx2 (n = 6), nor L161982 (n = 6) attenuated the reflex. In contrast, combined blockade of these receptors (n = 7) attenuated the peak (↓27%, P reflex. Combined blockade injected intravenously had no effect on the reflex. We conclude that combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the endings of thin fiber muscle afferents is required to attenuate the exercise pressor reflex in rats with freely perfused hindlimbs. Copyright © 2015 the American Physiological Society.

  11. Baicalin inhibits hypoxia-induced pulmonary artery smooth muscle cell proliferation via the AKT/HIF-1α/p27-associated pathway.

    Science.gov (United States)

    Zhang, Lin; Pu, Zhichen; Wang, Junsong; Zhang, Zhifeng; Hu, Dongmei; Wang, Junjie

    2014-05-09

    Baicalin, a flavonoid compound purified from the dry roots of Scutellaria baicalensis Georgi, has been shown to possess various pharmacological actions. Previous studies have revealed that baicalin inhibits the growth of cancer cells through the induction of apoptosis. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by enhanced pulmonary artery smooth muscle cell (PASMCs) proliferation and suppressed apoptosis. However, the potential mechanism of baicalin in the regulation of PASMC proliferation and the prevention of cardiovascular diseases remains unexplored. To test the effects of baicalin on hypoxia, we used rats treated with or without baicalin (100 mg·kg⁻¹ each rat) at the beginning of the third week after hypoxia. Hemodynamic and pulmonary pathomorphology data showed that right ventricular systolic pressures (RVSP), the weight of the right ventricle/left ventricle plus septum (RV/LV + S) ratio and the medial width of pulmonary arterioles were much higher in chronic hypoxia. However, baicalin treatment repressed the elevation of RVSP, RV/LV + S and attenuated the pulmonary vascular structure remodeling (PVSR) of pulmonary arterioles induced by chronic hypoxia. Additionally, baicalin (10 and 20 μmol·L⁻¹) treatment suppressed the proliferation of PASMCs and attenuated the expression of hypoxia-inducible factor-α (HIF-α) under hypoxia exposure. Meanwhile, baicalin reversed the hypoxia-induced reduction of p27 and increased AKT/protein kinase B phosphorylation p-AKT both in vivo and in vitro. These results suggested that baicalin could effectively attenuate PVSR and hypoxic pulmonary hypertension.

  12. Impact of short-term treatment with telmisartan on cerebral arterial remodeling in SHR.

    Directory of Open Access Journals (Sweden)

    Sébastien Foulquier

    Full Text Available Chronic hypertension decreases internal diameter of cerebral arteries and arterioles. We recently showed that short-term treatment with the angiotensin II receptor blocker telmisartan restored baseline internal diameter of small cerebral arterioles in spontaneously hypertensive rats (SHR, via reversal of structural remodeling and inhibition of the angiotensin II vasoconstrictor response. As larger arteries also participate in the regulation of cerebral circulation, we evaluated whether similar short-term treatment affects middle cerebral arteries of SHR.Baseline internal diameters of pressurised middle cerebral arteries from SHR and their respective controls, Wistar Kyoto rats (WKY and responses to angiotensin II were studied in a small vessel arteriograph. Pressure myogenic curves and passive internal diameters were measured following EDTA deactivation, and elastic modulus from stress-strain relationships.Active baseline internal diameter was 23% lower in SHR compared to WKY, passive internal diameter (EDTA 28% lower and elastic modulus unchanged. Pressure myogenic curves were shifted to higher pressure values in SHR. Telmisartan lowered blood pressure but had no effect on baseline internal diameter nor on structural remodeling (passive internal diameter and elastic modulus remained unchanged compared to SHR. Telmisartan shifted the pressure myogenic curve to lower pressure values than SHR.In the middle cerebral arteries of SHR, short-term treatment with telmisartan had no effect on structural remodeling and did not restore baseline internal diameter, but allowed myogenic tone to adapt towards lower pressure values.

  13. Thermal detection thresholds of Aδ- and C-fibre afferents activated by brief CO2 laser pulses applied onto the human hairy skin.

    Directory of Open Access Journals (Sweden)

    Maxim Churyukanov

    Full Text Available Brief high-power laser pulses applied onto the hairy skin of the distal end of a limb generate a double sensation related to the activation of Aδ- and C-fibres, referred to as first and second pain. However, neurophysiological and behavioural responses related to the activation of C-fibres can be studied reliably only if the concomitant activation of Aδ-fibres is avoided. Here, using a novel CO(2 laser stimulator able to deliver constant-temperature heat pulses through a feedback regulation of laser power by an online measurement of skin temperature at target site, combined with an adaptive staircase algorithm using reaction-time to distinguish between responses triggered by Aδ- and C-fibre input, we show that it is possible to estimate robustly and independently the thermal detection thresholds of Aδ-fibres (46.9±1.7°C and C-fibres (39.8±1.7°C. Furthermore, we show that both thresholds are dependent on the skin temperature preceding and/or surrounding the test stimulus, indicating that the Aδ- and C-fibre afferents triggering the behavioural responses to brief laser pulses behave, at least partially, as detectors of a change in skin temperature rather than as pure level detectors. Most importantly, our results show that the difference in threshold between Aδ- and C-fibre afferents activated by brief laser pulses can be exploited to activate C-fibres selectively and reliably, provided that the rise in skin temperature generated by the laser stimulator is well-controlled. Our approach could constitute a tool to explore, in humans, the physiological and pathophysiological mechanisms involved in processing C- and Aδ-fibre input, respectively.

  14. Anatomical evidence for direct fiber projections from the cerebellar nucleus interpositus to rubrospinal neurons. A quantitative EM study in the rat combining anterograde and retrograde intra-axonal tracing methods

    International Nuclear Information System (INIS)

    Dekker, J.J.

    1981-01-01

    A quantitative electron microscopic (EM) study combining the anterograde intra-axonal transport of radioactive amino acids and the retrograde intra-axonal transport of the enzyme horseradish peroxidase (HRP) was performed in the magnocellular red nucleus of the rat to obtain anatomical evidence as to whether there is a direct projection from the cerebellar nucleus interpositus to the cells in the red nucleus that give rise to the rubrospinal tract. Large asymmetrical synaptic terminals were radioactively labeled in the magnocellular red nucleus following injections of [ 3 H]leucine into the cerebellar nucleus interpositus. In these same animals, the postsynaptic target neurons were labeled with HRP granules after injection of this substance in the rubrospinal tract. A quantitative analysis showed that more than 85% of the large and giant neurons in the magnocellular red nucleus were labeled with HRP granules and also received synaptic contacts from radioactively-labeled terminals. Thus, it can be concluded that in the rat, afferents from the cerebellar nucleus interpositus establish asymmetrical synaptic contacts with large and giant rubrospinal neurons, thus confirming and extending the previous physiological evidence of such direct monosynaptic connections. (Auth.)

  15. Temporal code in the vibrissal system-Part II: Roughness surface discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, Postal Code CP 4000 (Argentina); AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, Postal Code CP 4000 (Argentina)

    2007-11-15

    Previous works have purposed hypotheses about the neural code of the tactile system in the rat. One of them is based on the physical characteristics of vibrissae, such as frequency of resonance; another is based on discharge patterns on the trigeminal ganglion. In this work, the purpose is to find a temporal code analyzing the afferent signals of two vibrissal nerves while vibrissae sweep surfaces of different roughness. Two levels of pressure were used between the vibrissa and the contact surface. We analyzed the afferent discharge of DELTA and GAMMA vibrissal nerves. The vibrissae movements were produced using electrical stimulation of the facial nerve. The afferent signals were analyzed using an event detection algorithm based on Continuous Wavelet Transform (CWT). The algorithm was able to detect events of different duration. The inter-event times detected were calculated for each situation and represented in box plot. This work allowed establishing the existence of a temporal code at peripheral level.

  16. Temporal code in the vibrissal system-Part II: Roughness surface discrimination

    International Nuclear Information System (INIS)

    Farfan, F D; AlbarracIn, A L; Felice, C J

    2007-01-01

    Previous works have purposed hypotheses about the neural code of the tactile system in the rat. One of them is based on the physical characteristics of vibrissae, such as frequency of resonance; another is based on discharge patterns on the trigeminal ganglion. In this work, the purpose is to find a temporal code analyzing the afferent signals of two vibrissal nerves while vibrissae sweep surfaces of different roughness. Two levels of pressure were used between the vibrissa and the contact surface. We analyzed the afferent discharge of DELTA and GAMMA vibrissal nerves. The vibrissae movements were produced using electrical stimulation of the facial nerve. The afferent signals were analyzed using an event detection algorithm based on Continuous Wavelet Transform (CWT). The algorithm was able to detect events of different duration. The inter-event times detected were calculated for each situation and represented in box plot. This work allowed establishing the existence of a temporal code at peripheral level

  17. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex.

    Science.gov (United States)

    Raz, Aeyal; Grady, Sean M; Krause, Bryan M; Uhlrich, Daniel J; Manning, Karen A; Banks, Matthew I

    2014-01-01

    The mechanism of loss of consciousness (LOC) under anesthesia is unknown. Because consciousness depends on activity in the cortico-thalamic network, anesthetic actions on this network are likely critical for LOC. Competing theories stress the importance of anesthetic actions on bottom-up "core" thalamo-cortical (TC) vs. top-down cortico-cortical (CC) and matrix TC connections. We tested these models using laminar recordings in rat auditory cortex in vivo and murine brain slices. We selectively activated bottom-up vs. top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain slices, and compared effects of isoflurane on responses evoked via the two pathways. Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency current sinks in middle layers, consistent with activation of core TC afferents. By contrast, visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked responses mainly in superficial and deep layers, consistent with projection patterns of top-down afferents that carry visual information to auditory cortex. Responses to auditory stimuli in vivo and core TC afferents in brain slices were significantly less affected by isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced by isoflurane, whereas visual responses were dramatically reduced. At a comparable concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses, but the effect on the latter responses was far greater than on core TC responses, indicating that at least part of the differential effects observed in vivo were due to local actions of isoflurane in auditory cortex. These data support a model in which disruption of top-down connectivity contributes to anesthesia-induced LOC, and have implications for understanding the neural basis of consciousness.

  18. CHARACTERIZATION OF RENAL BLOOD FLOW REGULATION BASED ON WAVELET COEFFICIENTS

    DEFF Research Database (Denmark)

    Pavlov, A.N.; Pavlova, O.N.; Mosekilde, Erik

    2010-01-01

    The purpose of this study is to demonstrate the possibility of revealing new characteristic features of renal blood flow autoregulation in healthy and pathological states through the application of discrete wavelet transforms to experimental time series for normotensive and hypertensive rats....... A reduction in the variability of the wavelet coefficients in hypertension is observed at both the microscopic level of the blood flow in efferent arterioles of individual nephrons and at the macroscopic level of the blood pressure in the main arteries. The reduction is manifest in both of the main frequency...

  19. A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds

    Science.gov (United States)

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the

  20. A physiologic role for serotonergic transmission in adult rat taste buds.

    Directory of Open Access Journals (Sweden)

    Luc Jaber

    Full Text Available Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells and was once thought to be essential to neurotransmission (now understood as purinergic. However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers